1
|
Khamis MM, Moselhy SS, Rihan S. Role of trans-resveratrol in ameliorating biochemical and molecular alterations in obese rats induced by a high fructose/fat diet. Sci Rep 2025; 15:7879. [PMID: 40050385 PMCID: PMC11885455 DOI: 10.1038/s41598-025-91027-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 02/18/2025] [Indexed: 03/09/2025] Open
Abstract
We evaluated the effect of trans-resveratrol (RSV) in ameliorating biochemical and molecular alterations in obese Wister male rats fed on high-fat/high-fructose-fed. Male Wister rats were divided into eight groups and fed with either a standard diet (control), high fructose (HF), high fat (HFAT), or a high- fructose high- fat (HF/HFAT) diet and supplemented with RSV (30 mg/kg/day) for 4 weeks. The food intake, body weight, glycemic parameters, lipid profile, oxidative stress were assessed. SIRT1 gene expression, PGC-1α, cyto-c and GLUT-4 were evaluated by qRT-PCR in adipose tissue of normal and obese rats. The body weight gain, serum fasting glucose, insulin, and HOMA-IR values were significantly higher in the HF and HF/HFAT groups than in the HFAT and control groups. Hyperlipidemia was observed in high calorie diets fed rats compared to control group. The levels of total cholesterol, triglycerides and LDL-c were significantly elevated while HDL- c was significantly decreased in HF & HF/HFAT groups compared to HFAT group. The levels of serum malondialdhyde (MDA) and superoxide dismutase (SOD) activity in adipose tissue were elevated in all groups compared to control group, particularly in the groups that were kept on a high fructose diets (HF, HF/HFAT). SIRT-1, PGC-1α, Cyto-c, and GLUT-4 genes levels were significantly down regulated in HF, HFAT & HF/HFAT groups compared to control group. Supplementation of T-RSV restored the alteration in carbohydrates-lipid metabolism as well as oxidative stress and upregulation of SIRT-1, PGC-1α, Cyto-c, and GLUT-4 genes. RSV is a promising treatment in the management of pathologic consequences of obesity from high-calorie diet consumption via molecular alteration of target genes.
Collapse
Affiliation(s)
- Marwa Maher Khamis
- Biochemistry Department, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Said Salama Moselhy
- Biochemistry Department, Faculty of Science, Ain Shams University, Cairo, Egypt.
| | - Shaimaa Rihan
- Biochemistry Department, Faculty of Science, Ain Shams University, Cairo, Egypt
| |
Collapse
|
2
|
Martínez-Esquivias F, Guzmán-Flores JM, Reyes-Chaparro A, Sánchez-Enríquez S, Anaya-Esparza LM. Network Pharmacology, Molecular Docking, and Molecular Dynamics Study to Explore the Effect of Resveratrol on Type 2 Diabetes. J Cell Biochem 2025; 126:e30655. [PMID: 39300905 DOI: 10.1002/jcb.30655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 09/02/2024] [Accepted: 09/05/2024] [Indexed: 09/22/2024]
Abstract
This network pharmacology study represents a significant step in understanding the potential of Resveratrol as an antidiabetic agent and its molecular targets. Targets for Type 2 diabetes were obtained from the MalaCards and DisGeNET databases, while targets for Resveratrol were sourced from the STP and CTD databases. Subsequently, we performed matching to identify common disease-compound targets. The identified genes were analyzed using the ShinGO-0.76.3 database for functional enrichment analysis and KEGG pathway mapping. A protein-protein interaction network was then constructed using Cytoscape software, and hub genes were identified. These hub genes were subjected to molecular docking and dynamic simulations using AutoDock Vina and Gromacs software. According to functional enrichment and KEGG pathway analysis, Resveratrol influences insulin receptors, endoplasmic reticulum functions, and oxidoreductase activity and is involved in the estrogen and HIF-1 pathways. Ten hub genes were identified, including ESR1, PTGS2, SRC, NOS3, MMP9, IGF1R, CYP19A1, MTOR, MMP2, and PIK3CA. The proteins associated with these genes exhibited high interaction with Resveratrol in the molecular docking analysis, and molecular dynamics showed a stable interaction of Resveratrol with ESR1, MMP9, PIK3CA, and PTGS2. In conclusion, our work enhances the understanding of the antidiabetic activity of Resveratrol, which future studies should experimentally corroborate.
Collapse
Affiliation(s)
- Fernando Martínez-Esquivias
- Departamento de Ciencias Pecuarias y Agrícolas, Centro Universitario de Los Altos, Universidad de Guadalajara, Tepatitlán de Morelos, Jalisco, México
| | - Juan Manuel Guzmán-Flores
- Departamento de Ciencias de la Salud, Centro Universitario de Los Altos, Universidad de Guadalajara, Tepatitlán de Morelos, Jalisco, México
| | - Andrés Reyes-Chaparro
- Escuela Nacional de Ciencias Biológicas (ENCB) del Instituto Politécnico Nacional (IPN), Departamento de Morfología, Ciudad de Mexico, México
| | - Sergio Sánchez-Enríquez
- Departamento de Ciencias de la Salud, Centro Universitario de Los Altos, Universidad de Guadalajara, Tepatitlán de Morelos, Jalisco, México
| | - Luis Miguel Anaya-Esparza
- Departamento de Ciencias Pecuarias y Agrícolas, Centro Universitario de Los Altos, Universidad de Guadalajara, Tepatitlán de Morelos, Jalisco, México
| |
Collapse
|
3
|
Almeida H, Teixeira N, Sarmento B, Vasconcelos T. Freeze-drying cycle optimization of an amorphous solid dispersion of resveratrol. Eur J Pharm Sci 2024; 200:106855. [PMID: 39029716 DOI: 10.1016/j.ejps.2024.106855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 07/12/2024] [Accepted: 07/16/2024] [Indexed: 07/21/2024]
Abstract
Resveratrol (RES) has demonstrated advantages as anti-cancer, anti-inflammatory, blood sugar-lowering agent and as cardioprotective agent, among others. Despite RES therapeutic advantages its use in pharmaceutical applications is limited by its low oral bioavailability, mainly due to its poor water solubility. Formulation of poorly water-soluble compound as solid dispersion (SD) converts a crystalline into a more soluble in water amorphous drug. Lyophilization or freeze-drying is a process in which water, an organic solvent, or a co-solvent system is frozen, followed by its removal from the sample, initially by sublimation (primary drying) and then by desorption (secondary drying). This study aimed the development and optimization of a bulk freeze-drying cycle by critical process parameters assessment in each phase to prepare a RES third-generation SD, containing Eudragit E PO as hydrophilic polymer at 1:2 ratio, and Gelucire 44/14 as surfactant at 16 % (w/w) to RES, using a tert-butanol (TBA)/Acetate buffer pH 4.5 (75:25) co-solvent system. A RES third-generation SD with good appearance, not cracked, collapsed, or melted was prepared by an optimized and robust bulk lyophilization process. A physicochemical characterization confirmed the conversion of RES to the amorphous state in the SD and formulation stability after 1 month at 40 °C/75 % RH. Increased solubility and higher dissolution rate compared with pure RES were also obtained.
Collapse
Affiliation(s)
- Hugo Almeida
- ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Rua Jorge de Viterbo Ferreira, 228, 4050-313 Porto, Portugal; BIAL - Portela & Cª, S.A., Avenida da Siderurgia Nacional, 4745-457 Trofa, Portugal; INEB - Instituto Nacional de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal; I3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal
| | - Natália Teixeira
- ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Rua Jorge de Viterbo Ferreira, 228, 4050-313 Porto, Portugal; INEB - Instituto Nacional de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal; I3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal
| | - Bruno Sarmento
- ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Rua Jorge de Viterbo Ferreira, 228, 4050-313 Porto, Portugal; INEB - Instituto Nacional de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal; I3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal; CESPU- IUCS, Rua Central de Gandra 1317, 4585-116 Gandra, Portugal.
| | - Teófilo Vasconcelos
- BIAL - Portela & Cª, S.A., Avenida da Siderurgia Nacional, 4745-457 Trofa, Portugal
| |
Collapse
|
4
|
Feng Y, Ren Y, Zhang X, Yang S, Jiao Q, Li Q, Jiang W. Metabolites of traditional Chinese medicine targeting PI3K/AKT signaling pathway for hypoglycemic effect in type 2 diabetes. Front Pharmacol 2024; 15:1373711. [PMID: 38799166 PMCID: PMC11116707 DOI: 10.3389/fphar.2024.1373711] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 04/23/2024] [Indexed: 05/29/2024] Open
Abstract
Type 2 diabetes mellitus is a chronic metabolic disease characterized by insulin resistance, with high morbidity and mortality worldwide. Due to the tightly intertwined connection between the insulin resistance pathway and the PI3K/AKT signaling pathway, regulating the PI3K/AKT pathway and its associated targets is essential for hypoglycemia and the prevention of type 2 diabetes mellitus. In recent years, metabolites isolated from traditional Chinese medicine has received more attention and acceptance for its superior bioactivity, high safety, and fewer side effects. Meanwhile, numerous in vivo and in vitro studies have revealed that the metabolites present in traditional Chinese medicine possess better bioactivities in regulating the balance of glucose metabolism, ameliorating insulin resistance, and preventing type 2 diabetes mellitus via the PI3K/AKT signaling pathway. In this article, we reviewed the literature related to the metabolites of traditional Chinese medicine improving IR and possessing therapeutic potential for type 2 diabetes mellitus by targeting the PI3K/AKT signaling pathway, focusing on the hypoglycemic mechanism of the metabolites of traditional Chinese medicine in type 2 diabetes mellitus and elaborating on the significant role of the PI3K/AKT signaling pathway in type 2 diabetes mellitus. In order to provide reference for clinical prevention and treatment of type 2 diabetes mellitus.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Wenwen Jiang
- School of Pharmaceutical Sciences, Guizhou University, Guiyang, China
| |
Collapse
|
5
|
Bahramzadeh A, Bolandnazar K, Meshkani R. Resveratrol as a potential protective compound against skeletal muscle insulin resistance. Heliyon 2023; 9:e21305. [PMID: 38027557 PMCID: PMC10660041 DOI: 10.1016/j.heliyon.2023.e21305] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 10/17/2023] [Accepted: 10/19/2023] [Indexed: 12/01/2023] Open
Abstract
The increasing prevalence of type 2 diabetes has become a major global problem. Insulin resistance has a central role in pathophysiology of type 2 diabetes. Skeletal muscle is responsible for the disposal of most of the glucose under conditions of insulin stimulation, and insulin resistance in skeletal muscle causes dysregulation of glucose homeostasis in the whole body. Despite the current pharmaceutical and non-pharmacological treatment strategies to combat diabetes, there is still a need for new therapeutic agents due to the limitations of the therapeutic agents. Meanwhile, plant polyphenols have attracted the attention of researchers for their use in the treatment of diabetes and have gained popularity. Resveratrol, a stilbenoid polyphenol, exists in various plant sources, and a growing body of evidence suggests its beneficial properties, including antidiabetic activities. The present review aimed to provide a summary of the role of resveratrol in insulin resistance in skeletal muscle and its related mechanisms. To achieve the objectives, by searching the PubMed, Scopus and Web of Science databases, we have summarized the results of all cell culture, animal, and human studies that have investigated the effects of resveratrol in different models on insulin resistance in skeletal muscle.
Collapse
Affiliation(s)
- Arash Bahramzadeh
- Department of Clinical Biochemistry, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Kosar Bolandnazar
- Department of Biological Sciences and Technology, Islamic Azad University of Mashhad, Mashhad, Iran
| | - Reza Meshkani
- Department of Clinical Biochemistry, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
6
|
Naz R, Saqib F, Awadallah S, Wahid M, Latif MF, Iqbal I, Mubarak MS. Food Polyphenols and Type II Diabetes Mellitus: Pharmacology and Mechanisms. Molecules 2023; 28:molecules28103996. [PMID: 37241737 DOI: 10.3390/molecules28103996] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/04/2023] [Accepted: 05/07/2023] [Indexed: 05/28/2023] Open
Abstract
Type II diabetes mellitus and its related complications are growing public health problems. Many natural products present in our diet, including polyphenols, can be used in treating and managing type II diabetes mellitus and different diseases, owing to their numerous biological properties. Anthocyanins, flavonols, stilbenes, curcuminoids, hesperidin, hesperetin, naringenin, and phenolic acids are common polyphenols found in blueberries, chokeberries, sea-buckthorn, mulberries, turmeric, citrus fruits, and cereals. These compounds exhibit antidiabetic effects through different pathways. Accordingly, this review presents an overview of the most recent developments in using food polyphenols for managing and treating type II diabetes mellitus, along with various mechanisms. In addition, the present work summarizes the literature about the anti-diabetic effect of food polyphenols and evaluates their potential as complementary or alternative medicines to treat type II diabetes mellitus. Results obtained from this survey show that anthocyanins, flavonols, stilbenes, curcuminoids, and phenolic acids can manage diabetes mellitus by protecting pancreatic β-cells against glucose toxicity, promoting β-cell proliferation, reducing β-cell apoptosis, and inhibiting α-glucosidases or α-amylase. In addition, these phenolic compounds exhibit antioxidant anti-inflammatory activities, modulate carbohydrate and lipid metabolism, optimize oxidative stress, reduce insulin resistance, and stimulate the pancreas to secrete insulin. They also activate insulin signaling and inhibit digestive enzymes, regulate intestinal microbiota, improve adipose tissue metabolism, inhibit glucose absorption, and inhibit the formation of advanced glycation end products. However, insufficient data are available on the effective mechanisms necessary to manage diabetes.
Collapse
Affiliation(s)
- Rabia Naz
- Department of Pharmacology, Faculty of Pharmacy, Bahauddin Zakariya University, Multan 60000, Pakistan
| | - Fatima Saqib
- Department of Pharmacology, Faculty of Pharmacy, Bahauddin Zakariya University, Multan 60000, Pakistan
| | - Samir Awadallah
- Department of Medical Lab Sciences, Faculty of Allied Medical Sciences, Zarqa University, Zarqa 13110, Jordan
| | - Muqeet Wahid
- Department of Pharmacology, Faculty of Pharmacy, Bahauddin Zakariya University, Multan 60000, Pakistan
| | - Muhammad Farhaj Latif
- Department of Pharmacology, Faculty of Pharmacy, Bahauddin Zakariya University, Multan 60000, Pakistan
| | - Iram Iqbal
- Department of Pharmacology, Faculty of Pharmacy, Bahauddin Zakariya University, Multan 60000, Pakistan
| | | |
Collapse
|
7
|
Jing Y, Hu T, Yuan J, Liu Z, Tao M, Ou M, Cheng X, Cheng W, Yi Y, Xiong Q. Resveratrol protects against postmenopausal atherosclerosis progression through reducing PCSK9 expression via the regulation of the ERα-mediated signaling pathway. Biochem Pharmacol 2023; 211:115541. [PMID: 37030661 DOI: 10.1016/j.bcp.2023.115541] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/28/2023] [Accepted: 03/30/2023] [Indexed: 04/10/2023]
Abstract
Elevated circulating proprotein convertase subtilisin/kexin 9 (PCSK9) levels are an important contributor to postmenopausal atherosclerosis (AS). We have previously reported that resveratrol (RSV), as a phytoestrogen, reduces hepatocyte steatosis and PCSK9 expression in L02 cells. This study aimed to investigate how RSV reduces PCSK9 expression to inhibit postmenopausal AS progression. Here, we found that treatment of Ovx/ApoE -/- mice with RSV significantly reduced dyslipidemia, plasma PCSK9 concentration and aortic plaque area. In addition, RSV significantly inhibited liver fat accumulation and improved the hepatocyte ultrastructure. Further studies showed that RSV upregulated estrogen receptor α (ERα) expression, while reduced the liver X receptor α (LXRα) expression and sterol regulatory-element-binding protein-1c (SREBP-1c) transcriptional activity. In vitro, RSV inhibited insulin-induced elevated intracellular/extracellular PCSK9 levels, enhanced receptor-mediated uptake of low-density lipoproteins in HepG2 cells. Furthermore, RSV attenuated the activity of the SRE-dependent PCSK9 promoter. However, these effects can be partially reversed by the antiestrogen ICI 182,780. Attenuation of these changes with ERα inhibition suggest that RSV may prevent the progression of postmenopausal AS by reducing PCSK9 expression in hepatocytes through ERα-mediated signaling.
