1
|
Yilmaz-Aydogan H, Kanca-Demirci D, Gul N, Aydogan C, Poyrazoglu S, Tutuncu Y, Malikova F, Ozturk O, Satman I. Target gene variations of PPAR isoforms may contribute to MODY heterogeneity: A preliminary comparative study with type 2 diabetes. Diabetes Res Clin Pract 2024; 218:111932. [PMID: 39551189 DOI: 10.1016/j.diabres.2024.111932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 10/30/2024] [Accepted: 11/11/2024] [Indexed: 11/19/2024]
Abstract
AIMS The objective of this study was to evaluate the associations of several genetic variants of peroxisome proliferator-activated receptors (PPARs) on clinical and laboratory parameters in patients with maturity-onset diabetes of the young (MODY), and possible contribution to heterogeneity of the disease. METHODS The study groups comprised patients with MODY (genetically confirmed (n = 28), clinically relevant but genetically unconfirmed; MODYX (n = 56)), type 2 diabetes mellitus (T2DM; n = 94) and healthy controls (n = 153). PPARA-L162V-(rs1800206), PPARG-C161T-(rs3856806), P12A-(rs1801282), and PPARB/D + 294 T/C-(rs2016520) polymorphisms were genotyped by real-time-PCR. RESULTS The results demonstrated that the frequencies of PPARA-LL162 (p = 0.002), PPARG-CC161 (p = 0.002), and PPARG-ProPro (p = 0.012) genotypes were significantly higher in the MODY group compared to the controls. Furthermore, total-MODY and MODYX groups had a higher frequency of PPARA-LL162 genotype than T2DM (p = 0.005 and p = 0.006, respectively). The frequency of the PPARB/D + 294 T allele was significantly higher in individuals with T2DM than in genetically-determined MODY group (p = 0.019). The PPARA-LL162 genotype was associated with early-onset diabetes in total-MODY (p = 0.022) and T2DM (p < 0.05) groups. CONCLUSIONS The association of PPARA-L162V polymorphism with early-onset diabetes in both T2DM and MODY is a noteworthy finding. Considering these results, we suggested that genetic polymorphisms in PPAR isoforms may contribute to the clinical and metabolic heterogeneity of MODY.
Collapse
Affiliation(s)
- Hulya Yilmaz-Aydogan
- Department of Molecular Medicine, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Türkiye.
| | - Deniz Kanca-Demirci
- Department of Molecular Medicine, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Türkiye; Department of Molecular Biology and Genetics, Faculty of Arts and Sciences, Halic University, Istanbul, Türkiye.
| | - Nurdan Gul
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Türkiye.
| | - Cagatay Aydogan
- Department of Molecular Medicine, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Türkiye.
| | - Sukran Poyrazoglu
- Pediatric Endocrinology Unit, Department of Pediatrics, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Türkiye.
| | - Yıldız Tutuncu
- Department of KUTTAM Immunology, Faculty of Medicine, Koc University, Istanbul, Türkiye.
| | - Fidan Malikova
- Department of Molecular Medicine, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Türkiye.
| | - Oguz Ozturk
- Department of Molecular Medicine, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Türkiye.
| | - Ilhan Satman
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Türkiye.
| |
Collapse
|
2
|
Zhao F, Cui W, Fang C, Luo Y, Zhang C. Chiglitazar ameliorates dehydroepiandrosterone-induced polycystic ovary syndrome in rats. J Ovarian Res 2024; 17:229. [PMID: 39563391 PMCID: PMC11575166 DOI: 10.1186/s13048-024-01554-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 11/06/2024] [Indexed: 11/21/2024] Open
Abstract
BACKGROUND Polycystic ovary syndrome (PCOS) is an endocrine and metabolic disorder accompanied by ovulatory dysfunction. Insulin resistance (IR) is a key pathogenic mechanism in PCOS, and insulin sensitizers, such as metformin and pioglitazone, can improve PCOS symptoms. Chiglitazar, a pan-peroxisome proliferator-activated receptor (pan-PPAR) agonist, is also an insulin sensitizer; however, its therapeutic effects have not yet been studied in PCOS. We evaluated the therapeutic effects of chiglitazar in a rat model of PCOS. METHODS Sprague-Dawley rats aged 4 weeks were injected subcutaneously with dehydroepiandrosterone (DHEA) (6 mg/100 g/day) to establish PCOS, and a control (CON) group was established. The rats were divided into the CON, PCOS model (DHEA), pioglitazone-treated (DHEA + PIO), and chiglitazar-treated (DHEA + CHI) groups. The DHEA + PIO group received pioglitazone (20 mg/kg/day) and the DHEA + CHI group received chiglitazar (20 mg/kg/day), each for 15 days. Body weight, estrous cycle, and glucose tolerance test (GTT) and insulin resistance test (ITT) results were monitored. Experimental animal energy metabolism systems were utilized to assess metabolic parameters. Enzyme-linked immunosorbent assay was conducted to detect changes in serum hormones, including insulin, adiponectin, sex-related hormones, and lipid metabolism indicators. The ovaries were used for molecular biology experiments to detect changes in Akt/phosphorylated Akt and glucose transporter 4 (GLUT4) expression by Western blotting and quantitative polymerase chain reaction. RESULTS Chiglitazar and pioglitazone improved PCOS symptoms. However, chiglitazar demonstrated a more pronounced effect on lipid improvement and weight gain than pioglitazone. In the DHEA + PIO and DHEA + CHI groups, there was notable recovery in oxygen consumption and carbon dioxide output; substantial improvement in GTT and ITT results; an increase in adiponectin; and a reduction in serum insulin, androgens, luteinizing hormone (LH), and LH/follicle-stimulating hormone ratio. Compared with the DHEA group, the DHEA + CHI group exhibited notable decreases in triglycerides, free fatty acids, and atherosclerosis index, while the DHEA + PIO group demonstrated no changes. Granulosa cells and healthy follicles increased in ovarian sections. Ovarian steroidogenic enzymes also increased in the DHEA + PIO and DHEA + CHI groups compared with the DHEA group. Mechanistically, chiglitazar increased Akt phosphorylation. CONCLUSION Chiglitazar significantly improved ovulation in rats with PCOS and may be a potential novel therapeutic strategy for PCOS.
Collapse
Affiliation(s)
- Fuzhen Zhao
- School of Medicine, Chongqing University, Chongqing, 400044, China
- Department of Endocrinology, Chongqing University Three Gorges Hospital, Chongqing, 404000, China
- Chongqing Municipality Clinical Research Center for Endocrinology and Metabolic Diseases, Chongqing University Three Gorges Hospital, Chongqing, 404000, China
- Department of Central Laboratory, School of Medicine, Chongqing University Three Gorges Hospital, Chongqing University, Chongqing, 40400, China
| | - Wei Cui
- Chongqing Municipality Clinical Research Center for Endocrinology and Metabolic Diseases, Chongqing University Three Gorges Hospital, Chongqing, 404000, China
- Department of Central Laboratory, School of Medicine, Chongqing University Three Gorges Hospital, Chongqing University, Chongqing, 40400, China
| | - Chengmei Fang
- Chongqing Municipality Clinical Research Center for Endocrinology and Metabolic Diseases, Chongqing University Three Gorges Hospital, Chongqing, 404000, China
| | - Yuanyuan Luo
- Department of Endocrinology, Chongqing University Three Gorges Hospital, Chongqing, 404000, China.
- Department of Endocrinology, the Second Affiliated Hospital, Chongqing Medical University, Chongqing, 400010, China.
- Chongqing Municipality Clinical Research Center for Endocrinology and Metabolic Diseases, Chongqing University Three Gorges Hospital, Chongqing, 404000, China.
- Department of Central Laboratory, School of Medicine, Chongqing University Three Gorges Hospital, Chongqing University, Chongqing, 40400, China.
| | - Cheng Zhang
- Department of Endocrinology, Chongqing University Three Gorges Hospital, Chongqing, 404000, China.
- Chongqing Municipality Clinical Research Center for Endocrinology and Metabolic Diseases, Chongqing University Three Gorges Hospital, Chongqing, 404000, China.
- Department of Central Laboratory, School of Medicine, Chongqing University Three Gorges Hospital, Chongqing University, Chongqing, 40400, China.
| |
Collapse
|
3
|
Kitamura S, Murao N, Yokota S, Shimizu M, Ono T, Seino Y, Suzuki A, Maejima Y, Shimomura K. Effect of fenofibrate and selective PPARα modulator (SPPARMα), pemafibrate on KATP channel activity and insulin secretion. BMC Res Notes 2023; 16:202. [PMID: 37697384 PMCID: PMC10494450 DOI: 10.1186/s13104-023-06489-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 09/01/2023] [Indexed: 09/13/2023] Open
Abstract
OBJECTIVE Insulin secretion is regulated by ATP-sensitive potassium (KATP) channels in pancreatic beta-cells. Peroxisome proliferator-activated receptors (PPAR) α ligands are clinically used to treat dyslipidemia. A PPARα ligand, fenofibrate, and PPARγ ligands troglitazone and 15-deoxy-∆12,14-prostaglandin J2 are known to close KATP channels and induce insulin secretion. The recently developed PPARα ligand, pemafibrate, became a new entry for treating dyslipidemia. Because pemafibrate is reported to improve glucose intolerance in mice treated with a high fat diet and a novel selective PPARα modulator, it may affect KATP channels or insulin secretion. RESULTS The effect of fenofibrate (100 µM) and pemafibrate (100 µM) on insulin secretion from MIN6 cells was measured by using batch incubation for 10 and 60 min in low (2 mM) and high (10 mM) glucose conditions. The application of fenofibrate for 10 min significantly increased insulin secretion in low glucose conditions. Pemafibrate failed to increase insulin secretion in all of the conditions experimented in this study. The KATP channel activity was measured by using whole-cell patch clamp technique. Although fenofibrate (100 µM) reduced the KATP channel current, the same concentration of pemafibrate had no effect. Both fenofibrate and pemafibrate had no effect on insulin mRNA expression.
Collapse
Affiliation(s)
- Shigeki Kitamura
- Department of Bioregulation and Pharmacological Medicine, Fukushima Medical University School of Medicine, 1 Hikarigaoka, Fukushima, 960-1295 Japan
- Department of Plastic and Reconstructive Surgery, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Naoya Murao
- Department of Endocrinology, Diabetes and Metabolism, Fujita Health University, Toyoake, Japan
| | - Shoko Yokota
- Department of Bioregulation and Pharmacological Medicine, Fukushima Medical University School of Medicine, 1 Hikarigaoka, Fukushima, 960-1295 Japan
| | - Masaru Shimizu
- Department of Bioregulation and Pharmacological Medicine, Fukushima Medical University School of Medicine, 1 Hikarigaoka, Fukushima, 960-1295 Japan
- Department of Neurology, Matsumura General Hospital, Iwaki, Japan
| | - Tomoyuki Ono
- Department of Bioregulation and Pharmacological Medicine, Fukushima Medical University School of Medicine, 1 Hikarigaoka, Fukushima, 960-1295 Japan
| | - Yusuke Seino
- Department of Endocrinology, Diabetes and Metabolism, Fujita Health University, Toyoake, Japan
| | - Atsushi Suzuki
- Department of Endocrinology, Diabetes and Metabolism, Fujita Health University, Toyoake, Japan
| | - Yuko Maejima
- Department of Bioregulation and Pharmacological Medicine, Fukushima Medical University School of Medicine, 1 Hikarigaoka, Fukushima, 960-1295 Japan
| | - Kenju Shimomura
- Department of Bioregulation and Pharmacological Medicine, Fukushima Medical University School of Medicine, 1 Hikarigaoka, Fukushima, 960-1295 Japan
| |
Collapse
|
4
|
LU YU, MIYAMOTO TSUTOMU, TAKEUCHI HODAKA, TSUNODA FUMI, TANAKA NAOKI, SHIOZAWA TANRI. PPARα activator irbesartan suppresses the proliferation of endometrial carcinoma cells via SREBP1 and ARID1A. Oncol Res 2023; 31:239-253. [PMID: 37305395 PMCID: PMC10229307 DOI: 10.32604/or.2023.026067] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Accepted: 03/14/2023] [Indexed: 06/13/2023] Open
Abstract
Endometrial carcinoma (EMC) is associated with obesity; however, the underlying mechanisms have not yet been elucidated. Peroxisome proliferator-activated receptor alpha (PPARα) is a nuclear receptor that is involved in lipid, glucose, and energy metabolism. PPARα reportedly functions as a tumor suppressor through its effects on lipid metabolism; however, the involvement of PPARα in the development of EMC remains unclear. The present study demonstrated that the immunohistochemical expression of nuclear PPARα was lower in EMC than in normal endometrial tissues, suggesting the tumor suppressive nature of PPARα. A treatment with the PPARα activator, irbesartan, inhibited the EMC cell lines, Ishikawa and HEC1A, by down-regulating sterol regulatory element-binding protein 1 (SREBP1) and fatty acid synthase (FAS) and up-regulating the tumor suppressor genes p21 and p27, antioxidant enzymes, and AT-rich interaction domain 1A (ARID1A). These results indicate the potential of the activation of PPARα as a novel therapeutic approach against EMC.
Collapse
Affiliation(s)
- YU LU
- Department of Obstetrics and Gynecology, School of Medicine, Shinshu University, Matsumoto, 390-8621, Japan
| | - TSUTOMU MIYAMOTO
- Department of Obstetrics and Gynecology, School of Medicine, Shinshu University, Matsumoto, 390-8621, Japan
| | - HODAKA TAKEUCHI
- Department of Obstetrics and Gynecology, School of Medicine, Shinshu University, Matsumoto, 390-8621, Japan
| | - FUMI TSUNODA
- Department of Obstetrics and Gynecology, School of Medicine, Shinshu University, Matsumoto, 390-8621, Japan
| | - NAOKI TANAKA
- Department of Global Medical Research Promotion, School of Medicine, Shinshu University Graduate, Matsumoto, Nagano, 390-8621, Japan
- International Relations Office, School of Medicine, Shinshu University, Matsumoto, Nagano, 390-8621, Japan
- Research Center for Social Systems, Shinshu University, Matsumoto, Nagano, 390-8621, Japan
| | - TANRI SHIOZAWA
- Department of Obstetrics and Gynecology, School of Medicine, Shinshu University, Matsumoto, 390-8621, Japan
| |
Collapse
|
5
|
Qiu YY, Zhang J, Zeng FY, Zhu YZ. Roles of the peroxisome proliferator-activated receptors (PPARs) in the pathogenesis of nonalcoholic fatty liver disease (NAFLD). Pharmacol Res 2023; 192:106786. [PMID: 37146924 DOI: 10.1016/j.phrs.2023.106786] [Citation(s) in RCA: 73] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 04/28/2023] [Accepted: 05/02/2023] [Indexed: 05/07/2023]
Abstract
Non-alcoholic fatty liver disease (NAFLD) encompasses a spectrum of disease phenotypes which start with simple steatosis and lipid accumulation in the hepatocytes - a typical histological lesions characteristic. It may progress to non-alcoholic steatohepatitis (NASH) that is characterized by hepatic inflammation and/or fibrosis and subsequent onset of NAFLD-related cirrhosis and hepatocellular carcinoma (HCC). Due to the central role of the liver in metabolism, NAFLD is regarded as a result of and contribution to the metabolic abnormalities seen in the metabolic syndrome. Peroxisome proliferator-activated receptors (PPARs) has three subtypes, which govern the expression of genes responsible for energy metabolism, cellular development, inflammation, and differentiation. The agonists of PPARα, such as fenofibrate and clofibrate, have been used as lipid-lowering drugs in clinical practice. Thiazolidinediones (TZDs) - ligands of PPARγ, such as rosiglitazone and pioglitazone, are also used in the treatment of type 2 diabetes (T2D) with insulin resistance (IR). Increasing evidence suggests that PPARβ/δ agonists have potential therapeutic effects in improving insulin sensitivity and lipid metabolism disorders. In addition, PPARs ligands have been considered as potential therapeutic drugs for hypertension, atherosclerosis (AS) or diabetic nephropathy. Their crucial biological roles dictate the significance of PPARs-targeting in medical research and drug discovery. Here, it reviews the biological activities, ligand selectivity and biological functions of the PPARs family, and discusses the relationship between PPARs and the pathogenesis of NAFLD and metabolic syndrome. This will open new possibilities for PPARs application in medicine, and provide a new idea for the treatment of fatty liver and related diseases.
