1
|
Abbood MS, Al-Adsani AM, Al-Bustan SA. Ginger extract promotes pancreatic islets regeneration in streptozotocin-induced diabetic rats. Biosci Rep 2025; 45:BSR20241510. [PMID: 40014427 PMCID: PMC12096951 DOI: 10.1042/bsr20241510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 01/29/2025] [Accepted: 02/26/2025] [Indexed: 03/01/2025] Open
Abstract
Ginger (Zingiber officinale) exerts an antidiabetic effect by restoring pancreatic β-cells. The present study aimed to investigate the mechanism by which ginger extract induces the regeneration of functional β-cells in diabetic rats. Sprague-Dawley rats (n=27) were divided into three groups: normal rats given double distilled water (ddH2O) (NC, n=11), diabetic rats (injected with 60 mg/kg streptozotocin) given ddH2O (DC, n=8), and diabetic rats treated with aqueous ginger extract (DG, n=8). The effect of ginger extract intake on the differential expression of neurogenin-3 (Neurog3), V-maf musculoaponeurotic fibrosarcoma oncogene homolog B (Mafb), insulin 2 (Ins2), and glucagon (Gcg) was assessed using quantitative real-time PCR after one and eight weeks of treatment. The pancreatic insulin source was determined using immunohistochemical analysis. After one week, ginger treatment significantly up-regulated the expression of both Neurog3 and Mafb in the DG rats compared with the DC rats. However, after eight weeks, the mRNA levels of these genes dropped significantly in parallel with the up-regulation of Ins2 and Gcg expression, resulting in increased serum insulin levels, weight, and lowered fasting blood glucose levels. Immunohistochemical analysis revealed a restored β-cell mass and islet architecture in the DG group. Ginger extract exerts an antidiabetic effect by acting on pancreatic progenitors and α-cells to restore β-cell mass in streptozotocininduced diabetic rats. These findings suggest that ginger extract could be a potential stimulator of β-cell neogenesis, which provides an alternative to meet the increasing demand for exogenous insulin in patients with diabetes.
Collapse
Affiliation(s)
- Manal S. Abbood
- Department of Biological Sciences, Faculty of Science, Kuwait University, Shadadiyah, Kuwait P.O. Box 5969, Safat 13060, Kuwait
| | - Amani M. Al-Adsani
- Department of Biological Sciences, Faculty of Science, Kuwait University, Shadadiyah, Kuwait P.O. Box 5969, Safat 13060, Kuwait
| | - Suzanne A. Al-Bustan
- Department of Biological Sciences, Faculty of Science, Kuwait University, Shadadiyah, Kuwait P.O. Box 5969, Safat 13060, Kuwait
| |
Collapse
|
2
|
Yano T, Shimaya Y, Enomoto T, Kiho T, Komoriya S, Nakashima R, Shiraki N, Kume S. A small molecule K-3 promotes PDX1 expression and potentiates the differentiation of pluripotent stem cells into insulin-producing pancreatic β cells. Stem Cells 2025; 43:sxae075. [PMID: 39556137 DOI: 10.1093/stmcls/sxae075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Accepted: 11/04/2024] [Indexed: 11/19/2024]
Abstract
Insulin-producing pancreatic β-like cells derived from human pluripotent stem cells (PSCs) are anticipated as a novel cell source for cell replacement therapy for patients with diabetes. Here, we describe the identification of small molecule compounds that promote the differentiation of the PSCs into insulin-producing cells by high throughput screening with a chemical library composed of 55 000 compounds. The initial hit compound K-1 and one derivative K-3 increased the proportion of PSC-derived insulin-positive endocrine cells and their glucose-stimulated insulin secretory (GSIS) functions. K-3 preferentially acts on stage 3 pancreatic progenitor cells and increases the population expressing high levels of PDX1. As a result, the ratios of the PSC-derived PDX1/NKX6.1 double-positive endocrine progenitor and INS/NKX6.1 double-positive mono-hormonal endocrine cells were increased. K-3 enhances the expression of functional pancreatic β cell markers and affects biological processes concerning organ development. K-3 also increased the yield of endocrine cells at the end of stage 5. The novel compound is a beneficial new tool for efficiently generating PSC-derived insulin-producing cells with high functionality and differentiation efficiency.
Collapse
Affiliation(s)
- Tatsuya Yano
- Daiichi Sankyo Co., Ltd., Shinagawa-ku, Tokyo 140-8710, Japan
| | - Yukihiro Shimaya
- Department of Life Science and Technology, School of Life Science and Technology, Institute of Science Tokyo, Yokohama, Kanagawa 226-8501, Japan
| | - Takayuki Enomoto
- Department of Life Science and Technology, School of Life Science and Technology, Institute of Science Tokyo, Yokohama, Kanagawa 226-8501, Japan
- Bioscience Center, Research Infrastructure Management Center, Institute of Science Tokyo, Yokohama, Kanagawa 226-8501, Japan
| | - Toshihiro Kiho
- Daiichi Sankyo Co., Ltd., Shinagawa-ku, Tokyo 140-8710, Japan
| | | | | | - Nobuaki Shiraki
- Department of Life Science and Technology, School of Life Science and Technology, Institute of Science Tokyo, Yokohama, Kanagawa 226-8501, Japan
| | - Shoen Kume
- Department of Life Science and Technology, School of Life Science and Technology, Institute of Science Tokyo, Yokohama, Kanagawa 226-8501, Japan
| |
Collapse
|
3
|
Götz C, Montenarh M. Protein kinase CK2 contributes to glucose homeostasis. Biol Chem 2025:hsz-2024-0158. [PMID: 39910713 DOI: 10.1515/hsz-2024-0158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Accepted: 01/22/2025] [Indexed: 02/07/2025]
Abstract
In the early days of CK2 research, it was already published that the affinity of CK2 for its substrate casein was affected by insulin. Subsequent to the discovery of inhibitors of CK2 kinase activity, it was shown that CK2 has an influence on hormones that regulate glucose homeostasis and on enzymes that influence glucose metabolism in pancreatic islet cells as well as in hormone-sensitive target cells. This regulation includes the influence on transcription factors and thereby, gene expression, as well as direct modulation of the catalytic activity. The used CK2 inhibitors, especially the older ones, show a broad range of specificity, selectivity and off-target effects. Recently applied methods to down-regulate the expression of individual CK2 subunits using siRNA or CRISPR/Cas9 technology have contributed to the improvement of specificity. It was shown that inhibition of CK2 kinase activity or knock-down or knock-out of CK2α leads to an elevated synthesis and secretion of insulin in pancreatic β-cells and a down-regulation of the synthesis and secretion of glucagon from pancreatic α-cells. In the present review CK2-dependent molecular mechanisms will be addressed which contribute to the maintenance of glucose homeostasis.
Collapse
Affiliation(s)
- Claudia Götz
- Medical Biochemistry and Molecular Biology, Saarland University, Building 44, D-66421 Homburg, Germany
| | - Mathias Montenarh
- Medical Biochemistry and Molecular Biology, Saarland University, Building 44, D-66421 Homburg, Germany
| |
Collapse
|
4
|
Brooks EP, Casey MR, Wells KL, Liu TY, Van Orman M, Sussel L. NKX2.2 and KLF4 cooperate to regulate α-cell identity. Genes Dev 2025; 39:242-260. [PMID: 39797760 PMCID: PMC11789634 DOI: 10.1101/gad.352193.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 11/12/2024] [Indexed: 01/13/2025]
Abstract
Transcription factors (TFs) are indispensable for maintaining cell identity through regulating cell-specific gene expression. Distinct cell identities derived from a common progenitor are frequently perpetuated by shared TFs, yet the mechanisms that enable these TFs to regulate cell-specific targets are poorly characterized. We report that the TF NKX2.2 is critical for the identity of pancreatic islet α cells by directly activating α-cell genes and repressing alternate islet cell fate genes. When compared with the known role of NKX2.2 in islet β cells, we demonstrate that NKX2.2 regulates α-cell genes, facilitated in part by α-cell-specific DNA binding at gene promoters. Furthermore, we have identified the reprogramming factor KLF4 as having enriched expression in α cells, where it co-occupies NKX2.2-bound α-cell promoters, is necessary for NKX2.2 promoter occupancy in α cells, and coregulates many NKX2.2 α-cell transcriptional targets. Overexpression of Klf4 in β cells is sufficient to manipulate chromatin accessibility, increase binding of NKX2.2 at α-cell-specific promoter sites, and alter expression of NKX2.2-regulated cell-specific targets. This study identifies KLF4 as a novel α-cell factor that cooperates with NKX2.2 to regulate α-cell identity.
Collapse
Affiliation(s)
- Elliott P Brooks
- Barbara Davis Center for Diabetes, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, USA
| | - McKenna R Casey
- Barbara Davis Center for Diabetes, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, USA
| | - Kristen L Wells
- Barbara Davis Center for Diabetes, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, USA
| | - Tsung-Yun Liu
- Barbara Davis Center for Diabetes, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, USA
| | - Madeline Van Orman
- Barbara Davis Center for Diabetes, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, USA
| | - Lori Sussel
- Barbara Davis Center for Diabetes, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, USA
| |
Collapse
|
5
|
Cheng Y, Zhang T, Yang C, Gebeyew K, Ye C, Zhou X, Zhang T, Feng G, Li R, He Z, Parnas O, Tan Z. Low expression of CCKBR in the acinar cells is associated with insufficient starch hydrolysis in ruminants. Commun Biol 2024; 7:1686. [PMID: 39706905 DOI: 10.1038/s42003-024-07406-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 12/16/2024] [Indexed: 12/23/2024] Open
Abstract
Unlike monogastric animals, ruminants exhibit significantly lower starch digestibility in the small intestine. A better understanding of the physiological mechanisms that regulate digestion patterns in ruminants could lead to an increased use of starch concentrates. Here we show more robust pancreatic exocrine function in adult goats (AG) than in neonatal goats (NG) by combining scRNA-seq and proteomic analysis. Our findings suggest that inadequate amylase activity could be a limiting factor in starch digestion in ruminants. In addition, we show that insufficient starch hydrolysis in adult goats might be associated with low expression of a CCKBR receptor in the acinar cells. On top of that, the low expression of CCKBR in adult goats, in conjunction with a low distribution of the CCK-I cells in the duodenum, may jointly lead to a slow response of the intestinal-pancreatic reflex and induce an asynchronous process of food entering the small intestine and releasing of digestive enzymes, which ultimately limits the starch digestibility. Overall, the present findings generate a resource that can provide better insight into the mammalian pancreas.
Collapse
Affiliation(s)
- Yan Cheng
- CAS Key Laboratory for Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha, Hunan, 410125, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Tianxi Zhang
- CAS Key Laboratory for Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha, Hunan, 410125, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chao Yang
- CAS Key Laboratory for Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha, Hunan, 410125, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Kefyalew Gebeyew
- CAS Key Laboratory for Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha, Hunan, 410125, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chengyu Ye
- The Department of Microbiology and Immunology, Emory University, 201 Dowman Dr, Atlanta, GA, 30322, USA
| | - Xinxin Zhou
- LC-Bio Technology (Hanghzhou) co.ltd., Hanghzhou, 310000, China
| | - Tianqi Zhang
- College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Ganyi Feng
- CAS Key Laboratory for Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha, Hunan, 410125, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Rui Li
- CAS Key Laboratory for Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha, Hunan, 410125, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhixiong He
- CAS Key Laboratory for Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha, Hunan, 410125, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Key Laboratory of Forage Breeding-by-Design and Utilization, Chinese Academy of Science, Beijing, 100093, China.
| | - Oren Parnas
- The Lautenberg Center for Immunology and Cancer Research, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, 91120, Israel.
| | - Zhiliang Tan
- CAS Key Laboratory for Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha, Hunan, 410125, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
6
|
Ampofo E, Pack M, Wrublewsky S, Boewe AS, Spigelman AF, Koch H, MacDonald PE, Laschke MW, Montenarh M, Götz C. CK2 activity is crucial for proper glucagon expression. Diabetologia 2024; 67:1368-1385. [PMID: 38503901 PMCID: PMC11153270 DOI: 10.1007/s00125-024-06128-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 02/07/2024] [Indexed: 03/21/2024]
Abstract
AIMS/HYPOTHESIS Protein kinase CK2 acts as a negative regulator of insulin expression in pancreatic beta cells. This action is mainly mediated by phosphorylation of the transcription factor pancreatic and duodenal homeobox protein 1 (PDX1). In pancreatic alpha cells, PDX1 acts in a reciprocal fashion on glucagon (GCG) expression. Therefore, we hypothesised that CK2 might positively regulate GCG expression in pancreatic alpha cells. METHODS We suppressed CK2 kinase activity in αTC1 cells by two pharmacological inhibitors and by the CRISPR/Cas9 technique. Subsequently, we analysed GCG expression and secretion by real-time quantitative RT-PCR, western blot, luciferase assay, ELISA and DNA pull-down assays. We additionally studied paracrine effects on GCG secretion in pseudoislets, isolated murine islets and human islets. In vivo, we examined the effect of CK2 inhibition on blood glucose levels by systemic and alpha cell-specific CK2 inhibition. RESULTS We found that CK2 downregulation reduces GCG secretion in the murine alpha cell line αTC1 (e.g. from 1094±124 ng/l to 459±110 ng/l) by the use of the CK2-inhibitor SGC-CK2-1. This was due to a marked decrease in Gcg gene expression through alteration of the binding of paired box protein 6 (PAX6) and transcription factor MafB to the Gcg promoter. The analysis of the underlying mechanisms revealed that both transcription factors are displaced by PDX1. Ex vivo experiments in isolated murine islets and pseudoislets further demonstrated that CK2-mediated reduction in GCG secretion was only slightly affected by the higher insulin secretion after CK2 inhibition. The kidney capsule transplantation model showed the significance of CK2 for GCG expression and secretion in vivo. Finally, CK2 downregulation also reduced the GCG secretion in islets isolated from humans. CONCLUSIONS/INTERPRETATION These novel findings not only indicate an important function of protein kinase CK2 for proper GCG expression but also demonstrate that CK2 may be a promising target for the development of novel glucose-lowering drugs.
