1
|
Bruce CR, Ang T, Toms JD, Dao GM, Liu J, Ward GM, O'Neal DN, Morrison DJ, Kowalski GM. The Effect of Small Increases in Blood Glucose on Insulin Secretion and Endogenous Glucose Production in Humans. Diabetes 2025; 74:898-906. [PMID: 39508871 DOI: 10.2337/db24-0388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 10/30/2024] [Indexed: 11/15/2024]
Abstract
Small glycemic increments (≤0.5 mmol/L) can exert suppressive actions on endogenous glucose production (EGP); however, it is unclear if this is an insulin-dependent or -independent process. Here, we performed a low-rate glucose infusion in control participants without diabetes and in people with type 1 diabetes (T1D) to better understand this phenomenon. Glucose kinetics, hormones, and metabolites were measured during a 1 mg/kg/min glucose infusion (90 min), which rapidly increased glucose by ∼0.3 mmol/L in control participants. Insulin concentrations and secretion quickly increased by ∼20%, resulting in a ∼40% suppression of EGP, while glucose disposal remained unchanged. Free fatty acids (FFAs) and glucagon were gradually suppressed to ∼30% below baseline at 60 min. When repeated under constant basal insulin concentrations in participants with T1D, glucose infusion caused only partial and transient EGP suppression; hence, glucose increased in a near-linear manner, reaching levels ∼2 mmol/L above baseline at 90 min. FFAs and glucagon remained unchanged, while glucose disposal modestly increased. This demonstrates that small glycemic increments exert subtle stimulatory effects on insulin secretion that have potent metabolic actions on the liver and adipose tissue. It is conceivable that subtle increases in glucose could potentially serve as a signal for β-cell adaptation. ARTICLE HIGHLIGHTS Small glycemic increments (≤0.5 mmol/L [≤9 mg/dL]) can suppress endogenous glucose production (EGP), but it is unclear if this depends on insulin. We conducted a low-rate glucose infusion in control participants and people with type 1 diabetes to determine the metabolic impact of minor glucose elevations and their reliance on insulin secretion. Healthy β-cells responded to subtle blood glucose elevations with small, physiologically relevant increases in insulin secretion that suppress EGP and lipolysis without stimulating glucose disposal. Small glycemic increments exerted potent insulin-dependent effects on liver and adipose tissue metabolism and could potentially serve as a β-cell adaptation signal.
Collapse
Affiliation(s)
- Clinton R Bruce
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Geelong, Waurn Ponds, Victoria, Australia
| | - Teddy Ang
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Geelong, Waurn Ponds, Victoria, Australia
| | - Jason D Toms
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Geelong, Waurn Ponds, Victoria, Australia
| | - Giang M Dao
- Institute for Physical Activity and Nutrition, Metabolic Research Unit, School of Medicine, Deakin University, Geelong, Waurn Ponds, Victoria, Australia
| | - Jean Liu
- Department of Medicine, University of Melbourne, Melbourne, Victoria, Australia
- Department of Endocrinology and Diabetes, St Vincent's Hospital Melbourne, Melbourne, Victoria, Australia
| | - Glenn M Ward
- Department of Medicine, University of Melbourne, Melbourne, Victoria, Australia
- Department of Endocrinology and Diabetes, St Vincent's Hospital Melbourne, Melbourne, Victoria, Australia
| | - David N O'Neal
- Department of Medicine, University of Melbourne, Melbourne, Victoria, Australia
- Department of Endocrinology and Diabetes, St Vincent's Hospital Melbourne, Melbourne, Victoria, Australia
| | - Dale J Morrison
- Department of Medicine, University of Melbourne, Melbourne, Victoria, Australia
- Department of Endocrinology and Diabetes, St Vincent's Hospital Melbourne, Melbourne, Victoria, Australia
| | - Greg M Kowalski
- Institute for Physical Activity and Nutrition, Metabolic Research Unit, School of Medicine, Deakin University, Geelong, Waurn Ponds, Victoria, Australia
| |
Collapse
|
2
|
Kim LB, Liu S, Richtsmeier S, Górniak M, Vikram A, Imai Y. Acute Inhibition of Adipose Triglyceride Lipase by NG497 Dysregulates Insulin and Glucagon Secretion From Human Islets. Endocrinology 2025; 166:bqaf090. [PMID: 40354133 PMCID: PMC12119457 DOI: 10.1210/endocr/bqaf090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 02/03/2025] [Accepted: 05/09/2025] [Indexed: 05/14/2025]
Abstract
Adipose triglyceride lipase (ATGL), which catalyzes the breakdown of triglycerides in lipid droplets (LDs), plays a critical role in releasing fatty acids to support insulin secretion in pancreatic β cells. Based on genetic downregulation of ATGL in β cells, multiple mechanisms are proposed that acutely or chronically regulate insulin secretion. Currently, the contribution of acute vs chronic mechanisms in the regulation of insulin secretion is unclear. Also, little is known whether ATGL affects α-cell function. Using the human-specific ATGL inhibitor, NG497, this study investigates the impact of acute inhibition of ATGL on hormone secretion from human islets. In addition, morphological differences in LDs were assessed in confocal images of β and α cells. β cells exposed to NG497 overnight showed notable increases in LD size and number under glucose-sufficient culture. The effect of NG497 on LD accumulation in α cells was more prominent under fasting-simulated conditions than glucose-sufficient conditions, pointing toward a critical role for ATGL lipolysis under conditions that stimulate hormone secretion in β and α cells. When exposed to NG497 acutely, human islets reduced glucose-stimulated insulin secretion mildly, particularly first-phase insulin secretion, to an extent somewhat less pronounced than the impacts of chronic ATGL downregulation. Thus, chronic mechanisms may play a predominant role in reducing insulin secretion when ATGL is downregulated. Acute exposure of human islets to NG497 significantly reduced amino acid stimulated glucagon secretion at low glucose concentration, highlighting an important potential role of ATGL lipolysis in promoting hormone secretion acutely from α cells.
Collapse
Affiliation(s)
- Lucy B Kim
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA 52242, USA
| | - Siming Liu
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA 52242, USA
- Iowa City Veterans Affairs Medical Center, Iowa City, IA 52246, USA
| | - Syreine Richtsmeier
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA 52242, USA
| | - Michał Górniak
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
- Warsaw University of Life Sciences, 02-787 Warsaw, Poland
| | - Anamika Vikram
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA 52242, USA
| | - Yumi Imai
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA 52242, USA
- Iowa City Veterans Affairs Medical Center, Iowa City, IA 52246, USA
| |
Collapse
|
3
|
Ahrentløv N, Kubrak O, Lassen M, Malita A, Koyama T, Frederiksen AS, Sigvardsen CM, John A, Madsen PEH, Halberg KV, Nagy S, Imig C, Richter EA, Texada MJ, Rewitz K. Protein-responsive gut hormone tachykinin directs food choice and impacts lifespan. Nat Metab 2025:10.1038/s42255-025-01267-0. [PMID: 40229448 DOI: 10.1038/s42255-025-01267-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 03/06/2025] [Indexed: 04/16/2025]
Abstract
Animals select food based on hungers that reflect dynamic macronutrient needs, but the hormonal mechanisms underlying nutrient-specific appetite regulation remain poorly defined. Here, we identify tachykinin (Tk) as a protein-responsive gut hormone in Drosophila and female mice, regulated by conserved environmental and nutrient-sensing mechanisms. Protein intake activates Tk-expressing enteroendocrine cells (EECs), driving the release of gut Tk through mechanisms involving target of rapamycin (TOR) and transient receptor potential A1 (TrpA1). In flies, we delineate a pathway by which gut Tk controls selective appetite and sleep after protein ingestion, mediated by glucagon-like adipokinetic hormone (AKH) signalling to neurons and adipose tissue. This mechanism suppresses protein appetite, promotes sugar hunger and modulates wakefulness to align behaviour with nutritional needs. Inhibiting protein-responsive gut Tk prolongs lifespan through AKH, revealing a role for nutrient-dependent gut hormone signalling in longevity. Our results provide a framework for understanding EEC-derived nutrient-specific satiety signals and the role of gut hormones in regulating food choice, sleep and lifespan.
Collapse
Affiliation(s)
- Nadja Ahrentløv
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Olga Kubrak
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Mette Lassen
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Alina Malita
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Takashi Koyama
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Amalie S Frederiksen
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Casper M Sigvardsen
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Alphy John
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | | | - Kenneth V Halberg
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Stanislav Nagy
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Cordelia Imig
- Department of Neuroscience, University of Copenhagen, Copenhagen, Denmark
- The Novo Nordisk Foundation, Hellerup, Denmark
| | - Erik A Richter
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Michael J Texada
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Kim Rewitz
- Department of Biology, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
4
|
Mogensen CS, Magkos F, Zingenberg H, Geiker NRW. Effect of a high-protein and low-glycaemic index diet during pregnancy in women with overweight or obesity on offspring metabolic health-A randomized controlled trial. Pediatr Obes 2025; 20:e13191. [PMID: 39622527 PMCID: PMC11936710 DOI: 10.1111/ijpo.13191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 10/08/2024] [Accepted: 10/28/2024] [Indexed: 03/27/2025]
Abstract
BACKGROUND Maternal obesity and excessive weight gain during pregnancy are associated with higher birth weight and increased risk of childhood obesity. OBJECTIVE This study investigated the effect of a high-protein and low-glycaemic-index (HPLGI) diet during pregnancy on offspring body composition and metabolic health. METHODS We conducted a dietary intervention study in pregnant women with a pre-pregnancy BMI of 28-45 kg/m2 who were randomly assigned to an HPLGI diet or a moderate-protein moderate-glycaemic-index (MPMGI) diet. A total of 208 offspring born to these women were followed-up from birth to 5 years of age. RESULTS No differences were found on BMI z-scores at different ages; however, offspring born to women on the HPLGI diet exhibited 0.43 mmol/L higher glucose levels (p = 0.017) at birth compared with the MPMGI diet. At 3 years of age, HPLGI offspring had 0.09 mmol/L lower levels of HDL-cholesterol (p = 0.018) and 16% higher levels of triglycerides (p = 0.044). At 5 years of age, they had 0.25 mmol/L higher total cholesterol levels (p = 0.027) and 0.27 mmol/L higher LDL-cholesterol levels (p = 0.003) compared with the MPMGI diet. CONCLUSION An HPLGI diet during pregnancy may lead to adverse metabolic outcomes in the offspring, necessitating further investigation into long-term health implications.
Collapse
Affiliation(s)
| | - Faidon Magkos
- Department of Nutrition, Exercise, and SportsUniversity of CopenhagenFrederiksbergDenmark
| | - Helle Zingenberg
- Department of Obstetrics and GynecologyCopenhagen University Hospital Herlev‐GentofteHerlevDenmark
| | - Nina Rica Wium Geiker
- Department of Nutrition, Exercise, and SportsUniversity of CopenhagenFrederiksbergDenmark
- Dietetic and Clinical Nutrition Research UnitCopenhagen University HospitalHerlevDenmark
- Centre for Childhood HealthCopenhagenDenmark
| |
Collapse
|
5
|
Dao GM, Kowalski GM, Bruce CR, O'Neal DN, Smart CE, Zaharieva DP, Hennessy DT, Zhao S, Morrison DJ. The Glycemic Impact of Protein Ingestion in People With Type 1 Diabetes. Diabetes Care 2025; 48:509-518. [PMID: 39951019 DOI: 10.2337/dci24-0096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Accepted: 01/07/2025] [Indexed: 03/23/2025]
Abstract
In individuals with type 1 diabetes, carbohydrate is commonly recognized as the primary macronutrient influencing postprandial glucose levels. Accumulating evidence indicates that protein ingestion also contributes to the increment in postprandial glucose levels, despite endocrine and metabolic responses different from those with carbohydrate ingestion. However, findings regarding protein ingestion's glycemic effect in people with type 1 diabetes are equivocal, with the magnitude of glycemic response seemingly dependent on the rate of absorption and composition of protein ingested. Therefore, the aim of this article is to outline the physiological mechanisms by which ingested protein influences blood glucose regulation in individuals with type 1 diabetes and provide clinical implications on use of dietary protein in the context of glycemic management. Specifically, protein ingestion raises plasma amino acid levels, which directly or indirectly (via gut hormones) stimulates glucagon secretion. Together with the increase in gluconeogenic precursors and an absent endogenous insulin response in individuals with type 1 diabetes, this provides a synergistic physiological environment for increased endogenous glucose production and subsequently increasing circulating glucose levels for several hours. While there is a dearth of well-controlled studies in this area, we provide clinical implications and directions for future research regarding the potential for using ingestion of fast-absorbing protein (such as whey protein) as a tool to prevent and mitigate overnight- and exercise-induced hypoglycemia in people with type 1 diabetes.
Collapse
Affiliation(s)
- Giang M Dao
- Institute for Physical Activity and Nutrition, School of Medicine, Deakin University, Geelong, Victoria, Australia
| | - Greg M Kowalski
- Institute for Physical Activity and Nutrition, School of Medicine, Deakin University, Geelong, Victoria, Australia
| | - Clinton R Bruce
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Geelong, Victoria, Australia
| | - David N O'Neal
- Department of Medicine, The University of Melbourne, Melbourne, Victoria, Australia
| | - Carmel E Smart
- Department of Pediatrics Diabetes and Endocrinology, John Hunter Children's Hospital, Newcastle, New South Wales, Australia
| | - Dessi P Zaharieva
- Division of Pediatric Endocrinology, Department of Pediatrics, Stanford University, Stanford, CA
| | - Declan T Hennessy
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Geelong, Victoria, Australia
- Department of Medicine, The University of Melbourne, Melbourne, Victoria, Australia
| | - Sam Zhao
- Department of Medicine, The University of Melbourne, Melbourne, Victoria, Australia
| | - Dale J Morrison
- Department of Medicine, The University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
6
|
Lallouet M, Olçomendy L, Gaitan J, Montiège K, Monchablon M, Pirog A, Chapeau D, Puginier E, Renaud S, Raoux M, Lang J. A microfluidic twin islets-on-chip device for on-line electrophysiological monitoring. LAB ON A CHIP 2025; 25:1831-1841. [PMID: 40042033 DOI: 10.1039/d4lc00967c] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/26/2025]
Abstract
Pancreatic islets play a major role in glucose homeostasis as well as in diabetes, and islets-on-chip devices have been mainly developed using optical means for on-line monitoring. In contrast, no well-characterized electrophysiological platform for on-line analysis with unrivalled temporal resolution has been reported. Extracellular electrophysiology monitors two crucial parameters, islet β-cell activity and β-to-β-cell coupling, does not require chemical or genetic probes with inherent potential bias, is non-invasive and permits repetitive long-term monitoring. We have now developed and characterized a microfluidic islets-on-chip for combined electrophysiology (on-line) and hormone monitoring (off-line) with two chambers for concomitant monitoring. Fabrication of the device, based on commercial or easily manufacturable components, is within the reach of non-specialized laboratories. The chip permits convenient loading as well as long-term culture with comparable glucose kinetics and low shear stress in both chambers. An optimized flow rate did not alter islet β-cell electrical activity or coupling in response to glucose. Culturing for up to 8 days did not change islet survival as well as glucose-induced electrical or secretory kinetics of islet β-cells. The addition of a physiological amino acid mix, in the presence of elevated glucose, made a considerable change in the functional organisation of islet β-cell activity in terms of frequency and coupling, which explains the ensuing strong increase in insulin secretion. This device thus allows reliable long-term multiparametric on-line monitoring in two islet populations. The ease of fabrication, assembly and handling should permit widespread long-term on-line monitoring of islet activity in native micro-organs (e.g. controls/mutants), pseudo-islets or stem-cell-derived islet-like organoids.