Collapse
Affiliation(s)
- Yuan-Ye Qiu
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, 999078, Macau, China; Faculty of Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, 999078, Macau, China.
| | - Jing Zhang
- University International College, Macau University of Science and Technology, Avenida Wai Long, Taipa, 999078, Macau, China.
| | - Fan-Yi Zeng
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, 999078, Macau, China; School of Pharmacy, Macau University of Science and Technology, Avenida Wai Long, Taipa, 999078, Macau, China; Shanghai Institute of Medical Genetics, Shanghai Children's Hospital, Shanghai Jiao Tong University, 24/1400 West Beijing Road, Shanghai, 200040, China.
| | - Yi Zhun Zhu
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, 999078, Macau, China; Faculty of Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, 999078, Macau, China; School of Pharmacy, Macau University of Science and Technology, Avenida Wai Long, Taipa, 999078, Macau, China.
| |
Collapse
|
6
|
Differential expression of gluconeogenic enzymes in early- and late-stage diabetes: the effect of Citrullus colocynthis (L.) Schrad. Seed extract on hyperglycemia and hyperlipidemia in Wistar-Albino rats model. CLINICAL PHYTOSCIENCE 2021. [DOI: 10.1186/s40816-021-00324-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
The medicinal plant Citrullus colocynthis (L.) Schrad. (C. colocynthis) may benefit patients at different phases of diabetes by attuning to contrasting situations. Our primary objective was to find the mechanism(s) behind the antidiabetic/anti-hyperlipidemic effects of C.colocynthis seed aqueous extract (CCAE) in two different stages of type 2 diabetes (T2D) in rats.
Methods
Fasting blood sugar (FBS) levels, body weights, and the degree of impaired glucose tolerance (IGT) were measured in healthy nondiabetic control rats (Con), as well as rats with early and late stages of T2D, denoted as ET2D and LT2D, respectively. CCAE was intraperitoneally (IP) injected for 28 days. In the end, the hepatic mRNA expression levels of the following genes were determined by RT-PCR: glucose-6-phosphatase (G6Pase), phosphoenolpyruvate carboxykinase (PEPCK), insulin-dependent sterol regulatory element-binding protein-1c (SREBP-1c), acetyl-CoA carboxylase (ACC), fatty acid synthase (FAS), peroxisome proliferator-activated receptor alpha (PPARα), and carnitine palmitoyltransferase I (CPT1). The liver was examined by hematoxylin and eosin (H&E) and Oil-Red O staining. CCAE was partially analyzed by HPLC-DAD.
Results
ET2D and LT2D were characterized by differentially elevated FBS, deteriorated bodyweight, and significant IGT compared to Con. Hepatosteatoses of varying morphologies and higher hepatic expression of G6Pase than PRPCK in ET2D versus the opposite in LT2D further confirmed the divergent nature of metabolic aberrations. At the end of 28 days, the high levels of FBS, alkaline phosphatase (ALP), triglyceride (TG), urea, hepatic protein carbonyl content (PCC), and alanine and aspartate aminotransferases (AST and ALT, respectively) persisted in untreated LT2D. CCAE ameliorated oxidative stress and upregulated PPARα expression in diabetic groups and Con; it downregulated CPT1 expression in the LT2D group. CCAE’s ability to lower FBS and serum and hepatic TG in both ET2D and LT2D indicated its ability to act via different mechanisms. Ferulic acid (Fer A) and rutin hydrate (RH) were detected in CCAE.
Conclusion
CCAE lowered the FBS in ET2D via inhibiting the hepatic G6Pase expression (glycogenolysis). In LT2D, CCAE abated sugar levels by diverting PEPCK activity, preferably towards glyceroneogenesis than gluconeogenesis. The preserved triglyceride/fatty acid (TG/FA) cycle, the upregulated PPARα, and the downregulated CPT1 gene expressions reduced serum and hepatic TG.
Collapse
|
7
|
Key Genes Regulating Skeletal Muscle Development and Growth in Farm Animals. Animals (Basel) 2021; 11:ani11030835. [PMID: 33809500 PMCID: PMC7999090 DOI: 10.3390/ani11030835] [Citation(s) in RCA: 125] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 03/08/2021] [Accepted: 03/12/2021] [Indexed: 12/14/2022] Open
Abstract
Simple Summary Skeletal muscle mass is an important economic trait, and muscle development and growth is a crucial factor to supply enough meat for human consumption. Thus, understanding (candidate) genes regulating skeletal muscle development is crucial for understanding molecular genetic regulation of muscle growth and can be benefit the meat industry toward the goal of increasing meat yields. During the past years, significant progress has been made for understanding these mechanisms, and thus, we decided to write a comprehensive review covering regulators and (candidate) genes crucial for muscle development and growth in farm animals. Detection of these genes and factors increases our understanding of muscle growth and development and is a great help for breeders to satisfy demands for meat production on a global scale. Abstract Farm-animal species play crucial roles in satisfying demands for meat on a global scale, and they are genetically being developed to enhance the efficiency of meat production. In particular, one of the important breeders’ aims is to increase skeletal muscle growth in farm animals. The enhancement of muscle development and growth is crucial to meet consumers’ demands regarding meat quality. Fetal skeletal muscle development involves myogenesis (with myoblast proliferation, differentiation, and fusion), fibrogenesis, and adipogenesis. Typically, myogenesis is regulated by a convoluted network of intrinsic and extrinsic factors monitored by myogenic regulatory factor genes in two or three phases, as well as genes that code for kinases. Marker-assisted selection relies on candidate genes related positively or negatively to muscle development and can be a strong supplement to classical selection strategies in farm animals. This comprehensive review covers important (candidate) genes that regulate muscle development and growth in farm animals (cattle, sheep, chicken, and pig). The identification of these genes is an important step toward the goal of increasing meat yields and improves meat quality.
Collapse
|
8
|
Shin Y, Lee D, Ahn J, Lee M, Shin SS, Yoon M. The herbal extract ALS-L1023 from Melissa officinalis reduces weight gain, elevated glucose levels and β-cell loss in Otsuka Long-Evans Tokushima fatty rats. JOURNAL OF ETHNOPHARMACOLOGY 2021; 264:113360. [PMID: 32918993 DOI: 10.1016/j.jep.2020.113360] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 08/13/2020] [Accepted: 08/30/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Melissa officinalis L. (Labiatae; lemon balm) is a traditional medicinal plant with hypoglycemic and hypolipidemic effects; however, how it imparts its beneficial effects remains unclear. We thus hypothesized that the herbal extract ALS-L1023, isolated from Melissa officinalis, inhibits obesity and diabetes, and tested our hypothesis using Otsuka Long-Evans Tokushima fatty (OLETF) rats, which are an established animal model of type 2 diabetes. MATERIALS AND METHODS In this study, 28-week-old OLETF rats were fed a high-fat diet for 4 weeks to induce a marked impairment of the insulin response and were treated with or without ALS-L1023. Subsequently, the variables and determinants of glucose metabolism and pancreatic function were assessed via blood analysis, histology, immunohistochemistry, and real-time polymerase chain reaction. RESULTS The administration of ALS-L1023 resulted in a weight reduction without changes in food intake. It also markedly inhibited hyperglycemia and hypoinsulinemia, and restored β-cell mass that was severely impaired in OLETF rats. There was a decrease in lipid accumulation in the liver and skeletal muscle of the obese rats after treatment with ALS-L1023. Concomitantly, there was an increase in the expression levels of fatty acid-oxidizing enzymes (AMPKα2, ACOX, MCAD, and VLCAD) in the liver and skeletal muscle after ALS-L1023 treatment. Furthermore, ALS-L1023 attenuated the pancreatic inflammation including the infiltration of CD68-positive macrophages and mast cells, in addition to attenuating the expression of inflammatory factors (IL-6 and CD68). CONCLUSIONS These results suggest that treatment with ALS-L1023 may reduce weight gain, elevated glucose levels, and β-cell loss, by changing the expression of fatty acid-oxidizing enzymes in the liver and skeletal muscle, including inflammatory factors in the pancreas. These findings indicate that ALS-L1023 may be an effective therapeutic strategy to treat human obesity and type 2 diabetes.
Collapse
Affiliation(s)
- Yujin Shin
- Department of Biomedical Engineering, Mokwon University, Daejeon, 35349, Republic of Korea
| | - Dongju Lee
- Department of Biomedical Engineering, Mokwon University, Daejeon, 35349, Republic of Korea
| | - Jiwon Ahn
- Stem Cell Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Republic of Korea
| | - Mijeong Lee
- Department of Biomedical Engineering, Mokwon University, Daejeon, 35349, Republic of Korea
| | - Soon Shik Shin
- Department of Formula Sciences, College of Oriental Medicine, Dongeui University, Busan, 47340, Republic of Korea.
| | - Michung Yoon
- Department of Biomedical Engineering, Mokwon University, Daejeon, 35349, Republic of Korea.
| |
Collapse
|
9
|
The Herbal Combination CPA4-1 Inhibits Changes in Retinal Capillaries and Reduction of Retinal Occludin in db/db Mice. Antioxidants (Basel) 2020; 9:antiox9070627. [PMID: 32708791 PMCID: PMC7402168 DOI: 10.3390/antiox9070627] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 07/13/2020] [Accepted: 07/14/2020] [Indexed: 12/11/2022] Open
Abstract
Increased formation of advanced glycation end products (AGEs) plays an important role in the development of diabetic retinopathy (DR) via blood-retinal barrier (BRB) dysfunction, and reduction of AGEs has been suggested as a therapeutic target for DR. In this study, we examined whether CPA4-1, a herbal combination of Cinnamomi Ramulus and Paeoniae Radix, inhibits AGE formation. CPA4-1 and fenofibrate were tested to ameliorate changes in retinal capillaries and retinal occludin expression in db/db mice, a mouse model of obesity-induced type 2 diabetes. CPA4-1 (100 mg/kg) or fenofibrate (100 mg/kg) were orally administered once a day for 12 weeks. CPA4-1 (the half maximal inhibitory concentration, IC50 = 6.84 ± 0.08 μg/mL) showed approximately 11.44-fold higher inhibitory effect on AGE formation than that of aminoguanidine (AG, the inhibitor of AGEs, IC50 = 78.28 ± 4.24 μg/mL), as well as breaking effect on AGE-bovine serum albumin crosslinking with collagen (IC50 = 1.30 ± 0.37 μg/mL). CPA4-1 treatment ameliorated BRB leakage and tended to increase retinal occludin expression in db/db mice. CPA4-1 or fenofibrate treatment significantly reduced retinal acellular capillary formation in db/db mice. These findings suggested the potential of CPA4-1 as a therapeutic supplement for protection against retinal vascular permeability diseases.
Collapse
|
10
|
Peroxisome Proliferator-Activated Receptors and Caloric Restriction-Common Pathways Affecting Metabolism, Health, and Longevity. Cells 2020; 9:cells9071708. [PMID: 32708786 PMCID: PMC7407644 DOI: 10.3390/cells9071708] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 07/14/2020] [Accepted: 07/14/2020] [Indexed: 02/06/2023] Open
Abstract
Caloric restriction (CR) is a traditional but scientifically verified approach to promoting health and increasing lifespan. CR exerts its effects through multiple molecular pathways that trigger major metabolic adaptations. It influences key nutrient and energy-sensing pathways including mammalian target of rapamycin, Sirtuin 1, AMP-activated protein kinase, and insulin signaling, ultimately resulting in reductions in basic metabolic rate, inflammation, and oxidative stress, as well as increased autophagy and mitochondrial efficiency. CR shares multiple overlapping pathways with peroxisome proliferator-activated receptors (PPARs), particularly in energy metabolism and inflammation. Consequently, several lines of evidence suggest that PPARs might be indispensable for beneficial outcomes related to CR. In this review, we present the available evidence for the interconnection between CR and PPARs, highlighting their shared pathways and analyzing their interaction. We also discuss the possible contributions of PPARs to the effects of CR on whole organism outcomes.
Collapse
|
11
|
Tutunchi H, Ostadrahimi A, Saghafi-Asl M, Hosseinzadeh-Attar MJ, Shakeri A, Asghari-Jafarabadi M, Roshanravan N, Farrin N, Naemi M, Hasankhani M. Oleoylethanolamide supplementation in obese patients newly diagnosed with non-alcoholic fatty liver disease: Effects on metabolic parameters, anthropometric indices, and expression of PPAR-α, UCP1, and UCP2 genes. Pharmacol Res 2020; 156:104770. [PMID: 32217148 DOI: 10.1016/j.phrs.2020.104770] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 03/18/2020] [Accepted: 03/19/2020] [Indexed: 12/18/2022]
Abstract
The effects of oleoylethanolamide (OEA) on NAFLD are yet to be examined in human. The objective of the present study was to examine the effects of OEA supplementation along with weight loss intervention on the expression of PPAR-α, uncoupling proteins 1and 2 (UCP1 and UCP2) genes in the peripheral blood mononuclear cells (PBMCs), metabolic parameters, and anthropometric indices among obese patients with NAFLD. In this triple-blind placebo-controlled randomized clinical trial, 76 obese patients newly diagnosed with NAFLD were randomly allocated into either OEA or placebo group along with calorie-restricted diets for 12 weeks. At pre-and post-intervention phase, mRNA expression levels of PPAR-α, UCP1, and UCP2 genes in the PBMCs, serum levels of metabolic parameters as well as diet and appetite sensations were assessed. There was a significant increase in the expression levels of PPAR-α, UCP1, and UCP2 genes in the PBMCs, compared to the placebo at the endpoint. A significant decrease in the anthropometric indices, energy and carbohydrate intakes, glycemic parameters, except for hemoglobin A1c concentration was also observed in the OEA group, compared to the placebo group. OEA treatment significantly resulted in decreased serum levels of triglyceride (TG), alanine aminotransferase (ALT), aspartate aminotransferase (AST), ALT/AST, increased serum levels of high-density lipoprotein cholesterol (HDL-C), and improved appetite sensations. Importantly, a significant improvement in TG, ALT, AST, ALT/AST, HDL-C levels as well as appetite sensations by OEA were under the influence of body mass index (BMI). Although liver steatosis severity was significantly reduced in both groups, the between-group differences did not reach statistical significance (P = 0.061). In conclusion, the present study, for the first time, revealed that OEA supplementation significantly improved anthropometric and metabolic risk factors related to NAFLD.
