1
|
Bejarano E, Domenech-Bendaña A, Avila-Portillo N, Rowan S, Edirisinghe S, Taylor A. Glycative stress as a cause of macular degeneration. Prog Retin Eye Res 2024; 101:101260. [PMID: 38521386 PMCID: PMC11699537 DOI: 10.1016/j.preteyeres.2024.101260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 03/08/2024] [Accepted: 03/11/2024] [Indexed: 03/25/2024]
Abstract
People are living longer and rates of age-related diseases such as age-related macular degeneration (AMD) are accelerating, placing enormous burdens on patients and health care systems. The quality of carbohydrate foods consumed by an individual impacts health. The glycemic index (GI) is a kinetic measure of the rate at which glucose arrives in the blood stream after consuming various carbohydrates. Consuming diets that favor slowly digested carbohydrates releases sugar into the bloodstream gradually after consuming a meal (low glycemic index). This is associated with reduced risk for major age-related diseases including AMD, cardiovascular disease, and diabetes. In comparison, consuming the same amounts of different carbohydrates in higher GI diets, releases glucose into the blood rapidly, causing glycative stress as well as accumulation of advanced glycation end products (AGEs). Such AGEs are cytotoxic by virtue of their forming abnormal proteins and protein aggregates, as well as inhibiting proteolytic and other protective pathways that might otherwise selectively recognize and remove toxic species. Using in vitro and animal models of glycative stress, we observed that consuming higher GI diets perturbs metabolism and the microbiome, resulting in a shift to more lipid-rich metabolomic profiles. Interactions between aging, diet, eye phenotypes and physiology were observed. A large body of laboratory animal and human clinical epidemiologic data indicates that consuming lower GI diets, or lower glycemia diets, is protective against features of early AMD (AMDf) in mice and AMD prevalence or AMD progression in humans. Drugs may be optimized to diminish the ravages of higher glycemic diets. Human trials are indicated to determine if AMD progression can be retarded using lower GI diets. Here we summarized the current knowledge regarding the pathological role of glycative stress in retinal dysfunction and how dietary strategies might diminish retinal disease.
Collapse
Affiliation(s)
- Eloy Bejarano
- Department of Biomedical Sciences, School of Health Sciences and Veterinary School, Universidad Cardenal Herrera-CEU, CEU Universities, Valencia, Spain
| | - Alicia Domenech-Bendaña
- Department of Biomedical Sciences, School of Health Sciences and Veterinary School, Universidad Cardenal Herrera-CEU, CEU Universities, Valencia, Spain
| | | | - Sheldon Rowan
- JM USDA Human Nutrition Research Center on Aging at Tufts University, United States
| | - Sachini Edirisinghe
- Tufts University Friedman School of Nutrition Science and Policy, United States
| | - Allen Taylor
- Tufts University Friedman School of Nutrition Science and Policy, United States.
| |
Collapse
|
2
|
The Role of Mitochondria in Metabolic Syndrome–Associated Cardiomyopathy. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:9196232. [PMID: 35783195 PMCID: PMC9246605 DOI: 10.1155/2022/9196232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 06/12/2022] [Accepted: 06/13/2022] [Indexed: 12/03/2022]
Abstract
With the rapid development of society, the incidence of metabolic syndrome (MS) is increasing rapidly. Evidence indicated that patients diagnosed with MS usually suffered from cardiomyopathy, called metabolic syndrome–associated cardiomyopathy (MSC). The clinical characteristics of MSC included cardiac hypertrophy and diastolic dysfunction, followed by heart failure. Despite many studies on this topic, the detailed mechanisms are not clear yet. As the center of cellular metabolism, mitochondria are crucial for maintaining heart function, while mitochondria dysfunction plays a vital role through mechanisms such as mitochondrial energy deprivation, calcium disorder, and ROS (reactive oxygen species) imbalance during the development of MSC. Accordingly, in this review, we will summarize the characteristics of MSC and especially focus on the mechanisms related to mitochondria. In addition, we will update new therapeutic strategies in this field.
Collapse
|
3
|
Sharma I, Yadav KS, Mugale MN. Redoxisome and diabetic retinopathy: Pathophysiology and therapeutic interventions. Pharmacol Res 2022; 182:106292. [PMID: 35691540 DOI: 10.1016/j.phrs.2022.106292] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 05/21/2022] [Accepted: 06/05/2022] [Indexed: 10/18/2022]
Abstract
Diabetic retinopathy (DR) is a chronic microvascular complication of diabetes mellitus (DM). It is a worldwide growing epidemic disease considered to be the leading cause of vision-loss and blindness in people with DM. Redox reactions occurring at the extra- and intracellular levels are essential for the maintenance of cellular homeostasis. Dysregulation of redox homeostasis are implicated in the onset and development of DR. Thioredoxin1 (TRX1) and Thioredoxin2 (TRX2) are cytoplasmic and mitochondrially localized antioxidant proteins ubiquitously expressed in various cells and control cellular reactive oxygen species (ROS) by reducing the disulfides into thiol groups. Thioredoxin-interacting protein (TXNIP) binds to TRX system and inhibits the active reduced form of TRX through disulfide exchange reaction. Recent studies indicate the association of TRX/TXNIP with redox signal transduction pathways including activation of Nod-like receptor pyrin domain containing protein-3 (NLRP3) inflammasome, apoptosis, autophagy/mitophagy, epigenetic modifications in a redox-dependent manner. Thus, it is important to gain a more in-depth understanding about the cellular and molecular mechanisms that links redoxisome and ER/Mitochondrial dysfunction to drive the progression of DR. The purpose of this review is to provide a mechanistic understanding of the complex molecular mechanisms and pathophysiological roles associated with redoxisome, the TRX/TXNIP redox signaling complex under oxidative stress in the development of DR. Also, the molecular targets of FDA approved drugs and clinical trials in addition to effective antioxidant strategies for the treatment of diabetic retinopathy are reviewed.
Collapse
Affiliation(s)
- Isha Sharma
- Division of Toxicology and Experimental Medicine, CSIR-Central Drug Research Institute (CSIR-CDRI), Lucknow 226031, India
| | - Karan Singh Yadav
- Division of Toxicology and Experimental Medicine, CSIR-Central Drug Research Institute (CSIR-CDRI), Lucknow 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad- 201002, India
| | - Madhav Nilakanth Mugale
- Division of Toxicology and Experimental Medicine, CSIR-Central Drug Research Institute (CSIR-CDRI), Lucknow 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad- 201002, India.
| |
Collapse
|
4
|
Rabbani N, Xue M, Thornalley PJ. Hexokinase-2-Linked Glycolytic Overload and Unscheduled Glycolysis-Driver of Insulin Resistance and Development of Vascular Complications of Diabetes. Int J Mol Sci 2022; 23:ijms23042165. [PMID: 35216280 PMCID: PMC8877341 DOI: 10.3390/ijms23042165] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 02/01/2022] [Accepted: 02/14/2022] [Indexed: 12/11/2022] Open
Abstract
The recent discovery of the glucose-induced stabilization of hexokinase-2 (HK2) to proteolysis in cell dysfunction in model hyperglycemia has revealed a likely key initiating factor contributing to the development of insulin resistance and vascular complications in diabetes. Consequently, the increased flux of glucose metabolism without a change in the expression and activity of glycolytic enzymes produces a wave of increased glycolytic intermediates driving mitochondrial dysfunction and increased reactive oxygen species (ROS) formation, the activation of hexosamine and protein kinase C pathways, the increased formation of methylglyoxal-producing dicarbonyl stress, and the activation of the unfolded protein response. This is called HK2-linked glycolytic overload and unscheduled glycolysis. The conditions required to sustain this are GLUT1 and/or GLUT3 glucose uptake and the expression of HK2. A metabolic biomarker of its occurrence is the abnormally increased deposition of glycogen, which is produced by metabolic channeling when HK2 becomes detached from mitochondria. These conditions and metabolic consequences are found in the vasculature, kidneys, retina, peripheral nerves, and early-stage embryo development in diabetes and likely sustain the development of diabetic vascular complications and embryopathy. In insulin resistance, HK2-linked unscheduled glycolysis may also be established in skeletal muscle and adipose tissue. This may explain the increased glucose disposal by skeletal uptake in the fasting phase in patients with type 2 diabetes mellitus, compared to healthy controls, and the presence of insulin resistance in patients with type 1 diabetes mellitus. Importantly, glyoxalase 1 inducer—trans-resveratrol and hesperetin in combination (tRES-HESP)—corrected HK2-linked glycolytic overload and unscheduled glycolysis and reversed insulin resistance and improved vascular inflammation in overweight and obese subjects in clinical trial. Further studies are now required to evaluate tRES-HESP for the prevention and reversal of early-stage type 2 diabetes and for the treatment of the vascular complications of diabetes.
Collapse
Affiliation(s)
- Naila Rabbani
- Department of Basic Medical Science, College of Medicine, Qatar University Health, Qatar University, Doha P.O. Box 2713, Qatar
- Correspondence: (N.R.); (P.J.T.); Tel.: +974-7479-5649 (N.R.); +974-7090-1635 (P.J.T.)
| | - Mingzhan Xue
- Diabetes Research Center, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Qatar Foundation, Doha P.O. Box 34110, Qatar;
| | - Paul J. Thornalley
- Diabetes Research Center, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Qatar Foundation, Doha P.O. Box 34110, Qatar;
- Correspondence: (N.R.); (P.J.T.); Tel.: +974-7479-5649 (N.R.); +974-7090-1635 (P.J.T.)
| |
Collapse
|
5
|
Zhu H, Wang L, Ren A. [Research progress on the etiology and pathogenesis of spina bifida]. ZHONGGUO XIU FU CHONG JIAN WAI KE ZA ZHI = ZHONGGUO XIUFU CHONGJIAN WAIKE ZAZHI = CHINESE JOURNAL OF REPARATIVE AND RECONSTRUCTIVE SURGERY 2021; 35:1368-1373. [PMID: 34779160 DOI: 10.7507/1002-1892.202106052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Objective To review the research progress on etiology and pathogenesis of spina bifida. Methods By consulting relevant domestic and foreign research literature on spina bifida, the classification, epidemic trend, pathogenesis, etiology, prevention and treatment of it were analyzed and summarized. Results Spina bifida, a common phenotype of neural tube defects, is classified based on the degree and pattern of malformation associated with neuroectodermal involvement and is due to the disturbance of neural tube closure 28 days before embryonic development. The prevalence of spina bifida varies greatly among different ethnic groups and regions, and its etiology is complex. Currently, some spina bifida patients can be prevented by folic acid supplements, and with the improvement of treatment technology, the short-term and long-term survival rate of children with spina bifida has improved. Conclusion The research on the pathogenesis of spina bifida will be based on the refined individual information on exposure, genetics, and complex phenotype, and will provide a theoretical basis for improving prevention and treatment strategies through multidisciplinary cooperation.