Collapse
Affiliation(s)
- Yi Jing
- Jiangsu Key Laboratory of Regional Resource Exploitation and Medicinal Research, Huaiyin Institute of Technology, Huai'an 223003, China.
| | - Tianhui Hu
- Traditional Chinese Medicine Department, Huai'an Maternal and Child Health-Care Center, Huai'an 2230003, China
| | - Jun Yuan
- Jiangsu Key Laboratory of Regional Resource Exploitation and Medicinal Research, Huaiyin Institute of Technology, Huai'an 223003, China
| | - Zhikun Liu
- Jiangsu Key Laboratory of Regional Resource Exploitation and Medicinal Research, Huaiyin Institute of Technology, Huai'an 223003, China
| | - Mingtao Tao
- Jiangsu Key Laboratory of Regional Resource Exploitation and Medicinal Research, Huaiyin Institute of Technology, Huai'an 223003, China
| | - Mingyu Ou
- Jiangsu Key Laboratory of Regional Resource Exploitation and Medicinal Research, Huaiyin Institute of Technology, Huai'an 223003, China
| | - Xinru Cheng
- Jiangsu Key Laboratory of Regional Resource Exploitation and Medicinal Research, Huaiyin Institute of Technology, Huai'an 223003, China
| | - Wei Cheng
- Jiangsu Key Laboratory of Regional Resource Exploitation and Medicinal Research, Huaiyin Institute of Technology, Huai'an 223003, China
| | - Yuanyuan Yi
- The Affiliated Hospital of Inner Mongolia Medical University, Hohhot 010050, China
| | - Qingping Xiong
- Jiangsu Key Laboratory of Regional Resource Exploitation and Medicinal Research, Huaiyin Institute of Technology, Huai'an 223003, China
| |
Collapse
|
8
|
Hoca M, Becer E, Vatansever HS. The role of resveratrol in diabetes and obesity associated with insulin resistance. Arch Physiol Biochem 2023; 129:555-561. [PMID: 33719825 DOI: 10.1080/13813455.2021.1893338] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Diabetes mellitus is a significant health problem that is caused by chronic hyperglycaemia as a result of inadequate insulin production or ineffective insulin action in the body. In recent years, many new pharmacological and non-pharmacological therapies have been developed for improving pancreatic insulin secretion and insulin resistance. Resveratrol is a natural and biologically active stilbenoid polyphenol present in various plant species and has the potential to benefit diabetes. The anti-diabetic actions of resveratrol have also been extensively studied in diabetic human and animal models. Moreover, resveratrol might affect insulin sensitivity by regulating visceral fat derivated adipokine levels. The use of resveratrol in combination with anti-diabetic therapies or alone may have significant potential for the management of diabetes mellitus. This review provides an overview of the anti-diabetic action of resveratrol as well as the possible mechanisms that have an effect on insulin secretion and insulin resistance in diabetics.
Collapse
Affiliation(s)
- Mustafa Hoca
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Near East University, Nicosia, Cyprus
| | - Eda Becer
- Department of Biochemistry, Faculty of Pharmacy, Near East University, Nicosia, Cyprus
- DESAM Institute, Near East University, Nicosia, Cyprus
| | - Hafize Seda Vatansever
- DESAM Institute, Near East University, Nicosia, Cyprus
- Department of Histology and Embryology, Faculty of Medicine, Manisa Celal Bayar University, Manisa, Turkey
| |
Collapse
|
9
|
Zin CAJCM, Mohamed WMIW, Khan NAK, Ishak WRW. Effects of Fruit and Vegetable Polyphenols on the Glycemic Control and Metabolic Parameters in Type 2 Diabetes Mellitus: A Review. Prev Nutr Food Sci 2022; 27:257-264. [PMID: 36313061 PMCID: PMC9585403 DOI: 10.3746/pnf.2022.27.3.257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The high prevalence of diabetes in recent decades has been associated with lifestyle changes and dietary habits correlated with economic development. Fruits and vegetables are a vital source of nutraceuticals and components of the healthy diet recommended in the medical nutrition therapy for type 2 diabetes mellitus (T2DM) to prevent hyperglycemia and related complications. They are low in calories and rich in dietary fiber, consist of many polyphenols, and are an essential component of a healthy lifestyle. Recently, researchers have developed a significant interest in understanding the effects of polyphenols (flavonoids and non-flavonoids) on blood glucose levels. In this review, the authors summarize the effects of polyphenols commonly found in the fruits and vegetables, such as resveratrol and anthocyanins, on the glycemic control and metabolic parameters, based on human clinical trials. Significant reductions in fasting blood glucose, glycated hemoglobin, and low-density lipoprotein cholesterol levels were reported after resveratrol, anthocyanin, and naringin were administered to patients with prediabetes and diabetes. Decreased insulin levels were observed after resveratrol intervention but not with the other types of polyphenols. These effects of polyphenolic compounds on the glycemic and metabolic parameters might be mediated by multiple pathophysiological mechanisms, such as activating regulator proteins to increase insulin signaling and eventually suppress insulin resistance. The benefits of certain polyphenols on T2DM remain ambiguous; therefore, further studies, especially clinical trials, are required to substantiate the available evidence.
Collapse
Affiliation(s)
| | - Wan Mohd Izani Wan Mohamed
- Department of Internal Medicine, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kelantan 16150, Malaysia
| | | | - Wan Rosli Wan Ishak
- Nutrition Program, School of Health Sciences, Universiti Sains Malaysia, Kubang Kerian, Kelantan 16150, Malaysia,
Correspondence to Wan Rosli Wan Ishak, E-mail:
| |
Collapse
|
10
|
Su M, Zhao W, Xu S, Weng J. Resveratrol in Treating Diabetes and Its Cardiovascular Complications: A Review of Its Mechanisms of Action. Antioxidants (Basel) 2022; 11:antiox11061085. [PMID: 35739982 PMCID: PMC9219679 DOI: 10.3390/antiox11061085] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 05/21/2022] [Accepted: 05/27/2022] [Indexed: 02/01/2023] Open
Abstract
Diabetes mellitus (DM) is one of the most prevalent chronic diseases worldwide. High morbidity and mortality caused by DM are closely linked to its complications in multiple organs/tissues, including cardiovascular complications, diabetic nephropathy, and diabetic neuropathy. Resveratrol is a plant-derived polyphenolic compound with pleiotropic protective effects, ranging from antioxidant and anti-inflammatory to hypoglycemic effects. Recent studies strongly suggest that the consumption of resveratrol offers protection against diabetes and its cardiovascular complications. The protective effects of resveratrol involve the regulation of multiple signaling pathways, including inhibition of oxidative stress and inflammation, enhancement of insulin sensitivity, induction of autophagy, regulation of lipid metabolism, promotion of GLUT4 expression, and translocation, and activation of SIRT1/AMPK signaling axis. The cardiovascular protective effects of resveratrol have been recently reviewed in the literature, but the role of resveratrol in preventing diabetes mellitus and its cardiovascular complications has not been systematically reviewed. Therefore, in this review, we summarize the pharmacological effects and mechanisms of action of resveratrol based on in vitro and in vivo studies, highlighting the therapeutic potential of resveratrol in the prevention and treatment of diabetes and its cardiovascular complications.
Collapse
|
11
|
Zhang LX, Li CX, Kakar MU, Khan MS, Wu PF, Amir RM, Dai DF, Naveed M, Li QY, Saeed M, Shen JQ, Rajput SA, Li JH. Resveratrol (RV): A pharmacological review and call for further research. Biomed Pharmacother 2021; 143:112164. [PMID: 34649335 DOI: 10.1016/j.biopha.2021.112164] [Citation(s) in RCA: 221] [Impact Index Per Article: 55.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 08/27/2021] [Accepted: 09/03/2021] [Indexed: 12/27/2022] Open
Abstract
Resveratrol (RV) is a well-known polyphenolic compound in various plants, including grape, peanut, and berry fruits, which is quite famous for its association with several health benefits such as anti-obesity, cardioprotective neuroprotective, antitumor, antidiabetic, antioxidants, anti-age effects, and glucose metabolism. Significantly, promising therapeutic properties have been reported in various cancer, neurodegeneration, and atherosclerosis and are regulated by several synergistic pathways that control oxidative stress, cell death, and inflammation. Similarly, RV possesses a strong anti-adipogenic effect by inhibiting fat accumulation processes and activating oxidative and lipolytic pathways, exhibiting their cardioprotective effects by inhibiting platelet aggregation. The RV also shows significant antibacterial effects against various food-borne pathogens (Listeria, Campylobacter, Staphylococcus aureus, and E. coli) by inhibiting an electron transport chain (ETC) and F0F1-ATPase, which decreases the production of cellular energy that leads to the spread of pathogens. After collecting and analyzing scientific literature, it may be concluded that RV is well tolerated and favorably affects cardiovascular, neurological, and diabetic disorders. As such, it is possible that RV can be considered the best nutritional additive and a complementary drug, especially a therapeutic candidate. Therefore, this review would increase knowledge about the blend of RV as well as inspire researchers around the world to consider RV as a pharmaceutical drug to combat future health crises against various inhumane diseases. In the future, this article will be aware of discoveries about the potential of this promising natural compound as the best nutraceuticals and therapeutic drugs in medicine.
Collapse
Affiliation(s)
- Li-Xue Zhang
- School of Medicine, Northwest Minzu University, Lanzhou 730030, China
| | - Chang-Xing Li
- Department of Human Anatomy, Medical College of Qinghai University, 810000 Xining, China
| | - Mohib Ullah Kakar
- Faculty of Marine Sciences, Lasbela University of Agriculture Water and Marine Sciences, Uthal 90150, Balochistan, Pakistan
| | - Muhammad Sajjad Khan
- The Cholistan University of Veterinary and Animal Sciences, Bahawalpur 6300, Pakistan.
| | - Pei-Feng Wu
- Department of Human Anatomy, Medical College of Qinghai University, 810000 Xining, China
| | - Rai Muhammad Amir
- Institute of Food and Nutritional Sciences, PMAS-Arid Agriculture University, Rawalpindi, Pakistan
| | - Dong-Fang Dai
- Department of Human Anatomy, Medical College of Qinghai University, 810000 Xining, China
| | - Muhammad Naveed
- School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Qin-Yuan Li
- Department of Human Anatomy, Medical College of Qinghai University, 810000 Xining, China
| | - Muhammad Saeed
- The Cholistan University of Veterinary and Animal Sciences, Bahawalpur 6300, Pakistan
| | - Ji-Qiang Shen
- Department of Human Anatomy, Medical College of Qinghai University, 810000 Xining, China
| | - Shahid Ali Rajput
- College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Jian-Hua Li
- Department of Human Anatomy, Medical College of Qinghai University, 810000 Xining, China.
| |
Collapse
|
12
|
Chen CC, Lii CK, Lo CW, Lin YH, Yang YC, Huang CS, Chen HW. 14-Deoxy-11,12-Didehydroandrographolide Ameliorates Glucose Intolerance Enhancing the LKB1/AMPK[Formula: see text]/TBC1D1/GLUT4 Signaling Pathway and Inducing GLUT4 Expression in Myotubes and Skeletal Muscle of Obese Mice. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2021; 49:1473-1491. [PMID: 34240660 DOI: 10.1142/s0192415x21500695] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
14-Deoxy-11,12-didehydroandrographolide (deAND), a bioactive component of Andrographis paniculata, has antidiabetic activity. AMP-activated protein kinase (AMPK) regulates glucose transport and ameliorates insulin resistance. The aim of the present study was to investigate whether activation of AMPK is involved in the mechanism by which deAND ameliorates insulin resistance in muscles. deAND amounts up to 40 [Formula: see text]M dose-dependently activated phosphorylation of AMPK[Formula: see text] and TBC1D1 in C2C12 myotubes. In addition, deAND significantly activated phosphorylation of LKB1 at 6 h after treatment, and this activation was maintained up to 48 h. deAND increased glucose uptake at 18 h after treatment, and this increase was time dependent up to 72 h. Compound C, an inhibitor of AMPK, suppressed deAND-induced phosphorylation of AMPK[Formula: see text] and TBC1D1 and reversed the effect on glucose uptake. In addition, the expression of GLUT4 mRNA and protein in C2C12 myotubes was up-regulated by deAND in a time-dependent manner. Promotion of GLUT4 gene transcription was verified by a pGL3-GLUT4 (837 bp) reporter assay. deAND also increased the nuclear translocation of MEF-2A and PPAR[Formula: see text]. After 16 weeks of feeding, the high-fat diet (HFD) inhibited phosphorylation of AMPK[Formula: see text] and TBC1D1 in skeletal muscle of obese C57BL/6JNarl mice, and deactivation of AMPK[Formula: see text] and TBC1D1 by the HFD was abolished by deAND supplementation. Supplementation with deAND significantly promoted membrane translocation of GLUT4 compared with the HFD group. Supplementation also significantly increased GLUT4 mRNA and protein expression in skeletal muscle compared with the HFD group. The hypoglycemic effects of deAND are likely associated with activation of the LKB1/AMPK[Formula: see text]/TBC1D1/GLUT4 signaling pathway and stimulation of MEF-2A- and PPAR[Formula: see text]-dependent GLUT4 gene expression, which account for the glucose uptake into skeletal muscle and lower blood glucose levels.
