1
|
Auddino S, Aiello E, Grieco GE, Fignani D, Licata G, Bruttini M, Mori A, Berteramo AF, Pedace E, Nigi L, Formichi C, Guay C, Quero G, Tondolo V, Di Giuseppe G, Soldovieri L, Ciccarelli G, Mari A, Giaccari A, Mezza T, Po A, Regazzi R, Dotta F, Sebastiani G. Comprehensive sequencing profile and functional analysis of IsomiRs in human pancreatic islets and beta cells. Diabetologia 2025; 68:1261-1278. [PMID: 40102237 PMCID: PMC12069488 DOI: 10.1007/s00125-025-06397-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Accepted: 01/28/2025] [Indexed: 03/20/2025]
Abstract
AIMS/HYPOTHESIS MiRNAs regulate gene expression, influencing beta cell function and pathways. Isoforms of miRNA (isomiRs), sequence variants of miRNAs with post-transcriptional modifications, exhibit cell-type-specific expression and functions. Despite their biological significance, a comprehensive isomiR profile in human pancreatic islets and beta cells remains unexplored. This study aims to profile isomiR expression in four beta cell sources: (1) laser capture microdissected human islets (LCM-HI); (2) collagenase-isolated human islets (CI-HI); (3) sorted beta cells; and (4) the EndoC-βH1 beta cell line, and to investigate their potential role in beta cell function. METHODS Small RNA-seq and/or small RNA dataset analysis was conducted on human pancreatic islets and beta cells. Data were processed using the sRNAbench bioinformatics pipeline to classify isomiRs based on sequence variations. A beta cell-specific isomiR signature was identified via cross-validation across datasets. Correlations between LCM-HI isomiR expression and in vivo clinical parameters were analysed using regression models. Functional validation of isomiR-411-5p-Ext5p(+1) was performed via overexpression in EndoC-βH1 cells and CI-HI, followed by glucose-stimulated insulin secretion (GSIS) assays and/or transcriptomic analysis. RESULTS IsomiRs constituted 59.2 ± 1.9% (LCM-HI), 59.6 ± 2.4% (CI-HI), 42.3 ± 7.2% (sorted beta cells) and 43.8 ± 1.2% (EndoC-βH1) of total miRNA reads (data represented as mean ± SD), with 3' end trimming (Trim3p) being the predominant modification. A beta cell-specific isomiR signature of 30 sequences was identified, with isomiR-411-5p-Ext5p(+1) showing a significant inverse correlation with basal insulin secretion (p=0.0009, partial R2=0.68) and total insulin secretion (p=0.005, partial R2=0.54). Overexpression of isomiR-411-5p-Ext5p(+1), but not of its canonical counterpart, importantly reduced GSIS by 51% ( ± 15.2%; mean ± SD) (p=0.01) in EndoC-βH1 cells. Transcriptomic analysis performed in EndoC-βH1 cells and CI-HI identified 47 genes significantly downregulated by isomiR-411-5p-Ext5p(+1) (false discovery rate [FDR]<0.05) but not by the canonical miRNA, with enriched pathways related to Golgi vesicle biogenesis (FDR=0.017) and trans-Golgi vesicle budding (FDR=0.018). TargetScan analysis confirmed seed sequence-dependent target specificity for 81 genes uniquely regulated by the isomiR (p=1.1 × 10⁻⁹). CONCLUSIONS/INTERPRETATION This study provides the first comprehensive isomiR profiling in human islets and beta cells, revealing their substantial contribution to miRNA regulation. IsomiR-411-5p-Ext5p(+1) emerges as a distinct key modulator of insulin secretion and granule dynamics in beta cells. These findings highlight isomiRs as potential biomarkers and therapeutic targets for diabetes, warranting further exploration of their roles in beta cell biology.
Collapse
Affiliation(s)
- Stefano Auddino
- Diabetes Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy
- Fondazione Umberto Di Mario ONLUS c/o Toscana Life Science, Siena, Italy
| | - Elena Aiello
- Diabetes Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy
- Fondazione Umberto Di Mario ONLUS c/o Toscana Life Science, Siena, Italy
| | - Giuseppina E Grieco
- Diabetes Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy
- Fondazione Umberto Di Mario ONLUS c/o Toscana Life Science, Siena, Italy
| | - Daniela Fignani
- Diabetes Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy
- Fondazione Umberto Di Mario ONLUS c/o Toscana Life Science, Siena, Italy
| | - Giada Licata
- Diabetes Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy
- Fondazione Umberto Di Mario ONLUS c/o Toscana Life Science, Siena, Italy
| | - Marco Bruttini
- Tuscany Centre for Precision Medicine (CReMeP), Siena, Italy
| | - Alessia Mori
- Tuscany Centre for Precision Medicine (CReMeP), Siena, Italy
| | - Andrea F Berteramo
- Diabetes Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy
- Fondazione Umberto Di Mario ONLUS c/o Toscana Life Science, Siena, Italy
| | - Erika Pedace
- Diabetes Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy
- Fondazione Umberto Di Mario ONLUS c/o Toscana Life Science, Siena, Italy
| | - Laura Nigi
- Diabetes Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy
- Fondazione Umberto Di Mario ONLUS c/o Toscana Life Science, Siena, Italy
| | - Caterina Formichi
- Diabetes Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy
- Fondazione Umberto Di Mario ONLUS c/o Toscana Life Science, Siena, Italy
| | - Claudiane Guay
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland
| | - Giuseppe Quero
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Rome, Italy
- Chirurgia Digestiva, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Vincenzo Tondolo
- General Surgery Unit, Fatebenefratelli Isola Tiberina-Gemelli Isola, Rome, Italy
| | - Gianfranco Di Giuseppe
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Rome, Italy
- Endocrinologia e Diabetologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Laura Soldovieri
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Rome, Italy
- Endocrinologia e Diabetologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Gea Ciccarelli
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Rome, Italy
- Endocrinologia e Diabetologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Andrea Mari
- Institute of Neuroscience, National Research Council, Padua, Italy
| | - Andrea Giaccari
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Rome, Italy
- Endocrinologia e Diabetologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Teresa Mezza
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Rome, Italy
- Endocrinologia e Diabetologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Agnese Po
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Romano Regazzi
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland
- Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland
| | - Francesco Dotta
- Diabetes Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy.
- Fondazione Umberto Di Mario ONLUS c/o Toscana Life Science, Siena, Italy.
- Tuscany Centre for Precision Medicine (CReMeP), Siena, Italy.
| | - Guido Sebastiani
- Diabetes Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy
- Fondazione Umberto Di Mario ONLUS c/o Toscana Life Science, Siena, Italy
| |
Collapse
|
2
|
Elsayed AK, Aldous N, Alajez NM, Abdelalim EM. Identifying miRNA Signatures Associated with Pancreatic Islet Dysfunction in a FOXA2-Deficient iPSC Model. Stem Cell Rev Rep 2024; 20:1915-1931. [PMID: 38916841 PMCID: PMC11445299 DOI: 10.1007/s12015-024-10752-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/19/2024] [Indexed: 06/26/2024]
Abstract
The pathogenesis of diabetes involves complex changes in the expression profiles of mRNA and non-coding RNAs within pancreatic islet cells. Recent progress in induced pluripotent stem cell (iPSC) technology have allowed the modeling of diabetes-associated genes. Our recent study using FOXA2-deficient human iPSC models has highlighted an essential role for FOXA2 in the development of human pancreas. Here, we aimed to provide further insights on the role of microRNAs (miRNAs) by studying the miRNA-mRNA regulatory networks in iPSC-derived islets lacking the FOXA2 gene. Consistent with our previous findings, the absence of FOXA2 significantly downregulated the expression of islet hormones, INS, and GCG, alongside other key developmental genes in pancreatic islets. Concordantly, RNA-Seq analysis showed significant downregulation of genes related to pancreatic development and upregulation of genes associated with nervous system development and lipid metabolic pathways. Furthermore, the absence of FOXA2 in iPSC-derived pancreatic islets resulted in significant alterations in miRNA expression, with 61 miRNAs upregulated and 99 downregulated. The upregulated miRNAs targeted crucial genes involved in diabetes and pancreatic islet cell development. In contrary, the absence of FOXA2 in islets showed a network of downregulated miRNAs targeting genes related to nervous system development and lipid metabolism. These findings highlight the impact of FOXA2 absence on pancreatic islet development and suggesting intricate miRNA-mRNA regulatory networks affecting pancreatic islet cell development.
Collapse
Affiliation(s)
- Ahmed K Elsayed
- Laboratory of Pluripotent Stem Cell Disease Modeling, Translational Medicine Department, Research Branch, Sidra Medicine, P.O. Box 26999, Doha, Qatar
- Stem Cell Core, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), PO Box 34110, Doha, Qatar
- College of Health and Life Sciences, Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Doha, Qatar
| | - Noura Aldous
- Laboratory of Pluripotent Stem Cell Disease Modeling, Translational Medicine Department, Research Branch, Sidra Medicine, P.O. Box 26999, Doha, Qatar
- College of Health and Life Sciences, Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Doha, Qatar
- Diabetes Research Center (DRC), Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), PO Box 34110, Doha, Qatar
| | - Nehad M Alajez
- College of Health and Life Sciences, Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Doha, Qatar
- Translational Cancer and Immunity Center (TCIC), Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), PO Box 34110, Doha, Qatar
| | - Essam M Abdelalim
- Laboratory of Pluripotent Stem Cell Disease Modeling, Translational Medicine Department, Research Branch, Sidra Medicine, P.O. Box 26999, Doha, Qatar.
- College of Health and Life Sciences, Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Doha, Qatar.
- Diabetes Research Center (DRC), Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), PO Box 34110, Doha, Qatar.
| |
Collapse
|
3
|
Haberman N, Cheung R, Pizza G, Cvetesic N, Nagy D, Maude H, Blazquez L, Lenhard B, Cebola I, Rutter GA, Martinez-Sanchez A. Liver kinase B1 (LKB1) regulates the epigenetic landscape of mouse pancreatic beta cells. FASEB J 2024; 38:e23885. [PMID: 39139039 PMCID: PMC11378476 DOI: 10.1096/fj.202401078r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/26/2024] [Accepted: 08/02/2024] [Indexed: 08/15/2024]
Abstract
Liver kinase B1 (LKB1/STK11) is an important regulator of pancreatic β-cell identity and function. Elimination of Lkb1 from the β-cell results in improved glucose-stimulated insulin secretion and is accompanied by profound changes in gene expression, including the upregulation of several neuronal genes. The mechanisms through which LKB1 controls gene expression are, at present, poorly understood. Here, we explore the impact of β cell-selective deletion of Lkb1 on chromatin accessibility in mouse pancreatic islets. To characterize the role of LKB1 in the regulation of gene expression at the transcriptional level, we combine these data with a map of islet active transcription start sites and histone marks. We demonstrate that LKB1 elimination from β-cells results in widespread changes in chromatin accessibility, correlating with changes in transcript levels. Changes occurred in hundreds of promoter and enhancer regions, many of which were close to neuronal genes. We reveal that dysregulated enhancers are enriched in binding motifs for transcription factors (TFs) important for β-cell identity, such as FOXA, MAFA or RFX6, and we identify microRNAs (miRNAs) that are regulated by LKB1 at the transcriptional level. Overall, our study provides important new insights into the epigenetic mechanisms by which LKB1 regulates β-cell identity and function.
Collapse
Affiliation(s)
- Nejc Haberman
- MRC London Institute of Medical Sciences, London, UK
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, UK
- Division of Neuroscience, Department of Brain Sciences, Imperial College London, London, UK
| | - Rebecca Cheung
- Section of Cell Biology and Functional Genomics, Faculty of Medicine, Imperial College London, London, UK
| | - Grazia Pizza
- Section of Cell Biology and Functional Genomics, Faculty of Medicine, Imperial College London, London, UK
| | - Nevena Cvetesic
- MRC London Institute of Medical Sciences, London, UK
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, UK
| | - Dorka Nagy
- Section of Genetics and Genomics, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Hannah Maude
- Section of Genetics and Genomics, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Lorea Blazquez
- Department of Neurosciences, Biogipuzkoa Health Research Institute, San Sebastián, Spain
- Ikerbasque, Basque Foundation for Science, Bilbao, Spain
- CIBERNED, ISCIII (CIBER, Carlos III Institute, Spanish Ministry of Sciences and Innovation), Madrid, Spain
| | - Boris Lenhard
- MRC London Institute of Medical Sciences, London, UK
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, UK
| | - Inês Cebola
- Section of Genetics and Genomics, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Guy A Rutter
- Section of Cell Biology and Functional Genomics, Faculty of Medicine, Imperial College London, London, UK
- Research Centre of the Centre Hospitalier de l'Université de Montréal (CRCHUM), Faculté de Médecine, Université de Montréal, Montréal, Quebec, Canada
- Lee Kong Chian Medical School, Nanyang Technological University, Singapore, Singapore
| | - Aida Martinez-Sanchez
- Section of Cell Biology and Functional Genomics, Faculty of Medicine, Imperial College London, London, UK
| |
Collapse
|
4
|
Kane E, Mak TC, Latreille M. MicroRNA-7 regulates endocrine progenitor delamination and endocrine cell mass in developing pancreatic islets. iScience 2024; 27:110332. [PMID: 39055950 PMCID: PMC11269303 DOI: 10.1016/j.isci.2024.110332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 05/28/2024] [Accepted: 06/18/2024] [Indexed: 07/28/2024] Open
Abstract
β-cell replenishment in patients with diabetes through cadaveric islet transplantation has been successful; however, it requires long-term immunosuppression and suitable islet donors are scarce. Stepwise in vitro differentiation of pluripotent stem cells into β-cells represents a viable alternative, but limitations in our current understanding of in vivo islet endocrine differentiation constrains its clinical use. Here, we show that microRNA-7 (miR-7) is highly expressed in embryonic pancreatic endocrine progenitors. Genetic deletion of the miR-7 gene family in endocrine progenitors leads to reduced islet endocrine cell mass, due to endocrine progenitors failing to delaminate from the epithelial plexus. This is associated with a reduction in neurogenin-3 levels and increased expression of Sry-box transcription factor 9. Further, we observe that a significant number of endocrine progenitors lacking miR-7 differentiate into ductal cells. Our study suggests that increasing miR-7 expression could improve efficiency of in vitro differentiation and augment stem cell-derived β-cell terminal maturity.
Collapse
Affiliation(s)
- Eva Kane
- MRC Laboratory of Medical Sciences, Du Cane Road, London W12 0NN, UK
| | - Tracy C.S. Mak
- MRC Laboratory of Medical Sciences, Du Cane Road, London W12 0NN, UK
| | - Mathieu Latreille
- MRC Laboratory of Medical Sciences, Du Cane Road, London W12 0NN, UK
| |
Collapse
|
5
|
Zhu J, Zhu X, Xu Y, Chen X, Ge X, Huang Y, Wang Z. The role of noncoding RNAs in beta cell biology and tissue engineering. Life Sci 2024; 348:122717. [PMID: 38744419 DOI: 10.1016/j.lfs.2024.122717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/29/2024] [Accepted: 05/11/2024] [Indexed: 05/16/2024]
Abstract
The loss or dysfunction of pancreatic β-cells, which are responsible for insulin secretion, constitutes the foundation of all forms of diabetes, a widely prevalent disease worldwide. The replacement of damaged β-cells with regenerated or transplanted cells derived from stem cells is a promising therapeutic strategy. However, inducing the differentiation of stem cells into fully functional glucose-responsive β-cells in vitro has proven to be challenging. Noncoding RNAs (ncRNAs) have emerged as critical regulatory factors governing the differentiation, identity, and function of β-cells. Furthermore, engineered hydrogel systems, biomaterials, and organ-like structures possess engineering characteristics that can provide a three-dimensional (3D) microenvironment that supports stem cell differentiation. This review summarizes the roles and contributions of ncRNAs in maintaining the differentiation, identity, and function of β-cells. And it focuses on regulating the levels of ncRNAs in stem cells to activate β-cell genetic programs for generating alternative β-cells and discusses how to manipulate ncRNA expression by combining hydrogel systems and other tissue engineering materials. Elucidating the patterns of ncRNA-mediated regulation in β-cell biology and utilizing this knowledge to control stem cell differentiation may offer promising therapeutic strategies for generating functional insulin-producing cells in diabetes cell replacement therapy and tissue engineering.