Collapse
Affiliation(s)
- Haiyan Zhu
- Institute of Reproductive Health, National Health Commission Key Laboratory of Reproductive Health, Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Center, Beijing, 100191, P.R.China
| | - Linlin Wang
- Institute of Reproductive Health, National Health Commission Key Laboratory of Reproductive Health, Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Center, Beijing, 100191, P.R.China
| | - Aiguo Ren
- Institute of Reproductive Health, National Health Commission Key Laboratory of Reproductive Health, Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Center, Beijing, 100191, P.R.China
| |
Collapse
|
6
|
Read RW, Schlauch KA, Lombardi VC, Cirulli ET, Washington NL, Lu JT, Grzymski JJ. Genome-Wide Identification of Rare and Common Variants Driving Triglyceride Levels in a Nevada Population. Front Genet 2021; 12:639418. [PMID: 33763119 PMCID: PMC7982958 DOI: 10.3389/fgene.2021.639418] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 02/12/2021] [Indexed: 01/08/2023] Open
Abstract
Clinical conditions correlated with elevated triglyceride levels are well-known: coronary heart disease, hypertension, and diabetes. Underlying genetic and phenotypic mechanisms are not fully understood, partially due to lack of coordinated genotypic-phenotypic data. Here we use a subset of the Healthy Nevada Project, a population of 9,183 sequenced participants with longitudinal electronic health records to examine consequences of altered triglyceride levels. Specifically, Healthy Nevada Project participants sequenced by the Helix Exome+ platform were cross-referenced to their electronic medical records to identify: (1) rare and common single-variant genome-wide associations; (2) gene-based associations using a Sequence Kernel Association Test; (3) phenome-wide associations with triglyceride levels; and (4) pleiotropic variants linked to triglyceride levels. The study identified 549 significant single-variant associations (p < 8.75 × 10-9), many in chromosome 11's triglyceride hotspot: ZPR1, BUD13, APOC3, APOA5. A well-known protective loss-of-function variant in APOC3 (R19X) was associated with a 51% decrease in triglyceride levels in the cohort. Sixteen gene-based triglyceride associations were identified; six of these genes surprisingly did not include a single variant with significant associations. Results at the variant and gene level were validated with the UK Biobank. The combination of a single-variant genome-wide association, a gene-based association method, and phenome wide-association studies identified rare and common variants, genes, and phenotypes associated with elevated triglyceride levels, some of which may have been overlooked with standard approaches.
Collapse
Affiliation(s)
- Robert W. Read
- Center for Genomic Medicine, Desert Research Institute, Reno, NV, United States
| | - Karen A. Schlauch
- Center for Genomic Medicine, Desert Research Institute, Reno, NV, United States
| | - Vincent C. Lombardi
- Department of Microbiology and Immunology, School of Medicine, University of Nevada, Reno, Reno, NV, United States
| | | | | | - James T. Lu
- Helix Opco, LLC., San Mateo, CA, United States
| | - Joseph J. Grzymski
- Center for Genomic Medicine, Desert Research Institute, Reno, NV, United States
- Renown Health, Reno, NV, United States
| |
Collapse
|
7
|
Kang Q, Yang C. Oxidative stress and diabetic retinopathy: Molecular mechanisms, pathogenetic role and therapeutic implications. Redox Biol 2020; 37:101799. [PMID: 33248932 PMCID: PMC7767789 DOI: 10.1016/j.redox.2020.101799] [Citation(s) in RCA: 551] [Impact Index Per Article: 110.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 10/29/2020] [Accepted: 11/10/2020] [Indexed: 12/18/2022] Open
Abstract
Oxidative stress, a cytopathic outcome of excessive generation of ROS and the repression of antioxidant defense system for ROS elimination, is involved in the pathogenesis of multiple diseases, including diabetes and its complications. Retinopathy, a microvascular complication of diabetes, is the primary cause of acquired blindness in diabetic patients. Oxidative stress has been verified as one critical contributor to the pathogenesis of diabetic retinopathy. Oxidative stress can both contribute to and result from the metabolic abnormalities induced by hyperglycemia, mainly including the increased flux of the polyol pathway and hexosamine pathway, the hyper-activation of protein kinase C (PKC) isoforms, and the accumulation of advanced glycation end products (AGEs). Moreover, the repression of the antioxidant defense system by hyperglycemia-mediated epigenetic modification also leads to the imbalance between the scavenging and production of ROS. Excessive accumulation of ROS induces mitochondrial damage, cellular apoptosis, inflammation, lipid peroxidation, and structural and functional alterations in retina. Therefore, it is important to understand and elucidate the oxidative stress-related mechanisms underlying the progress of diabetic retinopathy. In addition, the abnormalities correlated with oxidative stress provide multiple potential therapeutic targets to develop safe and effective treatments for diabetic retinopathy. Here, we also summarized the main antioxidant therapeutic strategies to control this disease. Oxidative stress can both contribute to and result from hyperglycemia-induced metabolic abnormalities in retina. Genes important in regulation of ROS are epigenetically modified, increasing ROS accumulation in retina. Oxidative stress is closely associated with the pathological changes in the progress of diabetic retinopathy. Antioxidants ameliorate retinopathy through targeting multiple steps of oxidative stress.
Collapse
Affiliation(s)
- Qingzheng Kang
- Institute for Advanced Study, Shenzhen University, Nanshan District, Shenzhen, 518060, China; Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Chunxue Yang
- Department of Pathology, The University of Hong Kong, Hong Kong SAR, 999077, China.
| |
Collapse
|
8
|
Rabbani N, Thornalley PJ. Hexokinase-2 Glycolytic Overload in Diabetes and Ischemia-Reperfusion Injury. Trends Endocrinol Metab 2019; 30:419-431. [PMID: 31221272 DOI: 10.1016/j.tem.2019.04.011] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 04/21/2019] [Accepted: 04/25/2019] [Indexed: 01/12/2023]
Abstract
Hexokinase-2 (HK2) was recently found to produce increased metabolic flux through glycolysis in hyperglycemia without concurrent transcriptional or other functional regulation. Rather, stabilization to proteolysis by increased glucose substrate binding produced unscheduled increased glucose metabolism in response to high cytosolic glucose concentration. This produces abnormal increases in glycolytic intermediates or glycolytic overload, driving cell dysfunction and vulnerability to the damaging effects of hyperglycemia in diabetes, explaining tissue-specific pathogenesis. Glycolytic overload is also activated in ischemia-reperfusion injury and cell senescence. A further key feature is HK2 displacement from mitochondria by increased glucose-6-phosphate concentration, inducing mitochondrial dysfunction and oxidative stress. This pathogenic mechanism suggested new targets for therapeutics development that gave promising outcomes in initial clinical evaluation.
Collapse
Affiliation(s)
- Naila Rabbani
- Clinical Sciences Research Laboratories, Warwick Medical School, University of Warwick, University Hospital, Coventry CV2 2DX, UK
| | - Paul J Thornalley
- Diabetes Research Center, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Qatar Foundation, P.O. Box 34110, Doha, Qatar.
| |
Collapse
|
9
|
Receptor for advanced glycation end products (RAGE) knockout reduces fetal dysmorphogenesis in murine diabetic pregnancy. Reprod Toxicol 2016; 62:62-70. [DOI: 10.1016/j.reprotox.2016.04.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Revised: 03/07/2016] [Accepted: 04/18/2016] [Indexed: 01/06/2023]
|
10
|
Wang F, Reece EA, Yang P. Advances in revealing the molecular targets downstream of oxidative stress-induced proapoptotic kinase signaling in diabetic embryopathy. Am J Obstet Gynecol 2015; 213:125-34. [PMID: 25595581 DOI: 10.1016/j.ajog.2015.01.016] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Revised: 12/20/2014] [Accepted: 01/08/2015] [Indexed: 01/06/2023]
Abstract
Preexisting maternal diabetes is a high-risk factor of diabetic embryopathy, such as neural tube defects and congenital heart defects. Maternal diabetes significantly increases the production of reactive oxygen species, resulting in oxidative stress and diabetic embryopathy. Multiple cellular and metabolic factors contribute to these processes. Forkhead box O (FoxO)-3a has been demonstrated as a key transcription factor in the signaling transduction pathways responsible for maternal diabetes-induced birth defects. Apoptosis signal-regulating kinase 1 (ASK1) activated by oxidative stress stimulates nuclear translocation of FoxO3a, resulting in the overexpression of tumor necrosis factor receptor 1-associated death domain protein, which, in turn, leads to caspase-8 activation and apoptosis. Maternal diabetes-activated c-Jun N-terminal kinase (JNK)-1/2, downstream effectors of ASK1, can be blocked by superoxide dismutase-1 overexpression, suggesting that oxidative stress is responsible for JNK1/2 signaling activation. Deletion of JNK1/2 significantly suppressed the activity of FoxO3a. These observations indicate that maternal diabetes-induced oxidative stress stimulates the activation of ASK1, JNK1/2, FoxO3a, tumor necrosis factor receptor 1-associated death domain protein, caspase-8 cleavage, and finally, apoptosis and diabetic embryopathy.
Collapse
|
11
|
Kupsco A, Schlenk D. Oxidative stress, unfolded protein response, and apoptosis in developmental toxicity. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2015; 317:1-66. [PMID: 26008783 DOI: 10.1016/bs.ircmb.2015.02.002] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Physiological development requires precise spatiotemporal regulation of cellular and molecular processes. Disruption of these key events can generate developmental toxicity in the form of teratogenesis or mortality. The mechanism behind many developmental toxicants remains unknown. While recent work has focused on the unfolded protein response (UPR), oxidative stress, and apoptosis in the pathogenesis of disease, few studies have addressed their relationship in developmental toxicity. Redox regulation, UPR, and apoptosis are essential for physiological development and can be disturbed by a variety of endogenous and exogenous toxicants to generate lethality and diverse malformations. This review examines the current knowledge of the role of oxidative stress, UPR, and apoptosis in physiological development as well as in developmental toxicity, focusing on studies and advances in vertebrates model systems.
Collapse
Affiliation(s)
- Allison Kupsco
- Environmental Toxicology Program, University of California, Riverside, CA, USA
| | - Daniel Schlenk
- Environmental Toxicology Program, University of California, Riverside, CA, USA; Environmental Sciences, University of California, Riverside, CA, USA
| |
Collapse
|
12
|
Wilde JJ, Petersen JR, Niswander L. Genetic, epigenetic, and environmental contributions to neural tube closure. Annu Rev Genet 2014; 48:583-611. [PMID: 25292356 DOI: 10.1146/annurev-genet-120213-092208] [Citation(s) in RCA: 154] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The formation of the embryonic brain and spinal cord begins as the neural plate bends to form the neural folds, which meet and adhere to close the neural tube. The neural ectoderm and surrounding tissues also coordinate proliferation, differentiation, and patterning. This highly orchestrated process is susceptible to disruption, leading to neural tube defects (NTDs), a common birth defect. Here, we highlight genetic and epigenetic contributions to neural tube closure. We describe an online database we created as a resource for researchers, geneticists, and clinicians. Neural tube closure is sensitive to environmental influences, and we discuss disruptive causes, preventative measures, and possible mechanisms. New technologies will move beyond candidate genes in small cohort studies toward unbiased discoveries in sporadic NTD cases. This will uncover the genetic complexity of NTDs and critical gene-gene interactions. Animal models can reveal the causative nature of genetic variants, the genetic interrelationships, and the mechanisms underlying environmental influences.
