1
|
Gupta JK. The Role of Aldose Reductase in Polyol Pathway: An Emerging Pharmacological Target in Diabetic Complications and Associated Morbidities. Curr Pharm Biotechnol 2024; 25:1073-1081. [PMID: 37649296 DOI: 10.2174/1389201025666230830125147] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 07/09/2023] [Accepted: 08/07/2023] [Indexed: 09/01/2023]
Abstract
The expression of aldose reductase leads to a variety of biological and pathological effects. It is a multifunctional enzyme which has a tendency to reduce aldehydes to the corresponding sugar.alcohol. In diabetic conditions, the aldose reductase enzyme converts glucose into sorbitol using nicotinamide adenine dinucleotide phosphate as a cofactor. It is a key enzyme in polyol pathway which is a surrogate course of glucose metabolism. The polyol pathway has a significant impact on the aetiology of complications in individuals with end-stage diabetes. The exorbitant level of sorbitol leads to the accumulation of intracellular reactive oxygen species in diabetic heart, neurons, kidneys, eyes and other vasculatures, leading to many complications and pathogenesis. Recently, the pathophysiological role of aldose reductase has been explored with multifarious perspectives. Research on aldose reductase suggest that besides implying in diabetic complications, the enzyme also turns down the lipid-derived aldehydes as well as their glutathione conjugates. Although aldose reductase has certain lucrative role in detoxification of toxic lipid aldehydes, its overexpression leads to intracellular accumulation of sorbitol which is involved in secondary diabetic complications, such as neuropathy, cataractogenesis, nephropathy, retinopathy and cardiovascular pathogenesis. Osmotic upset and oxidative stress are produced by aldose reductase via the polyol pathway. The inhibition of aldose reductase alters the activation of transcription factors like NF-ƙB. Moreover, in many preclinical studies, aldose reductase inhibitors have been observed to reduce inflammation-related impediments, such as asthma, sepsis and colon cancer, in diabetic subjects. Targeting aldose reductase can bestow a novel cognizance for this primordial enzyme as an ingenious strategy to prevent diabetic complications and associated morbidities. In this review article, the significance of aldose reductase is briefly discussed along with their prospective applications in other afflictions.
Collapse
Affiliation(s)
- Jeetendra Kumar Gupta
- Department of Pharmacology, Institute of Pharmaceutical Research, GLA University Mathura, Uttar Pradesh, India
| |
Collapse
|
2
|
Gupta SK, Tripathi PK. CADD Studies in the Discovery of Potential ARI (Aldose Reductase Inhibitors) Agents for the Treatment of Diabetic Complications. Curr Diabetes Rev 2023; 19:e180822207672. [PMID: 35993470 DOI: 10.2174/1573399819666220818163758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 05/14/2022] [Accepted: 06/02/2022] [Indexed: 11/22/2022]
Abstract
The lack of currently available drugs for treating diabetes complications has stimulated our interest in finding new Aldose Reductase inhibitors (ARIs) with more beneficial biological properties. One metabolic method uses aldose reductase inhibitors in the first step of the polyol pathway to control excess glucose flux in diabetic tissues. Computer-aided drug discovery (CADD) is key in finding and optimizing potential lead substances. AR inhibitors (ARI) have been widely discussed in the literature. For example, Epalrestat is currently the only ARI used to treat patients with diabetic neuropathy in Japan, India, and China. Inhibiting R in patients with severe to moderate diabetic autonomic neuropathy benefits heart rate variability. AT-001, an AR inhibitor, is now being tested in COVID-19 to see how safe and effective it reduces inflammation and cardiac damage. In summary, these results from animal and human studies strongly indicate that AR can cause cardiovascular complications in diabetes. The current multi-center, large-scale randomized human study of the newly developed powerful ARI may prove its role in diabetic cardiovascular disease to establish therapeutic potential. During the recent coronavirus disease (COVID-19) outbreak in 2019, diabetes and cardiovascular disease were risk factors for severely negative clinical outcomes in patients with COVID19. New data shows that diabetes and obesity are among the strongest predictors of COVID-19 hospitalization. Patients and risk factors for severe morbidity and mortality of COVID- 19.