Collapse
Affiliation(s)
- Chih-Chieh Chen
- Department of Nutrition, China Medical University, Taichung, Taiwan
| | - Chong-Kuei Lii
- Department of Nutrition, China Medical University, Taichung, Taiwan.,Department of Food Nutrition and Health Biotechnology, Asia University, Taichung, Taiwan
| | - Chia-Wen Lo
- Department of Nutrition, China Medical University, Taichung, Taiwan
| | - Yi-Hsueh Lin
- Department of Nutrition, China Medical University, Taichung, Taiwan
| | - Ya-Chen Yang
- Department of Food Nutrition and Health Biotechnology, Asia University, Taichung, Taiwan
| | - Chin-Shiu Huang
- Department of Food Nutrition and Health Biotechnology, Asia University, Taichung, Taiwan
| | - Haw-Wen Chen
- Department of Nutrition, China Medical University, Taichung, Taiwan
| |
Collapse
|
13
|
Resveratrol and endothelial function: A literature review. Pharmacol Res 2021; 170:105725. [PMID: 34119624 DOI: 10.1016/j.phrs.2021.105725] [Citation(s) in RCA: 106] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/08/2021] [Accepted: 06/08/2021] [Indexed: 12/12/2022]
Abstract
Endothelial dysfunction is a major contributing factor to diseases such as atherosclerosis, diabetes mellitus, obesity, hypertension, acute lung injury, preeclampsia, among others. Resveratrol (RSV) is a naturally occurring bioactive polyphenol found in grapes and red wine. According to experimental studies, RSV modulates several events involved in endothelial dysfunction such as impaired vasorelaxation, eNOS uncoupling, leukocyte adhesion, endothelial senescence, and endothelial mesenchymal transition. The endothelial protective effects of RSV are found to be mediated by numerous molecular targets (e.g. Silent Information Regulator 1 (SIRT1), 5' AMP-activated protein kinase (AMPK), endothelial nitric oxide synthase (eNOS), nuclear factor-erythroid-derived 2-related factor-2 (Nrf2), peroxisome proliferator-activated receptor (PPAR), Krüppel-like factor-2 (KLF2), and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-kB)). Herein, we present an updated review addressing pharmacological effects and molecular targets of RSV in maintaining endothelial function, and the potential of this phytochemical for endothelial dysfunction-associated disorders.
Collapse
|
14
|
Jhanji M, Rao CN, Sajish M. Towards resolving the enigma of the dichotomy of resveratrol: cis- and trans-resveratrol have opposite effects on TyrRS-regulated PARP1 activation. GeroScience 2021; 43:1171-1200. [PMID: 33244652 PMCID: PMC7690980 DOI: 10.1007/s11357-020-00295-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 10/28/2020] [Indexed: 02/07/2023] Open
Abstract
Unlike widely perceived, resveratrol (RSV) decreased the average lifespan and extended only the replicative lifespan in yeast. Similarly, although not widely discussed, RSV is also known to evoke neurite degeneration, kidney toxicity, atherosclerosis, premature senescence, and genotoxicity through yet unknown mechanisms. Nevertheless, in vivo animal models of diseases and human clinical trials demonstrate inconsistent protective and beneficial effects. Therefore, the mechanism of action of RSV that elicits beneficial effects remains an enigma. In a previously published work, we demonstrated structural similarities between RSV and tyrosine amino acid. RSV acts as a tyrosine antagonist and competes with it to bind to human tyrosyl-tRNA synthetase (TyrRS). Interestingly, although both isomers of RSV bind to TyrRS, only the cis-isomer evokes a unique structural change at the active site to promote its interaction with poly-ADP-ribose polymerase 1 (PARP1), a major determinant of cellular NAD+-dependent stress response. However, retention of trans-RSV in the active site of TyrRS mimics its tyrosine-bound conformation that inhibits the auto-poly-ADP-ribos(PAR)ylation of PARP1. Therefore, we proposed that cis-RSV-induced TyrRS-regulated auto-PARylation of PARP1 would contribute, at least in part, to the reported health benefits of RSV through the induction of protective stress response. This observation suggested that trans-RSV would inhibit TyrRS/PARP1-mediated protective stress response and would instead elicit an opposite effect compared to cis-RSV. Interestingly, most recent studies also confirmed the conversion of trans-RSV and its metabolites to cis-RSV in the physiological context. Therefore, the finding that cis-RSV and trans-RSV induce two distinct conformations of TyrRS with opposite effects on the auto-PARylation of PARP1 provides a potential molecular basis for the observed dichotomic effects of RSV under different experimental paradigms. However, the fact that natural RSV exists as a diastereomeric mixture of its cis and trans isomers and cis-RSV is also a physiologically relevant isoform has not yet gained much scientific attention.
Collapse
Affiliation(s)
- Megha Jhanji
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC, 29208, USA
| | - Chintada Nageswara Rao
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC, 29208, USA
| | - Mathew Sajish
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC, 29208, USA.
| |
Collapse
|
15
|
Pang J, Xu H, Wang X, Chen X, Li Q, Liu Q, You Y, Zhang H, Xu Z, Zhao Y, Zhang Y, Yang Y, Ling W. Resveratrol enhances trans-intestinal cholesterol excretion through selective activation of intestinal liver X receptor alpha. Biochem Pharmacol 2021; 186:114481. [PMID: 33631191 DOI: 10.1016/j.bcp.2021.114481] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 01/14/2021] [Accepted: 02/16/2021] [Indexed: 12/20/2022]
Abstract
Resveratrol (RSV) is a dietary polyphenol with well-documented cardio-protective activity, but its effects on blood cholesterol levels remain to be established. Due to its poor bioavailability, tissue accumulation of RSV is extremely low except for that in the small intestine. In the present study, we aimed to investigate the dose-dependent effects of RSV on blood cholesterol levels and the involvement of small intestine in the cholesterol-lowering impacts of RSV. Mice were administrated with RSV at various doses with high-fat diet (HFD) or high-fat and high-cholesterol diet (HCD) for 12 weeks. The fecal neutral sterol contents were analyzed, and intestinal perfusion test was performed. An enteric barrier model using Caco-2 cells was established. We observed that RSV reduced blood cholesterol levels in a dose-dependent manner in mice fed with HFD or HCD. Further investigation revealed that RSV administration increased the bile acid pool size but did not affect cholesterol consumption or de novo cholesterol synthesis. Interestingly, RSV promoted trans-intestinal cholesterol excretion (TICE) by 2-fold in the intestinal perfusion test. In addition, RSV upregulated the expressions of ATP-binding cassette sub-family G member 5 or 8 (Abcg5/8) and ATP-binding cassette sub-family B member 1a or 1b (Abcb1a/b) by up to 8 times in the duodenum mucosa but not in the liver. RSV also significantly downregulated the expression of intestinal Niemann-Pick C1-Like 1 (Npc1l1). Knock-down of liver X receptor alpha (LXRα) but not Sirt1 by siRNA significantly blocked RSV-induced cholesterol excretion in Caco-2 cells. In conclusion, RSV could decrease circulating cholesterol levels through enhancing TICE and limiting cholesterol absorption via selective activation of intestinal LXRα.
Collapse
Affiliation(s)
- Juan Pang
- Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, PR China; Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou 510080, PR China
| | - Huihui Xu
- Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, PR China; Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou 510080, PR China
| | - Xu Wang
- Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, PR China; Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou 510080, PR China
| | - Xu Chen
- Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, PR China; Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou 510080, PR China
| | - Qing Li
- Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, PR China; Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou 510080, PR China
| | - Qiannan Liu
- Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, PR China; Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou 510080, PR China
| | - Yiran You
- Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, PR China; Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou 510080, PR China
| | - Hanyue Zhang
- Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, PR China; Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou 510080, PR China
| | - Zhongliang Xu
- Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, PR China; Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou 510080, PR China
| | - Yimin Zhao
- Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, PR China; Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou 510080, PR China
| | - Yinghui Zhang
- School of Food Science and Engineering, Foshan University, Foshan 528225, PR China
| | - Yan Yang
- Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, PR China; Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou 510080, PR China
| | - Wenhua Ling
- Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, PR China; Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou 510080, PR China.
| |
Collapse
|
16
|
Vasconcelos T, Prezotti F, Araújo F, Lopes C, Loureiro A, Marques S, Sarmento B. Third-generation solid dispersion combining Soluplus and poloxamer 407 enhances the oral bioavailability of resveratrol. Int J Pharm 2021; 595:120245. [DOI: 10.1016/j.ijpharm.2021.120245] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 12/21/2020] [Accepted: 12/22/2020] [Indexed: 01/17/2023]
|
17
|
Zhao Z, Xue F, Gu Y, Han J, Jia Y, Ye K, Zhang Y. Crosstalk between the muscular estrogen receptor α and BDNF/TrkB signaling alleviates metabolic syndrome via 7,8-dihydroxyflavone in female mice. Mol Metab 2020; 45:101149. [PMID: 33352311 PMCID: PMC7811170 DOI: 10.1016/j.molmet.2020.101149] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 12/15/2020] [Accepted: 12/16/2020] [Indexed: 02/06/2023] Open
Abstract
Objective 7,8-Dihydroxyflavone (7,8-DHF), a small molecular mimetic of brain-derived neurotrophic factor (BDNF), alleviates high-fat diet-induced obesity in female mice in a sex-specific manner by activating muscular tropomyosin-related kinase B (TrkB). However, the underlying molecular mechanism for this sex difference is unknown. Moreover, muscular estrogen receptor α (ERα) plays a critical role in metabolic diseases. Impaired ERα action is often accompanied by metabolic syndrome (MetS) in postmenopausal women. This study investigated whether muscular ERα is involved in the metabolic effects of 7,8-DHF. Methods For the in vivo studies, 72 female C57BL/6J mice were given a low-fat diet or high-fat diet, and both received daily intragastric administration of vehicle or 7,8-DHF for 24 weeks. The hypothalamic-pituitary-ovarian (HPO) axis function was assessed by investigating typical sex-related serum hormones and the ovarian reserve. Indicators of menopausal MetS, including lipid metabolism, insulin sensitivity, bone density, and serum inflammatory cytokines, were also evaluated. The expression levels of ERα and other relevant signaling molecules were also examined. In vitro, the molecular mechanism involved in the interplay of ERα and TrkB receptors was verified in differentiated C2C12 myotubes using several inhibitors and a lentivirus short hairpin RNA-knockdown strategy. Results Long-term oral administration of 7,8-DHF acted as a protective factor for the female HPO axis function, protecting against ovarian failure, earlier menopause, and sex hormone disorders, which was paralleled by the alleviation of MetS coupled with the production of ERα-rich, TrkB-activated, and uncoupling protein 1 (UCP1) high thermogenic skeletal muscle tissues. 7,8-DHF-stimulated transactivation of ERα at serine 118 (S118) and tyrosine 537 (Y537), which was crucial to activate the BDNF/TrkB signaling cascades. In turn, activation of BDNF/TrkB signaling was also required for the ligand-independent activation of ERα, especially at the Y537 phosphorylation site. In addition, Src family kinases played a core role in the interplay of ERα and TrkB, synergistically activating the signaling pathways related to energy metabolism. Conclusions These findings revealed a novel role of 7,8-DHF in protecting the function of the female HPO axis and activating tissue-specific ERα, which improves our understanding of this sex difference in 7,8-DHF-mediated maintenance of metabolic homeostasis and provides new therapeutic strategies for managing MetS in women. 7,8-DHF improves hypothalamic-pituitary-ovarian axis function in mature adult female mice. 7,8-DHF protects against ovarian failure and onset of earlier menopause. 7,8-DHF-induced transactivation of ERα is crucial to activate BDNF/TrkB signaling cascades. 7,8-DHF-induced activations of ERα and BDNF/TrkB signaling are interdependent. Src family kinases play a core role in the crosstalk of ERα and BDNF/TrkB signaling pathways.
Collapse
Affiliation(s)
- Zhenlei Zhao
- Department of Food Science and Nutrition, School of Biosystems Engineering and Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang Engineering Center for Food Technology and Equipment, Zhejiang University, Hangzhou 310058, China
| | - Fan Xue
- Department of Food Science and Nutrition, School of Biosystems Engineering and Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang Engineering Center for Food Technology and Equipment, Zhejiang University, Hangzhou 310058, China
| | - Yanpei Gu
- Department of Food Science and Nutrition, School of Biosystems Engineering and Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang Engineering Center for Food Technology and Equipment, Zhejiang University, Hangzhou 310058, China
| | - Jianxin Han
- Department of Food Science and Nutrition, School of Biosystems Engineering and Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang Engineering Center for Food Technology and Equipment, Zhejiang University, Hangzhou 310058, China
| | - Yingxian Jia
- Department of Gynecology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Keqiang Ye
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA.
| | - Ying Zhang
- Department of Food Science and Nutrition, School of Biosystems Engineering and Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang Engineering Center for Food Technology and Equipment, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
18
|
Huang CC, Liu CC, Tsao JP, Hsu CL, Cheng IS. Effects of Oral Resveratrol Supplementation on Glycogen Replenishment and Mitochondria Biogenesis in Exercised Human Skeletal Muscle. Nutrients 2020; 12:nu12123721. [PMID: 33276518 PMCID: PMC7760965 DOI: 10.3390/nu12123721] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 11/28/2020] [Accepted: 11/29/2020] [Indexed: 12/11/2022] Open
Abstract
The present study aimed to investigate the effect of oral resveratrol supplementation on the key molecular gene expressions involved in mitochondria biogenesis and glycogen resynthesis in human skeletal muscle. Nine young male athletes participated in the single-blind and crossover designed study. All subjects completed a 4-day resveratrol and placebo supplement in a randomized order while performing a single bout of cycling exercise. Immediately after the exercise challenge, the subjects consumed a carbohydrate (CHO) meal (2 g CHO/Kg body mass) with either resveratrol or placebo capsules. Biopsied muscle samples, blood samples and expired gas samples were obtained at 0 h and 3 h after exercise. The muscle samples were measured for gene transcription factor expression by real-time PCR for glucose uptake and mitochondria biogenesis. Plasma glucose, insulin, glycerol, non-esterified fatty acid concentrations and respiratory exchange ratio were analyzed during post-exercise recovery periods. The results showed that the muscle glycogen concentrations were higher at 3 h than at 0 h; however, there were no difference between resveratrol trial and placebo trial. There were no significantly different concentrations in plasma parameters between the two trials. Similarly, no measured gene expressions were significant between the two trials. The evidence concluded that the 4-day oral resveratrol supplementation did not improve post-exercise muscle glycogen resynthesis and related glucose uptake and mitochondrial biosynthesis gene expression in men.
Collapse
Affiliation(s)
- Chun-Ching Huang
- Department of Exercise and Health Sciences, National Taipei University of Nursing and Health Science, Taipei City 112, Taiwan;
| | - Chia-Chen Liu
- Department of Physical Education, National Taichung University of Education, Taichung City 403, Taiwan; (C.-C.L.); (J.-P.T.)
| | - Jung-Piao Tsao
- Department of Physical Education, National Taichung University of Education, Taichung City 403, Taiwan; (C.-C.L.); (J.-P.T.)
| | - Chin-Lin Hsu
- Department of Nutrition, Chung Shan Medical University Hospital, Taichung 404, Taiwan
- School of Nutrition, Chung Shan Medical University, Taichung 404, Taiwan
- Correspondence: (C.-L.H.); (I.-S.C.); Tel.: +886-4-2218-3459 (I.-S.C.)
| | - I-Shiung Cheng
- Department of Physical Education, National Taichung University of Education, Taichung City 403, Taiwan; (C.-C.L.); (J.-P.T.)