Collapse
Affiliation(s)
- Emmanuel Ampofo
- Institute for Clinical and Experimental Surgery, Saarland University, Homburg, Germany
| | - Mandy Pack
- Medical Biochemistry and Molecular Biology, Saarland University, Homburg, Germany
| | - Selina Wrublewsky
- Institute for Clinical and Experimental Surgery, Saarland University, Homburg, Germany
| | - Anne S Boewe
- Institute for Clinical and Experimental Surgery, Saarland University, Homburg, Germany
| | - Aliya F Spigelman
- Department of Pharmacology and Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada
| | - Hanna Koch
- Institute for Clinical and Experimental Surgery, Saarland University, Homburg, Germany
| | - Patrick E MacDonald
- Department of Pharmacology and Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada
| | - Matthias W Laschke
- Institute for Clinical and Experimental Surgery, Saarland University, Homburg, Germany
| | - Mathias Montenarh
- Medical Biochemistry and Molecular Biology, Saarland University, Homburg, Germany
| | - Claudia Götz
- Medical Biochemistry and Molecular Biology, Saarland University, Homburg, Germany.
| |
Collapse
|
7
|
Ramos L. Dimorphic Regulation of the MafB Gene by Sex Steroids in Hamsters, Mesocricetus auratus. Animals (Basel) 2024; 14:1728. [PMID: 38929347 PMCID: PMC11200555 DOI: 10.3390/ani14121728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 05/29/2024] [Accepted: 06/03/2024] [Indexed: 06/28/2024] Open
Abstract
MafB is a transcription factor that regulates macrophage differentiation. Macrophages are a traditional feature of the hamster Harderian gland (HG); however, studies pertaining to MafB expression in the HG are scant. Here, the full-length cDNA of the MafB gene in hamsters was cloned and sequenced. Molecular characterization revealed that MafB encodes a protein containing 323 amino acids with a DNA-binding domain, a transactivation domain, and a leucine zipper domain. qPCR assays indicated that MafB was expressed in different tissues of both sexes. The highest relative expression levels in endocrine tissues were identified in the pancreas. Gonadectomy in male hamsters was associated with significantly higher mRNA levels in the HG; replacement with dihydrotestosterone restored mRNA expression. The HG in male hamsters contained twofold more MafB mRNA than the HG of female hamsters. Adrenals revealed similar mRNA relative expression levels during the estrous cycle. The estrous phase was associated with higher mRNA levels in the ovary. A significantly up-regulated expression and sexual dimorphism of MafB was found in the pancreas. Therefore, MafB in the HG may play an active role in the macrophage differentiation required for phagocytosis activity and intraocular repair. Additionally, sex steroids appear to strongly influence the MafB expression in the HG and pancreas. These studies highlight the probable biological importance of MafB in immunological defense and pancreatic β cell regulation.
Collapse
Affiliation(s)
- Luis Ramos
- Department of Reproductive Biology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, México City 14080, Mexico
| |
Collapse
|
8
|
Oropeza D, Herrera PL. Glucagon-producing α-cell transcriptional identity and reprogramming towards insulin production. Trends Cell Biol 2024; 34:180-197. [PMID: 37626005 DOI: 10.1016/j.tcb.2023.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 07/07/2023] [Accepted: 07/11/2023] [Indexed: 08/27/2023]
Abstract
β-Cell replacement by in situ reprogramming of non-β-cells is a promising diabetes therapy. Following the observation that near-total β-cell ablation in adult mice triggers the reprogramming of pancreatic α-, δ-, and γ-cells into insulin (INS)-producing cells, recent studies are delving deep into the mechanisms controlling adult α-cell identity. Systematic analyses of the α-cell transcriptome and epigenome have started to pinpoint features that could be crucial for maintaining α-cell identity. Using different transgenic and chemical approaches, significant advances have been made in reprogramming α-cells in vivo into INS-secreting cells in mice. The recent reprogramming of human α-cells in vitro is an important step forward that must now be complemented with a comprehensive molecular dissection of the mechanisms controlling α-cell identity.
Collapse
Affiliation(s)
- Daniel Oropeza
- Department of Genetic Medicine and Development, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Pedro Luis Herrera
- Department of Genetic Medicine and Development, Faculty of Medicine, University of Geneva, Geneva, Switzerland.
| |
Collapse
|
9
|
Himuro M, Wakabayashi Y, Taguchi T, Katahira T, Suzuki L, Iida H, Ogihara T, Nishida Y, Sasaki S, Lynn FC, Hiraoka Y, Oshima S, Okamoto R, Fujitani Y, Watada H, Miyatsuka T. Novel time-resolved reporter mouse reveals spatial and transcriptional heterogeneity during alpha cell differentiation. Diabetologia 2024; 67:156-169. [PMID: 37870650 DOI: 10.1007/s00125-023-06028-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 08/25/2023] [Indexed: 10/24/2023]
Abstract
AIMS/HYPOTHESIS Glucagon-expressing pancreatic alpha cells have attracted much attention for their plasticity to transdifferentiate into insulin-producing beta cells; however, it remains unclear precisely when, and from where, alpha cells emerge and what regulates alpha cell fate. We therefore explored the spatial and transcriptional heterogeneity of alpha cell differentiation using a novel time-resolved reporter system. METHODS We established the mouse model, 'Gcg-Timer', in which newly generated alpha cells can be distinguished from more-differentiated cells by their fluorescence. Fluorescence imaging and transcriptome analysis were performed with Gcg-Timer mice during the embryonic and postnatal stages. RESULTS Fluorescence imaging and flow cytometry demonstrated that green fluorescence-dominant cells were present in Gcg-Timer mice at the embryonic and neonatal stages but not after 1 week of age, suggesting that alpha cell neogenesis occurs during embryogenesis and early neonatal stages under physiological conditions. Transcriptome analysis of Gcg-Timer embryos revealed that the mRNAs related to angiogenesis were enriched in newly generated alpha cells. Histological analysis revealed that some alpha cells arise close to the pancreatic ducts, whereas the others arise away from the ducts and adjacent to the blood vessels. Notably, when the glucagon signal was suppressed by genetic ablation or by chemicals, such as neutralising glucagon antibody, green-dominant cells emerged again in adult mice. CONCLUSIONS/INTERPRETATION Novel time-resolved analysis with Gcg-Timer reporter mice uncovered spatiotemporal features of alpha cell neogenesis that will enhance our understanding of cellular identity and plasticity within the islets. DATA AVAILABILITY Raw and processed RNA sequencing data for this study has been deposited in the Gene Expression Omnibus under accession number GSE229090.
Collapse
Affiliation(s)
- Miwa Himuro
- Department of Metabolism and Endocrinology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Yuka Wakabayashi
- Department of Metabolism and Endocrinology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Tomomi Taguchi
- Department of Endocrinology, Diabetes and Metabolism, Kitasato University School of Medicine, Sagamihara, Japan
| | - Takehiro Katahira
- Department of Metabolism and Endocrinology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Luka Suzuki
- Department of Metabolism and Endocrinology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Hitoshi Iida
- Department of Metabolism and Endocrinology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Takeshi Ogihara
- Department of Metabolism and Endocrinology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Yuya Nishida
- Department of Metabolism and Endocrinology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Shugo Sasaki
- Diabetes Research Group, BC Children's Hospital Research Institute, Vancouver, BC, Canada
- Department of Metabolic Medicine, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Francis C Lynn
- Diabetes Research Group, BC Children's Hospital Research Institute, Vancouver, BC, Canada
| | - Yuichi Hiraoka
- Laboratory of Genome Editing for Biomedical Research, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | - Shigeru Oshima
- Department of Gastroenterology and Hepatology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Ryuichi Okamoto
- Department of Gastroenterology and Hepatology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yoshio Fujitani
- Laboratory of Developmental Biology & Metabolism, Institute for Molecular & Cellular Regulation, Gunma University, Maebashi, Japan
| | - Hirotaka Watada
- Department of Metabolism and Endocrinology, Juntendo University Graduate School of Medicine, Tokyo, Japan.
- Center for Identification of Diabetic Therapeutic Targets, Juntendo University Graduate School of Medicine, Tokyo, Japan.
| | - Takeshi Miyatsuka
- Department of Metabolism and Endocrinology, Juntendo University Graduate School of Medicine, Tokyo, Japan.
- Department of Endocrinology, Diabetes and Metabolism, Kitasato University School of Medicine, Sagamihara, Japan.
| |
Collapse
|
10
|
Fujino M, Ojima M, Takahashi S. Exploring Large MAF Transcription Factors: Functions, Pathology, and Mouse Models with Point Mutations. Genes (Basel) 2023; 14:1883. [PMID: 37895232 PMCID: PMC10606904 DOI: 10.3390/genes14101883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 09/23/2023] [Accepted: 09/26/2023] [Indexed: 10/29/2023] Open
Abstract
Large musculoaponeurotic fibrosarcoma (MAF) transcription factors contain acidic, basic, and leucine zipper regions. Four types of MAF have been elucidated in mice and humans, namely c-MAF, MAFA, MAFB, and NRL. This review aimed to elaborate on the functions of MAF transcription factors that have been studied in vivo so far, as well as describe the pathology of human patients and corresponding mouse models with c-MAF, MAFA, and MAFB point mutations. To identify the functions of MAF transcription factors in vivo, we generated genetically modified mice lacking c-MAF, MAFA, and MAFB and analyzed their phenotypes. Further, in recent years, c-MAF, MAFA, and MAFB have been identified as causative genes underpinning many rare diseases. Careful observation of human patients and animal models is important to examine the pathophysiological mechanisms underlying these conditions for targeted therapies. Murine models exhibit phenotypes similar to those of human patients with c-MAF, MAFA, and MAFB mutations. Therefore, generating these animal models emphasizes their usefulness for research uncovering the pathophysiology of point mutations in MAF transcription factors and the development of etiology-based therapies.
Collapse
Affiliation(s)
- Mitsunori Fujino
- Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, Tsukuba 305-8575, Ibaraki, Japan; (M.F.); (M.O.)
- Ph.D. Program in Human Biology, School of Integrative and Global Majors, University of Tsukuba, Tsukuba 305-8575, Ibaraki, Japan
| | - Masami Ojima
- Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, Tsukuba 305-8575, Ibaraki, Japan; (M.F.); (M.O.)
| | - Satoru Takahashi
- Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, Tsukuba 305-8575, Ibaraki, Japan; (M.F.); (M.O.)
- Laboratory Animal Resource Center, University of Tsukuba, Tsukuba 305-8575, Ibaraki, Japan
- Life Science Center, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Tsukuba 305-8575, Ibaraki, Japan
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba 305-8575, Ibaraki, Japan
- Transborder Medical Research Center, Faculty of Medicine, University of Tsukuba, Tsukuba 305-8575, Ibaraki, Japan
| |
Collapse
|
11
|
Bohuslavova R, Fabriciova V, Smolik O, Lebrón-Mora L, Abaffy P, Benesova S, Zucha D, Valihrach L, Berkova Z, Saudek F, Pavlinkova G. NEUROD1 reinforces endocrine cell fate acquisition in pancreatic development. Nat Commun 2023; 14:5554. [PMID: 37689751 PMCID: PMC10492842 DOI: 10.1038/s41467-023-41306-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 08/30/2023] [Indexed: 09/11/2023] Open
Abstract
NEUROD1 is a transcription factor that helps maintain a mature phenotype of pancreatic β cells. Disruption of Neurod1 during pancreatic development causes severe neonatal diabetes; however, the exact role of NEUROD1 in the differentiation programs of endocrine cells is unknown. Here, we report a crucial role of the NEUROD1 regulatory network in endocrine lineage commitment and differentiation. Mechanistically, transcriptome and chromatin landscape analyses demonstrate that Neurod1 inactivation triggers a downregulation of endocrine differentiation transcription factors and upregulation of non-endocrine genes within the Neurod1-deficient endocrine cell population, disturbing endocrine identity acquisition. Neurod1 deficiency altered the H3K27me3 histone modification pattern in promoter regions of differentially expressed genes, which resulted in gene regulatory network changes in the differentiation pathway of endocrine cells, compromising endocrine cell potential, differentiation, and functional properties.
Collapse
Affiliation(s)
- Romana Bohuslavova
- Laboratory of Molecular Pathogenetics, Institute of Biotechnology CAS, 25250, Vestec, Czechia
| | - Valeria Fabriciova
- Laboratory of Molecular Pathogenetics, Institute of Biotechnology CAS, 25250, Vestec, Czechia
| | - Ondrej Smolik
- Laboratory of Molecular Pathogenetics, Institute of Biotechnology CAS, 25250, Vestec, Czechia
| | - Laura Lebrón-Mora
- Laboratory of Molecular Pathogenetics, Institute of Biotechnology CAS, 25250, Vestec, Czechia
| | - Pavel Abaffy
- Laboratory of Gene Expression, Institute of Biotechnology CAS, 25250, Vestec, Czechia
| | - Sarka Benesova
- Laboratory of Gene Expression, Institute of Biotechnology CAS, 25250, Vestec, Czechia
| | - Daniel Zucha
- Laboratory of Gene Expression, Institute of Biotechnology CAS, 25250, Vestec, Czechia
| | - Lukas Valihrach
- Laboratory of Gene Expression, Institute of Biotechnology CAS, 25250, Vestec, Czechia
| | - Zuzana Berkova
- Diabetes Centre, Experimental Medicine Centre, Institute for Clinical and Experimental Medicine, 14021, Prague, Czechia
| | - Frantisek Saudek
- Diabetes Centre, Experimental Medicine Centre, Institute for Clinical and Experimental Medicine, 14021, Prague, Czechia
| | - Gabriela Pavlinkova
- Laboratory of Molecular Pathogenetics, Institute of Biotechnology CAS, 25250, Vestec, Czechia.
| |
Collapse
|
12
|
Vanheer L, Fantuzzi F, To SK, Schiavo A, Van Haele M, Ostyn T, Haesen T, Yi X, Janiszewski A, Chappell J, Rihoux A, Sawatani T, Roskams T, Pattou F, Kerr-Conte J, Cnop M, Pasque V. Inferring regulators of cell identity in the human adult pancreas. NAR Genom Bioinform 2023; 5:lqad068. [PMID: 37435358 PMCID: PMC10331937 DOI: 10.1093/nargab/lqad068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 06/17/2023] [Accepted: 06/28/2023] [Indexed: 07/13/2023] Open
Abstract
Cellular identity during development is under the control of transcription factors that form gene regulatory networks. However, the transcription factors and gene regulatory networks underlying cellular identity in the human adult pancreas remain largely unexplored. Here, we integrate multiple single-cell RNA-sequencing datasets of the human adult pancreas, totaling 7393 cells, and comprehensively reconstruct gene regulatory networks. We show that a network of 142 transcription factors forms distinct regulatory modules that characterize pancreatic cell types. We present evidence that our approach identifies regulators of cell identity and cell states in the human adult pancreas. We predict that HEYL, BHLHE41 and JUND are active in acinar, beta and alpha cells, respectively, and show that these proteins are present in the human adult pancreas as well as in human induced pluripotent stem cell (hiPSC)-derived islet cells. Using single-cell transcriptomics, we found that JUND represses beta cell genes in hiPSC-alpha cells. BHLHE41 depletion induced apoptosis in primary pancreatic islets. The comprehensive gene regulatory network atlas can be explored interactively online. We anticipate our analysis to be the starting point for a more sophisticated dissection of how transcription factors regulate cell identity and cell states in the human adult pancreas.
