1
|
Sali S, Azzam L, Jaro T, Ali AAG, Mardini A, Al-Dajani O, Khattak S, Butler AE, Azeez JM, Nandakumar M. A perfect islet: reviewing recent protocol developments and proposing strategies for stem cell derived functional pancreatic islets. Stem Cell Res Ther 2025; 16:160. [PMID: 40165291 PMCID: PMC11959787 DOI: 10.1186/s13287-025-04293-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 03/25/2025] [Indexed: 04/02/2025] Open
Abstract
The search for an effective cell replacement therapy for diabetes has driven the development of "perfect" pancreatic islets from human pluripotent stem cells (hPSCs). These hPSC-derived pancreatic islet-like β cells can overcome the limitations for disease modelling, drug development and transplantation therapies in diabetes. Nevertheless, challenges remain in generating fully functional and mature β cells from hPSCs. This review underscores the significant efforts made by researchers to optimize various differentiation protocols aimed at enhancing the efficiency and quality of hPSC-derived pancreatic islets and proposes methods for their improvement. By emulating the natural developmental processes of pancreatic embryogenesis, specific growth factors, signaling molecules and culture conditions are employed to guide hPSCs towards the formation of mature β cells capable of secreting insulin in response to glucose. However, the efficiency of these protocols varies greatly among different human embryonic stem cell (hESC) and induced pluripotent stem cell (hiPSC) lines. This variability poses a particular challenge for generating patient-specific β cells. Despite recent advancements, the ultimate goal remains to develop a highly efficient directed differentiation protocol that is applicable across all genetic backgrounds of hPSCs. Although progress has been made, further research is required to optimize the protocols and characterization methods that could ensure the safety and efficacy of hPSC-derived pancreatic islets before they can be utilized in clinical settings.
Collapse
Affiliation(s)
- Sujitha Sali
- King Abdullah University of Science and Technology (KAUST), Thuwal, 23955, Saudi Arabia
- Research Department, School of Postgraduate Studies & Research, Royal College of Surgeons in Ireland Bahrain, Adliya, 15503, Bahrain
| | - Leen Azzam
- School of Medicine, Royal College of Surgeons in Ireland Bahrain, Busaiteen, 15503, Bahrain
| | - Taraf Jaro
- School of Medicine, Royal College of Surgeons in Ireland Bahrain, Busaiteen, 15503, Bahrain
| | - Ahmed Ali Gebril Ali
- School of Medicine, Royal College of Surgeons in Ireland Bahrain, Busaiteen, 15503, Bahrain
| | - Ali Mardini
- School of Medicine, Royal College of Surgeons in Ireland Bahrain, Busaiteen, 15503, Bahrain
| | - Omar Al-Dajani
- School of Medicine, Royal College of Surgeons in Ireland Bahrain, Busaiteen, 15503, Bahrain
| | - Shahryar Khattak
- King Abdullah University of Science and Technology (KAUST), Thuwal, 23955, Saudi Arabia
| | - Alexandra E Butler
- Research Department, School of Postgraduate Studies & Research, Royal College of Surgeons in Ireland Bahrain, Adliya, 15503, Bahrain.
| | - Juberiya M Azeez
- Research Department, School of Postgraduate Studies & Research, Royal College of Surgeons in Ireland Bahrain, Adliya, 15503, Bahrain
| | - Manjula Nandakumar
- Research Department, School of Postgraduate Studies & Research, Royal College of Surgeons in Ireland Bahrain, Adliya, 15503, Bahrain
| |
Collapse
|
2
|
Zhao H, Zhou B. Lineage tracing of pancreatic cells for mechanistic and therapeutic insights. Trends Endocrinol Metab 2025:S1043-2760(24)00330-8. [PMID: 39828453 DOI: 10.1016/j.tem.2024.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 12/11/2024] [Accepted: 12/12/2024] [Indexed: 01/22/2025]
Abstract
Recent advances in lineage-tracing technologies have significantly improved our understanding of pancreatic cell biology, particularly in elucidating the ontogeny and regenerative capacity of pancreatic cells. A deeper appreciation of the mechanisms underlying pancreatic cell identity and plasticity holds the potential to inform the development of new therapeutic modalities for conditions such as diabetes and pancreatitis. With this goal in mind, here we summarize advances, challenges, and future directions in tracing pancreatic cell origins and fates using lineage-tracing technologies. Given their essential role for blood glucose regulation, we pay particular attention on the insights gained from endocrine cells, especially β-cells.
Collapse
Affiliation(s)
- Huan Zhao
- CAS CEMCS-CUHK Joint Laboratories, New Cornerstone Investigator Institute, State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Bin Zhou
- CAS CEMCS-CUHK Joint Laboratories, New Cornerstone Investigator Institute, State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China; School of Life Science and Technology, ShanghaiTech University, Shanghai, China; Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China.
| |
Collapse
|
3
|
Karakose E, Wang X, Wang P, Carcamo S, Demircioglu D, Lambertini L, Wood O, Kang R, Lu G, Scott DK, Garcia-Ocaña A, Argmann C, Sebra RP, Hasson D, Stewart AF. Cycling alpha cells in regenerative drug-treated human pancreatic islets may serve as key beta cell progenitors. Cell Rep Med 2024; 5:101832. [PMID: 39626675 PMCID: PMC11722108 DOI: 10.1016/j.xcrm.2024.101832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 07/30/2024] [Accepted: 10/30/2024] [Indexed: 12/20/2024]
Abstract
Diabetes results from an inadequate number of insulin-producing human beta cells. There is currently no clinically available effective means to restore beta cell mass in millions of people with diabetes. Although the DYRK1A inhibitors, either alone or in combination with GLP-1 receptor agonists (GLP-1) or transforming growth factor β (TGF-β) superfamily inhibitors (LY), induce beta cell replication and increase beta cell mass, the precise mechanisms of action remain elusive. Here we perform single-cell RNA sequencing on human pancreatic islets treated with a DYRK1A inhibitor, either alone or with GLP-1 or LY. We identify cycling alpha cells as the most responsive cells to DYRK1A inhibition. Lineage trajectory analyses suggest that cycling alpha cells may serve as precursor cells that transdifferentiate into beta cells. Collectively, in addition to enhancing expression of beta cell phenotypic genes in beta cells, our findings suggest that regenerative drugs may be targeting cycling alpha cells in human islets.
Collapse
Affiliation(s)
- Esra Karakose
- Diabetes, Obesity, Metabolism Institute, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| | - Xuedi Wang
- Tisch Cancer Institute Bioinformatics for Next Generation Sequencing (BiNGS) Core, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Peng Wang
- Diabetes, Obesity, Metabolism Institute, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Saul Carcamo
- Tisch Cancer Institute Bioinformatics for Next Generation Sequencing (BiNGS) Core, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Deniz Demircioglu
- Tisch Cancer Institute Bioinformatics for Next Generation Sequencing (BiNGS) Core, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Luca Lambertini
- Diabetes, Obesity, Metabolism Institute, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Olivia Wood
- Diabetes, Obesity, Metabolism Institute, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Randy Kang
- Department of Molecular and Cellular Endocrinology, Arthur Riggs Diabetes and Metabolism Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Geming Lu
- Department of Molecular and Cellular Endocrinology, Arthur Riggs Diabetes and Metabolism Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Donald K Scott
- Diabetes, Obesity, Metabolism Institute, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Adolfo Garcia-Ocaña
- Department of Molecular and Cellular Endocrinology, Arthur Riggs Diabetes and Metabolism Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Carmen Argmann
- Department of Genetics and Genomic Sciences, The Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Robert P Sebra
- Department of Genetics and Genomic Sciences, The Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Dan Hasson
- Tisch Cancer Institute Bioinformatics for Next Generation Sequencing (BiNGS) Core, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Andrew F Stewart
- Diabetes, Obesity, Metabolism Institute, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| |
Collapse
|
4
|
Liao Y, Lin Z, Li S, Yin X. Small molecules enhance the high-efficiency generation of pancreatic ductal organoids. Acta Biochim Biophys Sin (Shanghai) 2024. [PMID: 40230288 DOI: 10.3724/abbs.2024218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2025] Open
Abstract
Advancements in three-dimensional (3D) organoid cultures have created more physiologically relevant models for pancreatic disease research, but efficiently generating mature pancreatic ductal cells remains challenging. In this study, we develop a novel protocol to generate pancreatic ductal organoids (PDOs) with high initiation efficiency and an enrichment of pancreatic ductal cells. By utilizing a cocktail of small molecules, we optimize the culture conditions to improve organoid formation. Our findings demonstrate that this protocol facilitates the formation and expansion of PDOs derived from Sox9-positive ductal cells, including heterogeneous ductal cells and acinar cells. These organoid cultures exhibit remarkable stability, supporting long-term expansion. This system provides an efficient model with potential applications in high-throughput drug screening. Moreover, these organoids recapitulate the exocrine cell composition and may reflect the cellular plasticity between ductal and acinar cells, providing a valuable platform for investigating pancreatic diseases such as pancreatic ductal adenocarcinoma (PDAC). The model presents a promising tool for future research aimed at understanding disease mechanisms and potentially helping drug development for pancreatic disorders.
Collapse
|
5
|
Zhang H, Wei Y, Wang Y, Liang J, Hou Y, Nie X, Hou J. Emerging Diabetes Therapies: Regenerating Pancreatic β Cells. TISSUE ENGINEERING. PART B, REVIEWS 2024; 30:644-656. [PMID: 39276101 DOI: 10.1089/ten.teb.2024.0041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/16/2024]
Abstract
The incidence of diabetes mellitus (DM) is steadily increasing annually, with 537 million diabetic patients as of 2021. Restoring diminished β cell mass or impaired islet function is crucial in treating DM, particularly type 1 DM. However, the regenerative capacity of islet β cells, which primarily produce insulin, is severely limited, and natural regeneration is only observed in young rodents or children. Hence, there is an urgent need to develop advanced therapeutic approaches that can regenerate endogenous β cells or replace them with stem cell (SC)-derived or engineered β-like cells. Current strategies for treating insulin-dependent DM mainly include promoting the self-replication of endogenous β cells, inducing SC differentiation, reprogramming non-β cells into β-like cells, and generating pancreatic-like organoids through cell-based intervention. In this Review, we discuss the current state of the art in these approaches, describe associated challenges, propose potential solutions, and highlight ongoing efforts to optimize β cell or islet transplantation and related clinical trials. These effective cell-based therapies will generate a sustainable source of functional β cells for transplantation and lay strong foundations for future curative treatments for DM.
Collapse
Affiliation(s)
- Haojie Zhang
- Key Laboratory of Receptors-Mediated Gene Regulation and Drug Discovery, School of Basic Medical Sciences, Henan University, Kaifeng, China
| | - Yaxin Wei
- Key Laboratory of Receptors-Mediated Gene Regulation and Drug Discovery, School of Basic Medical Sciences, Henan University, Kaifeng, China
| | - Yubo Wang
- Key Laboratory of Receptors-Mediated Gene Regulation and Drug Discovery, School of Basic Medical Sciences, Henan University, Kaifeng, China
| | - Jialin Liang
- Key Laboratory of Receptors-Mediated Gene Regulation and Drug Discovery, School of Basic Medical Sciences, Henan University, Kaifeng, China
| | - Yifan Hou
- Kaifeng 155 Hospital, China RongTong Medical Healthcare Group Co. Ltd., Kaifeng, China
- Department of Urinary Surgery, Henan Provincial Research Center for the Prevention and Diagnosis of Prostate Diseases, Huaihe Hospital, Henan University, Kaifeng, China
| | - Xiaobo Nie
- Key Laboratory of Receptors-Mediated Gene Regulation and Drug Discovery, School of Basic Medical Sciences, Henan University, Kaifeng, China
- Department of Urinary Surgery, Henan Provincial Research Center for the Prevention and Diagnosis of Prostate Diseases, Huaihe Hospital, Henan University, Kaifeng, China
| | - Junqing Hou
- Kaifeng 155 Hospital, China RongTong Medical Healthcare Group Co. Ltd., Kaifeng, China
| |
Collapse
|
6
|
Milešević M, Matić Jelić I, Rumenović V, Ivanjko N, Vukičević S, Bordukalo-Nikšić T. The Influence of BMP6 on Serotonin and Glucose Metabolism. Int J Mol Sci 2024; 25:7842. [PMID: 39063084 PMCID: PMC11276723 DOI: 10.3390/ijms25147842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/11/2024] [Accepted: 07/15/2024] [Indexed: 07/28/2024] Open
Abstract
Previous studies have suggested a potential role of bone morphogenetic protein 6 (BMP6) in glucose metabolism, which also seems to be regulated by serotonin (5-hydroxytryptamine, 5HT), a biogenic amine with multiple roles in the organism. In this study, we explored possible interactions between BMP6, serotonin, and glucose metabolism regulation. The effect of BMP6 or 5HT on pancreatic β-cells has been studied in vitro using the INS-1 832/13 rat insulinoma cell line. Studies in vivo have been performed on mice with the global deletion of the Bmp6 gene (BMP6-/-) and included glucose and insulin tolerance tests, gene expression studies using RT-PCR, immunohistochemistry, and ELISA analyses. We have shown that BMP6 and 5HT treatments have the opposite effect on insulin secretion from INS-1 cells. The effect of BMP6 on the 5HT system in vivo depends on the tissue studied, with no observable systemic effect on peripheral 5HT metabolism. BMP6 deficiency does not cause diabetic changes, although a mild difference in insulin tolerance test between BMP6-/- and WT mice was observed. In conclusion, BMP6 does not directly influence glucose metabolism, but there is a possibility that its deletion causes slowly developing changes in glucose and serotonin metabolism, which would become more expressed with ageing.