- Correspondence: (C.-L.H.); (I.-S.C.); Tel.: +886-4-2218-3459 (I.-S.C.)
| |
Collapse
|
19
|
Giacometti J, Muhvić D, Grubić-Kezele T, Nikolić M, Šoić-Vranić T, Bajek S. Olive Leaf Polyphenols (OLPs) Stimulate GLUT4 Expression and Translocation in the Skeletal Muscle of Diabetic Rats. Int J Mol Sci 2020; 21:ijms21238981. [PMID: 33256066 PMCID: PMC7729747 DOI: 10.3390/ijms21238981] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 11/24/2020] [Indexed: 12/18/2022] Open
Abstract
Skeletal muscles are high-insulin tissues responsible for disposing of glucose via the highly regulated process of facilitated glucose transporter 4 (GLUT4). Impaired insulin action in diabetes, as well as disorders of GLUT4 vesicle trafficking in the muscle, are involved in defects in insulin-stimulated GLUT4 translocation. Since the Rab GTPases are the main regulators of vesicular membrane transport in exo- and endo-cytosis, in the present work, we studied the effect of olive leaf polyphenols (OLPs) on Rab8A, Rab13, and Rab14 proteins of the rat soleus muscle in a model of streptozotocin (SZT)-induced diabetes (DM) in a dose-dependent manner. Glucose, cholesterol, and triglyceride levels were determined in the blood, morphological changes of the muscle tissue were captured by hematoxylin and eosin histological staining, and expression of GLUT4, Rab8A, Rab13, and Rab14 proteins were analyzed in the rat soleus muscle by the immunofluorescence staining and immunoblotting. OLPs significantly reduced blood glucose level in all treated groups. Furthermore, significantly reduced blood triglycerides were found in the groups with the lowest and highest OLPs treatment. The dynamics of activation of Rab8A, Rab13, and Rab14 was OLPs dose-dependent and more effective at higher OLP doses. Thus, these results indicate a beneficial role of phenolic compounds from the olive leaf in the regulation of glucose homeostasis in the skeletal muscle.
Collapse
Affiliation(s)
- Jasminka Giacometti
- Department of Biotechnology, University of Rijeka, Radmile Matejčić 2, 51000 Rijeka, Croatia
- Correspondence: ; Tel.: +385-51-584-557
| | - Damir Muhvić
- Department of Physiology and Immunology, Faculty of Medicine, University of Rijeka, Braće Branchetta 20, 51000 Rijeka, Croatia; (D.M.); (T.G.-K.)
| | - Tanja Grubić-Kezele
- Department of Physiology and Immunology, Faculty of Medicine, University of Rijeka, Braće Branchetta 20, 51000 Rijeka, Croatia; (D.M.); (T.G.-K.)
- Clinical Department for Clinical Microbiology, Clinical Hospital Center Rijeka, Krešimirova 42, 51000 Rijeka, Croatia
| | - Marina Nikolić
- Department of Anatomy, Faculty of Medicine, University of Rijeka, Braće Branchetta 20, 51000 Rijeka, Croatia; (M.N.); (T.Š.-V.); (S.B.)
| | - Tamara Šoić-Vranić
- Department of Anatomy, Faculty of Medicine, University of Rijeka, Braće Branchetta 20, 51000 Rijeka, Croatia; (M.N.); (T.Š.-V.); (S.B.)
| | - Snježana Bajek
- Department of Anatomy, Faculty of Medicine, University of Rijeka, Braće Branchetta 20, 51000 Rijeka, Croatia; (M.N.); (T.Š.-V.); (S.B.)
| |
Collapse
|
20
|
Chung JY, Jeong JH, Song J. Resveratrol Modulates the Gut-Brain Axis: Focus on Glucagon-Like Peptide-1, 5-HT, and Gut Microbiota. Front Aging Neurosci 2020; 12:588044. [PMID: 33328965 PMCID: PMC7732484 DOI: 10.3389/fnagi.2020.588044] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 10/23/2020] [Indexed: 12/12/2022] Open
Abstract
Resveratrol is a natural polyphenol that has anti-aging and anti-inflammatory properties against stress condition. It is reported that resveratrol has beneficial functions in various metabolic and central nervous system (CNS) diseases, such as obesity, diabetes, depression, and dementia. Recently, many researchers have emphasized the connection between the brain and gut, called the gut-brain axis, for treating both CNS neuropathologies and gastrointestinal diseases. Based on previous findings, resveratrol is involved in glucagon-like peptide 1 (GLP-1) secreted by intestine L cells, the patterns of microbiome in the intestine, the 5-hydroxytryptamine (5-HT) level, and CNS inflammation. Here, we review recent evidences concerning the relevance and regulatory function of resveratrol in the gut-brain axis from various perspectives. Here, we highlight the necessity for further study on resveratrol's specific mechanism in the gut-brain axis. We present the potential of resveratrol as a natural therapeutic substance for treating both neuropathology and gastrointestinal dysfunction.
Collapse
Affiliation(s)
- Ji Yeon Chung
- Department of Neurology, Chosun University Medical School, Gwangju, South Korea
| | - Jae-Ho Jeong
- Department of Microbiology, Chonnam National University Medical School, Gwangju, South Korea
| | - Juhyun Song
- Department of Anatomy, Chonnam National University Medical School, Gwangju, South Korea
| |
Collapse
|
21
|
Huang JP, Cheng ML, Wang CH, Huang SS, Hsieh PS, Chang CC, Kuo CY, Chen KH, Hung LM. Therapeutic potential of cPLA2 inhibitor to counteract dilated-cardiomyopathy in cholesterol-treated H9C2 cardiomyocyte and MUNO rat. Pharmacol Res 2020; 160:105201. [PMID: 32942017 DOI: 10.1016/j.phrs.2020.105201] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 09/03/2020] [Accepted: 09/08/2020] [Indexed: 01/25/2023]
Abstract
BACKGROUND AND PURPOSE The pathogenesis of cardiomyopathy in metabolically unhealthy obesity (MUO) has been well studied. However, the pathogenesis of cardiomyopathy typically associated with high cholesterol levels in metabolically unhealthy nonobesity (MUNO) remains unclear. We investigated whether cholesterol-generated LysoPCs contribute to cardiomyopathy and the role of cytosolic phospholipase A2 (cPLA2) inhibitor in cholesterol-induced MUNO. EXPERIMENTAL APPROACH Cholesterol diet was performed in Sprague-Dawley rats that were fed either regular chow (C), or high cholesterol chow (HC), or HC diet with 10 % fructose in drinking water (HCF) for 12 weeks. LysoPCs levels were subsequently measured in rats and in MUNO human patients. The effects of cholesterol-mediated LysoPCs on cardiac injury, and the action of cPLA2 inhibitor, AACOCF3, were further assessed in H9C2 cardiomyocytes. KEY RESULTS HC and HCF rats fed cholesterol diets demonstrated a MUNO-phenotype and cholesterol-induced dilated cardiomyopathy (DCM). Upregulated levels of LysoPCs were found in rat myocardium and the plasma in MUNO human patients. Further testing in H9C2 cardiomyocytes revealed that cholesterol-induced atrophy and death of cardiomyocytes was due to mitochondrial dysfunction and conditions favoring DCM (i.e. reduced mRNA expression of ANF, BNP, DSP, and atrogin-1), and that AACOCF3 counteracted the cholesterol-induced DCM phenotype. CONCLUSION AND IMPLICATIONS Cholesterol-induced MUNO-DCM phenotype was counteracted by cPLA2 inhibitor, which is potentially useful for the treatment of LysoPCs-associated DCM in MUNO.
Collapse
Affiliation(s)
- Jiung-Pang Huang
- Department and Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan; Healthy Aging Research Center, Chang Gung University, Taoyuan, Taiwan.
| | - Mei-Ling Cheng
- Department and Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan; Healthy Aging Research Center, Chang Gung University, Taoyuan, Taiwan.
| | - Chao-Hung Wang
- Heart Failure Center, Division of Cardiology, Department of Internal Medicine, Chang Gung Memorial Hospital, Keelung, Taiwan.
| | - Shiang-Suo Huang
- Department of Pharmacology, Chung Shan Medical University, Taichung, Taiwan.
| | - Po-Shiuan Hsieh
- Department of Physiology and Biophysics, National Defense Medical Center, Taipei, Taiwan.
| | - Chih-Chun Chang
- Department of Clinical Pathology, Far Eastern Memorial Hospital, New Taipei, Taiwan.
| | - Chao-Yu Kuo
- Department and Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan.
| | - Kuan-Hsing Chen
- Kidney Research Center, Chang Gung Memorial Hospital, Linkou, Taiwan.
| | - Li-Man Hung
- Department and Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan; Kidney Research Center, Chang Gung Memorial Hospital, Linkou, Taiwan; Healthy Aging Research Center, Chang Gung University, Taoyuan, Taiwan.
| |
Collapse
|
22
|
Thaung Zaw JJ, Howe PR, Wong RH. Long-term effects of resveratrol on cognition, cerebrovascular function and cardio-metabolic markers in postmenopausal women: A 24-month randomised, double-blind, placebo-controlled, crossover study. Clin Nutr 2020; 40:820-829. [PMID: 32900519 DOI: 10.1016/j.clnu.2020.08.025] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 07/08/2020] [Accepted: 08/20/2020] [Indexed: 12/14/2022]
Abstract
Ageing and menopause contribute to endothelial dysfunction, causing impaired cerebral perfusion, which is in turn associated with accelerated cognitive decline. In a 14-week pilot study, we showed that supplementation with low-dose resveratrol, a phytoestrogen that can enhance endothelial function, improved cerebrovascular and cognitive functions in postmenopausal women. We sought to confirm these benefits in a larger, longer-term trial. A 24-month randomized, placebo-controlled crossover trial was undertaken in 125 postmenopausal women, aged 45-85 years, who took 75 mg trans-resveratrol or placebo twice-daily for 12 months and then crossover to the alternative treatment for another 12 months. We evaluated within individual differences between each treatment period in measures of cognition (primary outcome), cerebrovascular function in the middle cerebral artery (cerebral blood flow velocity: CBFV, cerebrovascular responsiveness: CVR) and cardio-metabolic markers as secondary outcomes. Subgroup analyses examined effects of resveratrol by life stages. Compared to placebo, resveratrol supplementation resulted a significant 33% improvement in overall cognitive performance (Cohen's d = 0.170, P = 0.005). Women ≥65 years of age showed a relative improvement in verbal memory with resveratrol compared to those younger than 65 years. Furthermore, resveratrol improved secondary outcomes including resting mean CBFV (d = 0.275, P = 0.001), CVR to hypercapnia (d = 0.307, P = 0.027), CVR to cognitive stimuli (d = 0.259, P = 0.032), fasting insulin (d = 0.174, P = 0.025) and insulin resistance index (d = 0.102, P = 0.034). Regular supplementation with low-dose resveratrol can enhance cognition, cerebrovascular function and insulin sensitivity in postmenopausal women. This may translate into a slowing of the accelerated cognitive decline due to ageing and menopause, especially in late-life women. Further studies are warranted to observe whether these cognitive benefits of resveratrol can reduce the risk of dementia.
Collapse
Affiliation(s)
- Jay Jay Thaung Zaw
- University of Newcastle, School of Biomedical Sciences and Pharmacy, Callaghan, NSW, 2308, Australia
| | - Peter Rc Howe
- University of Newcastle, School of Biomedical Sciences and Pharmacy, Callaghan, NSW, 2308, Australia; University of Southern Queensland, Institute for Resilient Regions, Springfield Central, QLD, 4300, Australia; University of South Australia, School of Health Sciences, Adelaide, SA, 5000, Australia
| | - Rachel Hx Wong
- University of Newcastle, School of Biomedical Sciences and Pharmacy, Callaghan, NSW, 2308, Australia; University of Southern Queensland, Institute for Resilient Regions, Springfield Central, QLD, 4300, Australia.
| |
Collapse
|
23
|
Qasem RJ. The estrogenic activity of resveratrol: a comprehensive review of in vitro and in vivo evidence and the potential for endocrine disruption. Crit Rev Toxicol 2020; 50:439-462. [DOI: 10.1080/10408444.2020.1762538] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Rani J. Qasem
- Department of Pharmaceutical Sciences, College of Pharmacy, King Saud Bin Abdulaziz University for Health Sciences (KSAU-HS), King Abdullah International Medical Research Center (KAIMRC) and King Abdulaziz Medical City, National Guard Health Affairs (NGHA), Riyadh, Saudi Arabia
| |
Collapse
|
24
|
Chang CC, Chang CY, Lin PC, Huang JP, Chen KH, Yen TH, Hung LM. Administration of low-dose resveratrol attenuated hepatic inflammation and lipid accumulation in high cholesterol-fructose diet-induced rat model of nonalcoholic fatty liver disease. CHINESE J PHYSIOL 2020; 63:149-155. [PMID: 32859881 DOI: 10.4103/cjp.cjp_43_20] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Resveratrol (RSV) has been demonstrated to ameliorate nonalcoholic fatty liver disease (NAFLD) in animal studies. However, RSV was given with the dosage that ranged from 7 to 300 mg/kg body weight (BW). Hence, the study aimed to investigate the efficacy of RSV at a lower dosage on high cholesterol-fructose diet (HCFD)-induced rat model of NAFLD. In the study, male Sprague-Dawley rats were fed with HCFD for 15 weeks. RSV was also given at a daily dose of 1 mg/kg BW for 15 days or 15 weeks by oral delivery. At sacrifice, plasma and liver specimens were acquired for detections of alanine and aspartate aminotransferases, proinflammatory cytokines, and lipid contents. Histological examinations and Western blotting analysis were performed using liver tissues. The results showed that RSV administration reduced plasma levels of aminotransferases and proinflammatory cytokines including interleukin-1 beta (IL-1β), IL-6, and tumor necrosis factor-alpha (TNF-α) in HCFD-induced NAFLD. RSV also mitigated hepatic lipid accumulation and expression of IL-1β, IL-6, and TNF-α. Besides, phosphorylation of signal transducer and activator of transcription 3 (STAT3) was reduced with RSV supplementation in the liver of HCFD-fed rats. We concluded that low-dose RSV supplementation attenuated hepatic inflammation and lipid accumulation in HCFD-induced NAFLD. The ameliorative effect of RSV on NAFLD could be associated with downregulation of phosphorylated STAT3.
Collapse
Affiliation(s)
- Chih-Chun Chang
- Department of Clinical Pathology, Far Eastern Memorial Hospital, New Taipei; Department of Nursing, Cardinal Tien Junior College of Healthcare and Management, Yilan, Taiwan
| | - Chieh-Yu Chang
- Department of Internal Medicine, Division of Cardiology, Chang Gung Memorial Hospital, Taoyuan City, Taiwan
| | - Pei-Chun Lin
- Department and Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan City, Taiwan
| | - Jiung-Pang Huang
- Department and Graduate Institute of Biomedical Sciences, College of Medicine; Healthy Aging Research Center, Chang Gung University, Taoyuan City, Taiwan
| | - Kuan-Hsing Chen
- Healthy Aging Research Center, Chang Gung University; Kidney Research Center, Chang Gung Memorial Hospital, Taoyuan City, Taiwan
| | - Tzung-Hai Yen
- Kidney Research Center; Department of Nephrology, Clinical Poison Center, Chang Gung Memorial Hospital; College of Medicine, Chang Gung University, Taoyuan City, Taiwan
| | - Li-Man Hung
- Department and Graduate Institute of Biomedical Sciences, College of Medicine; Healthy Aging Research Center, Chang Gung University; Kidney Research Center, Chang Gung Memorial Hospital, Taoyuan City, Taiwan
| |
Collapse
|
25
|
Kim K, Jung SJ, Baek JM, Yim HW, Jeong H, Kim DJ, Park S, Youm Y, Kim HC. Associations between social network properties and metabolic syndrome and the mediating effect of physical activity: findings from the Cardiovascular and Metabolic Diseases Etiology Research Center (CMERC) Cohort. BMJ Open Diabetes Res Care 2020; 8:8/1/e001272. [PMID: 32675290 PMCID: PMC7368478 DOI: 10.1136/bmjdrc-2020-001272] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 05/14/2020] [Accepted: 06/02/2020] [Indexed: 12/26/2022] Open
Abstract
INTRODUCTION Social isolation and loneliness are positively associated with metabolic syndrome. However, the mechanisms by which social isolation affects metabolic syndrome are not well understood. RESEARCH DESIGN AND METHODS This study was designed as a cross-sectional study of baseline results from the Cardiovascular and Metabolic Diseases Etiology Research Center (CMERC) Cohort. We included 10 103 participants (8097 community-based low-risk participants, 2006 hospital-based high-risk participants) from the CMERC Cohort. Participants aged 65 years or older were excluded. Multiple imputation by chained equations was applied to impute missing variables. The quantitative properties of social networks were assessed by measuring the 'size of social networks'; qualitative properties were assessed by measuring the 'social network closeness'. Metabolic syndrome was defined based on the National Cholesterol Education Program Adult Treatment Panel III criteria. Multivariate logistic regression analyses were conducted to assess association between social network properties and metabolic syndrome. The mediating effects of physical inactiveness, alcohol consumption, cigarette smoking and depressive symptoms were estimated. Age-specific effect sizes were estimated for each subgroup. RESULTS A smaller social network was positively associated with higher prevalences of metabolic syndrome in all subgroups, except the high-risk male subgroup. There was no clear association between social network closeness and metabolic syndrome. In community-based participants, an indirect effect through physical activity was detected in both sexes; however, in hospital-based participants, no indirect effects were detected. Cigarette smoking, alcohol consumption and depression did not mediate the association. Age-specific estimates showed that the indirect effect through physical activity had a greater impact in older participants. CONCLUSIONS A smaller social network is positively associated with metabolic syndrome. This trend could be partially explained by physical inactivity, especially in older individuals.