Collapse
Affiliation(s)
- Jiaqi Zhu
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China; Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China
| | - Xiaoren Zhu
- Department of Radiotherapy and Oncology, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, China
| | - Yang Xu
- Center of Gallbladder Disease, Shanghai East Hospital, Institute of Gallstone Disease, School of Medicine, Tongji University, Shanghai 200092, China
| | - Xingyou Chen
- Medical School of Nantong University, Nantong 226001, China
| | - Xinqi Ge
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China; Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China
| | - Yan Huang
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China; Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China.
| | - Zhiwei Wang
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China; Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China.
| |
Collapse
|
6
|
Carr ER, Higgins PB, McClenaghan NH, Flatt PR, McCloskey AG. MicroRNA regulation of islet and enteroendocrine peptides: Physiology and therapeutic implications for type 2 diabetes. Peptides 2024; 176:171196. [PMID: 38492669 DOI: 10.1016/j.peptides.2024.171196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 03/05/2024] [Accepted: 03/14/2024] [Indexed: 03/18/2024]
Abstract
The pathogenesis of type 2 diabetes (T2D) is associated with dysregulation of glucoregulatory hormones, including both islet and enteroendocrine peptides. Microribonucleic acids (miRNAs) are short noncoding RNA sequences which post transcriptionally inhibit protein synthesis by binding to complementary messenger RNA (mRNA). Essential for normal cell activities, including proliferation and apoptosis, dysregulation of these noncoding RNA molecules have been linked to several diseases, including diabetes, where alterations in miRNA expression within pancreatic islets have been observed. This may occur as a compensatory mechanism to maintain beta-cell mass/function (e.g., downregulation of miR-7), or conversely, lead to further beta-cell demise and disease progression (e.g., upregulation of miR-187). Thus, targeting miRNAs has potential for novel diagnostic and therapeutic applications in T2D. This is reinforced by the success seen to date with miRNA-based therapeutics for other conditions currently in clinical trials. In this review, differential expression of miRNAs in human islets associated with T2D will be discussed along with further consideration of their effects on the production and secretion of islet and incretin hormones. This analysis further unravels the therapeutic potential of miRNAs and offers insights into novel strategies for T2D management.
Collapse
Affiliation(s)
- E R Carr
- Department of Life and Physical Sciences, Atlantic Technology University, Donegal, Ireland; Department of Life Sciences, Atlantic Technological University, Sligo, Ireland
| | - P B Higgins
- Department of Life and Physical Sciences, Atlantic Technology University, Donegal, Ireland
| | - N H McClenaghan
- Department of Life Sciences, Atlantic Technological University, Sligo, Ireland
| | - P R Flatt
- School of Biomedical Sciences, Ulster University, Coleraine, UK
| | - A G McCloskey
- Department of Life and Physical Sciences, Atlantic Technology University, Donegal, Ireland.
| |
Collapse
|
7
|
Haberman N, Cheung R, Pizza G, Cvetesic N, Nagy D, Maude H, Blazquez L, Lenhard B, Cebola I, Rutter GA, Martinez-Sanchez A. Liver kinase B1 (LKB1) regulates the epigenetic landscape of mouse pancreatic beta cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.13.593867. [PMID: 38798508 PMCID: PMC11118353 DOI: 10.1101/2024.05.13.593867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Liver kinase B1 (LKB1/STK11) is an important regulator of pancreatic β-cell identity and function. Elimination of Lkb1 from the β-cell results in improved glucose-stimulated insulin secretion and is accompanied by profound changes in gene expression, including the upregulation of several neuronal genes. The mechanisms through which LKB1 controls gene expression are, at present, poorly understood. Here, we explore the impact of β cell- selective deletion of Lkb1 on chromatin accessibility in mouse pancreatic islets. To characterize the role of LKB1 in the regulation of gene expression at the transcriptional level, we combine these data with a map of islet active transcription start sites and histone marks. We demonstrate that LKB1 elimination from β-cells results in widespread changes in chromatin accessibility, correlating with changes in transcript levels. Changes occurred in hundreds of promoter and enhancer regions, many of which were close to neuronal genes. We reveal that dysregulated enhancers are enriched in binding motifs for transcription factors important for β-cell identity, such as FOXA, MAFA or RFX6 and we identify microRNAs (miRNAs) that are regulated by LKB1 at the transcriptional level. Overall, our study provides important new insights into the epigenetic mechanisms by which LKB1 regulates β-cell identity and function.
Collapse
|
8
|
Zhong Y, Xia J, Liao L, Momeni MR. Non-coding RNAs and exosomal non-coding RNAs in diabetic retinopathy: A narrative review. Int J Biol Macromol 2024; 259:128182. [PMID: 37977468 DOI: 10.1016/j.ijbiomac.2023.128182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/06/2023] [Accepted: 11/14/2023] [Indexed: 11/19/2023]
Abstract
Diabetic retinopathy (DR) is a devastating complication of diabetes, having extensive and resilient effects on those who suffer from it. As yet, the underlying cell mechanisms of this microvascular disorder are largely unclear. Recently, growing evidence suggests that epigenetic mechanisms can be responsible for gene deregulation leading to the alteration of key processes in the development and progression of DR, in addition to the widely recognized pathological mechanisms. It is noteworthy that seemingly unending epigenetic modifications, caused by a prolonged period of hyperglycemia, may be a prominent factor that leads to metabolic memory, and brings epigenetic entities such as non-coding RNA into the equation. Consequently, further investigation is necessary to truly understand this mechanism. Exosomes are responsible for carrying signals from cells close to the vasculature that are participating in abnormal signal transduction to faraway organs and cells by sailing through the bloodstream. These signs indicate metabolic disorders. With the aid of their encased structure, they can store diverse signaling molecules, which then can be dispersed into the blood, urine, and tears. Herein, we summarized various non-coding RNAs (ncRNAs) that are related to DR pathogenesis. Moreover, we highlighted the role of exosomal ncRNAs in this disease.
Collapse
Affiliation(s)
- Yuhong Zhong
- Endocrinology Department, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, Chengdu 610000, Sichuan, China
| | - Juan Xia
- Endocrinology Department, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, Chengdu 610000, Sichuan, China
| | - Li Liao
- Department of Respiratory and Critical Care Medicine 3, Sichuan Academy of Medical Sciences Sichuan Provincial People's Hospital, Chengdu 610000, Sichuan, China.
| | - Mohammad Reza Momeni
- Institute for Immunology and Immune Health, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, United States.
| |
Collapse
|
9
|
Sun J, Wang Y, Fu H, Kang F, Song J, Xu M, Ning G, Wang J, Wang W, Wang Q. Mettl3-Mediated m6A Methylation Controls Pancreatic Bipotent Progenitor Fate and Islet Formation. Diabetes 2024; 73:237-249. [PMID: 37963393 DOI: 10.2337/db23-0360] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Accepted: 11/06/2023] [Indexed: 11/16/2023]
Abstract
The important role of m6A RNA modification in β-cell function has been established; however, how it regulates pancreatic development and endocrine differentiation remains unknown. Here, we generated transgenic mice lacking RNA methyltransferase-like 3 (Mettl3) specifically in Pdx1+ pancreatic progenitor cells and found the mice with the mutation developed hyperglycemia and hypoinsulinemia at age 2 weeks, along with an atrophic pancreas, reduced islet mass, and abnormal increase in ductal formation. At embryonic day 15.5, Mettl3 deletion had caused a significant loss of Ngn3+ endocrine progenitor cells, which was accompanied by increased Sox9+ ductal precursor cells. We identified histone deacetylase 1 (Hdac1) as the critical direct m6A target in bipotent progenitors, the degeneration of which caused abnormal activation of the Wnt/Notch signaling pathway and blocked endocrine differentiation. This transformation could be manipulated in embryonic pancreatic culture in vitro through regulation of the Mettl3-Hdac1-Wnt/Notch signaling axis. Our finding that Mettl3 determines endocrine lineage by modulating Hdac1 activity during the transition of bipotent progenitors might help in the development of targeted endocrine cell protocols for diabetes treatment. ARTICLE HIGHLIGHTS
Collapse
Affiliation(s)
- Jiajun Sun
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the People's Republic of China, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yanqiu Wang
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the People's Republic of China, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hui Fu
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the People's Republic of China, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fuyun Kang
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the People's Republic of China, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiaxi Song
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the People's Republic of China, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Min Xu
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the People's Republic of China, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Guang Ning
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the People's Republic of China, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jian Wang
- International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Weiqing Wang
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the People's Republic of China, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qidi Wang
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the People's Republic of China, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Sino-French Research Center for Life Sciences and Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
10
|
Zhou Y, Liu K, Tang W, Zhang Y, Sun Y, Wu Y, Shi Y, Yao Z, Li Y, Bai R, Liang R, Sun P, Chang X, Wang S, Zhu Y, Han X. β-Cell miRNA-503-5p Induced by Hypomethylation and Inflammation Promotes Insulin Resistance and β-Cell Decompensation. Diabetes 2024; 73:57-74. [PMID: 37847900 DOI: 10.2337/db22-1044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 10/02/2023] [Indexed: 10/19/2023]
Abstract
Chronic inflammation promotes pancreatic β-cell decompensation to insulin resistance because of local accumulation of supraphysiologic interleukin 1β (IL-1β) levels. However, the underlying molecular mechanisms remain elusive. We show that miR-503-5p is exclusively upregulated in islets from humans with type 2 diabetes and diabetic rodents because of its promoter hypomethylation and increased local IL-1β levels. β-Cell-specific miR-503 transgenic mice display mild or severe diabetes in a time- and expression-dependent manner. By contrast, deletion of the miR-503 cluster protects mice from high-fat diet-induced insulin resistance and glucose intolerance. Mechanistically, miR-503-5p represses c-Jun N-terminal kinase-interacting protein 2 (JIP2) translation to activate mitogen-activated protein kinase signaling cascades, thus inhibiting glucose-stimulated insulin secretion (GSIS) and compensatory β-cell proliferation. In addition, β-cell miR-503-5p is packaged in nanovesicles to dampen insulin signaling transduction in liver and adipose tissues by targeting insulin receptors. Notably, specifically blocking the miR-503 cluster in β-cells effectively remits aging-associated diabetes through recovery of GSIS capacity and insulin sensitivity. Our findings demonstrate that β-cell miR-503-5p is required for the development of insulin resistance and β-cell decompensation, providing a potential therapeutic target against diabetes. ARTICLE HIGHLIGHTS Promoter hypomethylation during natural aging permits miR-503-5p overexpression in islets under inflammation conditions, conserving from rodents to humans. Impaired β-cells release nanovesicular miR-503-5p to accumulate in liver and adipose tissue, leading to their insulin resistance via the miR-503-5p/insulin receptor/phosphorylated AKT axis. Accumulated miR-503-5p in β-cells impairs glucose-stimulated insulin secretion via the JIP2-coordinated mitogen-activated protein kinase signaling cascades. Specific blockage of β-cell miR-503-5p improves β-cell function and glucose tolerance in aging mice.
Collapse
Affiliation(s)
- Yuncai Zhou
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Kerong Liu
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Wei Tang
- Department of Endocrinology, Geriatric Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yan Zhang
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yi Sun
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yangyang Wu
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Ying Shi
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Zhengjian Yao
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yating Li
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Rongjie Bai
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Rui Liang
- Organ Transplant Center, Tianjin First Central Hospital, Nankai University, Tianjin, China
| | - Peng Sun
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xiaoai Chang
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Shusen Wang
- Organ Transplant Center, Tianjin First Central Hospital, Nankai University, Tianjin, China
| | - Yunxia Zhu
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xiao Han
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
11
|
Yang ZZ, Parchem RJ. The role of noncoding RNAs in pancreatic birth defects. Birth Defects Res 2023; 115:1785-1808. [PMID: 37066622 PMCID: PMC10579456 DOI: 10.1002/bdr2.2178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 03/19/2023] [Accepted: 04/03/2023] [Indexed: 04/18/2023]
Abstract
Congenital defects in the pancreas can cause severe health issues such as pancreatic cancer and diabetes which require lifelong treatment. Regenerating healthy pancreatic cells to replace malfunctioning cells has been considered a promising cure for pancreatic diseases including birth defects. However, such therapies are currently unavailable in the clinic. The developmental gene regulatory network underlying pancreatic development must be reactivated for in vivo regeneration and recapitulated in vitro for cell replacement therapy. Thus, understanding the mechanisms driving pancreatic development will pave the way for regenerative therapies. Pancreatic progenitor cells are the precursors of all pancreatic cells which use epigenetic changes to control gene expression during differentiation to generate all of the distinct pancreatic cell types. Epigenetic changes involving DNA methylation and histone modifications can be controlled by noncoding RNAs (ncRNAs). Indeed, increasing evidence suggests that ncRNAs are indispensable for proper organogenesis. Here, we summarize recent insight into the role of ncRNAs in the epigenetic regulation of pancreatic development. We further discuss how disruptions in ncRNA biogenesis and expression lead to developmental defects and diseases. This review summarizes in vivo data from animal models and in vitro studies using stem cell differentiation as a model for pancreatic development.
Collapse
Affiliation(s)
- Ziyue Zoey Yang
- Development, Disease Models & Therapeutics Graduate Program, Baylor College of Medicine, Houston, Texas, USA
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, Texas, USA
- Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, Texas, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Ronald J Parchem
- Development, Disease Models & Therapeutics Graduate Program, Baylor College of Medicine, Houston, Texas, USA
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, Texas, USA
- Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, Texas, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
12
|
Afsharmanesh MR, Mohammadi Z, Mansourian AR, Jafari SM. A Review of micro RNAs changes in T2DM in animals and humans. J Diabetes 2023; 15:649-664. [PMID: 37329278 PMCID: PMC10415875 DOI: 10.1111/1753-0407.13431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 04/22/2023] [Accepted: 05/24/2023] [Indexed: 06/19/2023] Open
Abstract
Type 2 diabetes mellitus (T2DM) and its associated complications have become a crucial public health concern in the world. According to the literature, chronic inflammation and the progression of T2DM have a close relationship. Accumulated evidence suggests that inflammation enhances the insulin secretion lost by islets of Langerhans and the resistance of target tissues to insulin action, which are two critical features in T2DM development. Based on recently highlighted research that plasma concentration of inflammatory mediators such as tumor necrosis factor α and interleukin-6 are elevated in insulin-resistant and T2DM, and it raises novel question marks about the processes causing inflammation in both situations. Over the past few decades, microRNAs (miRNAs), a class of short, noncoding RNA molecules, have been discovered to be involved in the regulation of inflammation, insulin resistance, and T2DM pathology. These noncoding RNAs are specifically comprised of RNA-induced silencing complexes and regulate the expression of specific protein-coding genes through various mechanisms. There is extending evidence that describes the expression profile of a special class of miRNA molecules altered during T2DM development. These modifications can be observed as potential biomarkers for the diagnosis of T2DM and related diseases. In this review study, after reviewing the possible mechanisms involved in T2DM pathophysiology, we update recent information on the miRNA roles in T2DM, inflammation, and insulin resistance.