Collapse
Affiliation(s)
- Lotte Vanheer
- Department of Development and Regeneration; KU Leuven - University of Leuven; Single-cell Omics Institute and Leuven Stem Cell Institute, Herestraat 49, B-3000 Leuven, Belgium
| | - Federica Fantuzzi
- ULB Center for Diabetes Research; Université Libre de Bruxelles; Route de Lennik 808, B-1070 Brussels, Belgium
| | - San Kit To
- Department of Development and Regeneration; KU Leuven - University of Leuven; Single-cell Omics Institute and Leuven Stem Cell Institute, Herestraat 49, B-3000 Leuven, Belgium
| | - Andrea Schiavo
- ULB Center for Diabetes Research; Université Libre de Bruxelles; Route de Lennik 808, B-1070 Brussels, Belgium
| | - Matthias Van Haele
- Department of Imaging and Pathology; Translational Cell and Tissue Research, KU Leuven and University Hospitals Leuven; Herestraat 49, B-3000 Leuven, Belgium
| | - Tessa Ostyn
- Department of Imaging and Pathology; Translational Cell and Tissue Research, KU Leuven and University Hospitals Leuven; Herestraat 49, B-3000 Leuven, Belgium
| | - Tine Haesen
- Department of Development and Regeneration; KU Leuven - University of Leuven; Single-cell Omics Institute and Leuven Stem Cell Institute, Herestraat 49, B-3000 Leuven, Belgium
| | - Xiaoyan Yi
- ULB Center for Diabetes Research; Université Libre de Bruxelles; Route de Lennik 808, B-1070 Brussels, Belgium
| | - Adrian Janiszewski
- Department of Development and Regeneration; KU Leuven - University of Leuven; Single-cell Omics Institute and Leuven Stem Cell Institute, Herestraat 49, B-3000 Leuven, Belgium
| | - Joel Chappell
- Department of Development and Regeneration; KU Leuven - University of Leuven; Single-cell Omics Institute and Leuven Stem Cell Institute, Herestraat 49, B-3000 Leuven, Belgium
| | - Adrien Rihoux
- Department of Development and Regeneration; KU Leuven - University of Leuven; Single-cell Omics Institute and Leuven Stem Cell Institute, Herestraat 49, B-3000 Leuven, Belgium
| | - Toshiaki Sawatani
- ULB Center for Diabetes Research; Université Libre de Bruxelles; Route de Lennik 808, B-1070 Brussels, Belgium
| | - Tania Roskams
- Department of Imaging and Pathology; Translational Cell and Tissue Research, KU Leuven and University Hospitals Leuven; Herestraat 49, B-3000 Leuven, Belgium
| | - Francois Pattou
- University of Lille, Inserm, CHU Lille, Institute Pasteur Lille, U1190-EGID, F-59000 Lille, France
- European Genomic Institute for Diabetes, F-59000 Lille, France
- University of Lille, F-59000 Lille, France
| | - Julie Kerr-Conte
- University of Lille, Inserm, CHU Lille, Institute Pasteur Lille, U1190-EGID, F-59000 Lille, France
- European Genomic Institute for Diabetes, F-59000 Lille, France
- University of Lille, F-59000 Lille, France
| | - Miriam Cnop
- ULB Center for Diabetes Research; Université Libre de Bruxelles; Route de Lennik 808, B-1070 Brussels, Belgium
- Division of Endocrinology; Erasmus Hospital, Université Libre de Bruxelles; Route de Lennik 808, B-1070 Brussels, Belgium
| | - Vincent Pasque
- Department of Development and Regeneration; KU Leuven - University of Leuven; Single-cell Omics Institute and Leuven Stem Cell Institute, Herestraat 49, B-3000 Leuven, Belgium
| |
Collapse
|
13
|
Spears E, Stanley JE, Shou M, Yin L, Li X, Dai C, Bradley A, Sellick K, Poffenberger G, Coate KC, Shrestha S, Jenkins R, Sloop KW, Wilson KT, Attie AD, Keller MP, Chen W, Powers AC, Dean ED. Pancreatic islet α cell function and proliferation requires the arginine transporter SLC7A2. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.10.552656. [PMID: 37645716 PMCID: PMC10461917 DOI: 10.1101/2023.08.10.552656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Interrupting glucagon signaling decreases gluconeogenesis and the fractional extraction of amino acids by liver from blood resulting in lower glycemia. The resulting hyperaminoacidemia stimulates α cell proliferation and glucagon secretion via a liver-α cell axis. We hypothesized that α cells detect and respond to circulating amino acids levels via a unique amino acid transporter repertoire. We found that Slc7a2ISLC7A2 is the most highly expressed cationic amino acid transporter in α cells with its expression being three-fold greater in α than β cells in both mouse and human. Employing cell culture, zebrafish, and knockout mouse models, we found that the cationic amino acid arginine and SLC7A2 are required for α cell proliferation in response to interrupted glucagon signaling. Ex vivo and in vivo assessment of islet function in Slc7a2-/- mice showed decreased arginine-stimulated glucagon and insulin secretion. We found that arginine activation of mTOR signaling and induction of the glutamine transporter SLC38A5 was dependent on SLC7A2, showing that both's role in α cell proliferation is dependent on arginine transport and SLC7A2. Finally, we identified single nucleotide polymorphisms in SLC7A2 associated with HbA1c. Together, these data indicate a central role for SLC7A2 in amino acid-stimulated α cell proliferation and islet hormone secretion.
Collapse
Affiliation(s)
- Erick Spears
- Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
- Department of Biology, Belmont University, Nashville, TN
| | - Jade E. Stanley
- Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
- Department of Molecular Physiology & Biophysics, Vanderbilt University, Nashville, TN
| | - Matthew Shou
- Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Linlin Yin
- Department of Molecular Physiology & Biophysics, Vanderbilt University, Nashville, TN
| | - Xuan Li
- Department of Molecular Physiology & Biophysics, Vanderbilt University, Nashville, TN
| | - Chunhua Dai
- Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Amber Bradley
- Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Katelyn Sellick
- Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Greg Poffenberger
- Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Katie C. Coate
- Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Shristi Shrestha
- Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Regina Jenkins
- Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Kyle W. Sloop
- Diabetes and Complications, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN
| | - Keith T. Wilson
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN
- Center for Mucosal Inflammation and Cancer, Vanderbilt University Medical Center, Nashville, TN
- Program in Cancer Biology, Vanderbilt University School of Medicine, Nashville, TN
- Veterans Affairs Tennessee Valley Healthcare System, Nashville, TN
| | - Alan D. Attie
- Department of Biochemistry, University of Wisconsin, Madison, WI
| | - Mark P. Keller
- Department of Biochemistry, University of Wisconsin, Madison, WI
| | - Wenbiao Chen
- Department of Molecular Physiology & Biophysics, Vanderbilt University, Nashville, TN
| | - Alvin C. Powers
- Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
- Department of Molecular Physiology & Biophysics, Vanderbilt University, Nashville, TN
- Veterans Affairs Tennessee Valley Healthcare System, Nashville, TN
| | - E. Danielle Dean
- Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
- Department of Molecular Physiology & Biophysics, Vanderbilt University, Nashville, TN
| |
Collapse
|
14
|
Abarinov V, Levine JA, Churchill AJ, Hopwood B, Deiter CS, Guney MA, Wells KL, Schrunk JM, Guo Y, Hammelman J, Gifford DK, Magnuson MA, Wichterle H, Sussel L. Major β cell-specific functions of NKX2.2 are mediated via the NK2-specific domain. Genes Dev 2023; 37:490-504. [PMID: 37364986 PMCID: PMC10393193 DOI: 10.1101/gad.350569.123] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Accepted: 06/06/2023] [Indexed: 06/28/2023]
Abstract
The consolidation of unambiguous cell fate commitment relies on the ability of transcription factors (TFs) to exert tissue-specific regulation of complex genetic networks. However, the mechanisms by which TFs establish such precise control over gene expression have remained elusive-especially in instances in which a single TF operates in two or more discrete cellular systems. In this study, we demonstrate that β cell-specific functions of NKX2.2 are driven by the highly conserved NK2-specific domain (SD). Mutation of the endogenous NKX2.2 SD prevents the developmental progression of β cell precursors into mature, insulin-expressing β cells, resulting in overt neonatal diabetes. Within the adult β cell, the SD stimulates β cell performance through the activation and repression of a subset of NKX2.2-regulated transcripts critical for β cell function. These irregularities in β cell gene expression may be mediated via SD-contingent interactions with components of chromatin remodelers and the nuclear pore complex. However, in stark contrast to these pancreatic phenotypes, the SD is entirely dispensable for the development of NKX2.2-dependent cell types within the CNS. Together, these results reveal a previously undetermined mechanism through which NKX2.2 directs disparate transcriptional programs in the pancreas versus neuroepithelium.
Collapse
Affiliation(s)
- Vladimir Abarinov
- Department of Genetics and Development, Columbia University, New York, New York 10032, USA
- Barbara Davis Center for Diabetes, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, USA
| | - Joshua A Levine
- Department of Genetics and Development, Columbia University, New York, New York 10032, USA
| | - Angela J Churchill
- Department of Genetics and Development, Columbia University, New York, New York 10032, USA
| | - Bryce Hopwood
- Barbara Davis Center for Diabetes, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, USA
| | - Cailin S Deiter
- Barbara Davis Center for Diabetes, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, USA
| | - Michelle A Guney
- Barbara Davis Center for Diabetes, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, USA
| | - Kristen L Wells
- Barbara Davis Center for Diabetes, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, USA
| | - Jessica M Schrunk
- Barbara Davis Center for Diabetes, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, USA
| | - Yuchun Guo
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Jennifer Hammelman
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - David K Gifford
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Mark A Magnuson
- Department of Molecular Physiology and Biophysics, Center for Stem Cell Biology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA
| | - Hynek Wichterle
- Department of Pathology and Cell Biology, Columbia University, New York, New York 10032, USA
- Department of Neurology, Columbia University, New York, New York 10032, USA
- Department of Neuroscience, Columbia University, New York, New York 10032, USA
| | - Lori Sussel
- Department of Genetics and Development, Columbia University, New York, New York 10032, USA;
- Barbara Davis Center for Diabetes, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, USA
| |
Collapse
|
15
|
Osipovich AB, Dudek KD, Trinh LT, Kim LH, Shrestha S, Cartailler JP, Magnuson MA. ZFP92, a KRAB domain zinc finger protein enriched in pancreatic islets, binds to B1/Alu SINE transposable elements and regulates retroelements and genes. PLoS Genet 2023; 19:e1010729. [PMID: 37155670 PMCID: PMC10166502 DOI: 10.1371/journal.pgen.1010729] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 04/02/2023] [Indexed: 05/10/2023] Open
Abstract
Repressive KRAB domain-containing zinc-finger proteins (KRAB-ZFPs) are abundant in mammalian genomes and contribute both to the silencing of transposable elements (TEs) and to the regulation of developmental stage- and cell type-specific gene expression. Here we describe studies of zinc finger protein 92 (Zfp92), an X-linked KRAB-ZFP that is highly expressed in pancreatic islets of adult mice, by analyzing global Zfp92 knockout (KO) mice. Physiological, transcriptomic and genome-wide chromatin binding studies indicate that the principal function of ZFP92 in mice is to bind to and suppress the activity of B1/Alu type of SINE elements and modulate the activity of surrounding genomic entities. Deletion of Zfp92 leads to changes in expression of select LINE and LTR retroelements and genes located in the vicinity of ZFP92-bound chromatin. The absence of Zfp92 leads to altered expression of specific genes in islets, adipose and muscle that result in modest sex-specific alterations in blood glucose homeostasis, body mass and fat accumulation. In islets, Zfp92 influences blood glucose concentration in postnatal mice via transcriptional effects on Mafb, whereas in adipose and muscle, it regulates Acacb, a rate-limiting enzyme in fatty acid metabolism. In the absence of Zfp92, a novel TE-Capn11 fusion transcript is overexpressed in islets and several other tissues due to de-repression of an IAPez TE adjacent to ZFP92-bound SINE elements in intron 3 of the Capn11 gene. Together, these studies show that ZFP92 functions both to repress specific TEs and to regulate the transcription of specific genes in discrete tissues.
Collapse
Affiliation(s)
- Anna B. Osipovich
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, United States of America
- Center for Stem Cell Biology, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Karrie D. Dudek
- Center for Stem Cell Biology, Vanderbilt University, Nashville, Tennessee, United States of America
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Linh T. Trinh
- Center for Stem Cell Biology, Vanderbilt University, Nashville, Tennessee, United States of America
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Lily H. Kim
- College of Arts and Sciences, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Shristi Shrestha
- Center for Stem Cell Biology, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Jean-Philippe Cartailler
- Center for Stem Cell Biology, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Mark A. Magnuson
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, United States of America
- Center for Stem Cell Biology, Vanderbilt University, Nashville, Tennessee, United States of America
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee, United States of America
| |
Collapse
|
16
|
Fu Q, Jiang H, Qian Y, Lv H, Dai H, Zhou Y, Chen Y, He Y, Gao R, Zheng S, Liang Y, Li S, Xu X, Xu K, Yang T. Single-cell RNA sequencing combined with single-cell proteomics identifies the metabolic adaptation of islet cell subpopulations to high-fat diet in mice. Diabetologia 2023; 66:724-740. [PMID: 36538064 PMCID: PMC9765371 DOI: 10.1007/s00125-022-05849-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Accepted: 10/13/2022] [Indexed: 12/24/2022]
Abstract
AIMS/HYPOTHESIS Islets have complex heterogeneity and subpopulations. Cell surface markers representing alpha, beta and delta cell subpopulations are urgently needed for investigations to explore the compositional changes of each subpopulation in obesity progress and diabetes onset, and the adaptation mechanism of islet metabolism induced by a high-fat diet (HFD). METHODS Single-cell RNA sequencing (scRNA-seq) was applied to identify alpha, beta and delta cell subpopulation markers in an HFD-induced mouse model of glucose intolerance. Flow cytometry and immunostaining were used to sort and assess the proportion of each subpopulation. Single-cell proteomics was performed on sorted cells, and the functional status of each alpha, beta and delta cell subpopulation in glucose intolerance was deeply elucidated based on protein expression. RESULTS A total of 33,999 cells were analysed by scRNA-seq and clustered into eight populations, including alpha, beta and delta cells. For alpha cells, scRNA-seq revealed that the Ace2low subpopulation had downregulated expression of genes related to alpha cell function and upregulated expression of genes associated with beta cell characteristics in comparison with the Ace2high subpopulation. The impaired function and increased fragility of ACE2low alpha cells exposure to HFD was further suggested by single-cell proteomics. As for beta cells, the CD81high subpopulation may indicate an immature signature of beta cells compared with the CD81low subpopulation, which had robust function. We also found differential expression of Slc2a2 in delta cells and a potentially stronger cellular function and metabolism in GLUT2low delta cells than GLUT2high delta cells. Moreover, an increased proportion of ACE2low alpha cells and CD81low beta cells, with a constant proportion of GLUT2low delta cells, were observed in HFD-induced glucose intolerance. CONCLUSIONS/INTERPRETATION We identified ACE2, CD81 and GLUT2 as surface markers to distinguish, respectively, alpha, beta and delta cell subpopulations with heterogeneous maturation and function. The changes in the proportion and functional status of islet endocrine subpopulations reflect the metabolic adaptation of islets to high-fat stress, which weakened the function of alpha cells and enhanced the function of beta and delta cells to bring about glycaemic homeostasis. Our findings provide a fundamental resource for exploring the mechanisms maintaining each islet endocrine subpopulation's fate and function in health and disease. DATA AVAILABILITY The scRNA-seq analysis datasets from the current study are available in the Gene Expression Omnibus (GEO) repository under the accession number GSE203376.