Collapse
Affiliation(s)
| | | | | | | | | | - Tatjana Bordukalo-Nikšić
- Laboratory for Mineralized Tissues, Center for Translational and Clinical Research, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (M.M.); (I.M.J.); (V.R.); (N.I.); (S.V.)
| |
Collapse
|
7
|
Oropeza D, Herrera PL. Glucagon-producing α-cell transcriptional identity and reprogramming towards insulin production. Trends Cell Biol 2024; 34:180-197. [PMID: 37626005 DOI: 10.1016/j.tcb.2023.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 07/07/2023] [Accepted: 07/11/2023] [Indexed: 08/27/2023]
Abstract
β-Cell replacement by in situ reprogramming of non-β-cells is a promising diabetes therapy. Following the observation that near-total β-cell ablation in adult mice triggers the reprogramming of pancreatic α-, δ-, and γ-cells into insulin (INS)-producing cells, recent studies are delving deep into the mechanisms controlling adult α-cell identity. Systematic analyses of the α-cell transcriptome and epigenome have started to pinpoint features that could be crucial for maintaining α-cell identity. Using different transgenic and chemical approaches, significant advances have been made in reprogramming α-cells in vivo into INS-secreting cells in mice. The recent reprogramming of human α-cells in vitro is an important step forward that must now be complemented with a comprehensive molecular dissection of the mechanisms controlling α-cell identity.
Collapse
Affiliation(s)
- Daniel Oropeza
- Department of Genetic Medicine and Development, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Pedro Luis Herrera
- Department of Genetic Medicine and Development, Faculty of Medicine, University of Geneva, Geneva, Switzerland.
| |
Collapse
|
8
|
Karpov DS, Sosnovtseva AO, Pylina SV, Bastrich AN, Petrova DA, Kovalev MA, Shuvalova AI, Eremkina AK, Mokrysheva NG. Challenges of CRISPR/Cas-Based Cell Therapy for Type 1 Diabetes: How Not to Engineer a "Trojan Horse". Int J Mol Sci 2023; 24:17320. [PMID: 38139149 PMCID: PMC10743607 DOI: 10.3390/ijms242417320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/04/2023] [Accepted: 12/07/2023] [Indexed: 12/24/2023] Open
Abstract
Type 1 diabetes mellitus (T1D) is an autoimmune disease caused by the destruction of insulin-producing β-cells in the pancreas by cytotoxic T-cells. To date, there are no drugs that can prevent the development of T1D. Insulin replacement therapy is the standard care for patients with T1D. This treatment is life-saving, but is expensive, can lead to acute and long-term complications, and results in reduced overall life expectancy. This has stimulated the research and development of alternative treatments for T1D. In this review, we consider potential therapies for T1D using cellular regenerative medicine approaches with a focus on CRISPR/Cas-engineered cellular products. However, CRISPR/Cas as a genome editing tool has several drawbacks that should be considered for safe and efficient cell engineering. In addition, cellular engineering approaches themselves pose a hidden threat. The purpose of this review is to critically discuss novel strategies for the treatment of T1D using genome editing technology. A well-designed approach to β-cell derivation using CRISPR/Cas-based genome editing technology will significantly reduce the risk of incorrectly engineered cell products that could behave as a "Trojan horse".
Collapse
Affiliation(s)
- Dmitry S. Karpov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (D.S.K.); (A.O.S.); (M.A.K.); (A.I.S.)
| | - Anastasiia O. Sosnovtseva
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (D.S.K.); (A.O.S.); (M.A.K.); (A.I.S.)
| | - Svetlana V. Pylina
- Endocrinology Research Centre, 115478 Moscow, Russia; (S.V.P.); (A.N.B.); (D.A.P.); (A.K.E.)
| | - Asya N. Bastrich
- Endocrinology Research Centre, 115478 Moscow, Russia; (S.V.P.); (A.N.B.); (D.A.P.); (A.K.E.)
| | - Darya A. Petrova
- Endocrinology Research Centre, 115478 Moscow, Russia; (S.V.P.); (A.N.B.); (D.A.P.); (A.K.E.)
| | - Maxim A. Kovalev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (D.S.K.); (A.O.S.); (M.A.K.); (A.I.S.)
| | - Anastasija I. Shuvalova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (D.S.K.); (A.O.S.); (M.A.K.); (A.I.S.)
| | - Anna K. Eremkina
- Endocrinology Research Centre, 115478 Moscow, Russia; (S.V.P.); (A.N.B.); (D.A.P.); (A.K.E.)
| | - Natalia G. Mokrysheva
- Endocrinology Research Centre, 115478 Moscow, Russia; (S.V.P.); (A.N.B.); (D.A.P.); (A.K.E.)
| |
Collapse
|
9
|
Doke M, Álvarez-Cubela S, Klein D, Altilio I, Schulz J, Mateus Gonçalves L, Almaça J, Fraker CA, Pugliese A, Ricordi C, Qadir MMF, Pastori RL, Domínguez-Bendala J. Dynamic scRNA-seq of live human pancreatic slices reveals functional endocrine cell neogenesis through an intermediate ducto-acinar stage. Cell Metab 2023; 35:1944-1960.e7. [PMID: 37898119 DOI: 10.1016/j.cmet.2023.10.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 08/23/2023] [Accepted: 10/03/2023] [Indexed: 10/30/2023]
Abstract
Human pancreatic plasticity is implied from multiple single-cell RNA sequencing (scRNA-seq) studies. However, these have been invariably based on static datasets from which fate trajectories can only be inferred using pseudotemporal estimations. Furthermore, the analysis of isolated islets has resulted in a drastic underrepresentation of other cell types, hindering our ability to interrogate exocrine-endocrine interactions. The long-term culture of human pancreatic slices (HPSs) has presented the field with an opportunity to dynamically track tissue plasticity at the single-cell level. Combining datasets from same-donor HPSs at different time points, with or without a known regenerative stimulus (BMP signaling), led to integrated single-cell datasets storing true temporal or treatment-dependent information. This integration revealed population shifts consistent with ductal progenitor activation, blurring of ductal/acinar boundaries, formation of ducto-acinar-endocrine differentiation axes, and detection of transitional insulin-producing cells. This study provides the first longitudinal scRNA-seq analysis of whole human pancreatic tissue, confirming its plasticity in a dynamic fashion.
Collapse
Affiliation(s)
- Mayur Doke
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Silvia Álvarez-Cubela
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Dagmar Klein
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Isabella Altilio
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Joseph Schulz
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Luciana Mateus Gonçalves
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Joana Almaça
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Christopher A Fraker
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Alberto Pugliese
- Arthur Riggs Diabetes & Metabolism Research Institute, City of Hope, Duarte, CA 91010, USA
| | - Camillo Ricordi
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Mirza M F Qadir
- Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Ricardo L Pastori
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA.
| | - Juan Domínguez-Bendala
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA.
| |
Collapse
|
10
|
Li Y, He C, Liu R, Xiao Z, Sun B. Stem cells therapy for diabetes: from past to future. Cytotherapy 2023; 25:1125-1138. [PMID: 37256240 DOI: 10.1016/j.jcyt.2023.04.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 04/05/2023] [Accepted: 04/24/2023] [Indexed: 06/01/2023]
Abstract
Diabetes mellitus is a chronic disease of carbohydrate metabolism characterized by uncontrolled hyperglycemia due to the body's impaired ability to produce or respond to insulin. Oral or injectable exogenous insulin and its analogs cannot mimic endogenous insulin secreted by healthy individuals, and pancreatic and islet transplants face a severe shortage of sources and transplant complications, all of which limit the widespread use of traditional strategies in diabetes treatment. We are now in the era of stem cells and their potential in ameliorating human disease. At the same time, the rapid development of gene editing and cell-encapsulation technologies has added to the wings of stem cell therapy. However, there are still many unanswered questions before stem cell therapy can be applied clinically to patients with diabetes. In this review, we discuss the progress of strategies to obtain insulin-producing cells from different types of stem cells, the application of gene editing in stem cell therapy for diabetes, as well as summarize the current advanced cell encapsulation technologies in diabetes therapy and look forward to the future development of stem cell therapy in diabetes.
Collapse
Affiliation(s)
- Yumin Li
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| | - Cong He
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China; Department of Hepatobiliary Surgery, Nanjing Drum Tower Hospital,The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Rui Liu
- Department of Genetic Engineering, College of Natural Science, University of Suwon, Kyunggi-Do, Republic of Korea
| | - Zhongdang Xiao
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China.
| | - Bo Sun
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China.
| |
Collapse
|
11
|
Song SH, Han D, Park K, Um JE, Kim S, Ku M, Yang J, Yoo TH, Yook JI, Kim NH, Kim HS. Bone morphogenetic protein-7 attenuates pancreatic damage under diabetic conditions and prevents progression to diabetic nephropathy via inhibition of ferroptosis. Front Endocrinol (Lausanne) 2023; 14:1172199. [PMID: 37293506 PMCID: PMC10244744 DOI: 10.3389/fendo.2023.1172199] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 05/04/2023] [Indexed: 06/10/2023] Open
Abstract
Background Approximately 30% of diabetic patients develop diabetic nephropathy, a representative microvascular complication. Although the etiological mechanism has not yet been fully elucidated, renal tubular damage by hyperglycemia-induced expression of transforming growth factor-β (TGF-β) is known to be involved. Recently, a new type of cell death by iron metabolism called ferroptosis was reported to be involved in kidney damage in animal models of diabetic nephropathy, which could be induced by TGF-β. Bone morphogenetic protein-7 (BMP7) is a well-known antagonist of TGF-β inhibiting TGF-β-induced fibrosis in many organs. Further, BMP7 has been reported to play a role in the regeneration of pancreatic beta cells in diabetic animal models. Methods We used protein transduction domain (PTD)-fused BMP7 in micelles (mPTD-BMP7) for long-lasting in vivo effects and effective in vitro transduction and secretion. Results mPTD-BMP7 successfully accelerated the regeneration of diabetic pancreas and impeded progression to diabetic nephropathy. With the administration of mPTD-BMP7, clinical parameters and representative markers of pancreatic damage were alleviated in a mouse model of streptozotocin-induced diabetes. It not only inhibited the downstream genes of TGF-β but also attenuated ferroptosis in the kidney of the diabetic mouse and TGF-β-stimulated rat kidney tubular cells. Conclusion BMP7 impedes the progression of diabetic nephropathy by inhibiting the canonical TGF-β pathway, attenuating ferroptosis, and helping regenerate diabetic pancreas.
Collapse
Affiliation(s)
- Sang Hyun Song
- Department of Oral Pathology, Yonsei University College of Dentistry, Seoul, Republic of Korea
| | - Dawool Han
- Department of Oral Pathology, Yonsei University College of Dentistry, Seoul, Republic of Korea
- Oral Cancer Research Institute, Yonsei University College of Dentistry, Seoul, Republic of Korea
| | - Kyeonghui Park
- Department of Oral Pathology, Yonsei University College of Dentistry, Seoul, Republic of Korea
| | - Jo Eun Um
- R&D Center, MET Life Science, Seoul, Republic of Korea
| | - Seonghun Kim
- Oral Cancer Research Institute, Yonsei University College of Dentistry, Seoul, Republic of Korea
- R&D Center, MET Life Science, Seoul, Republic of Korea
| | - Minhee Ku
- Department of Radiology, Yonsei University College of Medicine, Seoul, Republic of Korea
- Convergence Research Center for Systems Molecular Radiological Science, Yonsei University, Seoul, Republic of Korea
| | - Jaemoon Yang
- Department of Radiology, Yonsei University College of Medicine, Seoul, Republic of Korea
- Convergence Research Center for Systems Molecular Radiological Science, Yonsei University, Seoul, Republic of Korea
| | - Tae-Hyun Yoo
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jong In Yook
- Department of Oral Pathology, Yonsei University College of Dentistry, Seoul, Republic of Korea
- Oral Cancer Research Institute, Yonsei University College of Dentistry, Seoul, Republic of Korea
| | - Nam Hee Kim
- Department of Oral Pathology, Yonsei University College of Dentistry, Seoul, Republic of Korea
- Oral Cancer Research Institute, Yonsei University College of Dentistry, Seoul, Republic of Korea
| | - Hyun Sil Kim
- Department of Oral Pathology, Yonsei University College of Dentistry, Seoul, Republic of Korea
- Oral Cancer Research Institute, Yonsei University College of Dentistry, Seoul, Republic of Korea
| |
Collapse
|
12
|
Scherbakov VI, Skosyreva GA, Ryabichenko TI, Obukhova OO. Cytokines and regulation of glucose and lipid metabolism in the obesity. OBESITY AND METABOLISM 2022. [DOI: 10.14341/omet12863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The article presents data of the influence of cytokines of different directions of glucose and lipid metabolism in obesity. A change of the basic paradigm regarding adipose tissue has contributed to a number of recent discoveries. This concerns such basic concepts as healthy and diseased adipocytes, and, as a consequence, changes of their metabolism under the influence of cytokins. Distinguishing the concept of organokines demonstrates that despite the common features of cytokine regulation, each organ has its own specifics features of cytokine regulation, each organ has its own specific an important section of this concept is the idea of the heterogeneity of adipose tissue. Knowledge of the function of adipose tissue localized in different compartments of the body is expanding. There are date about the possibility of transition of one type of adipose tissue to another. A possible mechanism linking adipose tissue inflammation and the formation of insulin resistance (IR) is presented in this paper. The mechanism of IR development is closely connected with to proinflammatory cytokins disordering the insulin signal, accompanied by a decrease of the work of glucose transporters. A decrease of the income of glucose into cells leads to a change of glycolysis level to an increase of the fatty acids oxidation. Cytokins are able to participate in the process of the collaboration of some cells with others, that occurs both during physiological and pathological process.