Collapse
Affiliation(s)
- Jonathan J Wilde
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Children's Hospital Colorado, Aurora, Colorado 80045;
| | | | | |
Collapse
|
13
|
Gokina NI, Bonev AD, Gokin AP, Goloman G. Role of impaired endothelial cell Ca(2+) signaling in uteroplacental vascular dysfunction during diabetic rat pregnancy. Am J Physiol Heart Circ Physiol 2013; 304:H935-45. [PMID: 23376827 DOI: 10.1152/ajpheart.00513.2012] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Diabetes mellitus in pregnancy is associated with impaired endothelium-mediated dilatation of maternal arteries, although the underlying cellular mechanisms remain unknown. In this study, we hypothesized that diabetes during rat gestation attenuates agonist-induced uterine vasodilation through reduced endothelial cell (EC) Ca(2+) elevations and impaired smooth muscle cell (SMC) hyperpolarization and SMC intracellular Ca(2+) concentration ([Ca(2+)]i) responses. Diabetes was induced by an injection of streptozotocin to second-day pregnant rats and confirmed by the development of maternal hyperglycemia. Control rats were injected with a citrate buffer. Fura-2-based measurements of SMC [Ca(2+)]i or microelectrode recordings of SMC membrane potential were performed concurrently with dilator responses to ACh in uteroplacental arteries from control and diabetic pregnant rats. Basal levels of EC [Ca(2+)]i and ACh-induced EC [Ca(2+)]i elevations in pressurized vessels and small EC sheets were studied as well. Diabetes reduced ACh-induced vasodilation due to a markedly impaired EDHF-mediated response. Diminished vasodilation to ACh was associated with attenuated SMC hyperpolarization and [Ca(2+)]i responses. Basal levels of EC [Ca(2+)]i and ACh-induced EC [Ca(2+)]i elevations were significantly reduced by diabetes. In conclusion, these data demonstrate that reduced endothelium-mediated hyperpolarization contributes to attenuated uteroplacental vasodilation and SMC [Ca(2+)]i responses to ACh in diabetic pregnancy. Impaired endothelial Ca(2+) signaling is in part responsible for endothelial dysfunction in the uterine resistance vasculature of diabetic rats. Pharmacological improvement of EC Ca(2+) handling may provide an important strategy for the restoration of endothelial function and enhancement of maternal blood flow in human pregnancies complicated by diabetes.
Collapse
Affiliation(s)
- Natalia I Gokina
- Department of Obstetrics, Gynecology, and Reproductive Sciences, College of Medicine, University of Vermont, Burlington, VT 05405, USA.
| | | | | | | |
Collapse
|
14
|
Huang C, Wu J, Liao R, Zhang W. SKF83959, an agonist of phosphatidylinositol-linked D(1)-like receptors, promotes ERK1/2 activation and cell migration in cultured rat astrocytes. PLoS One 2012. [PMID: 23185493 PMCID: PMC3501487 DOI: 10.1371/journal.pone.0049954] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Extracellular signal-regulated kinase 1/2 (ERK1/2) is a member of the mitogen-activated protein kinase family. It can mediate cell migration. Classical dopamine receptor-mediated ERK1/2 phosphorylation is widely studied in neurons. Here, we report that ERK1/2 phosphorylation is also modulated by putative phosphatidylinositol-linked D1-like receptors in cultured rat astrocytes. 6-chloro-7,8-dihydroxy-3-methyl-1-(3-methylphenyl)-2,3,4,5-tetrahydro-1H-3-benzazepine (SKF83959), an agonist of the putative phosphatidylinositol-linked D1-like receptors, was found to enhance ERK1/2 phosphorylation, which then promoted the migration of cultured astrocytes. The SKF83959-induced ERK1/2 phosphorylation was found to be Ca2+-independent based on the following observations: i. chelating intracellular Ca2+ did not inhibit ERK1/2 phosphorylation and astrocyte migration; ii. blockage of the release of intracellular Ca2+ from the endoplasmic reticulum by an inhibitor of inositol 1,4,5-trisphosphate (IP3) receptor did not attenuate ERK1/2 phosphorylation. However, inhibition of phospholipase C (PLC), the upstream molecule of internal Ca2+ release, disabled SKF83959’s ability to elevate the level of ERK1/2 phosphorylation. Both non-selective protein kinase C (PKC) inhibitor and PKCδ selective inhibitor prevented ERK1/2 phosphorylation increase and astrocyte migration, but PKCα inhibitor did not. This suggests that Ca2+-independent and diacylglycerol-dependent PKCδ acts downstream of putative phosphatidylinositol-linked D1-like receptor activation and mediates SKF83959-induced elevation of ERK1/2 phosphorylation in order to modulate astrocyte migration. In conclusion, our results demonstrate that SKF83959-induced increases in ERK1/2 phosphorylation and astrocyte migration are dependent on PLC-PKCδ signals. This might help us to further understand the functions of the putative phosphatidylinositol-linked D1-like receptors in the nervous system.
Collapse
Affiliation(s)
- Chao Huang
- Department of Pharmacology, School of Medicine, Nantong University, Nantong, Jiangsu, People's Republic of China
| | | | | | | |
Collapse
|
15
|
Ejdesjö A, Wentzel P, Eriksson UJ. Influence of maternal metabolism and parental genetics on fetal maldevelopment in diabetic rat pregnancy. Am J Physiol Endocrinol Metab 2012; 302:E1198-209. [PMID: 22374754 DOI: 10.1152/ajpendo.00661.2011] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The purpose of this study was to investigate the influence of parental transgenerational genetics and maternal metabolic state on fetal maldevelopment in diabetic rat pregnancy. Rats from an inbred malformation-resistant (W) strain, and an inbred malformation-prone (L) strain, were cross-mated to produce two different F(1) hybrids, WL and LW. Normal (N) and manifestly diabetic (MD) WL and LW females were mated with normal males of the same F(1) generation to obtain WLWL and LWLW F(2) hybrids. Maternal diabetes increased malformation and resorption rates in both F(2) generations. MD-WLWL offspring had higher resorption rate but similar malformation rate compared with the MD-LWLW offspring. Malformed MD-WLWL offspring presented with 100% agnathia/micrognathia, whereas malformed MD-LWL offspring had 60% agnathia/micrognathia and 40% cleft lip and palate. The MD-WL dams showed increased β-hydroxybutyrate levels and alterations in concentrations of several amino acids (taurine, asparagine, citrulline, cystine, glutamic acid, leucine, tyrosine, and tryptophan) compared with MD-LW dams. Fetal glyceraldehyde-3-phosphate dehydrogenase (Gapdh) activity and gene expression were more altered in MD-WLWL than MD-LWLW. Fetal gene expression of reactive oxygen species (ROS) scavenger enzymes was diminished in MD-WLWL compared with MD-LWLW. Glial cell line-derived neurotrophic factor and Ret proto-oncogene gene expression was decreased in both MD-WLWL and MD-LWLW fetuses, whereas increased bone morphogenetic protein 4 and decreased Sonic hedgehog homolog expression was found only in MD-LWLW fetuses. Despite identical autosomal genotypes, the WL and LW dams gave birth to offspring with markedly different malformation patterns. Together with fetal differences in enzymatic activity and expression of Gapdh, ROS scavengers, and developmental genes, these results may suggest a teratological mechanism in diabetic pregnancy influenced by maternal metabolism and parental strain epigenetics.
Collapse
Affiliation(s)
- A Ejdesjö
- Dept. of Medical Cell Biology, Biomedical Centre, PO Box 571, SE-75123 Uppsala, Sweden.
| | | | | |
Collapse
|
16
|
Cao Y, Zhao Z, Eckert RL, Reece EA. The essential role of protein kinase Cδ in diabetes-induced neural tube defects. J Matern Fetal Neonatal Med 2012; 25:2020-4. [PMID: 22463764 DOI: 10.3109/14767058.2012.677963] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
BACKGROUND Maternal diabetes causes neural tube defects (NTDs) in the embryos via activating protein kinase Cs (PKCs), which regulate programmed cell death (apoptosis). The aims of this study are to investigate the role of proapoptotic PKCδ in NTD formation and the underlying mechanisms. METHODS PKCδ heterozygous (pkcδ(+/-)) female mice were diabetic (DM) induced by intravenous injection of streptozotocin. Occurrence of NTDs was evaluated at embryonic day 11.5 and compared between wild type (WT) and PKCδ homozygous (pkcδ(-/-)) embryos. Changes in oxidative and endoplasmic reticulum (ER) stress-associated factors and stress-response c-Jun N-terminal kinases (JNKs) were assessed using Western blot assay. RESULTS Compared to DM/WT, the DM/PKCδ(-/-) embryos had significantly lower NTD rate and lower levels of oxidative and ER stress factors and JNK activation. These values were similar to those in the non-diabetic control group. CONCLUSION PKCδ plays a critical role in diabetes-induced NTDs, potentially through increasing oxidative and ER stress and JNK-associated stress-response pathways.
Collapse
Affiliation(s)
- Yuanning Cao
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | | | | | | |
Collapse
|
17
|
Abstract
Diabetic embryopathy reflects a scientific enigma--how does a seemingly rich intrauterine environment manage to disturb the development of the embryo? Which compounds in that environment may be teratogenic--and how shall we find them? How can we investigate a putative dose-response nature of the teratogen, i.e., how can we monitor the effects of varied severity of the diabetic state (which can be varied in a number of metabolic ways) on the embryonic development? Here, the whole embryo culture (WEC) technique provides an excellent tool for such studies. WEC is thus currently used to investigate the effect of graded levels of diabetes (e.g., hyperglycemia, hyperketonemia, increased branched chain amino acid (BCAA) levels), and putative antiteratogenic agents (antioxidants, folic acid, arachidonic acid, inositol), as well as the effect of different embryonic genotypes on diabetes-induced (mal)development. WEC is the only method, which is able to couple specific embryonic maldevelopment to precise changes in substrate levels or the (epi)genotype of the embryo. Using this method, we have been able to demonstrate that a diabetic environment--culture of embryos in serum from diabetic animals or in serum with increased levels of glucose, β-hydroxybutyrate or α-ketoisocaproic acid (KIC)--causes increased embryonic maldevelopment, and that this dysmorphogenesis is blocked by the addition of ROS scavenging agents to the culture medium. Genetically, others and we have demonstrated that Pax-3 downregulation predisposes for diabetes-induced dysmorphogenesis.