Collapse
Affiliation(s)
- Mohammad Reza Afsharmanesh
- Metabolic Disorders Research CenterGolestan University of Medical SciencesGorganIran
- Department of Biochemistry and Biophysics, School of MedicineGolestan University of Medical SciencesGorganIran
| | - Zeinab Mohammadi
- Metabolic Disorders Research CenterGolestan University of Medical SciencesGorganIran
- Department of Biochemistry and Biophysics, School of MedicineGolestan University of Medical SciencesGorganIran
| | - Azad Reza Mansourian
- Metabolic Disorders Research CenterGolestan University of Medical SciencesGorganIran
- Department of Biochemistry and Biophysics, School of MedicineGolestan University of Medical SciencesGorganIran
| | - Seyyed Mehdi Jafari
- Metabolic Disorders Research CenterGolestan University of Medical SciencesGorganIran
- Department of Biochemistry and Biophysics, School of MedicineGolestan University of Medical SciencesGorganIran
| |
Collapse
|
13
|
Kozłowska M, Śliwińska A. The Link between Diabetes, Pancreatic Tumors, and miRNAs-New Players for Diagnosis and Therapy? Int J Mol Sci 2023; 24:10252. [PMID: 37373398 DOI: 10.3390/ijms241210252] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/12/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
Despite significant progress in medicine, pancreatic cancer is one of the most tardily diagnosed cancer and is consequently associated with a poor prognosis and a low survival rate. The asymptomatic clinical picture and the lack of relevant diagnostic markers for the early stages of pancreatic cancer are believed to be the major constraints behind an accurate diagnosis of this disease. Furthermore, underlying mechanisms of pancreatic cancer development are still poorly recognized. It is well accepted that diabetes increases the risk of pancreatic cancer development, however the precise mechanisms are weakly investigated. Recent studies are focused on microRNAs as a causative factor of pancreatic cancer. This review aims to provide an overview of the current knowledge of pancreatic cancer and diabetes-associated microRNAs, and their potential in diagnosis and therapy. miR-96, miR-124, miR-21, and miR-10a were identified as promising biomarkers for early pancreatic cancer prediction. miR-26a, miR-101, and miR-200b carry therapeutic potential, as they not only regulate significant biological pathways, including the TGF-β and PI3K/AKT, but their re-expression contributes to the improvement of the prognosis by reducing invasiveness or chemoresistance. In diabetes, there are also changes in the expression of microRNAs, such as in miR-145, miR-29c, and miR-143. These microRNAs are involved, among others, in insulin signaling, including IRS-1 and AKT (miR-145), glucose homeostasis (hsa-miR-21), and glucose reuptake and gluconeogenesis (miR-29c). Although, changes in the expression of the same microRNAs are observed in both pancreatic cancer and diabetes, they exert different molecular effects. For example, miR-181a is upregulated in both pancreatic cancer and diabetes mellitus, but in diabetes it contributes to insulin resistance, whereas in pancreatic cancer it promotes tumor cell migration, respectively. To conclude, dysregulated microRNAs in diabetes affect crucial cellular processes that are involved in pancreatic cancer development and progression.
Collapse
Affiliation(s)
- Małgorzata Kozłowska
- Student Scientific Society of Civilization Diseases, Medical University of Lodz, 251 Pomorska, 92-213 Lodz, Poland
| | - Agnieszka Śliwińska
- Department of Nucleic Acid Biochemistry, Medical University of Lodz, Pomorska 251, 92-213 Lodz, Poland
| |
Collapse
|
14
|
Natalicchio A, Montagnani M, Gallo M, Marrano N, Faggiano A, Zatelli MC, Mazzilli R, Argentiero A, Danesi R, D'Oronzo S, Fogli S, Giuffrida D, Gori S, Ragni A, Renzelli V, Russo A, Franchina T, Tuveri E, Sciacca L, Monami M, Cirino G, Di Cianni G, Colao A, Avogaro A, Cinieri S, Silvestris N, Giorgino F. MiRNA dysregulation underlying common pathways in type 2 diabetes and cancer development: an Italian Association of Medical Oncology (AIOM)/Italian Association of Medical Diabetologists (AMD)/Italian Society of Diabetology (SID)/Italian Society of Endocrinology (SIE)/Italian Society of Pharmacology (SIF) multidisciplinary critical view. ESMO Open 2023; 8:101573. [PMID: 37263082 PMCID: PMC10245125 DOI: 10.1016/j.esmoop.2023.101573] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 03/27/2023] [Accepted: 04/26/2023] [Indexed: 06/03/2023] Open
Abstract
Increasing evidence suggests that patients with diabetes, particularly type 2 diabetes (T2D), are characterized by an increased risk of developing different types of cancer, so cancer could be proposed as a new T2D-related complication. On the other hand, cancer may also increase the risk of developing new-onset diabetes, mainly caused by anticancer therapies. Hyperinsulinemia, hyperglycemia, and chronic inflammation typical of T2D could represent possible mechanisms involved in cancer development in diabetic patients. MicroRNAs (miRNAs) are a subset of non-coding RNAs, ⁓22 nucleotides in length, which control the post-transcriptional regulation of gene expression through both translational repression and messenger RNA degradation. Of note, miRNAs have multiple target genes and alteration of their expression has been reported in multiple diseases, including T2D and cancer. Accordingly, specific miRNA-regulated pathways are involved in the pathogenesis of both conditions. In this review, a panel of experts from the Italian Association of Medical Oncology (AIOM), Italian Association of Medical Diabetologists (AMD), Italian Society of Diabetology (SID), Italian Society of Endocrinology (SIE), and Italian Society of Pharmacology (SIF) provide a critical view of the evidence about the involvement of miRNAs in the pathophysiology of both T2D and cancer, trying to identify the shared miRNA signature and pathways able to explain the strong correlation between the two conditions, as well as to envision new common pharmacological approaches.
Collapse
Affiliation(s)
- A Natalicchio
- Department of Precision and Regenerative Medicine and Ionian Area, Section of Internal Medicine, Endocrinology, Andrology and Metabolic Diseases, University of Bari Aldo Moro, Bari, Italy
| | - M Montagnani
- Department of Precision and Regenerative Medicine and Ionian Area, Section of Pharmacology, Medical School, University of Bari Aldo Moro, Bari, Italy
| | - M Gallo
- Endocrinology and Metabolic Diseases Unit, AO SS Antonio e Biagio e Cesare Arrigo of Alessandria, Alessandria, Italy
| | - N Marrano
- Department of Precision and Regenerative Medicine and Ionian Area, Section of Internal Medicine, Endocrinology, Andrology and Metabolic Diseases, University of Bari Aldo Moro, Bari, Italy
| | - A Faggiano
- Endocrinology Unit, Department of Clinical and Molecular Medicine, Sant'Andrea Hospital, ENETS Center of Excellence, Sapienza University of Rome, Rome, Italy
| | - M C Zatelli
- Section of Endocrinology, Geriatrics, and Internal Medicine, Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - R Mazzilli
- Endocrinology Unit, Department of Clinical and Molecular Medicine, Sant'Andrea Hospital, ENETS Center of Excellence, Sapienza University of Rome, Rome, Italy
| | - A Argentiero
- Medical Oncology Unit, IRCCS Istituto Tumori "Giovanni Paolo II", Bari, Italy
| | - R Danesi
- Unit of Clinical Pharmacology and Pharmacogenetics, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - S D'Oronzo
- Interdisciplinary Department of Medicine, University of Bari Aldo Moro, Bari, Italy
| | - S Fogli
- Unit of Clinical Pharmacology and Pharmacogenetics, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - D Giuffrida
- Department of Oncology, Istituto Oncologico del Mediterraneo, Viagrande, Catania, Italy
| | - S Gori
- Oncologia Medica, IRCCS Ospedale Don Calabria-Sacro Cuore di Negrar, Verona, Italy
| | - A Ragni
- Endocrinology and Metabolic Diseases Unit, AO SS Antonio e Biagio e Cesare Arrigo of Alessandria, Alessandria, Italy
| | - V Renzelli
- Diabetologist and Endocrinologist, Italian Association of Clinical Diabetologists, Rome, Italy
| | - A Russo
- Department of Surgical, Oncological and Oral Sciences, Section of Medical Oncology, University of Palermo, Palermo, Italy
| | - T Franchina
- Medical Oncology Unit, Department of Human Pathology "G. Barresi", University of Messina, Messina, Italy
| | - E Tuveri
- Diabetology, Endocrinology and Metabolic Diseases Service, ASL-Sulcis, Carbonia, Sardinia, Italy
| | - L Sciacca
- Department of Clinical and Experimental Medicine, Endocrinology Section, University of Catania, Catania, Italy
| | - M Monami
- Diabetology, Careggi Hospital and University of Florence, Firenze, Italy
| | - G Cirino
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - G Di Cianni
- Diabetes Unit, Livorno Hospital, Livorno, Italy
| | - A Colao
- Endocrinology, Diabetology and Andrology Unit, Department of Clinical Medicine and Surgery, Federico II University of Naples, Naples, Italy; UNESCO Chair, Education for Health and Sustainable Development, Federico II University, Naples, Italy
| | - A Avogaro
- Department of Medicine, University of Padova, Padua, Italy
| | - S Cinieri
- Medical Oncology Division and Breast Unit, Senatore Antonio Perrino Hospital, ASL Brindisi, Brindisi, Italy
| | - N Silvestris
- Medical Oncology Unit, Department of Human Pathology "G. Barresi", University of Messina, Messina, Italy
| | - F Giorgino
- Department of Precision and Regenerative Medicine and Ionian Area, Section of Internal Medicine, Endocrinology, Andrology and Metabolic Diseases, University of Bari Aldo Moro, Bari, Italy.
| |
Collapse
|
15
|
Aldous N, Elsayed AK, Alajez NM, Abdelalim EM. iPSC-Derived Pancreatic Progenitors Lacking FOXA2 Reveal Alterations in miRNA Expression Targeting Key Pancreatic Genes. Stem Cell Rev Rep 2023; 19:1082-1097. [PMID: 36749553 DOI: 10.1007/s12015-023-10515-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/28/2023] [Indexed: 02/08/2023]
Abstract
Recently, we reported that forkhead box A2 (FOXA2) is required for the development of human pancreatic α- and β-cells. However, whether miRNAs play a role in regulating pancreatic genes during pancreatic development in the absence of FOXA2 expression is largely unknown. Here, we aimed to capture the dysregulated miRNAs and to identify their pancreatic-specific gene targets in pancreatic progenitors (PPs) derived from wild-type induced pluripotent stem cells (WT-iPSCs) and from iPSCs lacking FOXA2 (FOXA2-/-iPSCs). To identify differentially expressed miRNAs (DEmiRs), and genes (DEGs), two different FOXA2-/-iPSC lines were differentiated into PPs. FOXA2-/- PPs showed a significant reduction in the expression of the main PP transcription factors (TFs) in comparison to WT-PPs. RNA sequencing analysis demonstrated significant reduction in the mRNA expression of genes involved in the development and function of exocrine and endocrine pancreas. Furthermore, miRNA profiling identified 107 downregulated and 111 upregulated DEmiRs in FOXA2-/- PPs compared to WT-PPs. Target prediction analysis between DEmiRs and DEGs identified 92 upregulated miRNAs, predicted to target 1498 downregulated genes in FOXA2-/- PPs. Several important pancreatic TFs essential for pancreatic development were targeted by multiple DEmiRs. Selected DEmiRs and DEGs were further validated using RT-qPCR. Our findings revealed that FOXA2 expression is crucial for pancreatic development through regulating the expression of pancreatic endocrine and exocrine genes targeted by a set of miRNAs at the pancreatic progenitor stage. These data provide novel insights of the effect of FOXA2 deficiency on miRNA-mRNA regulatory networks controlling pancreatic development and differentiation.
Collapse
Affiliation(s)
- Noura Aldous
- College of Health and Life Sciences, Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Doha, Qatar.,Diabetes Research Center (DRC), Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), PO Box 34110, Doha, Qatar
| | - Ahmed K Elsayed
- Diabetes Research Center (DRC), Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), PO Box 34110, Doha, Qatar
| | - Nehad M Alajez
- College of Health and Life Sciences, Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Doha, Qatar.,Translational Cancer and Immunity Center (TCIC), Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), PO Box 34110, Doha, Qatar
| | - Essam M Abdelalim
- College of Health and Life Sciences, Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Doha, Qatar. .,Diabetes Research Center (DRC), Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), PO Box 34110, Doha, Qatar.
| |
Collapse
|
16
|
Theofilis P, Oikonomou E, Vogiatzi G, Sagris M, Antonopoulos AS, Siasos G, Iliopoulos DC, Perrea D, Vavouranakis M, Tsioufis K, Tousoulis D. The Role of MicroRNA-126 in Atherosclerotic Cardiovascular Diseases. Curr Med Chem 2023; 30:1902-1921. [PMID: 36043750 DOI: 10.2174/0929867329666220830100530] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 05/02/2022] [Accepted: 05/31/2022] [Indexed: 11/22/2022]
Abstract
Atherosclerotic cardiovascular diseases remain the leading cause of morbidity and mortality worldwide despite all efforts made towards their management. Other than targeting the traditional risk factors for their development, scientific interest has been shifted towards epigenetic regulation, with microRNAs (miRs) being at the forefront. MiR-126, in particular, has been extensively studied in the context of cardiovascular diseases. Downregulated expression of this miR has been associated with highly prevalent cardiovascular risk factors such as arterial hypertension and diabetes mellitus. At the same time, its diagnostic and prognostic capability concerning coronary artery disease is still under investigation, with up-to-date data pointing towards a dysregulated expression in a stable disease state and acute myocardial infarction. Moreover, a lower expression of miR-126 may indicate a higher disease complexity, as well as an increased risk for future major adverse cardiac and cerebrovascular events. Ultimately, overexpression of miR-126 may emerge as a novel therapeutic target in atherosclerotic cardiovascular diseases due to its potential in promoting therapeutic angiogenesis and anti-inflammatory effects. However, the existing challenges in miR therapeutics need to be resolved before translation to clinical practice.
Collapse
Affiliation(s)
- Panagiotis Theofilis
- 1st Cardiology Department, "Hippokration" General Hospital, University of Athens Medical School, Athens, Greece
| | - Evangelos Oikonomou
- 1st Cardiology Department, "Hippokration" General Hospital, University of Athens Medical School, Athens, Greece
- 3rd Cardiology Department, "Sotiria" Chest Diseases Hospital, University of Athens Medical School, Athens, Greece
| | - Georgia Vogiatzi
- 1st Cardiology Department, "Hippokration" General Hospital, University of Athens Medical School, Athens, Greece
- 3rd Cardiology Department, "Sotiria" Chest Diseases Hospital, University of Athens Medical School, Athens, Greece
| | - Marios Sagris
- 1st Cardiology Department, "Hippokration" General Hospital, University of Athens Medical School, Athens, Greece
| | - Alexios S Antonopoulos
- 1st Cardiology Department, "Hippokration" General Hospital, University of Athens Medical School, Athens, Greece
| | - Gerasimos Siasos
- 1st Cardiology Department, "Hippokration" General Hospital, University of Athens Medical School, Athens, Greece
- 3rd Cardiology Department, "Sotiria" Chest Diseases Hospital, University of Athens Medical School, Athens, Greece
| | - Dimitrios C Iliopoulos
- Laboratory of Experimental Surgery and Surgical Research "N.S. Christeas", University of Athens Medical School, Athens, Greece
| | - Despoina Perrea
- Laboratory of Experimental Surgery and Surgical Research "N.S. Christeas", University of Athens Medical School, Athens, Greece
| | - Manolis Vavouranakis
- 1st Cardiology Department, "Hippokration" General Hospital, University of Athens Medical School, Athens, Greece
- 3rd Cardiology Department, "Sotiria" Chest Diseases Hospital, University of Athens Medical School, Athens, Greece
| | - Konstantinos Tsioufis
- 1st Cardiology Department, "Hippokration" General Hospital, University of Athens Medical School, Athens, Greece
| | - Dimitris Tousoulis
- 1st Cardiology Department, "Hippokration" General Hospital, University of Athens Medical School, Athens, Greece
| |
Collapse
|
17
|
Mendonca A, Thandapani P, Nagarajan P, Venkatesh S, Sundaresan S. Role of microRNAs in regulation of insulin secretion and insulin signaling involved in type 2 diabetes mellitus. J Biosci 2022. [DOI: 10.1007/s12038-022-00295-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
18
|
Chen H, Zhang M, Zhang J, Chen Y, Zuo Y, Xie Z, Zhou G, Chen S, Chen Y. Application of Induced Pluripotent Stem Cell-Derived Models for Investigating microRNA Regulation in Developmental Processes. Front Genet 2022; 13:899831. [PMID: 35719367 PMCID: PMC9204592 DOI: 10.3389/fgene.2022.899831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 05/06/2022] [Indexed: 11/29/2022] Open
Abstract
Advances in induced pluripotent stem cell (iPSC) techniques have opened up new perspectives in research on developmental biology. Compared with other sources of human cellular models, iPSCs present a great advantage in hosting the unique genotype background of donors without ethical concerns. A wide spectrum of cellular and organoid models can be generated from iPSCs under appropriate in vitro conditions. The pluripotency of iPSCs is orchestrated by external signalling and regulated at the epigenetic, transcriptional and posttranscriptional levels. Recent decades have witnessed the progress of studying tissue-specific expressions and functions of microRNAs (miRNAs) using iPSC-derived models. MiRNAs are a class of short non-coding RNAs with regulatory functions in various biological processes during development, including cell migration, proliferation and apoptosis. MiRNAs are key modulators of gene expression and promising candidates for biomarker in development; hence, research on the regulation of human development by miRNAs is expanding. In this review, we summarize the current progress in the application of iPSC-derived models to studies of the regulatory roles of miRNAs in developmental processes.