Collapse
Affiliation(s)
- V. I. Scherbakov
- Federal Research Center of Fundamental and Translational Medicine
| | - G. A. Skosyreva
- Federal Research Center of Fundamental and Translational Medicine
| | | | - O. O. Obukhova
- Federal Research Center of Fundamental and Translational Medicine
| |
Collapse
|
13
|
Reprogramming—Evolving Path to Functional Surrogate β-Cells. Cells 2022; 11:cells11182813. [PMID: 36139388 PMCID: PMC9496933 DOI: 10.3390/cells11182813] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 09/04/2022] [Accepted: 09/07/2022] [Indexed: 12/04/2022] Open
Abstract
Numerous cell sources are being explored to replenish functional β-cell mass since the proof-of -concept for cell therapy of diabetes was laid down by transplantation of islets. Many of these cell sources have been shown to possess a degree of plasticity permitting differentiation along new lineages into insulin-secreting β-cells. In this review, we explore emerging reprograming pathways that aim to generate bone fide insulin producing cells. We focus on small molecules and key transcriptional regulators that orchestrate phenotypic conversion and maintenance of engineered cells.
Collapse
|
14
|
Silva IBB, Kimura CH, Colantoni VP, Sogayar MC. Stem cells differentiation into insulin-producing cells (IPCs): recent advances and current challenges. Stem Cell Res Ther 2022; 13:309. [PMID: 35840987 PMCID: PMC9284809 DOI: 10.1186/s13287-022-02977-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Accepted: 06/19/2022] [Indexed: 11/10/2022] Open
Abstract
Type 1 diabetes mellitus (T1D) is a chronic disease characterized by an autoimmune destruction of insulin-producing β-pancreatic cells. Although many advances have been achieved in T1D treatment, current therapy strategies are often unable to maintain perfect control of glycemic levels. Several studies are searching for new and improved methodologies for expansion of β-cell cultures in vitro to increase the supply of these cells for pancreatic islets replacement therapy. A promising approach consists of differentiation of stem cells into insulin-producing cells (IPCs) in sufficient number and functional status to be transplanted. Differentiation protocols have been designed using consecutive cytokines or signaling modulator treatments, at specific dosages, to activate or inhibit the main signaling pathways that control the differentiation of induced pluripotent stem cells (iPSCs) into pancreatic β-cells. Here, we provide an overview of the current approaches and achievements in obtaining stem cell-derived β-cells and the numerous challenges, which still need to be overcome to achieve this goal. Clinical translation of stem cells-derived β-cells for efficient maintenance of long-term euglycemia remains a major issue. Therefore, research efforts have been directed to the final steps of in vitro differentiation, aiming at production of functional and mature β-cells and integration of interdisciplinary fields to generate efficient cell therapy strategies capable of reversing the clinical outcome of T1D.
Collapse
Affiliation(s)
- Isaura Beatriz Borges Silva
- Cell and Molecular Therapy Center (NUCEL), School of Medicine, University of São Paulo, São Paulo, SP, 05360-130, Brazil.,Department of Biochemistry, Chemistry Institute, University of São Paulo, São Paulo, SP, 05508-000, Brazil
| | - Camila Harumi Kimura
- Cell and Molecular Therapy Center (NUCEL), School of Medicine, University of São Paulo, São Paulo, SP, 05360-130, Brazil
| | - Vitor Prado Colantoni
- Cell and Molecular Therapy Center (NUCEL), School of Medicine, University of São Paulo, São Paulo, SP, 05360-130, Brazil.,Department of Biochemistry, Chemistry Institute, University of São Paulo, São Paulo, SP, 05508-000, Brazil
| | - Mari Cleide Sogayar
- Cell and Molecular Therapy Center (NUCEL), School of Medicine, University of São Paulo, São Paulo, SP, 05360-130, Brazil. .,Department of Biochemistry, Chemistry Institute, University of São Paulo, São Paulo, SP, 05508-000, Brazil.
| |
Collapse
|
15
|
Basile G, Qadir MMF, Mauvais-Jarvis F, Vetere A, Shoba V, Modell AE, Pastori RL, Russ HA, Wagner BK, Dominguez-Bendala J. Emerging diabetes therapies: Bringing back the β-cells. Mol Metab 2022; 60:101477. [PMID: 35331962 PMCID: PMC8987999 DOI: 10.1016/j.molmet.2022.101477] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 03/11/2022] [Accepted: 03/14/2022] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Stem cell therapies are finally coming of age as a viable alternative to pancreatic islet transplantation for the treatment of insulin-dependent diabetes. Several clinical trials using human embryonic stem cell (hESC)-derived β-like cells are currently underway, with encouraging preliminary results. Remaining challenges notwithstanding, these strategies are widely expected to reduce our reliance on human isolated islets for transplantation procedures, making cell therapies available to millions of diabetic patients. At the same time, advances in our understanding of pancreatic cell plasticity and the molecular mechanisms behind β-cell replication and regeneration have spawned a multitude of translational efforts aimed at inducing β-cell replenishment in situ through pharmacological means, thus circumventing the need for transplantation. SCOPE OF REVIEW We discuss here the current state of the art in hESC transplantation, as well as the parallel quest to discover agents capable of either preserving the residual mass of β-cells or inducing their proliferation, transdifferentiation or differentiation from progenitor cells. MAJOR CONCLUSIONS Stem cell-based replacement therapies in the mold of islet transplantation are already around the corner, but a permanent cure for type 1 diabetes will likely require the endogenous regeneration of β-cells aided by interventions to restore the immune balance. The promise of current research avenues and a strong pipeline of clinical trials designed to tackle these challenges bode well for the realization of this goal.
Collapse
Affiliation(s)
- G Basile
- Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA
| | - M M F Qadir
- Tulane University School of Medicine, New Orleans, LA, USA; Southeast Louisiana Veterans Affairs Medical Center, New Orleans, LA, USA
| | - F Mauvais-Jarvis
- Tulane University School of Medicine, New Orleans, LA, USA; Southeast Louisiana Veterans Affairs Medical Center, New Orleans, LA, USA
| | - A Vetere
- Broad Institute, Cambridge, MA, USA
| | - V Shoba
- Broad Institute, Cambridge, MA, USA
| | | | - R L Pastori
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL, USA
| | - H A Russ
- Barbara Davis Center for Diabetes, Colorado University Anschutz Medical Campus, Aurora, CO, USA.
| | | | - J Dominguez-Bendala
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL, USA.
| |
Collapse
|
16
|
Domínguez-Bendala J, Qadir MMF, Pastori RL. Temporal single-cell regeneration studies: the greatest thing since sliced pancreas? Trends Endocrinol Metab 2021; 32:433-443. [PMID: 34006411 PMCID: PMC8239162 DOI: 10.1016/j.tem.2021.04.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 04/12/2021] [Accepted: 04/16/2021] [Indexed: 01/01/2023]
Abstract
The application of single-cell analytic techniques to the study of stem/progenitor cell niches supports the emerging view that pancreatic cell lineages are in a state of flux between differentiation stages. For all their value, however, such analyses merely offer a snapshot of the cellular palette of the tissue at any given time point. Conclusions about potential developmental/regeneration paths are solely based on bioinformatics inferences. In this context, the advent of new techniques for the long-term culture and lineage tracing of human pancreatic slices offers a virtual window into the native organ and presents the field with a unique opportunity to serially resolve pancreatic regeneration dynamics at the single-cell level.
Collapse
Affiliation(s)
- Juan Domínguez-Bendala
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA; Department of Cell Biology and Anatomy, University of Miami Miller School of Medicine, Miami, FL 33136, USA.
| | - Mirza Muhammad Fahd Qadir
- Section of Endocrinology and Metabolism, Tulane University Health Sciences Center, New Orleans, LA 70112, USA
| | - Ricardo Luis Pastori
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA; Department of Medicine, Division of Metabolism, Endocrinology and Diabetes, University of Miami Miller School of Medicine, Miami, FL 33136, USA.
| |
Collapse
|
17
|
Abstract
Pancreatic islet beta cells (β-cells) synthesize and secrete insulin in response to rising glucose levels and thus are a prime target in both major forms of diabetes. Type 1 diabetes ensues due to autoimmune destruction of β-cells. On the other hand, the prevailing insulin resistance and hyperglycemia in type 2 diabetes (T2D) elicits a compensatory response from β-cells that involves increases in β-cell mass and function. However, the sustained metabolic stress results in β-cell failure, characterized by severe β-cell dysfunction and loss of β-cell mass. Dynamic changes to β-cell mass also occur during pancreatic development that involves extensive growth and morphogenesis. These orchestrated events are triggered by multiple signaling pathways, including those representing the transforming growth factor β (TGF-β) superfamily. TGF-β pathway ligands play important roles during endocrine pancreas development, β-cell proliferation, differentiation, and apoptosis. Furthermore, new findings are suggestive of TGF-β's role in regulation of adult β-cell mass and function. Collectively, these findings support the therapeutic utility of targeting TGF-β in diabetes. Summarizing the role of the various TGF-β pathway ligands in β-cell development, growth and function in normal physiology, and during diabetes pathogenesis is the topic of this mini-review.
Collapse
Affiliation(s)
- Ji-Hyun Lee
- Cell Growth and Metabolism Section, Diabetes, Endocrinology & Obesity Branch, National Institutes of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Clinical Research Center, Bethesda, MD, USA
| | - Ji-Hyeon Lee
- Cell Growth and Metabolism Section, Diabetes, Endocrinology & Obesity Branch, National Institutes of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Clinical Research Center, Bethesda, MD, USA
| | - Sushil G Rane
- Cell Growth and Metabolism Section, Diabetes, Endocrinology & Obesity Branch, National Institutes of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Clinical Research Center, Bethesda, MD, USA
- Correspondence: Sushil G. Rane, PhD, Cell Growth and Metabolism Section, Diabetes, Endocrinology and Obesity Branch, National Institutes of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Clinical Research Center, Building 10, CRC-West 5-5940, 10 Center Drive, Bethesda, MD 20892, USA.
| |
Collapse
|
18
|
Wang KL, Tao M, Wei TJ, Wei R. Pancreatic β cell regeneration induced by clinical and preclinical agents. World J Stem Cells 2021; 13:64-77. [PMID: 33584980 PMCID: PMC7859987 DOI: 10.4252/wjsc.v13.i1.64] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 11/16/2020] [Accepted: 11/29/2020] [Indexed: 02/06/2023] Open
Abstract
Diabetes, one of the most common chronic diseases in the modern world, has pancreatic β cell deficiency as a major part of its pathophysiological mechanism. Pancreatic regeneration is a potential therapeutic strategy for the recovery of β cell loss. However, endocrine islets have limited regenerative capacity, especially in adult humans. Almost all hypoglycemic drugs can protect β cells by inhibiting β cell apoptosis and dedifferentiation via correction of hyperglycemia and amelioration of the consequent inflammation and oxidative stress. Several agents, including glucagon-like peptide-1 and γ-aminobutyric acid, have been shown to promote β cell proliferation, which is considered the main source of the regenerated β cells in adult rodents, but with less clarity in humans. Pancreatic progenitor cells might exist and be activated under particular circumstances. Artemisinins and γ-aminobutyric acid can induce α-to-β cell conversion, although some disputes exist. Intestinal endocrine progenitors can transdeterminate into insulin-producing cells in the gut after FoxO1 deletion, and pharmacological research into FoxO1 inhibition is ongoing. Other cells, including pancreatic acinar cells, can transdifferentiate into β cells, and clinical and preclinical strategies are currently underway. In this review, we summarize the clinical and preclinical agents used in different approaches for β cell regeneration and make some suggestions regarding future perspectives for clinical application.
Collapse
Affiliation(s)
- Kang-Li Wang
- Department of Endocrinology and Metabolism, Peking University Third Hospital, Beijing 100191, China
| | - Ming Tao
- Department of General Surgery, Peking University Third Hospital, Beijing 100191, China
| | - Tian-Jiao Wei
- Department of Endocrinology and Metabolism, Peking University Third Hospital, Beijing 100191, China
| | - Rui Wei
- Department of Endocrinology and Metabolism, Peking University Third Hospital, Beijing 100191, China
| |
Collapse
|
19
|
Spears E, Serafimidis I, Powers AC, Gavalas A. Debates in Pancreatic Beta Cell Biology: Proliferation Versus Progenitor Differentiation and Transdifferentiation in Restoring β Cell Mass. Front Endocrinol (Lausanne) 2021; 12:722250. [PMID: 34421829 PMCID: PMC8378310 DOI: 10.3389/fendo.2021.722250] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 07/14/2021] [Indexed: 12/12/2022] Open
Abstract
In all forms of diabetes, β cell mass or function is reduced and therefore the capacity of the pancreatic cells for regeneration or replenishment is a critical need. Diverse lines of research have shown the capacity of endocrine as well as acinar, ductal and centroacinar cells to generate new β cells. Several experimental approaches using injury models, pharmacological or genetic interventions, isolation and in vitro expansion of putative progenitors followed by transplantations or a combination thereof have suggested several pathways for β cell neogenesis or regeneration. The experimental results have also generated controversy related to the limitations and interpretation of the experimental approaches and ultimately their physiological relevance, particularly when considering differences between mouse, the primary animal model, and human. As a result, consensus is lacking regarding the relative importance of islet cell proliferation or progenitor differentiation and transdifferentiation of other pancreatic cell types in generating new β cells. In this review we summarize and evaluate recent experimental approaches and findings related to islet regeneration and address their relevance and potential clinical application in the fight against diabetes.