Collapse
|
18
|
Wu Y, Viana M, Thirumangalathu S, Loeken MR. AMP-activated protein kinase mediates effects of oxidative stress on embryo gene expression in a mouse model of diabetic embryopathy. Diabetologia 2012; 55:245-54. [PMID: 21993711 PMCID: PMC3342033 DOI: 10.1007/s00125-011-2326-y] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2011] [Accepted: 08/25/2011] [Indexed: 12/11/2022]
Abstract
AIMS/HYPOTHESIS Neural tube defects (NTDs) are a common malformation associated with diabetic embryopathy. Maternal hyperglycaemia-induced oxidative stress inhibits the expression of Pax3, a gene that is essential for neural tube closure, and increases the incidence of NTDs. Because oxidative stress can stimulate AMP-activated kinase (AMPK) activity, and AMPK can regulate gene transcription, we hypothesised that increased AMPK activity would mediate the adverse effects of maternal hyperglycaemia-induced oxidative stress on Pax3 expression and NTDs. METHODS Pregnant mice were made transiently hyperglycaemic by glucose injection, or hypoxic by housing in a hypoxic chamber, or were treated with antimycin A to induce oxidative stress, and AMPK activity in the embryos was assayed. The effects of stimulating AMPK activity with 5-aminoimidazole-4-carboxamide-1-beta-4-ribofuranoside (AICAR) on Pax3 expression and NTDs were determined. Vitamin E or glutathione ethyl ester was used to reduce oxidative stress, and compound C was used to inhibit AMPK activation. Murine embryonic stem cells were employed as an in vitro model to study the effects of oxidative stress on AMPK activity and the effects of AMPK stimulation on Pax3 expression. RESULTS Maternal hyperglycaemia stimulated AMPK activity, and stimulation of AMPK with AICAR inhibited Pax3 expression (in vivo and in vitro) and increased NTDs (in vivo). Stimulation of AMPK by hyperglycaemia, hypoxia or antimycin A was inhibited by antioxidants. The AMPK inhibitor compound C blocked the effects of hyperglycaemia or AA on Pax3 expression and NTDs. CONCLUSIONS/INTERPRETATION Stimulation of AMPK in embryos during a diabetic pregnancy mediates the effects of hyperglycaemia-induced oxidative stress to disturb the expression of the critical Pax3 gene, thereby causing NTDs.
Collapse
Affiliation(s)
- Y Wu
- Section on Developmental and Stem Cell Biology, Joslin Diabetes Center, One Joslin Place, Boston, MA 02215, USA
| | | | | | | |
Collapse
|
19
|
Li X, Weng H, Reece EA, Yang P. SOD1 overexpression in vivo blocks hyperglycemia-induced specific PKC isoforms: substrate activation and consequent lipid peroxidation in diabetic embryopathy. Am J Obstet Gynecol 2011; 205:84.e1-6. [PMID: 21529760 PMCID: PMC3160525 DOI: 10.1016/j.ajog.2011.02.071] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2010] [Revised: 02/23/2011] [Accepted: 02/28/2011] [Indexed: 01/16/2023]
Abstract
OBJECTIVE Oxidative stress plays a causative role in diabetic embryopathy. We tested whether mitigating oxidative stress, using superoxide dismutase 1 (SOD1) transgenic (Tg) mice, would block hyperglycemia-induced specific protein kinase C (PKC) isoform activation and its downstream cascade. STUDY DESIGN Day 8.5 embryos from nondiabetic wild-type control (NC), diabetic mellitus wild-type (DM), and diabetic SOD1-Tg mice (DM-SOD1-Tg) were used for detection of phosphorylated (p-) PKCα/βII and p-PKCδ, and levels of 2 prominent PKC substrates, phosphorylated myristoylated alanine-rich protein kinase C substrate (MARCKS) and receptor for activated C kinase 1 (RACK1), and lipid peroxidation markers, 4-hydroxynonenal (4-HNE) and malondialdehyde (MDA). RESULTS Levels of p-PKCα/βII, p-PKCδ, p-MARCKS, 4-HNE, and MDA were significantly elevated in the DM group compared with those in the NC group and the DM-SOD1-Tg group. The NC and DM-SOD1-Tg groups had comparable levels of these protein and lipid peroxidation markers. RACK1 levels did not differ among the 3 groups. CONCLUSION Mitigating oxidative stress by SOD1 overexpression blocks maternal hyperglycemia-induced activation of specific PKC isoforms and downstream cascades.
Collapse
Affiliation(s)
- Xuezheng Li
- Department of Obstetrics, Gynecology & Reproductive Sciences, University of Maryland School of Medicine Baltimore, MD 21201
| | - Hongbo Weng
- Department of Obstetrics, Gynecology & Reproductive Sciences, University of Maryland School of Medicine Baltimore, MD 21201
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, 201203, P.R. China
| | - E. Albert Reece
- Department of Obstetrics, Gynecology & Reproductive Sciences, University of Maryland School of Medicine Baltimore, MD 21201
- Department of Biochemistry & Molecular Biology, University of Maryland School of Medicine Baltimore, MD 21201
| | - Peixin Yang
- Department of Obstetrics, Gynecology & Reproductive Sciences, University of Maryland School of Medicine Baltimore, MD 21201
- Department of Biochemistry & Molecular Biology, University of Maryland School of Medicine Baltimore, MD 21201
| |
Collapse
|
20
|
Randhawa PK, Rylova S, Heinz JY, Kiser S, Fried JH, Dunworth WP, Anderson AL, Barber AT, Chappell JC, Roberts DM, Bautch VL. The Ras activator RasGRP3 mediates diabetes-induced embryonic defects and affects endothelial cell migration. Circ Res 2011; 108:1199-208. [PMID: 21474816 PMCID: PMC3709466 DOI: 10.1161/circresaha.110.230888] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2010] [Accepted: 03/28/2011] [Indexed: 01/16/2023]
Abstract
RATIONALE Fetuses that develop in diabetic mothers have a higher incidence of birth defects that include cardiovascular defects, but the signaling pathways that mediate these developmental effects are poorly understood. It is reasonable to hypothesize that diabetic maternal effects are mediated by 1 or more pathways activated downstream of aberrant glucose metabolism, because poorly controlled maternal glucose levels correlate with the frequency and severity of the defects. OBJECTIVE We investigated whether RasGRP3 (Ras guanyl-releasing protein 3), a Ras activator expressed in developing blood vessels, mediates diabetes-induced vascular developmental defects. RasGRP3 is activated by diacylglycerol, and diacylglycerol is overproduced by aberrant glucose metabolism in diabetic individuals. We also investigated the effects of overactivation and loss of function for RasGRP3 in primary endothelial cells and developing vessels. METHODS AND RESULTS Analysis of mouse embryos from diabetic mothers showed that diabetes-induced developmental defects were dramatically attenuated in embryos that lacked Rasgrp3 function. Endothelial cells that expressed activated RasGRP3 had elevated Ras-ERK signaling and perturbed migration, whereas endothelial cells that lacked Rasgrp3 function had attenuated Ras-ERK signaling and did not migrate in response to endothelin-1. Developing blood vessels exhibited endothelin-stimulated vessel dysmorphogenesis that required Rasgrp3 function. CONCLUSIONS These findings provide the first evidence that RasGRP3 contributes to developmental defects found in embryos that develop in a diabetic environment. The results also elucidate RasGRP3-mediated signaling in endothelial cells and identify endothelin-1 as an upstream input and Ras/MEK/ERK as a downstream effector pathway. RasGRP3 may be a novel therapeutic target for the fetal complications of diabetes.
Collapse
Affiliation(s)
| | - Svetlana Rylova
- Dept. of Biology, The University of North Carolina, Chapel Hill, NC 27599
| | - Jessica Y Heinz
- Dept. of Biology, The University of North Carolina, Chapel Hill, NC 27599
| | - Stephanie Kiser
- Dept. of Biology, The University of North Carolina, Chapel Hill, NC 27599
| | - Joanna H Fried
- Dept. of Biology, The University of North Carolina, Chapel Hill, NC 27599
| | - William P Dunworth
- Curriculum in Genetics and Molecular Biology, The University of North Carolina, Chapel Hill, NC 27599
| | - Amanda L Anderson
- Curriculum in Genetics and Molecular Biology, The University of North Carolina, Chapel Hill, NC 27599
| | - Andrew T Barber
- Dept. of Biology, The University of North Carolina, Chapel Hill, NC 27599
| | - John C Chappell
- Dept. of Biology, The University of North Carolina, Chapel Hill, NC 27599
| | - David M Roberts
- Curriculum in Genetics and Molecular Biology, The University of North Carolina, Chapel Hill, NC 27599
| | - Victoria L Bautch
- Dept. of Biology, The University of North Carolina, Chapel Hill, NC 27599
- Curriculum in Genetics and Molecular Biology, The University of North Carolina, Chapel Hill, NC 27599
- Lineberger Comprehensive Cancer Center, The University of North Carolina, Chapel Hill, NC 27599
- McAllister Heart Institute, The University of North Carolina, Chapel Hill, NC 27599
| |
Collapse
|
21
|
Liu S, Yuan Q, Zhao S, Wang J, Guo Y, Wang F, Zhang Y, Liu Q, Zhang S, Ling EA, Hao A. High glucose induces apoptosis in embryonic neural progenitor cells by a pathway involving protein PKCδ. Cell Signal 2011; 23:1366-74. [PMID: 21440619 DOI: 10.1016/j.cellsig.2011.03.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2011] [Revised: 03/15/2011] [Accepted: 03/18/2011] [Indexed: 11/29/2022]
Abstract
Diabetic-induced neural tube defects in embryos are caused by apoptosis of neural progenitor cells (NPCs); however, the underlying mechanisms are poorly understood. The present study is aimed to investigate the specific cellular proteins that may be involved in apoptosis of NPCs. We show here that hyperglycemia-induced apoptosis of NPCs was through a PKCδ-dependent mechanism. Tyrosine phosphorylation of PKCδ was required for PKCδ binding to c-Abl in the cytoplasm, and inhibition of c-Abl by STI571 or knock-down of c-Abl by RNAi decreased the phosphorylation of PKCδ. Moreover, translocation of PKCδ and c-Abl complex from the cytoplasm to the nucleus, was blocked by down-regulation of PKCδ or c-Abl. Furthermore, we found that interaction of PKCδ and c-Abl played a crucial role in p53 accumulation in the nucleus, which was linked to the apoptosis of NPCs in response to high glucose.
Collapse
Affiliation(s)
- Shangming Liu
- Department of Histology and Embryology, Key Laboratory of the Ministry of Education for Experimental Teratology, Shandong University School of Medicine, 44#, Wenhua Xi Road, Jinan, Shandong, 250012, PR China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Ejdesjö A, Wentzel P, Eriksson UJ. Genetic and environmental influence on diabetic rat embryopathy. Am J Physiol Endocrinol Metab 2011; 300:E454-67. [PMID: 21119026 DOI: 10.1152/ajpendo.00543.2010] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We assessed genetic and environmental influence on fetal outcome in diabetic rat pregnancy. Crossing normal (N) and manifestly diabetic (MD) Wistar Furth (W) and Sprague-Dawley (L) females with W or L males yielded four different fetal genotypes (WW, LL, WL, and LW) in N or MD rat pregnancies for studies. We also evaluated fetal outcome in litters with enhanced or diminished severity of maternal MD state, denoted MD(+)WL and MD(-)LW. The MDWW litters had less malformations and resorptions (0 and 19%) than the MDLL litters (17 and 30%). The MDWL litters (0 and 8%) were less maldeveloped than the MDLW litters (9 and 22%), whereas the MD(+)WL (3 and 23%) and MD(-)LW (1 and 17%) litters showed increased and decreased dysmorphogenesis (compared with MDWL and MDLW litters). The pregnant MDW rats had lower serum levels of glucose, fructosamine, and branched-chain amino acids than the pregnant MDL rats, whereas the pregnant MD(+)W and MD(-)L rats had levels comparable with those of the MDL and MDW rats, respectively. The 8-iso-PGF2α levels of the malformed MDLW offspring were increased compared with the nonmalformed MDLW offspring. Diabetes decreased fetal heart Ret and increased Bmp-4 gene expression in the MDLW offspring and caused decreased GDNF and Shh expression in the malformed fetal mandible of the MDLW offspring. We conclude that the fetal genome controls the embryonic dysmorphogenesis in diabetic pregnancy by instigating a threshold level for the teratological insult and that the maternal genome controls the teratogenic insult by (dys)regulating the maternal metabolism.