Collapse
Affiliation(s)
- Saurabh Kumar Gupta
- Rameshwaram Institute of Technology and Management Lucknow, Uttar Pradesh, India
| | | |
Collapse
|
3
|
Singh M, Kapoor A, Bhatnagar A. Physiological and Pathological Roles of Aldose Reductase. Metabolites 2021; 11:655. [PMID: 34677370 PMCID: PMC8541668 DOI: 10.3390/metabo11100655] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/17/2021] [Accepted: 09/17/2021] [Indexed: 12/15/2022] Open
Abstract
Aldose reductase (AR) is an aldo-keto reductase that catalyzes the first step in the polyol pathway which converts glucose to sorbitol. Under normal glucose homeostasis the pathway represents a minor route of glucose metabolism that operates in parallel with glycolysis. However, during hyperglycemia the flux of glucose via the polyol pathway increases significantly, leading to excessive formation of sorbitol. The polyol pathway-driven accumulation of osmotically active sorbitol has been implicated in the development of secondary diabetic complications such as retinopathy, nephropathy, and neuropathy. Based on the notion that inhibition of AR could prevent these complications a range of AR inhibitors have been developed and tested; however, their clinical efficacy has been found to be marginal at best. Moreover, recent work has shown that AR participates in the detoxification of aldehydes that are derived from lipid peroxidation and their glutathione conjugates. Although in some contexts this antioxidant function of AR helps protect against tissue injury and dysfunction, the metabolic transformation of the glutathione conjugates of lipid peroxidation-derived aldehydes could also lead to the generation of reactive metabolites that can stimulate mitogenic or inflammatory signaling events. Thus, inhibition of AR could have both salutary and injurious outcomes. Nevertheless, accumulating evidence suggests that inhibition of AR could modify the effects of cardiovascular disease, asthma, neuropathy, sepsis, and cancer; therefore, additional work is required to selectively target AR inhibitors to specific disease states. Despite past challenges, we opine that a more gainful consideration of therapeutic modulation of AR activity awaits clearer identification of the specific role(s) of the AR enzyme in health and disease.
Collapse
Affiliation(s)
- Mahavir Singh
- Eye and Vision Science Laboratory, Department of Physiology, School of Medicine, University of Louisville, Louisville, KY 40202, USA
| | - Aniruddh Kapoor
- Internal Medicine—Critical Care, School of Medicine, Saint Louis University, St. Louis, MO 63141, USA;
| | - Aruni Bhatnagar
- Christina Lee Brown Envirome Institute, School of Medicine, University of Louisville, Louisville, KY 40202, USA;
| |
Collapse
|
4
|
Sonowal H, Ramana KV. Development of Aldose Reductase Inhibitors for the Treatment of Inflammatory Disorders and Cancer: Current Drug Design Strategies and Future Directions. Curr Med Chem 2021; 28:3683-3712. [PMID: 33109031 DOI: 10.2174/0929867327666201027152737] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 09/22/2020] [Accepted: 09/24/2020] [Indexed: 11/22/2022]
Abstract
Aldose Reductase (AR) is an enzyme that converts glucose to sorbitol during the polyol pathway of glucose metabolism. AR has been shown to be involved in the development of secondary diabetic complications due to its involvement in causing osmotic as well as oxidative stress. Various AR inhibitors have been tested for their use to treat secondary diabetic complications, such as retinopathy, neuropathy, and nephropathy in clinical studies. Recent studies also suggest the potential role of AR in mediating various inflammatory complications. Therefore, the studies on the development and potential use of AR inhibitors to treat inflammatory complications and cancer besides diabetes are currently on the rise. Further, genetic mutagenesis studies, computer modeling, and molecular dynamics studies have helped design novel and potent AR inhibitors. This review discussed the potential new therapeutic use of AR inhibitors in targeting inflammatory disorders and cancer besides diabetic complications. Further, we summarized studies on how AR inhibitors have been designed and developed for therapeutic purposes in the last few decades.