Collapse
Affiliation(s)
- Erick Spears
- Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Ioannis Serafimidis
- Center of Basic Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Alvin C. Powers
- Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN, United States
- VA Tennessee Valley Healthcare System, Nashville, TN, United States
- *Correspondence: Anthony Gavalas, ; Alvin C. Powers,
| | - Anthony Gavalas
- Paul Langerhans Institute Dresden (PLID) of Helmholtz Center Munich at the University Clinic Carl Gustav Carus of TU Dresden, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- German Centre for Diabetes Research (DZD), Neuherberg, Germany
- *Correspondence: Anthony Gavalas, ; Alvin C. Powers,
| |
Collapse
|
20
|
Different combinations of GABA, BMP7, and Activin A induced the in vitro differentiation of rat pancreatic ductal stem cells into insulin-secreting islet-like cell clusters. Life Sci 2020; 267:118451. [PMID: 32956667 DOI: 10.1016/j.lfs.2020.118451] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 09/09/2020] [Accepted: 09/11/2020] [Indexed: 11/22/2022]
Abstract
AIMS We investigated the in vitro differentiation of adult rat PDESCs into β-like cells through supplementation of different combinations of GABA, BMP7, and Activin A in basic culture media. MATERIALS AND METHODS The PDESCs were cultured using different inducement combinations for 28 days and microscopy, dithizone (DTZ) staining, immunohistochemical staining, real-time PCR, and glucose-stimulated insulin secretion (GSIS) assay were used to delineate the differentiation inducement potential of these combinations. KEY FINDINGS The results show that after 28 days, the PDESCs were differentiated into ICCs containing insulin-secreting β-like cells in different groups treated with A + B, A + G, B + G, and A + B + G but not in the control group. Upon DTZ staining the cells in ICCs were stained crimson red, demonstrating the presence of β-like cells in ICCs and the immunohistochemistry showed the expression of Pdx1 and insulin in ICCs. Further, on 28 d the expression of Pdx1 and insulin mRNA was high in inducement groups as compared to the control group and β-like cells in ICCs also secreted insulin and C-peptide upon glucose stimulation. Thus, the supplementation of GABA, BMP7, and Activin A in different combinations in basic culture media can induce the in vitro differentiation of PDESCs into ICCs containing β-like cells. SIGNIFICANCE The in vitro development of β-like cells is a herald for cell therapy of diabetic patients and our results are a step closer towards finding the cure for diabetes.
Collapse
|
21
|
Ghani MW, Bin L, Jie Y, Yi Z, Jiang W, Ye L, Cun LG, Birmani MW, Zhuangzhi Z, Lilong A, Mei X. Differentiation of rat pancreatic duct stem cells into insulin-secreting islet-like cell clusters through BMP7 inducement. Tissue Cell 2020; 67:101439. [PMID: 32979709 DOI: 10.1016/j.tice.2020.101439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 08/31/2020] [Accepted: 08/31/2020] [Indexed: 11/30/2022]
Abstract
To cure the epidemic of diabetes, in vitro produced β-like cells are lauded for cell therapy of diabetic patients. In this regard, we investigated the effects of different concentrations of bone morphogenetic protein 7 (BMP7) on the differentiation of rat pancreatic ductal epithelial-like stem cells (PDESCs) into β-like cells. For inducement of the differentiation, PDESCs were cultured in the basal media (H-DMEM + 10 % FBS + 1% penicillin-streptomycin) supplemented with 5 ng/mL, 10 ng/mL, 15 ng/mL, and 20 ng/mL of BMP7 for 28 days. To corroborate the identity of induced cells, they were examined through cell morphology, dithizone (DTZ) staining, immunofluorescence staining, real-time polymerase chain reaction (qPCR), and glucose-stimulated insulin secretion assay (GSIS). The enrichment of induced cells was high among 5 ng/mL, 10 ng/mL, 15 ng/mL, and 20 ng/mL of BMP7 supplemented groups as compared to the control group. Further, the induced cells were positive, while, the control group cells were negative to DTZ staining and the differentiated cells also have shown the upregulated expression of β cell-specific marker genes (Ins1 and Pdx1). The GSIS assay of inducement groups for insulin and C-peptide secretion has shown significantly higher values as compared to the control group (P < 0.01). Hence, the addition of BMP7 to basal medium has effectually induced differentiation of adult rat PDESCs into islet like-cell clusters containing insulin-secreting β-like cells.
Collapse
Affiliation(s)
- Muhammad Waseem Ghani
- Department of Animal Science and Medicine, Guangdong Ocean University, Zhanjiang, Guangdong, 524088, China
| | - Liu Bin
- Department of Animal Science and Medicine, Guangdong Ocean University, Zhanjiang, Guangdong, 524088, China
| | - Yang Jie
- Department of Animal Science and Medicine, Guangdong Ocean University, Zhanjiang, Guangdong, 524088, China
| | - Zhao Yi
- Department of Animal Science and Medicine, Guangdong Ocean University, Zhanjiang, Guangdong, 524088, China
| | - Wu Jiang
- Department of Animal Science and Medicine, Guangdong Ocean University, Zhanjiang, Guangdong, 524088, China
| | - Li Ye
- Department of Animal Science and Medicine, Guangdong Ocean University, Zhanjiang, Guangdong, 524088, China
| | - Lang Guan Cun
- Department of Animal Science and Medicine, Guangdong Ocean University, Zhanjiang, Guangdong, 524088, China
| | - Muhammad Waseem Birmani
- Department of Animal Science and Medicine, Guangdong Ocean University, Zhanjiang, Guangdong, 524088, China
| | - Zhao Zhuangzhi
- Department of Animal Science and Medicine, Guangdong Ocean University, Zhanjiang, Guangdong, 524088, China
| | - An Lilong
- Department of Animal Science and Medicine, Guangdong Ocean University, Zhanjiang, Guangdong, 524088, China
| | - Xiao Mei
- Department of Animal Science and Medicine, Guangdong Ocean University, Zhanjiang, Guangdong, 524088, China.
| |
Collapse
|
22
|
Qadir MMF, Álvarez-Cubela S, Weitz J, Panzer JK, Klein D, Moreno-Hernández Y, Cechin S, Tamayo A, Almaça J, Hiller H, Beery M, Kusmartseva I, Atkinson M, Speier S, Ricordi C, Pugliese A, Caicedo A, Fraker CA, Pastori RL, Domínguez-Bendala J. Long-term culture of human pancreatic slices as a model to study real-time islet regeneration. Nat Commun 2020; 11:3265. [PMID: 32601271 PMCID: PMC7324563 DOI: 10.1038/s41467-020-17040-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 06/04/2020] [Indexed: 01/02/2023] Open
Abstract
The culture of live pancreatic tissue slices is a powerful tool for the interrogation of physiology and pathology in an in vitro setting that retains near-intact cytoarchitecture. However, current culture conditions for human pancreatic slices (HPSs) have only been tested for short-term applications, which are not permissive for the long-term, longitudinal study of pancreatic endocrine regeneration. Using a culture system designed to mimic the physiological oxygenation of the pancreas, we demonstrate high viability and preserved endocrine and exocrine function in HPS for at least 10 days after sectioning. This extended lifespan allowed us to dynamically lineage trace and quantify the formation of insulin-producing cells in HPS from both non-diabetic and type 2 diabetic donors. This technology is expected to be of great impact for the conduct of real-time regeneration/developmental studies in the human pancreas.
Collapse
Affiliation(s)
- Mirza Muhammad Fahd Qadir
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
- Department of Cell Biology and Anatomy, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Silvia Álvarez-Cubela
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Jonathan Weitz
- Department of Medicine, Division of Metabolism, Endocrinology and Diabetes, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Julia K Panzer
- Department of Medicine, Division of Metabolism, Endocrinology and Diabetes, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Dagmar Klein
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Yaisa Moreno-Hernández
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
- Universidad Francisco de Vitoria, Madrid, Spain
| | - Sirlene Cechin
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Alejandro Tamayo
- Department of Medicine, Division of Metabolism, Endocrinology and Diabetes, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Joana Almaça
- Department of Medicine, Division of Metabolism, Endocrinology and Diabetes, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Helmut Hiller
- nPOD Laboratory, Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, FL, 32611, USA
| | - Maria Beery
- nPOD Laboratory, Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, FL, 32611, USA
| | - Irina Kusmartseva
- nPOD Laboratory, Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, FL, 32611, USA
| | - Mark Atkinson
- nPOD Laboratory, Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, FL, 32611, USA
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL, 32611, USA
| | - Stephan Speier
- Paul Langerhans Institute Dresden (PLID) of the Helmholtz Zentrum München at the University Clinic Carl Gustav Carus of Technische Universität Dresden, Helmholtz Zentrum München, Neuherberg, Germany
- Faculty of Medicine, Institute of Physiology, Technische Universität Dresden, Dresden, Germany
- German Center for Diabetes Research (DZD), München, Neuherberg, Germany
| | - Camillo Ricordi
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
- Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Alberto Pugliese
- Department of Medicine, Division of Metabolism, Endocrinology and Diabetes, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
- Department of Microbiology & Immunology, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Alejandro Caicedo
- Department of Medicine, Division of Metabolism, Endocrinology and Diabetes, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Christopher A Fraker
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
- Department of Biomedical Engineering, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Ricardo Luis Pastori
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL, 33136, USA.
- Department of Medicine, Division of Metabolism, Endocrinology and Diabetes, University of Miami Miller School of Medicine, Miami, FL, 33136, USA.
| | - Juan Domínguez-Bendala
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL, 33136, USA.
- Department of Cell Biology and Anatomy, University of Miami Miller School of Medicine, Miami, FL, 33136, USA.
- Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, 33136, USA.
| |
Collapse
|
23
|
Abstract
The existence of progenitors within pancreatic ducts has been studied for decades, but the hypothesis that they may help regenerate the adult endocrine compartment (chiefly insulin-producing β-cells) remains contentious. Here, we examine the single-cell transcriptome of the human ductal tree. Our data confirm the paradigm-shifting notion that specific lineages, long thought to be cast in stone, are in fact in a state of flux between differentiation stages. In addition to pro-ductal and pro-acinar transcriptomic gradients, our analysis suggests the existence of a third (ducto-endocrine) differentiation axis. Such prediction was experimentally validated by transplanting sorted progenitor-like cells, which revealed their tri-lineage differentiation potential. Our findings further indicate that progenitors might be activated in situ for therapeutic purposes. We have described multipotent progenitor-like cells within the major pancreatic ducts (MPDs) of the human pancreas. They express PDX1, its surrogate surface marker P2RY1, and the bone morphogenetic protein (BMP) receptor 1A (BMPR1A)/activin-like kinase 3 (ALK3), but not carbonic anhydrase II (CAII). Here we report the single-cell RNA sequencing (scRNA-seq) of ALK3bright+-sorted ductal cells, a fraction that harbors BMP-responsive progenitor-like cells. Our analysis unveiled the existence of multiple subpopulations along two major axes, one that encompasses a gradient of ductal cell differentiation stages, and another featuring cells with transitional phenotypes toward acinar tissue. A third potential ducto-endocrine axis is revealed upon integration of the ALK3bright+ dataset with a single-cell whole-pancreas transcriptome. When transplanted into immunodeficient mice, P2RY1+/ALK3bright+ populations (enriched in PDX1+/ALK3+/CAII− cells) differentiate into all pancreatic lineages, including functional β-cells. This process is accelerated when hosts are treated systemically with an ALK3 agonist. We found PDX1+/ALK3+/CAII− progenitor-like cells in the MPDs of types 1 and 2 diabetes donors, regardless of the duration of the disease. Our findings open the door to the pharmacological activation of progenitor cells in situ.
Collapse
|
24
|
Yu XX, Xu CR. Understanding generation and regeneration of pancreatic β cells from a single-cell perspective. Development 2020; 147:147/7/dev179051. [PMID: 32280064 DOI: 10.1242/dev.179051] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 02/20/2020] [Indexed: 12/12/2022]
Abstract
Understanding the mechanisms that underlie the generation and regeneration of β cells is crucial for developing treatments for diabetes. However, traditional research methods, which are based on populations of cells, have limitations for defining the precise processes of β-cell differentiation and trans-differentiation, and the associated regulatory mechanisms. The recent development of single-cell technologies has enabled re-examination of these processes at a single-cell resolution to uncover intermediate cell states, cellular heterogeneity and molecular trajectories of cell fate specification. Here, we review recent advances in understanding β-cell generation and regeneration, in vivo and in vitro, from single-cell technologies, which could provide insights for optimization of diabetes therapy strategies.