Collapse
Affiliation(s)
- A Ejdesjö
- Dept. of Medical Cell Biology, Biomedical Centre, Uppsala, Sweden.
| | | | | |
Collapse
|
23
|
Cao Y, Zhao Z, Eckert RL, Reece EA. Protein kinase Cβ2 inhibition reduces hyperglycemia-induced neural tube defects through suppression of a caspase 8-triggered apoptotic pathway. Am J Obstet Gynecol 2011; 204:226.e1-5. [PMID: 21376163 PMCID: PMC3057385 DOI: 10.1016/j.ajog.2011.01.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2010] [Revised: 01/09/2011] [Accepted: 01/11/2011] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Neural tube defects in diabetic embryopathy are associated with increased protein kinase C (PKC)β2 activity and programmed cell death (apoptosis). The apoptosis is triggered by caspase 8, which activates members of the Bcl-2 and caspase families, such as Bid and caspase 3. Whether PKCβ2 regulates caspase 8-induced apoptosis remains to be addressed. STUDY DESIGN Mouse embryos at embryonic day 8.5 were cultured in a high concentration of glucose (22 mmol/L) and treated with PKCβ2 inhibitor (50 nmol/L) for 48 hours. The levels of apoptosis and activation of apoptotic factors were quantified using the terminal deoxynucleotidyl transferase deoxyuridine triphosphate nick end labeling and Western blot assays, respectively. RESULTS Reduction in the rate of neural tube defect by PKCβ2 inhibition is associated with significant decreases in the levels of apoptosis, and caspase 8, caspase 3, and Bid activation, and cytochrome C release from mitochondria, to the similar levels as in euglycemic controls (8.3 mmol/L; P < .05). CONCLUSION PKCβ2 influences a caspase 8-regulated apoptotic pathway in diabetic embryopathy.
Collapse
Affiliation(s)
- Yuanning Cao
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of Maryland School of Medicine, Baltimore, Maryland 21201
| | - Zhiyong Zhao
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of Maryland School of Medicine, Baltimore, Maryland 21201
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland 21201
| | - Richard L. Eckert
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland 21201
| | - E. Albert Reece
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of Maryland School of Medicine, Baltimore, Maryland 21201
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland 21201
| |
Collapse
|
24
|
Kappen C, Kruger C, MacGowan J, Salbaum JM. Maternal diet modulates the risk for neural tube defects in a mouse model of diabetic pregnancy. Reprod Toxicol 2011; 31:41-9. [PMID: 20868740 PMCID: PMC3035722 DOI: 10.1016/j.reprotox.2010.09.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2010] [Revised: 08/17/2010] [Accepted: 09/04/2010] [Indexed: 02/03/2023]
Abstract
Pregnancies complicated by maternal diabetes have long been known to carry a higher risk for congenital malformations, such as neural tube defects. Using the FVB inbred mouse strain and the Streptozotocin-induced diabetes model, we tested whether the incidence of neural tube defects in diabetic pregnancies can be modulated by maternal diet. In a comparison of two commercial mouse diets, which are considered nutritionally replete, we found that maternal consumption of the unfavorable diet was associated with a more than 3-fold higher rate of neural tube defects. Our results demonstrate that maternal diet can act as a modifier of the risk for abnormal development in high-risk pregnancies, and provide support for the possibility that neural tube defects in human diabetic pregnancies might be preventable by optimized maternal nutrition.
Collapse
Affiliation(s)
- Claudia Kappen
- Department of Developmental Biology, Pennington Biomedical Research Center, Louisiana State University System, 6400 Perkins Road, Baton Rouge, LA 70808, USA.
| | | | | | | |
Collapse
|
25
|
Zabihi S, Loeken MR. Understanding diabetic teratogenesis: where are we now and where are we going? BIRTH DEFECTS RESEARCH. PART A, CLINICAL AND MOLECULAR TERATOLOGY 2010; 88:779-90. [PMID: 20706996 PMCID: PMC5070114 DOI: 10.1002/bdra.20704] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Maternal pregestational diabetes (type 1 or type 2) poses an increased risk for a broad spectrum of birth defects. To our knowledge, this problem first came to the attention of the Teratology Society at the 14th Annual Meeting in Vancouver, B.C. in 1974, with a presentation by Lewis Holmes, "Etiologic heterogeneity of neural tube defects". Although advances in the control of diabetes in the decades since the discovery of insulin in the 1920's have reduced the risk for birth defects during diabetic pregnancy, the increasing incidence of diabetes among women of childbearing years indicates that this cause of birth defects is a growing public health concern. Major advances in understanding how a disease of maternal fuel metabolism can interfere with embryogenesis of multiple organ systems have been made in recent years. In this review, we trace the history of the study of diabetic teratogenesis and discuss a model in which tissue-specific developmental control genes are regulated at specific times in embryonic development by glucose metabolism. The major function of such genes is to suppress apoptosis, perhaps to preserve proliferative capability, and inhibit premature senescence.
Collapse
Affiliation(s)
- Sheller Zabihi
- Section on Developmental and Stem Cell Biology, Joslin Diabetes Center, One Joslin Place, Boston, MA 02215
| | - Mary R. Loeken
- Section on Developmental and Stem Cell Biology, Joslin Diabetes Center, One Joslin Place, Boston, MA 02215
| |
Collapse
|
26
|
Abstract
Birth defects resulting from diabetic pregnancy are associated with apoptosis of a critical mass of progenitor cells early during the formation of the affected organ(s). Insufficient expression of genes that regulate viability of the progenitor cells is responsible for the apoptosis. In particular, maternal diabetes inhibits expression of a gene, Pax3, that encodes a transcription factor which is expressed in neural crest and neuroepithelial cells. As a result of insufficient Pax3, cardiac neural crest and neuroepithelial cells undergo apoptosis by a process dependent on the p53 tumor suppressor protein. This, then provides a cellular explanation for the cardiac outflow tract and neural tube and defects induced by diabetic pregnancy.
Collapse
Affiliation(s)
- James H. Chappell
- Section on Developmental and Stem Cell Biology, Joslin Diabetes Center, One Joslin Place, Boston, MA 02215, USA
| | - Xiao Dan Wang
- Section on Developmental and Stem Cell Biology, Joslin Diabetes Center, One Joslin Place, Boston, MA 02215, USA
| | - Mary R. Loeken
- Section on Developmental and Stem Cell Biology, Joslin Diabetes Center, One Joslin Place, Boston, MA 02215, USA
| |
Collapse
|
27
|
Abstract
Maternal diabetes significantly increases the risk for birth defects. Studies using animal models indicate that oxidative stress may play a causative role. Oxidative stress can result from exposure to certain drugs, ionizing radiation and folic acid deficiency. Therefore, study of the mechanisms by which maternal diabetes affects embryogenesis may provide insight into general processes by which birth defects occur. Study of embryonic gene expression has demonstrated that maternal diabetes causes birth defects by disturbing expression of genes that control essential developmental processes, and that oxidative stress is involved. A model in which oxidative stress-induced deficient gene expression leads to congenital defects involving p53-dependent apoptosis is discussed.
Collapse
Affiliation(s)
- M R Loeken
- Joslin Diabetes Center, Boston, Massachusetts 02215, USA
| |
Collapse
|
28
|
Sugimura Y, Murase T, Oyama K, Uchida A, Sato N, Hayasaka S, Kano Y, Takagishi Y, Hayashi Y, Oiso Y, Murata Y. Prevention of neural tube defects by loss of function of inducible nitric oxide synthase in fetuses of a mouse model of streptozotocin-induced diabetes. Diabetologia 2009; 52:962-71. [PMID: 19283362 DOI: 10.1007/s00125-009-1312-0] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2008] [Accepted: 02/08/2009] [Indexed: 12/12/2022]
Abstract
AIMS/HYPOTHESIS Maternal diabetes during pregnancy increases the risk of congenital malformations such as neural tube defects (NTDs). Although the mechanism of this effect is uncertain, it is known that levels of nitric oxide synthase (NOS) and nitric oxide are elevated in embryos of a mouse model of diabetes. We postulated that overproduction of nitric oxide causes diabetes-induced congenital malformations and that inhibition of inducible NOS (iNOS) might prevent diabetic embryopathy. METHODS Mice were rendered hyperglycaemic by intraperitoneal injection of streptozotocin. The incidence of congenital malformations including NTDs was evaluated on gestational day 18.5. We assessed the involvement of iNOS in diabetes-induced malformation by administering ONO-1714, a specific inhibitor of iNOS, to pregnant mice with streptozotocin-induced diabetic mice and by screening mice with iNOS deficiency due to genetic knockout (iNos(-/-)). RESULTS ONO-1714 markedly reduced the incidence of congenital anomalies, including NTDs, in fetuses of a mouse model of diabetes. It also prevented apoptosis in the head region of fetuses, indicating that iNOS is involved in diabetes-related congenital malformations. Indeed, no NTDs were observed in fetuses of diabetic iNos(-/-) mice and the incidence of other malformations was also markedly reduced. CONCLUSIONS/INTERPRETATION We conclude that increased iNOS activity during organogenesis plays a crucial role in the pathogenesis of diabetes-induced malformations and suggest that inhibitors of iNOS might help prevent malformations, especially NTDs, in diabetic pregnancy.
Collapse
Affiliation(s)
- Y Sugimura
- Department of Genetics, Research Institute of Environmental Medicine, Nagoya University, Chikusa-ku, Nagoya, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Abstract
Congenital malformations are more common in infants of diabetic women than in children of non-diabetic women. The etiology, pathogenesis and prevention of the diabetes-induced malformations have spurred considerable clinical and basic research efforts. The ultimate aim of these studies has been to obtain an understanding of the teratogenic process, which may enable precise preventive therapeutic measures in diabetic pregnancies. The results of the clinical and basic studies support the view of an early gestational induction of the malformations in diabetic pregnancy by a teratogenic process of multifactorial etiology. There may be possible targets for new therapeutic efforts revealed by the research work. Thus, future additions to the therapeutic efforts may include supplementation with antioxidants and/or folic acid, although more research is needed to delineate the dosages and compounds to be used. As the research into genetic predisposition for the teratogenic induction of malformations by maternal diabetes starts to reveal new genes and gene products involved in the etiology of the malformations, a set of new targets for intervention may arise.