Collapse
Affiliation(s)
- Qi Fu
- Department of Endocrinology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Hemin Jiang
- Department of Endocrinology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yu Qian
- Department of Endocrinology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Hui Lv
- Department of Endocrinology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Hao Dai
- Department of Endocrinology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yuncai Zhou
- Department of Endocrinology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yang Chen
- Department of Endocrinology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yunqiang He
- Department of Endocrinology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Rui Gao
- Department of Endocrinology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Shuai Zheng
- Department of Endocrinology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yucheng Liang
- Department of Endocrinology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Siqi Li
- BGI-Shenzhen, Shenzhen, China
- BGI-Wuhan Clinical Laboratories, BGI-Shenzhen, Wuhan, China
| | - Xinyu Xu
- Department of Endocrinology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Kuanfeng Xu
- Department of Endocrinology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China.
| | - Tao Yang
- Department of Endocrinology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China.
| |
Collapse
|
17
|
Al-Abdulla R, Ferrero H, Boronat-Belda T, Soriano S, Quesada I, Alonso-Magdalena P. Exploring the Effects of Metabolism-Disrupting Chemicals on Pancreatic α-Cell Viability, Gene Expression and Function: A Screening Testing Approach. Int J Mol Sci 2023; 24:ijms24021044. [PMID: 36674557 PMCID: PMC9862653 DOI: 10.3390/ijms24021044] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/26/2022] [Accepted: 01/03/2023] [Indexed: 01/06/2023] Open
Abstract
Humans are constantly exposed to many environmental pollutants, some of which have been largely acknowledged as key factors in the development of metabolic disorders such as diabetes and obesity. These chemicals have been classified as endocrine-disrupting chemicals (EDCs) and, more recently, since they can interfere with metabolic functions, they have been renamed as metabolism-disrupting chemicals (MDCs). MDCs are present in many consumer products, including food packaging, personal care products, plastic bottles and containers, and detergents. The scientific literature has ever-increasingly focused on insulin-releasing pancreatic β-cells as one of the main targets for MDCs. Evidence highlights that these substances may disrupt glucose homeostasis by altering pancreatic β-cell physiology. However, their potential impact on glucagon-secreting pancreatic α-cells remains poorly known despite the essential role that this cellular type plays in controlling glucose metabolism. In the present study, we have selected seven paradigmatic MDCs representing major toxic classes, including bisphenols, phthalates, perfluorinated compounds, metals, and pesticides. By using an in vitro cell-based model, the pancreatic α-cell line αTC1-9, we have explored the effects of these compounds on pancreatic α-cell viability, gene expression, and secretion. We found that cell viability was moderately affected after bisphenol-A (BPA), bisphenol-F (BPF), and perfluorooctanesulfonic acid (PFOS) exposure, although cytotoxicity was relatively low. In addition, all bisphenols, as well as di(2-ethylhexyl) phthalate (DEHP) and cadmium chloride (CdCl2), promoted a marked decreased on glucagon secretion, together with changes in the expression of glucagon and/or transcription factors involved in cell function and identity, such as Foxo1 and Arx. Overall, our results indicated that most of the selected chemicals studied caused functional alterations in pancreatic α-cells. Moreover, we revealed, for the first time, their direct effects on key molecular aspects of pancreatic α-cell biology.
Collapse
Affiliation(s)
- Ruba Al-Abdulla
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández, 03202 Elche, Spain
| | - Hilda Ferrero
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández, 03202 Elche, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 28029 Madrid, Spain
| | - Talía Boronat-Belda
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández, 03202 Elche, Spain
| | - Sergi Soriano
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández, 03202 Elche, Spain
- Departamento de Fisiología, Genética y Microbiología, Universidad de Alicante, 03690 Alicante, Spain
| | - Iván Quesada
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández, 03202 Elche, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 28029 Madrid, Spain
| | - Paloma Alonso-Magdalena
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández, 03202 Elche, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 28029 Madrid, Spain
- Correspondence:
| |
Collapse
|
18
|
Chen K, Zhang J, Huang Y, Tian X, Yang Y, Dong A. Single-cell RNA-seq transcriptomic landscape of human and mouse islets and pathological alterations of diabetes. iScience 2022; 25:105366. [PMID: 36339258 PMCID: PMC9626680 DOI: 10.1016/j.isci.2022.105366] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 09/13/2022] [Accepted: 10/12/2022] [Indexed: 11/15/2022] Open
Abstract
Single-cell RNA sequencing has paved the way for delineating the pancreatic islet cell atlas and identifying hallmarks of diabetes. However, pathological alterations of type 2 diabetes (T2D) remain unclear. We isolated pancreatic islets from control and T2D mice for single-cell RNA sequencing (scRNA-seq) and retrieved multiple datasets from the open databases. The complete islet cell landscape and robust marker genes and transcription factors of each endocrine cell type were identified. GLRA1 was restricted to beta cells, and beta cells exhibited obvious heterogeneity. The beta subcluster in the T2D mice remarkably decreased the expression of Slc2a2, G6pc2, Mafa, Nkx6-1, Pdx1, and Ucn3 and had higher unfolded protein response (UPR) scores than in the control mice. Moreover, we developed a Web-based interactive tool, creating new opportunities for the data mining of pancreatic islet scRNA-seq datasets. In conclusion, our work provides a valuable resource for a deeper understanding of the pathological mechanism underlying diabetes. Cross-species scRNA-seq reveals the complete cell landscape of the islets of Langerhans We identify the robust marker genes and TFs of each endocrine and exocrine cell type Pathological alterations of beta cells in type 2 diabetes are explored A Web-based interactive tool is established for pancreatic islet scRNA-seq datasets
Collapse
|
19
|
Merino B, Casanueva-Álvarez E, Quesada I, González-Casimiro CM, Fernández-Díaz CM, Postigo-Casado T, Leissring MA, Kaestner KH, Perdomo G, Cózar-Castellano I. Insulin-degrading enzyme ablation in mouse pancreatic alpha cells triggers cell proliferation, hyperplasia and glucagon secretion dysregulation. Diabetologia 2022; 65:1375-1389. [PMID: 35652923 PMCID: PMC9283140 DOI: 10.1007/s00125-022-05729-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 03/11/2022] [Indexed: 01/01/2023]
Abstract
AIMS/HYPOTHESIS Type 2 diabetes is characterised by hyperglucagonaemia and perturbed function of pancreatic glucagon-secreting alpha cells but the molecular mechanisms contributing to these phenotypes are poorly understood. Insulin-degrading enzyme (IDE) is present within all islet cells, mostly in alpha cells, in both mice and humans. Furthermore, IDE can degrade glucagon as well as insulin, suggesting that IDE may play an important role in alpha cell function in vivo. METHODS We have generated and characterised a novel mouse model with alpha cell-specific deletion of Ide, the A-IDE-KO mouse line. Glucose metabolism and glucagon secretion in vivo was characterised; isolated islets were tested for glucagon and insulin secretion; alpha cell mass, alpha cell proliferation and α-synuclein levels were determined in pancreas sections by immunostaining. RESULTS Targeted deletion of Ide exclusively in alpha cells triggers hyperglucagonaemia and alpha cell hyperplasia, resulting in elevated constitutive glucagon secretion. The hyperglucagonaemia is attributable in part to dysregulation of glucagon secretion, specifically an impaired ability of IDE-deficient alpha cells to suppress glucagon release in the presence of high glucose or insulin. IDE deficiency also leads to α-synuclein aggregation in alpha cells, which may contribute to impaired glucagon secretion via cytoskeletal dysfunction. We showed further that IDE deficiency triggers impairments in cilia formation, inducing alpha cell hyperplasia and possibly also contributing to dysregulated glucagon secretion and hyperglucagonaemia. CONCLUSIONS/INTERPRETATION We propose that loss of IDE function in alpha cells contributes to hyperglucagonaemia in type 2 diabetes.
Collapse
Affiliation(s)
- Beatriz Merino
- Unidad de Excelencia Instituto de Biología y Genética Molecular (University of Valladolid-CSIC), Valladolid, Spain
| | - Elena Casanueva-Álvarez
- Unidad de Excelencia Instituto de Biología y Genética Molecular (University of Valladolid-CSIC), Valladolid, Spain
| | - Iván Quesada
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández de Elche, Elche, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain
| | - Carlos M González-Casimiro
- Unidad de Excelencia Instituto de Biología y Genética Molecular (University of Valladolid-CSIC), Valladolid, Spain
| | | | - Tamara Postigo-Casado
- Unidad de Excelencia Instituto de Biología y Genética Molecular (University of Valladolid-CSIC), Valladolid, Spain
| | - Malcolm A Leissring
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine (UCI MIND), Irvine, CA, USA
| | - Klaus H Kaestner
- Department of Genetics and Institute for Diabetes, Obesity and Metabolism, University of Pennsylvania, Philadelphia, PA, USA
| | - Germán Perdomo
- Unidad de Excelencia Instituto de Biología y Genética Molecular (University of Valladolid-CSIC), Valladolid, Spain
| | - Irene Cózar-Castellano
- Unidad de Excelencia Instituto de Biología y Genética Molecular (University of Valladolid-CSIC), Valladolid, Spain.
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain.
| |
Collapse
|
20
|
Role of the Transcription Factor MAFA in the Maintenance of Pancreatic β-Cells. Int J Mol Sci 2022; 23:ijms23094478. [PMID: 35562869 PMCID: PMC9101179 DOI: 10.3390/ijms23094478] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/16/2022] [Accepted: 04/17/2022] [Indexed: 02/04/2023] Open
Abstract
Pancreatic β-cells are specialized to properly regulate blood glucose. Maintenance of the mature β-cell phenotype is critical for glucose metabolism, and β-cell failure results in diabetes mellitus. Recent studies provide strong evidence that the mature phenotype of β-cells is maintained by several transcription factors. These factors are also required for β-cell differentiation from endocrine precursors or maturation from immature β-cells during pancreatic development. Because the reduction or loss of these factors leads to β-cell failure and diabetes, inducing the upregulation or inhibiting downregulation of these transcription factors would be beneficial for studies in both diabetes and stem cell biology. Here, we discuss one such factor, i.e., the transcription factor MAFA. MAFA is a basic leucine zipper family transcription factor that can activate the expression of insulin in β-cells with PDX1 and NEUROD1. MAFA is indeed indispensable for the maintenance of not only insulin expression but also function of adult β-cells. With loss of MAFA in type 2 diabetes, β-cells cannot maintain their mature phenotype and are dedifferentiated. In this review, we first briefly summarize the functional roles of MAFA in β-cells and then mainly focus on the molecular mechanism of cell fate conversion regulated by MAFA.
Collapse
|
21
|
Liang J, Chirikjian M, Pajvani UB, Bartolomé A. MafA Regulation in β-Cells: From Transcriptional to Post-Translational Mechanisms. Biomolecules 2022; 12:535. [PMID: 35454124 PMCID: PMC9033020 DOI: 10.3390/biom12040535] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 03/29/2022] [Accepted: 03/30/2022] [Indexed: 11/17/2022] Open
Abstract
β-cells are insulin-producing cells in the pancreas that maintain euglycemic conditions. Pancreatic β-cell maturity and function are regulated by a variety of transcription factors that enable the adequate expression of the cellular machinery involved in nutrient sensing and commensurate insulin secretion. One of the key factors in this regulation is MAF bZIP transcription factor A (MafA). MafA expression is decreased in type 2 diabetes, contributing to β-cell dysfunction and disease progression. The molecular biology underlying MafA is complex, with numerous transcriptional and post-translational regulatory nodes. Understanding these complexities may uncover potential therapeutic targets to ameliorate β-cell dysfunction. This article will summarize the role of MafA in normal β-cell function and disease, with a special focus on known transcriptional and post-translational regulators of MafA expression.
Collapse
Affiliation(s)
- Jiani Liang
- Department of Medicine, Columbia University, New York, NY 10032, USA; (J.L.); (M.C.); (U.B.P.)
| | - Margot Chirikjian
- Department of Medicine, Columbia University, New York, NY 10032, USA; (J.L.); (M.C.); (U.B.P.)
| | - Utpal B. Pajvani
- Department of Medicine, Columbia University, New York, NY 10032, USA; (J.L.); (M.C.); (U.B.P.)
| | - Alberto Bartolomé
- Instituto de Investigaciones Biomédicas Alberto Sols, CSIC-UAM, 28029 Madrid, Spain
| |
Collapse
|
22
|
Dreijerink KM, Hackeng WM, Singhi AD, Heaphy CM, Brosens LA. Clinical implications of cell-of-origin epigenetic characteristics in non-functional pancreatic neuroendocrine tumors. J Pathol 2022; 256:143-148. [PMID: 34750813 DOI: 10.1002/path.5834] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 11/03/2021] [Indexed: 02/05/2023]
Abstract
Primary non-functional pancreatic neuroendocrine tumors (NF-PanNETs) are a heterogeneous group of neuroendocrine neoplasms that display highly variable clinical behavior. Therefore, NF-PanNETs often present clinical teams with a dilemma: the uncertain metastatic potential of the tumor has to be weighed against the morbidity associated with surgical resection. Thus, rather than utilizing current radiologic thresholds, there is an urgent need for improved prognostic biomarkers. Recent studies aimed at understanding the epigenetic underpinnings of NF-PanNETs have led to the identification of tumor subgroups based on histone modification and DNA methylation patterns. These molecular profiles tend to resemble the cellular origins of PanNETs. Subsequent retrospective analyses have demonstrated that these molecular signatures are of prognostic value and, importantly, may be useful in the preoperative setting. These studies have highlighted that sporadic NF-PanNETs displaying biomarkers associated with disease progression and poor prognosis, such as alternative lengthening of telomeres, inactivating alpha thalassemia/mental retardation X-linked (ATRX) or death domain-associated protein (DAXX) gene mutations, or copy number variations, more often display alpha cell characteristics. Conversely, NF-PanNETs with beta cell characteristics often lack these unfavorable biomarkers. Alternative lengthening of telomeres, transcription factor protein expression, and possibly DNA methylation can be assessed in endoscopic ultrasound-guided tumor biopsies. Prospective studies focusing on cell-of-origin and epigenetic profile-driven decision making prior to surgery are likely to be routinely implemented into clinical practice in the near future. © 2021 The Authors. The Journal of Pathology published by John Wiley & Sons, Ltd. on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Koen Ma Dreijerink
- Amsterdam Center for Endocrine and Neuroendocrine Tumors, Department of Endocrinology, Amsterdam University Medical Centers, VU University Medical Center, Amsterdam, The Netherlands
| | - Wenzel M Hackeng
- Department of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Aatur D Singhi
- Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Christopher M Heaphy
- Departments of Medicine and Pathology & Laboratory Medicine, Boston University School of Medicine, Boston, MA, USA
| | - Lodewijk Aa Brosens
- Department of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
23
|
Shcheglova E, Blaszczyk K, Borowiak M. Mitogen Synergy: An Emerging Route to Boosting Human Beta Cell Proliferation. Front Cell Dev Biol 2022; 9:734597. [PMID: 35155441 PMCID: PMC8829426 DOI: 10.3389/fcell.2021.734597] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 08/24/2021] [Indexed: 12/11/2022] Open
Abstract
Decreased number and function of beta cells are a key aspect of diabetes mellitus (diabetes), a disease that remains an onerous global health problem. Means of restoring beta cell mass are urgently being sought as a potential cure for diabetes. Several strategies, such as de novo beta cell derivation via pluripotent stem cell differentiation or mature somatic cell transdifferentiation, have yielded promising results. Beta cell expansion is another promising strategy, rendered challenging by the very low proliferative capacity of beta cells. Many effective mitogens have been identified in rodents, but the vast majority do not have similar mitogenic effects in human beta cells. Extensive research has led to the identification of several human beta cell mitogens, but their efficacy and specificity remain insufficient. An approach based on the simultaneous application of several mitogens has recently emerged and can yield human beta cell proliferation rates of up to 8%. Here, we discuss recent advances in restoration of the beta cell population, focusing on mitogen synergy, and the contribution of RNA-sequencing (RNA-seq) to accelerating the elucidation of signaling pathways in proliferating beta cells and the discovery of novel mitogens. Together, these approaches have taken beta cell research up a level, bringing us closer to a cure for diabetes.