Collapse
Affiliation(s)
- Xin-Xin Yu
- Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, College of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China
| | - Cheng-Ran Xu
- Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, College of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China
| |
Collapse
|
25
|
Georgakopoulos N, Prior N, Angres B, Mastrogiovanni G, Cagan A, Harrison D, Hindley CJ, Arnes-Benito R, Liau SS, Curd A, Ivory N, Simons BD, Martincorena I, Wurst H, Saeb-Parsy K, Huch M. Long-term expansion, genomic stability and in vivo safety of adult human pancreas organoids. BMC DEVELOPMENTAL BIOLOGY 2020; 20:4. [PMID: 32098630 PMCID: PMC7043048 DOI: 10.1186/s12861-020-0209-5] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 02/03/2020] [Indexed: 01/07/2023]
Abstract
BACKGROUND Pancreatic organoid systems have recently been described for the in vitro culture of pancreatic ductal cells from mouse and human. Mouse pancreatic organoids exhibit unlimited expansion potential, while previously reported human pancreas organoid (hPO) cultures do not expand efficiently long-term in a chemically defined, serum-free medium. We sought to generate a 3D culture system for long-term expansion of human pancreas ductal cells as hPOs to serve as the basis for studies of human pancreas ductal epithelium, exocrine pancreatic diseases and the development of a genomically stable replacement cell therapy for diabetes mellitus. RESULTS Our chemically defined, serum-free, human pancreas organoid culture medium supports the generation and expansion of hPOs with high efficiency from both fresh and cryopreserved primary tissue. hPOs can be expanded from a single cell, enabling their genetic manipulation and generation of clonal cultures. hPOs expanded for months in vitro maintain their ductal morphology, biomarker expression and chromosomal integrity. Xenografts of hPOs survive long-term in vivo when transplanted into the pancreas of immunodeficient mice. Notably, mouse orthotopic transplants show no signs of tumorigenicity. Crucially, our medium also supports the establishment and expansion of hPOs in a chemically defined, modifiable and scalable, biomimetic hydrogel. CONCLUSIONS hPOs can be expanded long-term, from both fresh and cryopreserved human pancreas tissue in a chemically defined, serum-free medium with no detectable tumorigenicity. hPOs can be clonally expanded, genetically manipulated and are amenable to culture in a chemically defined hydrogel. hPOs therefore represent an abundant source of pancreas ductal cells that retain the characteristics of the tissue-of-origin, which opens up avenues for modelling diseases of the ductal epithelium and increasing understanding of human pancreas exocrine biology as well as for potentially producing insulin-secreting cells for the treatment of diabetes.
Collapse
Affiliation(s)
- Nikitas Georgakopoulos
- The Wellcome Trust/ Cancer Research UK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QN, UK
- Cambridge Biorepository for Translational Medicine & Department of Surgery, University o.f Cambridge, and NIHR Cambridge Biomedical Research Centre, Cambridge, CB2 0QQ, UK
| | - Nicole Prior
- The Wellcome Trust/ Cancer Research UK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QN, UK
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307, Dresden, Germany
| | | | - Gianmarco Mastrogiovanni
- The Wellcome Trust/ Cancer Research UK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QN, UK
| | - Alex Cagan
- Wellcome Sanger Institute, Hinxton, Cambridgeshire, CB10 1SA, UK
| | - Daisy Harrison
- The Wellcome Trust/ Cancer Research UK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QN, UK
| | - Christopher J Hindley
- The Wellcome Trust/ Cancer Research UK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QN, UK
- Department of Physics, The Cavendish Laboratory, University of Cambridge, Thompson Avenue, Cambridge, JJ, CB3 0HE, UK
| | - Robert Arnes-Benito
- The Wellcome Trust/ Cancer Research UK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QN, UK
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307, Dresden, Germany
| | - Siong-Seng Liau
- Hepatopancreatobiliary Surgical Unit, Addenbrooke's Hospital and MRC Cancer Unit, University of Cambridge, Cambridge, CB2 0XZ, UK
| | - Abbie Curd
- Cambridge Biorepository for Translational Medicine & Department of Surgery, University o.f Cambridge, and NIHR Cambridge Biomedical Research Centre, Cambridge, CB2 0QQ, UK
| | - Natasha Ivory
- Cambridge Biorepository for Translational Medicine & Department of Surgery, University o.f Cambridge, and NIHR Cambridge Biomedical Research Centre, Cambridge, CB2 0QQ, UK
| | - Benjamin D Simons
- The Wellcome Trust/ Cancer Research UK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QN, UK
- Department of Physics, The Cavendish Laboratory, University of Cambridge, Thompson Avenue, Cambridge, JJ, CB3 0HE, UK
| | | | | | - Kourosh Saeb-Parsy
- Cambridge Biorepository for Translational Medicine & Department of Surgery, University o.f Cambridge, and NIHR Cambridge Biomedical Research Centre, Cambridge, CB2 0QQ, UK.
| | - Meritxell Huch
- The Wellcome Trust/ Cancer Research UK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QN, UK.
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307, Dresden, Germany.
| |
Collapse
|
26
|
Kuncorojakti S, Srisuwatanasagul S, Kradangnga K, Sawangmake C. Insulin-Producing Cell Transplantation Platform for Veterinary Practice. Front Vet Sci 2020; 7:4. [PMID: 32118053 PMCID: PMC7028771 DOI: 10.3389/fvets.2020.00004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 01/06/2020] [Indexed: 12/14/2022] Open
Abstract
Diabetes mellitus (DM) remains a global concern in both human and veterinary medicine. Type I DM requires prolonged and consistent exogenous insulin administration to address hyperglycemia, which can increase the risk of diabetes complications such as retinopathy, nephropathy, neuropathy, and heart disorders. Cell-based therapies have been successful in human medicine using the Edmonton protocol. These therapies help maintain the production of endogenous insulin and stabilize blood glucose levels and may possibly be adapted to veterinary clinical practice. The limited number of cadaveric pancreas donors and the long-term use of immunosuppressive agents are the main obstacles for this protocol. Over the past decade, the development of potential therapies for DM has mainly focused on the generation of effective insulin-producing cells (IPCs) from various sources of stem cells that can be transplanted into the body. Another successful application of stem cells in type I DM therapies is transplanting generated IPCs. Encapsulation can be an alternative strategy to protect IPCs from rejection by the body due to their immunoisolation properties. This review summarizes current concepts of IPCs and encapsulation technology for veterinary clinical application and proposes a potential stem-cell-based platform for veterinary diabetic regenerative therapy.
Collapse
Affiliation(s)
- Suryo Kuncorojakti
- Veterinary Stem Cell and Bioengineering Innovation Center (VSCBIC), Veterinary Pharmacology and Stem Cell Research Laboratory, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
- Department of Veterinary Anatomy, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Sayamon Srisuwatanasagul
- Department of Anatomy, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Krishaporn Kradangnga
- Department of Surgery, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Chenphop Sawangmake
- Veterinary Stem Cell and Bioengineering Innovation Center (VSCBIC), Veterinary Pharmacology and Stem Cell Research Laboratory, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
- Veterinary Clinical Stem Cell and Bioengineering Research Unit, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
- Department of Pharmacology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
27
|
Cipriani C, Colangelo L, Santori R, Renella M, Mastrantonio M, Minisola S, Pepe J. The Interplay Between Bone and Glucose Metabolism. Front Endocrinol (Lausanne) 2020; 11:122. [PMID: 32265831 PMCID: PMC7105593 DOI: 10.3389/fendo.2020.00122] [Citation(s) in RCA: 100] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 02/24/2020] [Indexed: 12/13/2022] Open
Abstract
The multiple endocrine functions of bone other than those related to mineral metabolism, such as regulation of insulin sensitivity, glucose homeostasis, and energy metabolism, have recently been discovered. In vitro and murine studies investigated the impact of several molecules derived from osteoblasts and osteocytes on glucose metabolism. In addition, the effect of glucose on bone cells suggested a mutual cross-talk between bone and glucose homeostasis. In humans, these mechanisms are the pivotal determinant of the skeletal fragility associated with both type 1 and type 2 diabetes. Metabolic abnormalities associated with diabetes, such as increase in adipose tissue, reduction of lean mass, effects of hyperglycemia per se, production of the advanced glycation end products, diabetes-associated chronic kidney disease, and perturbation of the calcium-PTH-vitamin D metabolism, are the main mechanisms involved. Finally, there have been multiple reports of antidiabetic drugs affecting the skeleton, with differences among basic and clinical research data, as well as of anti-osteoporosis medication influencing glucose metabolism. This review focuses on the aspects linking glucose and bone metabolism by offering insight into the most recent evidence in humans.
Collapse
|
28
|
Coxsackievirus-B4 Infection of Human Primary Pancreatic Ductal Cell Cultures Results in Impairment of Differentiation into Insulin-Producing Cells. Viruses 2019; 11:v11070597. [PMID: 31269669 PMCID: PMC6669621 DOI: 10.3390/v11070597] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 06/11/2019] [Accepted: 06/27/2019] [Indexed: 12/15/2022] Open
Abstract
Coxsackievirus-B4 (CV-B4) E2 can persist in the pancreatic ductal-like cells (Panc-1 cell line), which results in an impaired differentiation of these cells into islet-like cell aggregates (ICA). In this study, primary pancreatic ductal cells obtained as a by-product of islet isolation from the pancreas of seven brain-dead adults were inoculated with CV-B4 E2, followed-up for 29 days, and the impact was investigated. Viral titers in culture supernatants were analyzed throughout the culture. Intracellular viral RNA was detected by RT-PCR. Levels of ductal cell marker CK19 mRNA and of insulin mRNA were evaluated by qRT-PCR. The concentration of c-peptide in supernatants was determined by ELISA. Ductal cells exposed to trypsin and serum-free medium formed ICA and resulted in an increased insulin secretion. Ductal cells from five brain-dead donors were severely damaged by CV-B4 E2, whereas the virus persisted in cultures of cells obtained from the other two. The ICAs whose formation was induced on day 14 post-inoculation were scarce and appeared tiny in infected cultures. Also, insulin mRNA expression and c-peptide levels were strongly reduced compared to the controls. In conclusion, CV-B4 E2 lysed human primary pancreatic ductal cells or persisted in these cells, which resulted in the impairment of differentiation into insulin-producing cells.
Collapse
|
29
|
Abstract
PURPOSE OF REVIEW Pancreatic β-cells play a critical role in whole-body glucose homeostasis by regulating the release of insulin in response to minute by minute alterations in metabolic demand. As such, β-cells are staunchly resilient but there are circumstances where they can become functionally compromised or physically lost due to pathophysiological changes which culminate in overt hyperglycemia and diabetes. RECENT FINDINGS In humans, β-cell mass appears to be largely defined in the postnatal period and this early replicative and generative phase is followed by a refractory state which persists throughout life. Despite this, efforts to identify physiological and pharmacological factors which might re-initiate β-cell replication (or cause the replenishment of β-cells by neogenesis or transdifferentiation) are beginning to bear fruit. Controlled manipulation of β-cell mass in humans still represents a holy grail for therapeutic intervention in diabetes, but progress is being made which may lead to ultimate success.
Collapse
Affiliation(s)
- Giorgio Basile
- Islet Cell and Regenerative Biology, Joslin Diabetes Center, Department of Medicine, Harvard Medical School, Harvard Stem Cell Institute, Boston, MA 02215, USA
| | - Rohit N. Kulkarni
- Islet Cell and Regenerative Biology, Joslin Diabetes Center, Department of Medicine, Harvard Medical School, Harvard Stem Cell Institute, Boston, MA 02215, USA
| | - Noel G. Morgan
- Institute of Biomedical & Clinical Science, University of Exeter Medical School, Exeter EX2 5DW, UK
| |
Collapse
|
30
|
Qadir MMF, Álvarez-Cubela S, Klein D, Lanzoni G, García-Santana C, Montalvo A, Pláceres-Uray F, Mazza EMC, Ricordi C, Inverardi LA, Pastori RL, Domínguez-Bendala J. P2RY1/ALK3-Expressing Cells within the Adult Human Exocrine Pancreas Are BMP-7 Expandable and Exhibit Progenitor-like Characteristics. Cell Rep 2019; 22:2408-2420. [PMID: 29490276 PMCID: PMC5905712 DOI: 10.1016/j.celrep.2018.02.006] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 12/08/2017] [Accepted: 02/01/2018] [Indexed: 12/16/2022] Open
Abstract
Treatment of human pancreatic non-endocrine tissue with Bone Morphogenetic Protein 7 (BMP-7) leads to the formation of glucose-responsive β-like cells. Here, we show that BMP-7 acts on extrainsular cells expressing PDX1 and the BMP receptor activin-like kinase 3 (ALK3/BMPR1A). In vitro lineage tracing indicates that ALK3+ cell populations are multipotent. PDX1+/ALK3+ cells are absent from islets but prominently represented in the major pancreatic ducts and pancreatic duct glands. We identified the purinergic receptor P2Y1 (P2RY1) as a surrogate surface marker for PDX1. Sorted P2RY1+/ALK3bright+ cells form BMP-7-expandable colonies characterized by NKX6.1 and PDX1 expression. Unlike the negative fraction controls, these colonies can be differentiated into multiple pancreatic lineages upon BMP-7 withdrawal. RNA-seq further corroborates the progenitor-like nature of P2RY1+/ALK3bright+ cells and their multilineage differentiation potential. Our studies confirm the existence of progenitor cells in the adult human pancreas and suggest a specific anatomical location within the ductal and glandular networks.