Collapse
Affiliation(s)
- Ulf J Eriksson
- Department of Medical Cell Biology, Uppsala University, Biomedical Center, PO Box 571, SE-75123 Uppsala, Sweden.
| |
Collapse
|
30
|
Jiang B, Kumar SD, Loh WT, Manikandan J, Ling EA, Tay SSW, Dheen ST. Global gene expression analysis of cranial neural tubes in embryos of diabetic mice. J Neurosci Res 2009; 86:3481-93. [PMID: 18655203 DOI: 10.1002/jnr.21800] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Maternal diabetes causes congenital malformations in various organs including the neural tube in fetuses. In this study, we have analyzed the differential gene expression profiling in the cranial neural tube of embryos from diabetic and control mice by using the oligonucleotide microarray. Expression patterns of genes and proteins that are differentially expressed in the cranial neural tube were further examined by the real-time reverse transcriptase-polymerase chain reaction, in situ hybridization, and immunohistochemistry. Proliferation index and apoptosis were examined by BrdU (5-bromo-2-deoxyuridine) labeling and TUNEL (terminal deoxynucleotidyl transferase dUTP nick-end labeling) assay, respectively. Embryos (E11.5) of diabetic pregnancies displayed distortion in neuroepithelia of the cranial neural tube. Microarray analysis revealed that a total of 390 genes exhibited more than twofold changes in expression level in the cranial neural tube of embryos from diabetic mice. Several genes involving apoptosis, proliferation, migration, and differentiation of neurons in the cranial neural tube were differentially expressed in embryos of diabetic pregnancy. In addition, maternal diabetes perturbed the development of choroid plexus and ventricular systems and reduced the production of proteins such as Ttr and Igf2 in the developing brain, indicating that these changes could impair the survival and proliferation of neuroepithelial cells and neurogenesis in embryos of diabetic mice. It is concluded that altered expression of a variety of genes involved in brain development is associated with cranial neural tube dysmorphogenesis that may subsequently contribute to intellectual impairment of the offspring of a diabetic mother.
Collapse
Affiliation(s)
- Boran Jiang
- Molecular Neurobiology Laboratory, Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | | | | | | | | | | | | |
Collapse
|
31
|
Affiliation(s)
- Mary R Loeken
- Section on Developmental and Stem Cell Biology, Joslin Diabetes Center and the Department of Medicine, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
32
|
Wentzel P, Gäreskog M, Eriksson UJ. Decreased cardiac glutathione peroxidase levels and enhanced mandibular apoptosis in malformed embryos of diabetic rats. Diabetes 2008; 57:3344-52. [PMID: 18728230 PMCID: PMC2584142 DOI: 10.2337/db08-0830] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2008] [Accepted: 08/14/2008] [Indexed: 11/13/2022]
Abstract
OBJECTIVE To characterize normal and malformed embryos within the same litters from control and diabetic rats for expression of genes related to metabolism of reactive oxygen species (ROS) or glucose as well as developmental genes. RESEARCH DESIGN AND METHODS Embryos from nondiabetic and streptozotocin-induced diabetic rats were collected on gestational day 11 and evaluated for gene expression (PCR) and distribution of activated caspase-3 and glutathione peroxidase (Gpx)-1 by immunohistochemistry. RESULTS Maternal diabetes (MD group) caused growth retardation and an increased malformation rate in the embryos of MD group rats compared with those of controls (N group). We found decreased gene expression of Gpx-1 and increased expression of vascular endothelial growth factor-A (Vegf-A) in malformed embryos of diabetic rats (MDm group) compared with nonmalformed littermates (MDn group). Alterations of messenger RNA levels of other genes were similar in MDm and MDn embryos. Thus, expression of copper zinc superoxide dismutase (CuZnSOD), manganese superoxide dismutase (MnSOD), and sonic hedgehog homolog (Shh) were decreased, and bone morphogenetic protein-4 (Bmp-4) was increased, in the MD embryos compared with the N embryos. In MDm embryos, we detected increased activated caspase-3 immunostaining in the first visceral arch and cardiac area and decreased Gpx-1 immunostaining in the cardiac tissue; both findings differed from the caspase/Gpx-1 immunostaining of the MDn and N embryos. CONCLUSIONS Maternal diabetes causes growth retardation, congenital malformations, and decreased general antioxidative gene expression in the embryo. In particular, enhanced apoptosis of the first visceral arch and heart, together with decreased cardiac Gpx-1 levels, may compromise the mandible and heart and thus cause an increased risk of developing congenital malformation.
Collapse
Affiliation(s)
- Parri Wentzel
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden.
| | | | | |
Collapse
|
33
|
Zhiyong Zhao, Wu YK, Reece EA. Demonstration of the essential role of protein kinase C isoforms in hyperglycemia-induced embryonic malformations. Reprod Sci 2008; 15:349-56. [PMID: 18497343 DOI: 10.1177/1933719108316986] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
To address the role of PKC isoforms in hyperglycemia-induced apoptosis and malformations in the embryos of diabetic pregnancies, expression of PKCalpha, beta1, beta 2, gamma, delta, epsilon, and zeta was examined in the neural tube of rat embryos and showed to overlap with the regions of increased apoptosis. Levels of activated (phosphorylated) PKCalpha , beta2, and delta were increased in the embryos of diabetic dams whereas those of PKCepsilon and zeta were decreased when compared with those in control groups. Cytosolic phospholipase A(2) (cPLA(2)) was also activated. Blocking the activity of PKCalpha , beta2, and delta using isoform-specific inhibitors in embryos cultured in hyperglycemia (40 mM) reduced malformation rates when compared with those in untreated hyperglycemic and euglycemic (8.3 mM) groups. These observations demonstrate that PKCalpha, beta2, and delta play an essential role in diabetic embryopathy. Activation of cPLA(2) was also decreased, suggesting that PKCs mediate the hyperglycemic effects through the cPLA(2)-phospholipid peroxidation pathway.
Collapse
Affiliation(s)
- Zhiyong Zhao
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA.
| | | | | |
Collapse
|
34
|
Effects of dietary diacylglycerol oil on embryo/fetal development in rats. Food Chem Toxicol 2008; 46:2510-6. [DOI: 10.1016/j.fct.2008.04.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2007] [Revised: 01/31/2008] [Accepted: 04/07/2008] [Indexed: 11/18/2022]
|
35
|
Graves DT, Kayal RA. Diabetic complications and dysregulated innate immunity. FRONTIERS IN BIOSCIENCE : A JOURNAL AND VIRTUAL LIBRARY 2008; 13:1227-39. [PMID: 17981625 PMCID: PMC3130196 DOI: 10.2741/2757] [Citation(s) in RCA: 168] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Diabetes mellitus is a metabolic disorder that leads to the development of a number of complications. The etiology of each diabetic complication is undoubtedly multifactorial. We will focus on one potential component that may be common in many diabetic complications, dysregulation of innate immunity associated with an increased inflammatory response. High glucose levels lead to shunting through the polyol pathway, an increase in diacylglycerol which activates protein kinase C, an increase in the release of electrons that react with oxygen molecules to form superoxides, and the non-enzymatic glycosylation of proteins that result in greater formation of advanced glycation end products. Each of these can lead to aberrant cell signalling that affects innate immunity for example, by activating the MAP kinase pathway or inducing activation of transcription factors such as NF-kappaB. This may be a common feature of several complications including periodontal disease, atherosclerosis, nephropathy, impaired healing and retinopathy. These complications are frequently associated with increased expression of inflammatory cytokines such as TNF-alpha, IL-1beta and IL-6 and enhanced generation of reactive oxygen species. Cause and effect relationship between dysregulation of key components of innate immunity and diabetic complications in many instances have been demonstrated with the use of cytokine blockers and antioxidants.
Collapse
Affiliation(s)
- Dana T Graves
- Boston University School of Dental Medicine, Department of Periodontology and Oral Biology, W-202D, 700 Albany Street, Boston, MA 02118, USA.
| | | |
Collapse
|
36
|
Gao Q, Gao YM. Hyperglycemic condition disturbs the proliferation and cell death of neural progenitors in mouse embryonic spinal cord. Int J Dev Neurosci 2007; 25:349-57. [PMID: 17888615 DOI: 10.1016/j.ijdevneu.2007.08.002] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2007] [Revised: 07/31/2007] [Accepted: 08/02/2007] [Indexed: 10/22/2022] Open
Abstract
Spina bifida, which results from failure of fusion in the spinal region of neural tube, is among the most common birth defects associated with diabetic pregnancy. However, the mechanism underlying maternal diabetes-induced congenital malformations including spina bifida is not fully understood. It was hypothesized that hyperglycemic conditions affect the proliferation and apoptosis of neural progenitor cells in the developing spinal neural tube, leading to abnormal neurodevelopment. In the present study, biological processes such as proliferation and apoptosis were investigated in the neuroepithelial cells of the developing spinal neural tube of embryos from diabetic mice, and in embryonic spinal neural tube derived neural progenitor cell cultures exposed to high glucose in vitro. Maternal diabetes caused decreased proliferation and increased apoptosis of the neuroepithelial cells in the developing spinal cord of embryos from diabetic mouse. Decreased proliferation and increased apoptosis were also found in neural progenitor cells exposed to high glucose. In addition, high glucose-induced apoptosis in neural progenitor cells was associated with activation of caspase-3. Thus, high glucose disturbs both proliferation and cell death of neural progenitors in the developing spinal neural tube. This could provide a cellular mechanism by which maternal hyperglycemia induces spina bifida in embryos from diabetic pregnancy.
Collapse
Affiliation(s)
- Qing Gao
- Department of Histology and Embryology, School of Medicine, Shandong University, Jinan, Shandong, China
| | | |
Collapse
|
37
|
Gäreskog M, Cederberg J, Eriksson UJ, Wentzel P. Maternal diabetes in vivo and high glucose concentration in vitro increases apoptosis in rat embryos. Reprod Toxicol 2006; 23:63-74. [PMID: 17034987 DOI: 10.1016/j.reprotox.2006.08.009] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2006] [Revised: 08/21/2006] [Accepted: 08/22/2006] [Indexed: 10/24/2022]
Abstract
Apoptosis may be involved in diabetes-induced embryonic dysmorphogenesis. We estimated the occurrence of apoptosis in embryos of a rat model for diabetic pregnancy. We found decreased Bcl-2, increased Bax and cleaved Caspase 3 proteins in embryos from diabetic rats. Moreover, we found increased activation of Caspase 3 in cells from embryos previously exposed to a diabetes-like environment (in vivo, in vitro) compared to cells from control embryos, which was normalized by supplementation of N-acetylcysteine or apoptosis inhibitor. We detected increased propidium iodide uptake in embryonic cells exposed to maternal diabetes, a finding confirmed by vital staining. Additionally, we found increased dysmorphogenesis in embryos exposed to a diabetic environment in vivo and in vitro. Exposure to a diabetic milieu during organogenesis increases apoptosis in embryonic cells and dysmorphogenesis in embryos. Enhanced apoptotic rate may have a role in diabetic embryopathy by inducing disturbed embryonic maturation, increased rates of resorptions and congenital malformations.