Collapse
Affiliation(s)
- Ekaterina Shcheglova
- Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| | - Katarzyna Blaszczyk
- Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| | - Malgorzata Borowiak
- Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, United States
- *Correspondence: Malgorzata Borowiak, ;
| |
Collapse
|
24
|
Stancill JS, Kasmani MY, Khatun A, Cui W, Corbett JA. Cytokine and Nitric Oxide-Dependent Gene Regulation in Islet Endocrine and Nonendocrine Cells. FUNCTION (OXFORD, ENGLAND) 2021; 3:zqab063. [PMID: 34927076 PMCID: PMC8674205 DOI: 10.1093/function/zqab063] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 11/05/2021] [Accepted: 11/29/2021] [Indexed: 02/02/2023]
Abstract
While exposure to inflammatory cytokines is thought to contribute to pancreatic β-cell damage during diabetes, primarily because cytokine-induced nitric oxide impairs β-cell function and causes cell death with prolonged exposure, we hypothesize that there is a physiological role for cytokine signaling that protects β-cells from a number of environmental stresses. This hypothesis is derived from the knowledge that β-cells are essential for survival even though they have a limited capacity to replicate, yet they are exposed to high cytokine levels during infection as most of the pancreatic blood flow is directed to islets. Here, mouse islets were subjected to single-cell RNA sequencing following 18-h cytokine exposure. Treatment with IL-1β and IFN-γ stimulates expression of inducible nitric oxide synthase (iNOS) mRNA and antiviral and immune-associated genes as well as repression of islet identity factors in a subset of β- and non-β-endocrine cells in a nitric oxide-independent manner. Nitric oxide-dependent expression of genes encoding heat shock proteins was observed in both β- and non-β-endocrine cells. Interestingly, cells with high expression of heat shock proteins failed to increase antiviral and immune-associated gene expression, suggesting that nitric oxide may be an internal "off switch" to prevent the negative effects of prolonged cytokine signaling in islet endocrine cells. We found no evidence for pro-apoptotic gene expression following 18-h cytokine exposure. Our findings suggest that the primary functions of cytokines and nitric oxide are to protect islet endocrine cells from damage, and only when regulation of cytokine signaling is lost does irreversible damage occur.
Collapse
Affiliation(s)
| | - Moujtaba Y Kasmani
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI 53226, USA,Blood Research Institute, Versiti, Milwaukee, WI 53226, USA
| | - Achia Khatun
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI 53226, USA,Blood Research Institute, Versiti, Milwaukee, WI 53226, USA
| | - Weiguo Cui
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI 53226, USA,Blood Research Institute, Versiti, Milwaukee, WI 53226, USA
| | | |
Collapse
|
25
|
Knockout of mafba Causes Inner-Ear Developmental Defects in Zebrafish via the Impairment of Proliferation and Differentiation of Ionocyte Progenitor Cells. Biomedicines 2021; 9:biomedicines9111699. [PMID: 34829928 PMCID: PMC8616026 DOI: 10.3390/biomedicines9111699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 10/18/2021] [Accepted: 10/28/2021] [Indexed: 12/03/2022] Open
Abstract
Zebrafish is an excellent model for exploring the development of the inner ear. Its inner ear has similar functions to that of humans, specifically in the maintenance of hearing and balance. Mafba is a component of the Maf transcription factor family. It participates in multiple biological processes, but its role in inner-ear development remains poorly understood. In this study, we constructed a mafba knockout (mafba−/−) zebrafish model using CRISPR/Cas9 technology. The mafba−/− mutant inner ear displayed severe impairments, such as enlarged otocysts, smaller or absent otoliths, and insensitivity to sound stimulation. The proliferation of p63+ epidermal stem cells and dlc+ ionocyte progenitors was inhibited in mafba−/− mutants. Moreover, the results showed that mafba deletion induces the apoptosis of differentiated K+-ATPase-rich (NR) cells and H+-ATPase-rich (HR) cells. The activation of p53 apoptosis and G0/G1 cell cycle arrest resulted from DNA damage in the inner-ear region, providing a mechanism to account for the inner ear deficiencies. The loss of homeostasis resulting from disorders of ionocyte progenitors resulted in structural defects in the inner ear and, consequently, loss of hearing. In conclusion, the present study elucidated the function of ionic channel homeostasis and inner-ear development using a zebrafish Mafba model and clarified the possible physiological roles.
Collapse
|
26
|
Lien YC, Lu XM, Won KJ, Wang PZ, Osei-Bonsu W, Simmons RA. The Transcriptome and Epigenome Reveal Novel Changes in Transcription Regulation During Pancreatic Rat Islet Maturation. Endocrinology 2021; 162:6360893. [PMID: 34467975 PMCID: PMC8455347 DOI: 10.1210/endocr/bqab181] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Indexed: 01/03/2023]
Abstract
Islet function is critical for normal glucose homeostasis. Unlike adult β cells, fetal and neonatal islets are more proliferative and have decreased insulin secretion in response to stimuli. However, the underlying mechanisms governing functional maturity of islets have not been completely elucidated. Pancreatic islets comprise different cell types. The microenvironment of islets and interactions between these cell types are critical for β-cell development and maturation. Thus, the study of intact islets is optimal to identify novel molecular mechanisms controlling islet functional development. Transcriptomes and genome-wide histone landscapes of H3K4me3, H3K27me3, and H3K27Ac from intact islets isolated from 2- and 10-week-old Sprague-Dawley rats were integrated to elucidate genes and pathways modulating islet development, as well as the contribution of epigenetic regulation. A total of 4489 differentially expressed genes were identified; 2289 and 2200 of them were up- and down-regulated in 10-week islets, respectively. Ingenuity Pathway Analysis revealed critical pathways regulating functional maturation of islets, including nutrient sensing, neuronal function, immune function, cell replication, and extracellular matrix. Furthermore, we identified significant changes in enrichment of H3K4me3, H3K27me3, and H3K27Ac marks, which correlated with expression changes of genes critical for islet function. These histone marks were enriched at critical transcription factor-binding motifs, such as Hoxa9, C/EBP-β, Gata1, Foxo1, E2f1, E2f3, and Mafb. In addition, our chromatin immunoprecipitation sequencing data revealed multiple potential bivalent genes whose poised states changed with maturation. Collectively, our current study identified critical novel pathways for mature islet function and suggested a role for histone modifications in regulating islet development and maturation.
Collapse
Affiliation(s)
- Yu-Chin Lien
- Center for Research on Reproduction and Women’s Health, Perelman School of Medicine, the University of Pennsylvania, Philadelphia, PA 19104, USA
- Division of Neonatology, Department of Pediatrics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Xueqing Maggie Lu
- Institute for Biomedical Informatics, Perelman School of Medicine, the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kyoung-Jae Won
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, 2200 Copenhagen, Denmark
- Novo Nordisk Foundation Center for Stem Cell Biology (DanStem), Faculty of Health Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Paul Zhiping Wang
- Institute for Biomedical Informatics, Perelman School of Medicine, the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Wendy Osei-Bonsu
- Center for Research on Reproduction and Women’s Health, Perelman School of Medicine, the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Rebecca A Simmons
- Center for Research on Reproduction and Women’s Health, Perelman School of Medicine, the University of Pennsylvania, Philadelphia, PA 19104, USA
- Division of Neonatology, Department of Pediatrics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Correspondence: Rebecca A. Simmons, MD, BRB II/III, 13th Floor, Rm 1308, 421 Curie Blvd, Perelman School of Medicine, the University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
27
|
Bohuslavova R, Smolik O, Malfatti J, Berkova Z, Novakova Z, Saudek F, Pavlinkova G. NEUROD1 Is Required for the Early α and β Endocrine Differentiation in the Pancreas. Int J Mol Sci 2021; 22:6713. [PMID: 34201511 PMCID: PMC8268837 DOI: 10.3390/ijms22136713] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 06/18/2021] [Accepted: 06/21/2021] [Indexed: 11/17/2022] Open
Abstract
Diabetes is a metabolic disease that involves the death or dysfunction of the insulin-secreting β cells in the pancreas. Consequently, most diabetes research is aimed at understanding the molecular and cellular bases of pancreatic development, islet formation, β-cell survival, and insulin secretion. Complex interactions of signaling pathways and transcription factor networks regulate the specification, growth, and differentiation of cell types in the developing pancreas. Many of the same regulators continue to modulate gene expression and cell fate of the adult pancreas. The transcription factor NEUROD1 is essential for the maturation of β cells and the expansion of the pancreatic islet cell mass. Mutations of the Neurod1 gene cause diabetes in humans and mice. However, the different aspects of the requirement of NEUROD1 for pancreas development are not fully understood. In this study, we investigated the role of NEUROD1 during the primary and secondary transitions of mouse pancreas development. We determined that the elimination of Neurod1 impairs the expression of key transcription factors for α- and β-cell differentiation, β-cell proliferation, insulin production, and islets of Langerhans formation. These findings demonstrate that the Neurod1 deletion altered the properties of α and β endocrine cells, resulting in severe neonatal diabetes, and thus, NEUROD1 is required for proper activation of the transcriptional network and differentiation of functional α and β cells.
Collapse
Affiliation(s)
- Romana Bohuslavova
- Institute of Biotechnology CAS, 25250 Vestec, Czech Republic; (R.B.); (O.S.); (J.M.); (Z.N.)
| | - Ondrej Smolik
- Institute of Biotechnology CAS, 25250 Vestec, Czech Republic; (R.B.); (O.S.); (J.M.); (Z.N.)
- Department of Cell Biology, Faculty of Science, Charles University, 12843 Prague, Czech Republic
| | - Jessica Malfatti
- Institute of Biotechnology CAS, 25250 Vestec, Czech Republic; (R.B.); (O.S.); (J.M.); (Z.N.)
- Department of Cell Biology, Faculty of Science, Charles University, 12843 Prague, Czech Republic
| | - Zuzana Berkova
- Laboratory of Pancreatic Islets, Institute for Clinical and Experimental Medicine, 14021 Prague, Czech Republic; (Z.B.); (F.S.)
| | - Zaneta Novakova
- Institute of Biotechnology CAS, 25250 Vestec, Czech Republic; (R.B.); (O.S.); (J.M.); (Z.N.)
| | - Frantisek Saudek
- Laboratory of Pancreatic Islets, Institute for Clinical and Experimental Medicine, 14021 Prague, Czech Republic; (Z.B.); (F.S.)
| | - Gabriela Pavlinkova
- Institute of Biotechnology CAS, 25250 Vestec, Czech Republic; (R.B.); (O.S.); (J.M.); (Z.N.)
| |
Collapse
|
28
|
Sun ZY, Yu TY, Jiang FX, Wang W. Functional maturation of immature β cells: A roadblock for stem cell therapy for type 1 diabetes. World J Stem Cells 2021; 13:193-207. [PMID: 33815669 PMCID: PMC8006013 DOI: 10.4252/wjsc.v13.i3.193] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 01/19/2021] [Accepted: 02/25/2021] [Indexed: 02/06/2023] Open
Abstract
Type 1 diabetes mellitus (T1DM) is a chronic autoimmune disease caused by the specific destruction of pancreatic islet β cells and is characterized as the absolute insufficiency of insulin secretion. Current insulin replacement therapy supplies insulin in a non-physiological way and is associated with devastating complications. Experimental islet transplantation therapy has been proven to restore glucose homeostasis in people with severe T1DM. However, it is restricted by many factors such as severe shortage of donor sources, progressive loss of donor cells, high cost, etc. As pluripotent stem cells have the potential to give rise to all cells including islet β cells in the body, stem cell therapy for diabetes has attracted great attention in the academic community and the general public. Transplantation of islet β-like cells differentiated from human pluripotent stem cells (hPSCs) has the potential to be an excellent alternative to islet transplantation. In stem cell therapy, obtaining β cells with complete insulin secretion in vitro is crucial. However, after much research, it has been found that the β-like cells obtained by in vitro differentiation still have many defects, including lack of adult-type glucose stimulated insulin secretion, and multi-hormonal secretion, suggesting that in vitro culture does not allows for obtaining fully mature β-like cells for transplantation. A large number of studies have found that many transcription factors play important roles in the process of transforming immature to mature human islet β cells. Furthermore, PDX1, NKX6.1, SOX9, NGN3, PAX4, etc., are important in inducing hPSC differentiation in vitro. The absent or deficient expression of any of these key factors may lead to the islet development defect in vivo and the failure of stem cells to differentiate into genuine functional β-like cells in vitro. This article reviews β cell maturation in vivo and in vitro and the vital roles of key molecules in this process, in order to explore the current problems in stem cell therapy for diabetes.
Collapse
Affiliation(s)
- Zi-Yi Sun
- Department of Endocrinology, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361100, Fujian Province, China
| | - Ting-Yan Yu
- Department of Endocrinology, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361100, Fujian Province, China
| | - Fang-Xu Jiang
- Department of Endocrinology, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361100, Fujian Province, China
| | - Wei Wang
- Department of Endocrinology, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361100, Fujian Province, China.
| |
Collapse
|
29
|
Zhang X, Wang X, Yuan Z, Radford SJ, Liu C, Libutti SK, Zheng XFS. Amino acids-Rab1A-mTORC1 signaling controls whole-body glucose homeostasis. Cell Rep 2021; 34:108830. [PMID: 33730578 PMCID: PMC8062038 DOI: 10.1016/j.celrep.2021.108830] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 12/28/2020] [Accepted: 02/16/2021] [Indexed: 12/17/2022] Open
Abstract
Rab1A is a small GTPase known for its role in vesicular trafficking. Recent evidence indicates that Rab1A is essential for amino acids (aas) sensing and signaling to regulate mTORC1 in normal and cancer cells. However, Rab1A's in vivo function in mammals is not known. Here, we report the generation of tamoxifen (TAM)-induced whole body Rab1A knockout (Rab1A-/-) in adult mice. Rab1A-/- mice are viable but become hyperglycemic and glucose intolerant due to impaired insulin transcription and β-cell proliferation and maintenance. Mechanistically, Rab1A mediates AA-mTORC1 signaling, particularly branched chain amino acids (BCAA), to regulate the stability and localization of the insulin transcription factor Pdx1. Collectively, these results reveal a physiological role of aa-Rab1A-mTORC1 signaling in the control of whole-body glucose homeostasis in mammals. Intriguingly, Rab1A expression is reduced in β-cells of type 2 diabetes (T2D) patients, which is correlated with loss of insulin expression, suggesting that Rab1A downregulation contributes to T2D progression.