Collapse
Affiliation(s)
- Marie Lallouet
- Univ. Bordeaux, CNRS, Bordeaux INP, Institute of Chemistry and Biology of Membranes, CBMN, UMR 5248, Pessac, France.
| | - Loic Olçomendy
- Univ. Bordeaux, CNRS, Bordeaux INP, Integration from Material to System, IMS, UMR 5218, F-33400 Talence, France
| | - Julien Gaitan
- Univ. Bordeaux, CNRS, Bordeaux INP, Institute of Chemistry and Biology of Membranes, CBMN, UMR 5248, Pessac, France.
| | - Killian Montiège
- Univ. Bordeaux, CNRS, Bordeaux INP, Integration from Material to System, IMS, UMR 5218, F-33400 Talence, France
| | - Marie Monchablon
- Univ. Bordeaux, CNRS, Bordeaux INP, Institute of Chemistry and Biology of Membranes, CBMN, UMR 5248, Pessac, France.
- Univ. Bordeaux, CNRS, Bordeaux INP, Integration from Material to System, IMS, UMR 5218, F-33400 Talence, France
| | - Antoine Pirog
- Junia, Electronics-Physics-Acoustics Department, F-59000 Lille, France
| | - Dorian Chapeau
- Univ. Bordeaux, CNRS, Bordeaux INP, Institute of Chemistry and Biology of Membranes, CBMN, UMR 5248, Pessac, France.
| | - Emilie Puginier
- Univ. Bordeaux, CNRS, Bordeaux INP, Institute of Chemistry and Biology of Membranes, CBMN, UMR 5248, Pessac, France.
| | - Sylvie Renaud
- Univ. Bordeaux, CNRS, Bordeaux INP, Integration from Material to System, IMS, UMR 5218, F-33400 Talence, France
| | - Matthieu Raoux
- Univ. Bordeaux, CNRS, Bordeaux INP, Institute of Chemistry and Biology of Membranes, CBMN, UMR 5248, Pessac, France.
| | - Jochen Lang
- Univ. Bordeaux, CNRS, Bordeaux INP, Institute of Chemistry and Biology of Membranes, CBMN, UMR 5248, Pessac, France.
| |
Collapse
|
7
|
Hu C, Chen Y, Yin X, Xu R, Yin C, Wang C, Zhao Y. Pancreatic endocrine and exocrine signaling and crosstalk in physiological and pathological status. Signal Transduct Target Ther 2025; 10:39. [PMID: 39948335 PMCID: PMC11825823 DOI: 10.1038/s41392-024-02098-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 10/20/2024] [Accepted: 12/03/2024] [Indexed: 02/16/2025] Open
Abstract
The pancreas, an organ with dual functions, regulates blood glucose levels through the endocrine system by secreting hormones such as insulin and glucagon. It also aids digestion through the exocrine system by secreting digestive enzymes. Complex interactions and signaling mechanisms between the endocrine and exocrine functions of the pancreas play a crucial role in maintaining metabolic homeostasis and overall health. Compelling evidence indicates direct and indirect crosstalk between the endocrine and exocrine parts, influencing the development of diseases affecting both. From a developmental perspective, the exocrine and endocrine parts share the same origin-the "tip-trunk" domain. In certain circumstances, pancreatic exocrine cells may transdifferentiate into endocrine-like cells, such as insulin-secreting cells. Additionally, several pancreatic diseases, including pancreatic cancer, pancreatitis, and diabetes, exhibit potential relevance to both endocrine and exocrine functions. Endocrine cells may communicate with exocrine cells directly through cytokines or indirectly by regulating the immune microenvironment. This crosstalk affects the onset and progression of these diseases. This review summarizes the history and milestones of findings related to the exocrine and endocrine pancreas, their embryonic development, phenotypic transformations, signaling roles in health and disease, the endocrine-exocrine crosstalk from the perspective of diseases, and potential therapeutic targets. Elucidating the regulatory mechanisms of pancreatic endocrine and exocrine signaling and provide novel insights for the understanding and treatment of diseases.
Collapse
Grants
- National High Level Hospital Clinical Research Funding (2022, 2022-PUMCH-D-001, to YZ), CAMS Innovation Fund for Medical Sciences (2021, 2021-I2M-1-002, to YZ), National Nature Science Foundation of China (2021, 82102810, to CW, the Fundamental Research Funds for the Central Universities(3332023123)
- cNational High Level Hospital Clinical Research Funding (2022, 2022-PUMCH-D-001, to YZ), CAMS Innovation Fund for Medical Sciences (2021, 2021-I2M-1-002, to YZ), National Nature Science Foundation of China (2021, 82102810, to CW, the Fundamental Research Funds for the Central Universities(3332023123)
Collapse
Affiliation(s)
- Chenglin Hu
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, PR China
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, PR China
- State Key Laboratory of Complex, Severe, and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, PR China
| | - Yuan Chen
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, PR China
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, PR China
- State Key Laboratory of Complex, Severe, and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, PR China
| | - Xinpeng Yin
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, PR China
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, PR China
- State Key Laboratory of Complex, Severe, and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, PR China
| | - Ruiyuan Xu
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, PR China
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, PR China
- State Key Laboratory of Complex, Severe, and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, PR China
| | - Chenxue Yin
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, PR China
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, PR China
- State Key Laboratory of Complex, Severe, and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, PR China
| | - Chengcheng Wang
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, PR China.
- State Key Laboratory of Complex, Severe, and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, PR China.
- National Infrastructures for Translational Medicine, Peking Union Medical College Hospital, Beijing, PR China.
- Institute of Clinical Medicine, Peking Union Medical College Hospital, Beijing, PR China.
| | - Yupei Zhao
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, PR China.
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, PR China.
- State Key Laboratory of Complex, Severe, and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, PR China.
- National Infrastructures for Translational Medicine, Peking Union Medical College Hospital, Beijing, PR China.
| |
Collapse
|
8
|
Magkos F, Sørensen TIA, Raubenheimer D, Dhurandhar NV, Loos RJF, Bosy-Westphal A, Clemmensen C, Hjorth MF, Allison DB, Taubes G, Ravussin E, Friedman MI, Hall KD, Ludwig DS, Speakman JR, Astrup A. On the pathogenesis of obesity: causal models and missing pieces of the puzzle. Nat Metab 2024; 6:1856-1865. [PMID: 39164418 DOI: 10.1038/s42255-024-01106-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 07/10/2024] [Indexed: 08/22/2024]
Abstract
Application of the physical laws of energy and mass conservation at the whole-body level is not necessarily informative about causal mechanisms of weight gain and the development of obesity. The energy balance model (EBM) and the carbohydrate-insulin model (CIM) are two plausible theories, among several others, attempting to explain why obesity develops within an overall common physiological framework of regulation of human energy metabolism. These models have been used to explain the pathogenesis of obesity in individuals as well as the dramatic increases in the prevalence of obesity worldwide over the past half century. Here, we summarize outcomes of a recent workshop in Copenhagen that brought together obesity experts from around the world to discuss causal models of obesity pathogenesis. These discussions helped to operationally define commonly used terms; delineate the structure of each model, particularly focussing on areas of overlap and divergence; challenge ideas about the importance of purported causal factors for weight gain; and brainstorm on the key scientific questions that need to be answered. We hope that more experimental research in nutrition and other related fields, and more testing of the models and their predictions will pave the way and provide more answers about the pathogenesis of obesity than those currently available.
Collapse
Affiliation(s)
- Faidon Magkos
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Frederiksberg, Denmark.
| | - Thorkild I A Sørensen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Public Health, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Center for Childhood Health, Copenhagen, Denmark
| | - David Raubenheimer
- Charles Perkins Centre and School of Life and Environmental Sciences, the University of Sydney, Sydney, New South Wales, Australia
| | | | - Ruth J F Loos
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Anja Bosy-Westphal
- Institute of Human Nutrition and Food Science, Kiel University, Kiel, Germany
| | - Christoffer Clemmensen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Mads F Hjorth
- Department of Obesity and Nutritional Sciences, Novo Nordisk Foundation, Hellerup, Denmark
| | - David B Allison
- School of Public Health, Indiana University Bloomington, Bloomington, IN, USA
| | | | - Eric Ravussin
- Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, LA, USA
| | | | - Kevin D Hall
- National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, USA
| | - David S Ludwig
- New Balance Foundation Obesity Prevention Center, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - John R Speakman
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- University of Aberdeen, Aberdeen, UK
| | - Arne Astrup
- Department of Obesity and Nutritional Sciences, Novo Nordisk Foundation, Hellerup, Denmark
| |
Collapse
|
9
|
Wu Y, Foollee A, Chan AY, Hille S, Hauke J, Challis MP, Johnson JL, Yaron TM, Mynard V, Aung OH, Cleofe MAS, Huang C, Lim Kam Sian TCC, Rahbari M, Gallage S, Heikenwalder M, Cantley LC, Schittenhelm RB, Formosa LE, Smith GC, Okun JG, Müller OJ, Rusu PM, Rose AJ. Phosphoproteomics-directed manipulation reveals SEC22B as a hepatocellular signaling node governing metabolic actions of glucagon. Nat Commun 2024; 15:8390. [PMID: 39333498 PMCID: PMC11436942 DOI: 10.1038/s41467-024-52703-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 09/16/2024] [Indexed: 09/29/2024] Open
Abstract
The peptide hormone glucagon is a fundamental metabolic regulator that is also being considered as a pharmacotherapeutic option for obesity and type 2 diabetes. Despite this, we know very little regarding how glucagon exerts its pleiotropic metabolic actions. Given that the liver is a chief site of action, we performed in situ time-resolved liver phosphoproteomics to reveal glucagon signaling nodes. Through pathway analysis of the thousands of phosphopeptides identified, we reveal "membrane trafficking" as a dominant signature with the vesicle trafficking protein SEC22 Homolog B (SEC22B) S137 phosphorylation being a top hit. Hepatocyte-specific loss- and gain-of-function experiments reveal that SEC22B was a key regulator of glycogen, lipid and amino acid metabolism, with SEC22B-S137 phosphorylation playing a major role in glucagon action. Mechanistically, we identify several protein binding partners of SEC22B affected by glucagon, some of which were differentially enriched with SEC22B-S137 phosphorylation. In summary, we demonstrate that phosphorylation of SEC22B is a hepatocellular signaling node mediating the metabolic actions of glucagon and provide a rich resource for future investigations on the biology of glucagon action.
Collapse
Affiliation(s)
- Yuqin Wu
- Nutrient Metabolism & Signalling Laboratory, Metabolism, Diabetes and Obesity Program, Biomedicine Discovery Institute, Monash University, Victoria, Australia
- Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, Faculty of Medicine, Nursing & Health Sciences, Monash University, Victoria, Australia
| | - Ashish Foollee
- Nutrient Metabolism & Signalling Laboratory, Metabolism, Diabetes and Obesity Program, Biomedicine Discovery Institute, Monash University, Victoria, Australia
- Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, Faculty of Medicine, Nursing & Health Sciences, Monash University, Victoria, Australia
| | - Andrea Y Chan
- Nutrient Metabolism & Signalling Laboratory, Metabolism, Diabetes and Obesity Program, Biomedicine Discovery Institute, Monash University, Victoria, Australia
- Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, Faculty of Medicine, Nursing & Health Sciences, Monash University, Victoria, Australia
| | - Susanne Hille
- Department of Internal Medicine V, University Hospital of Schleswig-Holstein, Campus Kiel, Germany
- German Center for Cardiovascular Research (DZHK), Partner site Hamburg/Kiel/Lübeck, Kiel, Germany
| | - Jana Hauke
- Division of Inherited Metabolic Diseases, University Children's Hospital, Heidelberg, Germany
| | - Matthew P Challis
- Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, Faculty of Medicine, Nursing & Health Sciences, Monash University, Victoria, Australia
| | - Jared L Johnson
- Meyer Cancer Center, Weill Cornell Medicine, New York, USA
- Department of Cell Biology, Harvard Medical School, Boston, USA
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, USA
| | - Tomer M Yaron
- Meyer Cancer Center, Weill Cornell Medicine, New York, USA
- Englander Institute for Precision Medicine, Institute for Computational Biomedicine, Weill Cornell Medicine, New York, USA
- Columbia University Vagelos College of Physicians and Surgeons, New York, USA
| | - Victoria Mynard
- Nutrient Metabolism & Signalling Laboratory, Metabolism, Diabetes and Obesity Program, Biomedicine Discovery Institute, Monash University, Victoria, Australia
- Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, Faculty of Medicine, Nursing & Health Sciences, Monash University, Victoria, Australia
| | - Okka H Aung
- Nutrient Metabolism & Signalling Laboratory, Metabolism, Diabetes and Obesity Program, Biomedicine Discovery Institute, Monash University, Victoria, Australia
- Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, Faculty of Medicine, Nursing & Health Sciences, Monash University, Victoria, Australia
| | - Maria Almira S Cleofe
- Nutrient Metabolism & Signalling Laboratory, Metabolism, Diabetes and Obesity Program, Biomedicine Discovery Institute, Monash University, Victoria, Australia
- Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, Faculty of Medicine, Nursing & Health Sciences, Monash University, Victoria, Australia
| | - Cheng Huang
- Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, Faculty of Medicine, Nursing & Health Sciences, Monash University, Victoria, Australia
- Monash Proteomics and Metabolomics Platform, Monash University, Victoria, Australia
| | | | - Mohammad Rahbari
- German Cancer Research Center (DKFZ), Division of Chronic Inflammation and Cancer, Im Neuenheimer Feld 280, Heidelberg, Germany
- University Hospital Mannheim, Medical Faculty Mannheim, University of Heidelberg, Department of Surgery, Theodor-Kutzer-Ufer 1-3, Heidelberg, Germany
- University Tuebingen, Faculty of Medicine, Institute for Interdisciplinary Research on Cancer Metabolism and Chronic Inflammation, M3-Research Center for Malignome, Metabolome and Microbiome, Otfried-Müller-Straße 37, Tübingen, Germany
| | - Suchira Gallage
- German Cancer Research Center (DKFZ), Division of Chronic Inflammation and Cancer, Im Neuenheimer Feld 280, Heidelberg, Germany
- University Tuebingen, Faculty of Medicine, Institute for Interdisciplinary Research on Cancer Metabolism and Chronic Inflammation, M3-Research Center for Malignome, Metabolome and Microbiome, Otfried-Müller-Straße 37, Tübingen, Germany
| | - Mathias Heikenwalder
- German Cancer Research Center (DKFZ), Division of Chronic Inflammation and Cancer, Im Neuenheimer Feld 280, Heidelberg, Germany
- University Tuebingen, Faculty of Medicine, Institute for Interdisciplinary Research on Cancer Metabolism and Chronic Inflammation, M3-Research Center for Malignome, Metabolome and Microbiome, Otfried-Müller-Straße 37, Tübingen, Germany
- Cluster of Excellence iFIT (EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies", Eberhard-Karls University, Tübingen, Germany
| | - Lewis C Cantley
- Meyer Cancer Center, Weill Cornell Medicine, New York, USA
- Department of Cell Biology, Harvard Medical School, Boston, USA
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, USA
| | - Ralf B Schittenhelm
- Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, Faculty of Medicine, Nursing & Health Sciences, Monash University, Victoria, Australia
- Monash Proteomics and Metabolomics Platform, Monash University, Victoria, Australia
| | - Luke E Formosa
- Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, Faculty of Medicine, Nursing & Health Sciences, Monash University, Victoria, Australia
| | - Greg C Smith
- School of Biomedical Sciences, University of New South Wales, Sydney, Australia
| | - Jürgen G Okun
- Division of Inherited Metabolic Diseases, University Children's Hospital, Heidelberg, Germany
| | - Oliver J Müller
- Department of Internal Medicine V, University Hospital of Schleswig-Holstein, Campus Kiel, Germany
- German Center for Cardiovascular Research (DZHK), Partner site Hamburg/Kiel/Lübeck, Kiel, Germany
| | - Patricia M Rusu
- Nutrient Metabolism & Signalling Laboratory, Metabolism, Diabetes and Obesity Program, Biomedicine Discovery Institute, Monash University, Victoria, Australia
- Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, Faculty of Medicine, Nursing & Health Sciences, Monash University, Victoria, Australia
| | - Adam J Rose
- Nutrient Metabolism & Signalling Laboratory, Metabolism, Diabetes and Obesity Program, Biomedicine Discovery Institute, Monash University, Victoria, Australia.
- Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, Faculty of Medicine, Nursing & Health Sciences, Monash University, Victoria, Australia.
| |
Collapse
|
10
|
Kajani S, Laker RC, Ratkova E, Will S, Rhodes CJ. Hepatic glucagon action: beyond glucose mobilization. Physiol Rev 2024; 104:1021-1060. [PMID: 38300523 DOI: 10.1152/physrev.00028.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 01/10/2024] [Accepted: 01/11/2024] [Indexed: 02/02/2024] Open
Abstract
Glucagon's ability to promote hepatic glucose production has been known for over a century, with initial observations touting this hormone as a diabetogenic agent. However, glucagon receptor agonism [when balanced with an incretin, including glucagon-like peptide 1 (GLP-1) to dampen glucose excursions] is now being developed as a promising therapeutic target in the treatment of metabolic diseases, like metabolic dysfunction-associated steatotic disease/metabolic dysfunction-associated steatohepatitis (MASLD/MASH), and may also have benefit for obesity and chronic kidney disease. Conventionally regarded as the opposing tag-team partner of the anabolic mediator insulin, glucagon is gradually emerging as more than just a "catabolic hormone." Glucagon action on glucose homeostasis within the liver has been well characterized. However, growing evidence, in part thanks to new and sensitive "omics" technologies, has implicated glucagon as more than just a "glucose liberator." Elucidation of glucagon's capacity to increase fatty acid oxidation while attenuating endogenous lipid synthesis speaks to the dichotomous nature of the hormone. Furthermore, glucagon action is not limited to just glucose homeostasis and lipid metabolism, as traditionally reported. Glucagon plays key regulatory roles in hepatic amino acid and ketone body metabolism, as well as mitochondrial turnover and function, indicating broader glucagon signaling consequences for metabolic homeostasis mediated by the liver. Here we examine the broadening role of glucagon signaling within the hepatocyte and question the current dogma, to appreciate glucagon as more than just that "catabolic hormone."
Collapse
Affiliation(s)
- Sarina Kajani
- Early Cardiovascular, Renal and Metabolism, Biopharmaceuticals R&D, AstraZeneca, Gaithersburg, Maryland, United States
| | - Rhianna C Laker
- Early Cardiovascular, Renal and Metabolism, Biopharmaceuticals R&D, AstraZeneca, Gaithersburg, Maryland, United States
| | - Ekaterina Ratkova
- Early Cardiovascular, Renal and Metabolism, Biopharmaceuticals R&D, AstraZeneca, Mölndal, Sweden
| | - Sarah Will
- Early Cardiovascular, Renal and Metabolism, Biopharmaceuticals R&D, AstraZeneca, Gaithersburg, Maryland, United States
| | - Christopher J Rhodes
- Early Cardiovascular, Renal and Metabolism, Biopharmaceuticals R&D, AstraZeneca, Gaithersburg, Maryland, United States
| |
Collapse
|
11
|
Gray SM, Goonatilleke E, Emrick MA, Becker JO, Hoofnagle AN, Stefanovski D, He W, Zhang G, Tong J, Campbell J, D’Alessio DA. High Doses of Exogenous Glucagon Stimulate Insulin Secretion and Reduce Insulin Clearance in Healthy Humans. Diabetes 2024; 73:412-425. [PMID: 38015721 PMCID: PMC10882148 DOI: 10.2337/db23-0201] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 11/20/2023] [Indexed: 11/30/2023]
Abstract
Glucagon is generally defined as a counterregulatory hormone with a primary role to raise blood glucose concentrations by increasing endogenous glucose production (EGP) in response to hypoglycemia. However, glucagon has long been known to stimulate insulin release, and recent preclinical findings have supported a paracrine action of glucagon directly on islet β-cells that augments their secretion. In mice, the insulinotropic effect of glucagon is glucose dependent and not present during basal euglycemia. To test the hypothesis that the relative effects of glucagon on hepatic and islet function also vary with blood glucose, a group of healthy subjects received glucagon (100 ng/kg) during fasting glycemia or experimental hyperglycemia (∼150 mg/dL) on 2 separate days. During fasting euglycemia, administration of glucagon caused blood glucose to rise due to increased EGP, with a delayed increase of insulin secretion. When given during experimental hyperglycemia, glucagon caused a rapid, threefold increase in insulin secretion, as well as a more gradual increase in EGP. Under both conditions, insulin clearance was decreased in response to glucagon infusion. The insulinotropic action of glucagon, which is proportional to the degree of blood glucose elevation, suggests distinct physiologic roles in the fasting and prandial states. ARTICLE HIGHLIGHTS
Collapse
Affiliation(s)
- Sarah M. Gray
- Duke Molecular Physiology Institute, Duke University, Durham, NC
| | - Elisha Goonatilleke
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA
| | - Michelle A. Emrick
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA
| | - Jessica O. Becker
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA
| | - Andrew N. Hoofnagle
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, University of Washington, Seattle, WA
| | - Darko Stefanovski
- Department of Clinical Studies–New Bolton Center, School of Veterinary Medicine, University of Pennsylvania, Kennett Square
| | - Wentao He
- Duke Molecular Physiology Institute, Duke University, Durham, NC
| | - Guofang Zhang
- Duke Molecular Physiology Institute, Duke University, Durham, NC
| | - Jenny Tong
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, University of Washington, Seattle, WA
- Endocrine Section, VA Puget Sound Health Care System, Seattle
| | - Jonathan Campbell
- Duke Molecular Physiology Institute, Duke University, Durham, NC
- Division of Endocrinology, Department of Medicine, Duke University, Durham, NC
| | - David A. D’Alessio
- Duke Molecular Physiology Institute, Duke University, Durham, NC
- Division of Endocrinology, Department of Medicine, Duke University, Durham, NC
| |
Collapse
|
12
|
Lim JJ, Sequeira-Bisson IR, Yip WCY, Lu LW, Miles-Chan JL, Poppitt SD. Intra-pancreatic fat is associated with high circulating glucagon and GLP-1 concentrations following whey protein ingestion in overweight women with impaired fasting glucose: A randomised controlled trial. Diabetes Res Clin Pract 2024; 207:111084. [PMID: 38154534 DOI: 10.1016/j.diabres.2023.111084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 12/13/2023] [Accepted: 12/25/2023] [Indexed: 12/30/2023]
Abstract
AIM Intra-pancreatic fat deposition (IPFD) while hypothesised to impair beta-cell function, its impact on alpha-cells remains unclear. We evaluated the association between IPFD and markers of pancreatic cells function using whey protein. METHODS Twenty overweight women with impaired fasting glucose (IFG) and low or high IPFD (<4.66% vs ≥4.66%) consumed 3 beverage treatments: 0 g (water control), 12.5 g (low-dose) and 50.0 g (high-dose) whey protein, after an overnight fast, in randomised order. Blood glucose, insulin, C-peptide, glucagon, gastric-inhibitory polypeptide (GIP), glucagon-like peptide-1 (GLP-1) and amylin were analysed postprandially over 4 h. Incremental area-under-the-curve (iAUC), incremental maximum concentration (iCmax), and time to maximum concentration (Tmax) for these were compared between IPFD groups using repeated measures linear mixed models, also controlled for age (pcov). RESULTS iAUC and iCmax glucose and insulin while similar between the two IPFD groups, high IPFD and ageing contributed to higher postprandial glucagon (iAUC: p = 0.012; pcov = 0.004; iCmax: p = 0.069; pcov = 0.021) and GLP-1 (iAUC: p = 0.006; pcov = 0.064; iCmax: p = 0.011; pcov = 0.122) concentrations. CONCLUSION In our cohort, there was no evidence that IPFD impaired protein-induced insulin secretion. Conversely, IPFD may be associated with increased protein-induced glucagon secretion, a novel observation which warrants further investigation into its relevance in the pathogenesis of dysglycaemia and type-2 diabetes.
Collapse
Affiliation(s)
- Jia Jiet Lim
- Human Nutrition Unit, School of Biological Sciences, University of Auckland, Auckland, New Zealand; Riddet Institute, Palmerston North, New Zealand; High Value Nutrition, National Science Challenge, Auckland, New Zealand.
| | - Ivana R Sequeira-Bisson
- Human Nutrition Unit, School of Biological Sciences, University of Auckland, Auckland, New Zealand; Riddet Institute, Palmerston North, New Zealand; High Value Nutrition, National Science Challenge, Auckland, New Zealand
| | - Wilson C Y Yip
- Human Nutrition Unit, School of Biological Sciences, University of Auckland, Auckland, New Zealand; High Value Nutrition, National Science Challenge, Auckland, New Zealand
| | - Louise W Lu
- Human Nutrition Unit, School of Biological Sciences, University of Auckland, Auckland, New Zealand; High Value Nutrition, National Science Challenge, Auckland, New Zealand
| | - Jennifer L Miles-Chan
- Human Nutrition Unit, School of Biological Sciences, University of Auckland, Auckland, New Zealand; Riddet Institute, Palmerston North, New Zealand; High Value Nutrition, National Science Challenge, Auckland, New Zealand
| | - Sally D Poppitt
- Human Nutrition Unit, School of Biological Sciences, University of Auckland, Auckland, New Zealand; Riddet Institute, Palmerston North, New Zealand; High Value Nutrition, National Science Challenge, Auckland, New Zealand; Department of Medicine, University of Auckland, Auckland, New Zealand
| |
Collapse
|
13
|
Ang T, Mason SA, Dao GM, Bruce CR, Kowalski GM. The impact of a single dose of whey protein on glucose flux and metabolite profiles in normoglycemic males: insights into glucagon and insulin biology. Am J Physiol Endocrinol Metab 2023; 325:E688-E699. [PMID: 37877796 DOI: 10.1152/ajpendo.00182.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 10/16/2023] [Accepted: 10/17/2023] [Indexed: 10/26/2023]
Abstract
Protein ingestion concurrently stimulates euglycemic glucagon and insulin secretion, a response that is particularly robust with rapidly absorbing proteins. Previously, we have shown that ingestion of repeated doses of rapidly absorbing whey protein equally stimulated endogenous glucose production (EGP) and glucose disposal (Rd), thus explaining the preservation of euglycemia. Here, we aimed to determine if a smaller single dose of whey could elicit a large enough glucagon and insulin response to stimulate glucose flux. Therefore, in normoglycemic young adult males (n = 10; age ∼26; BMI ∼25), using [6,6-2H2] glucose tracing and quantitative targeted metabolite profiling, we determined the metabolic response to a single 25 g "standard" dose of whey protein. Whey protein ingestion did not alter glycemia, but increased circulating glucagon (peak 4-fold basal), insulin (peak 6-fold basal), amino acids, and urea while also reducing free fatty acid (FFA) and glycerol concentrations. Interestingly, the postprandial insulin response was driven by both a stimulation of insulin secretion and marked reduction in hepatic insulin clearance. Whey protein ingestion resulted in a modest stimulation of EGP and Rd, both peaking at ∼20% above baseline 1 h after protein ingestion. These findings demonstrate that the ingestion of a single standard serving of whey protein can induce a euglycemic glucagon and insulin response that stimulates glucose flux. We speculate on a theory that could potentially explain how glucagon and insulin synergistically provide hardwired control of nitrogen and glucose homeostasis.NEW & NOTEWORTHY Protein ingestion concurrently stimulates glucagon and insulin secretion. Here we show that in normoglycemic males, ingestion of a single "standard" 25 g serving of rapidly absorbing whey protein drives a sufficiently large glucagon and insulin response, such that it simultaneously increases endogenous glucose production and glucose disposal. We speculate on a novel theory that could potentially explain how the antagonistic/synergistic actions of glucagon and insulin simultaneously provide tight control of glucose and nitrogen homeostasis.
Collapse
Affiliation(s)
- Teddy Ang
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Science, Deakin University, Geelong, Victoria, Australia
- School of Exercise and Nutrition Science, Deakin University, Geelong, Victoria, Australia
| | - Shaun A Mason
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Science, Deakin University, Geelong, Victoria, Australia
- School of Exercise and Nutrition Science, Deakin University, Geelong, Victoria, Australia
| | - Giang M Dao
- Metabolic Research Unit, School of Medicine, Deakin University, Geelong, Victoria, Australia
| | - Clinton R Bruce
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Science, Deakin University, Geelong, Victoria, Australia
- School of Exercise and Nutrition Science, Deakin University, Geelong, Victoria, Australia
| | - Greg M Kowalski
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Science, Deakin University, Geelong, Victoria, Australia
- Metabolic Research Unit, School of Medicine, Deakin University, Geelong, Victoria, Australia
| |
Collapse
|
14
|
Ramne S, Duizer L, Nielsen MS, Jørgensen NR, Svenningsen JS, Grarup N, Sjödin A, Raben A, Gillum MP. Meal sugar-protein balance determines postprandial FGF21 response in humans. Am J Physiol Endocrinol Metab 2023; 325:E491-E499. [PMID: 37729024 PMCID: PMC10874651 DOI: 10.1152/ajpendo.00241.2023] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 09/05/2023] [Accepted: 09/14/2023] [Indexed: 09/22/2023]
Abstract
Biological mechanisms to promote dietary balance remain unclear. Fibroblast growth factor 21 (FGF21) has been suggested to contribute to such potential regulation considering that FGF21 1) is genetically associated with carbohydrate/sugar and protein intake in opposite directions, 2) is secreted after sugar ingestion and protein restriction, and 3) pharmacologically reduces sugar and increases protein intake in rodents. To gain insight of the nature of this potential regulation, we aimed to study macronutrient interactions in the secretory regulation of FGF21 in healthy humans. We conducted a randomized, double-blinded, crossover meal study (NCT05061485), wherein healthy volunteers consumed a sucrose drink, a sucrose + protein drink, and a sucrose + fat drink (matched sucrose content), and compared postprandial FGF21 responses between the three macronutrient combinations. Protein suppressed the sucrose-induced FGF21 secretion [incremental area under the curve (iAUC) for sucrose 484 ± 127 vs. sucrose + protein -35 ± 49 pg/mL × h, P < 0.001]. The same could not be demonstrated for fat (iAUC 319 ± 102 pg/mL × h, P = 203 for sucrose + fat vs. sucrose). We found no indications that regulators of glycemic homeostasis could explain this effect. This indicates that FGF21 responds to disproportionate intake of sucrose relative to protein acutely within a meal, and that protein outweighs sucrose in FGF21 regulation. Together with previous findings, our results suggests that FGF21 might act to promote macronutrient balance and sufficient protein intake.NEW & NOTEWORTHY Here we test the interactions between sugar, protein, and fat in human FGF21 regulation and demonstrate that protein, but not fat, suppresses sugar-induced FGF21 secretion. This indicates that protein outweighs the effects of sugar in the secretory regulation of FGF21, and could suggest that the nutrient-specific appetite-regulatory actions of FGF21 might prioritize ensuring sufficient protein intake over limiting sugar intake.