Collapse
Affiliation(s)
- Helda Tutunchi
- Student Research Committee, Nutrition Research Center, School of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Clinical Nutrition, School of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Alireza Ostadrahimi
- Department of Clinical Nutrition, School of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Maryam Saghafi-Asl
- Department of Clinical Nutrition, School of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Mohammad-Javad Hosseinzadeh-Attar
- Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran.
| | - Abolhasan Shakeri
- Department of Radiology, Imam Reza Teaching Hospital, Clinical Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran.
| | | | - Neda Roshanravan
- Cardiovascular Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Nazila Farrin
- Nutrition Research Center, School of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Mohammad Naemi
- Student Research Committee, Nutrition Research Center, School of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Milad Hasankhani
- Student Research Committee, Nutrition Research Center, School of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
12
|
Peroxisome proliferator-activated receptor ɑ (PPARɑ)–cytochrome P450 epoxygenases-soluble epoxide hydrolase axis in ER + PR + HER2− breast cancer. Med Mol Morphol 2019; 53:141-148. [DOI: 10.1007/s00795-019-00240-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 12/03/2019] [Indexed: 12/12/2022]
|
13
|
Chen T, Zhang Y, Liu Y, Zhu D, Yu J, Li G, Sun Z, Wang W, Jiang H, Hong Z. MiR-27a promotes insulin resistance and mediates glucose metabolism by targeting PPAR-γ-mediated PI3K/AKT signaling. Aging (Albany NY) 2019; 11:7510-7524. [PMID: 31562809 PMCID: PMC6781997 DOI: 10.18632/aging.102263] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 09/02/2019] [Indexed: 04/18/2023]
Abstract
This study aimed to establish a high-fat diet (HFD)-fed obese mouse model and a cell culture model of insulin resistance (IR) in mature 3T3-L1 adipocytes. A dual-luciferase reporter assay (DLRA) was confirmed interaction between miR-27a and the 3'-untranslated region (UTR) of Peroxisome proliferator-activated receptor (PPAR)-γ. The inhibition of PPAR-γ expression by microRNA (miR)-27a in IR cells at both the protein and mRNA levels was confirmed by a mechanistic investigation. Moreover, the 3'-UTR of PPAR-γ was found to be a direct target of miR-27a, based on the DLRA. Furthermore, antagomiR-27a upregulated the activation of PI3K/Akt signaling and glucose transporter type 4 (GLUT4) expression at the protein and mRNA levels. Additionally, the PPAR inhibitor T0070907 repressed the insulin sensitivity upregulated by antagomiR-27a, which was accompanied by the inhibition of PPAR-γ expression and increased levels of AKT phosphorylation and GLUT4. The PI3K inhibitor wortmannin reduced miR-27a-induced increases in AKT phosphorylation, glucose uptake, and GLUT4. miR-27a is considered to be involved in the PPAR-γ-PI3K/AKT-GLUT4 signaling axis, thus leading to increased glucose uptake and decreased IR in HFD-fed mice and 3T3-L1 adipocytes. Therefore, miR-27a is a novel target for the treatment of IR in obesity and diabetes.
Collapse
Affiliation(s)
- Tianbao Chen
- Department of Cardiology, The First Affiliated Hospital of Quanzhou, Fujian Medical University, Quanzhou, Fujian, China
| | - Yi Zhang
- Department of Endocrinology, The First Affiliated Hospital of Quanzhou, Fujian Medical University, Quanzhou, Fujian, China
| | - Yilan Liu
- Department of Endocrinology, The First Affiliated Hospital of Quanzhou, Fujian Medical University, Quanzhou, Fujian, China
| | - Dexiao Zhu
- Department of Cardiology, The First Affiliated Hospital of Quanzhou, Fujian Medical University, Quanzhou, Fujian, China
| | - Jing Yu
- Department of Endocrinology, The First Affiliated Hospital of Quanzhou, Fujian Medical University, Quanzhou, Fujian, China
| | - Guoqian Li
- Department of Cardiology, The First Affiliated Hospital of Quanzhou, Fujian Medical University, Quanzhou, Fujian, China
| | - Zhichun Sun
- Department of Endocrinology, The First Affiliated Hospital of Quanzhou, Fujian Medical University, Quanzhou, Fujian, China
| | - Wanru Wang
- Department of Cardiology, The First Affiliated Hospital of Quanzhou, Fujian Medical University, Quanzhou, Fujian, China
| | - Hongwei Jiang
- Department of Endocrinology, The First Affiliated Hospital of Henan University of Science and Technology, Luoyang, Henan, China
| | - Zhenzhen Hong
- Department of Endocrinology, The First Affiliated Hospital of Quanzhou, Fujian Medical University, Quanzhou, Fujian, China
| |
Collapse
|
14
|
Dong T, Lyu J, Imachi H, Kobayashi T, Fukunaga K, Sato S, Ibata T, Yoshimoto T, Yonezaki K, Iwama H, Zhang G, Murao K. Selective peroxisome proliferator-activated receptor-α modulator K-877 regulates the expression of ATP-binding cassette transporter A1 in pancreatic beta cells. Eur J Pharmacol 2018; 838:78-84. [PMID: 30201376 DOI: 10.1016/j.ejphar.2018.09.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 09/06/2018] [Accepted: 09/06/2018] [Indexed: 10/28/2022]
Abstract
ATP-binding cassette transporter A1 (ABCA1) protein is a pivotal regulator of cholesterol and phospholipid efflux from cells to high-density lipoprotein (HDL) particles. Pancreatic ABCA1 functions in beta cell cholesterol homeostasis and affects insulin secretion. We investigated the effect of pemafibrate (K-877), a novel selective PPARα modulator (SPPARMα), on pancreatic ABCA1 expression. In vivo experiment, mice were divided into four treatment groups, namely, normal food plus placebo, high fat diet (HFD) plus placebo, normal food plus K-877 (0.3 mg/kg/day), or HFD plus K-877 (0.3 mg/kg/day), and treated for eight weeks. The results in vitro experiment indicate that K-877 treatment increased levels of ABCA1 mRNA, as well as protein, subsequently reduced the cellular cholesterol content in INS-1 cells. PPARα specific antagonist GW6471 attenuate K-877 induced ABCA1 expression in INS-1 cells. ABCA1 promoter activity increased with K-877 treatment at concentration 1 μM and 10 μM. Glucose-stimulated insulin secretion was ameliorated by K-877 treatment in INS-1 cells and isolated mouse islets. Although the expression of ABCA1 was reduced in mice with HFD treatment, both ABCA1 protein and mRNA levels were increased in mice with K-877 treatment. K-877 treatment improved glucose intolerance induced by HFD in mice. These findings raise the possibility that K-877 may affect insulin secretion by controlling ABCA1 expression in pancreatic beta cells.
Collapse
Affiliation(s)
- Tao Dong
- Department of Endocrinology and Metabolism, Faculty of Medicine, Kagawa University, 1750-1, Miki-cho, Kita-gun, Kagawa 761-0793, Japan.
| | - Jingya Lyu
- Department of Endocrinology and Metabolism, Faculty of Medicine, Kagawa University, 1750-1, Miki-cho, Kita-gun, Kagawa 761-0793, Japan
| | - Hitomi Imachi
- Department of Endocrinology and Metabolism, Faculty of Medicine, Kagawa University, 1750-1, Miki-cho, Kita-gun, Kagawa 761-0793, Japan
| | - Toshihiro Kobayashi
- Department of Endocrinology and Metabolism, Faculty of Medicine, Kagawa University, 1750-1, Miki-cho, Kita-gun, Kagawa 761-0793, Japan
| | - Kensaku Fukunaga
- Department of Endocrinology and Metabolism, Faculty of Medicine, Kagawa University, 1750-1, Miki-cho, Kita-gun, Kagawa 761-0793, Japan
| | - Seisuke Sato
- Department of Endocrinology and Metabolism, Faculty of Medicine, Kagawa University, 1750-1, Miki-cho, Kita-gun, Kagawa 761-0793, Japan
| | - Tomohiro Ibata
- Department of Endocrinology and Metabolism, Faculty of Medicine, Kagawa University, 1750-1, Miki-cho, Kita-gun, Kagawa 761-0793, Japan
| | - Takuo Yoshimoto
- Department of Endocrinology and Metabolism, Faculty of Medicine, Kagawa University, 1750-1, Miki-cho, Kita-gun, Kagawa 761-0793, Japan
| | - Kazuko Yonezaki
- Department of Endocrinology and Metabolism, Faculty of Medicine, Kagawa University, 1750-1, Miki-cho, Kita-gun, Kagawa 761-0793, Japan
| | - Hisakazu Iwama
- Life Science Research Center, Kagawa University, 1750-1, Miki-cho, Kita-gun, Kagawa 761-0793, Japan
| | - Guoxing Zhang
- Department of Physiology and Neuroscience, Medical College of Soochow University, 199 Ren-Ai Road, Dushu Lake Campus, Suzhou Industrial Park, Suzhou 215123, China
| | - Koji Murao
- Department of Endocrinology and Metabolism, Faculty of Medicine, Kagawa University, 1750-1, Miki-cho, Kita-gun, Kagawa 761-0793, Japan
| |
Collapse
|
15
|
Singh S, McDonough CW, Gong Y, Alghamdi WA, Arwood MJ, Bargal SA, Dumeny L, Li WY, Mehanna M, Stockard B, Yang G, de Oliveira FA, Fredette NC, Shahin MH, Bailey KR, Beitelshees AL, Boerwinkle E, Chapman AB, Gums JG, Turner ST, Cooper-DeHoff RM, Johnson JA. Genome Wide Association Study Identifies the HMGCS2 Locus to be Associated With Chlorthalidone Induced Glucose Increase in Hypertensive Patients. J Am Heart Assoc 2018. [PMID: 29523524 PMCID: PMC5907544 DOI: 10.1161/jaha.117.007339] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Background Thiazide and thiazide‐like diuretics are first‐line medications for treating uncomplicated hypertension. However, their use has been associated with adverse metabolic events, including hyperglycemia and incident diabetes mellitus, with incompletely understood mechanisms. Our goal was to identify genomic variants associated with thiazide‐like diuretic/chlorthalidone‐induced glucose change. Methods and Results Genome‐wide analysis of glucose change after treatment with chlorthalidone was performed by race among the white (n=175) and black (n=135) participants from the PEAR‐2 (Pharmacogenomic Evaluation of Antihypertensive Responses‐2). Single‐nucleotide polymorphisms with P<5×10−8 were further prioritized using in silico analysis based on their expression quantitative trait loci function. Among blacks, an intronic single‐nucleotide polymorphism (rs9943291) in the HMGCS2 was associated with increase in glucose levels following chlorthalidone treatment (ß=12.5; P=4.17×10−8). G‐allele carriers of HMGCS2 had higher glucose levels (glucose change=+16.29 mg/dL) post chlorthalidone treatment compared with noncarriers of G allele (glucose change=+2.80 mg/dL). This association was successfully replicated in an independent replication cohort of hydrochlorothiazide‐treated participants from the PEAR study (ß=5.54; P=0.023). A meta‐analysis of the 2 studies was performed by race in Meta‐Analysis Helper, where this single‐nucleotide polymorphism, rs9943291, was genome‐wide significant with a meta‐analysis P value of 3.71×10−8. HMGCS2, a part of the HMG‐CoA synthase family, is important for ketogenesis and cholesterol synthesis pathways that are essential in glucose homeostasis. Conclusions These results suggest that HMGCS2 is a promising candidate gene involved in chlorthalidone and Hydrochlorothiazide (HCTZ)‐induced glucose change. This may provide insights into the mechanisms involved in thiazide‐induced hyperglycemia that may ultimately facilitate personalized approaches to antihypertensive selection for hypertension treatment. Clinical Trial Registration URL: http://www.clinicaltrials.gov. Unique identifiers: NCT00246519 and NCT01203852.