Collapse
Affiliation(s)
- Xin Zhang
- Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, 195 Little Albany Street, New Brunswick, NJ 08901, USA; Department of Pharmacology, Robert Wood Johnson Medical School, Rutgers, the State University of New Jersey, 675 Hoes Lane, Piscataway, NJ 08854, USA
| | - Xiaowen Wang
- Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, 195 Little Albany Street, New Brunswick, NJ 08901, USA; Department of Pharmacology, Robert Wood Johnson Medical School, Rutgers, the State University of New Jersey, 675 Hoes Lane, Piscataway, NJ 08854, USA
| | - Ziqiang Yuan
- Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, 195 Little Albany Street, New Brunswick, NJ 08901, USA; Department of Surgery, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, 195 Little Albany Street, New Brunswick, NJ 08901, USA
| | - Sarah J Radford
- Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, 195 Little Albany Street, New Brunswick, NJ 08901, USA
| | - Chen Liu
- Department of Pathology and Laboratory Medicine, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, 195 Little Albany Street, New Brunswick, NJ 08901, USA
| | - Steven K Libutti
- Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, 195 Little Albany Street, New Brunswick, NJ 08901, USA; Department of Surgery, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, 195 Little Albany Street, New Brunswick, NJ 08901, USA
| | - X F Steven Zheng
- Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, 195 Little Albany Street, New Brunswick, NJ 08901, USA; Department of Pharmacology, Robert Wood Johnson Medical School, Rutgers, the State University of New Jersey, 675 Hoes Lane, Piscataway, NJ 08854, USA.
| |
Collapse
|
30
|
Engin AB, Engin A. Protein Kinases Signaling in Pancreatic Beta-cells Death and Type 2 Diabetes. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1275:195-227. [PMID: 33539017 DOI: 10.1007/978-3-030-49844-3_8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Type 2 diabetes (T2D) is a worldwide serious public health problem. Insulin resistance and β-cell failure are the two major components of T2D pathology. In addition to defective endoplasmic reticulum (ER) stress signaling due to glucolipotoxicity, β-cell dysfunction or β-cell death initiates the deleterious vicious cycle observed in T2D. Although the primary cause is still unknown, overnutrition that contributes to the induction of the state of low-grade inflammation, and the activation of various protein kinases-related metabolic pathways are main factors leading to T2D. In this chapter following subjects, which have critical checkpoints regarding β-cell fate and protein kinases pathways are discussed; hyperglycemia-induced β-cell failure, chronic accumulation of unfolded protein in β-cells, the effect of intracellular reactive oxygen species (ROS) signaling to insulin secretion, excessive saturated free fatty acid-induced β-cell apoptosis, mitophagy dysfunction, proinflammatory responses and insulin resistance, and the reprogramming of β-cell for differentiation or dedifferentiation in T2D. There is much debate about selecting proposed therapeutic strategies to maintain or enhance optimal β-cell viability for adequate insulin secretion in T2D. However, in order to achieve an effective solution in the treatment of T2D, more intensive clinical trials are required on newer therapeutic options based on protein kinases signaling pathways.
Collapse
Affiliation(s)
- Ayse Basak Engin
- Department of Toxicology, Faculty of Pharmacy, Gazi University, Ankara, Turkey.
| | - Atilla Engin
- Department of General Surgery, Faculty of Medicine, Gazi University, Ankara, Turkey
| |
Collapse
|
31
|
Tellez K, Hang Y, Gu X, Chang CA, Stein RW, Kim SK. In vivo studies of glucagon secretion by human islets transplanted in mice. Nat Metab 2020; 2:547-557. [PMID: 32694729 PMCID: PMC7739959 DOI: 10.1038/s42255-020-0213-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 04/24/2020] [Indexed: 02/06/2023]
Abstract
Little is known about regulated glucagon secretion by human islet α-cells compared to insulin secretion from β-cells, despite conclusive evidence of dysfunction in both cell types in diabetes mellitus. Distinct insulins in humans and mice permit in vivo studies of human β-cell regulation after human islet transplantation in immunocompromised mice, whereas identical glucagon sequences prevent analogous in vivo measures of glucagon output from human α-cells. Here, we use CRISPR-Cas9 editing to remove glucagon codons 2-29 in immunocompromised NSG mice, preserving the production of other proglucagon-derived hormones. Glucagon knockout NSG (GKO-NSG) mice have metabolic, liver and pancreatic phenotypes associated with glucagon-signalling deficits that revert after transplantation of human islets from non-diabetic donors. Glucagon hypersecretion by transplanted islets from donors with type 2 diabetes revealed islet-intrinsic defects. We suggest that GKO-NSG mice provide an unprecedented resource to investigate human α-cell regulation in vivo.
Collapse
Affiliation(s)
- Krissie Tellez
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Yan Hang
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA, USA
- Stanford Diabetes Research Center, Stanford University School of Medicine, Stanford, CA, USA
| | - Xueying Gu
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Charles A Chang
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Roland W Stein
- Department of Molecular Physiology and Biophysics, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Seung K Kim
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA, USA.
- Stanford Diabetes Research Center, Stanford University School of Medicine, Stanford, CA, USA.
- Department of Medicine (Endocrinology Division), Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
32
|
Fabbri S, Zonefrati R, Galli G, Gronchi G, Perigli G, Borrelli A, Brandi ML. In Vitro Control of Genes Critical for Parathyroid Embryogenesis by Extracellular Calcium. J Endocr Soc 2020; 4:bvaa058. [PMID: 32666007 PMCID: PMC7326476 DOI: 10.1210/jendso/bvaa058] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 05/22/2020] [Indexed: 02/07/2023] Open
Abstract
Background The expression of the parathyroid transcription factors, encoded by the genes GATA3, GCM2, and MAFB, persists after parathyroid morphogenesis. This suggests a role of these genes in the regulatory program that governs parathyroid function in the adult. Indeed, these 3 genes form a transcriptional cascade able to activate PTH gene expression. Materials and Methods Adult adenoma parathyroid tissues were put in primary cell culture to evaluate the messenger ribonucleic acid (mRNA) expression of the PTH gene, of the genes involved in the calcium regulatory signaling pathway (CaSR, GNA11, and AP2S1), and of the 3 genes (GATA3, GCM2, and MAFB) involved in the parathyroid morphogenesis in the presence of different extracellular calcium concentrations from 0.1 mM to 3.0 mM. Aim The aim of the study was to investigate whether different extracellular calcium conditions could control the expression of transcription factors critical for parathyroid embryogenesis. Results The results of the experiments showed that the mRNA expression of GATA3, GCM2, and MAFB genes follows the same response as the PTH gene to extracellular calcium concentrations, with the highest expression at low calcium (0.1 mM) and the lowest at high calcium (3.0 mM). Conversely, the genes involved in the calcium signaling in the parathyroid cells showed a variable response to the extracellular calcium concentrations, with the CaSR and GNA11 genes exhibiting a sensitivity to low calcium concentrations. Conclusions These findings indicate that transcription factors recognized for their role in parathyroid embryogenesis show a response to extracellular calcium later in adulthood that parallels the behavior of the PTH gene.
Collapse
Affiliation(s)
- Sergio Fabbri
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy
| | - Roberto Zonefrati
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy
| | - Gianna Galli
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy
| | - Giorgio Gronchi
- Department of Neuroscience, Psychology, Drug Research & Child Health, University of Florence, Florence, Italy
| | - Giuliano Perigli
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Andrea Borrelli
- Bariatric, General Surgery and Metabolic Department, Santa Maria Nuova Hospital, Florence, Italy
| | - Maria Luisa Brandi
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy
| |
Collapse
|
33
|
Yin Q, Ni Q, Wang Y, Zhang H, Li W, Nie A, Wang S, Gu Y, Wang Q, Ning G. Raptor determines β-cell identity and plasticity independent of hyperglycemia in mice. Nat Commun 2020; 11:2538. [PMID: 32439909 PMCID: PMC7242325 DOI: 10.1038/s41467-020-15935-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Accepted: 03/05/2020] [Indexed: 02/07/2023] Open
Abstract
Compromised β-cell identity is emerging as an important contributor to β-cell failure in diabetes; however, the precise mechanism independent of hyperglycemia is under investigation. We have previously reported that mTORC1/Raptor regulates functional maturation in β-cells. In the present study, we find that diabetic β-cell specific Raptor-deficient mice (βRapKOGFP) show reduced β-cell mass, loss of β-cell identity and acquisition of α-cell features; which are not reversible upon glucose normalization. Deletion of Raptor directly impairs β-cell identity, mitochondrial metabolic coupling and protein synthetic activity, leading to β-cell failure. Moreover, loss of Raptor activates α-cell transcription factor MafB (via modulating C/EBPβ isoform ratio) and several α-cell enriched genes i.e. Etv1 and Tspan12, thus initiates β- to α-cell reprograming. The present findings highlight mTORC1 as a metabolic rheostat for stabilizing β-cell identity and repressing α-cell program at normoglycemic level, which might present therapeutic opportunities for treatment of diabetes.
Collapse
Affiliation(s)
- Qinglei Yin
- Shanghai National Clinical Research Center for Endocrine and Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, China
| | - Qicheng Ni
- Shanghai National Clinical Research Center for Endocrine and Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, China
| | - Yichen Wang
- Shanghai National Clinical Research Center for Endocrine and Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, China
| | - Hongli Zhang
- Department of Endocrinology, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, 200137, Shanghai, China
| | - Wenyi Li
- Shanghai National Clinical Research Center for Endocrine and Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, China
| | - Aifang Nie
- Shanghai National Clinical Research Center for Endocrine and Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, China
| | - Shu Wang
- Shanghai National Clinical Research Center for Endocrine and Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, China
| | - Yanyun Gu
- Shanghai National Clinical Research Center for Endocrine and Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, China
| | - Qidi Wang
- Shanghai National Clinical Research Center for Endocrine and Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, China.
- Sino-French Research Center for Life Sciences and Genomics, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, China.
| | - Guang Ning
- Shanghai National Clinical Research Center for Endocrine and Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, China.
| |
Collapse
|
34
|
Dieterich LC, Tacconi C, Menzi F, Proulx ST, Kapaklikaya K, Hamada M, Takahashi S, Detmar M. Lymphatic MAFB regulates vascular patterning during developmental and pathological lymphangiogenesis. Angiogenesis 2020; 23:411-423. [PMID: 32307629 PMCID: PMC7311381 DOI: 10.1007/s10456-020-09721-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 04/07/2020] [Indexed: 12/27/2022]
Abstract
MAFB is a transcription factor involved in the terminal differentiation of several cell types, including macrophages and keratinocytes. MAFB is also expressed in lymphatic endothelial cells (LECs) and is upregulated by VEGF-C/VEGFR-3 signaling. Recent studies have revealed that MAFB regulates several genes involved in lymphatic differentiation and that global Mafb knockout mice show defects in patterning of lymphatic vessels during embryogenesis. However, it has remained unknown whether this effect is LEC-intrinsic and whether MAFB might also be involved in postnatal lymphangiogenesis. We established conditional, lymphatic-specific Mafb knockout mice and found comparable lymphatic patterning defects during embryogenesis as in the global MAFB knockout. Lymphatic MAFB deficiency resulted in increased lymphatic branching in the diaphragm at P7, but had no major effect on lymphatic patterning or function in healthy adult mice. By contrast, tumor-induced lymphangiogenesis was enhanced in mice lacking lymphatic MAFB. Together, these data reveal that LEC-expressed MAFB is involved in lymphatic vascular morphogenesis during embryonic and postnatal development as well as in pathological conditions. Therefore, MAFB could represent a target for therapeutic modulation of lymphangiogenesis.
Collapse
Affiliation(s)
- Lothar C Dieterich
- Institute of Pharmaceutical Sciences, ETH Zurich, 8093, Zurich, Switzerland
| | - Carlotta Tacconi
- Institute of Pharmaceutical Sciences, ETH Zurich, 8093, Zurich, Switzerland
| | - Franziska Menzi
- Institute of Pharmaceutical Sciences, ETH Zurich, 8093, Zurich, Switzerland
| | - Steven T Proulx
- Institute of Pharmaceutical Sciences, ETH Zurich, 8093, Zurich, Switzerland
| | - Kübra Kapaklikaya
- Institute of Pharmaceutical Sciences, ETH Zurich, 8093, Zurich, Switzerland
| | - Michito Hamada
- Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, 305-8575, Japan
| | - Satoru Takahashi
- Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, 305-8575, Japan
| | - Michael Detmar
- Institute of Pharmaceutical Sciences, ETH Zurich, 8093, Zurich, Switzerland.
- ETH Zurich, HCI H303, Vladimir-Prelog-Weg 3, 8093, Zurich, Switzerland.
| |
Collapse
|
35
|
Chang YH, Katoh MC, Abdellatif AM, Xiafukaiti G, Elzeftawy A, Ojima M, Mizuno S, Kuno A, Takahashi S. Uncovering the role of MAFB in glucagon production and secretion in pancreatic α-cells using a new α-cell-specific Mafb conditional knockout mouse model. Exp Anim 2019; 69:178-188. [PMID: 31787710 PMCID: PMC7220711 DOI: 10.1538/expanim.19-0105] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Cre/loxP is a site-specific recombination system extensively used to enable the conditional deletion or activation of target genes in a spatial- and/or temporal-specific manner. A number of pancreatic-specific Cre driver mouse lines have been broadly established for studying the development, function and pathology of pancreatic cells. However, only a few models are currently available for glucagon-producing α-cells. Disagreement exists over the role of the MAFB transcription factor in glucagon expression during postnatal life, which might be due to the lack of α-cell-specific Cre driver mice. In the present study, we established a novel Gcg-Cre knock-in mouse line with the Cre transgene expressed under the control of the preproglucagon (Gcg) promoter without disrupting the endogenous Gcg gene expression. Then, we applied this newly developed Gcg-Cre mouse line to generate a new α-cell-specific Mafb conditional knockout mouse model (MafbΔGcg). Not only α-cell number but also glucagon production were significantly decreased in MafbΔGcg mice compared to control littermates, suggesting an indispensable role of MAFB in both α-cell development and function. Taken together, our newly developed Gcg-Cre mouse line, which was successfully utilized to uncover the role of MAFB in α-cells, is a useful tool for genetic manipulation in pancreatic α-cells, providing a new platform for future studies in this field.
Collapse
Affiliation(s)
- Yu-Hsin Chang
- Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan.,Ph.D. Program in Human Biology, School of Integrative and Global Majors, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Megumi C Katoh
- Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Ahmed M Abdellatif
- Department of Anatomy and Embryology, Faculty of Veterinary Medicine, Mansoura University, 60 Elgomhoria st, Mansoura 35516, Egypt
| | - Guli Xiafukaiti
- Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan.,School of Comprehensive Human Sciences, Doctoral Program in Biomedical Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Abdelaziz Elzeftawy
- Laboratory Animal Resource Center (LARC), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Masami Ojima
- Laboratory Animal Resource Center (LARC), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Seiya Mizuno
- Laboratory Animal Resource Center (LARC), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Akihiro Kuno
- Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Satoru Takahashi
- Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan.,Laboratory Animal Resource Center (LARC), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan.,Life Science Center, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan.,International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan.,Transborder Medical Research Center, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| |
Collapse
|
36
|
Banerjee RR. Piecing together the puzzle of pancreatic islet adaptation in pregnancy. Ann N Y Acad Sci 2019; 1411:120-139. [PMID: 29377199 DOI: 10.1111/nyas.13552] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 10/18/2017] [Accepted: 10/24/2017] [Indexed: 12/20/2022]
Abstract
Pregnancy places acute demands on maternal physiology, including profound changes in glucose homeostasis. Gestation is characterized by an increase in insulin resistance, counterbalanced by an adaptive increase in pancreatic β cell production of insulin. Failure of normal adaptive responses of the islet to increased maternal and fetal demands manifests as gestational diabetes mellitus (GDM). The gestational changes and rapid reversal of islet adaptations following parturition are at least partly driven by an anticipatory program rather than post-factum compensatory adaptations. Here, I provide a comprehensive review of the cellular and molecular mechanisms underlying normal islet adaptation during pregnancy and how dysregulation may lead to GDM. Emerging areas of interest and understudied areas worthy of closer examination in the future are highlighted.