Collapse
Affiliation(s)
- Mirza Muhammad Fahd Qadir
- Diabetes Research Institute, Leonard M. Miller School of Medicine, University of Miami, Miami, FL 33136, USA; Department of Cell Biology and Anatomy, Leonard M. Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Silvia Álvarez-Cubela
- Diabetes Research Institute, Leonard M. Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Dagmar Klein
- Diabetes Research Institute, Leonard M. Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Giacomo Lanzoni
- Diabetes Research Institute, Leonard M. Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | | | - Abelardo Montalvo
- Diabetes Research Institute, Leonard M. Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Fabiola Pláceres-Uray
- Diabetes Research Institute, Leonard M. Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | | | - Camillo Ricordi
- Diabetes Research Institute, Leonard M. Miller School of Medicine, University of Miami, Miami, FL 33136, USA; Department of Surgery, Leonard M. Miller School of Medicine, University of Miami, Miami, FL 33136, USA; Department of Microbiology & Immunology, Leonard M. Miller School of Medicine, University of Miami, Miami, FL 33136, USA; Department of Biomedical Engineering, Leonard M. Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Luca Alessandro Inverardi
- Diabetes Research Institute, Leonard M. Miller School of Medicine, University of Miami, Miami, FL 33136, USA; Department of Microbiology & Immunology, Leonard M. Miller School of Medicine, University of Miami, Miami, FL 33136, USA; Department of Medicine, Division of Metabolism, Endocrinology and Diabetes, Leonard M. Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Ricardo Luis Pastori
- Diabetes Research Institute, Leonard M. Miller School of Medicine, University of Miami, Miami, FL 33136, USA; Department of Microbiology & Immunology, Leonard M. Miller School of Medicine, University of Miami, Miami, FL 33136, USA; Department of Medicine, Division of Metabolism, Endocrinology and Diabetes, Leonard M. Miller School of Medicine, University of Miami, Miami, FL 33136, USA.
| | - Juan Domínguez-Bendala
- Diabetes Research Institute, Leonard M. Miller School of Medicine, University of Miami, Miami, FL 33136, USA; Department of Cell Biology and Anatomy, Leonard M. Miller School of Medicine, University of Miami, Miami, FL 33136, USA; Department of Surgery, Leonard M. Miller School of Medicine, University of Miami, Miami, FL 33136, USA.
| |
Collapse
|
31
|
Exercise-Dependent Modulation of Bone Metabolism and Bone Endocrine Function: New Findings and Therapeutic Perspectives. ACTA ACUST UNITED AC 2019. [DOI: 10.1007/s42978-019-0010-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
32
|
Pauk M, Bordukalo-Niksic T, Brkljacic J, Paralkar VM, Brault AL, Dumic-Cule I, Borovecki F, Grgurevic L, Vukicevic S. A novel role of bone morphogenetic protein 6 (BMP6) in glucose homeostasis. Acta Diabetol 2019; 56:365-371. [PMID: 30539233 PMCID: PMC6394697 DOI: 10.1007/s00592-018-1265-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 11/24/2018] [Indexed: 01/10/2023]
Abstract
AIMS Bone morphogenetic proteins (BMPs) are involved in the development and homeostasis of multiple organs and tissues. There has been a significant focus on understanding the role of BMPs in pancreatic β-cell dysfunction associated with type 2 diabetes (T2D). Our objective was to investigate the relationship between BMP6 and glucose homeostasis. METHODS Ob/ob mice were treated with BMP6 for 6 days and analyzed for insulin release, body weight, lipid parameters and glucose tolerance. Quantitative real-time PCR, chromatin immunoprecipitation and glucose output assays were used to assess BMP6 effect on gluconeogenesis in rat hepatoma H4IIE cells. Specificity of BMP6 receptors was characterized by the utilization of various receptor Fc fusion proteins in luciferase reporter gene and glucose output assays in INS1 and H4IIE cells. RESULTS Treatment of ob/ob mice with BMP6 for 6 days resulted in a reduction of circulating glucose and lipid levels, followed by a significantly elevated plasma insulin level in a dose-dependent manner. In addition, BMP6 improved the glucose excursion during an oral glucose tolerance test, lowering the total glycemic response by 21%. In rat H4IIE hepatoma cells, BMP6 inhibited gluconeogenesis and glucose output via downregulation the PepCK expression. Moreover, BMP6 inhibited glucose production regardless of the presence of cAMP, antagonizing its glycogenolytic effect. BMP6 acted on pancreatic and liver cells utilizing Alk3, Alk6 and ActRIIA serine/threonine kinase receptors. CONCLUSIONS Collectively, we demonstrate that BMP6 improves glycaemia in T2D mice and regulates glucose metabolism in hepatocytes representing an exciting prospect for future treatments of diabetes.
Collapse
Affiliation(s)
- Martina Pauk
- Laboratory of Mineralized Tissues, Center for Translational and Clinical Research, School of Medicine, University of Zagreb, Salata 11, Zagreb, Croatia
| | - Tatjana Bordukalo-Niksic
- Laboratory of Mineralized Tissues, Center for Translational and Clinical Research, School of Medicine, University of Zagreb, Salata 11, Zagreb, Croatia
| | - Jelena Brkljacic
- Laboratory of Mineralized Tissues, Center for Translational and Clinical Research, School of Medicine, University of Zagreb, Salata 11, Zagreb, Croatia
| | | | | | - Ivo Dumic-Cule
- Laboratory of Mineralized Tissues, Center for Translational and Clinical Research, School of Medicine, University of Zagreb, Salata 11, Zagreb, Croatia
| | - Fran Borovecki
- Department for Functional Genomics, Center for Translational and Clinical Research, School of Medicine, University of Zagreb, Salata 2, Zagreb, Croatia
| | - Lovorka Grgurevic
- Laboratory of Mineralized Tissues, Center for Translational and Clinical Research, School of Medicine, University of Zagreb, Salata 11, Zagreb, Croatia
| | - Slobodan Vukicevic
- Laboratory of Mineralized Tissues, Center for Translational and Clinical Research, School of Medicine, University of Zagreb, Salata 11, Zagreb, Croatia.
| |
Collapse
|
33
|
Loomans CJM, Williams Giuliani N, Balak J, Ringnalda F, van Gurp L, Huch M, Boj SF, Sato T, Kester L, de Sousa Lopes SMC, Roost MS, Bonner-Weir S, Engelse MA, Rabelink TJ, Heimberg H, Vries RGJ, van Oudenaarden A, Carlotti F, Clevers H, de Koning EJP. Expansion of Adult Human Pancreatic Tissue Yields Organoids Harboring Progenitor Cells with Endocrine Differentiation Potential. Stem Cell Reports 2019. [PMID: 29539434 PMCID: PMC5918840 DOI: 10.1016/j.stemcr.2018.02.005] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Generating an unlimited source of human insulin-producing cells is a prerequisite to advance β cell replacement therapy for diabetes. Here, we describe a 3D culture system that supports the expansion of adult human pancreatic tissue and the generation of a cell subpopulation with progenitor characteristics. These cells display high aldehyde dehydrogenase activity (ALDHhi), express pancreatic progenitors markers (PDX1, PTF1A, CPA1, and MYC), and can form new organoids in contrast to ALDHlo cells. Interestingly, gene expression profiling revealed that ALDHhi cells are closer to human fetal pancreatic tissue compared with adult pancreatic tissue. Endocrine lineage markers were detected upon in vitro differentiation. Engrafted organoids differentiated toward insulin-positive (INS+) cells, and circulating human C-peptide was detected upon glucose challenge 1 month after transplantation. Engrafted ALDHhi cells formed INS+ cells. We conclude that adult human pancreatic tissue has potential for expansion into 3D structures harboring progenitor cells with endocrine differentiation potential.
Collapse
Affiliation(s)
- Cindy J M Loomans
- Hubrecht Institute/KNAW and University Medical Center Utrecht, 3584 CT Utrecht, the Netherlands; Department of Internal Medicine, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands
| | - Nerys Williams Giuliani
- Hubrecht Institute/KNAW and University Medical Center Utrecht, 3584 CT Utrecht, the Netherlands; Department of Internal Medicine, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands
| | - Jeetindra Balak
- Department of Internal Medicine, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands
| | - Femke Ringnalda
- Hubrecht Institute/KNAW and University Medical Center Utrecht, 3584 CT Utrecht, the Netherlands
| | - Léon van Gurp
- Hubrecht Institute/KNAW and University Medical Center Utrecht, 3584 CT Utrecht, the Netherlands
| | - Meritxell Huch
- Hubrecht Institute/KNAW and University Medical Center Utrecht, 3584 CT Utrecht, the Netherlands; Wellcome Trust/Cancer Research UK, Gurdon Institute, Cambridge CB2 1QN, UK
| | - Sylvia F Boj
- Hubrecht Institute/KNAW and University Medical Center Utrecht, 3584 CT Utrecht, the Netherlands
| | - Toshiro Sato
- Department of Gastroenterology, Keio University, Tokyo 108-8345, Japan
| | - Lennart Kester
- Hubrecht Institute/KNAW and University Medical Center Utrecht, 3584 CT Utrecht, the Netherlands
| | | | - Matthias S Roost
- Department of Anatomy and Embryology, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands
| | - Susan Bonner-Weir
- Islet Cell & Regenerative Biology, Joslin Diabetes Center, Boston, MA 02215, USA
| | - Marten A Engelse
- Department of Internal Medicine, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands
| | - Ton J Rabelink
- Department of Internal Medicine, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands
| | - Harry Heimberg
- Beta Cell Neogenesis (BENE), Vrije Universiteit Brussel, 1050 Brussels, Belgium
| | - Robert G J Vries
- Hubrecht Institute/KNAW and University Medical Center Utrecht, 3584 CT Utrecht, the Netherlands
| | | | - Françoise Carlotti
- Department of Internal Medicine, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands
| | - Hans Clevers
- Hubrecht Institute/KNAW and University Medical Center Utrecht, 3584 CT Utrecht, the Netherlands
| | - Eelco J P de Koning
- Hubrecht Institute/KNAW and University Medical Center Utrecht, 3584 CT Utrecht, the Netherlands; Department of Internal Medicine, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands.
| |
Collapse
|
34
|
Jawahar AP, Narayanan S, Loganathan G, Pradeep J, Vitale GC, Jones CM, Hughes MG, Williams SK, Balamurugan AN. Ductal Cell Reprogramming to Insulin-Producing Beta-Like Cells as a Potential Beta Cell Replacement Source for Chronic Pancreatitis. Curr Stem Cell Res Ther 2019; 14:65-74. [DOI: 10.2174/1574888x13666180918092729] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 09/13/2018] [Accepted: 09/13/2018] [Indexed: 01/19/2023]
Abstract
Islet cell auto-transplantation is a novel strategy for maintaining blood glucose levels and
improving the quality of life in patients with chronic pancreatitis (CP). Despite the many recent advances
associated with this therapy, obtaining a good yield of islet infusate still remains a pressing
challenge. Reprogramming technology, by making use of the pancreatic exocrine compartment, can
open the possibility of generating novel insulin-producing cells. Several lineage-tracing studies present
evidence that exocrine cells undergo dedifferentiation into a progenitor-like state from which they can
be manipulated to form insulin-producing cells. This review will present an overview of recent reports
that demonstrate the potential of utilizing pancreatic ductal cells (PDCs) for reprogramming into insulin-
producing cells, focusing on the recent advances and the conflicting views. A large pool of ductal
cells is released along with islets during the human islet isolation process, but these cells are separated
from the pure islets during the purification process. By identifying and improving existing ductal cell
culture methods and developing a better understanding of mechanisms by which these cells can be manipulated
to form hormone-producing islet-like cells, PDCs could prove to be a strong clinical tool in
providing an alternative beta cell source, thus helping CP patients maintain their long-term glucose levels.
Collapse
Affiliation(s)
- Aravinth P. Jawahar
- Clinical Islet Cell Laboratory, Center for Cellular Transplantation, Cardiovascular Innovation Institute, Department of Surgery, University of Louisville, Louisville, KY 40202, United States
| | - Siddharth Narayanan
- Clinical Islet Cell Laboratory, Center for Cellular Transplantation, Cardiovascular Innovation Institute, Department of Surgery, University of Louisville, Louisville, KY 40202, United States
| | - Gopalakrishnan Loganathan
- Clinical Islet Cell Laboratory, Center for Cellular Transplantation, Cardiovascular Innovation Institute, Department of Surgery, University of Louisville, Louisville, KY 40202, United States
| | - Jithu Pradeep
- Clinical Islet Cell Laboratory, Center for Cellular Transplantation, Cardiovascular Innovation Institute, Department of Surgery, University of Louisville, Louisville, KY 40202, United States
| | - Gary C. Vitale
- Division of General Surgery, University of Louisville, Louisville, KY, 40202, United States
| | - Christopher M. Jones
- Division of Transplant Surgery, University of Louisville, Louisville, KY, 40202, United States
| | - Michael G. Hughes
- Clinical Islet Cell Laboratory, Center for Cellular Transplantation, Cardiovascular Innovation Institute, Department of Surgery, University of Louisville, Louisville, KY 40202, United States
| | - Stuart K. Williams
- Department of Physiology, University of Louisville, Louisville, KY, 40202, United States
| | - Appakalai N. Balamurugan
- Clinical Islet Cell Laboratory, Center for Cellular Transplantation, Cardiovascular Innovation Institute, Department of Surgery, University of Louisville, Louisville, KY 40202, United States
| |
Collapse
|
35
|
Domínguez-Bendala J, Qadir MMF, Pastori RL. Pancreatic Progenitors: There and Back Again. Trends Endocrinol Metab 2019; 30:4-11. [PMID: 30502039 PMCID: PMC6354578 DOI: 10.1016/j.tem.2018.10.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 10/22/2018] [Accepted: 10/23/2018] [Indexed: 02/06/2023]
Abstract
Adult pancreatic regeneration is one of the most contentious topics in modern biology. The long-held view that the islets of Langerhans can be replenished throughout adult life through the reactivation of ductal progenitor cells has been replaced over the past decade by the now prevailing notion that regeneration does not involve progenitors and occurs only through the duplication of pre-existing mature cells. Here we dissect the limitations of lineage tracing (LT) to draw categorical conclusions about pancreatic regeneration, especially in view of emerging evidence that traditional lineages are less homogeneous and cell fates more dynamic than previously thought. This new evidence further suggests that the two competing hypotheses about regeneration are not mutually exclusive.