Collapse
Affiliation(s)
- Sonal Singh
- Department of Pharmacotherapy and Translational Research and Center for Pharmacogenomics, University of Florida, Gainesville, FL
| | - Caitrin W McDonough
- Department of Pharmacotherapy and Translational Research and Center for Pharmacogenomics, University of Florida, Gainesville, FL
| | - Yan Gong
- Department of Pharmacotherapy and Translational Research and Center for Pharmacogenomics, University of Florida, Gainesville, FL
| | - Wael A Alghamdi
- Department of Pharmacotherapy and Translational Research and Center for Pharmacogenomics, University of Florida, Gainesville, FL
| | - Meghan J Arwood
- Department of Pharmacotherapy and Translational Research and Center for Pharmacogenomics, University of Florida, Gainesville, FL
| | - Salma A Bargal
- Department of Pharmacotherapy and Translational Research and Center for Pharmacogenomics, University of Florida, Gainesville, FL
| | - Leanne Dumeny
- Department of Pharmacotherapy and Translational Research and Center for Pharmacogenomics, University of Florida, Gainesville, FL
| | - Wen-Yi Li
- Department of Pharmacotherapy and Translational Research and Center for Pharmacogenomics, University of Florida, Gainesville, FL
| | - Mai Mehanna
- Department of Pharmacotherapy and Translational Research and Center for Pharmacogenomics, University of Florida, Gainesville, FL
| | - Bradley Stockard
- Department of Pharmacotherapy and Translational Research and Center for Pharmacogenomics, University of Florida, Gainesville, FL
| | - Guang Yang
- Department of Pharmacotherapy and Translational Research and Center for Pharmacogenomics, University of Florida, Gainesville, FL
| | - Felipe A de Oliveira
- Department of Pharmacotherapy and Translational Research and Center for Pharmacogenomics, University of Florida, Gainesville, FL
| | - Natalie C Fredette
- Department of Pathology, Center of Regenerative Medicine, University of Florida, Gainesville, FL
| | - Mohamed H Shahin
- Department of Pharmacotherapy and Translational Research and Center for Pharmacogenomics, University of Florida, Gainesville, FL
| | - Kent R Bailey
- Division of Biomedical Statistics and Informatics, Department of Health Sciences Research, Mayo Clinic, Rochester, MN
| | | | - Eric Boerwinkle
- Human Genetics and Institute of Molecular Medicine, University of Texas Health Science Center, Houston, TX
| | | | - John G Gums
- Department of Pharmacotherapy and Translational Research and Center for Pharmacogenomics, University of Florida, Gainesville, FL
| | - Stephen T Turner
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN
| | - Rhonda M Cooper-DeHoff
- Department of Pharmacotherapy and Translational Research and Center for Pharmacogenomics, University of Florida, Gainesville, FL .,Division of Cardiovascular Medicine, Department of Medicine, University of Florida, Gainesville, FL
| | - Julie A Johnson
- Department of Pharmacotherapy and Translational Research and Center for Pharmacogenomics, University of Florida, Gainesville, FL.,Division of Cardiovascular Medicine, Department of Medicine, University of Florida, Gainesville, FL
| |
Collapse
|
16
|
Oliveira GB, Regitano LCA, Cesar ASM, Reecy JM, Degaki KY, Poleti MD, Felício AM, Koltes JE, Coutinho LL. Integrative analysis of microRNAs and mRNAs revealed regulation of composition and metabolism in Nelore cattle. BMC Genomics 2018; 19:126. [PMID: 29415651 PMCID: PMC5804041 DOI: 10.1186/s12864-018-4514-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2016] [Accepted: 01/31/2018] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND The amount of intramuscular fat can influence the sensory characteristics and nutritional value of beef, thus the selection of animals with adequate fat deposition is important to the consumer. There is growing knowledge about the genes and pathways that control the biological processes involved in fat deposition in muscle. MicroRNAs (miRNAs) belong to a well-conserved class of non-coding small RNAs that modulate gene expression across a range of biological functions in animal development and physiology. The aim of this study was to identify differentially expressed (DE) miRNAs, regulatory candidate genes and co-expression networks related to intramuscular fat (IMF) deposition. To achieve this, we used mRNA and miRNA expression data from the Longissimus dorsi muscle of 30 Nelore steers with high (H) and low (L) genomic estimated breeding values (GEBV) for IMF deposition. RESULTS Differential miRNA expression analysis between animals with extreme GEBV values for IMF identified six DE miRNAs (FDR 10%). Functional annotation of the target genes for these microRNAs indicated that the PPARs signaling pathway is involved with IMF deposition. Candidate regulatory genes such as SDHAF4, FBXO17, ALDOA and PKM were identified by partial correlation with information theory (PCIT), phenotypic impact factor (PIF) and regulatory impact factor (RIF) co-expression approaches from integrated miRNA-mRNA expression data. Two DE miRNAs (FDR 10%), bta-miR-143 and bta-miR-146b, which were upregulated in the Low IMF group, were correlated with regulatory candidate genes, which were functionally enriched for fatty acid oxidation GO terms. Co-expression patterns obtained by weighted correlation network analysis (WGCNA), which showed possible interaction and regulation between mRNAs and miRNAs, identified several modules related to immune system function, protein metabolism, energy metabolism and glucose catabolism according to in silico analysis performed herein. CONCLUSION In this study, several genes and miRNAs were identified as candidate regulators of IMF by analyzing DE miRNAs using two different miRNA-mRNA co-expression network methods. This study contributes to the understanding of potential regulatory mechanisms of gene signaling networks involved in fat deposition processes measured in muscle. Glucose metabolism and inflammation processes were the main pathways found in silico to influence intramuscular fat deposition in beef cattle in the integrative mRNA-miRNA co-expression analysis.
Collapse
Affiliation(s)
- Gabriella B. Oliveira
- Department of Animal Science, University of São Paulo, Piracicaba, SP 13418-900 Brazil
| | | | - Aline S. M. Cesar
- Department of Animal Science, University of São Paulo, Piracicaba, SP 13418-900 Brazil
| | - James M. Reecy
- Department of Animal Science, Iowa State University, Ames, IA 50011 USA
| | - Karina Y. Degaki
- Department of Animal Science, University of São Paulo, Piracicaba, SP 13418-900 Brazil
| | - Mirele D. Poleti
- Department of Animal Science, University of São Paulo, Piracicaba, SP 13418-900 Brazil
| | - Andrezza M. Felício
- Department of Animal Science, University of São Paulo, Piracicaba, SP 13418-900 Brazil
| | - James E. Koltes
- Department of Animal Science, University of Arkansas, Fayetteville, AR 72701 USA
| | - Luiz L. Coutinho
- Department of Animal Science, University of São Paulo, Piracicaba, SP 13418-900 Brazil
| |
Collapse
|
17
|
Li J, Xue YM, Zhu B, Pan YH, Zhang Y, Wang C, Li Y. Rosiglitazone Elicits an Adiponectin-Mediated Insulin-Sensitizing Action at the Adipose Tissue-Liver Axis in Otsuka Long-Evans Tokushima Fatty Rats. J Diabetes Res 2018; 2018:4627842. [PMID: 30225267 PMCID: PMC6129789 DOI: 10.1155/2018/4627842] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 05/15/2018] [Accepted: 06/25/2018] [Indexed: 01/07/2023] Open
Abstract
Rosiglitazone is an agonist of peroxisome proliferator-activated receptor- (PPAR-) γ that is principally associated with insulin action. The exact mechanisms underlying its insulin-sensitizing action are still not fully elucidated. It is well known that adiponectin mostly secreted in adipose tissue is an insulin sensitizer. Here, we found that treatment of Otsuka Long-Evans Tokushima Fatty (OLETF) rats with rosiglitazone (3 mg/kg, once daily, by oral gavage for 33 weeks) attenuated the increase in fasting plasma insulin concentrations and the index of the homeostasis model assessment of insulin resistance along with the age growth and glucose concentrations during an oral glucose tolerance test. In addition, the increase in plasma alanine aminotransferase activity, concentrations of fasting plasma nonesterified fatty acids and triglyceride, and hepatic triglyceride content was also suppressed. The hepatic protein expression profile revealed that rosiglitazone increased the downregulated total protein expression of insulin receptor substrate 1 (IRS-1) and IRS-2. Furthermore, the treatment suppressed the upregulated phosphorylation of IRS-1 at Ser307 and IRS-2 at Ser731. The results indicate that rosiglitazone ameliorates hepatic and systemic insulin resistance, hepatic inflammation, and fatty liver. Mechanistically, rosiglitazone suppressed hepatic protein overexpression of both phosphorylated nuclear factor- (NF-) κBp65 and inhibitory-κB kinase-α/β, a transcription factor that primarily regulates chronic inflammatory responses and the upstream NF-κB signal transduction cascades which are necessary for activating NF-κB, respectively. More importantly, rosiglitazone attenuated the decreases in adipose adiponectin mRNA level, plasma adiponectin concentrations, and hepatic protein expression of adiponectin receptor-1 and receptor-2. Thus, we can draw the conclusion that rosiglitazone elicits an adiponectin-mediated insulin-sensitizing action at the adipose tissue-liver axis in obese rats. Our findings may provide new insights into the mechanisms of action of rosiglitazone.
Collapse
Affiliation(s)
- Jia Li
- Department of Endocrinology, General Hospital of Guangzhou Military Command of PLA, Guangzhou 510010, China
| | - Yao-Ming Xue
- Department of Endocrinology & Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Bo Zhu
- Department of Endocrinology & Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Yong-Hua Pan
- Department of Endocrinology & Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Yan Zhang
- Department of Endocrinology & Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Chunxia Wang
- Department of Pharmacy, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- Guangdong Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Yuhao Li
- Department of Pharmacy, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- Endocrinology and Metabolism Group, Sydney Institute of Health Sciences/Sydney Institute of Traditional Chinese Medicine, Sydney, NSW 2000, Australia
| |
Collapse
|
18
|
Piao SJ, Kim SH, Suh YJ, Hong SB, Ahn SH, Seo DH, Park IS, Nam M. Beneficial Effects of Aerobic Exercise Training Combined with Rosiglitazone on Glucose Metabolism in Otsuka Long Evans Tokushima Fatty Rats. Diabetes Metab J 2017; 41:474-485. [PMID: 29199408 PMCID: PMC5741557 DOI: 10.4093/dmj.2017.41.6.474] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 07/26/2017] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Regular aerobic exercise is essential for the prevention and management of type 2 diabetes mellitus and may be particularly beneficial for those treated with thiazolidinediones, since it may prevent associated weight gain. This study aimed to evaluate the effect of combined exercise and rosiglitazone treatment on body composition and glucose metabolism in obese diabetes-prone animals. METHODS We analyzed metabolic parameters, body composition, and islet profiles in Otsuka Long Evans Tokushima Fatty rats after 28 weeks of aerobic exercise, rosiglitazone treatment, and combined exercise and rosiglitazone treatment. RESULTS Combined exercise with rosiglitazone showed significantly less increase in weight and epididymal fat compared to rosiglitazone treatment. Aerobic exercise alone and combined rosiglitazone and exercise treatment led to similar retention of lean body mass. All experimental groups showed a decrease in fasting glucose. However, the combined exercise and rosiglitazone therapy group showed prominent improvement in glucose tolerance compared to the other groups. Rescue of islet destruction was observed in all experimental groups, but was most prominent in the combined therapy group. CONCLUSION Regular aerobic exercise combined with rosiglitazone treatment can compensate for the adverse effect of rosiglitazone treatment and has benefit for islet preservation.
Collapse
Affiliation(s)
- Shan Ji Piao
- Department of Internal Medicine, Inha University School of Medicine, Incheon, Korea
- Qingdao Endocrine and Diabetes Hospital, Qingdao, China
| | - So Hun Kim
- Department of Internal Medicine, Inha University School of Medicine, Incheon, Korea
| | - Young Ju Suh
- Department of Biomedical Sciences, Inha University School of Medicine, Incheon, Korea
| | - Seong Bin Hong
- Department of Internal Medicine, Inha University School of Medicine, Incheon, Korea
| | - Seong Hee Ahn
- Department of Internal Medicine, Inha University School of Medicine, Incheon, Korea
| | - Da Hae Seo
- Department of Internal Medicine, Inha University School of Medicine, Incheon, Korea
| | - In Sun Park
- Department of Anatomy, Inha University School of Medicine, Incheon, Korea.
| | - Moonsuk Nam
- Department of Internal Medicine, Inha University School of Medicine, Incheon, Korea.
| |
Collapse
|
19
|
Erfani Majd N, Tabandeh MR, Shahriari A, Soleimani Z. Okra (Abelmoscus esculentus) Improved Islets Structure, and Down-Regulated PPARs Gene Expression in Pancreas of High-Fat Diet and Streptozotocin-Induced Diabetic Rats. CELL JOURNAL 2017; 20:31-40. [PMID: 29308616 PMCID: PMC5759678 DOI: 10.22074/cellj.2018.4819] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 02/07/2017] [Indexed: 01/18/2023]
Abstract
Objective Okra (Abelmoschus esculentus) is a tropical vegetable that is rich in carbohydrates, fibers, proteins and
natural antioxidants. The aim of the present study was to evaluate the effects of Okra powder on pancreatic islets
and its action on the expression of PPAR-γ and PPAR-α genes in pancreas of high-fat diet (HFD) and streptozotocin-
induced diabetic rats.
Materials and Methods In this experimental study, diabetes was induced by feeding HFD (60% fat) for 30 days
followed by an injection of streptozotocin (STZ, 35 mg/kg). Okra powder (200 mg/kg) was given orally for 30 days after
diabetes induction. At the end of the experiment, pancreas tissues were removed and stained by haematoxylin and
Eozine and aldehyde fuchsin for determination of the number of β-cells in pancreatic islets. Fasting blood sugar (FBS),
Triglycerides (TG), cholesterol, high density lipoprotein (HDL), low density lipoprotein (LDL), and insulin levels were
measured in serum. Moreover, PPAR-γ and PPAR-α mRNAs expression were measured in pancreas using real time
polymerase chain reaction (PCR) analysis.
Results Okra supplementation significantly decreased the elevated levels of FBS, total cholesterol, and TG and attenuated
homeostasis model assessment of basal insulin resistance (HOMA-IR) index in diabetic rats. The expression levels of PPAR-γ
and PPAR-α genes that were elevated in diabetic rats, attenuated in okra-treated rats (P<0.05). Furthermore, okra improved
the histological damages of pancreas including vacuolization and decreased β-cells mass, in diabetic rats.
Conclusion Our findings confirmed the potential anti-hyperglycemic and hypolipidemic effects of Okra. These changes
were associated with reduced pancreatic tissue damage. Down-regulation of PPARs genes in the pancreas of diabetic
rats after treatment with okra, demonstrates that okra may improve glucose homeostasis and β-cells impairment in
diabetes through a PPAR-dependent mechanism.
Collapse
Affiliation(s)
- Naeem Erfani Majd
- Department of Basic Sciences, Histology Section, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran.,Stem Cell and Transgenic Technology Research Center of Shahid Chamran University of Ahvaz, Ahvaz, Iran. Electronic Address:
| | - Mohammad Reza Tabandeh
- Stem Cell and Transgenic Technology Research Center of Shahid Chamran University of Ahvaz, Ahvaz, Iran.,Department of Biochemistry and Molecular Biology Section, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Ali Shahriari
- Department of Biochemistry and Molecular Biology Section, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Zahra Soleimani
- Department of Basic Sciences, Histology Section, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| |
Collapse
|
20
|
Seghieri M, Tricò D, Natali A. The impact of triglycerides on glucose tolerance: Lipotoxicity revisited. DIABETES & METABOLISM 2017; 43:314-322. [PMID: 28693962 DOI: 10.1016/j.diabet.2017.04.010] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 04/19/2017] [Accepted: 04/27/2017] [Indexed: 12/22/2022]
Abstract
Elevated plasma triglycerides (TGs) are early key features of conditions associated with a dysregulation in glucose metabolism and may predict the development of type 2 diabetes (T2D) over time. Although the acute ingestion of lipid, either mixed with or shortly before the meal, is neutral or slightly beneficial on glucose tolerance, a short-term increase in plasma TGs induced by either an i.v. lipid infusion or a high-fat diet produces a deterioration of glucose control. Accordingly, chronic lowering of plasma TGs by fibrates improves glucose homeostasis and may also prevent T2D. The chronic effects of the elevation of dietary lipid intake are less clear, particularly in humans, being the quality of fat probably more important than total fat intake. Although on the bases of the available experimental and clinical evidence it cannot be easily disentangled, with respect to elevated non-esterified fatty acids (NEFA) the relative contribution of elevated TGs to glucose homeostasis disregulation seems to be greater and also more plausible. In conclusion, although the association between elevated plasma TGs and impaired glucose tolerance is commonly considered not causative or merely a consequence of NEFA-mediated lipotoxicity, the available data suggest that TGs per se may directly contribute to disorders of glucose metabolism.