Collapse
Affiliation(s)
- Ronadip R Banerjee
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, and the Comprehensive Diabetes Center, University of Alabama at Birmingham School of Medicine, Birmingham, Alabama
| |
Collapse
|
37
|
Singh T, Sarmiento L, Luan C, Prasad RB, Johansson J, Cataldo LR, Renström E, Soneji S, Cilio C, Artner I. MafA Expression Preserves Immune Homeostasis in Human and Mouse Islets. Genes (Basel) 2018; 9:genes9120644. [PMID: 30567413 PMCID: PMC6315686 DOI: 10.3390/genes9120644] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 12/12/2018] [Indexed: 02/07/2023] Open
Abstract
Type 1 (T1D) and type 2 (T2D) diabetes are triggered by a combination of environmental and/or genetic factors. Maf transcription factors regulate pancreatic beta (β)-cell function, and have also been implicated in the regulation of immunomodulatory cytokines like interferon-β (IFNβ1). In this study, we assessed MAFA and MAFB co-expression with pro-inflammatory cytokine signaling genes in RNA-seq data from human pancreatic islets. Interestingly, MAFA expression was strongly negatively correlated with cytokine-induced signaling (such as IFNAR1, DDX58) and T1D susceptibility genes (IFIH1), whereas correlation of these genes with MAFB was weaker. In order to evaluate if the loss of MafA altered the immune status of islets, MafA deficient mouse islets (MafA−/−) were assessed for inherent anti-viral response and susceptibility to enterovirus infection. MafA deficient mouse islets had elevated basal levels of Ifnβ1, Rig1 (DDX58 in humans), and Mda5 (IFIH1) which resulted in reduced virus propagation in response to coxsackievirus B3 (CVB3) infection. Moreover, an acute knockdown of MafA in β-cell lines also enhanced Rig1 and Mda5 protein levels. Our results suggest that precise regulation of MAFA levels is critical for islet cell-specific cytokine production, which is a critical parameter for the inflammatory status of pancreatic islets.
Collapse
Affiliation(s)
- Tania Singh
- Stem Cell Center, Lund University, 22184, Lund, Sweden.
| | | | - Cheng Luan
- Lund University Diabetes Center, 22184, Lund, Sweden.
| | | | | | | | - Erik Renström
- Lund University Diabetes Center, 22184, Lund, Sweden.
| | - Shamit Soneji
- Stem Cell Center, Lund University, 22184, Lund, Sweden.
| | - Corrado Cilio
- Lund University Diabetes Center, 22184, Lund, Sweden.
| | - Isabella Artner
- Stem Cell Center, Lund University, 22184, Lund, Sweden.
- Lund University Diabetes Center, 22184, Lund, Sweden.
| |
Collapse
|
38
|
MafB Is Critical for Glucagon Production and Secretion in Mouse Pancreatic α Cells In Vivo. Mol Cell Biol 2018; 38:MCB.00504-17. [PMID: 29378833 DOI: 10.1128/mcb.00504-17] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 01/19/2018] [Indexed: 12/14/2022] Open
Abstract
The MafB transcription factor is expressed in pancreatic α and β cells during development but becomes exclusive to α cells in adult rodents. Mafb-null (Mafb-/- ) mice were reported to have reduced α- and β-cell numbers throughout embryonic development. To further analyze the postnatal function of MafB in the pancreas, we generated endocrine cell-specific (MafbΔEndo ) and tamoxifen-dependent (MafbΔTAM ) Mafb knockout mice. MafbΔEndo mice exhibited reduced populations of insulin-positive (insulin+) and glucagon+ cells at postnatal day 0, but the insulin+ cell population recovered by 8 weeks of age. In contrast, the Arx+ glucagon+ cell fraction and glucagon expression remained decreased even in adulthood. MafbΔTAM mice, with Mafb deleted after pancreas maturation, also demonstrated diminished glucagon+ cells and glucagon content without affecting β cells. A decreased Arx+ glucagon+ cell population in MafbΔEndo mice was compensated for by an increased Arx+ pancreatic polypeptide+ cell population. Furthermore, gene expression analyses from both MafbΔEndo and MafbΔTAM islets revealed that MafB is a key regulator of glucagon expression in α cells. Finally, both mutants failed to respond to arginine, likely due to impaired arginine transporter gene expression and glucagon production ability. Taken together, our findings reveal that MafB is critical for the functional maintenance of mouse α cells in vivo, including glucagon production and secretion, as well as in development.
Collapse
|
39
|
Zhu M, Wei Y, Geißler C, Abschlag K, Corbalán Campos J, Hristov M, Möllmann J, Lehrke M, Karshovska E, Schober A. Hyperlipidemia-Induced MicroRNA-155-5p Improves β-Cell Function by Targeting Mafb. Diabetes 2017; 66:3072-3084. [PMID: 28970282 DOI: 10.2337/db17-0313] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 09/19/2017] [Indexed: 11/13/2022]
Abstract
A high-fat diet increases bacterial lipopolysaccharide (LPS) in the circulation and thereby stimulates glucagon-like peptide 1 (GLP-1)-mediated insulin secretion by upregulating interleukin-6 (IL-6). Although microRNA-155-5p (miR-155-5p), which increases IL-6 expression, is upregulated by LPS and hyperlipidemia and patients with familial hypercholesterolemia less frequently develop diabetes, the role of miR-155-5p in the islet stress response to hyperlipidemia is unclear. In this study, we demonstrate that hyperlipidemia-associated endotoxemia upregulates miR-155-5p in murine pancreatic β-cells, which improved glucose metabolism and the adaptation of β-cells to obesity-induced insulin resistance. This effect of miR-155-5p is because of suppression of v-maf musculoaponeurotic fibrosarcoma oncogene family, protein B, which promotes β-cell function through IL-6-induced GLP-1 production in α-cells. Moreover, reduced GLP-1 levels are associated with increased obesity progression, dyslipidemia, and atherosclerosis in hyperlipidemic Mir155 knockout mice. Hence, induction of miR-155-5p expression in β-cells by hyperlipidemia-associated endotoxemia improves the adaptation of β-cells to insulin resistance and represents a protective mechanism in the islet stress response.
Collapse
Affiliation(s)
- Mengyu Zhu
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Yuanyuan Wei
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-Universität München, Munich, Germany
- German Centre for Cardiovascular Research, Partner Site Munich Heart Alliance, Munich, Germany
| | - Claudia Geißler
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Kathrin Abschlag
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Judit Corbalán Campos
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Michael Hristov
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Julia Möllmann
- Department of Internal Medicine I, University Hospital Aachen, Aachen, Germany
| | - Michael Lehrke
- Department of Internal Medicine I, University Hospital Aachen, Aachen, Germany
| | - Ela Karshovska
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-Universität München, Munich, Germany
- German Centre for Cardiovascular Research, Partner Site Munich Heart Alliance, Munich, Germany
| | - Andreas Schober
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-Universität München, Munich, Germany
- German Centre for Cardiovascular Research, Partner Site Munich Heart Alliance, Munich, Germany
| |
Collapse
|
40
|
Bozadjieva N, Blandino-Rosano M, Chase J, Dai XQ, Cummings K, Gimeno J, Dean D, Powers AC, Gittes GK, Rüegg MA, Hall MN, MacDonald PE, Bernal-Mizrachi E. Loss of mTORC1 signaling alters pancreatic α cell mass and impairs glucagon secretion. J Clin Invest 2017; 127:4379-4393. [PMID: 29106387 DOI: 10.1172/jci90004] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 09/26/2017] [Indexed: 01/19/2023] Open
Abstract
Glucagon plays a major role in the regulation of glucose homeostasis during fed and fasting states. However, the mechanisms responsible for the regulation of pancreatic α cell mass and function are not completely understood. In the current study, we identified mTOR complex 1 (mTORC1) as a major regulator of α cell mass and glucagon secretion. Using mice with tissue-specific deletion of the mTORC1 regulator Raptor in α cells (αRaptorKO), we showed that mTORC1 signaling is dispensable for α cell development, but essential for α cell maturation during the transition from a milk-based diet to a chow-based diet after weaning. Moreover, inhibition of mTORC1 signaling in αRaptorKO mice and in WT animals exposed to chronic rapamycin administration decreased glucagon content and glucagon secretion. In αRaptorKO mice, impaired glucagon secretion occurred in response to different secretagogues and was mediated by alterations in KATP channel subunit expression and activity. Additionally, our data identify the mTORC1/FoxA2 axis as a link between mTORC1 and transcriptional regulation of key genes responsible for α cell function. Thus, our results reveal a potential function of mTORC1 in nutrient-dependent regulation of glucagon secretion and identify a role for mTORC1 in controlling α cell-mass maintenance.
Collapse
Affiliation(s)
- Nadejda Bozadjieva
- Department of Internal Medicine, Division of Metabolism, Endocrinology and Diabetes, and.,Graduate Program in Cellular and Molecular Biology, University of Michigan, Ann Arbor, Michigan, USA
| | - Manuel Blandino-Rosano
- Department of Internal Medicine, Division of Metabolism, Endocrinology and Diabetes, and.,Department of Internal Medicine, Division Endocrinology, Metabolism and Diabetes, Miller School of Medicine, University of Miami, Miami, Florida, USA
| | - Jennifer Chase
- Graduate Program in Cellular and Molecular Biology, University of Michigan, Ann Arbor, Michigan, USA
| | - Xiao-Qing Dai
- Alberta Diabetes Institute and Department of Pharmacology, Edmonton, Alberta, Canada
| | - Kelsey Cummings
- Department of Internal Medicine, Division of Metabolism, Endocrinology and Diabetes, and
| | - Jennifer Gimeno
- Department of Internal Medicine, Division Endocrinology, Metabolism and Diabetes, Miller School of Medicine, University of Miami, Miami, Florida, USA
| | - Danielle Dean
- Department of Medicine, Division of Diabetes, Endocrinology, and Metabolism, and
| | - Alvin C Powers
- Department of Medicine, Division of Diabetes, Endocrinology, and Metabolism, and.,Department of Molecular Physiology & Biophysics, Vanderbilt University, Nashville, Tennessee, USA.,VA Tennessee Valley Healthcare, Nashville, Tennessee, USA
| | - George K Gittes
- Children's Hospital, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | | | | | - Patrick E MacDonald
- Alberta Diabetes Institute and Department of Pharmacology, Edmonton, Alberta, Canada
| | - Ernesto Bernal-Mizrachi
- Department of Internal Medicine, Division of Metabolism, Endocrinology and Diabetes, and.,Graduate Program in Cellular and Molecular Biology, University of Michigan, Ann Arbor, Michigan, USA.,Department of Internal Medicine, Division Endocrinology, Metabolism and Diabetes, Miller School of Medicine, University of Miami, Miami, Florida, USA.,Veterans Affairs Medical Center, Miami, Florida, USA
| |
Collapse
|
41
|
Lawlor N, Youn A, Kursawe R, Ucar D, Stitzel ML. Alpha TC1 and Beta-TC-6 genomic profiling uncovers both shared and distinct transcriptional regulatory features with their primary islet counterparts. Sci Rep 2017; 7:11959. [PMID: 28931935 PMCID: PMC5607285 DOI: 10.1038/s41598-017-12335-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 09/06/2017] [Indexed: 01/09/2023] Open
Abstract
Alpha TC1 (αTC1) and Beta-TC-6 (βTC6) mouse islet cell lines are cellular models of islet (dys)function and type 2 diabetes (T2D). However, genomic characteristics of these cells, and their similarities to primary islet alpha and beta cells, are undefined. Here, we report the epigenomic (ATAC-seq) and transcriptomic (RNA-seq) landscapes of αTC1 and βTC6 cells. Each cell type exhibits hallmarks of its primary islet cell counterpart including cell-specific expression of beta (e.g., Pdx1) and alpha (e.g., Arx) cell transcription factors (TFs), and enrichment of binding motifs for these TFs in αTC1/βTC6 cis-regulatory elements. αTC1/βTC6 transcriptomes overlap significantly with the transcriptomes of primary mouse/human alpha and beta cells. Our data further indicate that ATAC-seq detects cell-specific regulatory elements for cell types comprising ≥ 20% of a mixed cell population. We identified αTC1/βTC6 cis-regulatory elements orthologous to those containing type 2 diabetes (T2D)-associated SNPs in human islets for 33 loci, suggesting these cells’ utility to dissect T2D molecular genetics in these regions. Together, these maps provide important insights into the conserved regulatory architecture between αTC1/βTC6 and primary islet cells that can be leveraged in functional (epi)genomic approaches to dissect the genetic and molecular factors controlling islet cell identity and function.
Collapse
Affiliation(s)
- Nathan Lawlor
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, 06032, USA
| | - Ahrim Youn
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, 06032, USA
| | - Romy Kursawe
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, 06032, USA
| | - Duygu Ucar
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, 06032, USA. .,Institute for Systems Genomics, University of Connecticut, Farmington, CT, 06032, USA. .,Department of Genetics & Genome Sciences, University of Connecticut, Farmington, CT, 06032, USA.
| | - Michael L Stitzel
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, 06032, USA. .,Institute for Systems Genomics, University of Connecticut, Farmington, CT, 06032, USA. .,Department of Genetics & Genome Sciences, University of Connecticut, Farmington, CT, 06032, USA.
| |
Collapse
|
42
|
An increase in immature β-cells lacking Glut2 precedes the expansion of β-cell mass in the pregnant mouse. PLoS One 2017; 12:e0182256. [PMID: 28753672 PMCID: PMC5533342 DOI: 10.1371/journal.pone.0182256] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2016] [Accepted: 07/14/2017] [Indexed: 11/19/2022] Open
Abstract
A compensatory increase in β-cell mass occurs during pregnancy to counter the associated insulin resistance, and a failure in adaptation is thought to contribute to gestational diabetes. Insulin-expressing but glucose-transporter-2-low (Ins+Glut2LO) progenitor cells are present in mouse and human pancreas, being predominantly located in extra-islet β-cell clusters, and contribute to the regeneration of the endocrine pancreas following induced ablation. We therefore sought to investigate the contribution of Ins+Glut2LO cells to β-cell mass expansion during pregnancy. Female C57Bl/6 mice were time mated and pancreata were collected at gestational days (GD) 6, 9, 12, 15, and 18, and postpartum D7 (n = 4/time-point) and compared to control (non-pregnant) animals. Beta cell mass, location, proliferation (Ki67+), and proportion of Ins+Glut2LO cells were measured using immunohistochemistry and bright field or confocal microscopy. Beta cell mass tripled by GD18 and β-cell proliferation peaked at GD12 in islets (≥6 β-cells) and small β-cell clusters (1–5 β-cells). The proportion and fraction of Ins+Glut2LO cells undergoing proliferation increased significantly at GD9 in both islets and clusters, preceding the increase in β-cell mass and proliferation, and their proliferation within clusters persisted until GD15. The overall number of clusters increased significantly at GD9. Quantitative PCR showed a significant increase in Pdx1 presence at GD9 vs. GD18 or control pancreas, and Pdx1 was visualized by immunohistochemistry within both Ins+Glut2LO and Ins+Glut2HI cells within clusters. These results indicate that Ins+Glut2LO cells are likely to contribute to β-cell mass expansion during pregnancy.