Collapse
Affiliation(s)
- Kwanghyun Kim
- Department of Preventive Medicine, Yonsei University College of Medicine, Seodaemun-gu, Republic of Korea
| | - Sun Jae Jung
- Department of Preventive Medicine, Yonsei University College of Medicine, Seodaemun-gu, Republic of Korea
- Department of Epidemiology, Harvard University T H Chan School of Public Health, Boston, Massachusetts, USA
| | - Jong Min Baek
- Department of Preventive Medicine, Yonsei University College of Medicine, Seodaemun-gu, Republic of Korea
| | - Hyeon Woo Yim
- Department of Preventive Medicine, Catholic University of Korea, Seoul, Republic of Korea
| | - Hyunsuk Jeong
- Department of Preventive Medicine, Catholic University of Korea, Seoul, Republic of Korea
| | - Dae Jung Kim
- Department of Endocrinology and Metabolism, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Sungha Park
- Yonsei Health System Cardiology Hospital Division of Cardiology, Yonsei University College of Medicine, Seodaemun-gu, Republic of Korea
| | - Yoosik Youm
- Department of Sociology, Yonsei University, Seodaemun-gu, Republic of Korea
| | - Hyeon Chang Kim
- Department of Preventive Medicine, Yonsei University College of Medicine, Seodaemun-gu, Republic of Korea
| |
Collapse
|
26
|
Thaung Zaw JJ, Howe PRC, Wong RHX. Sustained Cerebrovascular and Cognitive Benefits of Resveratrol in Postmenopausal Women. Nutrients 2020; 12:E828. [PMID: 32244933 PMCID: PMC7146200 DOI: 10.3390/nu12030828] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 03/06/2020] [Accepted: 03/17/2020] [Indexed: 01/22/2023] Open
Abstract
Deficits in the cerebral microcirculation contribute to age-related cognitive decline. In a pilot study of postmenopausal women, we found that supplementation with a low dose of resveratrol, a phytoestrogen, for 14 weeks improved cerebrovascular and cognitive functions. We have since undertaken a larger, longer term study to confirm these benefits. Postmenopausal women aged 45-85 years (n = 129) were randomized to take placebo or 75 mg trans-resveratrol twice daily for 12 months. Effects on cognition, cerebral blood flow, cerebrovascular responsiveness (CVR) and cardiometabolic markers (blood pressure, diabetes markers and fasting lipids) were assessed. Compared to placebo, resveratrol improved overall cognitive performance (P < 0.001) and attenuated the decline in CVR to cognitive stimuli (P = 0.038). The latter effect was associated with reduction of fasting blood glucose (r = -0.339, P = 0.023). This long-term study confirms that regular consumption of resveratrol can enhance cognitive and cerebrovascular functions in postmenopausal women, with the potential to slow cognitive decline due to ageing and menopause.
Collapse
Affiliation(s)
- Jay Jay Thaung Zaw
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan 2308, New South Wales, Australia; (J.J.T.Z.); (P.R.C.H.)
| | - Peter R. C. Howe
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan 2308, New South Wales, Australia; (J.J.T.Z.); (P.R.C.H.)
- Institute for Resilient Regions, Springfield Central, University of Southern Queensland, Springfield Central 4300, Queensland, Australia
- School of Health Sciences, University of South Australia, Adelaide 5000, South Australia, Australia
| | - Rachel H. X. Wong
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan 2308, New South Wales, Australia; (J.J.T.Z.); (P.R.C.H.)
- Institute for Resilient Regions, Springfield Central, University of Southern Queensland, Springfield Central 4300, Queensland, Australia
| |
Collapse
|
27
|
Sun C, Zhao C, Guven EC, Paoli P, Simal‐Gandara J, Ramkumar KM, Wang S, Buleu F, Pah A, Turi V, Damian G, Dragan S, Tomas M, Khan W, Wang M, Delmas D, Portillo MP, Dar P, Chen L, Xiao J. Dietary polyphenols as antidiabetic agents: Advances and opportunities. FOOD FRONTIERS 2020; 1:18-44. [DOI: 10.1002/fft2.15] [Citation(s) in RCA: 173] [Impact Index Per Article: 34.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
AbstractDietary polyphenols have been widely investigated as antidiabetic agents in cell, animals, human study, and clinical trial. The number of publication (Indexed by Web of Science) on “polyphenols and diabetes” significantly increased since 2010. This review highlights the advances and opportunities of dietary polyphenols as antidiabetic agents. Dietary polyphenols prevent and manage Type 2 diabetes mellitus via the insulin‐dependent approaches, for instance, protection of pancreatic islet β‐cell, reduction of β‐cell apoptosis, promotion of β‐cell proliferation, attenuation of oxidative stress, activation of insulin signaling, and stimulation of pancreas to secrete insulin, as well as the insulin‐independent approaches including inhibition of glucose absorption, inhibition of digestive enzymes, regulation of intestinal microbiota, modification of inflammation response, and inhibition of the formation of advanced glycation end products. Moreover, dietary polyphenols ameliorate diabetic complications, such as vascular dysfunction, nephropathy, retinopathy, neuropathy, cardiomyopathy, coronary diseases, renal failure, and so on. The structure–activity relationship of polyphenols as antidiabetic agents is still not clear. The individual flavonoid or isoflavone has no therapeutic effect on diabetic patients, although the clinical data are very limited. Resveratrol, curcumin, and anthocyanins showed antidiabetic activity in human study. How hyperglycemia influences the bioavailability and bioactivity of dietary polyphenols is not well understood. An understanding of how diabetes alters the bioavailability and bioactivity of dietary polyphenols will lead to an improvement in their benefits and clinical outcomes.
Collapse
Affiliation(s)
- Chongde Sun
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology Zhejiang University Hangzhou China
| | - Chao Zhao
- College of Food Science Fujian Agriculture and Forestry University Fuzhou China
- State Key Laboratory of Quality Research in Chinese Medicine Institute of Chinese Medical Sciences University of Macau Macau China
| | - Esra Capanoglu Guven
- Department of Food Engineering Faculty of Chemical and Metallurgical Engineering İstanbul Technical University Istanbul Turkey
| | - Paolo Paoli
- Department of Biomedical, Experimental, and Clinical Sciences University of Florence Florence Italy
| | - Jesus Simal‐Gandara
- Nutrition and Bromatology Group Department of Analytical Chemistry and Food Science Faculty of Food Science and Technology University of Vigo ‐ Ourense Campus Ourense Spain
| | - Kunka Mohanram Ramkumar
- Life Science Division SRM Research Institute SRM University Kattankulathur India
- Department of Biotechnology School of Bio‐engineering SRM University Kattankulathur India
| | - Shengpeng Wang
- State Key Laboratory of Quality Research in Chinese Medicine Institute of Chinese Medical Sciences University of Macau Macau China
| | - Florina Buleu
- Centre for Interdisciplinary Research & Department of Cardiology University of Medicine and Pharmacy Victor Babes Timisoara Romania
| | - Ana Pah
- Centre for Interdisciplinary Research & Department of Cardiology University of Medicine and Pharmacy Victor Babes Timisoara Romania
| | - Vladiana Turi
- Centre for Interdisciplinary Research & Department of Cardiology University of Medicine and Pharmacy Victor Babes Timisoara Romania
| | - Georgiana Damian
- Centre for Interdisciplinary Research & Department of Cardiology University of Medicine and Pharmacy Victor Babes Timisoara Romania
| | - Simona Dragan
- Centre for Interdisciplinary Research & Department of Cardiology University of Medicine and Pharmacy Victor Babes Timisoara Romania
| | - Merve Tomas
- Faculty of Engineering and Natural Sciences Food Engineering Department Istanbul Sabahattin Zaim University Istanbul Turkey
| | - Washim Khan
- National Center for Natural Products Research School of Pharmacy The University of Mississippi, University Mississippi
| | - Mingfu Wang
- School of Biological Sciences The University of Hong Kong Pokfulam Hong Kong
| | - Dominique Delmas
- INSERM U866 Research Center Université de Bourgogne Franche‐Comté Dijon France
- INSERM Research Center U1231 – Cancer and Adaptive Immune Response Team Bioactive Molecules and Health Research Group Dijon France
- Centre Anticancéreux Georges François Leclerc Center Dijon France
| | - Maria Puy Portillo
- Nutrition and Obesity Group Department of Nutrition and Food Science Faculty of Pharmacy and Lucio Lascaray Research Institute University of País Vasco (UPV/EHU) Vitoria‐Gasteiz Spain
- CIBEROBN Physiopathology of Obesity and Nutrition Institute of Health Carlos III (ISCIII) Vitoria‐Gasteiz Spain
| | - Parsa Dar
- State Key Laboratory of Quality Research in Chinese Medicine Institute of Chinese Medical Sciences University of Macau Macau China
| | - Lei Chen
- College of Food Science Fujian Agriculture and Forestry University Fuzhou China
| | - Jianbo Xiao
- State Key Laboratory of Quality Research in Chinese Medicine Institute of Chinese Medical Sciences University of Macau Macau China
| |
Collapse
|
28
|
Saitoh Y, Umezaki T, Yonekura N, Nakawa A. Resveratrol potentiates intracellular ascorbic acid enrichment through dehydroascorbic acid transport and/or its intracellular reduction in HaCaT cells. Mol Cell Biochem 2020; 467:57-64. [PMID: 32080778 DOI: 10.1007/s11010-020-03700-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 02/11/2020] [Indexed: 12/30/2022]
Abstract
L-Ascorbic acid (AsA), a reduced vitamin C (VC), is an important antioxidant, and the internal accumulation and maintenance of AsA are thought to play a significant role in various physiological activities in humans. We focused on resveratrol (RSV), a natural polyphenolic compound, as a candidate for an AsA transport modulator and investigated whether RSV can affect the intracellular VC accumulation after either AsA or dehydroascorbic acid (DHA) addition in HaCaT keratinocytes. Our results demonstrate that RSV treatment could significantly enhance intracellular VC levels after either AsA or DHA supplementation, and intracellular VC accumulated mainly as AsA. Our results also indicate that most of the intracellular transported DHA was reduced to AsA and accumulated after uptake into cells. In addition, RSV could induce several AsA or DHA transport-related and intracellular DHA reduction-related genes including SVCT2, GLUT3, TXNRD2, and TXNRD3, necessary for AsA transport, DHA transport, and DHA reduction/regeneration, respectively. On the other hand, the both protein expression levels and the localizations of sodium-dependent vitamin C transporters 2 (SVCT2) and glucose transporter 3(GLUT3) were scarcely affected by RSV treatment. Furthermore, RSV-induced enrichment of intracellular AsA levels was completely suppressed by a GLUT inhibitor cytochalasin B. These results suggest that RSV can potentiate intracellular AsA accumulation via activation of the DHA transport and subsequent intracellular reduction from DHA to AsA. Thus, RSV might be useful for maintaining substantial AsA accumulation in the skin keratinocytes.
Collapse
Affiliation(s)
- Yasukazu Saitoh
- Laboratory of Bioscience & Biotechnology for Cell Function Control, Faculty of Life and Environmental Sciences, Prefectural University of Hiroshima, 5562 Nanatsuka, Shobara, Hiroshima, 727-0023, Japan.
| | - Taiki Umezaki
- Laboratory of Bioscience & Biotechnology for Cell Function Control, Faculty of Life and Environmental Sciences, Prefectural University of Hiroshima, 5562 Nanatsuka, Shobara, Hiroshima, 727-0023, Japan
| | - Nene Yonekura
- Laboratory of Bioscience & Biotechnology for Cell Function Control, Faculty of Life and Environmental Sciences, Prefectural University of Hiroshima, 5562 Nanatsuka, Shobara, Hiroshima, 727-0023, Japan
| | - Atsushi Nakawa
- Laboratory of Bioscience & Biotechnology for Cell Function Control, Faculty of Life and Environmental Sciences, Prefectural University of Hiroshima, 5562 Nanatsuka, Shobara, Hiroshima, 727-0023, Japan
| |
Collapse
|
29
|
Rašković A, Ćućuz V, Torović L, Tomas A, Gojković-Bukarica L, Ćebović T, Milijašević B, Stilinović N, Cvejić Hogervorst J. Resveratrol supplementation improves metabolic control in rats with induced hyperlipidemia and type 2 diabetes. Saudi Pharm J 2019; 27:1036-1043. [PMID: 31997911 PMCID: PMC6978634 DOI: 10.1016/j.jsps.2019.08.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 08/30/2019] [Indexed: 12/11/2022] Open
Abstract
Resveratrol was recognized as the major factor responsible for the beneficial properties of red wine. Several resveratrol-based dietary supplements are available, but their efficacy has not been sufficiently tested. This study was designed to examine the effect of resveratrol supplementation, using a commercially available product, on the metabolic status of experimental animals with induced hyperlipidemia or type 2 diabetes mellitus (T2DM). Hyperlipidemia was induced by feeding the rats a standard pellet diet supplemented with cholesterol. T2DM was induced by adding 10% fructose to drinking water and streptozotocin. Treatment with resveratrol-based supplement improved glycemic control in diabetic animals and significantly decreased serum low-density-lipoprotein (LDL) and triglyceride levels, concurrently increasing the high-density-lipoprotein (HDL) levels in animals with hyperlipidemia. Resveratrol-treated animals had improved tolerance to glucose loading. Supplementation did not induce alterations in parameters of liver and renal function. Findings indicate that commercial resveratrol supplement improves metabolic control in rats with induced hyperlipidemia and T2DM.