Collapse
Affiliation(s)
- M Seghieri
- Department of clinical and experimental medicine, laboratory of metabolism, nutrition and atherosclerosis, university of Pisa, Pisa, Italy
| | - D Tricò
- Department of clinical and experimental medicine, laboratory of metabolism, nutrition and atherosclerosis, university of Pisa, Pisa, Italy
| | - A Natali
- Department of clinical and experimental medicine, laboratory of metabolism, nutrition and atherosclerosis, university of Pisa, Pisa, Italy.
| |
Collapse
|
21
|
Maki T, Maeda Y, Sonoda N, Makimura H, Kimura S, Maeno S, Takayanagi R, Inoguchi T. Renoprotective effect of a novel selective PPARα modulator K-877 in db/db mice: A role of diacylglycerol-protein kinase C-NAD(P)H oxidase pathway. Metabolism 2017; 71:33-45. [PMID: 28521876 DOI: 10.1016/j.metabol.2017.02.013] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2016] [Revised: 02/18/2017] [Accepted: 02/25/2017] [Indexed: 01/06/2023]
Abstract
OBJECTIVE Several clinical studies have shown the beneficial effects of peroxisome proliferator-activated receptor α (PPARα) agonists on diabetic nephropathy. However, the molecular mechanism is not fully understood. Here we show that K-877, a novel selective PPARα modulator, ameliorates nephropathy in db/db mice via inhibition of renal lipid content and oxidative stress. METHODS AND RESULTS K-877 (0.5mg/kg/day) was administered to db/db mice for 2 or 12weeks. Short-term treatment did not affect body weight or plasma glucose levels in db/db mice, but attenuated albuminuria, along with improvement of plasma lipid profiles, lipid content including total diacylglycerol (DAG) levels, protein kinase C (PKC) activity, NAD(P)H oxidase-4 expression, and oxidative stress markers, all of which were significantly increased in diabetic kidneys. It increased phosphorylation of 5'-AMP activated protein kinase (AMPK) and acetyl-CoA carboxylase (ACC), and expression of several genes mediating fatty acid β-oxidation. In addition, long-term treatment ameliorated renal mesangial expansion in db/db mice and improved glycemic control. CONCLUSIONS K-877 administration ameliorates diabetic nephropathy, at least in part, via inhibition of renal lipid content and oxidative stress. The underlying mechanism may be mediated by modulating the renal AMPK-ACC pathway, subsequent acceleration of fatty acid β-oxidation and inhibition of fatty acid synthesis, and thus inhibition of the DAG-PKC-NAD(P)H oxidase pathway, in addition to its systemic effect including improvement of the plasma lipid profile and glycemic control.
Collapse
Affiliation(s)
- Toshinobu Maki
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yasutaka Maeda
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan; Innovation Center for Medical Redox Navigation, Kyushu University, Fukuoka, Japan
| | - Noriyuki Sonoda
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan; Innovation Center for Medical Redox Navigation, Kyushu University, Fukuoka, Japan
| | - Hiroaki Makimura
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Shinichiro Kimura
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Sayaka Maeno
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Ryoichi Takayanagi
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Toyoshi Inoguchi
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan; Innovation Center for Medical Redox Navigation, Kyushu University, Fukuoka, Japan.
| |
Collapse
|
22
|
Practical recommendations for the management of cardiovascular risk associated with atherogenic dyslipidemia, with special attention to residual risk. Spanish adaptation of a European Consensus of Experts. CLINICA E INVESTIGACION EN ARTERIOSCLEROSIS 2017; 29:168-177. [PMID: 28433209 DOI: 10.1016/j.arteri.2016.12.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2016] [Accepted: 12/03/2016] [Indexed: 11/26/2022]
Abstract
This document has discussed clinical approaches to managing cardiovascular risk in clinical practice, with special focus on residual cardiovascular risk associated with lipid abnormalities, especially atherogenic dyslipidaemia (AD). A simplified definition of AD was proposed to enhance understanding of this condition, its prevalence and its impact on cardiovascular risk. AD can be defined by high fasting triglyceride levels (≥2.3mmol/L / ≥200mg/dL) and low high-density lipoprotein cholesterol (HDL-c) levels (≤1,0 / 40 and ≤1,3mmol/L / 50mg/dL in men and women, respectively) in statin-treated patients at high cardiovascular risk. The use of a single marker for the diagnosis and treatment of AD, such as non-HDL-c, was advocated. Interventions including lifestyle optimization and low density lipoprotein (LDL) lowering therapy with statins (±ezetimibe) are recommended by experts. Treatment of residual AD can be performed with the addition of fenofibrate, since it can improve the complete lipoprotein profile and reduce the risk of cardiovascular events in patients with AD. Others clinical condictions in which fenofibrate may be prescribed include patients with very high TGs (≥5.6mmol/L / 500mg/dL), patients who are intolerant or resistant to statins, and patients with AD and at high cardiovascular risk. The fenofibrate-statin combination was considered by the experts to benefit from a favorable benefit-risk profile. In conclusion, cardiovascular experts adopt a multifaceted approach to the prevention of atherosclerotic cardiovascular disease, with lifestyle optimization, LDL-lowering therapy and treatment of AD with fenofibrate routinely used to help reduce a patient's overall cardiovascular risk.
Collapse
|
23
|
Pharmacogenetics of posttransplant diabetes mellitus. THE PHARMACOGENOMICS JOURNAL 2017; 17:209-221. [DOI: 10.1038/tpj.2017.1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Revised: 12/04/2016] [Accepted: 01/09/2017] [Indexed: 02/08/2023]
|
24
|
Yim CS, Jeong YS, Lee SY, Pyeon W, Ryu HM, Lee JH, Lee KR, Maeng HJ, Chung SJ. Specific Inhibition of the Distribution of Lobeglitazone to the Liver by Atorvastatin in Rats: Evidence for a Rat Organic Anion Transporting Polypeptide 1B2-Mediated Interaction in Hepatic Transport. Drug Metab Dispos 2017; 45:246-259. [PMID: 28069721 DOI: 10.1124/dmd.116.074120] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 01/05/2017] [Indexed: 12/17/2022] Open
Abstract
Cytochrome P450 enzymes and human organic anion transporting polypeptide (OATP) 1B1 are reported to be involved in the pharmacokinetics of lobeglitazone (LB), a new peroxisome proliferator-activated receptor γ agonist. Atorvastatin (ATV), a substrate for CYP3A and human OATP1B1, is likely to be coadministered with LB in patients with the metabolic syndrome. We report herein on a study of potential interactions between LB and ATV in rats. When LB was administered intravenously with ATV, the systemic clearance and volume of distribution at steady state for LB remained unchanged (2.67 ± 0.63 ml/min per kg and 289 ± 20 ml/kg, respectively), compared with that of LB without ATV (2.34 ± 0.37 ml/min per kg and 271 ± 20 ml/kg, respectively). Although the tissue-to-plasma partition coefficient (Kp) of LB was not affected by ATV in most major tissues, the liver Kp for LB was decreased by ATV coadministration. Steady-state liver Kp values for three levels of LB were significantly decreased as a result of ATV coadministration. LB uptake was inhibited by ATV in rat OATP1B2-overexpressing Madin-Darby canine kidney cells and in isolated rat hepatocytes in vitro. After incorporating the kinetic parameters for the in vitro studies into a physiologically based pharmacokinetics model, the characteristics of LB distribution to the liver were consistent with the findings of the in vivo study. It thus appears that the distribution of LB to the liver is mediated by the hepatic uptake of transporters such as rat OATP1B2, and carrier-mediated transport is involved in the liver-specific drug-drug interaction between LB and ATV in vivo.
Collapse
Affiliation(s)
- Chang-Soon Yim
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Gwanak-gu, Seoul, Republic of Korea (C.-S.Y., Y.-S.J., S.-Y.L., W.P., H.-M.R., S.-J.C.); Korea Institute of Toxicology, Yuseong-gu, Daejeon, Republic of Korea (J.-H.L.); Life Science Research Center, Daewoong Pharmaceutical Company Ltd., Yongin-si, Gyeonggi-do, Republic of Korea (K.-R.L.); and College of Pharmacy, Gachon University, Yeonsu-gu, Incheon, Republic of Korea (H.-J.M.)
| | - Yoo-Seong Jeong
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Gwanak-gu, Seoul, Republic of Korea (C.-S.Y., Y.-S.J., S.-Y.L., W.P., H.-M.R., S.-J.C.); Korea Institute of Toxicology, Yuseong-gu, Daejeon, Republic of Korea (J.-H.L.); Life Science Research Center, Daewoong Pharmaceutical Company Ltd., Yongin-si, Gyeonggi-do, Republic of Korea (K.-R.L.); and College of Pharmacy, Gachon University, Yeonsu-gu, Incheon, Republic of Korea (H.-J.M.)
| | - Song-Yi Lee
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Gwanak-gu, Seoul, Republic of Korea (C.-S.Y., Y.-S.J., S.-Y.L., W.P., H.-M.R., S.-J.C.); Korea Institute of Toxicology, Yuseong-gu, Daejeon, Republic of Korea (J.-H.L.); Life Science Research Center, Daewoong Pharmaceutical Company Ltd., Yongin-si, Gyeonggi-do, Republic of Korea (K.-R.L.); and College of Pharmacy, Gachon University, Yeonsu-gu, Incheon, Republic of Korea (H.-J.M.)
| | - Wonji Pyeon
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Gwanak-gu, Seoul, Republic of Korea (C.-S.Y., Y.-S.J., S.-Y.L., W.P., H.-M.R., S.-J.C.); Korea Institute of Toxicology, Yuseong-gu, Daejeon, Republic of Korea (J.-H.L.); Life Science Research Center, Daewoong Pharmaceutical Company Ltd., Yongin-si, Gyeonggi-do, Republic of Korea (K.-R.L.); and College of Pharmacy, Gachon University, Yeonsu-gu, Incheon, Republic of Korea (H.-J.M.)
| | - Heon-Min Ryu
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Gwanak-gu, Seoul, Republic of Korea (C.-S.Y., Y.-S.J., S.-Y.L., W.P., H.-M.R., S.-J.C.); Korea Institute of Toxicology, Yuseong-gu, Daejeon, Republic of Korea (J.-H.L.); Life Science Research Center, Daewoong Pharmaceutical Company Ltd., Yongin-si, Gyeonggi-do, Republic of Korea (K.-R.L.); and College of Pharmacy, Gachon University, Yeonsu-gu, Incheon, Republic of Korea (H.-J.M.)
| | - Jong-Hwa Lee
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Gwanak-gu, Seoul, Republic of Korea (C.-S.Y., Y.-S.J., S.-Y.L., W.P., H.-M.R., S.-J.C.); Korea Institute of Toxicology, Yuseong-gu, Daejeon, Republic of Korea (J.-H.L.); Life Science Research Center, Daewoong Pharmaceutical Company Ltd., Yongin-si, Gyeonggi-do, Republic of Korea (K.-R.L.); and College of Pharmacy, Gachon University, Yeonsu-gu, Incheon, Republic of Korea (H.-J.M.)
| | - Kyeong-Ryoon Lee
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Gwanak-gu, Seoul, Republic of Korea (C.-S.Y., Y.-S.J., S.-Y.L., W.P., H.-M.R., S.-J.C.); Korea Institute of Toxicology, Yuseong-gu, Daejeon, Republic of Korea (J.-H.L.); Life Science Research Center, Daewoong Pharmaceutical Company Ltd., Yongin-si, Gyeonggi-do, Republic of Korea (K.-R.L.); and College of Pharmacy, Gachon University, Yeonsu-gu, Incheon, Republic of Korea (H.-J.M.)
| | - Han-Joo Maeng
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Gwanak-gu, Seoul, Republic of Korea (C.-S.Y., Y.-S.J., S.-Y.L., W.P., H.-M.R., S.-J.C.); Korea Institute of Toxicology, Yuseong-gu, Daejeon, Republic of Korea (J.-H.L.); Life Science Research Center, Daewoong Pharmaceutical Company Ltd., Yongin-si, Gyeonggi-do, Republic of Korea (K.-R.L.); and College of Pharmacy, Gachon University, Yeonsu-gu, Incheon, Republic of Korea (H.-J.M.)
| | - Suk-Jae Chung
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Gwanak-gu, Seoul, Republic of Korea (C.-S.Y., Y.-S.J., S.-Y.L., W.P., H.-M.R., S.-J.C.); Korea Institute of Toxicology, Yuseong-gu, Daejeon, Republic of Korea (J.-H.L.); Life Science Research Center, Daewoong Pharmaceutical Company Ltd., Yongin-si, Gyeonggi-do, Republic of Korea (K.-R.L.); and College of Pharmacy, Gachon University, Yeonsu-gu, Incheon, Republic of Korea (H.-J.M.)
| |
Collapse
|
25
|
Guo Y, Yu J, Deng J, Liu B, Xiao Y, Li K, Xiao F, Yuan F, Liu Y, Chen S, Guo F. A Novel Function of Hepatic FOG2 in Insulin Sensitivity and Lipid Metabolism Through PPARα. Diabetes 2016; 65:2151-63. [PMID: 27207553 DOI: 10.2337/db15-1565] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Accepted: 04/21/2016] [Indexed: 11/13/2022]
Abstract
Friend of GATA 2 (FOG2) is a transcriptional cofactor involved mostly in cardiac function. The aim of this study was to investigate the role of hepatic FOG2 in insulin sensitivity and lipid accumulation. FOG2 overexpression by adenovirus-expressing FOG2 (Ad-FOG2) significantly attenuates insulin signaling in hepatocytes in vitro. Opposite effects were observed when FOG2 was knocked down through adenovirus-expressing small hairpin RNA for FOG2 (Ad-shFOG2). Furthermore, FOG2 knockdown by Ad-shFOG2 ameliorated insulin resistance in leptin receptor-mutated (db/db) mice, and FOG2 overexpression by Ad-FOG2 attenuated insulin sensitivity in C57BL/6J wild-type (WT) mice. In addition, Ad-FOG2 reduced, whereas Ad-shFOG2 promoted, hepatic triglyceride (TG) accumulation in WT mice under fed or fasted conditions, which was associated with increased or decreased hepatic peroxisome proliferator-activated receptor α (PPARα) expression, respectively. Moreover, the improved insulin sensitivity and increased hepatic TG accumulation by Ad-shFOG2 were largely reversed by adenovirus-expressing PPARα (Ad-PPARα) in WT mice. Finally, we generated FOG2 liver-specific knockout mice and found that they exhibit enhanced insulin sensitivity and elevated hepatic TG accumulation, which were also reversed by Ad-PPARα. Taken together, the results demonstrate a novel function of hepatic FOG2 in insulin sensitivity and lipid metabolism through PPARα.