Collapse
Affiliation(s)
- Himangshu Sonowal
- Moores Cancer Center, University of California San Diego, La Jolla, California 92037, United States
| | - Kota V Ramana
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555, United States
| |
Collapse
|
5
|
Jannapureddy S, Sharma M, Yepuri G, Schmidt AM, Ramasamy R. Aldose Reductase: An Emerging Target for Development of Interventions for Diabetic Cardiovascular Complications. Front Endocrinol (Lausanne) 2021; 12:636267. [PMID: 33776930 PMCID: PMC7992003 DOI: 10.3389/fendo.2021.636267] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 01/19/2021] [Indexed: 12/18/2022] Open
Abstract
Diabetes is a leading cause of cardiovascular morbidity and mortality. Despite numerous treatments for cardiovascular disease (CVD), for patients with diabetes, these therapies provide less benefit for protection from CVD. These considerations spur the concept that diabetes-specific, disease-modifying therapies are essential to identify especially as the diabetes epidemic continues to expand. In this context, high levels of blood glucose stimulate the flux via aldose reductase (AR) pathway leading to metabolic and signaling changes in cells of the cardiovascular system. In animal models flux via AR in hearts is increased by diabetes and ischemia and its inhibition protects diabetic and non-diabetic hearts from ischemia-reperfusion injury. In mouse models of diabetic atherosclerosis, human AR expression accelerates progression and impairs regression of atherosclerotic plaques. Genetic studies have revealed that single nucleotide polymorphisms (SNPs) of the ALD2 (human AR gene) is associated with diabetic complications, including cardiorenal complications. This Review presents current knowledge regarding the roles for AR in the causes and consequences of diabetic cardiovascular disease and the status of AR inhibitors in clinical trials. Studies from both human subjects and animal models are presented to highlight the breadth of evidence linking AR to the cardiovascular consequences of diabetes.
Collapse
Affiliation(s)
| | | | | | | | - Ravichandran Ramasamy
- Diabetes Research Program, Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, NYU Grossman School of Medicine, New York, NY, United States
| |
Collapse
|
6
|
Liu M, Li F, Liang M, Rao X. Effects of aldose reductase inhibitors on renal blood flow parameters in patients with early diabetic nephropathy. J Diabetes Complications 2020; 34:107620. [PMID: 32444327 DOI: 10.1016/j.jdiacomp.2020.107620] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 04/25/2020] [Accepted: 05/06/2020] [Indexed: 11/20/2022]
Abstract
OBJECTIVE To investigate the changes of renal blood flow parameters in patients with early-stage diabetic nephropathy (DN) treated with Aldose reductase inhibitors (ARI)/Epalrestat. METHODS In this prospective, 120 early DN patients aged 20-75 years from the Endocrinology Department of Chengyang District People's Hospital of Qingdao City in 2015 were randomized to intervention group including 68 patients and control group including 52 patients. Two groups of patients separately received Epalrestat and placebo for 3 months. Renal vascular parameters and blood biochemical index were collected at baseline and after intervention. RESULTS After 3 months of supplementation, Epalrestat significantly improved the renal and segmental renal arterial end-diastolic blood flow velocity (EDV) and the interlobular artery peak systolic blood flow velocity (PSV) compared with placebo. While Epalrestat markedly decreased the blood flow resistance index (RI) in interlobular artery compared to placebo. There were no significant changes in fasting blood glucose (FBG), diastolic blood pressure (DBP), systolic blood pressure (SBP), serum urinary acid (SUA), low-density lipoprotein cholesterol (LDL), triacylglycerol (TG), total cholesterol (TC), high density lipoprotein cholesterol (HDL), waist circumference (WC) and body mass index (BMI). CONCLUSION Epalrestat can effectively improve renal arterial blood flow and renal arterial perfusion, which play a protective role in early DN.