Collapse
Affiliation(s)
- Hongyu Chen
- Department of Obstetrics and Gynecology, Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Mimi Zhang
- Department of Obstetrics and Gynecology, Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jingzhi Zhang
- Department of Obstetrics and Gynecology, Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yapei Chen
- Department of Obstetrics and Gynecology, Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yabo Zuo
- Guangzhou Key Laboratory for Clinical Rapid Diagnosis and Early Warning of Infectious Diseases, KingMed School of Laboratory Medicine, Guangzhou Medical University, Guangzhou, China
| | - Zhishen Xie
- Guangzhou Key Laboratory for Clinical Rapid Diagnosis and Early Warning of Infectious Diseases, KingMed School of Laboratory Medicine, Guangzhou Medical University, Guangzhou, China
| | - Guanqing Zhou
- Department of Obstetrics and Gynecology, Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Shehong Chen
- Department of Obstetrics and Gynecology, Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yaoyong Chen
- Department of Obstetrics and Gynecology, Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
19
|
Karagiannopoulos A, Esguerra JL, Pedersen MG, Wendt A, Prasad RB, Eliasson L. Human pancreatic islet miRNA-mRNA networks of altered miRNAs due to glycemic status. iScience 2022; 25:103995. [PMID: 35310942 PMCID: PMC8927907 DOI: 10.1016/j.isci.2022.103995] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 01/25/2022] [Accepted: 02/24/2022] [Indexed: 12/24/2022] Open
Abstract
MicroRNAs (miRNAs) are short non-coding RNAs that regulate gene expression via mRNA targeting, playing important roles in the pancreatic islets. We aimed to identify molecular pathways and genomic regulatory regions associated with altered miRNA expression due to glycemic status, which could contribute to the development of type 2 diabetes (T2D). To this end, miRNAs were identified by a combination of differential miRNA expression and correlation analysis in human islet samples from donors with normal and elevated blood glucose levels. Analysis and clustering of highly correlated, experimentally validated gene targets of these miRNAs revealed two islet-specific clusters, which were associated with key aspects of islet functions and included a high number of T2D-related genes. Finally, cis-eQTLs and public GWAS data integration uncovered suggestive genomic signals of association with insulin secretion and T2D. The miRNA-driven network-based approach presented in this study contributes to a better understanding of impaired insulin secretion in T2D pathogenesis.
Collapse
Affiliation(s)
- Alexandros Karagiannopoulos
- Islet Cell Exocytosis, Lund University Diabetes Centre, Department of Clinical Sciences-Malmö, Lund University, CRC 91-11, Box 50332, 202 13 Malmö, Sweden
- Clinical Research Centre, Skåne University Hospital, CRC 91-11, Box 50332, 202 13 Malmö, Sweden
| | - Jonathan L.S. Esguerra
- Islet Cell Exocytosis, Lund University Diabetes Centre, Department of Clinical Sciences-Malmö, Lund University, CRC 91-11, Box 50332, 202 13 Malmö, Sweden
- Clinical Research Centre, Skåne University Hospital, CRC 91-11, Box 50332, 202 13 Malmö, Sweden
| | - Morten G. Pedersen
- Department of Information Engineering, University of Padova, Padua, Italy
| | - Anna Wendt
- Islet Cell Exocytosis, Lund University Diabetes Centre, Department of Clinical Sciences-Malmö, Lund University, CRC 91-11, Box 50332, 202 13 Malmö, Sweden
- Clinical Research Centre, Skåne University Hospital, CRC 91-11, Box 50332, 202 13 Malmö, Sweden
| | - Rashmi B. Prasad
- Clinical Research Centre, Skåne University Hospital, CRC 91-11, Box 50332, 202 13 Malmö, Sweden
- Genomics, Diabetes and Endocrinology, Lund University Diabetes Centre Department of Clinical Sciences-Malmö, Lund University, Malmö, Sweden
| | - Lena Eliasson
- Islet Cell Exocytosis, Lund University Diabetes Centre, Department of Clinical Sciences-Malmö, Lund University, CRC 91-11, Box 50332, 202 13 Malmö, Sweden
- Clinical Research Centre, Skåne University Hospital, CRC 91-11, Box 50332, 202 13 Malmö, Sweden
| |
Collapse
|
20
|
Transcriptional control of pancreatic β-cell identity and plasticity during the pathogenesis of type 2 diabetes. J Genet Genomics 2022; 49:316-328. [DOI: 10.1016/j.jgg.2022.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 02/23/2022] [Accepted: 03/06/2022] [Indexed: 11/21/2022]
|
21
|
He L, Bao T, Yang Y, Wang H, Gu C, Chen J, Zhai T, He X, Wu M, Zhao L, Tong X. Exploring the pathogenesis of type 2 diabetes mellitus intestinal damp-heat syndrome and the therapeutic effect of Gegen Qinlian Decoction from the perspective of exosomal miRNA. JOURNAL OF ETHNOPHARMACOLOGY 2022; 285:114786. [PMID: 34763043 DOI: 10.1016/j.jep.2021.114786] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 10/14/2021] [Accepted: 10/26/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Diabetes is a common, complex, chronic metabolic disease. A randomized, double-blind, placebo-parallel controlled clinical study has shown that Gegen Qinlian Decoction (GQD) can reduce glycosylated hemoglobin in type 2 diabetes mellitus (T2DM) intestinal damp-heat syndrome patients in a dose-dependent manner. AIM To explore the pathogenesis of T2DM intestinal damp-heat syndrome and the therapeutic effect of GQD from the perspective of exosomal microRNA (miRNA). METHODS Eligible patients were selected and treated with GQD for 3 months to evaluate their clinical efficacy. Effective cases were matched with healthy volunteers, and saliva samples were collected. Exosomal miRNA was extracted from saliva and analyzed by chip sequencing. Subsequently, the function of the differential gene and the signal transduction pathway were analyzed using bioinformatics technology. Finally, three target miRNAs were randomly selected from the T2DM group/healthy group, and two target miRNAs in the T2DM before treatment/after treatment group were randomly selected for qPCR verification. Finally, we conducted a correlation analysis of the miRNAs and clinical indicators. The registration number for this research is ChiCTR-IOR-15006626. RESULTS (1) The expression of exosomal miRNA chips showed that there were 14 differentially expressed miRNAs in the T2DM group/healthy group, and 26 differentially expressed miRNAs in the T2DM before treatment/after treatment group. (2) Enrichment results showed that in the T2DM group/healthy group, it was primarily related to cell development, body metabolism, TGF-β, and ErbB signaling pathways. In the T2DM before treatment/after treatment group, it was mainly related to cellular metabolic regulation processes, and insulin, Wnt, and AMPK signaling pathways. (3) The qPCR verification showed that the expressions of hsa-miR-9-5p, hsa-miR-150-5p, and hsa-miR-216b-5p in the T2DM group was higher (P<0.05). Following GQD treatment, hsa-miR-342-3p and hsa-miR-221-3p were significantly downregulated (P<0.05). (4) hsa-miR-9-5p was positively correlated with BMI (P<0.05), and hsa-miR-150-5p was positively correlated with total cholesterol and triglycerides (P<0.05). The GQD efficacy-related gene hsa-miR-342-3p was positively correlated with the patient's initial blood glucose level (P<0.05), and hsa-miR-221-3p was positively correlated with total cholesterol and triglycerides (P<0.05). CONCLUSION The exosomal miRNA expression profile and signaling pathways related to T2DM intestinal damp-heat syndrome and the efficacy of GQD were established, which provides an alternative strategy for precision traditional Chinese medicine treatment.
Collapse
Affiliation(s)
- LiSha He
- Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Tingting Bao
- Graduate College, Beijing University of Chinese Medicine, Beijing, 100029, China; Department of Endocrinology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Yingying Yang
- Graduate College, Beijing University of Chinese Medicine, Beijing, 100029, China; Department of Endocrinology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Han Wang
- Department of Endocrinology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Chengjuan Gu
- Shenzhen Hospital of Guang Zhou University of Chinese Medicine (Futian), Shenzhen, 518000, China
| | - Jia Chen
- Gansu University of Chinese Medicine, Lanzhou, 730000, China
| | - Tiangang Zhai
- Graduate College, Beijing University of Chinese Medicine, Beijing, 100029, China; Department of Endocrinology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Xinhui He
- Yunnan Provincial Hospital of Traditional Chinese Medicine, Kunming, 650000, China
| | - Mengyi Wu
- Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, 510120, China
| | - Linhua Zhao
- Department of Endocrinology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China.
| | - Xiaolin Tong
- Endocrinology Department, Affiliated Hospital to Changchun University of Chinese Medicine, Jilin, 130117, China.
| |
Collapse
|
22
|
Abstract
An extensive literature base combined with advances in sequencing technologies demonstrate microRNA levels correlate with various metabolic diseases. Mechanistic studies also establish microRNAs regulate central metabolic pathways and thus play vital roles in maintaining organismal energy balance and metabolic homeostasis. This review highlights research progress on the roles and regulation of microRNAs in the peripheral tissues that confer insulin sensitivity. We discuss sequencing technologies used to comprehensively define the target spectrum of microRNAs in metabolic disease that complement studies reporting physiologic roles for microRNAs in the regulation of glucose and lipid metabolism in animal models. We also discuss the emerging roles of exosomal microRNAs as endocrine signals to regulate lipid and carbohydrate metabolism.
Collapse
Affiliation(s)
- Kang Ho Kim
- Department of Anesthesiology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Sean M Hartig
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
- Correspondence: Sean M. Hartig, PhD, Baylor College of Medicine, One Baylor Plaza, BCM185, Houston, TX 77030, USA.
| |
Collapse
|
23
|
Ji H, Fan L, Shan A, Wang W, Ning G, Cao Y, Jiang X. Let7b-5p inhibits insulin secretion and decreases pancreatic β-cell mass in mice. Mol Cell Endocrinol 2022; 540:111506. [PMID: 34801668 DOI: 10.1016/j.mce.2021.111506] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 11/01/2021] [Accepted: 11/08/2021] [Indexed: 10/19/2022]
Abstract
MicroRNAs are crucial regulators for the development, mass and function of pancreatic β-cells. MiRNA dysregulation is associated with β-cell dysfunction and development of diabetes. The members of let7 family are important players in regulating cellular growth and metabolism. In this study we investigated the functional role of let7b-5p in the mouse pancreatic β-cells. We generated pancreatic β-cell-specific let7b-5p transgenic mouse model and analyzed the glucose metabolic phenotype, β-cells mass and insulin secretion in vivo. Luciferase reporter assay, immunofluorescence staining and western blot were carried out to study the target genes of let7b-5p in β-cells. Let7b-5p overexpression impaired the insulin production and secretion of β-cells and resulted impaired glucose tolerance in mice. The overexpressed let7b-5p inhibited pancreatic β-cell proliferation and decreased the expression of cyclin D1 and cyclin D2. Our findings demonstrated that let7b-5p was critical in regulating the proliferation and insulin secretion of pancreatic β-cells.
Collapse
Affiliation(s)
- He Ji
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, National Clinical Research Centre for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission, Shanghai Key Laboratory for Endocrine Tumors, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Liwen Fan
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, National Clinical Research Centre for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission, Shanghai Key Laboratory for Endocrine Tumors, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Aijing Shan
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, National Clinical Research Centre for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission, Shanghai Key Laboratory for Endocrine Tumors, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Weiqing Wang
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, National Clinical Research Centre for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission, Shanghai Key Laboratory for Endocrine Tumors, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Guang Ning
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, National Clinical Research Centre for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission, Shanghai Key Laboratory for Endocrine Tumors, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yanan Cao
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, National Clinical Research Centre for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission, Shanghai Key Laboratory for Endocrine Tumors, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; National Research Center for Translational Medicine, National Key Scientific Infrastructure for Translational Medicine (Shanghai), Shanghai Jiao Tong University, Shanghai, China
| | - Xiuli Jiang
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, National Clinical Research Centre for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission, Shanghai Key Laboratory for Endocrine Tumors, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
24
|
Chalmers JA, Dalvi PS, Loganathan N, McIlwraith EK, Wellhauser L, Nazarians-Armavil A, Eversley JA, Mohan H, Stahel P, Dash S, Wheeler MB, Belsham DD. Hypothalamic miR-1983 Targets Insulin Receptor β and the Insulin-mediated miR-1983 Increase Is Blocked by Metformin. Endocrinology 2022; 163:6433013. [PMID: 34919671 PMCID: PMC8682955 DOI: 10.1210/endocr/bqab241] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Indexed: 01/13/2023]
Abstract
MicroRNAs (miRNAs) expressed in the hypothalamus are capable of regulating energy balance and peripheral metabolism by inhibiting translation of target messenger RNAs (mRNAs). Hypothalamic insulin resistance is known to precede that in the periphery, thus a critical unanswered question is whether central insulin resistance creates a specific hypothalamic miRNA signature that can be identified and targeted. Here we show that miR-1983, a unique miRNA, is upregulated in vitro in 2 insulin-resistant immortalized hypothalamic neuronal neuropeptide Y-expressing models, and in vivo in hyperinsulinemic mice, with a concomitant decrease of insulin receptor β subunit protein, a target of miR-1983. Importantly, we demonstrate that miR-1983 is detectable in human blood serum and that its levels significantly correlate with blood insulin and the homeostatic model assessment of insulin resistance. Levels of miR-1983 are normalized with metformin exposure in mouse hypothalamic neuronal cell culture. Our findings provide evidence for miR-1983 as a unique biomarker of cellular insulin resistance, and a potential therapeutic target for prevention of human metabolic disease.
Collapse
Affiliation(s)
- Jennifer A Chalmers
- Department of Physiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Prasad S Dalvi
- Department of Physiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
- Current Affiliation: Prasad S. Dalvi is now at Morosky College of Health Professions and Sciences, Gannon University, Erie, Pennsylvania 16541, USA
| | - Neruja Loganathan
- Department of Physiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Emma K McIlwraith
- Department of Physiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Leigh Wellhauser
- Department of Physiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | | | - Judith A Eversley
- Department of Physiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Haneesha Mohan
- Department of Physiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Priska Stahel
- Department of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Satya Dash
- Department of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada
- Toronto General Hospital, University Health Network, Toronto, Ontario M5G 2C4, Canada
| | - Michael B Wheeler
- Department of Physiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
- Department of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada
- Toronto General Hospital, University Health Network, Toronto, Ontario M5G 2C4, Canada
| | - Denise D Belsham
- Department of Physiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
- Department of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada
- Department of Obstetrics and Gynecology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
- Correspondence: Denise D. Belsham, PhD, Department of Physiology, University of Toronto, Medical Sciences Bldg 3247A, 1 Kings College Cir, Toronto, ON, M5S 1A8, Canada.
| |
Collapse
|
25
|
Erener S, Ellis CE, Ramzy A, Glavas MM, O’Dwyer S, Pereira S, Wang T, Pang J, Bruin JE, Riedel MJ, Baker RK, Webber TD, Lesina M, Blüher M, Algül H, Kopp JL, Herzig S, Kieffer TJ. Deletion of pancreas-specific miR-216a reduces beta-cell mass and inhibits pancreatic cancer progression in mice. Cell Rep Med 2021; 2:100434. [PMID: 34841287 PMCID: PMC8606901 DOI: 10.1016/j.xcrm.2021.100434] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 03/08/2021] [Accepted: 10/05/2021] [Indexed: 12/20/2022]
Abstract
miRNAs have crucial functions in many biological processes and are candidate biomarkers of disease. Here, we show that miR-216a is a conserved, pancreas-specific miRNA with important roles in pancreatic islet and acinar cells. Deletion of miR-216a in mice leads to a reduction in islet size, β-cell mass, and insulin levels. Single-cell RNA sequencing reveals a subpopulation of β-cells with upregulated acinar cell markers under a high-fat diet. miR-216a is induced by TGF-β signaling, and inhibition of miR-216a increases apoptosis and decreases cell proliferation in pancreatic cells. Deletion of miR-216a in the pancreatic cancer-prone mouse line KrasG12D;Ptf1aCreER reduces the propensity of pancreatic cancer precursor lesions. Notably, circulating miR-216a levels are elevated in both mice and humans with pancreatic cancer. Collectively, our study gives insights into how β-cell mass and acinar cell growth are modulated by a pancreas-specific miRNA and also suggests miR-216a as a potential biomarker for diagnosis of pancreatic diseases.