Collapse
Affiliation(s)
- Yajie Guo
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institute for Biological Sciences, Chinese Academy of Sciences, Graduate School of the Chinese Academy of Sciences, Shanghai, China
| | - Junjie Yu
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institute for Biological Sciences, Chinese Academy of Sciences, Graduate School of the Chinese Academy of Sciences, Shanghai, China
| | - Jiali Deng
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institute for Biological Sciences, Chinese Academy of Sciences, Graduate School of the Chinese Academy of Sciences, Shanghai, China
| | - Bin Liu
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institute for Biological Sciences, Chinese Academy of Sciences, Graduate School of the Chinese Academy of Sciences, Shanghai, China
| | - Yuzhong Xiao
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institute for Biological Sciences, Chinese Academy of Sciences, Graduate School of the Chinese Academy of Sciences, Shanghai, China
| | - Kai Li
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institute for Biological Sciences, Chinese Academy of Sciences, Graduate School of the Chinese Academy of Sciences, Shanghai, China
| | - Fei Xiao
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institute for Biological Sciences, Chinese Academy of Sciences, Graduate School of the Chinese Academy of Sciences, Shanghai, China
| | - Feixiang Yuan
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institute for Biological Sciences, Chinese Academy of Sciences, Graduate School of the Chinese Academy of Sciences, Shanghai, China
| | - Yong Liu
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institute for Biological Sciences, Chinese Academy of Sciences, Graduate School of the Chinese Academy of Sciences, Shanghai, China
| | - Shanghai Chen
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institute for Biological Sciences, Chinese Academy of Sciences, Graduate School of the Chinese Academy of Sciences, Shanghai, China
| | - Feifan Guo
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institute for Biological Sciences, Chinese Academy of Sciences, Graduate School of the Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
26
|
Ferrari R, Aguiar C, Alegria E, Bonadonna RC, Cosentino F, Elisaf M, Farnier M, Ferrières J, Filardi PP, Hancu N, Kayikcioglu M, Mello e Silva A, Millan J, Reiner Ž, Tokgozoglu L, Valensi P, Viigimaa M, Vrablik M, Zambon A, Zamorano JL, Catapano AL. Current practice in identifying and treating cardiovascular risk, with a focus on residual risk associated with atherogenic dyslipidaemia. Eur Heart J Suppl 2016; 18:C2-C12. [DOI: 10.1093/eurheartj/suw009] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
27
|
Zhu YX, Zhang ML, Zhong Y, Wang C, Jia WP. Modulation Effect of Peroxisome Proliferator-Activated Receptor Agonists on Lipid Droplet Proteins in Liver. J Diabetes Res 2016; 2016:8315454. [PMID: 26770990 PMCID: PMC4684860 DOI: 10.1155/2016/8315454] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Revised: 06/02/2015] [Accepted: 07/01/2015] [Indexed: 12/14/2022] Open
Abstract
Peroxisome proliferator-activated receptor (PPAR) agonists are used for treating hyperglycemia and type 2 diabetes. However, the mechanism of action of these agonists is still under investigation. The lipid droplet-associated proteins FSP27/CIDEC and LSDP5, regulated directly by PPARγ and PPARα, are associated with hepatic steatosis and insulin sensitivity. Here, we evaluated the expression levels of FSP27/CIDEC and LSDP5 and the regulation of these proteins by consumption of a high-fat diet (HFD) or administration of PPAR agonists. Mice with diet-induced obesity were treated with the PPARγ or PPARα agonist, pioglitazone or fenofibrate, respectively. Liver tissues from db/db diabetic mice and human were also collected. Interestingly, FSP27/CIEDC was expressed in mouse and human livers and was upregulated in obese C57BL/6J mice. Fenofibrate treatment decreased hepatic triglyceride (TG) content and FSP27/CIDEC protein expression in mice fed an HFD diet. In mice, LSDP5 was not detected, even in the context of insulin resistance or treatment with PPAR agonists. However, LSDP5 was highly expressed in humans, with elevated expression observed in the fatty liver. We concluded that fenofibrate greatly decreased hepatic TG content and FSP27/CIDEC protein expression in mice fed an HFD, suggesting a potential regulatory role for fenofibrate in the amelioration of hepatic steatosis.
Collapse
Affiliation(s)
- Yun-Xia Zhu
- Department of Geriatrics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai 200233, China
| | - Ming-Liang Zhang
- Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai 200233, China
| | - Yuan Zhong
- Department of Geriatrics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai 200233, China
| | - Chen Wang
- Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai 200233, China
- Shanghai Key Laboratory of Diabetes Mellitus, 600 Yishan Road, Shanghai 200233, China
- Shanghai Diabetes Institute, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai 200233, China
- *Chen Wang:
| | - Wei-Ping Jia
- Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai 200233, China
- Shanghai Key Laboratory of Diabetes Mellitus, 600 Yishan Road, Shanghai 200233, China
- Shanghai Diabetes Institute, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai 200233, China
| |
Collapse
|
28
|
PPAR-α Agonist Fenofibrate Decreased Serum Irisin Levels in Type 2 Diabetes Patients with Hypertriglyceridemia. PPAR Res 2015; 2015:924131. [PMID: 26693220 PMCID: PMC4674611 DOI: 10.1155/2015/924131] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Accepted: 09/30/2015] [Indexed: 01/21/2023] Open
Abstract
Irisin is related to insulin resistance and metabolic disorders. The physiologic effects of irisin are partially mediated through peroxisome proliferator-activated receptor-α (PPAR-α). We investigated the effect of fenofibrate, a PPAR-α agonist, on serum irisin in type 2 diabetes patients with hypertriglyceridemia. This study evaluated cross-sectional and interventional studies of 25 type 2 diabetes patients with hypertriglyceridemia (group A) and 40 controls (group B). Group A was treated with fenofibrate (200 mg/day) for 8 weeks. Serum irisin and clinical characteristics were examined. Serum irisin was significantly higher in group A compared with group B (45.15 ± 10.48 versus 35.38 ± 9.97 ng/ml, P < 0.001) and correlated with body mass index (r = 0.314, P = 0.011), fasting blood glucose (r = 0.399, P = 0.001), total cholesterol (r = 0.256, P = 0.040), and high-density lipoprotein cholesterol (r = 0.247, P = 0.047). In multiple regression analysis after controlling for confounders, only fasting blood glucose (β = 5.615, P < 0.001) and high-density lipoprotein cholesterol (β = 19.483, P < 0.001) were independently related to serum irisin. After 8 weeks of fenofibrate treatment, serum irisin significantly decreased in group A compared with baseline (45.15 ± 10.48 versus 38.74 ± 12.54 ng/ml, P = 0.011). Conclusively, fenofibrate decreased serum irisin in type 2 diabetes patients with hypertriglyceridemia, indicating that PPAR-α agonists may protect against metabolic disorders by improving irisin resistance.
Collapse
|
29
|
Regulation of skeletal muscle mitochondrial function by nuclear receptors: implications for health and disease. Clin Sci (Lond) 2015; 129:589-99. [PMID: 26186742 DOI: 10.1042/cs20150246] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Skeletal muscle metabolism is highly dependent on mitochondrial function, with impaired mitochondrial biogenesis associated with the development of metabolic diseases such as insulin resistance and type 2 diabetes. Mitochondria display substantial plasticity in skeletal muscle, and are highly sensitive to levels of physical activity. It is thought that physical activity promotes mitochondrial biogenesis in skeletal muscle through increased expression of genes encoded in both the nuclear and the mitochondrial genome; however, how this process is co-ordinated at the cellular level is poorly understood. Nuclear receptors (NRs) are key signalling proteins capable of integrating environmental factors and mitochondrial function, thereby providing a potential link between exercise and mitochondrial biogenesis. The aim of this review is to highlight the function of NRs in skeletal muscle mitochondrial biogenesis and discuss the therapeutic potential of NRs for the management and treatment of chronic metabolic disease.
Collapse
|
30
|
Abstract
The oversupply of calories and sedentary lifestyle has resulted in a rapid increase of diabetes prevalence worldwide. During the past two decades, lines of evidence suggest that mitochondrial dysfunction plays a key role in the pathophysiology of diabetes. Mitochondria are vital to most of the eukaryotic cells as they provide energy in the form of adenosine triphosphate by oxidative phosphorylation. In addition, mitochondrial function is an integral part of glucose-stimulated insulin secretion in pancreatic β-cells. In the present article, we will briefly review the major functions of mitochondria in regard to energy metabolism, and discuss the genetic and environmental factors causing mitochondrial dysfunction in diabetes. In addition, the pathophysiological role of mitochondrial dysfunction in insulin resistance and β-cell dysfunction are discussed. We argue that mitochondrial dysfunction could be the central defect causing the abnormal glucose metabolism in the diabetic state. A deeper understanding of the role of mitochondria in diabetes will provide us with novel insights in the pathophysiology of diabetes. (J Diabetes Invest, doi: 10.1111/j.2040-1124.2010.00047.x, 2010).
Collapse
Affiliation(s)
| | - Kyong Soo Park
- Departments of Internal Medicine ; Molecular Medicine and Biopharmaceutical Sciences, Seoul National University College of Medicine
| | - Ki-Up Lee
- Department of Internal Medicine, University of Ulsan College of Medicine
| | - Hong Kyu Lee
- Department of Internal Medicine, Eulji University College of Medicine, Seoul, Korea
| |
Collapse
|
31
|
The peroxisome proliferator-activated receptor (PPAR) α agonist fenofibrate suppresses chemically induced lung alveolar proliferative lesions in male obese hyperlipidemic mice. Int J Mol Sci 2014; 15:9160-72. [PMID: 24857924 PMCID: PMC4057781 DOI: 10.3390/ijms15059160] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Revised: 05/07/2014] [Accepted: 05/12/2014] [Indexed: 12/11/2022] Open
Abstract
Activation of peroxisome proliferator-activated receptor (PPAR) α disrupts growth-related activities in a variety of human cancers. This study was designed to determine whether fenofibrate, a PPARα agonist, can suppress 4-nitroquinoline 1-oxide (4-NQO)-induced proliferative lesions in the lung of obese hyperlipidemic mice. Male Tsumura Suzuki Obese Diabetic mice were subcutaneously injected with 4-NQO to induce lung proliferative lesions, including adenocarcinomas. They were then fed a diet containing 0.01% or 0.05% fenofibrate for 29 weeks, starting 1 week after 4-NQO administration. At week 30, the incidence and multiplicity (number of lesions/mouse) of pulmonary proliferative lesions were lower in mice treated with 4-NQO and both doses of fenofibrate compared with those in mice treated with 4-NQO alone. The incidence and multiplicity of lesions were significantly lower in mice treated with 4-NQO and 0.05% fenofibrate compared with those in mice treated with 4-NQO alone (p<0.05). Both doses of fenofibrate significantly reduced the proliferative activity of the lesions in 4-NQO-treated mice (p<0.05). Fenofibrate also significantly reduced the serum insulin and insulin-like growth factor (IGF)-1 levels, and decreased the immunohistochemical expression of IGF-1 receptor (IGF-1R), phosphorylated Akt, and phosphorylated Erk1/2 in lung adenocarcinomas. Our results indicate that fenofibrate can prevent the development of 4-NQO-induced proliferative lesions in the lung by modulating the insulin-IGF axis.
Collapse
|
32
|
Anti-Obesity Effects of Poly-γ-glutamic Acid with or without Isoflavones on High-Fat Diet Induced Obese Mice. Biosci Biotechnol Biochem 2014; 77:1694-702. [DOI: 10.1271/bbb.130253] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
33
|
Agyemang K, Han L, Liu E, Zhang Y, Wang T, Gao X. Recent Advances in Astragalus membranaceus Anti-Diabetic Research: Pharmacological Effects of Its Phytochemical Constituents. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2013; 2013:654643. [PMID: 24348714 PMCID: PMC3855992 DOI: 10.1155/2013/654643] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Revised: 11/04/2013] [Accepted: 11/05/2013] [Indexed: 12/17/2022]
Abstract
The disease burden of diabetes mellitus is increasing throughout the world. The need for more potent drugs to complement the present anti-diabetic drugs has become an imperative. Astragalus membranaceus, a key component of most Chinese herbal anti-diabetic formulas, has been an important prospect for lead anti-diabetic compounds. It has been progressively studied for its anti-diabetic properties. Ethnopharmacological studies have established its potential to alleviate diabetes mellitus. Recent studies have sought to relate its chemical constituents to types 1 and 2 diabetes mellitus. Its total polysaccharides, saponins, and flavonoids fractions and several isolated compounds have been the most studied. The total polysaccharides fraction demonstrated activity to both types 1 and 2 diabetes mellitus. This paper discusses the anti-diabetic effects and pharmacological action of the chemical constituents in relation to types 1 and 2 diabetes mellitus.
Collapse
Affiliation(s)
- Kojo Agyemang
- Tianjin State Key Laboratory of Modern Chinese Medicine, 312 Anshanxi Road, Nankai District, Tianjin 300193, China
- Noguchi Memorial Institute for Medical Research, P.O. Box LG 581, Legon, Accra, Ghana
| | - Lifeng Han
- Tianjin State Key Laboratory of Modern Chinese Medicine, 312 Anshanxi Road, Nankai District, Tianjin 300193, China
| | - Erwei Liu
- Tianjin State Key Laboratory of Modern Chinese Medicine, 312 Anshanxi Road, Nankai District, Tianjin 300193, China
| | - Yi Zhang
- Tianjin State Key Laboratory of Modern Chinese Medicine, 312 Anshanxi Road, Nankai District, Tianjin 300193, China
| | - Tao Wang
- Tianjin State Key Laboratory of Modern Chinese Medicine, 312 Anshanxi Road, Nankai District, Tianjin 300193, China
| | - Xiumei Gao
- Tianjin State Key Laboratory of Modern Chinese Medicine, 312 Anshanxi Road, Nankai District, Tianjin 300193, China
| |
Collapse
|
34
|
Park MH, Park JY, Lee HJ, Kim DH, Park D, Jeong HO, Park CH, Chun P, Moon HR, Chung HY. Potent anti-diabetic effects of MHY908, a newly synthesized PPAR α/γ dual agonist in db/db mice. PLoS One 2013; 8:e78815. [PMID: 24244369 PMCID: PMC3828319 DOI: 10.1371/journal.pone.0078815] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Accepted: 09/16/2013] [Indexed: 01/14/2023] Open
Abstract
Peroxisome proliferator-activated receptor (PPAR) α/γ dual agonists have been developed to alleviate metabolic disorders and have the potential to be used as therapeutic agents for the treatment of type 2 diabetes. In this study, we investigated the effects of a newly synthesized PPAR α/γ dual agonist, 2-[4-(5-chlorobenzo [d] thiazol-2-yl) phenoxy]-2-methylpropanoic acid (MHY908) on type 2 diabetes in vitro and in vivo. To obtain initial evidence that MHY908 acts as a PPAR α/γ dual agonist, ChIP and reporter gene assays were conducted in AC2F rat liver cells, and to investigate the anti-diabetic effects and molecular mechanisms, eight-week-old, male db/db mice were allowed to eat ad libitum, placed on calorie restriction, or administered MHY908 (1 mg or 3 mg/kg/day) mixed in food for 4 weeks. Age-matched male db/m lean mice served as non-diabetic controls. It was found that MHY908 enhanced the binding and transcriptional activity of PPAR α and γ in AC2F cells, and it reduced serum glucose, triglyceride, and insulin levels, however increased adiponectin levels without body weight gain. In addition, MHY908 significantly improved hepatic steatosis by enhancing CPT-1 levels. Remarkably, MHY908 reduced endoplasmic reticulum (ER) stress and c-Jun N-terminal kinase (JNK) activation in the livers of db/db mice, and subsequently reduced insulin resistance. The study shows MHY908 has beneficial effects on type 2 diabetes by simultaneously activating PPAR α/γ and improving ER stress, and suggests that MHY908 could have a potent anti-diabetic effect as a PPAR α/γ dual agonist, and potential for the treatment of type 2 diabetes.