Collapse
Affiliation(s)
- Stina Ramne
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Lisanne Duizer
- Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Frederiksberg, Denmark
| | - Mette S Nielsen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Niklas Rye Jørgensen
- Department of Clinical Biochemistry, Copenhagen University Hospital, Glostrup, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Jens S Svenningsen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Niels Grarup
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Anders Sjödin
- Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Frederiksberg, Denmark
| | - Anne Raben
- Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Frederiksberg, Denmark
- Department of Clinical and Translational Research, Copenhagen University Hospital-Diabetes Center Copenhagen, Herlev, Denmark
| | - Matthew P Gillum
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
15
|
Kjeldsen SAS, Thomsen MN, Skytte MJ, Samkani A, Richter MM, Frystyk J, Magkos F, Hansen E, Thomsen HS, Holst JJ, Madsbad S, Haugaard SB, Krarup T, Wewer Albrechtsen NJ. Markers of Glucagon Resistance Improve With Reductions in Hepatic Steatosis and Body Weight in Type 2 Diabetes. J Endocr Soc 2023; 7:bvad122. [PMID: 37818402 PMCID: PMC10561012 DOI: 10.1210/jendso/bvad122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Indexed: 10/12/2023] Open
Abstract
Context Hyperglucagonemia may develop in type 2 diabetes due to obesity-prone hepatic steatosis (glucagon resistance). Markers of glucagon resistance (including the glucagon-alanine index) improve following diet-induced weight loss, but the partial contribution of lowering hepatic steatosis vs body weight is unknown. Objective This work aimed to investigate the dependency of body weight loss following a reduction in hepatic steatosis on markers of glucagon resistance in type 2 diabetes. Methods A post hoc analysis was conducted from 2 previously published randomized controlled trials. We investigated the effect of weight maintenance (study 1: isocaloric feeding) or weight loss (study 2: hypocaloric feeding), both of which induced reductions in hepatic steatosis, on markers of glucagon sensitivity, including the glucagon-alanine index measured using a validated enzyme-linked immunosorbent assay and metabolomics in 94 individuals (n = 28 in study 1; n = 66 in study 2). Individuals with overweight or obesity with type 2 diabetes were randomly assigned to a 6-week conventional diabetes (CD) or carbohydrate-reduced high-protein (CRHP) diet within both isocaloric and hypocaloric feeding-interventions. Results By design, weight loss was greater after hypocaloric compared to isocaloric feeding, but both diets caused similar reductions in hepatic steatosis, allowing us to investigate the effect of reducing hepatic steatosis with or without a clinically relevant weight loss on markers of glucagon resistance. The glucagon-alanine index improved following hypocaloric, but not isocaloric, feeding, independently of macronutrient composition. Conclusion Improvements in glucagon resistance may depend on body weight loss in patients with type 2 diabetes.
Collapse
Affiliation(s)
- Sasha A S Kjeldsen
- Department of Clinical Biochemistry, Copenhagen University Hospital-Bispebjerg and Frederiksberg, Copenhagen, 2400, Denmark
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, 2200, Denmark
| | - Mads N Thomsen
- Department of Endocrinology, Copenhagen University Hospital-Bispebjerg and Frederiksberg, Copenhagen, 2400, Denmark
| | - Mads J Skytte
- Department of Endocrinology, Copenhagen University Hospital-Bispebjerg and Frederiksberg, Copenhagen, 2400, Denmark
| | - Amirsalar Samkani
- Department of Endocrinology, Copenhagen University Hospital-Bispebjerg and Frederiksberg, Copenhagen, 2400, Denmark
| | - Michael M Richter
- Department of Clinical Biochemistry, Copenhagen University Hospital-Bispebjerg and Frederiksberg, Copenhagen, 2400, Denmark
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, 2200, Denmark
| | - Jan Frystyk
- Department of Endocrinology, Odense University Hospital, Odense, 5000, Denmark
| | - Faidon Magkos
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Frederiksberg, 1958, Denmark
| | - Elizaveta Hansen
- Department of Radiology, Copenhagen University Hospital-Herlev, Herlev, 2730, Denmark
| | - Henrik S Thomsen
- Department of Radiology, Copenhagen University Hospital-Herlev, Herlev, 2730, Denmark
| | - Jens J Holst
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, 2200, Denmark
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, 2200, Denmark
| | - Sten Madsbad
- Department of Endocrinology, Copenhagen University Hospital-Hvidovre, Hvidovre, 2650, Denmark
| | - Steen B Haugaard
- Department of Endocrinology, Copenhagen University Hospital-Bispebjerg and Frederiksberg, Copenhagen, 2400, Denmark
- Institute of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, 2200, Denmark
| | - Thure Krarup
- Department of Endocrinology, Copenhagen University Hospital-Bispebjerg and Frederiksberg, Copenhagen, 2400, Denmark
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Frederiksberg, 1958, Denmark
| | - Nicolai J Wewer Albrechtsen
- Department of Clinical Biochemistry, Copenhagen University Hospital-Bispebjerg and Frederiksberg, Copenhagen, 2400, Denmark
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, 2200, Denmark
| |
Collapse
|
16
|
Smith HA, Watkins JD, Walhin JP, Gonzalez JT, Thompson D, Betts JA. Whey Protein-Enriched and Carbohydrate-Rich Breakfasts Attenuate Insulinemic Responses to an ad libitum Lunch Relative to Extended Morning Fasting: A Randomized Crossover Trial. J Nutr 2023; 153:2842-2853. [PMID: 37557957 PMCID: PMC10613723 DOI: 10.1016/j.tjnut.2023.08.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 07/24/2023] [Accepted: 08/04/2023] [Indexed: 08/11/2023] Open
Abstract
BACKGROUND Typical breakfast foods are rich in carbohydrate, so they not only elevate blood glucose during the morning, but also elicit a second-meal effect that can attenuate blood glucose responses in the afternoon. OBJECTIVES To determine whether a reduced-carbohydrate protein-enriched breakfast can elicit similar effects on glucose control later in the day but without hyperglycemia in the morning. METHODS In a randomized crossover design, 12 healthy men and women (age 22 ± 2 y, BMI 24.1 ± 3.6 kg·m-2; Mean ± SD) completed 3 experimental conditions. In all conditions, participants consumed an ad libitum lunch at 1200 ± 1 h but differed in terms of whether they had fasted all morning (control) or had consumed a standardized porridge breakfast at 0900 ± 1 h (320 ± 50 kcal; prescribed relative to resting metabolic rate) that was either carbohydrate-rich (50 ± 10 g CHO) or protein-enriched (that is, isoenergetic substitution of carbohydrate for 15 g whey protein isolate). RESULTS The protein-enriched breakfast reduced the morning glycemic response (iAUC 87 ± 36 mmol·L-1·180 min) relative to the carbohydrate-rich breakfast (119 ± 37 mmol·L-1·180 min; P = 0.03). Despite similar energy intake at lunch in all 3 conditions (protein-enriched 769 ± 278 kcal; carbohydrate-rich 753 ± 223 kcal; fasting 790 ± 227 kcal), postlunch insulinemic responses were markedly attenuated when breakfasts had been consumed that were either protein-enriched (18.0 ± 8.0 nmol·L-1·120 min; P = 0.05) or carbohydrate-rich (16.0 ± 7.7 nmol·L-1·120 min; P = 0.005), relative to when lunch was consumed in an overnight fasted state (26.9 ± 13.5 nmol·L-1·120 min). CONCLUSIONS Breakfast consumption attenuates insulinemic responses to a subsequent meal, achieved with consumption of energy-matched breakfasts typically high in carbohydrates or enriched with whey protein isolate relative to extended morning fasting. TRIAL REGISTRATION NUMBER NCT03866720 (clinicaltrials.gov).
Collapse
Affiliation(s)
- Harry A Smith
- Centre for Nutrition, Exercise and Metabolism, Department for Health, University of Bath, Bath, United Kingdom
| | - Jonathan D Watkins
- Centre for Nutrition, Exercise and Metabolism, Department for Health, University of Bath, Bath, United Kingdom
| | - Jean-Philippe Walhin
- Centre for Nutrition, Exercise and Metabolism, Department for Health, University of Bath, Bath, United Kingdom
| | - Javier T Gonzalez
- Centre for Nutrition, Exercise and Metabolism, Department for Health, University of Bath, Bath, United Kingdom
| | - Dylan Thompson
- Centre for Nutrition, Exercise and Metabolism, Department for Health, University of Bath, Bath, United Kingdom
| | - James A Betts
- Centre for Nutrition, Exercise and Metabolism, Department for Health, University of Bath, Bath, United Kingdom.
| |
Collapse
|
17
|
Ichikawa R, Takano K, Fujimoto K, Kobayashi M, Kitamura T, Shichiri M, Miyatsuka T. Robust increase in glucagon secretion after oral protein intake, but not after glucose or lipid intake in Japanese people without diabetes. J Diabetes Investig 2023; 14:1172-1174. [PMID: 37480216 PMCID: PMC10512907 DOI: 10.1111/jdi.14053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/16/2023] [Accepted: 06/22/2023] [Indexed: 07/23/2023] Open
Abstract
Few studies in Asian populations have analyzed how glucagon secretion is affected by ingested glucose, proteins or lipids, individually. To investigate the fluctuations of glucagon secretion after the intake of each of these nutrients, 10 healthy volunteers underwent oral loading tests using each of glucose, proteins and lipids, and blood levels of glucose, insulin and glucagon were measured every 30 min for 120 min. Whereas glucagon secretion was suppressed and minimally affected by oral glucose intake and lipid intake, respectively, oral protein intake robustly increased glucagon secretion, as well as insulin secretion. Further studies are needed to elucidate the mechanism by which protein loading increases glucagon secretion.
Collapse
Affiliation(s)
- Raishi Ichikawa
- Department of Diabetes, Endocrinology, Diabetes and MetabolismKitasato University, School of MedicineSagamiharaJapan
| | - Koji Takano
- Department of Diabetes, Endocrinology, Diabetes and MetabolismKitasato University, School of MedicineSagamiharaJapan
| | - Kazumi Fujimoto
- Department of Diabetes, Endocrinology, Diabetes and MetabolismKitasato University, School of MedicineSagamiharaJapan
| | - Masaki Kobayashi
- Metabolic Signal Research Center, Institute for Molecular and Cellular RegulationGunma UniversityMaebashiJapan
| | - Tadahiro Kitamura
- Metabolic Signal Research Center, Institute for Molecular and Cellular RegulationGunma UniversityMaebashiJapan
| | - Masayoshi Shichiri
- Department of Diabetes, Endocrinology, Diabetes and MetabolismKitasato University, School of MedicineSagamiharaJapan
| | - Takeshi Miyatsuka
- Department of Diabetes, Endocrinology, Diabetes and MetabolismKitasato University, School of MedicineSagamiharaJapan
| |
Collapse
|
18
|
Zhang J, Zheng Y, Martens L, Pfeiffer AFH. The Regulation and Secretion of Glucagon in Response to Nutrient Composition: Unraveling Their Intricate Mechanisms. Nutrients 2023; 15:3913. [PMID: 37764697 PMCID: PMC10536047 DOI: 10.3390/nu15183913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 08/31/2023] [Accepted: 09/06/2023] [Indexed: 09/29/2023] Open
Abstract
Glucagon was initially regarded as a hyperglycemic substance; however, recent research has revealed its broader role in metabolism, encompassing effects on glucose, amino acids (AAs), and lipid metabolism. Notably, the interplay of glucagon with nutrient intake, particularly of AAs, and non-nutrient components is central to its secretion. Fasting and postprandial hyperglucagonemia have long been linked to the development and progression of type 2 diabetes (T2DM). However, recent studies have brought to light the positive impact of glucagon agonists on lipid metabolism and energy homeostasis. This review explores the multifaceted actions of glucagon, focusing on its regulation, signaling pathways, and effects on glucose, AAs, and lipid metabolism. The interplay between glucagon and other hormones, including insulin and incretins, is examined to provide a mechanistic understanding of its functions. Notably, the liver-α-cell axis, which involves glucagon and amino acids, emerges as a critical aspect of metabolic regulation. The dysregulation of glucagon secretion and its impact on conditions such as T2DM are discussed. The review highlights the potential therapeutic applications of targeting the glucagon pathway in the treatment of metabolic disorders.
Collapse
Affiliation(s)
- Jiudan Zhang
- The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou 310053, China;
- Department of Endocrinology, Diabetes and Nutrition, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany; (L.M.); (A.F.H.P.)
| | - Yang Zheng
- The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou 310053, China;
| | - Lisa Martens
- Department of Endocrinology, Diabetes and Nutrition, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany; (L.M.); (A.F.H.P.)
- Nutritional Science, University of Potsdam, 14469 Potsdam, Germany
| | - Andreas F. H. Pfeiffer
- Department of Endocrinology, Diabetes and Nutrition, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany; (L.M.); (A.F.H.P.)
| |
Collapse
|
19
|
Pérez-Arana GM, Díaz-Gómez A, Bancalero-de los Reyes J, Gracia-Romero M, Ribelles-García A, Visiedo F, González-Domínguez Á, Almorza-Gomar D, Prada-Oliveira JA. The role of glucagon after bariatric/metabolic surgery: much more than an "anti-insulin" hormone. Front Endocrinol (Lausanne) 2023; 14:1236103. [PMID: 37635984 PMCID: PMC10451081 DOI: 10.3389/fendo.2023.1236103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 07/21/2023] [Indexed: 08/29/2023] Open
Abstract
The biological activity of glucagon has recently been proposed to both stimulate hepatic glucose production and also include a paradoxical insulinotropic effect, which could suggest a new role of glucagon in the pathophysiology type 2 diabetes mellitus (T2DM). An insulinotropic role of glucagon has been observed after bariatric/metabolic surgery that is mediated through the GLP-1 receptor on pancreatic beta cells. This effect appears to be modulated by other members of the proglucagon family, playing a key role in the beneficial effects and complications of bariatric/metabolic surgery. Glucagon serves a dual role after sleeve gastrectomy (SG) and Roux-en-Y gastric bypass (RYGB). In addition to maintaining blood glucose levels, glucagon exhibits an insulinotropic effect, suggesting that glucagon has a more complex function than simply an "anti-insulin hormone".
Collapse
Affiliation(s)
- Gonzalo-Martín Pérez-Arana
- Department of Human Anatomy and Embryology, University of Cadiz, Cádiz, Spain
- Institute for Biomedical Science Research and Innovation (INIBICA), University of Cadiz, Cádiz, Spain
| | | | | | | | | | - Francisco Visiedo
- Department of Human Anatomy and Embryology, University of Cadiz, Cádiz, Spain
- Institute for Biomedical Science Research and Innovation (INIBICA), University of Cadiz, Cádiz, Spain
| | - Álvaro González-Domínguez
- Institute for Biomedical Science Research and Innovation (INIBICA), University of Cadiz, Cádiz, Spain
| | - David Almorza-Gomar
- Institute for Biomedical Science Research and Innovation (INIBICA), University of Cadiz, Cádiz, Spain
- Operative Statistic and Research Department, University of Cádiz, Cádiz, Spain
| | - José-Arturo Prada-Oliveira
- Department of Human Anatomy and Embryology, University of Cadiz, Cádiz, Spain
- Institute for Biomedical Science Research and Innovation (INIBICA), University of Cadiz, Cádiz, Spain
| |
Collapse
|
20
|
Lubaczeuski C, Bozadjieva-Kramer N, Louzada RA, Gittes GK, Leibowitz G, Bernal-Mizrachi E. Time-dependent effects of endogenous hyperglucagonemia on glucose homeostasis and hepatic glucagon action. JCI Insight 2023; 8:e162255. [PMID: 37140984 PMCID: PMC10393226 DOI: 10.1172/jci.insight.162255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 05/03/2023] [Indexed: 05/05/2023] Open
Abstract
Elevation of glucagon levels and increase in α cell proliferation is associated with states of hyperglycemia in diabetes. A better understanding of the molecular mechanisms governing glucagon secretion could have major implications for understanding abnormal responses to hypoglycemia in patients with diabetes and provide novel avenues for diabetes management. Using mice with inducible induction of Rheb1 in α cells (αRhebTg mice), we showed that short-term activation of mTORC1 signaling is sufficient to induce hyperglucagonemia through increased glucagon secretion. Hyperglucagonemia in αRhebTg mice was also associated with an increase in α cell size and mass expansion. This model allowed us to identify the effects of chronic and short-term hyperglucagonemia on glucose homeostasis by regulating glucagon signaling in the liver. Short-term hyperglucagonemia impaired glucose tolerance, which was reversible over time. Liver glucagon resistance in αRhebTg mice was associated with reduced expression of the glucagon receptor and genes involved in gluconeogenesis, amino acid metabolism, and urea production. However, only genes regulating gluconeogenesis returned to baseline upon improvement of glycemia. Overall, these studies demonstrate that hyperglucagonemia exerts a biphasic response on glucose metabolism: Short-term hyperglucagonemia lead to glucose intolerance, whereas chronic exposure to glucagon reduced hepatic glucagon action and improved glucose tolerance.