Collapse
Affiliation(s)
- Mingxia Liu
- Laizhou People's Hospital, No.1718 Wuli Street, Laizhou City 261400, Shandong, China
| | - Fangfang Li
- Laizhou People's Hospital, No.1718 Wuli Street, Laizhou City 261400, Shandong, China
| | - Mei Liang
- Department of Endocrinology, Chengyang People's Hospital in Qingdao, No.600 Changcheng Road Chengyang District, Qingdao 266109, China
| | - Xiaopang Rao
- Department of Endocrinology, Chengyang People's Hospital in Qingdao, No.600 Changcheng Road Chengyang District, Qingdao 266109, China.
| |
Collapse
|
7
|
Oduro PK, Fang J, Niu L, Li Y, Li L, Zhao X, Wang Q. Pharmacological management of vascular endothelial dysfunction in diabetes: TCM and western medicine compared based on biomarkers and biochemical parameters. Pharmacol Res 2020; 158:104893. [PMID: 32434053 DOI: 10.1016/j.phrs.2020.104893] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 04/18/2020] [Accepted: 05/03/2020] [Indexed: 12/20/2022]
Abstract
Diabetes, a worldwide health concern while burdening significant populace of countries with time due to a hefty increase in both incidence and prevalence rates. Hyperglycemia has been buttressed both in clinical and experimental studies to modulate widespread molecular actions that effect macro and microvascular dysfunctions. Endothelial dysfunction, activation, inflammation, and endothelial barrier leakage are key factors contributing to vascular complications in diabetes, plus the development of diabetes-induced cardiovascular diseases. The recent increase in molecular, transcriptional, and clinical studies has brought a new scope to the understanding of molecular mechanisms and the therapeutic targets for endothelial dysfunction in diabetes. In this review, an attempt made to discuss up to date critical and emerging molecular signaling pathways involved in the pathophysiology of endothelial dysfunction and viable pharmacological management targets. Importantly, we exploit some Traditional Chinese Medicines (TCM)/TCM isolated bioactive compounds modulating effects on endothelial dysfunction in diabetes. Finally, clinical studies data on biomarkers and biochemical parameters involved in the assessment of the efficacy of treatment in vascular endothelial dysfunction in diabetes was compared between clinically used western hypoglycemic drugs and TCM formulas.
Collapse
Affiliation(s)
- Patrick Kwabena Oduro
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin 301617, PR China
| | - Jingmei Fang
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin 301617, PR China
| | - Lu Niu
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin 301617, PR China
| | - Yuhong Li
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin 301617, PR China; Tianjin Key Laboratory of Chinese medicine Pharmacology, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China
| | - Lin Li
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin 301617, PR China; Tianjin Key Laboratory of Chinese medicine Pharmacology, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China
| | - Xin Zhao
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin 301617, PR China; Tianjin Key Laboratory of Chinese medicine Pharmacology, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China
| | - Qilong Wang
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin 301617, PR China; Tianjin Key Laboratory of Chinese medicine Pharmacology, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China.
| |
Collapse
|
8
|
Gong Z, Han Y, Wu L, Xia T, Ren H, Yang D, Gu D, Wang H, Hu C, He D, Zhou L, Zeng C. Translocator protein 18 kDa ligand alleviates neointimal hyperplasia in the diabetic rat artery injury model via activating PKG. Life Sci 2019; 221:72-82. [PMID: 30738868 DOI: 10.1016/j.lfs.2019.02.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 02/03/2019] [Accepted: 02/06/2019] [Indexed: 01/01/2023]
Abstract
AIMS The proliferation of VSMCs is the pathologic basis for intimal hyperplasia after angioplasty in diabetic patients. Translocator protein (TSPO), located in the outer mitochondrial membrane, has been found to regulate redox intermediate components in cell dysfunction. We hypothesized that TSPO may regulate VSMC proliferation and migration, and be involved in the intimal hyperplasia after angioplasty in diabetes. MATERIALS AND METHODS Cell proliferation was measured by cell counting and MTT assays. Cell migration was measured by Transwell® and scratch-wound assays. TSPO expression in arteries of rats and high glucose-treated A10 cells were detected by immunoblotting and immunofluorescence staining. Neointimal formation of carotid artery was induced by balloon injury in type 2 diabetic rat. KEY FINDINGS TSPO expression was increased in the arterial samples from diabetic rats and A10 cells treated with high glucose. Down-regulation of TSPO expression by siRNA decreased the high-glucose-induced VSMC proliferation and migration in A10 cells. This phenomenon could be simulated by using TSPO ligands, PK 11195 and Ro5-4864. cGMP/PKG signals were involved in the TSPO ligand action, since in the presence of cGMP or PKG inhibitor ODQ or KT5823 respectively, the effect of PK 11195 on VSMC proliferation was blocked. Furthermore, PK 11195 significantly inhibited neointimal formation by the inhibition of VSMC proliferation. SIGNIFICANCE This study suggests that TSPO inhibition suppresses the proliferation and migration of VSMCs induced by hyperglycemia, consequently, preventing atherosclerosis and restenosis after angioplasty in diabetic conditions. TSPO may be a potential therapeutic target to reduce arterial remodeling induced by angioplasty in diabetes.