Collapse
Affiliation(s)
- Min Hi Park
- Molecular Inflammation Research Center for Aging intervention (MRCA), College of Pharmacy, Pusan National University, Busan, Korea
- Laboratory of Biochemistry, Pusan National University, Busan, Korea
| | - Ji Young Park
- Laboratory of Medicinal Chemistry, College of Pharmacy, Pusan National University, Busan, Korea
| | - Hye Jin Lee
- Laboratory of Medicinal Chemistry, College of Pharmacy, Pusan National University, Busan, Korea
| | - Dae Hyun Kim
- Molecular Inflammation Research Center for Aging intervention (MRCA), College of Pharmacy, Pusan National University, Busan, Korea
- Laboratory of Biochemistry, Pusan National University, Busan, Korea
| | - Daeui Park
- Molecular Inflammation Research Center for Aging intervention (MRCA), College of Pharmacy, Pusan National University, Busan, Korea
- Laboratory of Biochemistry, Pusan National University, Busan, Korea
| | - Hyoung Oh Jeong
- Molecular Inflammation Research Center for Aging intervention (MRCA), College of Pharmacy, Pusan National University, Busan, Korea
- Laboratory of Biochemistry, Pusan National University, Busan, Korea
| | - Chan Hum Park
- Molecular Inflammation Research Center for Aging intervention (MRCA), College of Pharmacy, Pusan National University, Busan, Korea
- Laboratory of Biochemistry, Pusan National University, Busan, Korea
| | - Pusoon Chun
- College of Pharmacy, Inje University, Gimhae, Gyeongnam, Korea
| | - Hyung Ryong Moon
- Laboratory of Medicinal Chemistry, College of Pharmacy, Pusan National University, Busan, Korea
- * E-mail: (HYC); (HRM)
| | - Hae Young Chung
- Molecular Inflammation Research Center for Aging intervention (MRCA), College of Pharmacy, Pusan National University, Busan, Korea
- Laboratory of Biochemistry, Pusan National University, Busan, Korea
- * E-mail: (HYC); (HRM)
| |
Collapse
|
35
|
Jin SM, Oh BJ, Lee S, Choi JM, Yang SJ, Park SW, Kim KW, Kim JH, Park CY. Reduced food intake is the major contributor to the protective effect of rimonabant on islet in established obesity-associated type 2 diabetes. Yonsei Med J 2013; 54:1127-36. [PMID: 23918561 PMCID: PMC3743202 DOI: 10.3349/ymj.2013.54.5.1127] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
PURPOSE Although the presence of cannabinoid type 1 (CB1) receptor in islets has been reported, the major contributor to the protective effect of rimonabant on islet morphology is unknown. We determined whether the protective effect of rimonabant on pancreatic islet morphology is valid in established diabetes and also whether any effect was independent of decreased food intake. MATERIALS AND METHODS After diabetes was confirmed, Otsuka Long-Evans Tokushima Fatty rats, aged 32 weeks, were treated with rimonabant (30 mg/kg/d, rimonabant group) for 6 weeks. Metabolic profiles and islet morphology of rats treated with rimonabant were compared with those of controls without treatment (control group), a pair-fed control group, and rats treated with rosiglitazone (4 mg/kg/d, rosiglitazone group). RESULTS Compared to the control group, rats treated with rimonabant exhibited reduced glycated albumin levels (p<0.001), islet fibrosis (p<0.01), and improved glucose tolerance (p< 0.05), with no differences from the pair-fed control group. The retroperitoneal adipose tissue mass was lower in the rimonabant group than those of the pair-fed control and rosiglitazone groups (p<0.05). Rimonabant, pair-fed control, and rosiglitazone groups showed decreased insulin resistance and increased adiponectin, with no differences between the rimonabant and pair-fed control groups. CONCLUSION Rimonabant had a protective effect on islet morphology in vivo even in established diabetes. However, the protective effect was also reproduced by pair-feeding. Thus, the results of this study did not support the significance of islet CB1 receptors in islet protection with rimonabant in established obesity-associated type 2 diabetes.
Collapse
Affiliation(s)
- Sang-Man Jin
- Division of Endocrinology and Metabolism, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Bae Jun Oh
- Samsung Biomedical Research Institute, Seoul, Korea
| | - Suel Lee
- Samsung Biomedical Research Institute, Seoul, Korea
| | - Jung Mook Choi
- Diabetes Research Institute, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Soo Jin Yang
- Department of Food and Nutrition, Chonnam National University, Gwangju, Korea
| | - Sung Woo Park
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Kwang-Won Kim
- Division of Endocrinology and Metabolism, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Jae Hyeon Kim
- Division of Endocrinology and Metabolism, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Cheol-Young Park
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Korea
| |
Collapse
|
36
|
Effect of the combination of metformin and fenofibrate on glucose homeostasis in diabetic Goto-Kakizaki rats. Exp Mol Med 2013; 45:e30. [PMID: 23827952 PMCID: PMC3731660 DOI: 10.1038/emm.2013.58] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Accepted: 04/29/2013] [Indexed: 12/17/2022] Open
Abstract
Metformin has been reported to increase the expression of the glucagon-like peptide-1 (GLP-1) receptor in pancreatic beta cells in a peroxisome proliferator-activated receptor (PPAR)-α-dependent manner. We investigated whether a PPARα agonist, fenofibrate, exhibits an additive or synergistic effect on glucose metabolism, independent of its lipid-lowering effect, when added to metformin. Non-obese diabetic Goto-Kakizaki (GK) rats were divided into four groups and treated for 28 days with metformin, fenofibrate, metformin plus fenofibrate or vehicle. The random blood glucose levels, body weights, food intake and serum lipid profiles were not significantly different among the groups. After 4 weeks, metformin, but not fenofibrate, markedly reduced the blood glucose levels during oral glucose tolerance tests, and this effect was attenuated by adding fenofibrate. Metformin increased the expression of the GLP-1 receptor in pancreatic islets, whereas fenofibrate did not. During the intraperitoneal glucose tolerance tests with the injection of a GLP-1 analog, metformin and/or fenofibrate did not alter the insulin secretory responses. In conclusion, fenofibrate did not confer any beneficial effect on glucose homeostasis but reduced metformin's glucose-lowering activity in GK rats, thus discouraging the addition of fenofibrate to metformin to improve glycemic control.
Collapse
|
37
|
Monsalve FA, Pyarasani RD, Delgado-Lopez F, Moore-Carrasco R. Peroxisome proliferator-activated receptor targets for the treatment of metabolic diseases. Mediators Inflamm 2013; 2013:549627. [PMID: 23781121 PMCID: PMC3678499 DOI: 10.1155/2013/549627] [Citation(s) in RCA: 246] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Revised: 04/03/2013] [Accepted: 04/17/2013] [Indexed: 12/13/2022] Open
Abstract
Metabolic syndrome is estimated to affect more than one in five adults, and its prevalence is growing in the adult and pediatric populations. The most widely recognized metabolic risk factors are atherogenic dyslipidemia, elevated blood pressure, and elevated plasma glucose. Individuals with these characteristics commonly manifest a prothrombotic state and a proinflammatory state as well. Peroxisome proliferator-activated receptors (PPARs) may serve as potential therapeutic targets for treating the metabolic syndrome and its related risk factors. The PPARs are transcriptional factors belonging to the ligand-activated nuclear receptor superfamily. So far, three isoforms of PPARs have been identified, namely, PPAR- α, PPAR-β/δ, and PPAR-γ. Various endogenous and exogenous ligands of PPARs have been identified. PPAR- α and PPAR- γ are mainly involved in regulating lipid metabolism, insulin sensitivity, and glucose homeostasis, and their agonists are used in the treatment of hyperlipidemia and T2DM. Whereas PPAR- β / δ function is to regulate lipid metabolism, glucose homeostasis, anti-inflammation, and fatty acid oxidation and its agonists are used in the treatment of metabolic syndrome and cardiovascular diseases. This review mainly focuses on the biological role of PPARs in gene regulation and metabolic diseases, with particular focus on the therapeutic potential of PPAR modulators in the treatment of thrombosis.
Collapse
Affiliation(s)
- Francisco A. Monsalve
- Departamento Ciencias Biomédicas, Facultad Ciencias de la Salud, Universidad de Talca, Chile
- Instituto de Químicas y Recursos Naturales, Universidad de Talca, Chile
| | | | | | - Rodrigo Moore-Carrasco
- Departamento de Bioquímica Clínica e Inmunohematología, Facultad Ciencias de la Salud, Universidad de Talca, Chile
| |
Collapse
|
38
|
Hogh KLN, Uy CE, Asadi A, Baker RK, Riedel MJ, Gray SL. Overexpression of peroxisome proliferator-activated receptor α in pancreatic β-cells improves glucose tolerance in diet-induced obese mice. Exp Physiol 2012; 98:564-75. [PMID: 23042378 DOI: 10.1113/expphysiol.2012.068734] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Lipotoxicity is implicated in pancreatic β-cell dysfunction in obesity-induced type 2 diabetes. In vitro, activation of peroxisome proliferator-activated receptor α (PPARα) has been shown to protect pancreatic β-cells from the lipotoxic effects of palmitate, thereby preserving insulin secretion. Utilizing an adeno-associated virus (dsAAV8), overexpression of PPARα was induced specifically in pancreatic β-cells of adult, C57Bl/6 mice fed a high-fat diet for 20 weeks and carbohydrate metabolism and β-cell mass assessed. We show that overexpression of PPARα in pancreatic β-cells in vivo preserves β-cell function in obesity, and this improves glucose tolerance by preserving insulin secretion in comparison to control mice with diet-induced obesity. No changes in β-cell mass were observed in PPARα-overexpressing mice compared with diet-induced obese control animals. This model of β-cell-specific PPARα overexpression provides a useful in vivo model for elucidating the mechanisms underlying β-cell lipotoxicity in obesity-induced type 2 diabetes.
Collapse
Affiliation(s)
- K-Lynn N Hogh
- Northern Medical Program, University of Northern British Columbia, Prince George, BC, Canada.
| | | | | | | | | | | |
Collapse
|
39
|
Key signalling factors and pathways in the molecular determination of skeletal muscle phenotype. Animal 2012; 1:681-98. [PMID: 22444469 DOI: 10.1017/s1751731107702070] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The molecular basis and control of the biochemical and biophysical properties of skeletal muscle, regarded as muscle phenotype, are examined in terms of fibre number, fibre size and fibre types. A host of external factors or stimuli, such as ligand binding and contractile activity, are transduced in muscle into signalling pathways that lead to protein modifications and changes in gene expression which ultimately result in the establishment of the specified phenotype. In skeletal muscle, the key signalling cascades include the Ras-extracellular signal regulated kinase-mitogen activated protein kinase (Erk-MAPK), the phosphatidylinositol 3'-kinase (PI3K)-Akt1, p38 MAPK, and calcineurin pathways. The molecular effects of external factors on these pathways revealed complex interactions and functional overlap. A major challenge in the manipulation of muscle of farm animals lies in the identification of regulatory and target genes that could effect defined and desirable changes in muscle quality and quantity. To this end, recent advances in functional genomics that involve the use of micro-array technology and proteomics are increasingly breaking new ground in furthering our understanding of the molecular determinants of muscle phenotype.
Collapse
|
40
|
Kouroumichakis I, Papanas N, Zarogoulidis P, Liakopoulos V, Maltezos E, Mikhailidis DP. Fibrates: therapeutic potential for diabetic nephropathy? Eur J Intern Med 2012; 23:309-16. [PMID: 22560376 DOI: 10.1016/j.ejim.2011.12.007] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2011] [Revised: 12/04/2011] [Accepted: 12/18/2011] [Indexed: 12/30/2022]
Abstract
Despite intensive glucose-lowering treatment and advanced therapies for cardiovascular risk factors, such as hypertension and dyslipidaemia, diabetes mellitus with its macro- and microvascular complications remains a major health problem. Especially diabetic nephropathy is a leading cause of morbidity and mortality, and its prevalence is increasing. Peroxisome proliferator-activated receptor-α (PPAR-α), a member of a large nuclear receptor superfamily, is expressed in several tissues including the kidney. Recently, experimental data have suggested that PPAR-α activation plays a pivotal role in the regulation of fatty acid oxidation, lipid metabolism, inflammatory and vascular responses, and might regulate various metabolic and intracellular signalling pathways that lead to diabetic microvascular complications. This review examines the role of PPAR-α activation in diabetic nephropathy and summarises data from experimental and clinical studies on the emerging therapeutic potential of fibrates in diabetic nephropathy.