Collapse
Affiliation(s)
- Camila Lubaczeuski
- Department of Medicine, Division Endocrinology, Metabolism and Diabetes, Miller School of Medicine, University of Miami, Miami, Florida, USA
| | - Nadejda Bozadjieva-Kramer
- Veterans Affairs Ann Arbor Healthcare System, Research Service, Ann Arbor, Michigan, USA
- Department of Surgery, University of Michigan, Ann Arbor, Michigan, USA
| | - Ruy A. Louzada
- Department of Medicine, Division Endocrinology, Metabolism and Diabetes, Miller School of Medicine, University of Miami, Miami, Florida, USA
| | - George K. Gittes
- Childrens Hospital, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Gil Leibowitz
- Diabetes Unit and Endocrine Service, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Ernesto Bernal-Mizrachi
- Department of Medicine, Division Endocrinology, Metabolism and Diabetes, Miller School of Medicine, University of Miami, Miami, Florida, USA
- Diabetes Unit and Endocrine Service, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| |
Collapse
|
21
|
Zhang J, Schäfer SM, Kabisch S, Csanalosi M, Schuppelius B, Kemper M, Markova M, Meyer NMT, Pivovarova-Ramich O, Keyhani-Nejad F, Rohn S, Pfeiffer AFH. Implication of sugar, protein and incretins in excessive glucagon secretion in type 2 diabetes after mixed meals. Clin Nutr 2023; 42:467-476. [PMID: 36857956 DOI: 10.1016/j.clnu.2023.02.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 01/10/2023] [Accepted: 02/14/2023] [Indexed: 02/25/2023]
Abstract
AIMS Amino acids powerfully release glucagon but their contribution to postprandial hyperglucagonemia in type 2 diabetes remains unclear. Exogenously applied GIP stimulates, while GLP-1 inhibits, glucagon secretion in humans. However, their role in mixed meals is unclear, which we therefore characterized. METHODS In three experiments, participants with type 2 diabetes and obese controls randomly received different loads of sugars and/or proteins. In the first experiment, participants ingested the rapidly cleaved saccharose (SAC) or slowly cleaved isomaltulose (ISO) which is known to elicit opposite profiles of GIP and GLP-1 secretion. In the second one participants received test meals which contained saccharose or isomaltulose in combination with milk protein. The third set of participants underwent randomized oral protein tests with whey protein or casein. Incretins, glucagon, C-peptide, and insulin were profiled by specific immunological assays. RESULTS 50 g of the sugars alone suppressed glucagon in controls but slightly less in type 2 diabetes patients. Participants with type 2 diabetes showed excessive glucagon responses within 15 min and lasting over 3 h, while the obese controls showed small initial and delayed greater glucagon responses to mixed meals. The release of GIP was significantly faster and greater with SAC compared to ISO, while GLP-1 showed an inverse pattern. The glucagon responses to whey or casein were only moderately increased in type 2 diabetes patients without a left shift of the dose response curve. CONCLUSIONS The rapid hypersecretion of glucagon after mixed meals in type 2 diabetes patients compared to controls is unaffected by endogenous incretins. The defective suppression of glucagon by glucose combined with hypersecretion to protein is required for the exaggerated response. CLINICAL TRIALS NUMBERS NCT03806920, NCT02219295, NCT04564391.
Collapse
Affiliation(s)
- Jiudan Zhang
- Department of Endocrinology, Diabetes and Nutrition, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| | - Sylva Mareike Schäfer
- Department of Clinical Nutrition, German Institute of Human Nutrition Potsdam-Rehbrücke, Arthur-Scheunert-Allee 114-116, 14558, Nuthetal, Germany; Institute of Nutritional Science, Justus-Liebig University of Giessen, Giessen, Germany
| | - Stefan Kabisch
- Department of Endocrinology, Diabetes and Nutrition, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany; Department of Clinical Nutrition, German Institute of Human Nutrition Potsdam-Rehbrücke, Arthur-Scheunert-Allee 114-116, 14558, Nuthetal, Germany; German Center for Diabetes Research (Deutsches Zentrum Für Diabetesforschung e.V.), Ingolstädter Landstraße 1, 85764, Neuherberg, Germany
| | - Marta Csanalosi
- Department of Endocrinology, Diabetes and Nutrition, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| | - Bettina Schuppelius
- Department of Endocrinology, Diabetes and Nutrition, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| | - Margrit Kemper
- Department of Clinical Nutrition, German Institute of Human Nutrition Potsdam-Rehbrücke, Arthur-Scheunert-Allee 114-116, 14558, Nuthetal, Germany
| | - Mariya Markova
- Department of Clinical Nutrition, German Institute of Human Nutrition Potsdam-Rehbrücke, Arthur-Scheunert-Allee 114-116, 14558, Nuthetal, Germany; German Center for Diabetes Research (Deutsches Zentrum Für Diabetesforschung e.V.), Ingolstädter Landstraße 1, 85764, Neuherberg, Germany
| | - Nina Marie Tosca Meyer
- Department of Endocrinology, Diabetes and Nutrition, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany; Department of Clinical Nutrition, German Institute of Human Nutrition Potsdam-Rehbrücke, Arthur-Scheunert-Allee 114-116, 14558, Nuthetal, Germany; German Center for Diabetes Research (Deutsches Zentrum Für Diabetesforschung e.V.), Ingolstädter Landstraße 1, 85764, Neuherberg, Germany
| | - Olga Pivovarova-Ramich
- Department of Endocrinology, Diabetes and Nutrition, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany; Department of Clinical Nutrition, German Institute of Human Nutrition Potsdam-Rehbrücke, Arthur-Scheunert-Allee 114-116, 14558, Nuthetal, Germany; German Center for Diabetes Research (Deutsches Zentrum Für Diabetesforschung e.V.), Ingolstädter Landstraße 1, 85764, Neuherberg, Germany; Reseach Group Molecular Nutritional Medicine, Dept. of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbrücke, 14558, Nuthetal, Germany
| | - Farnaz Keyhani-Nejad
- Department of Clinical Nutrition, German Institute of Human Nutrition Potsdam-Rehbrücke, Arthur-Scheunert-Allee 114-116, 14558, Nuthetal, Germany
| | - Sascha Rohn
- Institute of Food Chemistry, Hamburg School of Food Science, University of Hamburg, Grindelallee 117, 20146, Hamburg, Germany; Institute of Food Technology and Food Chemistry, Technische Universität Berlin, Gustav-Meyer-Allee 25, 13355, Berlin, Germany
| | - Andreas F H Pfeiffer
- Department of Endocrinology, Diabetes and Nutrition, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany; German Center for Diabetes Research (Deutsches Zentrum Für Diabetesforschung e.V.), Ingolstädter Landstraße 1, 85764, Neuherberg, Germany.
| |
Collapse
|
22
|
E-DES-PROT: A novel computational model to describe the effects of amino acids and protein on postprandial glucose and insulin dynamics in humans. iScience 2023; 26:106218. [PMID: 36895641 PMCID: PMC9989689 DOI: 10.1016/j.isci.2023.106218] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 01/27/2023] [Accepted: 02/13/2023] [Indexed: 02/19/2023] Open
Abstract
Current computational models of whole-body glucose homeostasis describe physiological processes by which insulin regulates circulating glucose concentrations. While these models perform well in response to oral glucose challenges, interaction with other nutrients that impact postprandial glucose metabolism, such as amino acids (AAs), is not considered. Here, we developed a computational model of the human glucose-insulin system, which incorporates the effects of AAs on insulin secretion and hepatic glucose production. This model was applied to postprandial glucose and insulin time-series data following different AA challenges (with and without co-ingestion of glucose), dried milk protein ingredients, and dairy products. Our findings demonstrate that this model allows accurate description of postprandial glucose and insulin dynamics and provides insight into the physiological processes underlying meal responses. This model may facilitate the development of computational models that describe glucose homeostasis following the intake of multiple macronutrients, while capturing relevant features of an individual's metabolic health.
Collapse
|
23
|
Capozzi ME, D'Alessio DA, Campbell JE. The past, present, and future physiology and pharmacology of glucagon. Cell Metab 2022; 34:1654-1674. [PMID: 36323234 PMCID: PMC9641554 DOI: 10.1016/j.cmet.2022.10.001] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 08/23/2022] [Accepted: 09/30/2022] [Indexed: 11/07/2022]
Abstract
The evolution of glucagon has seen the transition from an impurity in the preparation of insulin to the development of glucagon receptor agonists for use in type 1 diabetes. In type 2 diabetes, glucagon receptor antagonists have been explored to reduce glycemia thought to be induced by hyperglucagonemia. However, the catabolic actions of glucagon are currently being leveraged to target the rise in obesity that paralleled that of diabetes, bringing the pharmacology of glucagon full circle. During this evolution, the physiological importance of glucagon advanced beyond the control of hepatic glucose production, incorporating critical roles for glucagon to regulate both lipid and amino acid metabolism. Thus, it is unsurprising that the study of glucagon has left several paradoxes that make it difficult to distill this hormone down to a simplified action. Here, we describe the history of glucagon from the past to the present and suggest some direction to the future of this field.
Collapse
Affiliation(s)
- Megan E Capozzi
- Duke Molecular Physiology Institute, Duke University Medical Center, Durham, NC 27701, USA
| | - David A D'Alessio
- Duke Molecular Physiology Institute, Duke University Medical Center, Durham, NC 27701, USA; Department of Medicine, Endocrinology Division, Duke University Medical Center, Durham, NC 27701, USA
| | - Jonathan E Campbell
- Duke Molecular Physiology Institute, Duke University Medical Center, Durham, NC 27701, USA; Department of Medicine, Endocrinology Division, Duke University Medical Center, Durham, NC 27701, USA; Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC 27701, USA.
| |
Collapse
|
24
|
Petersen MC, Gallop MR, Flores Ramos S, Zarrinpar A, Broussard JL, Chondronikola M, Chaix A, Klein S. Complex physiology and clinical implications of time-restricted eating. Physiol Rev 2022; 102:1991-2034. [PMID: 35834774 PMCID: PMC9423781 DOI: 10.1152/physrev.00006.2022] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 06/16/2022] [Accepted: 07/07/2022] [Indexed: 11/22/2022] Open
Abstract
Time-restricted eating (TRE) is a dietary intervention that limits food consumption to a specific time window each day. The effect of TRE on body weight and physiological functions has been extensively studied in rodent models, which have shown considerable therapeutic effects of TRE and important interactions among time of eating, circadian biology, and metabolic homeostasis. In contrast, it is difficult to make firm conclusions regarding the effect of TRE in people because of the heterogeneity in results, TRE regimens, and study populations. In this review, we 1) provide a background of the history of meal consumption in people and the normal physiology of eating and fasting; 2) discuss the interaction between circadian molecular metabolism and TRE; 3) integrate the results of preclinical and clinical studies that evaluated the effects of TRE on body weight and physiological functions; 4) summarize other time-related dietary interventions that have been studied in people; and 4) identify current gaps in knowledge and provide a framework for future research directions.
Collapse
Affiliation(s)
- Max C Petersen
- Center for Human Nutrition, Washington University School of Medicine, St. Louis, Missouri
- Division of Endocrinology, Metabolism, and Lipid Research, Washington University School of Medicine, St. Louis, Missouri
| | - Molly R Gallop
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, Utah
| | - Stephany Flores Ramos
- Division of Gastroenterology, University of California, San Diego, La Jolla, California
| | - Amir Zarrinpar
- Division of Gastroenterology, University of California, San Diego, La Jolla, California
- Department of Veterans Affairs San Diego Health System, La Jolla, California
| | - Josiane L Broussard
- Division of Endocrinology, Metabolism, and Diabetes, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado
- Department of Health and Exercise Science, Colorado State University, Fort Collins, Colorado
| | - Maria Chondronikola
- Departments of Nutrition and Radiology, University of California, Davis, California
- Departments of Nutrition and Dietetics, Harokopio University of Athens, Kallithea, Greece
| | - Amandine Chaix
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, Utah
| | - Samuel Klein
- Center for Human Nutrition, Washington University School of Medicine, St. Louis, Missouri
| |
Collapse
|
25
|
Nouri M, Pourghassem Gargari B, Tajfar P, Tarighat-Esfanjani A. A systematic review of whey protein supplementation effects on human glycemic control: A mechanistic insight. Diabetes Metab Syndr 2022; 16:102540. [PMID: 35772356 DOI: 10.1016/j.dsx.2022.102540] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 06/04/2022] [Accepted: 06/07/2022] [Indexed: 10/18/2022]
Abstract
BACKGROUND/AIMS Some studies showed that dietary factors such as whey protein (WP) are effective on glycemic regulation. Due to the current controversy about WP effects and mechanisms of its action on glycemic control, we conducted this systematic review to shed light on the subject. METHODS Web of Science, Medline (Pubmed), and Scopus online databases were searched from 2012 up to February 2022 using the following keywords: "whey protein" and "glycemic control"/"glycemia"/"glucose"/"insulin". The search included original English articles, human clinical trials with WP supplementation and measurement of glucose or insulin as an outcome, studies on healthy individuals/patients with diabetes mellitus (DM)/impaired fasting glucose (IFG). RESULTS Title/abstract of 1991 studies were reviewed. After excluding studies due to inappropriate full title and duplication, and exercising inclusion criteria, 58 studies were reviewed in detail. Ample evidence showed that WP decreased postprandial glucose incremental area under the curve (iAUC) and increased iAUCs of insulin and incretin hormones. WP affects glycemic control mainly through stimulating insulin and incretins secretion, slowing gastric emptying, and appetite suppression. CONCLUSION Although most of the recent evidence showed beneficial effects of WP supplementation on glycemic response, further long-term clinical trials are required which assess the long-term impact of WP supplementation and its exact mechanisms.
Collapse
Affiliation(s)
- Maryam Nouri
- Student Research Committee, Student Research Center, Tabriz University of Medical Sciences, Tabriz, IR, Iran; Department of Nutrition Sciences, Varastegan Institute for Medical Sciences, Mashhad, Iran.
| | - Bahram Pourghassem Gargari
- Nutrition Research Center, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, IR, Iran.
| | - Pedram Tajfar
- Department of Nutrition Sciences, Varastegan Institute for Medical Sciences, Mashhad, Iran.
| | - Ali Tarighat-Esfanjani
- Nutrition Research Center, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, IR, Iran.
| |
Collapse
|
26
|
Salehi M, Gastaldelli A, DeFronzo R. Prandial hepatic glucose production during hypoglycemia is altered after gastric bypass surgery and sleeve gastrectomy. Metabolism 2022; 131:155199. [PMID: 35390439 DOI: 10.1016/j.metabol.2022.155199] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 03/22/2022] [Accepted: 03/30/2022] [Indexed: 12/12/2022]
Abstract
AIMS/HYPOTHESIS Roux-en Y gastric bypass surgery (GB) and sleeve gastrectomy (SG) alter prandial glucose metabolism, producing lower nadir glucose values and predisposing susceptible individuals to prandial hypoglycemia. The glycemic phenotype of GB or SG is associated with prandial hyperinsulinemia and hyperglucagonemia along with an increased influx of ingested glucose. Following insulin-induced hypoglycemia, glucagon is the most important stimulus for hepatic glucose production (HGP). It is unclear whether prandial hyperglucagonemia after GB or SG changes HGP under hyperinsulinemic hypoglycemia conditions. This study examined the hypothesis that prandial glucose production is reduced after GB and SG during hypoglycemia. METHODS Glucose kinetics and islet-cell and gut hormone secretion during hyperinsulinemic (120 mU.m-2.min-1) hypoglycemic clamp (~3.2 mM) were measured before and after mixed meal ingestion in 9 non-diabetic subjects with GB, 7 with SG, and 5 matched non-operated controls (CN). RESULTS Systemic appearance of ingested glucose was faster in GB compared to SG, and in SG compared to CN (p < 0.05). Subjects with GB and SG had greater plasma glucagon levels after eating (AUCGlucagon) compared to CN (p < 0.05). But prandial HGP response during insulin-induced hypoglycemia (AUCHGP) was smaller and shorter in duration in surgical groups (p < 0.05). In the absence of meal stimuli, however, glucose counterregulatory response to hypoglycemia was comparable among the 3 groups during hyperinsulinemic clamp. CONCLUSION After bariatric surgery, prandial glucose counterregulatory response to hypoglycemia is impaired. Considering post-meal hyperglucagonemia after GB or SG the blunted HGP response suggests a lower sensitivity of liver to glucagon that can predispose to hypoglycemia in this population.