Collapse
Affiliation(s)
- Zhengfan Gong
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, PR China; Chongqing Institute of Cardiology, Chongqing Key Laboratory of Hypertension Research, Chongqing, PR China
| | - Yu Han
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, PR China; Chongqing Institute of Cardiology, Chongqing Key Laboratory of Hypertension Research, Chongqing, PR China
| | - Lianpan Wu
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, PR China; Chongqing Institute of Cardiology, Chongqing Key Laboratory of Hypertension Research, Chongqing, PR China
| | - Tianyang Xia
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, PR China; Chongqing Institute of Cardiology, Chongqing Key Laboratory of Hypertension Research, Chongqing, PR China
| | - Hongmei Ren
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, PR China; Chongqing Institute of Cardiology, Chongqing Key Laboratory of Hypertension Research, Chongqing, PR China
| | - Donghai Yang
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, PR China; Chongqing Institute of Cardiology, Chongqing Key Laboratory of Hypertension Research, Chongqing, PR China
| | - Daqian Gu
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, PR China; Chongqing Institute of Cardiology, Chongqing Key Laboratory of Hypertension Research, Chongqing, PR China
| | - He Wang
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, PR China; Chongqing Institute of Cardiology, Chongqing Key Laboratory of Hypertension Research, Chongqing, PR China; Department of Cardiology, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, PR China
| | - Cuimei Hu
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, PR China; Chongqing Institute of Cardiology, Chongqing Key Laboratory of Hypertension Research, Chongqing, PR China
| | - Duofen He
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, PR China; Chongqing Institute of Cardiology, Chongqing Key Laboratory of Hypertension Research, Chongqing, PR China
| | - Lin Zhou
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, PR China; Chongqing Institute of Cardiology, Chongqing Key Laboratory of Hypertension Research, Chongqing, PR China.
| | - Chunyu Zeng
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, PR China; Chongqing Institute of Cardiology, Chongqing Key Laboratory of Hypertension Research, Chongqing, PR China.
| |
Collapse
|
9
|
Wihandani DM, Suastika K, Agus Bagiada IN, Malik SG. Polymorphisms of Aldose Reductase (ALR2) Regulatory Gene are Risk Factors for Diabetic Retinopathy in Type-2 Diabetes Mellitus Patients in Bali, Indonesia. Open Ophthalmol J 2018; 12:281-288. [PMID: 30450144 PMCID: PMC6198411 DOI: 10.2174/1874364101812010281] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 08/13/2018] [Accepted: 09/12/2018] [Indexed: 11/22/2022] Open
Abstract
Aim The study aimed to elucidate whether the polymorphisms of the aldose reductase regulatory gene were risk factors for Diabetic Retinopathy (DR) in type-2 diabetes mellitus (T2DM) patients in Bali. Methods This is a case-control study including 35 cases of T2DM patients with DR paired with 35 cases with non-DR as controls. PCR analysis and DNA-sequencing were carried out to detect the C(-106)T and C(-12)G polymorphisms at the regulatory region of Aldose Reductase (ALR2) gene. Genotype and allele distributions were analyzed by Chi-squared test and independent t-and Mann-Whitney U tests were used to analyze other data. Results Among all subjects in both groups, the baseline characteristics were homogenous except for systolic blood pressure, fasting blood glucose and 2-hours post-prandial blood glucose. This study found two polymorphisms, C(-104)T and C(-9)G, in the regulatory region of ALR2 gene. The result showed that the C(-104)T polymorphism was a risk factor for DR (OR=36; 95% CI = 4.43-292.85; p=0.001), but not the C(-9)G polymorphism (OR=1.28; 95% CI=0.48-3.38; p=0.621). Other findings in the study revealed that CC/CC haplotype is a protective factor for DR (OR=0.198; p=0.002), whereas CT/CC and CT/CG haplotypes as risk factors for DR with OR=15.58; p=0.002 and OR=2.29; p=0.005 respectively. Conclusion It can be concluded that C(-104)T polymorphism in the regulatory region of Aldose Reductase (ALR2) gene was the risk factor for DR among T2DM patients in Bali, Indonesia. However, small sample size, systolic blood pressure, fasting blood glucose and 2-hours post-prandial blood glucose could affect our finding.