Collapse
Affiliation(s)
- I Kouroumichakis
- Outpatient Clinic of Obesity, Diabetes and Metabolism, Second Department of Internal Medicine, Democritus University of Thrace, Alexandroupolis, Greece
| | | | | | | | | | | |
Collapse
|
41
|
Effects of fatty acid treatments on the dexamethasone-induced intramuscular lipid accumulation in chickens. PLoS One 2012; 7:e36663. [PMID: 22623960 PMCID: PMC3356436 DOI: 10.1371/journal.pone.0036663] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2011] [Accepted: 04/04/2012] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Glucocorticoid has an important effect on lipid metabolism in muscles, and the type of fatty acid likely affects mitochondrial utilization. Therefore, we hypothesize that the different fatty acid types treatment may affect the glucocorticoid induction of intramuscular lipid accumulation. METHODOLOGY/PRINCIPAL FINDINGS The effect of dexamethasone (DEX) on fatty acid metabolism and storage in skeletal muscle of broiler chickens (Gallus gallus domesticus) was investigated with and without fatty acid treatments. Male Arbor Acres chickens (31 d old) were treated with either palmitic acid (PA) or oleic acid (OA) for 7 days, followed by DEX administration for 3 days (35-37 d old). The DEX-induced lipid uptake and oxidation imbalance, which was estimated by increased fatty acid transport protein 1 (FATP1) expression and decreased carnitine palmitoyl transferase 1 activity, contributed to skeletal muscle lipid accumulation. More sensitive than glycolytic muscle, the oxidative muscle in DEX-treated chickens showed a decrease in the AMP to ATP ratio, a decrease in AMP-activated protein kinase (AMPK) alpha phosphorylation and its activity, as well as an increase in the phosphorylation of mammalian target of rapamycin (mTOR) and ribosomal p70S6 kinase, without Akt activation. DEX-stimulated lipid deposition was augmented by PA, but alleviated by OA, in response to pathways that were regulated differently, including AMPK, mTOR and FATP1. CONCLUSIONS DEX-induced intramuscular lipid accumulation was aggravated by SFA but alleviated by unsaturated fatty acid. The suppressed AMPK and augmented mTOR signaling pathways were involved in glucocortcoid-mediated enhanced intramuscular fat accumulation.
Collapse
|
42
|
Endoplasmic reticulum stress and insulin biosynthesis: a review. EXPERIMENTAL DIABETES RESEARCH 2012; 2012:509437. [PMID: 22474424 PMCID: PMC3303544 DOI: 10.1155/2012/509437] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2011] [Accepted: 12/06/2011] [Indexed: 12/21/2022]
Abstract
Insulin resistance and pancreatic beta cell dysfunction are major contributors to the pathogenesis of diabetes. Various conditions play a role in the pathogenesis of pancreatic beta cell dysfunction and are correlated with endoplasmic reticulum (ER) stress. Pancreatic beta cells are susceptible to ER stress. Many studies have shown that increased ER stress induces pancreatic beta cell dysfunction and diabetes mellitus using genetic models of ER stress and by various stimuli. There are many reports indicating that ER stress plays an important role in the impairment of insulin biosynthesis, suggesting that reduction of ER stress could be a therapeutic target for diabetes. In this paper, we reviewed the relationship between ER stress and diabetes and how ER stress controls insulin biosynthesis.
Collapse
|
43
|
El Midaoui A, Lungu C, Wang H, Wu L, Robillard C, Deblois D, Couture R. Impact of α-lipoic acid on liver peroxisome proliferator-activated receptor-α, vascular remodeling, and oxidative stress in insulin-resistant rats. Can J Physiol Pharmacol 2011; 89:743-51. [PMID: 21919742 DOI: 10.1139/y11-072] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
This study sought to determine the impact of α-lipoic acid (LA) on superoxide anion (O(2)(•-)) production and peroxisome proliferator-activated receptor-α (PPARα) expression in liver tissue, plasma free fatty acids (FFA), and aortic remodeling in a rat model of insulin resistance. Sprague-Dawley rats (50-75 g) were given either tap water or a drinking solution containing 10% D-glucose for 14 weeks, combined with a diet with or without LA supplement. O(2)(•-) production was measured by lucigenin chemiluminescence, and PPAR-α expression by Western blotting. Cross-sectional area (CSA) of the aortic media and lumen and number of smooth muscle cells (SMC) were determined histologically. Glucose increased systolic blood pressure (SBP), plasma levels of glucose and insulin, and insulin resistance (HOMA index). All of these effects were attenuated by LA. Whereas glucose had no effect on liver PPAR-α protein level, it decreased plasma FFA. LA decreased the aortic and liver O(2)(•-) production, body weight, and plasma FFA levels in control and glucose-treated rats. Liver PPAR-α protein levels were increased by LA, and negatively correlated with plasma FFA. Medial CSA was reduced in all glucose-treated rats, and positively correlated with plasma FFA but not with SBP or aortic O(2)(•-) production. Glucose also reduced aortic lumen area, so that the media-to-lumen ratio remained unchanged. The ability of LA to lower plasma FFA appears to be mediated, in part, by increased hepatic PPAR-α expression, which may positively affect insulin resistance. Glucose-fed rats may serve as a unique model of aortic atrophic remodeling in hypertension and early metabolic syndrome.
Collapse
Affiliation(s)
- Adil El Midaoui
- Department of Physiology, Faculty of Medicine, Université de Montréal, Montréal, QC H3C 3J7, Canada
| | | | | | | | | | | | | |
Collapse
|
44
|
Abstract
With a developing worldwide epidemic of diabetes mellitus, the renal complications associated with diabetes have become a serious health concern. Primary therapy for treating diabetic nephropathy is a multifactorial process. Peroxisome proliferator-activated receptor alpha (PPARα) agonists have been used primarily in clinical practice for the treatment of dyslipidemia and insulin resistance. Given that PPARα expression and regulation of metabolic pathways are involved in oxidative stress, inflammation, blood pressure regulation, and the renin-angiotensin aldosterone system, PPARα likely influences the development and pathogenesis of diabetic nephropathy via indirect effects on glucose and lipid homeostasis and also by direct action on the kidneys. These findings suggest that PPARα may become an important therapeutic target for treating diabetic renal complications.
Collapse
Affiliation(s)
- Sungjin Chung
- Division of Nephrology, Department of Internal Medicine, The Catholic University of Korea College of Medicine, Seoul, Korea
| | - Cheol Whee Park
- Division of Nephrology, Department of Internal Medicine, The Catholic University of Korea College of Medicine, Seoul, Korea
| |
Collapse
|
45
|
Lin CY, Tsai SJ, Huang CS, Yin MC. Antiglycative effects of protocatechuic acid in the kidneys of diabetic mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2011; 59:5117-5124. [PMID: 21456600 DOI: 10.1021/jf200103f] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Protocatechuic acid (PCA) at 2 or 4% was supplied to diabetic mice for 12 weeks. PCA treatments increased its deposit in organs and significantly reduced the plasma HbA1c level, the urinary glycative albumin level, and renal production of carboxymethyllysine (CML), pentosidine, sorbitol, and fructose (p < 0.05). However, PCA treatments only at 4% significantly decreased brain content of CML, pentosidine, fructose, and sorbitol (p < 0.05). PCA treatments at 2 and 4% significantly lowered renal activity and mRNA expression of aldose reductase and sorbitol dehydrogenase (p < 0.05), and PCA treatments only at 4% significantly enhanced renal glyoxalase I mRNA expression (p < 0.05). PCA treatments also dose-dependently decreased the renal level of type-IV collagen, fibronectin, and transforming growth factor-β1 (p < 0.05), as well as dose-dependently diminished renal protein kinase C (PKC) activity (p < 0.05); however, PCA treatments only at 4% suppressed renal mRNA expression of PKC-α and PKC-beta (p < 0.05). PCA treatments at 4% significantly restored renal mRNA expression of peroxisome proliferator-activated receptor (PPAR)-α and PPAR-γ, as well as suppressed expression of the advanced glycation end-product receptor (p < 0.05). These findings suggest that the supplement of PCA might be helpful for the prevention or alleviation of glycation-associated diabetic complications.
Collapse
Affiliation(s)
- Chia-Yu Lin
- Department of Health and Nutrition Biotechnology, Asia University, Taichung City, Taiwan
| | | | | | | |
Collapse
|
46
|
Cho YM, Kieffer TJ. New aspects of an old drug: metformin as a glucagon-like peptide 1 (GLP-1) enhancer and sensitiser. Diabetologia 2011; 54:219-22. [PMID: 21116606 DOI: 10.1007/s00125-010-1986-3] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2010] [Accepted: 10/22/2010] [Indexed: 12/29/2022]
Abstract
The two major deficits in type 2 diabetes, insulin resistance and impaired beta cell function, are often treated with metformin and incretin-based drugs, respectively. However, there may be unappreciated benefits of this combination of therapies. In this issue of Diabetologia, Maida et al. (doi: 10.1007/s00125-010-1937-z) report that metformin acutely increases plasma levels of glucagon-like peptide 1 (GLP-1) in mice. Moreover, they show that metformin enhances the expression of the genes encoding the receptors for both GLP-1 and glucose-dependent insulinotropic polypeptide (GIP) in mouse islets and also increases the effects of GIP and GLP-1 on insulin secretion from beta cells. Interestingly, these incretin-sensitising effects of metformin appear to be mediated by a peroxisome proliferator-activated receptor α-dependent pathway, as opposed to the more commonly ascribed pathway of metformin action involving AMP-activated protein kinase. These provocative findings by Maida et al. extend our understanding of the mechanism of action of metformin and provide further insights into the benefits of combining metformin with incretin-based drugs to combat diabetes.
Collapse
MESH Headings
- Animals
- Cell Line
- Diabetes Mellitus, Type 2/blood
- Diabetes Mellitus, Type 2/drug therapy
- Diabetes Mellitus, Type 2/metabolism
- Dipeptidyl Peptidase 4/blood
- Dipeptidyl Peptidase 4/metabolism
- Eating/drug effects
- Gastric Inhibitory Polypeptide/blood
- Glucagon-Like Peptide 1/blood
- Glucagon-Like Peptide-1 Receptor
- Humans
- Hypoglycemic Agents/pharmacology
- Hypoglycemic Agents/therapeutic use
- Male
- Metformin/pharmacology
- Metformin/therapeutic use
- Mice
- Mice, Inbred C57BL
- Mice, Mutant Strains
- Models, Biological
- PPAR alpha/genetics
- PPAR alpha/metabolism
- Peptide Fragments/therapeutic use
- Receptors, Gastrointestinal Hormone/genetics
- Receptors, Gastrointestinal Hormone/metabolism
- Receptors, Glucagon/antagonists & inhibitors
- Receptors, Glucagon/blood
- Signal Transduction/drug effects
Collapse
Affiliation(s)
- Y M Cho
- Laboratory of Molecular and Cellular Medicine, Department of Cellular and Physiological Sciences, 2350 Health Sciences Mall, Life Sciences Centre, University of British Columbia, Vancouver, BC, Canada
| | | |
Collapse
|
47
|
Fenofibrate, a PPARα agonist, has renoprotective effects in mice by enhancing renal lipolysis. Kidney Int 2011; 79:871-82. [PMID: 21270762 DOI: 10.1038/ki.2010.530] [Citation(s) in RCA: 153] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
As renal lipotoxicity can lead to chronic kidney disease (CKD), we examined the role of peroxisome proliferator-activated receptor (PPAR)-α, a positive regulator of renal lipolysis. Feeding mice a high-fat diet induced glomerular injury, and treating them with fenofibrate, a PPARα agonist, increased the expression of lipolytic enzymes and reduced lipid accumulation and oxidative stress in glomeruli, while inhibiting the development of albuminuria and glomerular fibrosis. In mice given an overload of free fatty acid-bound albumin to induce tubulointerstitial injury, fenofibrate attenuated the development of oxidative stress, macrophage infiltration, and fibrosis, and enhanced lipolysis in the renal interstitium. Fenofibrate inhibited palmitate-induced expression of profibrotic plasminogen activator inhibitor-1 (PAI-1) in cultured mesangial cells, and the expression of both monocyte chemoattractant protein-1 and PAI-1 in proximal tubular cells along with the overexpression of lipolytic enzymes. Thus, fenofibrate can attenuate lipotoxicity-induced glomerular and tubulointerstitial injuries, with enhancement of renal lipolysis. Whether amelioration of renal lipotoxicity by PPARα agonists will turn out to be a useful strategy against CKD will require direct testing.
Collapse
|
48
|
Fenofibrate treatment enhances antioxidant status and attenuates endothelial dysfunction in streptozotocin-induced diabetic rats. EXPERIMENTAL DIABETES RESEARCH 2010; 2010:828531. [PMID: 21234421 PMCID: PMC3014714 DOI: 10.1155/2010/828531] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2010] [Revised: 11/21/2010] [Accepted: 11/24/2010] [Indexed: 01/11/2023]
Abstract
Diabetic endothelial dysfunction is accompanied by increased oxidative stress and upregulated proinflammatory and inflammatory mediators in the vasculature. Activation of peroxisome proliferator-activated receptor-alpha (PPAR-α) results in antioxidant and anti-inflammatory effects. This study was designed to investigate the effect of fenofibrate, a PPAR-α activator, on the endothelial dysfunction, oxidative stress, and inflammation in streptozotocin diabetic rats. Diabetic rats received fenofibrate (150 mg kg−1 day−1) for 4 weeks. Fenofibrate treatment restored the impaired endothelium-dependent relaxation and increased basal nitric oxide availability in diabetic aorta, enhanced erythrocyte/liver superoxide dismutase and catalase levels, ameliorated the abnormal serum/aortic thiobarbituric acid reactive substances, and prevented the increased aortic myeloperoxidase without a significant change in serum total cholesterol and triglyceride levels. It did not affect the decreased total homocysteine level and the increased tumor necrosis factor-α level in the serum of diabetic rats. Fenofibrate-induced prevention of the endothelial function seems to be related to its potential antioxidant and antiinflammatory activity.
Collapse
|
49
|
Yoon SY, Park JS, Choi JE, Choi JM, Lee WJ, Kim SW, Kim DH. Rosiglitazone reduces tau phosphorylation via JNK inhibition in the hippocampus of rats with type 2 diabetes and tau transfected SH-SY5Y cells. Neurobiol Dis 2010; 40:449-55. [DOI: 10.1016/j.nbd.2010.07.005] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2010] [Revised: 07/02/2010] [Accepted: 07/09/2010] [Indexed: 01/21/2023] Open
|
50
|
PPARα in Obesity: Sex Difference and Estrogen Involvement. PPAR Res 2010; 2010. [PMID: 20871824 PMCID: PMC2943125 DOI: 10.1155/2010/584296] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2010] [Accepted: 07/08/2010] [Indexed: 12/13/2022] Open
Abstract
Peroxisome proliferator-activated receptor α (PPARα) is a member of the steroid hormone receptor superfamily and is well known to act as the molecular target for lipid-lowering drugs of the fibrate family. At the molecular level, PPARα regulates the transcription of a number of genes critical for lipid and lipoprotein metabolism. PPARα activators are further shown to reduce body weight gain and adiposity, at least in part, due to the increase of hepatic fatty acid oxidation and the decrease in levels of circulating triglycerides responsible for adipose cell hypertrophy and hyperplasia. However, these effects of the PPARα ligand fenofibrate on obesity are regulated with sexual dimorphism and seem to be influenced by the presence of functioning ovaries, suggesting the involvement of ovarian steroids in the control of obesity by PPARα. In female ovariectomized mice, 17β-estradiol inhibits the actions of fenofibrate on obesity through its suppressive effects on the expression of PPARα target genes, and these processes may be mediated by inhibiting the coactivator recruitment of PPARα. Thus, it is likely that PPARα functions on obesity may be enhanced in estrogen-deficient states.
Collapse
|