Collapse
Affiliation(s)
- Marzieh Salehi
- Division of Diabetes, University of Texas at San Antonio, San Antonio, TX, United States; STVHCS, Audie Murphy Hospital, San Antonio, TX, United States.
| | - Amalia Gastaldelli
- Cardiometabolic Risk Unit, CNR Institute of Clinical Physiology, Pisa, Italy
| | - Ralph DeFronzo
- Division of Diabetes, University of Texas at San Antonio, San Antonio, TX, United States
| |
Collapse
|
27
|
Zhang J, Pivovarova-Ramich O, Kabisch S, Markova M, Hornemann S, Sucher S, Rohn S, Machann J, Pfeiffer AFH. High Protein Diets Improve Liver Fat and Insulin Sensitivity by Prandial but Not Fasting Glucagon Secretion in Type 2 Diabetes. Front Nutr 2022; 9:808346. [PMID: 35662921 PMCID: PMC9160603 DOI: 10.3389/fnut.2022.808346] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 04/27/2022] [Indexed: 11/13/2022] Open
Abstract
Glucagon (GCGN) plays a key role in glucose and amino acid (AA) metabolism by increasing hepatic glucose output. AA strongly stimulate GCGN secretion which regulates hepatic AA degradation by ureagenesis. Although increased fasting GCGN levels cause hyperglycemia GCGN has beneficial actions by stimulating hepatic lipolysis and improving insulin sensitivity through alanine induced activation of AMPK. Indeed, stimulating prandial GCGN secretion by isocaloric high protein diets (HPDs) strongly reduces intrahepatic lipids (IHLs) and improves glucose metabolism in type 2 diabetes mellitus (T2DM). Therefore, the role of GCGN and circulating AAs in metabolic improvements in 31 patients with T2DM consuming HPD was investigated. Six weeks HPD strongly coordinated GCGN and AA levels with IHL and insulin sensitivity as shown by significant correlations compared to baseline. Reduction of IHL during the intervention by 42% significantly improved insulin sensitivity [homeostatic model assessment for insulin resistance (HOMA-IR) or hyperinsulinemic euglycemic clamps] but not fasting GCGN or AA levels. By contrast, GCGN secretion in mixed meal tolerance tests (MMTTs) decreased depending on IHL reduction together with a selective reduction of GCGN-regulated alanine levels indicating greater GCGN sensitivity. HPD aligned glucose metabolism with GCGN actions. Meal stimulated, but not fasting GCGN, was related to reduced liver fat and improved insulin sensitivity. This supports the concept of GCGN-induced hepatic lipolysis and alanine- and ureagenesis-induced activation of AMPK by HPD.
Collapse
Affiliation(s)
- Jiudan Zhang
- Department of Endocrinology, Diabetes and Nutrition, Charité – Universitätsmedizin Berlin, Berlin, Germany
- *Correspondence: Jiudan Zhang,
| | - Olga Pivovarova-Ramich
- Department of Endocrinology, Diabetes and Nutrition, Charité – Universitätsmedizin Berlin, Berlin, Germany
- Department of Clinical Nutrition, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), Potsdam, Germany
- Deutsches Zentrum für Diabetesforschung (DZD), Neuherberg, Germany
| | - Stefan Kabisch
- Department of Endocrinology, Diabetes and Nutrition, Charité – Universitätsmedizin Berlin, Berlin, Germany
- Department of Clinical Nutrition, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), Potsdam, Germany
- Deutsches Zentrum für Diabetesforschung (DZD), Neuherberg, Germany
| | - Mariya Markova
- Department of Clinical Nutrition, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), Potsdam, Germany
- Deutsches Zentrum für Diabetesforschung (DZD), Neuherberg, Germany
| | - Silke Hornemann
- Department of Clinical Nutrition, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), Potsdam, Germany
- Deutsches Zentrum für Diabetesforschung (DZD), Neuherberg, Germany
| | - Stephanie Sucher
- Department of Clinical Nutrition, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), Potsdam, Germany
| | - Sascha Rohn
- Hamburg School of Food Science, Institute of Food Chemistry, University of Hamburg, Hamburg, Germany
- Faculty of Process Sciences, Institute of Food Technology and Food Chemistry, Technical University of Berlin, Berlin, Germany
| | - Jürgen Machann
- Deutsches Zentrum für Diabetesforschung (DZD), Neuherberg, Germany
- Section on Experimental Radiology, Department of Diagnostic and Interventional Radiology, University Hospital, Tübingen, Germany
- Institute for Diabetes Research and Metabolic Diseases (IDM) of the Helmholtz Center Munich at the University of Tübingen, Tübingen, Germany
| | - Andreas F. H. Pfeiffer
- Department of Endocrinology, Diabetes and Nutrition, Charité – Universitätsmedizin Berlin, Berlin, Germany
- Deutsches Zentrum für Diabetesforschung (DZD), Neuherberg, Germany
- Andreas F. H. Pfeiffer,
| |
Collapse
|
28
|
Morriseau TS, Doucette CA, Dolinsky VW. More than meets the islet: aligning nutrient and paracrine inputs with hormone secretion in health and disease. Am J Physiol Endocrinol Metab 2022; 322:E446-E463. [PMID: 35373587 DOI: 10.1152/ajpendo.00411.2021] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The pancreatic islet is responsive to an array of endocrine, paracrine, and nutritional inputs that adjust hormone secretion to ensure accurate control of glucose homeostasis. Although the mechanisms governing glucose-coupled insulin secretion have received the most attention, there is emerging evidence for a multitude of physiological signaling pathways and paracrine networks that collectively regulate insulin, glucagon, and somatostatin release. Moreover, the modulation of these pathways in conditions of glucotoxicity or lipotoxicity are areas of both growing interest and controversy. In this review, the contributions of external, intrinsic, and paracrine factors in pancreatic β-, α-, and δ-cell secretion across the full spectrum of physiological (i.e., fasting and fed) and pathophysiological (gluco- and lipotoxicity; diabetes) environments will be critically discussed.
Collapse
Affiliation(s)
- Taylor S Morriseau
- Diabetes Research Envisioned and Accomplished in Manitoba (DREAM) Theme of the Children's Hospital Research Institute of Manitoba, Winnipeg, Manitoba, Canada
- Department of Pharmacology and Therapeutics, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Christine A Doucette
- Diabetes Research Envisioned and Accomplished in Manitoba (DREAM) Theme of the Children's Hospital Research Institute of Manitoba, Winnipeg, Manitoba, Canada
- Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Vernon W Dolinsky
- Diabetes Research Envisioned and Accomplished in Manitoba (DREAM) Theme of the Children's Hospital Research Institute of Manitoba, Winnipeg, Manitoba, Canada
- Department of Pharmacology and Therapeutics, University of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
29
|
Lim JJ, Sequeira IR, Yip WCY, Lu LW, Barnett D, Cameron-Smith D, Poppitt SD. Postprandial glycine as a biomarker of satiety: A dose-rising randomised control trial of whey protein in overweight women. Appetite 2021; 169:105871. [PMID: 34915106 DOI: 10.1016/j.appet.2021.105871] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 11/29/2021] [Accepted: 12/12/2021] [Indexed: 01/09/2023]
Abstract
This study aimed to identify biomarkers of appetite response, modelled using a dose-rising whey protein preload intervention. Female participants (n = 24) with body mass index (BMI) between 23 and 40 kg/m2 consumed preload beverages (0 g protein water control, WC; 12.5 g low-dose protein, LP; or 50.0 g high-dose protein, HP) after an overnight fast, in a randomised cross over design. Repeated venous blood samples were collected to measure plasma biomarkers of appetite response, including glucose, glucoregulatory peptides, gut peptides, and amino acids (AAs). Appetite was assessed using Visual Analogue Scales (VAS) and ad libitum energy intake (EI). Dose-rising protein beverage significantly changed the postprandial trajectory of almost all biomarkers (treatment*time, p < 0.05), but did not suppress postprandial appetite (treatment*time, p > 0.05) or EI (ANOVA, p = 0.799). Circulating glycine had the strongest association with appetite response. Higher area under the curve (AUC0-240) glycine was associated with lower EI (p = 0.026, trend). Furthermore, circulating glycine was associated with decreased Hunger in all treatment groups, whereas the associations of glucose, alanine and amylin with appetite were dependent on treatment groups. Multivariate models, incorporating multiple biomarkers, improved the estimation of appetite response (marginal R2, range: 0.13-0.43). In conclusion, whilst glycine, both alone and within a multivariate model, can estimate appetite response to both water and whey protein beverage consumption, a large proportion of variance in appetite response remains unexplained. Most biomarkers, when assessed in isolation, are poor predictors of appetite response, and likely of utility only in combination with VAS and EI.
Collapse
Affiliation(s)
- Jia Jiet Lim
- Human Nutrition Unit, School of Biological Sciences, University of Auckland, Auckland, New Zealand; Riddet Institute, Palmerston North, New Zealand.
| | - Ivana R Sequeira
- Human Nutrition Unit, School of Biological Sciences, University of Auckland, Auckland, New Zealand; High Value Nutrition, National Science Challenge, Auckland, New Zealand
| | - Wilson C Y Yip
- Human Nutrition Unit, School of Biological Sciences, University of Auckland, Auckland, New Zealand; High Value Nutrition, National Science Challenge, Auckland, New Zealand
| | - Louise W Lu
- Human Nutrition Unit, School of Biological Sciences, University of Auckland, Auckland, New Zealand; High Value Nutrition, National Science Challenge, Auckland, New Zealand
| | - Daniel Barnett
- Department of Statistics, University of Auckland, Auckland, New Zealand
| | - David Cameron-Smith
- Riddet Institute, Palmerston North, New Zealand; Liggins Institute, University of Auckland, Auckland, New Zealand; Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research, Singapore
| | - Sally D Poppitt
- Human Nutrition Unit, School of Biological Sciences, University of Auckland, Auckland, New Zealand; Riddet Institute, Palmerston North, New Zealand; High Value Nutrition, National Science Challenge, Auckland, New Zealand; Department of Medicine, University of Auckland, Auckland, New Zealand
| |
Collapse
|
30
|
Abstract
This review focuses on the human pancreatic islet-including its structure, cell composition, development, function, and dysfunction. After providing a historical timeline of key discoveries about human islets over the past century, we describe new research approaches and technologies that are being used to study human islets and how these are providing insight into human islet physiology and pathophysiology. We also describe changes or adaptations in human islets in response to physiologic challenges such as pregnancy, aging, and insulin resistance and discuss islet changes in human diabetes of many forms. We outline current and future interventions being developed to protect, restore, or replace human islets. The review also highlights unresolved questions about human islets and proposes areas where additional research on human islets is needed.
Collapse
Affiliation(s)
- John T Walker
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Diane C Saunders
- Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Marcela Brissova
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Alvin C Powers
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
- Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- VA Tennessee Valley Healthcare System, Nashville, Tennessee, USA
| |
Collapse
|
31
|
Otten J, Stomby A, Waling M, Chorell E, Ryberg M, Svensson M, Holst JJ, Olsson T. The liver-alpha-cell axis after a mixed meal and during weight loss in type 2 diabetes. Endocr Connect 2021; 10:1101-1110. [PMID: 34382579 PMCID: PMC8494406 DOI: 10.1530/ec-21-0171] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 08/11/2021] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Glucagon and amino acids may be regulated in a feedback loop called the liver-alpha-cell axis with alanine or glutamine as suggested signal molecules. We assessed this concept in individuals with type 2 diabetes in the fasting state, after ingestion of a protein-rich meal, and during weight loss. Moreover, we investigated if postprandial glucagon secretion and hepatic insulin sensitivity were related. METHODS This is a secondary analysis of a 12-week weight-loss trial (Paleolithic diet ± exercise) in 29 individuals with type 2 diabetes. Before and after the intervention, plasma glucagon and amino acids were measured in the fasting state and during 180 min after a protein-rich mixed meal. Hepatic insulin sensitivity was measured using the hyperinsulinemic-euglycemic clamp with [6,6-2H2]glucose as a tracer. RESULTS The postprandial increase of plasma glucagon was associated with the postprandial increase of alanine and several other amino acids but not glutamine. In the fasted state and after the meal, glucagon levels were negatively correlated with hepatic insulin sensitivity (rS = -0.51/r = -0.58, respectively; both P < 0.05). Improved hepatic insulin sensitivity with weight loss was correlated with decreased postprandial glucagon response (r = -0.78; P < 0.001). CONCLUSIONS Several amino acids, notably alanine, but not glutamine could be key signals to the alpha cell to increase glucagon secretion. Amino acids may be part of a feedback mechanism as glucagon increases endogenous glucose production and ureagenesis in the liver. Moreover, postprandial glucagon secretion seems to be tightly related to hepatic insulin sensitivity.
Collapse
Affiliation(s)
- Julia Otten
- Department of Public Health and Clinical Medicine, Umeå University, Umeå, Sweden
- Correspondence should be addressed to J Otten:
| | - Andreas Stomby
- Department of Public Health and Clinical Medicine, Umeå University, Umeå, Sweden
- Region Jönköping County, Jönköping, Sweden
| | - Maria Waling
- Department of Food, Nutrition and Culinary Science, Umeå University, Umeå, Sweden
| | - Elin Chorell
- Department of Public Health and Clinical Medicine, Umeå University, Umeå, Sweden
| | - Mats Ryberg
- Department of Public Health and Clinical Medicine, Umeå University, Umeå, Sweden
| | - Michael Svensson
- Department of Community Medicine and Rehabilitation, Section for Sports Medicine, Umeå University, Umeå Sweden
| | - Jens Juul Holst
- NNF Center for Basic Metabolic Research and Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Tommy Olsson
- Department of Public Health and Clinical Medicine, Umeå University, Umeå, Sweden
| |
Collapse
|
32
|
Fischer KL, Jaffredo M, Lang J, Raoux M. [Pancreatic α and β cells: Best enemies or partners for life?]. Med Sci (Paris) 2021; 37:752-758. [PMID: 34491183 DOI: 10.1051/medsci/2021111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Diabetes are major metabolic diseases constantly increasing in the population, caused by reduced secretion and action of insulin, the only hormone lowering efficiently the glycaemia. Insulin is secreted by β cells within the pancreatic islets of Langerhans. The islet micro-organs also contain 15 to 35% of α cells, well-known for their opposite effects on glycaemia. Considered until now as potentially harmful in diabetes, α cells are emerging as potent enhancers of β cell activity when studied in physiological nutritional setting and should therefore be reconsidered in a therapeutic point of view. This review summarizes the latest concepts regarding β cell function in physiological states and the involvement of dynamic functional interactions between α and β cells for the regulation of nutrient homeostasis.