Collapse
Affiliation(s)
- Suheda Erener
- Department of Cellular & Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
- Institute for Diabetes and Cancer, Helmholtz Center Munich, Neuherberg, Germany
| | - Cara E. Ellis
- Department of Cellular & Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
| | - Adam Ramzy
- Department of Cellular & Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
| | - Maria M. Glavas
- Department of Cellular & Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
| | - Shannon O’Dwyer
- Department of Cellular & Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
| | - Sandra Pereira
- Department of Cellular & Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
| | - Tom Wang
- Department of Cellular & Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
| | - Janice Pang
- Department of Cellular & Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
| | - Jennifer E. Bruin
- Department of Cellular & Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
- Department of Biology and Institute of Biochemistry, Carleton University, Ottawa, ON, Canada
| | - Michael J. Riedel
- Department of Cellular & Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
| | - Robert K. Baker
- Department of Cellular & Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
| | - Travis D. Webber
- Department of Cellular & Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
| | - Marina Lesina
- Comprehensive Cancer Center Munich, Technical University of Munich, Munich, Germany
| | - Matthias Blüher
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Zentrum München at the University of Leipzig and University Hospital Leipzig, Leipzig, Germany
- Medical Department III – Endocrinology, Nephrology, Rheumatology, University of Leipzig Medical Center, Leipzig, Germany
| | - Hana Algül
- Comprehensive Cancer Center Munich, Technical University of Munich, Munich, Germany
| | - Janel L. Kopp
- Department of Cellular & Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
| | - Stephan Herzig
- Institute for Diabetes and Cancer, Helmholtz Center Munich, Neuherberg, Germany
- Joint Heidelberg-IDC Translational Diabetes Program, Inner Medicine 1, Heidelberg University Hospital, Heidelberg, Germany
- Technical University Munich, 85764 Neuherberg, Germany
- Deutsches Zentrum für Diabetesforschung, 85764 Neuherberg, Germany
| | - Timothy J. Kieffer
- Department of Cellular & Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
- Department of Surgery, University of British Columbia, Vancouver, BC, Canada
- School of Biomedical Engineering, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
26
|
Sałówka A, Martinez-Sanchez A. Molecular Mechanisms of Nutrient-Mediated Regulation of MicroRNAs in Pancreatic β-cells. Front Endocrinol (Lausanne) 2021; 12:704824. [PMID: 34803905 PMCID: PMC8600252 DOI: 10.3389/fendo.2021.704824] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 08/02/2021] [Indexed: 12/12/2022] Open
Abstract
Pancreatic β-cells within the islets of Langerhans respond to rising blood glucose levels by secreting insulin that stimulates glucose uptake by peripheral tissues to maintain whole body energy homeostasis. To different extents, failure of β-cell function and/or β-cell loss contribute to the development of Type 1 and Type 2 diabetes. Chronically elevated glycaemia and high circulating free fatty acids, as often seen in obese diabetics, accelerate β-cell failure and the development of the disease. MiRNAs are essential for endocrine development and for mature pancreatic β-cell function and are dysregulated in diabetes. In this review, we summarize the different molecular mechanisms that control miRNA expression and function, including transcription, stability, posttranscriptional modifications, and interaction with RNA binding proteins and other non-coding RNAs. We also discuss which of these mechanisms are responsible for the nutrient-mediated regulation of the activity of β-cell miRNAs and identify some of the more important knowledge gaps in the field.
Collapse
Affiliation(s)
| | - Aida Martinez-Sanchez
- Section of Cell Biology and Functional Genomics, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, United Kingdom
| |
Collapse
|
27
|
Sun X, Wang L, Obayomi SMB, Wei Z. Epigenetic Regulation of β Cell Identity and Dysfunction. Front Endocrinol (Lausanne) 2021; 12:725131. [PMID: 34630329 PMCID: PMC8498190 DOI: 10.3389/fendo.2021.725131] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 09/08/2021] [Indexed: 01/07/2023] Open
Abstract
β cell dysfunction and failure are driving forces of type 2 diabetes mellitus (T2DM) pathogenesis. Investigating the underlying mechanisms of β cell dysfunction may provide novel targets for the development of next generation therapy for T2DM. Epigenetics is the study of gene expression changes that do not involve DNA sequence changes, including DNA methylation, histone modification, and non-coding RNAs. Specific epigenetic signatures at all levels, including DNA methylation, chromatin accessibility, histone modification, and non-coding RNA, define β cell identity during embryonic development, postnatal maturation, and maintain β cell function at homeostatic states. During progression of T2DM, overnutrition, inflammation, and other types of stress collaboratively disrupt the homeostatic epigenetic signatures in β cells. Dysregulated epigenetic signatures, and the associating transcriptional outputs, lead to the dysfunction and eventual loss of β cells. In this review, we will summarize recent discoveries of the establishment and disruption of β cell-specific epigenetic signatures, and discuss the potential implication in therapeutic development.
Collapse
Affiliation(s)
- Xiaoqiang Sun
- Department of Physiology and Biomedical Engineering, Mayo Clinic Arizona, Scottsdale, AZ, United States
- Tianjin Fourth Central Hospital, Tianjin, China
- The Fourth Central Hospital Affiliated to Nankai University, Tianjin, China
- The Fourth Central Hospital Clinical College, Tianjin Medical University, Tianjin, China
| | - Liu Wang
- Department of Physiology and Biomedical Engineering, Mayo Clinic Arizona, Scottsdale, AZ, United States
| | - S M Bukola Obayomi
- Department of Physiology and Biomedical Engineering, Mayo Clinic Arizona, Scottsdale, AZ, United States
| | - Zong Wei
- Department of Physiology and Biomedical Engineering, Mayo Clinic Arizona, Scottsdale, AZ, United States
| |
Collapse
|
28
|
Ruiz GP, Camara H, Fazolini NPB, Mori MA. Extracellular miRNAs in redox signaling: Health, disease and potential therapies. Free Radic Biol Med 2021; 173:170-187. [PMID: 33965563 DOI: 10.1016/j.freeradbiomed.2021.05.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 04/30/2021] [Accepted: 05/04/2021] [Indexed: 02/06/2023]
Abstract
Extracellular microRNAs (miRNAs) have emerged as important mediators of cell-to-cell communication and intertissue crosstalk. MiRNAs are produced by virtually all types of eukaryotic cells and can be selectively packaged and released to the extracellular medium, where they may reach distal cells to regulate gene expression cell non-autonomously. By doing so, miRNAs participate in integrative physiology. Oxidative stress affects miRNA expression, while miRNAs control redox signaling. Disruption in miRNA expression, processing or release to the extracellular compartment are associated with aging and a number of chronic diseases, such as obesity, type 2 diabetes, neurodegenerative diseases and cancer, all of them being conditions related to oxidative stress. Here we discuss the interplay between redox balance and miRNA function and secretion as a determinant of health and disease states, reviewing the findings that support this notion and highlighting novel and yet understudied venues of research in the field.
Collapse
Affiliation(s)
- Gabriel Palermo Ruiz
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Campinas, SP, Brazil
| | - Henrique Camara
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Campinas, SP, Brazil
| | - Narayana P B Fazolini
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Campinas, SP, Brazil
| | - Marcelo A Mori
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Campinas, SP, Brazil; Experimental Medicine Research Cluster (EMRC), University of Campinas, Campinas, SP, Brazil; Obesity and Comorbidities Research Center (OCRC), University of Campinas, Campinas, SP, Brazil.
| |
Collapse
|
29
|
George MN, Leavens KF, Gadue P. Genome Editing Human Pluripotent Stem Cells to Model β-Cell Disease and Unmask Novel Genetic Modifiers. Front Endocrinol (Lausanne) 2021; 12:682625. [PMID: 34149620 PMCID: PMC8206553 DOI: 10.3389/fendo.2021.682625] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 05/13/2021] [Indexed: 01/21/2023] Open
Abstract
A mechanistic understanding of the genetic basis of complex diseases such as diabetes mellitus remain elusive due in large part to the activity of genetic disease modifiers that impact the penetrance and/or presentation of disease phenotypes. In the face of such complexity, rare forms of diabetes that result from single-gene mutations (monogenic diabetes) can be used to model the contribution of individual genetic factors to pancreatic β-cell dysfunction and the breakdown of glucose homeostasis. Here we review the contribution of protein coding and non-protein coding genetic disease modifiers to the pathogenesis of diabetes subtypes, as well as how recent technological advances in the generation, differentiation, and genome editing of human pluripotent stem cells (hPSC) enable the development of cell-based disease models. Finally, we describe a disease modifier discovery platform that utilizes these technologies to identify novel genetic modifiers using induced pluripotent stem cells (iPSC) derived from patients with monogenic diabetes caused by heterozygous mutations.
Collapse
Affiliation(s)
- Matthew N. George
- Center for Cellular and Molecular Therapeutics, The Children’s Hospital of Philadelphia, Philadelphia, PA, United States
| | - Karla F. Leavens
- Center for Cellular and Molecular Therapeutics, The Children’s Hospital of Philadelphia, Philadelphia, PA, United States
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Division of Endocrinology and Diabetes, The Children’s Hospital of Philadelphia, Philadelphia, PA, United States
| | - Paul Gadue
- Center for Cellular and Molecular Therapeutics, The Children’s Hospital of Philadelphia, Philadelphia, PA, United States
- Department of Pathology and Laboratory Medicine, The Children’s Hospital of Philadelphia, Philadelphia, PA, United States
| |
Collapse
|
30
|
The synergistic protection of EGCG and quercetin against streptozotocin (STZ)-induced NIT-1 pancreatic β cell damage via upregulation of BCL-2 expression by miR-16-5p. J Nutr Biochem 2021; 96:108748. [PMID: 34051305 DOI: 10.1016/j.jnutbio.2021.108748] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 12/15/2020] [Accepted: 03/30/2021] [Indexed: 12/29/2022]
Abstract
EGCG and quercetin are flavonoids which usually co-exist in edible plants and they exhibit anti-diabetes effects. This study aimed to explore the mechanisms by which quercetin and EGCG synergistically protected pancreatic β-cells from streptozotocin-induced apoptosis. EGCG, quercetin, and their combinations (both 15 μM) all reversed STZ-induced cells damage and enhanced glucose-stimulated insulin secretion, with the combination being more effective than a single compound. At the molecular level, the EGCG-quercetin combination upregulated BCL-2 expression and caused a greater reduction in miR-16-5p level than EGCG alone or quercetin alone. Overexpression of miR-16-5p could offset the down-regulated apoptotic genes caused by the synergistic action of the combination. These findings suggest that EGCG and quercetin exert synergistic anti-diabetes effect, possibly via decreasing the expression of miR-16-5p that targets directly BCL-2. This is the first report on a miRNA-based mechanism underlying the synergistic protective effect of EGCG and quercetin against pancreatic cell damage.
Collapse
|
31
|
A Brief Review of the Mechanisms of β-Cell Dedifferentiation in Type 2 Diabetes. Nutrients 2021; 13:nu13051593. [PMID: 34068827 PMCID: PMC8151793 DOI: 10.3390/nu13051593] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 04/30/2021] [Accepted: 05/07/2021] [Indexed: 01/09/2023] Open
Abstract
Diabetes is a metabolic disease characterized by hyperglycemia. Over 90% of patients with diabetes have type 2 diabetes. Pancreatic β-cells are endocrine cells that produce and secrete insulin, an essential endocrine hormone that regulates blood glucose levels. Deficits in β-cell function and mass play key roles in the onset and progression of type 2 diabetes. Apoptosis has been considered as the main contributor of β-cell dysfunction and decrease in β-cell mass for a long time. However, recent studies suggest that β-cell failure occurs mainly due to increased β-cell dedifferentiation rather than limited β-cell proliferation or increased β-cell death. In this review, we summarize the current advances in the understanding of the pancreatic β-cell dedifferentiation process including potential mechanisms. A better understanding of β-cell dedifferentiation process will help to identify novel therapeutic targets to prevent and/or reverse β-cell loss in type 2 diabetes.
Collapse
|
32
|
Wong WK, Joglekar MV, Saini V, Jiang G, Dong CX, Chaitarvornkit A, Maciag GJ, Gerace D, Farr RJ, Satoor SN, Sahu S, Sharangdhar T, Ahmed AS, Chew YV, Liuwantara D, Heng B, Lim CK, Hunter J, Januszewski AS, Sørensen AE, Akil AS, Gamble JR, Loudovaris T, Kay TW, Thomas HE, O'Connell PJ, Guillemin GJ, Martin D, Simpson AM, Hawthorne WJ, Dalgaard LT, Ma RC, Hardikar AA. Machine learning workflows identify a microRNA signature of insulin transcription in human tissues. iScience 2021; 24:102379. [PMID: 33981968 PMCID: PMC8082091 DOI: 10.1016/j.isci.2021.102379] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 02/19/2021] [Accepted: 03/29/2021] [Indexed: 02/07/2023] Open
Abstract
Dicer knockout mouse models demonstrated a key role for microRNAs in pancreatic β-cell function. Studies to identify specific microRNA(s) associated with human (pro-)endocrine gene expression are needed. We profiled microRNAs and key pancreatic genes in 353 human tissue samples. Machine learning workflows identified microRNAs associated with (pro-)insulin transcripts in a discovery set of islets (n = 30) and insulin-negative tissues (n = 62). This microRNA signature was validated in remaining 261 tissues that include nine islet samples from individuals with type 2 diabetes. Top eight microRNAs (miR-183-5p, -375-3p, 216b-5p, 183-3p, -7-5p, -217-5p, -7-2-3p, and -429-3p) were confirmed to be associated with and predictive of (pro-)insulin transcript levels. Use of doxycycline-inducible microRNA-overexpressing human pancreatic duct cell lines confirmed the regulatory roles of these microRNAs in (pro-)endocrine gene expression. Knockdown of these microRNAs in human islet cells reduced (pro-)insulin transcript abundance. Our data provide specific microRNAs to further study microRNA-mRNA interactions in regulating insulin transcription.