Collapse
Affiliation(s)
- Juan Domínguez-Bendala
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA; Department of Cell Biology and Anatomy, University of Miami Miller School of Medicine, Miami, FL 33136, USA.
| | - Mirza Muhammad Fahd Qadir
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA; Department of Cell Biology and Anatomy, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Ricardo Luis Pastori
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA; Department of Medicine, Division of Metabolism, Endocrinology and Diabetes, University of Miami Miller School of Medicine, Miami, FL 33136, USA.
| |
Collapse
|
36
|
Salunkhe VA, Veluthakal R, Kahn SE, Thurmond DC. Novel approaches to restore beta cell function in prediabetes and type 2 diabetes. Diabetologia 2018; 61:1895-1901. [PMID: 29947922 PMCID: PMC6070408 DOI: 10.1007/s00125-018-4658-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Accepted: 05/14/2018] [Indexed: 12/18/2022]
Abstract
The World Health Organization estimates that diabetes prevalence has risen from 108 million in 1980 to 422 million in 2014, with type 2 diabetes accounting for more than 90% of these cases. Furthermore, the prevalence of prediabetes (impaired fasting glucose and/or impaired glucose tolerance) is more than 40% in some countries and is associated with a global rise in obesity. Therefore it is imperative that we develop new approaches to reduce the development of prediabetes and progression to type 2 diabetes. In this review, we explore the gains made over the past decade by focused efforts to improve insulin secretion by the beta cell or insulin sensitivity of target tissues. We also describe multitasking candidates, which could improve both beta cell dysfunction and peripheral insulin sensitivity. Moreover, we highlight provocative findings indicating that additional glucose regulatory tissues, such as the brain, may be key therapeutic targets. Taken together, the promise of these new multi-faceted approaches reinforces the importance of understanding and tackling type 2 diabetes pathogenesis from a multi-tissue perspective.
Collapse
Affiliation(s)
- Vishal A Salunkhe
- Department of Molecular and Cellular Endocrinology, Diabetes and Metabolism Research Institute, Beckman Research Institute of City of Hope, 1500 E. Duarte Rd, Duarte, CA, 91010, USA
| | - Rajakrishnan Veluthakal
- Department of Molecular and Cellular Endocrinology, Diabetes and Metabolism Research Institute, Beckman Research Institute of City of Hope, 1500 E. Duarte Rd, Duarte, CA, 91010, USA
| | - Steven E Kahn
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, VA Puget Sound Health Care System and University of Washington, Seattle, WA, USA
| | - Debbie C Thurmond
- Department of Molecular and Cellular Endocrinology, Diabetes and Metabolism Research Institute, Beckman Research Institute of City of Hope, 1500 E. Duarte Rd, Duarte, CA, 91010, USA.
| |
Collapse
|
37
|
Liu DM, Mosialou I, Liu JM. Bone: Another potential target to treat, prevent and predict diabetes. Diabetes Obes Metab 2018; 20:1817-1828. [PMID: 29687585 DOI: 10.1111/dom.13330] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 04/16/2018] [Accepted: 04/18/2018] [Indexed: 12/30/2022]
Abstract
Type 2 diabetes mellitus is now a worldwide health problem with increasing prevalence. Mounting efforts have been made to treat, prevent and predict this chronic disease. In recent years, increasing evidence from mice and clinical studies suggests that bone-derived molecules modulate glucose metabolism. This review aims to summarize our current understanding of the interplay between bone and glucose metabolism and to highlight potential new means of therapeutic intervention. The first molecule recognized as a link between bone and glucose metabolism is osteocalcin (OCN), which functions in its active form, that is, undercarboxylated OCN (ucOC). ucOC acts in promoting insulin expression and secretion, facilitating insulin sensitivity, and favouring glucose and fatty acid uptake and utilization. A second bone-derived molecule, lipocalin2, functions in suppressing appetite in mice through its action on the hypothalamus. Osteocytes, the most abundant cells in bone matrix, are suggested to act on the browning of white adipose tissue and energy expenditure through secretion of bone morphogenetic protein 7 and sclerostin. The involvement of bone resorption in glucose homeostasis has also been examined. However, there is evidence indicating the implication of the receptor activator of nuclear factor κ-B ligand, neuropeptide Y, and other known and unidentified bone-derived factors that function in glucose homeostasis. We summarize recent advances and the rationale for treating, preventing and predicting diabetes by skeleton intervention.
Collapse
Affiliation(s)
- Dong-Mei Liu
- Department of Rheumatology, ZhongShan Hospital, FuDan University, Shanghai, China
| | - Ioanna Mosialou
- Department of Physiology and Cellular Biophysics, College of Physicians and Surgeons, Columbia University, New York, New York
| | - Jian-Min Liu
- Department of Endocrine and Metabolic Diseases, Shanghai Clinical Center for Endocrine and Metabolic Diseases, Rui-jin Hospital, Shanghai Jiao-tong University School of Medicine, Shanghai Institute of Endocrine and Metabolic Diseases, Shanghai, China
| |
Collapse
|
38
|
TGF-β Family Signaling in Ductal Differentiation and Branching Morphogenesis. Cold Spring Harb Perspect Biol 2018; 10:cshperspect.a031997. [PMID: 28289061 DOI: 10.1101/cshperspect.a031997] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Epithelial cells contribute to the development of various vital organs by generating tubular and/or glandular architectures. The fully developed forms of ductal organs depend on processes of branching morphogenesis, whereby frequency, total number, and complexity of the branching tissue define the final architecture in the organ. Some ductal tissues, like the mammary gland during pregnancy and lactation, disintegrate and regenerate through periodic cycles. Differentiation of branched epithelia is driven by antagonistic actions of parallel growth factor systems that mediate epithelial-mesenchymal communication. Transforming growth factor-β (TGF-β) family members and their extracellular antagonists are prominently involved in both normal and disease-associated (e.g., malignant or fibrotic) ductal tissue patterning. Here, we discuss collective knowledge that permeates the roles of TGF-β family members in the control of the ductal tissues in the vertebrate body.
Collapse
|
39
|
Characterization and Differentiation of Sorted Human Fetal Pancreatic ALDHhi and ALDHhi/CD133+ Cells Toward Insulin-Expressing Cells. Stem Cells Dev 2018; 27:275-286. [DOI: 10.1089/scd.2017.0135] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
|
40
|
Zhu H, Zhang X, He Y, Yu L, Lü Y, Pan K, Wang B, Chen G. [Research progress on the donor cell sources of pancreatic islet transplantation for treatment of diabetes mellitus]. ZHONGGUO XIU FU CHONG JIAN WAI KE ZA ZHI = ZHONGGUO XIUFU CHONGJIAN WAIKE ZAZHI = CHINESE JOURNAL OF REPARATIVE AND RECONSTRUCTIVE SURGERY 2018; 32:104-111. [PMID: 29806374 PMCID: PMC8414200 DOI: 10.7507/1002-1892.201707049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 12/13/2017] [Indexed: 11/03/2022]
Abstract
Objective To summarize the research progress on the source and selection of donor cells in the field of islet replacement therapy for diabetes mellitus. Methods Domestic and abroad literature concerning islet replacement therapy for diabetes mellitus, as well as donor source and donor selection was reviewed and analyzed thoroughly. Results The shortage of donor supply is still a major obstacle for the widely clinical application of pancreatic islet transplantation (PIT). Currently, in addition to the progress on the allogeneic/autologous donor islet supply, some remarkable achievements have been also attained in the application of xenogeneic islet (from pig donor), as well as islet like cells derived from stem cells and islet cell line, potentially enlarging the source of implantable cells. Conclusion Adequate and suitable donor cell supply is an essential prerequisite for widely clinical application of PIT therapy for type 1 diabetes mellitus (T1DM). Further perfection of organ donation system, together with development of immune-tolerance induction, gene and bioengineering technology etc. will possibly solve the problem of donor cell shortage and provide a basis for clinical application of cellular replacement therapy for T1DM.
Collapse
Affiliation(s)
- Haitao Zhu
- Department of Pediatrics (No. 3 Ward), Northwest Women's and Children's Hospital, Xi'an Shaanxi, 710061, P.R.China;Department of Hepatobiliary Surgery, the First Affiliated Hospital, Medical School of Xi'an Jiaotong University, Xi'an Shaanxi, 710061, P.R.China
| | - Xiaoge Zhang
- Department of Pediatrics (No. 3 Ward), Northwest Women's and Children's Hospital, Xi'an Shaanxi, 710061, P.R.China
| | - Yayi He
- Department of Endocrinology, the First Affiliated Hospital, Medical School of Xi'an Jiaotong University, Xi'an Shaanxi, 710061, P.R.China
| | - Liang Yu
- Department of Hepatobiliary Surgery, the First Affiliated Hospital, Medical School of Xi'an Jiaotong University, Xi'an Shaanxi, 710061, P.R.China
| | - Yi Lü
- Department of Hepatobiliary Surgery, the First Affiliated Hospital, Medical School of Xi'an Jiaotong University, Xi'an Shaanxi, 710061, P.R.China;Research Institute of Advanced Surgical Technology and Engineering, Xi'an Jiaotong University, Xi'an Shaanxi, 710061, P.R.China
| | - Kaili Pan
- Department of Pediatrics (No. 2 Ward), Northwest Women's and Children's Hospital, Xi'an Shaanxi, 710061, P.R.China
| | - Bo Wang
- Department of Hepatobiliary Surgery, the First Affiliated Hospital, Medical School of Xi'an Jiaotong University, Xi'an Shaanxi, 710061, P.R.China;Department of Endocrinology, the First Affiliated Hospital, Medical School of Xi'an Jiaotong University, Xi'an Shaanxi, 710061,
| | - Guoqiang Chen
- Department of Pediatrics (No. 3 Ward), Northwest Women's and Children's Hospital, Xi'an Shaanxi, 710061,
| |
Collapse
|
41
|
Aguayo-Mazzucato C, Bonner-Weir S. Pancreatic β Cell Regeneration as a Possible Therapy for Diabetes. Cell Metab 2018; 27:57-67. [PMID: 28889951 PMCID: PMC5762410 DOI: 10.1016/j.cmet.2017.08.007] [Citation(s) in RCA: 154] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 07/05/2017] [Accepted: 08/08/2017] [Indexed: 02/08/2023]
Abstract
Diabetes is the result of having inadequate supply of functional insulin-producing β cells. Two possible approaches for replenishing the β cells are: (1) replacement by transplanting cadaveric islets or β cells derived from human embryonic stem cells/induced pluripotent stem cells and (2) induction of endogenous regeneration. This review focuses on endogenous regeneration, which can follow two pathways: enhanced replication of existing β cells and formation of new β cells from cells not expressing insulin, either by conversion from a differentiated cell type (transdifferentiation) or differentiation from progenitors (neogenesis). Exciting progress on both pathways suggest that regeneration may have therapeutic promise.
Collapse
Affiliation(s)
| | - Susan Bonner-Weir
- Joslin Diabetes Center, Harvard Medical School, Harvard Stem Cell Institute, Boston, MA 02215, USA.
| |
Collapse
|
42
|
Demcollari TI, Cujba AM, Sancho R. Phenotypic plasticity in the pancreas: new triggers, new players. Curr Opin Cell Biol 2017; 49:38-46. [PMID: 29227863 PMCID: PMC6277812 DOI: 10.1016/j.ceb.2017.11.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Accepted: 11/28/2017] [Indexed: 12/27/2022]
Abstract
The pancreas has a very limited regenerative potential during homeostasis. Despite its quiescent nature, recent in vivo models suggest a certain degree of regeneration and cellular interconversion is possible within the adult pancreas. It has now become evident that cellular plasticity can be observed in essentially all cell types within the pancreas when provided with the right stress stimuli. In this review, we will focus on the latest findings uncovering phenotypic plasticity of different cell types in the pancreas, the molecular mechanisms behind such plasticity and how plasticity associated with pancreatic or non-pancreatic cells could be harnessed in the generation of new insulin-producing beta cells.
Collapse
Affiliation(s)
- Theoni Ingrid Demcollari
- Centre for Stem Cells and Regenerative Medicine, Faculty of Life Sciences & Medicine, King's College London, Guy's Hospital, 28th Floor, Tower Wing, London SE1 9RT, UK
| | - Ana-Maria Cujba
- Centre for Stem Cells and Regenerative Medicine, Faculty of Life Sciences & Medicine, King's College London, Guy's Hospital, 28th Floor, Tower Wing, London SE1 9RT, UK
| | - Rocio Sancho
- Centre for Stem Cells and Regenerative Medicine, Faculty of Life Sciences & Medicine, King's College London, Guy's Hospital, 28th Floor, Tower Wing, London SE1 9RT, UK.
| |
Collapse
|
43
|
Lineage conversion of mouse fibroblasts to pancreatic α-cells. Exp Mol Med 2017; 49:e350. [PMID: 28665920 PMCID: PMC5519020 DOI: 10.1038/emm.2017.84] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 01/23/2017] [Accepted: 01/25/2017] [Indexed: 12/16/2022] Open
Abstract
α-cells, which synthesize glucagon, also support β-cell survival and have the capacity to transdifferentiate into β-cells. However, the role of α-cells in pathological conditions and their putative clinical applications remain elusive due in large part to the lack of mature α-cells. Here, we present a new technique to generate functional α-like cells. α-like cells (iAlpha cells) were generated from mouse fibroblasts by transduction of transcription factors, including Hhex, Foxa3, Gata4, Pdx1 and Pax4, which induce α-cell-specific gene expression and glucagon secretion in response to KCl and Arg stimulation. The cell functions in vivo and in vitro were evaluated. Lineage-specific and functional-related gene expression was tested by realtime PCR, insulin tolerance test (ITT), glucose tolerance test (GTT), Ki67 and glucagon immunohistochemistry analysis were done in iAlpha cells transplanted nude mice. iAlpha cells possess α-cell function in vitro and alter blood glucose levels in vivo. Transplantation of iAlpha cells into nude mice resulted in insulin resistance and increased β-cell proliferation. Taken together, we present a novel strategy to generate functional α-like cells for the purposes of disease modeling and regenerative medicine.