Collapse
Affiliation(s)
- Karen Leal Fischer
- Institut de chimie et de biologie des membranes et des nano-objets, CBMN, Université de Bordeaux, CNRS UMR 5248, B14 allée Geoffroy Saint Hilaire, F-33600, Pessac, France
| | - Manon Jaffredo
- Institut de chimie et de biologie des membranes et des nano-objets, CBMN, Université de Bordeaux, CNRS UMR 5248, B14 allée Geoffroy Saint Hilaire, F-33600, Pessac, France
| | - Jochen Lang
- Institut de chimie et de biologie des membranes et des nano-objets, CBMN, Université de Bordeaux, CNRS UMR 5248, B14 allée Geoffroy Saint Hilaire, F-33600, Pessac, France
| | - Matthieu Raoux
- Institut de chimie et de biologie des membranes et des nano-objets, CBMN, Université de Bordeaux, CNRS UMR 5248, B14 allée Geoffroy Saint Hilaire, F-33600, Pessac, France
| |
Collapse
|
33
|
Bruce CR, Hamley S, Ang T, Howlett KF, Shaw CS, Kowalski GM. Translating glucose tolerance data from mice to humans: Insights from stable isotope labelled glucose tolerance tests. Mol Metab 2021; 53:101281. [PMID: 34175474 PMCID: PMC8313600 DOI: 10.1016/j.molmet.2021.101281] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 06/18/2021] [Accepted: 06/19/2021] [Indexed: 11/29/2022] Open
Abstract
Objective The glucose tolerance test (GTT) is widely used in human and animal biomedical and pharmaceutical research. Despite its prevalent use, particularly in mouse metabolic phenotyping, to the best of our knowledge we are not aware of any studies that have attempted to qualitatively compare the metabolic events during a GTT in mice with those performed in humans. Methods Stable isotope labelled oral glucose tolerance tests (siOGTTs; [6,6-2H2]glucose) were performed in both human and mouse cohorts to provide greater resolution into postprandial glucose kinetics. The siOGTT allows for the partitioning of circulating glucose into that derived from exogenous and endogenous sources. Young adults spanning the spectrum of normal glucose tolerance (n = 221), impaired fasting (n = 14), and impaired glucose tolerance (n = 19) underwent a 75g siOGTT, whereas a 50 mg siOGTT was performed on chow (n = 43) and high-fat high-sucrose fed C57Bl6 male mice (n = 46). Results During the siOGTT in humans, there is a long period (>3hr) of glucose absorption and, accordingly, a large, sustained insulin response and robust suppression of lipolysis and endogenous glucose production (EGP), even in the presence of glucose intolerance. In contrast, mice appear to be highly reliant on glucose effectiveness to clear exogenous glucose and experience only modest, transient insulin responses with little, if any, suppression of EGP. In addition to the impaired stimulation of glucose uptake, mice with the worst glucose tolerance appear to have a paradoxical and persistent rise in EGP during the OGTT, likely related to handling stress. Conclusions The metabolic response to the OGTT in mice and humans is highly divergent. The potential reasons for these differences and their impact on the interpretation of mouse glucose tolerance data and their translation to humans are discussed. We compared the mechanisms governing glucose handling in humans and mice. Humans and mice underwent stable isotope labelled oral glucose tolerance tests. Metabolic responses between humans and mice were highly divergent. Unlike humans, most mice exhibit little EGP suppression or insulin response.
Collapse
Affiliation(s)
- Clinton R Bruce
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Science, Deakin University, Geelong, Waurn Ponds, Victoria, 3216, Australia
| | - Steven Hamley
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Science, Deakin University, Geelong, Waurn Ponds, Victoria, 3216, Australia
| | - Teddy Ang
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Science, Deakin University, Geelong, Waurn Ponds, Victoria, 3216, Australia
| | - Kirsten F Howlett
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Science, Deakin University, Geelong, Waurn Ponds, Victoria, 3216, Australia
| | - Christopher S Shaw
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Science, Deakin University, Geelong, Waurn Ponds, Victoria, 3216, Australia
| | - Greg M Kowalski
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Science, Deakin University, Geelong, Waurn Ponds, Victoria, 3216, Australia; Metabolic Research Unit, School of Medicine, Deakin University, Geelong, Waurn Ponds, Victoria, 3216, Australia.
| |
Collapse
|
34
|
Kjeldsen SAS, Hansen LH, Esser N, Mongovin S, Winther-Sørensen M, Galsgaard KD, Hunt JE, Kissow H, Ceutz FR, Terzic D, Mark PD, Plomgaard P, Goetze JP, Goossens GH, Blaak EE, Deacon CF, Rosenkilde MM, Zraika S, Holst JJ, Wewer Albrechtsen NJ. Neprilysin Inhibition Increases Glucagon Levels in Humans and Mice With Potential Effects on Amino Acid Metabolism. J Endocr Soc 2021; 5:bvab084. [PMID: 34337276 PMCID: PMC8317634 DOI: 10.1210/jendso/bvab084] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Indexed: 01/12/2023] Open
Abstract
Context Inhibitors of the protease neprilysin (NEP) are used for treating heart failure, but are also linked to improvements in metabolism. NEP may cleave proglucagon-derived peptides, including the glucose and amino acid (AA)-regulating hormone glucagon. Studies investigating NEP inhibition on glucagon metabolism are warranted. Objective This work aims to investigate whether NEP inhibition increases glucagon levels. Methods Plasma concentrations of glucagon and AAs were measured in eight healthy men during a mixed meal with and without a single dose of the NEP inhibitor/angiotensin II type 1 receptor antagonist, sacubitril/valsartan (194 mg/206 mg). Long-term effects of sacubitril/valsartan (8 weeks) were investigated in individuals with obesity (n = 7). Mass spectrometry was used to investigate NEP-induced glucagon degradation, and the derived glucagon fragments were tested pharmacologically in cells transfected with the glucagon receptor (GCGR). Genetic deletion or pharmacological inhibition of NEP with or without concomitant GCGR antagonism was tested in mice to evaluate effects on AA metabolism. Results In healthy men, a single dose of sacubitril/valsartan significantly increased postprandial concentrations of glucagon by 228%, concomitantly lowering concentrations of AAs including glucagonotropic AAs. Eight-week sacubitril/valsartan treatment increased fasting glucagon concentrations in individuals with obesity. NEP cleaved glucagon into 5 inactive fragments (in vitro). Pharmacological NEP inhibition protected both exogenous and endogenous glucagon in mice after an AA challenge, while NEP-deficient mice showed elevated fasting and AA-stimulated plasma concentrations of glucagon and urea compared to controls. Conclusion NEP cleaves glucagon, and inhibitors of NEP result in hyperglucagonemia and may increase postprandial AA catabolism without affecting glycemia.
Collapse
Affiliation(s)
- Sasha A S Kjeldsen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen,Denmark.,Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen,Denmark
| | - Lasse H Hansen
- Department of Clinical Biochemistry, Copenhagen University Hospital, Rigshospitalet, 2100 Copenhagen, Denmark.,Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Nathalie Esser
- Department of Medicine, Division of Metabolism, Endocrinology and Nutrition, University of Washington, Seattle, Washington 98195-6426, USA.,Veterans Affairs Puget Sound Health Care System, Seattle, Washington 98108, USA
| | - Steve Mongovin
- Veterans Affairs Puget Sound Health Care System, Seattle, Washington 98108, USA
| | - Marie Winther-Sørensen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen,Denmark
| | - Katrine D Galsgaard
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen,Denmark.,Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Jenna E Hunt
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen,Denmark.,Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Hannelouise Kissow
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen,Denmark.,Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Frederik R Ceutz
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen,Denmark
| | - Dijana Terzic
- Department of Clinical Biochemistry, Copenhagen University Hospital, Rigshospitalet, 2100 Copenhagen, Denmark
| | - Peter D Mark
- Department of Clinical Biochemistry, Copenhagen University Hospital, Rigshospitalet, 2100 Copenhagen, Denmark
| | - Peter Plomgaard
- Department of Clinical Biochemistry, Copenhagen University Hospital, Rigshospitalet, 2100 Copenhagen, Denmark.,Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Jens P Goetze
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen,Denmark.,Department of Clinical Biochemistry, Copenhagen University Hospital, Rigshospitalet, 2100 Copenhagen, Denmark
| | - Gijs H Goossens
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, the Netherlands
| | - Ellen E Blaak
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, the Netherlands
| | - Carolyn F Deacon
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen,Denmark
| | - Mette M Rosenkilde
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen,Denmark.,Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Sakeneh Zraika
- Department of Medicine, Division of Metabolism, Endocrinology and Nutrition, University of Washington, Seattle, Washington 98195-6426, USA.,Veterans Affairs Puget Sound Health Care System, Seattle, Washington 98108, USA
| | - Jens J Holst
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen,Denmark.,Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Nicolai J Wewer Albrechtsen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen,Denmark.,Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen,Denmark.,Department of Clinical Biochemistry, Copenhagen University Hospital, Rigshospitalet, 2100 Copenhagen, Denmark
| |
Collapse
|
35
|
Glucagon transiently stimulates mTORC1 by activation of an EPAC/Rap1 signaling axis. Cell Signal 2021; 84:110010. [PMID: 33872697 PMCID: PMC8169602 DOI: 10.1016/j.cellsig.2021.110010] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 04/12/2021] [Accepted: 04/13/2021] [Indexed: 11/22/2022]
Abstract
Activation of the protein kinase mechanistic target of rapamycin (mTOR) in both complexes 1 and 2 (mTORC1/2) in the liver is repressed during fasting and rapidly stimulated in response to a meal. The effect of feeding on hepatic mTORC1/2 is attributed to an increase in plasma levels of nutrients, such as amino acids, and insulin. By contrast, fasting is associated with elevated plasma levels of glucagon, which is conventionally viewed as having a counter-regulatory role to insulin. More recently an expanded role for glucagon action in post-prandial metabolism has been demonstrated. Herein we investigated the impact of insulin and glucagon on mTORC1/2 activation. In H4IIE and HepG2 cultures, insulin enhanced phosphorylation of the mTORC1 substrates S6K1 and 4E-BP1. Surprisingly, the effect of glucagon on mTORC1 was biphasic, wherein there was an acute increase in phosphorylation of S6K1 and 4E-BP1 over the first hour of exposure, followed by latent suppression. The transient stimulatory effect of glucagon on mTORC1 was not additive with insulin, suggesting convergent signaling. Glucagon enhanced cAMP levels and mTORC1 stimulation required activation of the glucagon receptor, PI3K/Akt, and exchange protein activated by cAMP (EPAC). EPAC acts as the guanine nucleotide exchange factor for the small GTPase Rap1. Rap1 expression enhanced S6K1 phosphorylation and glucagon addition to culture medium promoted Rap1-GTP loading. Signaling through mTORC1 acts to regulate protein synthesis and we found that glucagon promoted an EPAC-dependent increase in protein synthesis. Overall, the findings support that glucagon elicits acute activation of mTORC1/2 by an EPAC-dependent increase in Rap1-GTP.
Collapse
|
36
|
Kinsella HM, Hostnik LD, Rings LM, Swink JM, Burns TA, Toribio RE. Glucagon, insulin, adrenocorticotropic hormone, and cortisol in response to carbohydrates and fasting in healthy neonatal foals. J Vet Intern Med 2021; 35:550-559. [PMID: 33415818 PMCID: PMC7848351 DOI: 10.1111/jvim.16024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 12/18/2020] [Accepted: 12/18/2020] [Indexed: 11/29/2022] Open
Abstract
Background The endocrine pancreas and hypothalamic‐pituitary‐adrenal axis (HPAA) are central to energy homeostasis, but information on their dynamics in response to energy challenges in healthy newborn foals is lacking. Objectives To evaluate glucagon, insulin, ACTH, and cortisol response to fasting and carbohydrate administration in healthy foals. Animals Twenty‐two healthy Standardbred foals ≤4 days of age. Methods Foals were assigned to fasted (n = 6), IV glucose (IVGT; n = 5), PO glucose (OGT; n = 5), and PO lactose (OLT; n = 6) test groups. Blood samples were collected frequently for 210 minutes. Nursing was allowed from 180 to 210 minutes. Plasma glucagon, ACTH, serum insulin, and cortisol concentrations were measured using immunoassays. Results Plasma glucagon concentration decreased relative to baseline at 45, 90, and 180 minutes during the OLT (P = .03), but no differences occurred in other test groups. Nursing stimulated marked increases in plasma glucagon, serum insulin, and glucose concentrations in all test groups (P < .001). Plasma ACTH concentration increased relative to baseline at 180 minutes (P < .05) during fasting and OLT, but no differences occurred in other test groups. Serum cortisol concentration increased relative to baseline during OLT at 180 minutes (P = .04), but no differences occurred in other test groups. Nursing resulted in decreased plasma ACTH and serum cortisol concentrations in all test groups (P < .01). Conclusions and Clinical Importance The endocrine response to enterally and parenterally administered carbohydrates, including the major endocrine response to nursing, suggests that factors in milk other than carbohydrates are strong stimulators (directly or indirectly) of the endocrine pancreas and HPAA.
Collapse
Affiliation(s)
- Hannah M Kinsella
- Department of Veterinary Clinical Sciences, The Ohio State University College of Veterinary Medicine
| | - Laura D Hostnik
- Department of Veterinary Clinical Sciences, The Ohio State University College of Veterinary Medicine
| | - Lindsey M Rings
- Department of Veterinary Clinical Sciences, The Ohio State University College of Veterinary Medicine
| | - Jacob M Swink
- Department of Veterinary Clinical Sciences, The Ohio State University College of Veterinary Medicine
| | - Teresa A Burns
- Department of Veterinary Clinical Sciences, The Ohio State University College of Veterinary Medicine
| | - Ramiro E Toribio
- Department of Veterinary Clinical Sciences, The Ohio State University College of Veterinary Medicine
| |
Collapse
|
37
|
Abstract
PURPOSE OF REVIEW High-protein intake is commonly recommended to help people manage body weight. However, high-protein intake could have adverse health consequences. Here we review the latest findings concerning the effect of high-protein intake on cardiometabolic health. RECENT FINDINGS Calorie-reduced, high-protein, low-carbohydrate diets lower plasma glucose in people with type 2 diabetes (T2D). However, when carbohydrate intake is not markedly reduced, high-protein intake often does not alter plasma glucose and increases insulin and glucagon concentrations, which are risk factors for T2D and ischemic heart disease. High-protein intake does not alter plasma triglyceride and cholesterol concentrations but promotes atherogenesis in animal models. The effect of high-protein intake on liver fat remains unclear. In population studies, high-protein intake is associated with increased risk for T2D, nonalcoholic fatty liver disease, and possibly cardiovascular diseases. SUMMARY The relationship between protein intake and cardiometabolic health is complex and influenced by concomitant changes in body weight and overall diet composition. Although a high-protein, low-carbohydrate, reduced-energy diet can have beneficial effects on body weight and plasma glucose, habitual high-protein intake, without marked carbohydrate and energy restriction, is associated with increased cardiometabolic disease risk, presumably mediated by the changes in the hormonal milieu after high-protein intake.
Collapse
Affiliation(s)
- Alan Fappi
- Center for Human Nutrition, Washington University School of Medicine, St. Louis, Missouri, USA
| | | |
Collapse
|
38
|
El K, Capozzi ME, Campbell JE. Repositioning the Alpha Cell in Postprandial Metabolism. Endocrinology 2020; 161:5910252. [PMID: 32964214 PMCID: PMC7899437 DOI: 10.1210/endocr/bqaa169] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 09/17/2020] [Indexed: 12/24/2022]
Abstract
Glucose homeostasis is maintained in large part due to the actions of the pancreatic islet hormones insulin and glucagon, secreted from β- and α-cells, respectively. The historical narrative positions these hormones in opposition, with insulin primarily responsible for glucose-lowering and glucagon-driving elevations in glucose. Recent progress in this area has revealed a more complex relationship between insulin and glucagon, highlighted by data demonstrating that α-cell input is essential for β-cell function and glucose homeostasis. Moreover, the common perception that glucagon levels decrease following a nutrient challenge is largely shaped by the inhibitory effects of glucose administration alone on the α-cell. Largely overlooked is that a mixed nutrient challenge, which is more representative of typical human feeding, actually stimulates glucagon secretion. Thus, postprandial metabolism is associated with elevations, not decreases, in α-cell activity. This review discusses the recent advances in our understanding of how α-cells regulate metabolism, with a particular focus on the postprandial state. We highlight α- to β-cell communication, a term that describes how α-cell input into β-cells is a critical axis that regulates insulin secretion and glucose homeostasis. Finally, we discuss the open questions that have the potential to advance this field and continue to evolve our understanding of the role that α-cells play in postprandial metabolism.