Collapse
Affiliation(s)
- Wilson K.M. Wong
- Diabetes and Islet Biology Group, School of Medicine, Western Sydney University, Narellan Road & Gilchrist Drive, Campbelltown, NSW 2560, Australia
- Diabetes and Islet Biology group, Faculty of Medicine and Health, University of Sydney, 92-94 Parramatta Road, Camperdown, NSW 2050, Australia
| | - Mugdha V. Joglekar
- Diabetes and Islet Biology Group, School of Medicine, Western Sydney University, Narellan Road & Gilchrist Drive, Campbelltown, NSW 2560, Australia
- Diabetes and Islet Biology group, Faculty of Medicine and Health, University of Sydney, 92-94 Parramatta Road, Camperdown, NSW 2050, Australia
| | - Vijit Saini
- Diabetes and Islet Biology Group, School of Medicine, Western Sydney University, Narellan Road & Gilchrist Drive, Campbelltown, NSW 2560, Australia
- School of Life Sciences and the Centre for Health Technologies, University of Technology Sydney, 15 Broadway, Ultimo, NSW 2007, Australia
| | - Guozhi Jiang
- Department of Medicine and Therapeutics, and Hong Kong Institute of Diabetes and Obesity, and Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, Special Administrative Region, China
| | - Charlotte X. Dong
- Diabetes and Islet Biology Group, School of Medicine, Western Sydney University, Narellan Road & Gilchrist Drive, Campbelltown, NSW 2560, Australia
- Diabetes and Islet Biology group, Faculty of Medicine and Health, University of Sydney, 92-94 Parramatta Road, Camperdown, NSW 2050, Australia
| | - Alissa Chaitarvornkit
- Diabetes and Islet Biology Group, School of Medicine, Western Sydney University, Narellan Road & Gilchrist Drive, Campbelltown, NSW 2560, Australia
- Diabetes and Islet Biology group, Faculty of Medicine and Health, University of Sydney, 92-94 Parramatta Road, Camperdown, NSW 2050, Australia
| | - Grzegorz J. Maciag
- Department of Science and Environment, Roskilde University, Universitetsvej 1, 4000 Roskilde, Denmark
| | - Dario Gerace
- School of Life Sciences and the Centre for Health Technologies, University of Technology Sydney, 15 Broadway, Ultimo, NSW 2007, Australia
| | - Ryan J. Farr
- Diabetes and Islet Biology Group, School of Medicine, Western Sydney University, Narellan Road & Gilchrist Drive, Campbelltown, NSW 2560, Australia
- Diabetes and Islet Biology group, Faculty of Medicine and Health, University of Sydney, 92-94 Parramatta Road, Camperdown, NSW 2050, Australia
| | - Sarang N. Satoor
- Diabetes and Islet Biology Group, School of Medicine, Western Sydney University, Narellan Road & Gilchrist Drive, Campbelltown, NSW 2560, Australia
- Diabetes and Islet Biology group, Faculty of Medicine and Health, University of Sydney, 92-94 Parramatta Road, Camperdown, NSW 2050, Australia
| | - Subhshri Sahu
- Diabetes and Islet Biology Group, School of Medicine, Western Sydney University, Narellan Road & Gilchrist Drive, Campbelltown, NSW 2560, Australia
- Diabetes and Islet Biology group, Faculty of Medicine and Health, University of Sydney, 92-94 Parramatta Road, Camperdown, NSW 2050, Australia
| | - Tejaswini Sharangdhar
- Diabetes and Islet Biology Group, School of Medicine, Western Sydney University, Narellan Road & Gilchrist Drive, Campbelltown, NSW 2560, Australia
- Diabetes and Islet Biology group, Faculty of Medicine and Health, University of Sydney, 92-94 Parramatta Road, Camperdown, NSW 2050, Australia
| | - Asma S. Ahmed
- Diabetes and Islet Biology Group, School of Medicine, Western Sydney University, Narellan Road & Gilchrist Drive, Campbelltown, NSW 2560, Australia
- Diabetes and Islet Biology group, Faculty of Medicine and Health, University of Sydney, 92-94 Parramatta Road, Camperdown, NSW 2050, Australia
| | - Yi Vee Chew
- Centre for Transplant and Renal Research, Westmead Institute for Medical Research, University of Sydney, 176 Hawkesbury Road, Westmead, NSW 2145, Australia
| | - David Liuwantara
- Centre for Transplant and Renal Research, Westmead Institute for Medical Research, University of Sydney, 176 Hawkesbury Road, Westmead, NSW 2145, Australia
| | - Benjamin Heng
- Faculty of Medicine Health and Human Sciences, Macquarie University, Sydney, NSW 2019, Australia
| | - Chai K. Lim
- Faculty of Medicine Health and Human Sciences, Macquarie University, Sydney, NSW 2019, Australia
| | - Julie Hunter
- Centre for the Endothelium, Vascular Biology Program, Centenary Institute, University of Sydney Medical School, Locked Bag #6, Newtown, NSW 2042, Australia
| | - Andrzej S. Januszewski
- NHMRC Clinical Trials Centre, University of Sydney, 92-94 Parramatta Road, Camperdown, NSW 2050, Australia
| | - Anja E. Sørensen
- Department of Science and Environment, Roskilde University, Universitetsvej 1, 4000 Roskilde, Denmark
| | - Ammira S.A. Akil
- Department of Human Genetics-Precision Medicine Program, Sidra Medicine, P.O. Box 26999, Doha, Qatar
| | - Jennifer R. Gamble
- Centre for the Endothelium, Vascular Biology Program, Centenary Institute, University of Sydney Medical School, Locked Bag #6, Newtown, NSW 2042, Australia
| | - Thomas Loudovaris
- St Vincent's Institute and The University of Melbourne Department of Medicine, 9 Princes Street, Fitzroy, VIC, Australia
| | - Thomas W. Kay
- St Vincent's Institute and The University of Melbourne Department of Medicine, 9 Princes Street, Fitzroy, VIC, Australia
| | - Helen E. Thomas
- St Vincent's Institute and The University of Melbourne Department of Medicine, 9 Princes Street, Fitzroy, VIC, Australia
| | - Philip J. O'Connell
- Centre for Transplant and Renal Research, Westmead Institute for Medical Research, University of Sydney, 176 Hawkesbury Road, Westmead, NSW 2145, Australia
| | - Gilles J. Guillemin
- Faculty of Medicine Health and Human Sciences, Macquarie University, Sydney, NSW 2019, Australia
| | - David Martin
- Upper GI Surgery, Strathfield Hospital, 2/3 Everton Road, Strathfield, NSW 2135, Australia
| | - Ann M. Simpson
- School of Life Sciences and the Centre for Health Technologies, University of Technology Sydney, 15 Broadway, Ultimo, NSW 2007, Australia
| | - Wayne J. Hawthorne
- Centre for Transplant and Renal Research, Westmead Institute for Medical Research, University of Sydney, 176 Hawkesbury Road, Westmead, NSW 2145, Australia
| | - Louise T. Dalgaard
- Department of Science and Environment, Roskilde University, Universitetsvej 1, 4000 Roskilde, Denmark
| | - Ronald C.W. Ma
- Department of Medicine and Therapeutics, and Hong Kong Institute of Diabetes and Obesity, and Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, Special Administrative Region, China
| | - Anandwardhan A. Hardikar
- Diabetes and Islet Biology Group, School of Medicine, Western Sydney University, Narellan Road & Gilchrist Drive, Campbelltown, NSW 2560, Australia
- Diabetes and Islet Biology group, Faculty of Medicine and Health, University of Sydney, 92-94 Parramatta Road, Camperdown, NSW 2050, Australia
- Department of Science and Environment, Roskilde University, Universitetsvej 1, 4000 Roskilde, Denmark
| |
Collapse
|
33
|
miR-720 Regulates Insulin Secretion by Targeting Rab35. BIOMED RESEARCH INTERNATIONAL 2021; 2021:6662612. [PMID: 33880375 PMCID: PMC8046542 DOI: 10.1155/2021/6662612] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 03/22/2021] [Accepted: 03/25/2021] [Indexed: 12/12/2022]
Abstract
miRNAs pose a good prospect in the diagnosis and treatment of type 2 diabetes (T2D). This study is aimed at investigating whether miR-720 targets Rab35 to regulate insulin secretion in MIN6 cells and its molecular mechanism and the clinical value of miR-720 as a specific biomarker of T2D. Fifty-five samples of new diagnosis T2D patients and normal control were collected. Levels of miR-720, fasting blood glucose, insulin, and other indicators of glucose and lipid metabolism were determined. We increased and decreased the miR-720 expression using miR-720 mimic and inhibitor to identify the effect of miR-720 on insulin secretion in MIN6 cells, respectively. Then, we used miR-720 mimic, miR-720 inhibitor, and dual luciferase reporter gene assays to prove miR-720 which regulates insulin secretion by targeting Rab35 in MIN6 cells. In addition, we overexpressed and silenced the Rab35 gene to detect the expression of PI3K, Akt, and mTOR in MIN6 cells by RT-PCR and western blot. In this study, circulating miR-720 was significantly higher in the T2D group than the control group, and miR-270 was positive correlated with FBG, while negatively correlated with FINS. The overexpression of miR-720 inhibited insulin secretion, and miR-720 downregulation promoted insulin secretion. miR-720 regulated insulin secretion by targeting Rab35 in MIN6 cells. Compared with the control group, the expression of PI3K, Akt, and mTOR was significantly decreased by the overexpression of the Rab35 gene, while the silencing Rab35 gene could induce the expression of PI3K, Akt, and mTOR. Furthermore, miR-720 mimic could activate the PI3K pathway. We conclude that miR-720 may be a potential biomarker for the diagnosis of T2D. Increase of miR-720 reduced the Rab35 expression then activate the PI3K/Akt/mTOR signal pathway, thus inhibiting insulin secretion.
Collapse
|
34
|
Grieco GE, Brusco N, Licata G, Fignani D, Formichi C, Nigi L, Sebastiani G, Dotta F. The Landscape of microRNAs in βCell: Between Phenotype Maintenance and Protection. Int J Mol Sci 2021; 22:ijms22020803. [PMID: 33466949 PMCID: PMC7830142 DOI: 10.3390/ijms22020803] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/11/2021] [Accepted: 01/12/2021] [Indexed: 12/19/2022] Open
Abstract
Diabetes mellitus is a group of heterogeneous metabolic disorders characterized by chronic hyperglycaemia mainly due to pancreatic β cell death and/or dysfunction, caused by several types of stress such as glucotoxicity, lipotoxicity and inflammation. Different patho-physiological mechanisms driving β cell response to these stresses are tightly regulated by microRNAs (miRNAs), a class of negative regulators of gene expression, involved in pathogenic mechanisms occurring in diabetes and in its complications. In this review, we aim to shed light on the most important miRNAs regulating the maintenance and the robustness of β cell identity, as well as on those miRNAs involved in the pathogenesis of the two main forms of diabetes mellitus, i.e., type 1 and type 2 diabetes. Additionally, we acknowledge that the understanding of miRNAs-regulated molecular mechanisms is fundamental in order to develop specific and effective strategies based on miRNAs as therapeutic targets, employing innovative molecules.
Collapse
Affiliation(s)
- Giuseppina Emanuela Grieco
- Diabetes Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, 53100 Siena, Italy; (G.E.G.); (N.B.); (G.L.); (D.F.); (C.F.); (L.N.); (G.S.)
- Fondazione Umberto Di Mario, c/o Toscana Life Sciences, 53100 Siena, Italy
| | - Noemi Brusco
- Diabetes Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, 53100 Siena, Italy; (G.E.G.); (N.B.); (G.L.); (D.F.); (C.F.); (L.N.); (G.S.)
- Fondazione Umberto Di Mario, c/o Toscana Life Sciences, 53100 Siena, Italy
| | - Giada Licata
- Diabetes Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, 53100 Siena, Italy; (G.E.G.); (N.B.); (G.L.); (D.F.); (C.F.); (L.N.); (G.S.)
- Fondazione Umberto Di Mario, c/o Toscana Life Sciences, 53100 Siena, Italy
| | - Daniela Fignani
- Diabetes Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, 53100 Siena, Italy; (G.E.G.); (N.B.); (G.L.); (D.F.); (C.F.); (L.N.); (G.S.)
- Fondazione Umberto Di Mario, c/o Toscana Life Sciences, 53100 Siena, Italy
| | - Caterina Formichi
- Diabetes Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, 53100 Siena, Italy; (G.E.G.); (N.B.); (G.L.); (D.F.); (C.F.); (L.N.); (G.S.)
- Fondazione Umberto Di Mario, c/o Toscana Life Sciences, 53100 Siena, Italy
| | - Laura Nigi
- Diabetes Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, 53100 Siena, Italy; (G.E.G.); (N.B.); (G.L.); (D.F.); (C.F.); (L.N.); (G.S.)
- Fondazione Umberto Di Mario, c/o Toscana Life Sciences, 53100 Siena, Italy
| | - Guido Sebastiani
- Diabetes Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, 53100 Siena, Italy; (G.E.G.); (N.B.); (G.L.); (D.F.); (C.F.); (L.N.); (G.S.)
- Fondazione Umberto Di Mario, c/o Toscana Life Sciences, 53100 Siena, Italy
| | - Francesco Dotta
- Diabetes Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, 53100 Siena, Italy; (G.E.G.); (N.B.); (G.L.); (D.F.); (C.F.); (L.N.); (G.S.)
- Fondazione Umberto Di Mario, c/o Toscana Life Sciences, 53100 Siena, Italy
- Tuscany Centre for Precision Medicine (CReMeP), 53100 Siena, Italy
- Correspondence: ; Tel.: +39-0577-231283
| |
Collapse
|
35
|
Extracellular MicroRNAs as Intercellular Mediators and Noninvasive Biomarkers of Cancer. Cancers (Basel) 2020; 12:cancers12113455. [PMID: 33233600 PMCID: PMC7699762 DOI: 10.3390/cancers12113455] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 11/11/2020] [Accepted: 11/18/2020] [Indexed: 02/06/2023] Open
Abstract
Simple Summary There are an extensive number of publications regarding the role of endogenous miRNAs as regulators of gene expression in cancer. However, extracellular miRNAs have emerged as a novel mechanism of cell-to-cell communication in normal conditions and disease and have drawn a large amount of interest as regulators of gene expression and as potential non-invasive biomarkers in cancer. Despite this high interest and the abundance of research on the biology and role of extracellular miRNAs in cancer, they are not yet completely understood. The aim of this review is to highlight the relevant biological characteristics of extracellular miRNAs that enable them to function as intercellular mediators of gene expression regulation and provide the recently published evidence of the specific role of extracellular miRNAs in tumor development and progression. Abstract MicroRNAs (miRNAs) are released by different types of cells through highly regulated mechanisms under normal and pathological conditions. These extracellular miRNAs can be delivered into recipient cells for functional purposes, acting as cell-to-cell signaling mediators. It has been discovered that cancer cells release miRNAs into their surroundings, targeting normal cells or other cancer cells, presumably to promote tumor development and progression. These extracellular miRNAs are associated with oncogenic mechanisms and, because they can be quantified in blood and other bodily fluids, may be suitable noninvasive biomarkers for cancer detection. This review summarizes recent evidence of the role of extracellular miRNAs as intercellular mediators, with an emphasis on their role in the mechanisms of tumor development and progression and their potential value as biomarkers in solid tumors. It also highlights the biological characteristics of extracellular miRNAs that enable them to function as regulators of gene expression, such as biogenesis, gene silencing mechanisms, subcellular compartmentalization, and the functions and mechanisms of release.
Collapse
|
36
|
Therapeutic Potentials of MicroRNAs for Curing Diabetes Through Pancreatic β-Cell Regeneration or Replacement. Pancreas 2020; 49:1131-1140. [PMID: 32852323 DOI: 10.1097/mpa.0000000000001655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
MicroRNAs are a type of noncoding RNAs that regulates the expression of target genes at posttranscriptional level. MicroRNAs play essential roles in regulating the expression of different genes involved in pancreatic development, β-cell mass maintenance, and β-cell function. Alteration in the level of miRNAs involved in β-cell function leads to the diabetes. Being an epidemic, diabetes threatens the life of millions of patients posing a pressing demand for its urgent resolve. However, the currently available therapies are not substantial to cure the diabetic epidemic. Thus, researchers are trying to find new ways to replenish the β-cell mass in patients with diabetes. One promising approach is the in vivo regeneration of β-cell mass or increasing the efficiency of β-cell function. Another clinical strategy is the transplantation of in vitro developed β-like cells. Owing to their role in pancreatic β-cell development, maintenance, functioning and their involvement in diabetes, overexpression or attenuation of different miRNAs can cause β-cell regeneration in vivo or can direct the differentiation of various kinds of stem/progenitor cells to β-like cells in vitro. Here, we will summarize different strategies used by researchers to investigate the therapeutic potentials of miRNAs, with focus on miR-375, for curing diabetes through β-cell regeneration or replacement.