Collapse
Affiliation(s)
- Aleksandar Rašković
- University of Novi Sad, Faculty of Medicine, Department of Pharmacology, Toxicology and Clinical Pharmacology, Hajduk Veljkova 3, Novi Sad, Serbia
| | - Veljko Ćućuz
- University of Novi Sad, Faculty of Medicine, Department of Pharmacy, Hajduk Veljkova 3, Novi Sad, Serbia
| | - Ljilja Torović
- University of Novi Sad, Faculty of Medicine, Department of Pharmacy, Hajduk Veljkova 3, Novi Sad, Serbia
| | - Ana Tomas
- University of Novi Sad, Faculty of Medicine, Department of Pharmacology, Toxicology and Clinical Pharmacology, Hajduk Veljkova 3, Novi Sad, Serbia
| | - Ljiljana Gojković-Bukarica
- University of Belgrade, Faculty of Medicine, Department of Pharmacology and Toxicology and Clinical Pharmacology, Belgrade, Serbia
| | - Tatjana Ćebović
- University of Novi Sad, Faculty of Medicine, Department of Biochemistry, Hajduk Veljkova 3, Novi Sad, Serbia
| | - Boris Milijašević
- University of Novi Sad, Faculty of Medicine, Department of Pharmacology, Toxicology and Clinical Pharmacology, Hajduk Veljkova 3, Novi Sad, Serbia
| | - Nebojša Stilinović
- University of Novi Sad, Faculty of Medicine, Department of Pharmacology, Toxicology and Clinical Pharmacology, Hajduk Veljkova 3, Novi Sad, Serbia
| | - Jelena Cvejić Hogervorst
- University of Novi Sad, Faculty of Medicine, Department of Pharmacy, Hajduk Veljkova 3, Novi Sad, Serbia
| |
Collapse
|
30
|
Abdollahi S, Salehi-Abargouei A, Toupchian O, Sheikhha MH, Fallahzadeh H, Rahmanian M, Tabatabaie M, Mozaffari-Khosravi H. The Effect of Resveratrol Supplementation on Cardio-Metabolic Risk Factors in Patients with Type 2 Diabetes: A Randomized, Double-Blind Controlled Trial. Phytother Res 2019; 33:3153-3162. [PMID: 31475415 DOI: 10.1002/ptr.6487] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 07/28/2019] [Accepted: 08/06/2019] [Indexed: 12/15/2022]
Abstract
The aim of the present randomized controlled trial was to evaluate the effect of a micronized resveratrol supplement on glycemic status, lipid profile, and body composition in patients with type 2 diabetes mellitus (T2DM). A total of 71 overweight patients with T2DM (body mass index ranged 25-30) were randomly assigned to receive 1000 mg/day trans-resveratrol or placebo (methyl cellulose) for 8 weeks. Anthropometric indices and biochemical indices including lipid and glycemic profile were measured before and after the intervention. In adjusted model (age, sex, and baseline body mass index), resveratrol decreased fasting blood sugar (-7.97±13.6 mg/dL, p=0.05) and increased high density lipoprotein (3.62±8.75 mg/dL, p=0.01) levels compared with placebo. Moreover, the mean difference in insulin levels reached significance (-0.97±1.91, μIU/mL, p= 0.02). However, no significant differences were observed for anthropometric measures. It was found that 8-week resveratrol supplementation produced useful effects on some cardio-metabolic parameters in patients with T2DM. More studies are needed to confirm these findings.
Collapse
Affiliation(s)
- Shima Abdollahi
- Department of Nutrition, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.,Nutrition and Food Security Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.,Department of Nutrition and Public Health, School of Public Health, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Amin Salehi-Abargouei
- Department of Nutrition, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.,Nutrition and Food Security Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Omid Toupchian
- Department of Nutrition and Public Health, School of Public Health, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Mohammad Hasan Sheikhha
- Department of Genetics, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.,Yazd Clinical and Research Center for Infertility, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Hossein Fallahzadeh
- Department of Biostatistics and Epidemiology, Research Center of Prevention and Epidemiology of Non-Communicable Disease, School of Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Masoud Rahmanian
- Yazd Diabetic Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Mahtab Tabatabaie
- Department of Nutrition, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.,Nutrition and Food Security Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Hassan Mozaffari-Khosravi
- Department of Nutrition, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.,Yazd Diabetic Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| |
Collapse
|
31
|
Resveratrol Mitigates High-Fat Diet-Induced Vascular Dysfunction by Activating the Akt/eNOS/NO and Sirt1/ER Pathway. J Cardiovasc Pharmacol 2019; 72:231-241. [PMID: 30399060 DOI: 10.1097/fjc.0000000000000621] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
We investigated whether resveratrol (RSV) can attenuate obesity and diabetes progression and improve diabetes-induced vascular dysfunction, and we attempted to delineate its underlying mechanisms. Male C57Bl/6 mice were administered a high-fat diet (HFD) for 17 weeks. Mice developed type 2 diabetes with increased body weight, hyperglycemia, hyperinsulinemia, and hyperlipidemia. Oral gavage with RSV significantly reversed the symptoms induced by the HFD. Insulin sensitivity likewise improved after the RSV intervention in these mice. Phenylephrine-induced cremaster arteriolar constriction was impaired, whereas RSV treatment significantly mitigated the vessel responsiveness to phenylephrine. The obese diabetic mice exhibited increased leukocyte rolling, adhesion, and transmigration in the postcapillary venules of the cremaster muscle. By contrast, RSV treatment significantly attenuated HFD-induced extravasation. RSV significantly recovered phosphorylated Akt and eNOS expression in the thoracic aorta. In addition, activated adenosine monophosphate-activated protein kinase in the thoracic aorta was involved in the improvement of epithelial function after RSV intervention. RSV considerably upregulated the plasma NO level in HFD mice. Moreover, RSV-enhanced human umbilical vein endothelial cells healing through Sirt1/ER pathway may be involved in the prevention of leukocyte extravasation. Collectively, RSV attenuates diabetes-induced vascular dysfunction by activating Akt/eNOS/NO and Sirt1/ER pathway. Our mechanistic study provides a potential RSV-based therapeutic strategy against cardiovascular disease.
Collapse
|
32
|
Ceasrine AM, Ruiz-Otero N, Lin EE, Lumelsky DN, Boehm ED, Kuruvilla R. Tamoxifen Improves Glucose Tolerance in a Delivery-, Sex-, and Strain-Dependent Manner in Mice. Endocrinology 2019; 160:782-790. [PMID: 30759201 PMCID: PMC6424092 DOI: 10.1210/en.2018-00985] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 02/07/2019] [Indexed: 12/19/2022]
Abstract
Tamoxifen, a selective estrogen-receptor modulator, is widely used in mouse models to temporally control gene expression but is also known to affect body composition. We report that tamoxifen has significant and sustained effects on glucose tolerance, independent of effects on insulin sensitivity, in mice. IP, but not oral, tamoxifen delivery improved glucose tolerance in three inbred mouse strains. The extent and persistence of tamoxifen-induced effects were sex and strain dependent. These findings highlight the need to revise commonly used tamoxifen-based protocols for gene manipulation in mice by including longer chase periods after injection, oral delivery, and the use of tamoxifen-treated littermate controls.
Collapse
Affiliation(s)
- Alexis M Ceasrine
- Department of Biology, Johns Hopkins University, Baltimore, Maryland
- Correspondence: Alexis M. Ceasrine, PhD, Johns Hopkins University, 3400 N. Charles Street, Mudd Hall 200, Baltimore, Maryland 21218. E-mail:
| | | | - Eugene E Lin
- Department of Biology, Johns Hopkins University, Baltimore, Maryland
| | - David N Lumelsky
- Department of Biology, Johns Hopkins University, Baltimore, Maryland
| | - Erica D Boehm
- Department of Biology, Johns Hopkins University, Baltimore, Maryland
| | - Rejji Kuruvilla
- Department of Biology, Johns Hopkins University, Baltimore, Maryland
| |
Collapse
|
33
|
Liberale L, Bonaventura A, Montecucco F, Dallegri F, Carbone F. Impact of Red Wine Consumption on Cardiovascular Health. Curr Med Chem 2019; 26:3542-3566. [PMID: 28521683 DOI: 10.2174/0929867324666170518100606] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Revised: 03/05/2017] [Accepted: 03/05/2017] [Indexed: 12/15/2022]
Abstract
BACKGROUND The devastating effects of heavy alcohol drinking have been long time recognized. In the last decades, potential benefits of modest red wine drinking were suggested. In European countries in which red wide intake is not negligible (such as France), the association between cholesterol and cardiovascular (CV) risk was less evident, suggesting the action of some protective molecules in red wine or other foods and drinks. METHODS This narrative review is based on the material searched for and obtained via PubMed up to May 2016. The search terms we used were: "red wine, cardiovascular, alcohol" in combination with "polyphenols, heart failure, infarction". RESULTS Epidemiological and mechanistic evidence of a J-shaped relationship between red wine intake and CV risk further supported the "French paradox". Specific components of red wine both in vitro and in animal models were discovered. Polyphenols and especially resveratrol largely contribute to CV prevention mainly through antioxidant properties. They exert beneficial effects on endothelial dysfunction and hypertension, dyslipidemia, metabolic diseases, thus reducing the risk of adverse CV events such as myocardial infarction ischemic stroke and heart failure. Of interest, recent studies pointed out the role of ethanol itself as a potential cardioprotective agent, but a clear epidemiological evidence is still missing. The aim of this narrative review is to update current knowledge on the intracellular mechanism underlying the cardioprotective effects of polyphenols and ethanol. Furthermore, we summarized the results of epidemiological studies, emphasizing their methodological criticisms and the need for randomized clinical trials able to clarify the potential role of red wine consumption in reducing CV risk. CONCLUSION Caution in avowing underestimation of the global burden of alcohol-related diseases was particularly used.
Collapse
Affiliation(s)
- Luca Liberale
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, 6 viale Benedetto XV, 16132 Genoa, Italy
| | - Aldo Bonaventura
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, 6 viale Benedetto XV, 16132 Genoa, Italy
| | - Fabrizio Montecucco
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, 6 viale Benedetto XV, 16132 Genoa, Italy
- IRCCS AOU San Martino - IST, Genova, 10 Largo Benzi, 16132 Genoa, Italy
- Centre of Excellence for Biomedical Research (CEBR), University of Genoa, 9 viale Benedetto XV, 16132 Genoa, Italy
| | - Franco Dallegri
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, 6 viale Benedetto XV, 16132 Genoa, Italy
- IRCCS AOU San Martino - IST, Genova, 10 Largo Benzi, 16132 Genoa, Italy
| | - Federico Carbone
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, 6 viale Benedetto XV, 16132 Genoa, Italy
| |
Collapse
|
34
|
Resveratrol: from enhanced biosynthesis and bioavailability to multitargeting chronic diseases. Biomed Pharmacother 2018; 109:2237-2251. [PMID: 30551481 DOI: 10.1016/j.biopha.2018.11.075] [Citation(s) in RCA: 157] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 11/13/2018] [Accepted: 11/19/2018] [Indexed: 12/17/2022] Open
Abstract
Resveratrol, a phytoalexin with a wide range of pharmacological properties is synthesised by plants in response to stress, injury, infection or UV radiations. As it is a secondary metabolite with many health promoting properties, various methods employing microorganisms and genetic manipulation of different synthetic enzymes, have been comprehensively studied to increase its production. Its rapid metabolism and low bioavailability have been addressed by the use of bio enhancers and nano-formulations. This flavonoid is extensively researched due to its pharmacological properties such as anti-oxidative, anti-inflammatory and immuno-modulating effects. Knowledge of these properties of resveratrol has led to elaborate studies on its effect on diabetes, neurodegenerative diseases, cancer, ageing, obesity and cardiovascular diseases. At molecular level it targets sirtuin, adenosine monophosphate kinase, nuclear Factor-κB, inflammatory cytokines, anti-oxidant enzymes along with cellular processes such as angiogenesis, apoptosis, mitochondrial biogenesis, gluconeogenesis and lipid metabolism. This review discusses the properties of resveratrol and the different approaches of addressing the unfavourable synthesis and pharmacokinetics of this stilbene. Pre-clinical evaluations of resveratrol on diabetes mellitus, cardiovascular and neurological diseases are elaborately discussed and the underlying pathways involved in its therapeutic activity have been given paramount importance. Following the pre-clinical studies, clinical trials on the same reveal the efficacy of resveratrol in the effective management of these diseases. This review provides an intricate insight on resveratrol's significance from a dietary component to a therapeutic agent.
Collapse
|
35
|
Koushki M, Amiri‐Dashatan N, Ahmadi N, Abbaszadeh H, Rezaei‐Tavirani M. Resveratrol: A miraculous natural compound for diseases treatment. Food Sci Nutr 2018; 6:2473-2490. [PMID: 30510749 PMCID: PMC6261232 DOI: 10.1002/fsn3.855] [Citation(s) in RCA: 173] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 09/24/2018] [Accepted: 09/26/2018] [Indexed: 12/11/2022] Open
Abstract
Resveratrol (3, 5, 4'-trihydroxystilbene) is a nonflavonoid polyphenol that naturally occurs as phytoalexin. It is produced by plant sources such as grapes, apples, blueberries, plums, and peanut. This compound has critical roles in human health and is well known for its diverse biological activities such as antioxidant and anti-inflammatory properties. Nowadays, due to rising incidence of different diseases such as cancer and diabetes, efforts to find novel and effective disease-protective agents have led to the identification of plant-derived compounds such as resveratrol. Furthermore, several in vitro and in vivo studies have revealed the effectiveness of resveratrol in various diseases such as diabetes mellitus, cardiovascular disease, metabolic syndrome, obesity, inflammatory, neurodegenerative, and age-related diseases. This review presents an overview of currently available studies on preventive properties and essential molecular mechanisms involved in various diseases.
Collapse
Affiliation(s)
- Mehdi Koushki
- Department of BiochemistryFaculty of MedicineTehran University of Medical SciencesTehranIran
| | - Nasrin Amiri‐Dashatan
- Student Research CommitteeProteomics Research CenterShahid Beheshti University of Medical SciencesTehranIran
| | - Nayebali Ahmadi
- Proteomics Research CenterFaculty of Paramedical SciencesShahid Beheshti University of Medical SciencesTehranIran
| | | | - Mostafa Rezaei‐Tavirani
- Proteomics Research CenterFaculty of Paramedical SciencesShahid Beheshti University of Medical SciencesTehranIran
| |
Collapse
|
36
|
Erkan SO, Tuhanioğlu B, Gürgen SG, Özdaş T, Taştekin B, Pelit A, Görgülü O. The effect of resveratrol on the histologic characteristics of the cochlea in diabetic rats. Laryngoscope 2018; 129:E1-E6. [PMID: 30284252 DOI: 10.1002/lary.27253] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Revised: 03/20/2018] [Accepted: 04/04/2018] [Indexed: 11/08/2022]
Abstract
OBJECTIVES/HYPOTHESIS The aim of this study was to investigate changes in the cochlea and the potential dose-dependent effects of resveratrol (RSV) against diabetes mellitus (DM) ototoxicity. STUDY DESIGN Animal model. METHODS Twenty-four male Wistar albino rats were divided into four groups. Baseline distortion product otoacoustic emission (DPOAE) measurements were evaluated. Group I was the control group, group II was made diabetic with single-dose streptozotocin, and groups III and IV were rendered diabetic as group II and administered 10 and 20 mg RSV, respectively, intraperitoneally for 4 weeks. All animals were sacrificed after repeated DPOAE measurement. Apoptosis was investigated using caspase-3, Bax (Bcl-associated X protein), and TUNEL (terminal deoxynucleotidyl transferase dUTP nick end labeling) staining. RESULTS The DPOAE values in the diabetic group were found to be significantly lower compared with the other groups at 5,714 Hz and 8,000 Hz (P < .05). No significant difference in otoacoustic emission was detected in the comparison of the RSV doses (P > .05). The histopathologic investigation using caspase-3, Bax, and TUNEL staining showed that the mean rank of the diabetic group was significantly higher compared with the RSV10, RSV20, and control groups (DM > RSV10 > RSV20 > control) (P < .05). CONCLUSIONS These results imply that RSV administration offered statistically significant protection for the cochleas of rats against diabetes. This protective effect improved histologically with higher doses. LEVEL OF EVIDENCE NA Laryngoscope, 129:E1-E6, 2019.