Collapse
Affiliation(s)
- Mattias Gäreskog
- Department of Medical Cell Biology, Uppsala University, Biomedical Center, PO Box 571, SE-751 23 Uppsala, Sweden.
| | | | | | | |
Collapse
|
38
|
Fu J, Tay SSW, Ling EA, Dheen ST. High glucose alters the expression of genes involved in proliferation and cell-fate specification of embryonic neural stem cells. Diabetologia 2006; 49:1027-38. [PMID: 16508779 DOI: 10.1007/s00125-006-0153-3] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2005] [Accepted: 10/31/2005] [Indexed: 12/15/2022]
Abstract
AIMS/HYPOTHESIS Maternal diabetes induces neural tube defects during embryogenesis. Since the neural tube is derived from neural stem cells (NSCs), it is hypothesised that in diabetic pregnancy neural tube defects result from altered expression of developmental control genes, leading to abnormal proliferation and cell-fate choice of NSCs. MATERIALS AND METHODS Cell viability, proliferation index and apoptosis of NSCs and differentiated cells from mice exposed to physiological or high glucose concentration medium were examined by a tetrazolium salt assay, 5-bromo-2'-deoxyuridine incorporation, terminal deoxynucleotidyl transferase-mediated dUTP nick end labelling and immunocytochemistry. Expression of developmental genes, including sonic hedgehog (Shh), bone morphogenetic protein 4 (Bmp4), neurogenin 1/2 (Neurog1/2), achaete-scute complex-like 1 (Ascl1), oligodendrocyte transcription factor 1 (Olig1), oligodendrocyte lineage transcription factor 2 (Olig2), hairy and enhancer of split 1/5 (Hes1/5) and delta-like 1 (Dll1), was analysed by real-time RT-PCR. Proliferation index and neuronal specification in the forebrain of embryos at embryonic day 11.5 were examined histologically. RESULTS High glucose decreased the proliferation of NSCs and differentiated cells. The incidence of apoptosis was increased in NSCs treated with high glucose, but not in the differentiated cells. High glucose also accelerated neuronal and glial differentiation from NSCs. The decreased proliferation index and early differentiation of neurons were evident in the telencephalon of embryos derived from diabetic mice. Exposure to high glucose altered the mRNA expression levels of Shh, Bmp4, Neurog1/2, Ascl1, Hes1, Dll1 and Olig1 in NSCs and Shh, Dll1, Neurog1/2 and Hes5 in differentiated cells. CONCLUSIONS/INTERPRETATION The changes in proliferation and differentiation of NSCs exposed to high glucose are associated with altered expression of genes that are involved in cell-cycle progression and cell-fate specification during neurulation. These changes may form the basis for the defective neural tube patterning observed in embryos of diabetic pregnancies.
Collapse
Affiliation(s)
- J Fu
- Molecular Neurobiology Laboratory, Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | | | | | | |
Collapse
|
39
|
Zhao Z, Reece EA. Experimental mechanisms of diabetic embryopathy and strategies for developing therapeutic interventions. ACTA ACUST UNITED AC 2006; 12:549-57. [PMID: 16325743 DOI: 10.1016/j.jsgi.2005.07.005] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2005] [Revised: 07/06/2005] [Accepted: 07/13/2005] [Indexed: 01/23/2023]
Abstract
A high frequency of birth defects is seen in infants born to diabetic mothers. The mechanisms by which maternal hyperglycemia, the major teratogenic factor, induces embryonic malformations remain to be addressed. It has been shown that increases in programmed cell death are one of the factors causing embryonic malformations. Hyperglycemia-induced apoptosis is associated with oxidative stress, lipid peroxidation, and decreased antioxidant defense capacity in the embryos. Recent studies have revealed that mitogen-activated protein kinases as intracellular signaling factors are involved in hyperglycemia-induced embryopathy. Based on the findings, interventions to prevent embryonic malformations have been explored. Strategies include supplementation of molecules that are deficient in the embryos under hyperglycemic conditions and antioxidants to alleviate the adverse effects of oxidative stress. The ultimate goal is to develop multi-nutrient dietary supplements to eliminate embryonic abnormalities induced by maternal diabetes.
Collapse
Affiliation(s)
- Zhiyong Zhao
- Department of Obstetrics and Gynecology, The Arkansas Center for Birth Defects Research and Prevention, Little Rock, Arkansas, USA
| | | |
Collapse
|
40
|
Loeken MR. Advances in understanding the molecular causes of diabetes-induced birth defects. ACTA ACUST UNITED AC 2005; 13:2-10. [PMID: 16303321 DOI: 10.1016/j.jsgi.2005.09.007] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2005] [Indexed: 12/15/2022]
Abstract
OBJECTIVE To review the current understanding of the molecular causes of birth defects resulting from diabetic pregnancy, with a focus on neural tube defects. METHODS A mouse model of diabetic pregnancy is described, in which embryo gene expression associated with neural tube defects is examined. Chemical, physiologic, or genetic manipulations are employed to elucidate critical pathways affected by increased glucose metabolism, and how abnormal gene expression disrupts neural tube closure. RESULTS Increased glucose delivery to embryos, or activation of pathways that are stimulated by high glucose, such as the hexosamine biosynthetic pathway or hypoxia, increase oxidative stress in embryos, inhibit expression of Pax3, a gene that encodes a transcription factor that is required for neural tube closure, and increase neural tube defects. Conversely, blocking these pathways, or providing the antioxidants, reduced glutathione or vitamin E, suppress the adverse effects of excess glucose. Pax3 decreases steady-state levels of the p53 tumor-suppressor protein, such that when Pax3 is deficient, p53 protein increases, leading to increased neuroepithelial apoptosis prior to completion of neural tube closure. Embryos that lack both functional Pax3 protein and p53 do not display neuroepithelial apoptosis or neural tube defects. CONCLUSIONS Excess glucose metabolism by embryos resulting from maternal hyperglycemia disturbs a complex network of biochemical pathways, leading to oxidative stress. Oxidative stress inhibits expression of genes, such as Pax3, which control essential developmental processes. Pax3 protein is required during neural tube development to suppress p53-dependent cell death and consequent abortion of neural tube closure, but is not required to control expression of genes that direct neural tube closure. Impaired embryo gene expression resulting from oxidative stress, and consequent apoptosis or disturbed organogenesis, may be a general mechanism to explain diabetic embryopathy.
Collapse
Affiliation(s)
- Mary R Loeken
- Joslin Diabetes Center, Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA.
| |
Collapse
|
41
|
Li R, Chase M, Jung SK, Smith PJS, Loeken MR. Hypoxic stress in diabetic pregnancy contributes to impaired embryo gene expression and defective development by inducing oxidative stress. Am J Physiol Endocrinol Metab 2005; 289:E591-9. [PMID: 15928021 DOI: 10.1152/ajpendo.00441.2004] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
We have shown that neural tube defects (NTD) in a mouse model of diabetic embryopathy are associated with deficient expression of Pax3, a gene required for neural tube closure. Hyperglycemia-induced oxidative stress is responsible. Before organogenesis, the avascular embryo is physiologically hypoxic (2-5% O(2)). Here we hypothesized that, because O(2) delivery is limited at this stage of development, excess glucose metabolism could accelerate the rate of O(2) consumption, thereby exacerbating the hypoxic state. Because hypoxia can increase mitochondrial superoxide production, excessive hypoxia may contribute to oxidative stress. To test this, we assayed O(2) flux, an indicator of O(2) availability, in embryos of glucose-injected hyperglycemic or saline-injected mice. O(2) flux was reduced by 30% in embryos of hyperglycemic mice. To test whether hypoxia replicates, and hyperoxia suppresses, the effects of maternal hyperglycemia, pregnant mice were housed in controlled O(2) chambers on embryonic day 7.5. Housing pregnant mice in 12% O(2), or induction of maternal hyperglycemia (>250 mg/dl), decreased Pax3 expression fivefold, and increased NTD eightfold. Conversely, housing pregnant diabetic mice in 30% O(2) significantly suppressed the effect of maternal diabetes to increase NTD. These effects of hypoxia appear to be the result of increased production of mitochondrial superoxide, as indicated by assay of lipid peroxidation, reduced glutathione, and H(2)O(2). Further support of this interpretation was the effect of antioxidants, which blocked the effects of maternal hypoxia, as well as hyperglycemia, on Pax3 expression and NTD. These observations suggest that maternal hyperglycemia depletes O(2) in the embryo and that this contributes to oxidative stress and the adverse effects of maternal hyperglycemia on embryo development.
Collapse
Affiliation(s)
- Rulin Li
- Section of Developmental and Stem Cell Biology, Joslin Diabetes Center, Boston, MA 02215, USA
| | | | | | | | | |
Collapse
|
42
|
Abstract
The mechanism of diabetic embryopathy was investigated using in vitro experiments in a rat embryo culture system and in streptozotocin-induced diabetic pregnant rats. The energy metabolism in embryos during early organogenesis was characterized by a high rate of glucose utilization and lactic acid production (anaerobic glycolysis). Embryos uninterruptedly underwent glycolysis. When embryos were cultured with hypoglycemic serum, such embryos showed malformations in association with a significant reduction in glycolysis. In a diabetic environment, hyperglycemia caused an increased glucose flux into embryonic cells without a down-regulation of GLUT1 and an increased metabolic overload on mitochondria, leading to an increased formation of reactive oxygen species (ROS). Activation of the hexamine pathway, subsequently occurring with increased protein carbonylation and increased lipid peroxidation, also contributed to the increased generation of ROS. Hyperglycemia also caused a myo-inositol deficiency with a competitive inhibition of ambient glucose, which might have been associated with a diminished phosphoinositide signal transduction. In the presence of low activity of the mitochondrial oxidative glucose metabolism, the ROS scavenging system in the embryo was not sufficiently developed. Diabetes further weakened the antioxidant system, especially, the enzyme for GSH synthesis, gamma-GCS, thereby reducing the GSH concentration. GSH depletion also disturbed prostaglandin biosynthesis. An increased formation of ROS in a diminished GSH-dependent antioxidant system may, therefore, play an important role in the development of embryonic malformations in diabetes.