Collapse
|
37
|
Kaur P, Kotru S, Singh S, Behera BS, Munshi A. Role of miRNAs in the pathogenesis of T2DM, insulin secretion, insulin resistance, and β cell dysfunction: the story so far. J Physiol Biochem 2020; 76:485-502. [PMID: 32749641 DOI: 10.1007/s13105-020-00760-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Accepted: 07/29/2020] [Indexed: 01/24/2023]
Abstract
Diabetes, the most common endocrine disorder, also known as a silent killer disease, is characterized by uncontrolled hyperglycemia. According to the International Diabetes Federation, there were 451 million people with diabetes mellitus worldwide in 2017. It is a multifactorial syndrome caused by genetic as well as environmental factors. Noncoding RNAs, especially the miRNAs, play a significant role in the development as well as the progression of the disease. This is on account of insulin resistance or defects in β cell function. Various miRNAs including miR-7, miR-9, miR-16, miR-27, miR-24, miR-29, miR-124a, miR-135, miR-130a, miR-144, miR-181a, and miR-375 and many more have been associated with insulin resistance and other pathogenic conditions leading to the development of the disease. These miRNAs play significant roles in various pathways underlying insulin resistance such as PI3K, AKT/GSK, and mTOR. The main target genes of these miRNAs are FOXO1, FOXA2, STAT3, and PTEN. The miRNAs carry out important functions in insulin target tissues like the adipose tissue, liver, and muscle. MiRNAs miR-9, miR-375, and miR-124a, are also associated with the secretion of insulin from pancreatic cells. There is an interplay between the miRNAs and pancreatic cell growth, especially the miRNAs affecting development and proliferation of these cells. Most of the miRNAs target more than one gene which not only justifies their use as biomarkers but also their therapeutic potential. The current review has been compiled with an aim to discuss the role of various miRNAs involved in various pathogenic mechanisms including insulin resistance, insulin secretion, and the β cell dysfunction.
Collapse
Affiliation(s)
- Prabhsimran Kaur
- Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda, 151001, India
| | - Sushil Kotru
- Max Endocrinology, Diabetes and Obesity Care Centre, Max Superspeciality Hospital, Bathinda, 151001, India
| | - Sandeep Singh
- Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda, 151001, India
| | - Bidwan Sekhar Behera
- Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda, 151001, India
| | - Anjana Munshi
- Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda, 151001, India.
| |
Collapse
|
38
|
Exosomal MicroRNA Expression Profiling Analysis of the Effects of Lycium Barbarum Polysaccharide on Gestational Diabetes Mellitus Mice. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:2953502. [PMID: 32802120 PMCID: PMC7414337 DOI: 10.1155/2020/2953502] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 07/04/2020] [Accepted: 07/07/2020] [Indexed: 12/26/2022]
Abstract
Objective Gestational diabetes mellitus (GDM) is a pathological condition, affecting an increasing number of pregnant women worldwide. Safe and effective treatment for GDM is very important for the public health. In this study, we utilized a high-fat diet-induced GDM model to evaluate the effects of LBP on GDM and examined the changes of exosomal microRNA expression profiling to decipher the potential underlying mechanism of LBP. Methods Female C57BL/6J mice were fed a control diet, HFD, or 150 mg/kg LBP-supplemented HFD for 6 weeks before conception and throughout gestation. Oral glucose tolerance test and plasma lipid levels were determined, and liver histopathology was assessed. Sequencing was used to define the microRNA expression profiling of plasma exosomes in the three groups of mice, and protein expression levels of the candidate target genes were analyzed. Results LBP significantly relieved glucose intolerance, abnormal plasma lipid levels, and pathomorphological changes of liver histopathology in HFD-induced GDM mice. Moreover, we found that this effect of LBP was mediated by downregulation of the increase of 6 miRNAs (miR-93-3p, miR-188-5p, miR-466k, miR-1188-5p, miR-7001-3p, and miR-7115-5p) and reversing the increase of the protein expression of CPT1A, which is the target gene of miR-188-5p. Conclusions Our findings provide novel insights into the biological activities of LBP in the treatment of GDM.
Collapse
|
39
|
β-Cell specific transcription factors in the context of diabetes mellitus and β-cell regeneration. Mech Dev 2020; 163:103634. [PMID: 32711047 DOI: 10.1016/j.mod.2020.103634] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 07/15/2020] [Accepted: 07/15/2020] [Indexed: 02/06/2023]
Abstract
All pancreatic cell populations arise from the standard gut endoderm layer in developing embryos, requiring a regulatory gene network to originate and maintain endocrine lineages and endocrine function. The pancreatic organogenesis is regulated by the temporal expression of transcription factors and plays a diverse role in the specification, development, differentiation, maturation, and functional maintenance. Altered expression and activity of these transcription factors are often associated with diabetes mellitus. Recent advancements in the stem cells and invitro derived islets to treat diabetes mellitus has attracted a great deal of interest in the understanding of factors regulating the development, differentiation, and functions of islets including transcription factors. This review discusses the myriad of transcription factors regulating the development of the pancreas, differentiation of β-islets, and how these factors regulated in normal and disease states. Exploring these factors in such critical context and exogenous or endogenous expression of development and differentiation-specific transcription factors with improved epigenetic plasticity/signaling axis in diabetic milieu would useful for the development of β-cells from other cell sources.
Collapse
|
40
|
Guay C, Jacovetti C, Bayazit MB, Brozzi F, Rodriguez-Trejo A, Wu K, Regazzi R. Roles of Noncoding RNAs in Islet Biology. Compr Physiol 2020; 10:893-932. [PMID: 32941685 DOI: 10.1002/cphy.c190032] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The discovery that most mammalian genome sequences are transcribed to ribonucleic acids (RNA) has revolutionized our understanding of the mechanisms governing key cellular processes and of the causes of human diseases, including diabetes mellitus. Pancreatic islet cells were found to contain thousands of noncoding RNAs (ncRNAs), including micro-RNAs (miRNAs), PIWI-associated RNAs, small nucleolar RNAs, tRNA-derived fragments, long non-coding RNAs, and circular RNAs. While the involvement of miRNAs in islet function and in the etiology of diabetes is now well documented, there is emerging evidence indicating that other classes of ncRNAs are also participating in different aspects of islet physiology. The aim of this article will be to provide a comprehensive and updated view of the studies carried out in human samples and rodent models over the past 15 years on the role of ncRNAs in the control of α- and β-cell development and function and to highlight the recent discoveries in the field. We not only describe the role of ncRNAs in the control of insulin and glucagon secretion but also address the contribution of these regulatory molecules in the proliferation and survival of islet cells under physiological and pathological conditions. It is now well established that most cells release part of their ncRNAs inside small extracellular vesicles, allowing the delivery of genetic material to neighboring or distantly located target cells. The role of these secreted RNAs in cell-to-cell communication between β-cells and other metabolic tissues as well as their potential use as diabetes biomarkers will be discussed. © 2020 American Physiological Society. Compr Physiol 10:893-932, 2020.
Collapse
Affiliation(s)
- Claudiane Guay
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland.,Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland
| | - Cécile Jacovetti
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland.,Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland
| | - Mustafa Bilal Bayazit
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland.,Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland
| | - Flora Brozzi
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland.,Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland
| | - Adriana Rodriguez-Trejo
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland.,Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland
| | - Kejing Wu
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland.,Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland
| | - Romano Regazzi
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland.,Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
41
|
Peters LJF, Biessen EAL, Hohl M, Weber C, van der Vorst EPC, Santovito D. Small Things Matter: Relevance of MicroRNAs in Cardiovascular Disease. Front Physiol 2020; 11:793. [PMID: 32733281 PMCID: PMC7358539 DOI: 10.3389/fphys.2020.00793] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 06/15/2020] [Indexed: 12/12/2022] Open
Abstract
MicroRNAs (miRNAs) are short sequences of non-coding RNA that play an important role in the regulation of gene expression and thereby in many physiological and pathological processes. Furthermore, miRNAs are released in the extracellular space, for example in vesicles, and are detectable in various biological fluids, such as serum, plasma, and urine. Over the last years, it has been shown that miRNAs are crucial in the development of several cardiovascular diseases (CVDs). This review discusses the (patho)physiological implications of miRNAs in CVD, ranging from cardiovascular risk factors (i.e., hypertension, diabetes, dyslipidemia), to atherosclerosis, myocardial infarction, and cardiac remodeling. Moreover, the intriguing possibility of their use as disease-specific diagnostic and prognostic biomarkers for human CVDs will be discussed in detail. Finally, as several approaches have been developed to alter miRNA expression and function (i.e., mimics, antagomirs, and target-site blockers), we will highlight the miRNAs with the most promising therapeutic potential that may represent suitable candidates for therapeutic intervention in future translational studies and ultimately in clinical trials. All in all, this review gives a comprehensive overview of the most relevant miRNAs in CVD and discusses their potential use as biomarkers and even therapeutic targets.
Collapse
Affiliation(s)
- Linsey J. F. Peters
- Institute for Molecular Cardiovascular Research, RWTH Aachen University, Aachen, Germany
- Department of Pathology, Cardiovascular Research Institute Maastricht, Maastricht University Medical Centre, Maastricht, Netherlands
- Interdisciplinary Center for Clinical Research, RWTH Aachen University, Aachen, Germany
- German Centre for Cardiovascular Research, Partner Site Munich Heart Alliance, Munich, Germany
| | - Erik A. L. Biessen
- Institute for Molecular Cardiovascular Research, RWTH Aachen University, Aachen, Germany
- Department of Pathology, Cardiovascular Research Institute Maastricht, Maastricht University Medical Centre, Maastricht, Netherlands
| | - Mathias Hohl
- Klinik für Innere Medizin III, Universität des Saarlandes, Homburg, Germany
| | - Christian Weber
- German Centre for Cardiovascular Research, Partner Site Munich Heart Alliance, Munich, Germany
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-University Munich, Munich, Germany
- Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University Medical Centre, Maastricht, Netherlands
- Munich Cluster for Systems Neurology, Munich, Germany
| | - Emiel P. C. van der Vorst
- Institute for Molecular Cardiovascular Research, RWTH Aachen University, Aachen, Germany
- Department of Pathology, Cardiovascular Research Institute Maastricht, Maastricht University Medical Centre, Maastricht, Netherlands
- Interdisciplinary Center for Clinical Research, RWTH Aachen University, Aachen, Germany
- German Centre for Cardiovascular Research, Partner Site Munich Heart Alliance, Munich, Germany
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Donato Santovito
- German Centre for Cardiovascular Research, Partner Site Munich Heart Alliance, Munich, Germany
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-University Munich, Munich, Germany
| |
Collapse
|
42
|
Bioinformatic Analyses of miRNA-mRNA Signature during hiPSC Differentiation towards Insulin-Producing Cells upon HNF4α Mutation. Biomedicines 2020; 8:biomedicines8070179. [PMID: 32605028 PMCID: PMC7400504 DOI: 10.3390/biomedicines8070179] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 06/22/2020] [Accepted: 06/24/2020] [Indexed: 12/14/2022] Open
Abstract
Mutations in the hepatocyte nuclear factor 4α (HNF4α) gene affect prenatal and postnatal pancreas development, being characterized by insulin-producing β-cell dysfunction. Little is known about the cellular and molecular mechanisms leading to β-cell failure as result of HNF4α mutation. In this study, we compared the miRNA profile of differentiating human induced pluripotent stem cells (hiPSC) derived from HNF4α+/Δ mutation carriers and their family control along the differentiation timeline. Moreover, we associated this regulation with the corresponding transcriptome profile to isolate transcript–miRNA partners deregulated in the mutated cells. This study uncovered a steep difference in the miRNA regulation pattern occurring during the posterior foregut to pancreatic endoderm transition, defining early and late differentiation regulatory windows. The pathway analysis of the miRNAome–transcriptome interactions revealed a likely gradual involvement of HNF4α+/Δ mutation in p53-mediated cell cycle arrest, with consequences for the proliferation potential, survival and cell fate acquisition of the differentiating cells. The present study is based on bioinformatics approaches and we expect that, pending further experimental validation, certain miRNAs deregulated in the HNF4α+/Δ cells would prove useful for therapy.
Collapse
|
43
|
Li N, Jiang D, He Q, He F, Li Y, Deng C, Li F. microRNA-181c-5p promotes the formation of insulin-producing cells from human induced pluripotent stem cells by targeting smad7 and TGIF2. Cell Death Dis 2020; 11:462. [PMID: 32541687 PMCID: PMC7295798 DOI: 10.1038/s41419-020-2668-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 05/28/2020] [Accepted: 05/29/2020] [Indexed: 12/28/2022]
Abstract
Generating insulin-producing cells (IPCs) from human pluripotent stem cells is a promising method for studying the molecular mechanism underlying pancreas development and a potential treatment source for type 1 diabetes. Previous studies have shown that miR-181c-5p is highly enriched in adult islets; however, its role in pancreatic β cell differentiation is poorly understood. In this study, we differentiated human induced pluripotent stem cells (hiPSCs) into IPCs in a stepwise process that recapitulated pancreas organogenesis and observed that miR-181c-5p continuously accumulated throughout the entire differentiation process. hiPSCs were transduced with lentiviral vectors containing human miR-181c-5p precursor, which significantly increased the endodermal markers SOX17, FOXA2, CXCR4 and GATA4 and pancreatic endocrine-specific gene expression, including PDX1, NKX6.1, MAFA and Insulin. miR-181c-5p overexpression exerted little effect on the efficiency of definitive endoderm, whereas it promoted the differentiation of pancreatic progenitors and IPCs, especially for NKX6.1-positive and insulin-positive cells differentiation. Transplanted these cells exhibit glucose-stimulated C-peptide secretion in vivo and protect mice from chemically induced diabetes. It was found that miR-181c-5p directly targets the 3'UTR of smad7 and TGIF2 mRNA, which are known to be endogenous repressors of TGF-β-smad2/3 signaling, to decrease their mRNA and protein levels. Furthermore, overexpressed miR-181c-5p led to an elevation of the smad2/3 phosphorylation levels in hiPSC-derived cells, while treatment with smad2/3 inhibitors following miR-181c-5p overexpression had opposite effects on IPC formation. These results suggest that miR-181c-5p is critically involved in pancreatic lineage commitment through direct repression of smad7 and TGIF2 and that it modulates TGF-β-smad2/3 signaling activation and increases the feasibility of using patient-specific hiPSCs for β cell replacement therapy for type 1 diabetes.
Collapse
Affiliation(s)
- Ning Li
- Translational Medicine Collaborative Innovation Center, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518020, Guangdong, China.,Shenzhen Cell Therapy Public Service Platform, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518020, Guangdong, China.,Shenzhen key Laboratory of Stem Cell Research and Clinical Transformation, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518020, Guangdong, China
| | - Doukou Jiang
- Translational Medicine Collaborative Innovation Center, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518020, Guangdong, China.,Shenzhen Cell Therapy Public Service Platform, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518020, Guangdong, China
| | - Qian He
- Translational Medicine Collaborative Innovation Center, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518020, Guangdong, China.,Shenzhen Cell Therapy Public Service Platform, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518020, Guangdong, China.,Integrated Chinese and Western Medicine Postdoctoral research station, Jinan University, Guangzhou, 510632, Guangdong, China
| | - Fei He
- Translational Medicine Collaborative Innovation Center, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518020, Guangdong, China.,Shenzhen Cell Therapy Public Service Platform, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518020, Guangdong, China.,Integrated Chinese and Western Medicine Postdoctoral research station, Jinan University, Guangzhou, 510632, Guangdong, China
| | - Yang Li
- Translational Medicine Collaborative Innovation Center, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518020, Guangdong, China.,Shenzhen Cell Therapy Public Service Platform, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518020, Guangdong, China
| | - Chunyan Deng
- Translational Medicine Collaborative Innovation Center, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518020, Guangdong, China.,Shenzhen Cell Therapy Public Service Platform, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518020, Guangdong, China.,Shenzhen key Laboratory of Stem Cell Research and Clinical Transformation, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518020, Guangdong, China
| | - Furong Li
- Translational Medicine Collaborative Innovation Center, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518020, Guangdong, China. .,Shenzhen Cell Therapy Public Service Platform, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518020, Guangdong, China. .,Shenzhen key Laboratory of Stem Cell Research and Clinical Transformation, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518020, Guangdong, China.
| |
Collapse
|
44
|
MicroRNA-127 inhibits cell proliferation via targeting Kif3b in pancreatic β cells. Aging (Albany NY) 2020; 11:1342-1355. [PMID: 30822278 PMCID: PMC6428088 DOI: 10.18632/aging.101835] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 02/17/2019] [Indexed: 12/17/2022]
Abstract
MicroRNAs (miRNAs) have been implicated in β cells dysfunction. Previous studies indicated that miR-127 was specifically abundant in β cells and one of its target genes, Kif3b, promoted cell proliferation. However, the impact of the miR-127-Kif3b axis on β cells remains unknown. In this study, we revealed that miR-127 level was declined both in islets from the mice with a high-fat diet and in MIN6 cells with elevated glucose treatment. The elevated level of miR-127 attenuated β cell proliferation by repressing Kif3b expression without affecting apoptosis and cell cycle, and it dampened insulin secretion. Moreover, β cell-derived miR-127 could also affect the islet endothelial cell-line, MS1, in vitro via the transfer of extracellular vesicles (EVs). Treating MS1 cells with the EVs secreted by MIN6 cells exhibited a higher ability in cell migration and tube formation. However, this effect was abolished by the miR-127 inhibitor co-cultured with EVs-treated MS1 cells. Thus, we define that miR-127 is a crucial regulator of insulin secretion and cell proliferation in pancreatic β cells as well as a potential functional regulation factor in islet endothelial cells.