Collapse
Affiliation(s)
- Desak Made Wihandani
- Department of Biochemistry, Faculty of Medicine, Udayana University, Jl. PB Sudirman, Denpasar 80232, Bali, Indonesia
| | - Ketut Suastika
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Faculty of Medicine, Udayana University, Jl. PB Sudirman, and Sanglah Hospital, Jl. Kesehatan, Denpasar, Bali, Indonesia
| | - I Nyoman Agus Bagiada
- Department of Biochemistry, Faculty of Medicine, Udayana University, Jl. PB Sudirman, Denpasar 80232, Bali, Indonesia
| | - Safarina G Malik
- Eijkman Institute for Molecular Biology, Jl. Diponegoro 69, Jakarta 10430, Indonesia
| |
Collapse
|
10
|
Khan S, Bhardwaj T, Somvanshi P, Mandal RK, Dar SA, Jawed A, Wahid M, Akhter N, Lohani M, Alouffi S, Haque S. Inhibition of C298S mutant of human aldose reductase for antidiabetic applications: Evidence from in silico elementary mode analysis of biological network model. J Cell Biochem 2018; 119:6961-6973. [PMID: 29693278 DOI: 10.1002/jcb.26904] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Accepted: 03/28/2018] [Indexed: 01/05/2023]
Abstract
Human aldose reductase (hAR) is the key enzyme in sorbitol pathway of glucose utilization and is implicated in the etiology of secondary complications of diabetes, such as, cardiovascular complications, neuropathy, nephropathy, retinopathy, and cataract genesis. It reduces glucose to sorbitol in the presence of NADPH and the major cause of diabetes complications could be the change in the osmotic pressure due to the accumulation of sorbitol. An activated form of hAR (activated hAR or ahAR) poses a potential obstacle in the development of diabetes drugs as hAR-inhibitors are ineffective against ahAR. The therapeutic efficacy of such drugs is compromised when a large fraction of the enzyme (hAR) undergoes conversion to the activated ahAR form as has been observed in the diabetic tissues. In the present study, attempts have been made to employ systems biology strategies to identify the elementary nodes of human polyol metabolic pathway, responsible for normal metabolic states, followed by the identification of natural potent inhibitors of the activated form of hAR represented by the mutant C298S for possible antidiabetic applications. Quantum Mechanical Molecular Mechanical docking strategy was used to determine the probable inhibitors of ahAR. Rosmarinic acid was found as the most potent natural ahAR inhibitor and warrants for experimental validation in the near future.