Collapse
|
43
|
Al-Khawaga S, Memon B, Butler AE, Taheri S, Abou-Samra AB, Abdelalim EM. Pathways governing development of stem cell-derived pancreatic β cells: lessons from embryogenesis. Biol Rev Camb Philos Soc 2017. [DOI: 10.1111/brv.12349] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Sara Al-Khawaga
- Diabetes Research Center, Qatar Biomedical Research Institute; Hamad Bin Khalifa University, Qatar Foundation, Education City; Doha Qatar
| | - Bushra Memon
- Diabetes Research Center, Qatar Biomedical Research Institute; Hamad Bin Khalifa University, Qatar Foundation, Education City; Doha Qatar
| | - Alexandra E. Butler
- Larry L. Hillblom Islet Research Center, David Geffen School of Medicine; University of California; Los Angeles CA 90095 U.S.A
| | - Shahrad Taheri
- Department of Medicine; Weill Cornell Medicine in Qatar, Qatar Foundation, Education City, PO BOX 24144; Doha Qatar
- Department of Medicine; Qatar Metabolic Institute, Hamad Medical Corporation; Doha Qatar
| | - Abdul B. Abou-Samra
- Department of Medicine; Weill Cornell Medicine in Qatar, Qatar Foundation, Education City, PO BOX 24144; Doha Qatar
- Department of Medicine; Qatar Metabolic Institute, Hamad Medical Corporation; Doha Qatar
| | - Essam M. Abdelalim
- Diabetes Research Center, Qatar Biomedical Research Institute; Hamad Bin Khalifa University, Qatar Foundation, Education City; Doha Qatar
| |
Collapse
|
44
|
Qiu WL, Zhang YW, Feng Y, Li LC, Yang L, Xu CR. Deciphering Pancreatic Islet β Cell and α Cell Maturation Pathways and Characteristic Features at the Single-Cell Level. Cell Metab 2017; 25:1194-1205.e4. [PMID: 28467935 DOI: 10.1016/j.cmet.2017.04.003] [Citation(s) in RCA: 109] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Revised: 02/03/2017] [Accepted: 04/05/2017] [Indexed: 02/02/2023]
Abstract
Pancreatic β and α cells play essential roles in maintaining glucose homeostasis. However, the mechanisms by which these distinct cell populations are generated, expand, and mature during pancreas development remain unclear. In this study, we addressed this critical question by performing a single-cell transcriptomic analysis of mouse β and α cells sorted from fetal to adult stages. We discovered that β and α cells use different regulatory strategies for their maturation and that cell proliferation peaks at different developmental times. However, the quiescent and proliferative cells in both the β lineage and α lineage are synchronous in their maturation states. The heterogeneity of juvenile β cells reflects distinct cell-cycling phases, origins, and maturation states, whereas adult β cells are relatively homogeneous at the transcriptomic level. These analyses provide not only a high-resolution roadmap for islet lineage development but also insights into the mechanisms of cellular heterogeneity, cell number expansion, and maturation of both β and α cells.
Collapse
Affiliation(s)
- Wei-Lin Qiu
- Ministry of Education Key Laboratory of Cell Proliferation, College of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China; PKU-Tsinghua-NIBS Graduate Program, Peking University, Beijing 100871, China
| | - Yu-Wei Zhang
- Ministry of Education Key Laboratory of Cell Proliferation, College of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Ye Feng
- Ministry of Education Key Laboratory of Cell Proliferation, College of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China; PKU-Tsinghua-NIBS Graduate Program, Peking University, Beijing 100871, China
| | - Lin-Chen Li
- Ministry of Education Key Laboratory of Cell Proliferation, College of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Liu Yang
- Ministry of Education Key Laboratory of Cell Proliferation, College of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China; Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Cheng-Ran Xu
- Ministry of Education Key Laboratory of Cell Proliferation, College of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China.
| |
Collapse
|
45
|
Larsen HL, Grapin-Botton A. The molecular and morphogenetic basis of pancreas organogenesis. Semin Cell Dev Biol 2017; 66:51-68. [PMID: 28089869 DOI: 10.1016/j.semcdb.2017.01.005] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 01/06/2017] [Accepted: 01/09/2017] [Indexed: 01/08/2023]
Abstract
The pancreas is an essential endoderm-derived organ that ensures nutrient metabolism via its endocrine and exocrine functions. Here we review the essential processes governing the embryonic and early postnatal development of the pancreas discussing both the mechanisms and molecules controlling progenitor specification, expansion and differentiation. We elaborate on how these processes are orchestrated in space and coordinated with morphogenesis. We draw mainly from experiments conducted in the mouse model but also from investigations in other model organisms, complementing a recent comprehensive review of human pancreas development (Jennings et al., 2015) [1]. The understanding of pancreas development in model organisms provides a framework to interpret how human mutations lead to neonatal diabetes and may contribute to other forms of diabetes and to guide the production of desired pancreatic cell types from pluripotent stem cells for therapeutic purposes.
Collapse
Affiliation(s)
- Hjalte List Larsen
- DanStem, University of Copenhagen, 3 B Blegdamsvej, DK-2200 Copenhagen N, Denmark
| | - Anne Grapin-Botton
- DanStem, University of Copenhagen, 3 B Blegdamsvej, DK-2200 Copenhagen N, Denmark.
| |
Collapse
|
46
|
Neelankal John A, Morahan G, Jiang FX. Incomplete Re-Expression of Neuroendocrine Progenitor/Stem Cell Markers is a Key Feature of β-Cell Dedifferentiation. J Neuroendocrinol 2017; 29. [PMID: 27891681 DOI: 10.1111/jne.12450] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Revised: 11/22/2016] [Accepted: 11/23/2016] [Indexed: 01/23/2023]
Abstract
There is increasing evidence to suggest that type 2 diabetes mellitus (T2D), a pandemic metabolic disease, may be caused by β-cell dedifferentiation (βCD). However, there is currently no universal definition of βCD, and the underlying mechanism is poorly understood. We hypothesise that a high-glucose in vitro environment mimics hyperglycaemia in vivo and that β cells grown in this milieu over a long period will undergo dedifferentiation. In the present study, we report that the pancreatic β cell line mouse insulinoma 6 (MIN6) grown under a high-glucose condition did not undergo massive cell death but exhibited a glucose-stimulated insulin-secreting profile similar to that of immature β cells. The expression of insulin and the glucose-sensing molecule glucose transporter 2 (Glut2) in late passage MIN6 cells was significantly lower than the early passage at both the RNA and protein levels. Mechanistically, these cells also expressed significantly less of the 'pancreatic and duodenal homebox1' (Pdx1) β-cell transcription factor. Finally, passaged MIN6 cells dedifferentiated to demonstrate some features of β-cell precursors, as well as neuroendocrine markers, in addition to expressing both glucagon and insulin. Thus, we concluded that high-glucose passaged MIN6 cells passaged MIN6 cells. provide a cellular model of β-cell dedifferentiation that can help researchers develop a better understanding of this process. These findings provide new insights that may enhance knowledge of the pathophysiology of T2D and facilitate the establishment of a novel strategy by which this disease can be treated.
Collapse
Affiliation(s)
- A Neelankal John
- Harry Perkins Institute of Medical Research, Centre for Medical Research, University of Western Australia, Nedlands, Australia
- School of Medicine And Pharmacology, University of Western Australia, Carwley, Australia
| | - G Morahan
- Harry Perkins Institute of Medical Research, Centre for Medical Research, University of Western Australia, Nedlands, Australia
- School of Medicine And Pharmacology, University of Western Australia, Carwley, Australia
| | - F-X Jiang
- Harry Perkins Institute of Medical Research, Centre for Medical Research, University of Western Australia, Nedlands, Australia
- School of Medicine And Pharmacology, University of Western Australia, Carwley, Australia
| |
Collapse
|
47
|
Stanescu DE, Yu R, Won KJ, Stoffers DA. Single cell transcriptomic profiling of mouse pancreatic progenitors. Physiol Genomics 2016; 49:105-114. [PMID: 28011883 DOI: 10.1152/physiolgenomics.00114.2016] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 12/12/2016] [Accepted: 12/19/2016] [Indexed: 12/20/2022] Open
Abstract
The heterogeneity of the developing pancreatic epithelium and low abundance of endocrine progenitors limit the information derived from traditional expression studies. To identify genes that characterize early developmental tissues composed of multiple progenitor lineages, we applied single-cell RNA-Seq to embryonic day (e)13.5 mouse pancreata and performed integrative analysis with single cell data from mature pancreas. We identified subpopulations expressing macrophage or endothelial markers and new pancreatic progenitor markers. We also identified potential α-cell precursors expressing glucagon (Gcg) among the e13.5 pancreatic cells. Despite their high Gcg expression levels, these cells shared greater transcriptomic similarity with other e13.5 cells than with adult α-cells, indicating their immaturity. Comparative analysis identified the sodium-dependent neutral amino acid transporter, Slc38a5, as a characteristic gene expressed in α-cell precursors but not mature cells. By immunofluorescence analysis, we observed SLC38A5 expression in pancreatic progenitors, including in a subset of NEUROG3+ endocrine progenitors and MAFB+ cells and in all GCG+ cells. Expression declined in α-cells during late gestation and was absent in the adult islet. Our results suggest SLC38A5 as an early marker of α-cell lineage commitment.
Collapse
Affiliation(s)
- Diana E Stanescu
- Division of Endocrinology and Diabetes, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania.,Institute for Diabetes, Obesity and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Reynold Yu
- Institute for Diabetes, Obesity and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania.,Department of Genetics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania; and
| | - Kyoung-Jae Won
- Institute for Diabetes, Obesity and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania.,Department of Genetics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania; and
| | - Doris A Stoffers
- Institute for Diabetes, Obesity and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania; .,Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
48
|
Miyai M, Hamada M, Moriguchi T, Hiruma J, Kamitani-Kawamoto A, Watanabe H, Hara-Chikuma M, Takahashi K, Takahashi S, Kataoka K. Transcription Factor MafB Coordinates Epidermal Keratinocyte Differentiation. J Invest Dermatol 2016; 136:1848-1857. [DOI: 10.1016/j.jid.2016.05.088] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Revised: 04/28/2016] [Accepted: 05/03/2016] [Indexed: 02/07/2023]
|
49
|
Banerjee RR, Cyphert HA, Walker EM, Chakravarthy H, Peiris H, Gu X, Liu Y, Conrad E, Goodrich L, Stein RW, Kim SK. Gestational Diabetes Mellitus From Inactivation of Prolactin Receptor and MafB in Islet β-Cells. Diabetes 2016; 65:2331-41. [PMID: 27217483 PMCID: PMC4955982 DOI: 10.2337/db15-1527] [Citation(s) in RCA: 105] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Accepted: 05/11/2016] [Indexed: 12/21/2022]
Abstract
β-Cell proliferation and expansion during pregnancy are crucial for maintaining euglycemia in response to increased metabolic demands placed on the mother. Prolactin and placental lactogen signal through the prolactin receptor (PRLR) and contribute to adaptive β-cell responses in pregnancy; however, the in vivo requirement for PRLR signaling specifically in maternal β-cell adaptations remains unknown. We generated a floxed allele of Prlr, allowing conditional loss of PRLR in β-cells. In this study, we show that loss of PRLR signaling in β-cells results in gestational diabetes mellitus (GDM), reduced β-cell proliferation, and failure to expand β-cell mass during pregnancy. Targeted PRLR loss in maternal β-cells in vivo impaired expression of the transcription factor Foxm1, both G1/S and G2/M cyclins, tryptophan hydroxylase 1 (Tph1), and islet serotonin production, for which synthesis requires Tph1. This conditional system also revealed that PRLR signaling is required for the transient gestational expression of the transcription factor MafB within a subset of β-cells during pregnancy. MafB deletion in maternal β-cells also produced GDM, with inadequate β-cell expansion accompanied by failure to induce PRLR-dependent target genes regulating β-cell proliferation. These results unveil molecular roles for PRLR signaling in orchestrating the physiologic expansion of maternal β-cells during pregnancy.
Collapse
Affiliation(s)
- Ronadip R Banerjee
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA Division of Endocrinology, Gerontology and Metabolism, Department of Medicine, Stanford University School of Medicine, Stanford, CA
| | - Holly A Cyphert
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN
| | - Emily M Walker
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN
| | - Harini Chakravarthy
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA
| | - Heshan Peiris
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA
| | - Xueying Gu
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA
| | - Yinghua Liu
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA
| | - Elizabeth Conrad
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN
| | - Lisa Goodrich
- Department of Neurobiology, Harvard Medical School, Boston, MA
| | - Roland W Stein
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN
| | - Seung K Kim
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA Division of Oncology, Department of Medicine, Stanford University School of Medicine, Stanford, CA Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA
| |
Collapse
|
50
|
Mirasierra M, Vallejo M. Glucose-dependent downregulation of glucagon gene expression mediated by selective interactions between ALX3 and PAX6 in mouse alpha cells. Diabetologia 2016; 59:766-75. [PMID: 26739814 DOI: 10.1007/s00125-015-3849-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Accepted: 12/07/2015] [Indexed: 12/11/2022]
Abstract
AIMS/HYPOTHESIS The stimulation of glucagon secretion in response to decreased glucose levels has been studied extensively. In contrast, little is known about the regulation of glucagon gene expression in response to fluctuations in glucose concentration. Paired box 6 (PAX6) is a key transcription factor that regulates the glucagon promoter by binding to the G1 and G3 elements. Here, we investigated the role of the transcription factor aristaless-like homeobox 3 (ALX3) as a glucose-dependent modulator of PAX6 activity in alpha cells. METHODS Experiments were performed in wild-type or Alx3-deficient islets and alphaTC1 cells. We used chromatin immunoprecipitations and electrophoretic mobility shift assays for DNA binding, immunoprecipitations and pull-down assays for protein interactions, transfected cells for promoter activity, and small interfering RNA and quantitative RT-PCR for gene expression. RESULTS Elevated glucose concentration resulted in stimulated expression of Alx3 and decreased glucagon gene expression in wild-type islets. In ALX3-deficient islets, basal glucagon levels were non-responsive to changes in glucose concentration. In basal conditions ALX3 bound to the glucagon promoter at G3, but not at G1. ALX3 could form heterodimers with PAX6 that were permissive for binding to G3 but not to G1. Thus, increasing the levels of ALX3 in response to glucose resulted in the sequestration of PAX6 by ALX3 for binding to G1, thus reducing glucagon promoter activation and glucagon gene expression. CONCLUSIONS/INTERPRETATION Glucose-stimulated expression of ALX3 in alpha cells provides a regulatory mechanism for the downregulation of glucagon gene expression by interfering with PAX6-mediated transactivation on the glucagon G1 promoter element.
Collapse
Affiliation(s)
- Mercedes Mirasierra
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain
- Instituto de Investigaciones Biomédicas Alberto Sols, Consejo Superior de Investigaciones Científicas/Universidad Autónoma de Madrid (CSIC/UAM), Calle Arturo Duperier 4, 28029, Madrid, Spain
| | - Mario Vallejo
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain.
- Instituto de Investigaciones Biomédicas Alberto Sols, Consejo Superior de Investigaciones Científicas/Universidad Autónoma de Madrid (CSIC/UAM), Calle Arturo Duperier 4, 28029, Madrid, Spain.
| |
Collapse
|