Collapse
Affiliation(s)
- Kimberley El
- Duke Molecular Physiology Institute, Duke University, Durham, North Carolina
| | - Megan E Capozzi
- Duke Molecular Physiology Institute, Duke University, Durham, North Carolina
| | - Jonathan E Campbell
- Duke Molecular Physiology Institute, Duke University, Durham, North Carolina
- Department of Pharmacology and Cancer Biology, Duke University, Durham, North Carolina
- Department of Medicine, Division of Endocrinology, Duke University, Durham, North Carolina
- Correspondence: Jonathan E. Campbell, 300 N Duke Street, Durham, North Carolina 27701. E-mail:
| |
Collapse
|
39
|
Amigo-Benavent M, Power-Grant O, FitzGerald RJ, Jakeman P. The insulinotropic and incretin response to feeding a milk based protein matrix in healthy young women. J Funct Foods 2020. [DOI: 10.1016/j.jff.2020.104056] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
|
40
|
Abstract
Poor post-prandial glucose control is a risk factor for multiple health conditions. The second-meal effect refers to the progressively improved glycaemic control with repeated feedings, an effect which is achievable with protein ingestion at the initial eating occasion. The most pronounced glycaemic response each day therefore typically occurs following breakfast, so the present study investigated whether ingesting protein during the night could improve glucose control at the first meal of the day. In a randomised crossover design, fifteen adults (seven males, eight females; age, 22 (sd 3) years; BMI, 24·0 (sd 2·8) kg/m2; fasting blood glucose, 4·9 (sd 0·5) mmol/l) woke at 04.00 (sd 1) hours to ingest 300 ml water with or without 63 g whey protein. Participants then completed a mixed-macronutrient meal tolerance test (1 g carbohydrate/kg body mass, 2356 (sd 435) kJ), 5 h 39 min following the nocturnal feeding. Nocturnal protein ingestion increased the glycaemic response (incremental AUC) to breakfast by 43·5 (sd 55·5) mmol × 120 min/l (P = 0·009, d = 0·94). Consistent with this effect, individual peak blood glucose concentrations were 0·6 (sd 1·0) mmol/l higher following breakfast when protein had been ingested (P = 0·049, d = 0·50). Immediately prior to breakfast, rates of lipid oxidation were 0·02 (sd 0·03) g/min higher (P = 0·045) in the protein condition, followed by an elevated post-prandial energy expenditure (0·38 (sd 0·50) kJ/min, P = 0·018). Post-prandial appetite and energy intake were similar between conditions. The present study reveals a paradoxical second-meal phenomenon whereby nocturnal whey protein feeding impaired subsequent glucose tolerance, whilst increasing post-prandial energy expenditure.
Collapse
|
41
|
Abstract
Glucagon and its partner insulin are dually linked in both their secretion from islet cells and their action in the liver. Glucagon signaling increases hepatic glucose output, and hyperglucagonemia is partly responsible for the hyperglycemia in diabetes, making glucagon an attractive target for therapeutic intervention. Interrupting glucagon signaling lowers blood glucose but also results in hyperglucagonemia and α-cell hyperplasia. Investigation of the mechanism for α-cell proliferation led to the description of a conserved liver-α-cell axis where glucagon is a critical regulator of amino acid homeostasis. In return, amino acids regulate α-cell function and proliferation. New evidence suggests that dysfunction of the axis in humans may result in the hyperglucagonemia observed in diabetes. This discussion outlines important but often overlooked roles for glucagon that extend beyond glycemia and supports a new role for α-cells as amino acid sensors.
Collapse
Affiliation(s)
- E Danielle Dean
- Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Vanderbilt University Medical Center, and Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN
| |
Collapse
|
42
|
Abstract
Dietary protein is crucial for human health because it provides essential amino acids for protein synthesis. In addition, dietary protein is more satiating than carbohydrate and fat. Accordingly, many people consider the protein content when purchasing food and beverages and report 'trying to eat more protein'. The global market for protein ingredients is projected to reach approximately US$90 billion by 2021, largely driven by the growing demand for protein-fortified food products. This Perspective serves as a caution against the trend of protein-enriched diets and provides an evidence-based counterpoint that underscores the potential adverse public health consequences of high protein intake.
Collapse
Affiliation(s)
- Bettina Mittendorfer
- Center for Human Nutrition, Washington University School of Medicine, St Louis, MO, USA.
| | - Samuel Klein
- Center for Human Nutrition, Washington University School of Medicine, St Louis, MO, USA
| | - Luigi Fontana
- Center for Human Nutrition, Washington University School of Medicine, St Louis, MO, USA
- Charles Perkins Center, Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
43
|
Hamley S, Kloosterman D, Duthie T, Dalla Man C, Visentin R, Mason SA, Ang T, Selathurai A, Kaur G, Morales-Scholz MG, Howlett KF, Kowalski GM, Shaw CS, Bruce CR. Mechanisms of hyperinsulinaemia in apparently healthy non-obese young adults: role of insulin secretion, clearance and action and associations with plasma amino acids. Diabetologia 2019; 62:2310-2324. [PMID: 31489455 PMCID: PMC6861536 DOI: 10.1007/s00125-019-04990-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 07/29/2019] [Indexed: 01/07/2023]
Abstract
AIMS/HYPOTHESIS This study aimed to examine the metabolic health of young apparently healthy non-obese adults to better understand mechanisms of hyperinsulinaemia. METHODS Non-obese (BMI < 30 kg/m2) adults aged 18-35 years (N = 254) underwent a stable isotope-labelled OGTT. Insulin sensitivity, glucose effectiveness and beta cell function were determined using oral minimal models. Individuals were stratified into quartiles based on their insulin response during the OGTT, with quartile 1 having the lowest and quartile 4 the highest responses. RESULTS Thirteen per cent of individuals had impaired fasting glucose (IFG; n = 14) or impaired glucose tolerance (IGT; n = 19), allowing comparisons across the continuum of insulin responses within the spectrum of normoglycaemia and prediabetes. BMI (~24 kg/m2) was similar across insulin quartiles and in those with IFG and IGT. Despite similar glycaemic excursions, fasting insulin, triacylglycerols and cholesterol were elevated in quartile 4. Insulin sensitivity was lowest in quartile 4, and accompanied by increased insulin secretion and reduced insulin clearance. Individuals with IFG had similar insulin sensitivity and beta cell function to those in quartiles 2 and 3, but were more insulin sensitive than individuals in quartile 4. While individuals with IGT had a similar degree of insulin resistance to quartile 4, they exhibited a more severe defect in beta cell function. Plasma branched-chain amino acids were not elevated in quartile 4, IFG or IGT. CONCLUSIONS/INTERPRETATION Hyperinsulinaemia within normoglycaemic young, non-obese adults manifests due to increased insulin secretion and reduced insulin clearance. Individual phenotypic characterisation revealed that the most hyperinsulinaemic were more similar to individuals with IGT than IFG, suggesting that hyperinsulinaemic individuals may be on the continuum toward IGT. Furthermore, plasma branched-chain amino acids may not be an effective biomarker in identifying hyperinsulinaemia and insulin resistance in young non-obese adults.
Collapse
Affiliation(s)
- Steven Hamley
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, 221 Burwood Highway, Burwood, VIC, 3125, Australia
| | - Danielle Kloosterman
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, 221 Burwood Highway, Burwood, VIC, 3125, Australia
| | - Tamara Duthie
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, 221 Burwood Highway, Burwood, VIC, 3125, Australia
| | - Chiara Dalla Man
- Department of Information Engineering, University of Padova, Padova, Italy
| | - Roberto Visentin
- Department of Information Engineering, University of Padova, Padova, Italy
| | - Shaun A Mason
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, 221 Burwood Highway, Burwood, VIC, 3125, Australia
| | - Teddy Ang
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, 221 Burwood Highway, Burwood, VIC, 3125, Australia
| | - Ahrathy Selathurai
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, 221 Burwood Highway, Burwood, VIC, 3125, Australia
| | - Gunveen Kaur
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, 221 Burwood Highway, Burwood, VIC, 3125, Australia
| | - Maria G Morales-Scholz
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, 221 Burwood Highway, Burwood, VIC, 3125, Australia
| | - Kirsten F Howlett
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, 221 Burwood Highway, Burwood, VIC, 3125, Australia
| | - Greg M Kowalski
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, 221 Burwood Highway, Burwood, VIC, 3125, Australia
| | - Christopher S Shaw
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, 221 Burwood Highway, Burwood, VIC, 3125, Australia
| | - Clinton R Bruce
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, 221 Burwood Highway, Burwood, VIC, 3125, Australia.
| |
Collapse
|
44
|
Noguchi GM, Huising MO. Integrating the inputs that shape pancreatic islet hormone release. Nat Metab 2019; 1:1189-1201. [PMID: 32694675 PMCID: PMC7378277 DOI: 10.1038/s42255-019-0148-2] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 11/07/2019] [Indexed: 02/06/2023]
Abstract
The pancreatic islet is a complex mini organ composed of a variety of endocrine cells and their support cells, which together tightly control blood glucose homeostasis. Changes in glucose concentration are commonly regarded as the chief signal controlling insulin-secreting beta cells, glucagon-secreting alpha cells and somatostatin-secreting delta cells. However, each of these cell types is highly responsive to a multitude of endocrine, paracrine, nutritional and neural inputs, which collectively shape the final endocrine output of the islet. Here, we review the principal inputs for each islet-cell type and the physiological circumstances in which these signals arise, through the prism of the insights generated by the transcriptomes of each of the major endocrine-cell types. A comprehensive integration of the factors that influence blood glucose homeostasis is essential to successfully improve therapeutic strategies for better diabetes management.
Collapse
Affiliation(s)
- Glyn M Noguchi
- Department of Neurobiology, Physiology & Behavior, College of Biological Sciences, University of California, Davis, Davis, CA, USA
| | - Mark O Huising
- Department of Neurobiology, Physiology & Behavior, College of Biological Sciences, University of California, Davis, Davis, CA, USA.
- Department of Physiology & Membrane Biology, School of Medicine, University of California, Davis, Davis, CA, USA.
| |
Collapse
|
45
|
Wewer Albrechtsen NJ, Pedersen J, Galsgaard KD, Winther-Sørensen M, Suppli MP, Janah L, Gromada J, Vilstrup H, Knop FK, Holst JJ. The Liver-α-Cell Axis and Type 2 Diabetes. Endocr Rev 2019; 40:1353-1366. [PMID: 30920583 DOI: 10.1210/er.2018-00251] [Citation(s) in RCA: 121] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 03/19/2019] [Indexed: 02/08/2023]
Abstract
Both type 2 diabetes (T2D) and nonalcoholic fatty liver disease (NAFLD) strongly associate with increasing body mass index, and together these metabolic diseases affect millions of individuals. In patients with T2D, increased secretion of glucagon (hyperglucagonemia) contributes to diabetic hyperglycemia as proven by the significant lowering of fasting plasma glucose levels following glucagon receptor antagonist administration. Emerging data now indicate that the elevated plasma concentrations of glucagon may also be associated with hepatic steatosis and not necessarily with the presence or absence of T2D. Thus, fatty liver disease, most often secondary to overeating, may result in impaired amino acid turnover, leading to increased plasma concentrations of certain glucagonotropic amino acids (e.g., alanine). This, in turn, causes increased glucagon secretion that may help to restore amino acid turnover and ureagenesis, but it may eventually also lead to increased hepatic glucose production, a hallmark of T2D. Early experimental findings support the hypothesis that hepatic steatosis impairs glucagon's actions on amino acid turnover and ureagenesis. Hepatic steatosis also impairs hepatic insulin sensitivity and clearance that, together with hyperglycemia and hyperaminoacidemia, lead to peripheral hyperinsulinemia; systemic hyperinsulinemia may itself contribute to worsen peripheral insulin resistance. Additionally, obesity is accompanied by an impaired incretin effect, causing meal-related glucose intolerance. Lipid-induced impairment of hepatic sensitivity, not only to insulin but potentially also to glucagon, resulting in both hyperinsulinemia and hyperglucagonemia, may therefore contribute to the development of T2D at least in a subset of individuals with NAFLD.
Collapse
Affiliation(s)
- Nicolai J Wewer Albrechtsen
- Department of Clinical Biochemistry, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark.,Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jens Pedersen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Department of Cardiology, Nephrology and Endocrinology, Nordsjællands Hospital Hillerød, University of Copenhagen, Hillerød, Denmark
| | - Katrine D Galsgaard
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Marie Winther-Sørensen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Malte P Suppli
- Steno Diabetes Center Copenhagen, Gentofte Hospital, Hellerup, Denmark
| | - Lina Janah
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | - Hendrik Vilstrup
- Department of Hepatology and Gastroenterology, Aarhus University Hospital, Aarhus, Denmark
| | - Filip K Knop
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Steno Diabetes Center Copenhagen, Gentofte Hospital, Hellerup, Denmark.,Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jens J Holst
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
46
|
Rose AJ. Role of Peptide Hormones in the Adaptation to Altered Dietary Protein Intake. Nutrients 2019; 11:E1990. [PMID: 31443582 PMCID: PMC6770041 DOI: 10.3390/nu11091990] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 08/20/2019] [Accepted: 08/20/2019] [Indexed: 12/25/2022] Open
Abstract
Dietary protein profoundly influences organismal traits ultimately affecting healthspan. While intracellular signalling downstream of altered amino acid supply is undoubtedly important, peptide hormones have emerged as critical factors determining systemic responses to variations in protein intake. Here the regulation and role of certain peptides hormones in such responses to altered dietary protein intake is reviewed.
Collapse
Affiliation(s)
- Adam J Rose
- Nutrient Metabolism & Signalling Laboratory, Department of Biochemistry and Molecular Biology, Metabolism, Diabetes and Obesity Program, Biomedicine Discovery Institute, Monash University, Clayton 3800, Australia.
| |
Collapse
|
47
|
Janah L, Kjeldsen S, Galsgaard KD, Winther-Sørensen M, Stojanovska E, Pedersen J, Knop FK, Holst JJ, Wewer Albrechtsen NJ. Glucagon Receptor Signaling and Glucagon Resistance. Int J Mol Sci 2019; 20:E3314. [PMID: 31284506 PMCID: PMC6651628 DOI: 10.3390/ijms20133314] [Citation(s) in RCA: 126] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 06/28/2019] [Accepted: 07/03/2019] [Indexed: 02/08/2023] Open
Abstract
Hundred years after the discovery of glucagon, its biology remains enigmatic. Accurate measurement of glucagon has been essential for uncovering its pathological hypersecretion that underlies various metabolic diseases including not only diabetes and liver diseases but also cancers (glucagonomas). The suggested key role of glucagon in the development of diabetes has been termed the bihormonal hypothesis. However, studying tissue-specific knockout of the glucagon receptor has revealed that the physiological role of glucagon may extend beyond blood-glucose regulation. Decades ago, animal and human studies reported an important role of glucagon in amino acid metabolism through ureagenesis. Using modern technologies such as metabolomic profiling, knowledge about the effects of glucagon on amino acid metabolism has been expanded and the mechanisms involved further delineated. Glucagon receptor antagonists have indirectly put focus on glucagon's potential role in lipid metabolism, as individuals treated with these antagonists showed dyslipidemia and increased hepatic fat. One emerging field in glucagon biology now seems to include the concept of hepatic glucagon resistance. Here, we discuss the roles of glucagon in glucose homeostasis, amino acid metabolism, and lipid metabolism and present speculations on the molecular pathways causing and associating with postulated hepatic glucagon resistance.
Collapse
Affiliation(s)
- Lina Janah
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Sasha Kjeldsen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Katrine D Galsgaard
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Marie Winther-Sørensen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Elena Stojanovska
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Jens Pedersen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
- Department of Cardiology, Nephrology and Endocrinology, Nordsjællands Hospital Hillerød, University of Copenhagen, 3400 Hillerød, Denmark
| | - Filip K Knop
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, 2900 Hellerup, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
- Steno Diabetes Center Copenhagen, 2820 Gentofte, Denmark
| | - Jens J Holst
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Nicolai J Wewer Albrechtsen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark.
- Department of Clinical Biochemistry, Rigshospitalet, 2100 Copenhagen, Denmark.
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2100 Copenhagen, Denmark.
| |
Collapse
|