Collapse
Affiliation(s)
- Saif Khan
- Department of Clinical Laboratory Science, College of Applied Medical Sciences, University of Ha'il, Ha'il, Saudi Arabia
| | - Tulika Bhardwaj
- Department of Biotechnology, TERI School of Advanced Studies, New Delhi, India
| | - Pallavi Somvanshi
- Department of Biotechnology, TERI School of Advanced Studies, New Delhi, India
| | - Raju K Mandal
- Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, Jazan, Saudi Arabia
| | - Sajad A Dar
- Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, Jazan, Saudi Arabia
| | - Arshad Jawed
- Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, Jazan, Saudi Arabia
| | - Mohd Wahid
- Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, Jazan, Saudi Arabia
| | - Naseem Akhter
- Faculty of Applied Medical Sciences, Department of Laboratory Medicine, Albaha University, Albaha, Saudi Arabia
| | - Mohtashim Lohani
- Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, Jazan, Saudi Arabia
| | - S Alouffi
- Department of Clinical Laboratory Science, College of Applied Medical Sciences, University of Ha'il, Ha'il, Saudi Arabia
| | - Shafiul Haque
- Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, Jazan, Saudi Arabia
| |
Collapse
|
11
|
Shukla K, Pal PB, Sonowal H, Srivastava SK, Ramana KV. Aldose Reductase Inhibitor Protects against Hyperglycemic Stress by Activating Nrf2-Dependent Antioxidant Proteins. J Diabetes Res 2017; 2017:6785852. [PMID: 28740855 PMCID: PMC5504933 DOI: 10.1155/2017/6785852] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 05/15/2017] [Accepted: 05/28/2017] [Indexed: 12/30/2022] Open
Abstract
We have shown earlier that pretreatment of cultured cells with aldose reductase (AR) inhibitors prevents hyperglycemia-induced mitogenic and proinflammatory responses. However, the effects of AR inhibitors on Nrf2-mediated anti-inflammatory responses have not been elucidated yet. We have investigated how AR inhibitor fidarestat protects high glucose- (HG-) induced cell viability changes by increasing the expression of Nrf2 and its dependent phase II antioxidant enzymes. Fidarestat pretreatment prevents HG (25 mM)-induced Thp1 monocyte viability. Further, treatment of Thp1 monocytes with fidarestat caused a time-dependent increase in the expression as well as the DNA-binding activity of Nrf2. In addition, fidarestat augmented the HG-induced Nrf2 expression and activity and also upregulated the expression of Nrf2-dependent proteins such as hemeoxygenase-1 (HO1) and NQO1 in Thp1 cells. Similarly, treatment with AR inhibitor also induced the expression of Nrf2 and HO1 in STZ-induced diabetic mice heart and kidney tissues. Further, AR inhibition increased the HG-induced expression of antioxidant enzymes such as SOD and catalase and activation of AMPK-α1 in Thp1 cells. Our results thus suggest that pretreatment with AR inhibitor prepares the monocytes against hyperglycemic stress by overexpressing the Nrf2-dependent antioxidative proteins.
Collapse
Affiliation(s)
- Kirtikar Shukla
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Pabitra Bikash Pal
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Himangshu Sonowal
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Satish K. Srivastava
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Kota V. Ramana
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555, USA
| |
Collapse
|
12
|
Verma SK, Thareja S. Structure based comprehensive modelling, spatial fingerprints mapping and ADME screening of curcumin analogues as novel ALR2 inhibitors. PLoS One 2017; 12:e0175318. [PMID: 28399135 PMCID: PMC5388491 DOI: 10.1371/journal.pone.0175318] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Accepted: 03/23/2017] [Indexed: 12/19/2022] Open
Abstract
Aldose reductase (ALR2) inhibition is the most legitimate approach for the management of diabetic complications. The limited triumph in the drug development against ALR2 is mainly because of its close structural similarity with the other members of aldo-keto reductase (AKR) superfamily viz. ALR1, AKR1B10; and lipophilicity problem i.e. poor diffusion of synthetic aldose reductase inhibitors (ARIs) to target tissues. The literature evidenced that naturally occurring curcumin demonstrates relatively specific and non-competitive inhibition towards human recombinant ALR2 over ALR1 and AKR1B10; however β-diketone moiety of curcumin is a specific substrate for liver AKRs and accountable for it’s rapid in vivo metabolism. In the present study, structure based comprehensive modelling studies were used to map the pharmacophoric features/spatial fingerprints of curcumin analogues responsible for their ALR2 specificity along with potency on a data set of synthetic curcumin analogues and naturally occurring curcuminoids. The data set molecules were also screened for drug-likeness or ADME parameters, and the screening data strongly support that curcumin analogues could be proposed as a good drug candidate for the development of ALR2 inhibitors with improved pharmacokinetic profile compared to curcuminoids due to the absence of β-diketone moiety in their structural framework.