Collapse
Affiliation(s)
- Shoichi Akazawa
- Department of Diabetes and Endocrinology, Shinkoga Hospital, Kurume, Japan.
| |
Collapse
|
43
|
Loeken MR. Current perspectives on the causes of neural tube defects resulting from diabetic pregnancy. AMERICAN JOURNAL OF MEDICAL GENETICS PART C-SEMINARS IN MEDICAL GENETICS 2005; 135C:77-87. [PMID: 15800853 DOI: 10.1002/ajmg.c.30056] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Maternal diabetes increases the risk for neural tube, and other, structural defects. The mother may have either type 1 or type 2 diabetes, but the diabetes must be existing at the earliest stages of pregnancy, during which organogenesis occurs. Abnormally high glucose levels in maternal blood, which leads to increased glucose transport to the embryo, is responsible for the teratogenic effects of maternal diabetes. Consequently, expression of genes that control essential developmental processes is disturbed. In this review, some of the biochemical pathways by which excess glucose metabolism disturbs neural tube formation are discussed. Research from the author's laboratory has shown that expression of Pax3, a gene required for neural tube closure, is significantly reduced by maternal diabetes, and this is associated with significantly increased neural tube defects (NTD). Pax3 encodes a transcription factor that has recently been shown to inhibit p53-dependent apoptosis. Evidence in support of this model, in which excess glucose metabolism inhibits expression of Pax3, thereby derepressing p53-dependent apoptosis of neuroepithelium and leading to NTD will be discussed.
Collapse
Affiliation(s)
- Mary R Loeken
- Section on Developmental and Stem Cell Biology at Joslin Diabetes Center, Harvard Medical School, Boston, MA 02215, USA.
| |
Collapse
|
44
|
Affiliation(s)
- John F Di Mari
- Department of Internal Medicine, University of Texas Medical Branch, Galveston 77555-1064, USA.
| | | | | |
Collapse
|
45
|
Horal M, Zhang Z, Stanton R, Virkamäki A, Loeken MR. Activation of the hexosamine pathway causes oxidative stress and abnormal embryo gene expression: involvement in diabetic teratogenesis. ACTA ACUST UNITED AC 2005; 70:519-27. [PMID: 15329829 DOI: 10.1002/bdra.20056] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND Oxidative stress is critical to the teratogenic effects of diabetic pregnancy, yet the specific biochemical pathways responsible for oxidative stress have not been fully elucidated. The hexosamine pathway is activated in many tissues during diabetes and could contribute to oxidative stress by inhibiting the pentose shunt pathway, thereby diminishing production of the cellular antioxidant, reduced glutathione (GSH). METHODS To test the hypothesis that activation of the hexosamine pathway might contribute to the teratogenic effects of diabetic pregnancy, pregnant mice were injected with glucose, to induce hyperglycemia, or glucosamine, to directly activate the hexosamine pathway. Embryo tissue fragments were also cultured in physiological glucose, high glucose, or physiological glucose plus glucosamine, to test effects on oxidative stress and embryo gene expression. RESULTS Glucosamine increased hexosamine synthesis and inhibited pentose shunt activity. There was a trend for transient hyperglycemia to have the same effects, but they did not reach statistical significance. However, both glucose and glucosamine significantly decreased GSH, and increased oxidative stress, as indicated by 2',7'-dichloro-dihydrofluorescein fluorescence. Glucose and glucosamine inhibited expression of Pax-3, a gene required for neural tube closure both in vivo and in vitro, and increased neural tube defects (NTDs) in vivo; these effects were prevented by GSH ethyl ester. High glucose and glucosamine inhibited Pax-3 expression by embryo culture, but culture in glutamine-free media to block the hexosamine pathway prevented the inhibition of Pax-3 expression by high glucose. CONCLUSIONS Activation of the hexosamine pathway causes oxidative stress through depletion of GSH and consequent disruption of embryo gene expression. Activation of this pathway may contribute to diabetic teratogenesis.
Collapse
Affiliation(s)
- Melissa Horal
- Section on Developmental and Stem Cell Biology, Joslin Diabetes Center, Boston, Massachusetts 02215, USA
| | | | | | | | | |
Collapse
|
46
|
Abstract
It has been suggested that protein kinase C (PKC) is involved in the etiology of diabetic complications. The aim of the present study was to investigate the putative involvement of different PKC isoforms (alpha, beta1, beta 2, gamma, delta, epsilon, and zeta) in the embryopathy of diabetic rat pregnancy. Embryos were collected from normal and diabetic rats and assayed for PKC activity, PKC mRNA levels, and PKC protein distribution on gestational d 10 and 11. Embryos of diabetic rats showed markers of increased activity of PKC-alpha, PKC-beta1, PKC-gamma, PKC-delta, and PKC-zeta compared with embryos of normal rats on d 10. In addition, the malformed embryos had further increased PKC-gamma, and PKC-delta activity markers compared with nonmalformed embryos of diabetic rats on gestational d 10. In contrast, maternal diabetes caused only two alterations in PKC activity markers on gestational d 11, i.e. both PKC-alpha and PKC-zeta were decreased in embryos of diabetic rats. We found increased mRNA levels of PKC-beta 1 and PKC-zeta on d 10 in embryos of diabetic rats and decreased mRNA levels of PKC-gamma on d 11 in embryos of diabetic rats. Malformed embryos from diabetic rats showed increased distribution of PKC-beta 1 and PKC-beta 2 protein in the tissue compared with nonmalformed embryos from diabetic rats and embryos from normal rats. We conclude that diabetic rat embryopathy may be associated with increased activity and enhanced tissue distribution of several PKC isoforms in early organogenesis.
Collapse
Affiliation(s)
- Mattias Gäreskog
- Department of Medical Cell Biology, Uppsala University, Biomedical Center, P.O. Box 571, SE-751 23 Uppsala, Sweden.
| | | |
Collapse
|
47
|
Abstract
Spina bifida results from failure of fusion of the caudal neural tube, and is one of the most common malformations of human structure. The causes of this disorder are heterogeneous and include chromosome abnormalities, single gene disorders, and teratogenic exposures. However, the cause is not known in most cases. Up to 70% of spina bifida cases can be prevented by maternal, periconceptional folic acid supplementation. The mechanism underlying this protective effect is unknown, but it is likely to include genes that regulate folate transport and metabolism. Individuals with spina bifida need both surgical and medical management. Although surgical closure of the malformation is generally done in the neonatal period, a randomised clinical trial to assess in utero closure of spina bifida has been initiated in the USA. Medical management is a lifelong necessity for individuals with spina bifida, and should be provided by a multidisciplinary team.
Collapse
Affiliation(s)
- Laura E Mitchell
- Institute of Bioscience and Technology, The Texas A&M University System Health Science Center, TX 77030-3303, USA.
| | | | | | | | | | | |
Collapse
|
48
|
Abstract
Congenital anomalies of the kidney and urinary tract are responsible for approximately 40% of cases of childhood end-stage renal failure in the United States. This article describes the spectrum of developmental renal lesions in children (including renal agenesis, dysplasias, hereditary hydronephrosis, autosomal recessive and dominant polycystic kidneys, vesicoureteral reflux, diabetic embryopathy, some teratogenic drugs affecting renal development, and syndromes associated with renal dysplasias). The article quotes some historic references that established the foundation for further studies; reviews the embryology, pathology, postnatal renal development, and its possible consequences of renal function; as well as recent advances in fetal ultrasonography and molecular biology with some novel treatment and diagnostic modalities. Finally, an attempt is made to predict several future avenues in pharmacogenetics that are being built currently and that will allow a better prognosis for many children with congenital renal conditions.
Collapse
Affiliation(s)
- Maria M Rodriguez
- University of Miami, School of Medicine, Jackson Children's Hospital, Department of Pathology, 1611 NW 12 Avenue, Miami, FL 33184, USA.
| |
Collapse
|
49
|
Chu S, Bohlen HG. High concentration of glucose inhibits glomerular endothelial eNOS through a PKC mechanism. Am J Physiol Renal Physiol 2004; 287:F384-92. [PMID: 15140758 DOI: 10.1152/ajprenal.00006.2004] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Kidney glomeruli are important targets of diabetic nephropathy. We hypothesized a high concentration of glucose could suppress glomerular endothelial nitric oxide synthase (eNOS) by a protein kinase C (PKC) mechanism, as has been found in other tissues. Mouse kidney slices (150-200 microm) were bathed in Hanks' solution with 100 microM L-arginine and exposed to either 5 or 20-30 mM D-glucose. Immunofluorescence identified only eNOS in normal mouse glomeruli. Measurements of glomerular NO concentration with NO-sensitive fluorescent dye (4,5-diaminofluorescein diacetate) using confocal microscopy and NO-sensitive microelectrodes verified that resting glomeruli had active production of NO that was inhibited by N(G)-nitro-L-arginine methyl ester. High-concentration (20-30 mM) D-glucose inhibited 60-70% of the NO production within 15-30 min; L-glucose at the same concentration did not have any effect. Inhibition of PKC-beta with 100 nM ruboxistaurin prevented eNOS suppression in high-glucose media. Activation of PKC with 100 nM phorbol ester also suppressed the glomerular NO concentration. We concluded that eNOS in the renal glomerular capillary endothelial cells is suppressed by activity of PKC at high-glucose concentrations comparable to those in diabetic animals and humans. The consequence is a rapid decline in the generation of NO in the glomerular endothelial cells in the presence of a high concentration of glucose.
Collapse
Affiliation(s)
- Shaoyou Chu
- Department of Cell Biology and Genetics, University of North Texas Health Science Center, Fort Worth, Texas 76107, USA.
| | | |
Collapse
|
50
|
Wentzel P, Ejdesjö A, Eriksson UJ. Maternal diabetes in vivo and high glucose in vitro diminish GAPDH activity in rat embryos. Diabetes 2003; 52:1222-8. [PMID: 12716756 DOI: 10.2337/diabetes.52.5.1222] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The aim of the present study was to investigate whether diabetic embryopathy may be associated with the inhibition of glyceraldehyde-3-phosphate dehydrogenase (GAPDH) resulting from an excess of reactive oxygen species (ROS) in the embryo. Recent demonstrations of enhanced ROS production in mitochondria of bovine aortic endothelial cells exposed to high glucose have supported the idea that the pathogenesis of diabetic complications may involve ROS-induced GAPDH inhibition. We investigated whether a teratogenic diabetic environment also inhibits embryonic GAPDH activity and alters GAPDH gene expression and whether antioxidants diminish such GAPDH inhibition. In addition, we determined whether the inhibition of GAPDH with iodoacetate induces dysmorphogenesis, analogous to that caused by high glucose concentration, and whether antioxidants modulated the putative teratogenic effect of such direct GAPDH inhibition. We found that embryos from diabetic rats and embryos cultured in high glucose concentrations showed decreased activity of GAPDH (by 40-60%) and severe dysmorphogenesis on gestational days 10.5 and 11.5. GAPDH mRNA was decreased in embryos of diabetic rats compared to control embryos. Supplementing the high-glucose culture with the antioxidant N-acetylcysteine (NAC) increased GAPDH activity and diminished embryonic dysmorphogenesis. Embryos cultured with iodoacetate showed both decreased GAPDH activity and dysmorphogenesis; supplementing the culture with NAC increased both parameters toward normal values. In conclusion, dysmorphogenesis caused by maternal diabetes is correlated with ROS-induced inhibition of GAPDH in embryos, which could indicate that inhibition of GAPDH plays a causal role in diabetic embryopathy.
Collapse
Affiliation(s)
- Parri Wentzel
- Department of Medical Cell Biology, Biomedical Center, Uppsala University, PO Box 571, SE-751 23 Uppsala, Sweden.
| | | | | |
Collapse
|