Collapse
Affiliation(s)
- Sanem O Erkan
- Department of Otorhinolaryngology-Head and Neck Surgery, Health Science University, Adana City Hospital, Yüreğir, Adana, Turkey
| | - Birgül Tuhanioğlu
- Department of Otorhinolaryngology-Head and Neck Surgery, Health Science University, Adana City Hospital, Yüreğir, Adana, Turkey
| | - Seren G Gürgen
- Department of Histology and Embriology, Celal Bayar University, Manisa, Turkey
| | - Talih Özdaş
- Department of Otorhinolaryngology-Head and Neck Surgery, Health Science University, Adana City Hospital, Yüreğir, Adana, Turkey
| | - Bora Taştekin
- Department of Biophysics, Çukurova University, Yüreğir, Adana, Turkey
| | - Aykut Pelit
- Department of Biophysics, Çukurova University, Yüreğir, Adana, Turkey
| | - Orhan Görgülü
- Department of Otorhinolaryngology-Head and Neck Surgery, Health Science University, Adana City Hospital, Yüreğir, Adana, Turkey
| |
Collapse
|
37
|
Kim TT, Parajuli N, Sung MM, Bairwa SC, Levasseur J, Soltys CLM, Wishart DS, Madsen K, Schertzer JD, Dyck JRB. Fecal transplant from resveratrol-fed donors improves glycaemia and cardiovascular features of the metabolic syndrome in mice. Am J Physiol Endocrinol Metab 2018; 315:E511-E519. [PMID: 29870676 DOI: 10.1152/ajpendo.00471.2017] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Oral administration of resveratrol attenuates several symptoms associated with the metabolic syndrome, such as impaired glucose homeostasis and hypertension. Recent work has shown that resveratrol can improve glucose homeostasis in obesity via changes in the gut microbiota. Studies involving fecal microbiome transplants (FMTs) suggest that either live gut microbiota or bacterial-derived metabolites from resveratrol ingestion are responsible for producing the observed benefits in recipients. Herein, we show that obese mice receiving FMTs from healthy resveratrol-fed mice have improved glucose homeostasis within 11 days of the first transplant, and that resveratrol-FMTs is more efficacious than oral supplementation of resveratrol for the same duration. The effects of FMTs from resveratrol-fed mice are also associated with decreased inflammation in the colon of obese recipient mice. Furthermore, we show that sterile fecal filtrates from resveratrol-fed mice are sufficient to improve glucose homeostasis in obese mice, demonstrating that nonliving bacterial, metabolites, or other components within the feces of resveratrol-fed mice are sufficient to reduce intestinal inflammation. These postbiotics may be an integral mechanism by which resveratrol improves hyperglycemia in obesity. Resveratrol-FMTs also reduced the systolic blood pressure of hypertensive mice within 2 wk of the first transplant, indicating that the beneficial effects of resveratrol-FMTs may also assist with improving cardiovascular conditions associated with the metabolic syndrome.
Collapse
Affiliation(s)
- Ty T Kim
- Cardiovascular Research Centre, Department of Pediatrics, Faculty of Medicine and Dentistry, University of Alberta , Edmonton, AB , Canada
| | - Nirmal Parajuli
- Cardiovascular Research Centre, Department of Pediatrics, Faculty of Medicine and Dentistry, University of Alberta , Edmonton, AB , Canada
| | - Miranda M Sung
- Cardiovascular Research Centre, Department of Pediatrics, Faculty of Medicine and Dentistry, University of Alberta , Edmonton, AB , Canada
| | - Suresh C Bairwa
- Cardiovascular Research Centre, Department of Pediatrics, Faculty of Medicine and Dentistry, University of Alberta , Edmonton, AB , Canada
| | - Jody Levasseur
- Cardiovascular Research Centre, Department of Pediatrics, Faculty of Medicine and Dentistry, University of Alberta , Edmonton, AB , Canada
| | - Carrie-Lynn M Soltys
- Cardiovascular Research Centre, Department of Pediatrics, Faculty of Medicine and Dentistry, University of Alberta , Edmonton, AB , Canada
| | - David S Wishart
- The Metabolomics Innovation Centre, University of Alberta , Edmonton, AB , Canada
| | - Karen Madsen
- Division of Gastroenterology, Department of Medicine, University of Alberta , Edmonton, AB , Canada
| | - Jonathan D Schertzer
- Department of Biochemistry and Biomedical Sciences and Farncombe Family Digestive Health Research Institute, McMaster University , Hamilton, ON , Canada
| | - Jason R B Dyck
- Cardiovascular Research Centre, Department of Pediatrics, Faculty of Medicine and Dentistry, University of Alberta , Edmonton, AB , Canada
| |
Collapse
|
38
|
Li Y, Huang J, Yan Y, Liang J, Liang Q, Lu Y, Zhao L, Li H. Preventative effects of resveratrol and estradiol on streptozotocin-induced diabetes in ovariectomized mice and the related mechanisms. PLoS One 2018; 13:e0204499. [PMID: 30273360 PMCID: PMC6166971 DOI: 10.1371/journal.pone.0204499] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 09/10/2018] [Indexed: 12/20/2022] Open
Abstract
Resveratrol, a non-flavonoid polyphenolic compound, is structurally and functionally similar to estrogen and has drawn great attention for its potentially beneficial effects on diabetes. However, it is not known whether it shares the same protective effect against diabetes as estrogen and the underlying mechanisms. The aim of the present study was to investigate the protective effects of phytoestrogen resveratrol and exogenous 17β-estradiol against streptozotocin (STZ)-induced type 1 diabetes. Female mice were ovariectomized (OVX) and chronically injected with different concentrations of resveratrol (0.1, 1 or 10 mg/kg) and 17β-estradiol (0.01, 0.1 or 1 mg/kg) subcutaneously for 4 weeks, and the levels of blood glucose, plasma insulin, plasma antioxidant capacity, the changes of pancreatic islet cells and the expressions of glucose transporter 4 (GLUT4), insulin receptor substrate 1 (IRS-1) and phosphorylation of extracellular signal-regulated kinase (p-ERK) were detected. Resveratrol and 17β-estradiol significantly inhibited the increase of the blood glucose level and the rise of plasma malondialdehyde in STZ-induced diabetic mice, improved the levels of plasma antioxidant capacity and plasma insulin, protected the pancreatic islet cells, and increased the expressions of GLUT4 and IRS-1, but decreased p-ERK expression in skeletal muscle and myocardial tissue. The results suggest that resveratrol or 17β-estradiol shows obvious protection against STZ-induced diabetes in OVX mice, the mechanisms probably involve their ameliorating antioxidant activities and islet function, promoting muscle glucose uptake and inhibiting the expression of p-ERK.
Collapse
Affiliation(s)
- Yunxia Li
- Department of Physiology, College of Basic Medicine, Lanzhou University, Lanzhou, Gansu Province, China
| | - Jinbing Huang
- Department of Physiology, College of Basic Medicine, Lanzhou University, Lanzhou, Gansu Province, China
| | - Yuan Yan
- Department of Physiology, College of Basic Medicine, Lanzhou University, Lanzhou, Gansu Province, China
| | - Jingjing Liang
- Department of Physiology, College of Basic Medicine, Lanzhou University, Lanzhou, Gansu Province, China
| | - Qiankun Liang
- Department of Physiology, College of Basic Medicine, Lanzhou University, Lanzhou, Gansu Province, China
| | - Yanyu Lu
- Function Laboratory in College of Basic Medicine, Lanzhou University, Lanzhou, Gansu Province, China
| | - Li Zhao
- Department of Physiology, College of Basic Medicine, Lanzhou University, Lanzhou, Gansu Province, China
| | - Hongfang Li
- Department of Physiology, College of Basic Medicine, Lanzhou University, Lanzhou, Gansu Province, China
- Key Lab of Preclinical Study for New Drugs of Gansu Province, Lanzhou, Gansu Province, China
| |
Collapse
|
39
|
Wiciński M, Leis K, Szyperski P, Węclewicz M, Mazur E, Pawlak-Osińska K. Impact of resveratrol on exercise performance: A review. Sci Sports 2018. [DOI: 10.1016/j.scispo.2018.02.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
40
|
Resveratrol Counteracts Insulin Resistance-Potential Role of the Circulation. Nutrients 2018; 10:nu10091160. [PMID: 30149556 PMCID: PMC6165300 DOI: 10.3390/nu10091160] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 08/21/2018] [Accepted: 08/22/2018] [Indexed: 01/26/2023] Open
Abstract
Pre-clinical data and human trials indicate that resveratrol supplementation may help to counteract diabetes. Several mechanisms of action have been proposed to explain its metabolic benefits, including activation of sirtuins and estrogen receptors (ER) to promote glucose transporter type-4 (GLUT4) translocation and increase glucose uptake. Resveratrol can also enhance vasodilator function, yet the possibility that this action might help to alleviate insulin resistance in type-2 diabetes mellitus has received little attention. In this brief review we propose that, by restoring impaired endothelium-dependent vasodilatation in insulin resistant individuals resveratrol increases blood perfusion of skeletal muscle, thereby facilitating glucose delivery and utilization with resultant improvement of insulin sensitivity. Thus, circulatory improvements by vasoactive nutrients such as resveratrol may play a role in preventing or alleviating insulin resistance.
Collapse
|
41
|
Huang JP, Hsu SC, Meir YJJ, Hsieh PS, Chang CC, Chen KH, Chen JK, Hung LM. Role of dysfunctional adipocytes in cholesterol-induced nonobese metabolic syndrome. J Mol Endocrinol 2018; 60:307-321. [PMID: 29581238 DOI: 10.1530/jme-17-0194] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 03/26/2018] [Indexed: 01/05/2023]
Abstract
Many studies have reported the causes of obese metabolic syndrome (MS); however, the causes of nonobese MS (NMS) remain unknown. In this study, we demonstrated that inflamed dysfunctional adipose tissue plays a crucial role in cholesterol-induced NMS. Control (C), high cholesterol (HC) and HC with 10% fructose in drinking water (HCF) diets were fed to Sprague-Dawley rats for 12 weeks. After 12 weeks, the body weights of the C- and HC-fed rats were comparable, but the weights of the HCF-fed rats were relatively low. Cholesterol caused metabolic problems such as high blood pressure, hypercholesterolemia and hypoinsulinemia. The HCF-fed rats exhibited whole-body insulin resistance with low circulating high-density lipoprotein levels. Increases in the tumor necrosis factor α level in the plasma, the number of CD68+ macrophages and the free nuclear factor-κB level in gonadal white adipose tissue (gWAT) resulted in local inflammation, which appeared as inflamed dysfunctional gWAT. Reduced superoxide dismutases (SODs) deteriorate natural antioxidant defense systems and induce reactive oxygen species in gWAT. Dysregulation of plasma levels of catecholamine, adipokines (leptin and adiponectin), hormone-sensitive lipase and perilipin in cholesterol-induced inflamed adipose tissue contributed to increased lipolysis and increased circulating nonesterified fatty acids. Cholesterol activated inflammation, lipolysis and cell death in 3T3-L1 adipocytes. Moreover, Chol-3T3-CM reduced the population of M2-type Raw264.7 macrophages, indicating that the macrophage polarization is mediated by cholesterol. Together, our findings indicate that inflamed dysfunctional adipocytes are critical in NMS, supporting the development of anti-inflammatory agents as potential therapeutic drugs for treating NMS.
Collapse
Affiliation(s)
- Jiung-Pang Huang
- Department and Graduate Institute of Biomedical SciencesCollege of Medicine, Chang Gung University, Taoyuan, Taiwan
- Center for Healthy and Aging ResearchChang Gung University, Taoyuan, Taiwan
| | - Sheng-Chieh Hsu
- Department and Graduate Institute of Biomedical SciencesCollege of Medicine, Chang Gung University, Taoyuan, Taiwan
- Department of Obstetrics and GynecologyChang Gung Memorial Hospital, Linkou, Taiwan
| | - Yaa-Jyuhn James Meir
- Department and Graduate Institute of Biomedical SciencesCollege of Medicine, Chang Gung University, Taoyuan, Taiwan
- Center for Tissue EngineeringChang Gung Memorial Hospital, Linkou, Taiwan
- Department of OphthalmologyChang Gung Memorial Hospital, Linkou, Taiwan
| | - Po-Shiuan Hsieh
- Department of Physiology and BiophysicsNational Defense Medical Center, Taipei, Taiwan
| | - Chih-Chun Chang
- Department of Clinical PathologyFar Eastern Memorial Hospital, New Taipei, Taiwan
| | - Kuan-Hsing Chen
- Kidney Research CenterChang Gung Memorial Hospital, Linkou, Taiwan
| | - Jan-Kan Chen
- Center for Healthy and Aging ResearchChang Gung University, Taoyuan, Taiwan
- Department of Physiology and PharmacologyCollege of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Li-Man Hung
- Department and Graduate Institute of Biomedical SciencesCollege of Medicine, Chang Gung University, Taoyuan, Taiwan
- Center for Healthy and Aging ResearchChang Gung University, Taoyuan, Taiwan
- Kidney Research CenterChang Gung Memorial Hospital, Linkou, Taiwan
| |
Collapse
|
42
|
Carnosol Increases Skeletal Muscle Cell Glucose Uptake via AMPK-Dependent GLUT4 Glucose Transporter Translocation. Int J Mol Sci 2018; 19:ijms19051321. [PMID: 29710819 PMCID: PMC5983837 DOI: 10.3390/ijms19051321] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 04/17/2018] [Accepted: 04/26/2018] [Indexed: 12/25/2022] Open
Abstract
Skeletal muscle is a major insulin-target tissue and plays an important role in glucose homeostasis. Insulin action in muscle activates the phosphatidylinositol-3 kinase (PI3K)/Akt signaling pathway causing the translocation of intracellularly stored GLUT4 glucose transporters to the plasma membrane and increased glucose uptake. Impaired insulin action in muscle results in insulin resistance and type 2 diabetes mellitus (T2DM). Activation of the energy sensor AMP-activated kinase (AMPK) increases muscle glucose uptake and the use of AMPK activators is viewed as an effective strategy to combat insulin resistance. Rosemary extract (RE) has been shown to stimulate muscle AMPK and glucose uptake, but the exact components responsible for these effects are unknown. In the current study, we investigated the effect of carnosol, a RE polyphenol, in L6 rat muscle cells. Carnosol stimulated glucose uptake in L6 myotubes in a dose- and time-dependent manner, did not affect Akt, increased AMPK phosphorylation and plasma membrane GLUT4 levels. The carnosol-stimulated glucose uptake and GLUT4 translocation was significantly reduced by the AMPK inhibitor compound C (CC). Our study is the first to show an AMPK-dependent increase in muscle glucose uptake by carnosol. Carnosol has potential as a glucose homeostasis regulating agent and deserves further study.