Collapse
|
45
|
Eliasson L, Esguerra JLS. MicroRNA Networks in Pancreatic Islet Cells: Normal Function and Type 2 Diabetes. Diabetes 2020; 69:804-812. [PMID: 32312896 PMCID: PMC7171954 DOI: 10.2337/dbi19-0016] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 12/20/2019] [Indexed: 12/12/2022]
Abstract
Impaired insulin secretion from the pancreatic β-cells is central in the pathogenesis of type 2 diabetes (T2D), and microRNAs (miRNAs) are fundamental regulatory factors in this process. Differential expression of miRNAs contributes to β-cell adaptation to compensate for increased insulin resistance, but deregulation of miRNA expression can also directly cause β-cell impairment during the development of T2D. miRNAs are small noncoding RNAs that posttranscriptionally reduce gene expression through translational inhibition or mRNA destabilization. The nature of miRNA targeting implies the presence of complex and large miRNA-mRNA regulatory networks in every cell, including the insulin-secreting β-cell. Here we exemplify one such network using our own data on differential miRNA expression in the islets of T2D Goto-Kakizaki rat model. Several biological processes are influenced by multiple miRNAs in the β-cell, but so far most studies have focused on dissecting the mechanism of action of individual miRNAs. In this Perspective we present key islet miRNA families involved in T2D pathogenesis including miR-200, miR-7, miR-184, miR-212/miR-132, and miR-130a/b/miR-152. Finally, we highlight four challenges and opportunities within islet miRNA research, ending with a discussion on how miRNAs can be utilized as therapeutic targets contributing to personalized T2D treatment strategies.
Collapse
Affiliation(s)
- Lena Eliasson
- Islet Cell Exocytosis, Lund University Diabetes Centre; Department of Clinical Sciences Malmö, Lund University; and Clinical Research Centre, Skåne University Hospital, Malmö, Sweden
| | - Jonathan L S Esguerra
- Islet Cell Exocytosis, Lund University Diabetes Centre; Department of Clinical Sciences Malmö, Lund University; and Clinical Research Centre, Skåne University Hospital, Malmö, Sweden
| |
Collapse
|
46
|
Zaiou M. circRNAs Signature as Potential Diagnostic and Prognostic Biomarker for Diabetes Mellitus and Related Cardiovascular Complications. Cells 2020; 9:659. [PMID: 32182790 PMCID: PMC7140626 DOI: 10.3390/cells9030659] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 02/28/2020] [Accepted: 03/05/2020] [Indexed: 12/15/2022] Open
Abstract
Circular RNAs (circRNAs) belong to the ever-growing class of naturally occurring noncoding RNAs (ncRNAs) molecules. Unlike linear RNA, circRNAs are covalently closed transcripts mostly generated from precursor-mRNA by a non-canonical event called back-splicing. They are highly stable, evolutionarily conserved, and widely distributed in eukaryotes. Some circRNAs are believed to fulfill a variety of functions inside the cell mainly by acting as microRNAs (miRNAs) or RNA-binding proteins (RBPs) sponges. Furthermore, mounting evidence suggests that the misregulation of circRNAs is among the first alterations in various metabolic disorders including obesity, hypertension, and cardiovascular diseases. More recent research has revealed that circRNAs also play a substantial role in the pathogenesis of diabetes mellitus (DM) and related vascular complications. These findings have added a new layer of complexity to our understanding of DM and underscored the need to reexamine the molecular pathways that lead to this disorder in the context of epigenetics and circRNA regulatory mechanisms. Here, I review current knowledge about circRNAs dysregulation in diabetes and describe their potential role as innovative biomarkers to predict diabetes-related cardiovascular (CV) events. Finally, I discuss some of the actual limitations to the promise of these RNA transcripts as emerging therapeutics and provide recommendations for future research on circRNA-based medicine.
Collapse
Affiliation(s)
- Mohamed Zaiou
- School of Pharmacy, Institut Jean-Lamour, The University of Lorraine, 7 Avenue de la Foret de Haye, CEDEX BP 90170, 54500 Vandoeuvre les Nancy, France
| |
Collapse
|
47
|
Hossan T, Kundu S, Alam SS, Nagarajan S. Epigenetic Modifications Associated with the Pathogenesis of Type 2 Diabetes Mellitus. Endocr Metab Immune Disord Drug Targets 2020; 19:775-786. [PMID: 30827271 DOI: 10.2174/1871530319666190301145545] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 12/10/2018] [Accepted: 12/28/2018] [Indexed: 12/26/2022]
Abstract
BACKGROUND AND OBJECTIVE Type 2 diabetes mellitus (T2DM) is a multifactorial metabolic disorder. Pancreatic β-cell dysfunction and insulin resistance are the most common and crucial events of T2DM. Increasing evidence suggests the association of epigenetic modifications with the pathogenesis of T2DM through the changes in important biological processes including pancreatic β- cell differentiation, development and maintenance of normal β-cell function. Insulin sensitivity by the peripheral glucose uptake tissues is also changed by the altered epigenetic mechanisms. In this review, we discussed the major epigenetic alterations and their effects on β-cell function, insulin secretion and insulin resistance in context of T2DM. METHODS We investigated the presently available epigenetic modifications including DNA methylation, posttranslational histone modifications, ATP-dependent chromatin remodeling and non-coding RNAs related to the pathogenesis of T2DM. Published literatures on this topic were searched both on Google Scholar and Pubmed with related keywords and investigated for relevant information. RESULTS The epigenetic modifications introduce changes in gene expression which are essential for appropriate β-cell development and functions, insulin secretion and sensitivity resulting in the pathogenesis of T2DM. Interestingly, T2DM could also be a prominent reason for the mentioned epigenetic alterations. CONCLUSION This review article emphasized on the epigenetic modifications associated with T2DM and discussed the consequences in deterioration of the disease condition.
Collapse
Affiliation(s)
- Tareq Hossan
- Department of Biochemistry and Molecular Biology, Jahangirnagar University, Savar, Dhaka-1342, Bangladesh
| | - Shoumik Kundu
- Department of Biochemistry and Molecular Biology, Jahangirnagar University, Savar, Dhaka-1342, Bangladesh
| | - Sayeda Sadia Alam
- Department of Biochemistry and Molecular Biology, Jahangirnagar University, Savar, Dhaka-1342, Bangladesh
| | - Sankari Nagarajan
- Cancer Research UK Cambridge Institute (CRUK-CI), University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge, CB2 0RE, United Kingdom
| |
Collapse
|
48
|
Pan G, Liu Q, Xin H, Liu J. The key regulation of miR-124-3p during reprogramming of primary mouse hepatocytes into insulin-producing cells. Biochem Biophys Res Commun 2020; 522:315-321. [PMID: 31761319 DOI: 10.1016/j.bbrc.2019.11.058] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Accepted: 11/08/2019] [Indexed: 12/22/2022]
Abstract
Based on the action of small molecule compounds, the efficiency of differentiation of mouse primary hepatocytes into insulin-producing cells (IPCs) was improved by changing the expression of miR-124-2p. Hepatocytes were transfected with microRNA-124-3p (miR-124-3p) mimic or inhibitor, followed by a chemical-defined culture system for maturation of IPCs. Then, detect the expression of insulin-related genes and protein and insulin secretion of each stage during differentiation. The expression of Foxa2, PDX1, NeuroD, insulin1, and insulin2 in IPCs in the miR-124-3p inhibition expression group was significantly upregulated, while the results were opposite in the miR-124-3p overexpression group. The results of cell immunofluorescence and glucose stimulation in vitro of the miR-124-3p inhibition expression group showed that the expression of insulin, PDX1, and C-peptide was increased, and the differentiation efficiency was higher than those of the control group and overexpression group. The primary mouse hepatocytes were successfully reprogrammed into IPCs by small-molecule compounds. We found that miR-124-3p plays a negative regulatory role in the differentiation of hepatocytes into IPCs in vitro. Inhibition of miR-124-3p expression significantly increased the expression of FOXA2 and PDX1, promoted the differentiation of hepatocytes into IPCs, and increased the induction efficiency.
Collapse
Affiliation(s)
- Gui Pan
- Department of Endocrinology, The Second Affiliated Hospital of Nanchang University, Nanchang, China; Department of Respiratory, People's Hospital of Jingdezhen of Jiangxi Province, Jingdezhen, China
| | - Quanwen Liu
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, China
| | - Hongbo Xin
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, China
| | - Jianping Liu
- Department of Endocrinology, The Second Affiliated Hospital of Nanchang University, Nanchang, China.
| |
Collapse
|
49
|
Handgraaf S, Dusaulcy R, Visentin F, Philippe J, Gosmain Y. Let-7e-5p Regulates GLP-1 Content and Basal Release From Enteroendocrine L Cells From DIO Male Mice. Endocrinology 2020; 161:5697307. [PMID: 31905402 DOI: 10.1210/endocr/bqz037] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Accepted: 01/02/2020] [Indexed: 12/30/2022]
Abstract
Characterization of enteroendocrine L cells in diabetes is critical for better understanding of the role of glucagon-like peptide-1 (GLP-1) in physiology and diabetes. We studied L-cell transcriptome changes including microRNA (miRNA) dysregulation in obesity and diabetes. We evaluated the regulation of miRNAs through microarray analyses on sorted enteroendocrine L cells from control and obese glucose-intolerant (I-HFD) and hyperglycemic (H-HFD) mice after 16 weeks of respectively low-fat diet (LFD) or high-fat diet (HFD) feeding. The identified altered miRNAs were studied in vitro using the mouse GLUTag cell line to investigate their regulation and potential biological functions. We identified that let-7e-5p, miR-126a-3p, and miR-125a-5p were differentially regulated in L cells of obese HFD mice compared with control LFD mice. While downregulation of let-7e-5p expression was observed in both I-HFD and H-HFD mice, levels of miR-126a-3p increased and of miR-125a-5p decreased significantly only in I-HFD mice compared with controls. Using miRNA inhibitors and mimics we observed that modulation of let-7e-5p expression affected specifically GLP-1 cellular content and basal release, whereas Gcg gene expression and acute GLP-1 secretion and cell proliferation were not affected. In addition, palmitate treatment resulted in a decrease of let-7e-5p expression along with an increase in GLP-1 content and release, suggesting that palmitate acts on GLP-1 through let-7e-5p. By contrast, modulation of miR-125a-5p and miR-126a-3p in the same conditions did not affect content or secretion of GLP-1. We conclude that decrease of let-7e-5p expression in response to palmitate may constitute a compensatory mechanism contributing to maintaining constant glycemia in obese mice.
Collapse
Affiliation(s)
- Sandra Handgraaf
- Molecular Diabetes Laboratory, Division of Endocrinology, Diabetes, Hypertension and Nutrition, University Hospital/Diabetes Center/University of Geneva Medical School, Geneva, Switzerland
| | - Rodolphe Dusaulcy
- Molecular Diabetes Laboratory, Division of Endocrinology, Diabetes, Hypertension and Nutrition, University Hospital/Diabetes Center/University of Geneva Medical School, Geneva, Switzerland
| | - Florian Visentin
- Molecular Diabetes Laboratory, Division of Endocrinology, Diabetes, Hypertension and Nutrition, University Hospital/Diabetes Center/University of Geneva Medical School, Geneva, Switzerland
| | - Jacques Philippe
- Molecular Diabetes Laboratory, Division of Endocrinology, Diabetes, Hypertension and Nutrition, University Hospital/Diabetes Center/University of Geneva Medical School, Geneva, Switzerland
| | - Yvan Gosmain
- Molecular Diabetes Laboratory, Division of Endocrinology, Diabetes, Hypertension and Nutrition, University Hospital/Diabetes Center/University of Geneva Medical School, Geneva, Switzerland
| |
Collapse
|
50
|
Wan S, Zhang J, Chen X, Lang J, Li L, Chen F, Tian L, Meng Y, Yu X. MicroRNA-17-92 Regulates Beta-Cell Restoration After Streptozotocin Treatment. Front Endocrinol (Lausanne) 2020; 11:9. [PMID: 32038500 PMCID: PMC6989481 DOI: 10.3389/fendo.2020.00009] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 01/07/2020] [Indexed: 02/05/2023] Open
Abstract
Objective: To clarify the role and mechanism of miR-17-92 cluster in islet beta-cell repair after streptozotocin intervention. Methods: Genetically engineered mice (miR-17-92βKO) and control RIP-Cre mice were intraperitoneally injected with multiple low dose streptozotocin. Body weight, random blood glucose (RBG), fasting blood glucose, and intraperitoneal glucose tolerance test (IPGTT) were monitored regularly. Mice were sacrificed for histological analysis 8 weeks later. Morphological changes of pancreas islets, quantity, quality, apoptosis, and proliferation of beta-cells were measured. Islets from four groups were isolated. MiRNA and mRNA were extracted and quantified. Results:MiR-17-92βKO mice showed dramatically elevated fasting blood glucose and impaired glucose tolerance after streptozotocin treatment in contrast to control mice, the reason of which is reduced beta-cell number and total mass resulting from reduced proliferation, enhanced apoptosis of beta-cells. Genes related to cell proliferation and insulin transcription repression were significantly elevated in miR-17-92βKO mice treated with streptozotocin. Furthermore, genes involved in DNA biosynthesis and damage repair were dramatically increased in miR-17-92βKO mice with streptozotocin treatment. Conclusion: Collectively, our results demonstrate that homozygous deletion of miR-17-92 cluster in mouse pancreatic beta-cells promotes the development of experimental diabetes, indicating that miR-17-92 cluster may be positively related to beta-cells restoration and adaptation after streptozotocin-induced damage.
Collapse
Affiliation(s)
- Shan Wan
- Laboratory of Endocrinology and Metabolism, Department of Endocrinology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Jie Zhang
- Histology and Imaging Platform, Core Facility of West China Hospital, Sichuan University, Chengdu, China
| | - Xiang Chen
- Laboratory of Endocrinology and Metabolism, Department of Endocrinology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Jiangli Lang
- Laboratory of Endocrinology and Metabolism, Department of Endocrinology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Li Li
- Histology and Imaging Platform, Core Facility of West China Hospital, Sichuan University, Chengdu, China
| | - Fei Chen
- Histology and Imaging Platform, Core Facility of West China Hospital, Sichuan University, Chengdu, China
| | - Li Tian
- Laboratory of Endocrinology and Metabolism, Department of Endocrinology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Yang Meng
- Laboratory of Endocrinology and Metabolism, Department of Endocrinology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
- Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, China
| | - Xijie Yu
- Laboratory of Endocrinology and Metabolism, Department of Endocrinology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|