Collapse
|
44
|
Masini M, Marselli L, Himpe E, Martino L, Bugliani M, Suleiman M, Boggi U, Filipponi F, Occhipinti M, Bouwens L, De Tata V, Marchetti P. Co-localization of acinar markers and insulin in pancreatic cells of subjects with type 2 diabetes. PLoS One 2017; 12:e0179398. [PMID: 28617859 PMCID: PMC5472296 DOI: 10.1371/journal.pone.0179398] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 05/29/2017] [Indexed: 11/19/2022] Open
Abstract
To search for clues suggesting that beta cells may generate by transdifferentiation in humans, we assessed the presence of cells double positive for exocrine (amylase, carboxypeptidase A) and endocrine (insulin) markers in the pancreas of non-diabetic individuals (ND) and patients with type 2 diabetes (T2D). Samples from twelve ND and twelve matched T2D multiorgan donors were studied by electron microscopy, including amylase and insulin immunogold labeling; carboxypeptidase A immunofluorescence light microscopy assessment was also performed. In the pancreas from four T2D donors, cells containing both zymogen-like and insulin-like granules were observed, scattered in the exocrine compartment. Nature of granules was confirmed by immunogold labeling for amylase and insulin. Double positive cells ranged from 0.82 to 1.74 per mm2, corresponding to 0.26±0.045% of the counted exocrine cells. Intriguingly, cells of the innate immune systems (mast cells and/or macrophages) were adjacent to 33.3±13.6% of these hybrid cells. No cells showing co-localization of amylase and insulin were found in ND samples by electron microscopy. Similarly, cells containing both carboxypeptidase A and insulin were more frequently observed in the diabetic pancreata. These results demonstrate more abundant presence of cells containing both acinar markers and insulin in the pancreas of T2D subjects, which suggests possible conversion from one cellular type to the other and specific association with the diseased condition.
Collapse
Affiliation(s)
- Matilde Masini
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Lorella Marselli
- Department of Clinical and Experimental Medicine, Islet Cell Laboratory, University of Pisa, Pisa, Italy
| | - Eddy Himpe
- Cell Differentiation Laboratory, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Luisa Martino
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Marco Bugliani
- Department of Clinical and Experimental Medicine, Islet Cell Laboratory, University of Pisa, Pisa, Italy
| | - Mara Suleiman
- Department of Clinical and Experimental Medicine, Islet Cell Laboratory, University of Pisa, Pisa, Italy
| | - Ugo Boggi
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Franco Filipponi
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Margherita Occhipinti
- Department of Clinical and Experimental Medicine, Islet Cell Laboratory, University of Pisa, Pisa, Italy
| | - Luc Bouwens
- Cell Differentiation Laboratory, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Vincenzo De Tata
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Piero Marchetti
- Department of Clinical and Experimental Medicine, Islet Cell Laboratory, University of Pisa, Pisa, Italy
| |
Collapse
|
45
|
Chattopadhyay T, Singh RR, Gupta S, Surolia A. Bone morphogenetic protein-7 (BMP-7) augments insulin sensitivity in mice with type II diabetes mellitus by potentiating PI3K/AKT pathway. Biofactors 2017; 43:195-209. [PMID: 28186649 DOI: 10.1002/biof.1334] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Revised: 08/24/2016] [Accepted: 08/25/2016] [Indexed: 12/11/2022]
Abstract
A direct link between development of insulin resistance and the presence of chronic inflammation, in case of obesity exists, with cytokines playing an important role in glucose metabolism. Members of TGF-β superfamily, including bone morphogenetic proteins (BMPs), have been shown to be involved in islet morphogenesis, establishment of β-cell mass and adipose cell fate determination. Here, we demonstrate a novel and direct role of BMP-4 and -7 in the regulation of glucose homeostasis and insulin resistance. An age-dependent increase in serum BMP-4 and decrease in serum BMP-7 levels was observed in animal models of type II diabetes. In this study, BMP-7 and -4 have been demonstrated to have antagonistic effects on insulin signaling and thereby on glucose homeostasis. BMP-7 augmented glucose uptake in the insulin sensitive tissues such as the adipose and muscle by increasing Glut4 translocation to the plasma membrane through phosphorylation and activation of PDK1 and Akt, and phosphorylation and translocation of FoxO1 to the cytoplasm in liver/HepG2 cells. Restoration of BMP-7 levels in serum of diabetic animals resulted in decreased blood glucose levels in contrast to age matched untreated control groups, opening up a new therapeutic avenue for diabetes. On the contrary, BMP-4 inhibited insulin signaling through activation of PKC-θ isoform, and resulted in insulin resistance through the attenuation of insulin signaling. BMP-7 therefore is an attractive candidate for tackling a multifaceted disease such as diabetes, since it not only reduces body fat, but also strengthens insulin signaling, causing improved glucose uptake and ameliorating peripheral insulin resistance. © 2017 BioFactors, 43(2):195-209, 2017.
Collapse
Affiliation(s)
| | | | - Sarika Gupta
- National Institute of Immunology, New Delhi, India
| | - Avadhesha Surolia
- National Institute of Immunology, New Delhi, India
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, India
| |
Collapse
|
46
|
Bonnet N. Bone-Derived Factors: A New Gateway to Regulate Glycemia. Calcif Tissue Int 2017; 100:174-183. [PMID: 27832316 DOI: 10.1007/s00223-016-0210-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Accepted: 11/02/2016] [Indexed: 01/26/2023]
Abstract
Type 2 diabetes mellitus (T2DM) and osteoporosis are two major disorders which prevalence increases with aging and is predicted to worsen in the coming years. Preclinical investigations suggest common mechanisms implicated in the pathogenesis of both disorders. Recent evidence has established that there is a clear link between glucose and bone metabolism. The emergence of bone as an endocrine regulator through FGF23 and osteocalcin has led to the re-evaluation of the role of bone cells and bone-derived factors in the development of metabolic diseases such as T2DM. The development of bone morphogenetic proteins, fibroblast growth factor 23, and osteoprotegerin-deficient mice has allowed to elucidate their role in bone homeostasis, as well as revealed their potential important function in glucose homeostasis. This review proposes emerging perspectives for several bone-derived factors that may regulate glycemia through the activation or inhibition of bone remodeling or directly by regulating function of key organs such as pancreatic beta cell proliferation, insulin expression and secretion, storage and release of glucose from the liver, skeletal muscle contraction, and browning of the adipose tissue. Connections between organs including bone-derived factors should further be explored to understand the pathophysiology of glucose metabolism and diabetes.
Collapse
Affiliation(s)
- Nicolas Bonnet
- Division of Bone Diseases, Department of Internal Medicine Specialties, Geneva University Hospitals and Faculty of Medicine, 64 Av de la Roseraie, 1205, Geneva 14, Switzerland.
| |
Collapse
|
47
|
Lu J, Xia Q, Zhou Q. How to make insulin-producing pancreatic β cells for diabetes treatment. SCIENCE CHINA-LIFE SCIENCES 2016; 60:239-248. [DOI: 10.1007/s11427-016-0211-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2016] [Accepted: 09/20/2016] [Indexed: 12/21/2022]
|
48
|
Corritore E, Lee YS, Sokal EM, Lysy PA. β-cell replacement sources for type 1 diabetes: a focus on pancreatic ductal cells. Ther Adv Endocrinol Metab 2016; 7:182-99. [PMID: 27540464 PMCID: PMC4973405 DOI: 10.1177/2042018816652059] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Thorough research on the capacity of human islet transplantation to cure type 1 diabetes led to the achievement of 3- to 5-year-long insulin independence in nearly half of transplanted patients. Yet, translation of this technique to clinical routine is limited by organ shortage and the need for long-term immunosuppression, restricting its use to adults with unstable disease. The production of new bona fide β cells in vitro was thus investigated and finally achieved with human pluripotent stem cells (PSCs). Besides ethical concerns about the use of human embryos, studies are now evaluating the possibility of circumventing the spontaneous tumor formation associated with transplantation of PSCs. These issues fueled the search for cell candidates for β-cell engineering with safe profiles for clinical translation. In vivo studies revealed the regeneration capacity of the exocrine pancreas after injury that depends at least partially on facultative progenitors in the ductal compartment. These stimulated subpopulations of pancreatic ductal cells (PDCs) underwent β-cell transdifferentiation through reactivation of embryonic signaling pathways. In vitro models for expansion and differentiation of purified PDCs toward insulin-producing cells were described using cocktails of growth factors, extracellular-matrix proteins and transcription factor overexpression. In this review, we will describe the latest findings in pancreatic β-cell mass regeneration due to adult ductal progenitor cells. We will further describe recent advances in human PDC transdifferentiation to insulin-producing cells with potential for clinical translational studies.
Collapse
Affiliation(s)
- Elisa Corritore
- Institut de Recherche Expérimentale et Clinique, Pediatric Research Laboratory, Université Catholique de Louvain, Brussels, Belgium
| | - Yong-Syu Lee
- Institut de Recherche Expérimentale et Clinique, Pediatric Research Laboratory, Université Catholique de Louvain, Brussels, Belgium
| | - Etienne M. Sokal
- Institut de Recherche Expérimentale et Clinique, Pediatric Research Laboratory, Université Catholique de Louvain, Brussels, Belgium
| | | |
Collapse
|
49
|
Brown ML, Andrzejewski D, Burnside A, Schneyer AL. Activin Enhances α- to β-Cell Transdifferentiation as a Source For β-Cells In Male FSTL3 Knockout Mice. Endocrinology 2016; 157:1043-54. [PMID: 26727106 DOI: 10.1210/en.2015-1793] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Diabetes results from inadequate β-cell number and/or function to control serum glucose concentrations so that replacement of lost β-cells could become a viable therapy for diabetes. In addition to embryonic stem cell sources for new β-cells, evidence for transdifferentiation/reprogramming of non-β-cells to functional β-cells is accumulating. In addition, de-differentiation of β-cells observed in diabetes and their subsequent conversion to α-cells raises the possibility that adult islet cell fate is malleable and controlled by local hormonal and/or environmental cues. We previously demonstrated that inactivation of the activin antagonist, follistatin-like 3 (FSTL3) resulted in β-cell expansion and improved glucose homeostasis in the absence of β-cell proliferation. We recently reported that activin directly suppressed expression of critical α-cell genes while increasing expression of β-cell genes, supporting the hypothesis that activin is one of the local hormones controlling islet cell fate and that increased activin signaling accelerates α- to β-cell transdifferentiation. We tested this hypothesis using Gluc-Cre/yellow fluorescent protein (YFP) α-cell lineage tracing technology combined with FSTL3 knockout (KO) mice to label α-cells with YFP. Flow cytometry was used to quantify unlabeled and labeled α- and β-cells. We found that Ins+/YFP+ cells were significantly increased in FSTL3 KO mice compared with wild type littermates. Labeled Ins+/YFP+ cells increased significantly with age in FSTL3 KO mice but not wild type littermates. Sorting results were substantiated by counting fluorescently labeled cells in pancreatic sections. Activin treatment of isolated islets significantly increased the number of YFP+/Ins+ cells. These results suggest that α- to β-cell transdifferentiation is influenced by activin signaling and may contribute substantially to β-cell mass.
Collapse
Affiliation(s)
- Melissa L Brown
- Departments of Nutrition (M.L.B.) and Veterinary and Animal Science (D.A., A.B., A.L.S.), University of Massachusetts-Amherst, Amherst, Massachusetts 01003
| | - Danielle Andrzejewski
- Departments of Nutrition (M.L.B.) and Veterinary and Animal Science (D.A., A.B., A.L.S.), University of Massachusetts-Amherst, Amherst, Massachusetts 01003
| | - Amy Burnside
- Departments of Nutrition (M.L.B.) and Veterinary and Animal Science (D.A., A.B., A.L.S.), University of Massachusetts-Amherst, Amherst, Massachusetts 01003
| | - Alan L Schneyer
- Departments of Nutrition (M.L.B.) and Veterinary and Animal Science (D.A., A.B., A.L.S.), University of Massachusetts-Amherst, Amherst, Massachusetts 01003
| |
Collapse
|
50
|
Domínguez-Bendala J, Lanzoni G, Klein D, Álvarez-Cubela S, Pastori RL. The Human Endocrine Pancreas: New Insights on Replacement and Regeneration. Trends Endocrinol Metab 2016; 27:153-162. [PMID: 26774512 DOI: 10.1016/j.tem.2015.12.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Revised: 12/11/2015] [Accepted: 12/14/2015] [Indexed: 12/24/2022]
Abstract
Islet transplantation is an effective cell therapy for type 1 diabetes (T1D) but its clinical application is limited due to shortage of donors. After a decade-long period of exploration of potential alternative cell sources, the field has only recently zeroed in on two of them as the most likely to replace islets. These are pluripotent stem cells (PSCs) (through directed differentiation) and pancreatic non-endocrine cells (through directed differentiation or reprogramming). Here we review progress in both areas, including the initiation of Phase I/II clinical trials using human embryonic stem cell (hESc)-derived progenitors, advances in hESc differentiation in vitro, novel insights on the developmental plasticity of the pancreas, and groundbreaking new approaches to induce β cell conversion from the non-endocrine compartment without genetic manipulation.
Collapse
Affiliation(s)
- Juan Domínguez-Bendala
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL, USA; Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, USA; Department of Cell Biology and Anatomy, University of Miami Miller School of Medicine, Miami, FL, USA.
| | - Giacomo Lanzoni
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Dagmar Klein
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Silvia Álvarez-Cubela
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Ricardo L Pastori
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL, USA; Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL, USA; Department of Medicine, University of Miami Miller School of Medicine, Miami, FL, USA.
| |
Collapse
|