Collapse
|
43
|
Xu L, Li Y, Dai Y, Peng J. Natural products for the treatment of type 2 diabetes mellitus: Pharmacology and mechanisms. Pharmacol Res 2018; 130:451-465. [PMID: 29395440 DOI: 10.1016/j.phrs.2018.01.015] [Citation(s) in RCA: 287] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Revised: 01/20/2018] [Accepted: 01/22/2018] [Indexed: 02/06/2023]
Abstract
Epidemiological studies have implied that diabetes mellitus (DM) will become an epidemic accompany with metabolic and endocrine disorders worldwide. Most of DM patients are affected by type 2 diabetes mellitus (T2DM) with insulin resistance and insulin secretion defect. Generally, the strategies to treat T2DM are diet control, moderate exercise, hypoglycemic and lipid-lowing agents. Despite the therapeutic benefits for the treatment of T2DM, most of the drugs can produce some undesirable side effects. Considering the pathogenesis of T2DM, natural products (NPs) have become the important resources of bioactive agents for anti-T2DM drug discovery. Recently, more and more natural components have been elucidated to possess anti-T2DM properties, and many efforts have been carried out to elucidate the possible mechanisms. The aim of this paper was to overview the activities and underlying mechanisms of NPs against T2DM. Developments of anti-T2DM agents will be greatly promoted with the increasing comprehensions of NPs for their multiple regulating effects on various targets and signal pathways.
Collapse
Affiliation(s)
- Lina Xu
- College of Pharmacy, Dalian Medical University, Western 9 Lvshunnan Road, Dalian 116044, China
| | - Yue Li
- College of Pharmacy, Dalian Medical University, Western 9 Lvshunnan Road, Dalian 116044, China
| | - Yan Dai
- College of Pharmacy, Dalian Medical University, Western 9 Lvshunnan Road, Dalian 116044, China
| | - Jinyong Peng
- College of Pharmacy, Dalian Medical University, Western 9 Lvshunnan Road, Dalian 116044, China.
| |
Collapse
|
44
|
Li J, Yu H, Wang S, Wang W, Chen Q, Ma Y, Zhang Y, Wang T. Natural products, an important resource for discovery of multitarget drugs and functional food for regulation of hepatic glucose metabolism. DRUG DESIGN DEVELOPMENT AND THERAPY 2018; 12:121-135. [PMID: 29391777 PMCID: PMC5768189 DOI: 10.2147/dddt.s151860] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Imbalanced hepatic glucose homeostasis is one of the critical pathologic events in the development of metabolic syndromes (MSs). Therefore, regulation of imbalanced hepatic glucose homeostasis is important in drug development for MS treatment. In this review, we discuss the major targets that regulate hepatic glucose homeostasis in human physiologic and pathophysiologic processes, involving hepatic glucose uptake, glycolysis and glycogen synthesis, and summarize their changes in MSs. Recent literature suggests the necessity of multitarget drugs in the management of MS disorder for regulation of imbalanced glucose homeostasis in both experimental models and MS patients. Here, we highlight the potential bioactive compounds from natural products with medicinal or health care values, and focus on polypharmacologic and multitarget natural products with effects on various signaling pathways in hepatic glucose metabolism. This review shows the advantage and feasibility of discovering multicompound-multitarget drugs from natural products, and providing a new perspective of ways on drug and functional food development for MSs.
Collapse
Affiliation(s)
- Jian Li
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin
| | - Haiyang Yu
- Department of Phytochemistry, Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Sijian Wang
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin
| | - Wei Wang
- Internal Medicine, Houston Methodist Hospital, Houston, TX, USA
| | - Qian Chen
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin
| | - Yanmin Ma
- Department of Phytochemistry, Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yi Zhang
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin
| | - Tao Wang
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin
| |
Collapse
|
45
|
da Luz PL, Favarato D, Berwanger O. Action of Red Wine and Polyphenols Upon Endothelial Function and Clinical Events. ENDOTHELIUM AND CARDIOVASCULAR DISEASES 2018:391-418. [DOI: 10.1016/b978-0-12-812348-5.00026-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
46
|
Ahmed IZ, Mahdy MM, El Oraby H, Abdelazeem EM. Association of sex hormones with metabolic syndrome among Egyptian males. Diabetes Metab Syndr 2017; 11 Suppl 2:S1059-S1064. [PMID: 28802821 DOI: 10.1016/j.dsx.2017.07.042] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 07/30/2017] [Indexed: 01/15/2023]
Abstract
BACKGROUND Studies have shown that testosterone and estradiol (E2) are associated with metabolic syndrome (MetS). To our knowledge, few studies, if any about the association of endogenous sex hormones with MetS have been done in Egypt. AIM To study the relation between endogenous sex hormones and MetS among Egyptian males. SUBJECTS AND METHOD For the study, 80 Egyptian males were enrolled: 40 males with MetS and 40 healthy age-matched males. Anthropometric measurements and blood pressure were taken for both groups. FBG, TC, HDL-C, TG, testosterone, and E2 levels were determined; LDL-C was calculated. RESULTS Males with MetS had significantly lower testosterone levels and significantly higher E2 levels compared to those without MetS (p value 0.0001). The lowest quartile of testosterone was most prevalent among males with MetS (19/40 males, 47.5%) compared to those without MetS (0/40 males, 0%, p value 0.011). Estradiol in the third quartile was most prevalent among males with MetS (19/40 males, 47.5%) compared to those without MetS (1/40 males, 2.5%, p value 0.0001). Serum testosterone and E2 levels were independent predictors of MetS with optimum cut off value (≤2.37ng/ml) for testosterone and (>16.78pg/ml) for E2. CONCLUSION Endogenous testosterone and estradiol are independently associated with MetS with potential utility as predictors of MetS.
Collapse
Affiliation(s)
- Iman Z Ahmed
- Endocrinology and Metabolism Unit, Internal Medicine Department, Ain Shams University Hospital, Abbassiya Square, Ramsis Street, Cairo 11591, Egypt.
| | - Maram M Mahdy
- Endocrinology and Metabolism Unit, Internal Medicine Department, Ain Shams University Hospital, Abbassiya Square, Ramsis Street, Cairo 11591, Egypt
| | - Hussein El Oraby
- Endocrinology and Metabolism Unit, Internal Medicine Department, Ain Shams University Hospital, Abbassiya Square, Ramsis Street, Cairo 11591, Egypt
| | | |
Collapse
|
47
|
Huang JP, Cheng ML, Hung CY, Wang CH, Hsieh PS, Shiao MS, Chen JK, Li DE, Hung LM. Docosapentaenoic acid and docosahexaenoic acid are positively associated with insulin sensitivity in rats fed high-fat and high-fructose diets. J Diabetes 2017; 9:936-946. [PMID: 27860326 DOI: 10.1111/1753-0407.12505] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 09/28/2016] [Accepted: 11/03/2016] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND The aim of the present study was to compare insulin resistance and metabolic changes using a global lipidomic approach. METHODS Rats were fed a high-fat diet (HFD) or a high-fructose diet (HFrD) for 12 weeks to induce insulin resistance (IR) syndrome. After 12 weeks feeding, physiological and biochemical parameters were examined. Insulin sensitivity and plasma metabolites were evaluated using a euglycemic-hyperinsulinemic clamp and mass spectrometry, respectively. Pearson's correlation coefficient was used to investigate the strength of correlations. RESULTS Rats on both diets developed IR syndrome, characterized by hypertension, hyperlipidemia, hyperinsulinemia, impaired fasting glucose, and IR. Compared with HFrD-fed rats, non-esterified fatty acids were lower and body weight and plasma insulin levels were markedly higher in HFD-fed rats. Adiposity and plasma leptin levels were increased in both groups. However, the size of adipocytes was greater in HFD- than HFrD-fed rats. Notably, the lipidomic heat map revealed metabolites exhibiting greater differences in HFD- and HFrD-fed rats compared with controls. Plasma adrenic acid levels were higher in HFD- than HFrD-fed rats. Nevertheless, linoleic and arachidonic acid levels decreased in HFrD-fed rats compared with controls. Plasma concentrations of docosapentaenoic acid (DPA) and docosahexaenoic acid (DHA) were significantly reduced after feeding of both diets, particularly the HFrD. There was a strong positive correlation between these two fatty acids and the insulin sensitivity index. CONCLUSIONS The systemic lipidomic analysis indicated that a reduction in DHA and DPA was strongly correlated with IR in rats under long-term overnutrition. These results provide a potential therapeutic target for IR and metabolic syndrome.
Collapse
Affiliation(s)
- Jiung-Pang Huang
- Department of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Mei-Ling Cheng
- Department of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Center for Healthy and Aging Research, Chang Gung University, Taoyuan, Taiwan
- Division of Cardiology, Department of Internal Medicine, Heart Failure Center, Chang Gung Memorial Hospital, Keelung, Taiwan
| | - Cheng-Yu Hung
- Center for Healthy and Aging Research, Chang Gung University, Taoyuan, Taiwan
| | - Chao-Hung Wang
- Division of Cardiology, Department of Internal Medicine, Heart Failure Center, Chang Gung Memorial Hospital, Keelung, Taiwan
| | - Po-Shiuan Hsieh
- Department of Physiology and Biophysics, National Defense Medical Center, Taipei, Taiwan
| | - Ming-Shi Shiao
- Department of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Center for Healthy and Aging Research, Chang Gung University, Taoyuan, Taiwan
| | - Jan-Kan Chen
- Center for Healthy and Aging Research, Chang Gung University, Taoyuan, Taiwan
- Department of Physiology and Pharmacology, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Dai-Er Li
- Department of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Li-Man Hung
- Department of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Center for Healthy and Aging Research, Chang Gung University, Taoyuan, Taiwan
- Division of Cardiology, Department of Internal Medicine, Heart Failure Center, Chang Gung Memorial Hospital, Keelung, Taiwan
- Department of Anesthesiology, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| |
Collapse
|
48
|
Milton-Laskibar I, Aguirre L, Macarulla MT, Etxeberria U, Milagro FI, Martínez JA, Contreras J, Portillo MP. Comparative effects of energy restriction and resveratrol intake on glycemic control improvement. Biofactors 2017; 43:371-378. [PMID: 28218490 DOI: 10.1002/biof.1347] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Accepted: 11/17/2016] [Indexed: 12/12/2022]
Abstract
Resveratrol (RSV) has been proposed as an energy restriction mimetic. This study aimed to compare the effects of RSV and energy restriction on insulin resistance induced by an obesogenic diet. Any additive effect of both treatments was also analyzed. Rats were fed a high-fat high-sucrose diet for 6 weeks. They were then distributed in four experimental groups which were either fed a standard control diet (C), or treated with RSV (30 mg/kg/d), or submitted to energy restriction (R, 15%), or treated with RSV and submitted to energy restriction (RR). A glucose tolerance test was performed, and serum glucose, insulin, fructosamine, adiponectin, and leptin concentrations determined. Muscle triacylglycerol content and protein expression of insulin receptor (IRβ), protein kinase B (Akt), Akt substrate of 160 kDa (AS160) and glucose transporter 4 (GLUT-4) were measured. In RSV rats, fructosamine concentrations were reduced, HOMA-IR remained unchanged, but glucose tolerance was improved, without changes in phosphorylation of IRβ, Akt, and AS160 or in GLUT-4 protein expression. Rats under energy restriction showed an improvement in all the markers related to glycemic control, as well as increased phosphorylation of AS160 and protein expression of GLUT-4. In rats from RR group the results were similar to R group, with the exception of IRβ and Akt phosphorylation, which were increased. In conclusion, mild energy restriction is more efficient than intake of RSV within a standard balanced diet, and acts by means of a different mechanism from that of RSV. No additive effects between RSV and energy restriction were observed. © 2017 BioFactors, 43(3):371-378, 2017.
Collapse
Affiliation(s)
- I Milton-Laskibar
- Nutrition and Obesity Group, Department of Nutrition and Food Science, University of the Basque Country (UPV/EHU), Lucio Lascaray Research Institute, Vitoria, Spain
| | - L Aguirre
- Nutrition and Obesity Group, Department of Nutrition and Food Science, University of the Basque Country (UPV/EHU), Lucio Lascaray Research Institute, Vitoria, Spain
- CIBERobn Physiopathology of Obesity and Nutrition, Institute of Health Carlos III, Spain
| | - M T Macarulla
- Nutrition and Obesity Group, Department of Nutrition and Food Science, University of the Basque Country (UPV/EHU), Lucio Lascaray Research Institute, Vitoria, Spain
- CIBERobn Physiopathology of Obesity and Nutrition, Institute of Health Carlos III, Spain
| | - U Etxeberria
- Department of Nutrition, Food Sciences and Physiology, Centre for Nutrition Research University of Navarra, Pamplona, Spain
| | - F I Milagro
- CIBERobn Physiopathology of Obesity and Nutrition, Institute of Health Carlos III, Spain
- Department of Nutrition, Food Sciences and Physiology, Centre for Nutrition Research University of Navarra, Pamplona, Spain
| | - J A Martínez
- CIBERobn Physiopathology of Obesity and Nutrition, Institute of Health Carlos III, Spain
- Department of Nutrition, Food Sciences and Physiology, Centre for Nutrition Research University of Navarra, Pamplona, Spain
| | - J Contreras
- Servicio de Endocrinología y Nutrición Hospital Infanta Luisa, Sevilla, Spain
| | - M P Portillo
- Nutrition and Obesity Group, Department of Nutrition and Food Science, University of the Basque Country (UPV/EHU), Lucio Lascaray Research Institute, Vitoria, Spain
- CIBERobn Physiopathology of Obesity and Nutrition, Institute of Health Carlos III, Spain
| |
Collapse
|
49
|
Szkudelska K, Deniziak M, Roś P, Gwóźdź K, Szkudelski T. Resveratrol alleviates ethanol-induced hormonal and metabolic disturbances in the rat. Physiol Res 2016; 66:135-145. [PMID: 27782737 DOI: 10.33549/physiolres.933335] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Resveratrol is a polyphenol found in different plant species and having numerous health-promoting properties in animals and humans. However, its protective action against deleterious effects of ethanol is poorly elucidated. In the present study, the influence of resveratrol (10 mg/kg/day) on some hormones and metabolic parameters was determined in rats ingesting 10 % ethanol solution for two weeks. Blood levels of insulin, glucagon and adiponectin were affected by ethanol, however, resveratrol partially ameliorated these changes. Moreover, in ethanol drinking rats, liver lipid accumulation was increased, whereas resveratrol was capable of reducing liver lipid content, probably due to decrease in fatty acid synthesis. Resveratrol decreased also blood levels of triglycerides and free fatty acids and reduced gamma-glutamyl transferase activity in animals ingesting ethanol. These results show that resveratrol, already at low dose, alleviates hormonal and metabolic changes induced by ethanol in the rat and may be useful in preventing and treating some consequences of alcohol consumption.
Collapse
Affiliation(s)
- K Szkudelska
- Department of Animal Physiology and Biochemistry, Poznan University of Life Sciences, Poznan, Poland.
| | | | | | | | | |
Collapse
|
50
|
The Aging as a Consequence of Diverse Biological Processes. AGEING INTERNATIONAL 2016. [DOI: 10.1007/s12126-016-9247-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|