Collapse
Affiliation(s)
- Sant Kumar Verma
- School of Pharmaceutical Sciences, Guru Ghasidas Central University, Bilaspur, C.G., India
| | - Suresh Thareja
- School of Pharmaceutical Sciences, Guru Ghasidas Central University, Bilaspur, C.G., India
- * E-mail:
| |
Collapse
|
13
|
Zhang YQ, Tian F, Chen JS, Chen YD, Zhou Y, Li B, Ma Q, Zhang Y. Delayed reendothelialization with rapamycin is rescued by the addition of nicorandil in balloon-injured rat carotid arteries. Oncotarget 2016; 7:75926-75939. [PMID: 27713157 PMCID: PMC5342788 DOI: 10.18632/oncotarget.12444] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Accepted: 09/24/2016] [Indexed: 01/09/2023] Open
Abstract
Rapamycin is an immunosuppressive agent that is added to drug eluting stents. It prevents restenosis, but it also impairs reendothelialization. Nicorandil is a hybrid agent with adenosine triphosphated (ATP)-sensitive K+ (KATP) channel opener and nitrate properties. It prevents oxidative stress and cell apoptosis induced by rapamycin in endothelial cells in vitro. However, whether nicorandil promotes reendothelialization after angioplasty delayed by rapamycin remains to be determined. Balloon injury model was established in SD rats. Nicorandil increased reendothelialization impaired by rapamycin, and it decreased xanthine oxidase (XO)-generated reactive oxygen species (ROS) induced by rapamycin. In addition, eNOS expression inhibited by rapamycin was increased by nicorandil in vivo. In vitro, rapamycin-impeded cardiac microvascular endothelial cells (CMECs) migration, proliferation and rapamycin-induced ROS production were reversed by nicorandil. Knockdown of XO partially inhibited rapamycin-induced ROS production and cell apoptosis in CMECs, and it promoted CMECs migration and proliferation suppressed by rapamycin. Knockdown of Akt partially prevents eNOS upregulation promoted by nicorandil. The beneficial effect of nicorandil is exhibited by inhibiting XO and up-regulating Akt pathway. Nicorandil combined with rapamycin in effect rescue the deficiencies of rapamycin alone in arterial healing after angioplasty.
Collapse
Affiliation(s)
- Ying Qian Zhang
- Department of Cardiology, Chinese PLA General Hospital, Beijing, China
| | - Feng Tian
- Department of Cardiology, Chinese PLA General Hospital, Beijing, China
| | - Jin Song Chen
- Department of Cardiology, Chinese PLA 175th Hospital, Fujian, China.,Department of Cardiology, Chinese PLA General Hospital, Beijing, China
| | - Yun Dai Chen
- Department of Cardiology, Chinese PLA General Hospital, Beijing, China
| | - Ying Zhou
- VIP Medical Service Department, Beijing Shijitan Hospital, Beijing, China.,Department of Cardiology, Chinese PLA General Hospital, Beijing, China
| | - Bo Li
- Department of Cardiology, Chinese PLA General Hospital, Beijing, China
| | - Qiang Ma
- Department of Cardiology, Chinese PLA General Hospital, Beijing, China
| | - Ying Zhang
- Department of Cardiology, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
14
|
Zhang YQ, Tian F, Zhou Y, Chen YD, Li B, Ma Q, Zhang Y. Nicorandil attenuates carotid intimal hyperplasia after balloon catheter injury in diabetic rats. Cardiovasc Diabetol 2016; 15:62. [PMID: 27059601 PMCID: PMC4826484 DOI: 10.1186/s12933-016-0377-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Accepted: 03/25/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Diabetic patients suffer from undesired intimal hyperplasia after angioplasty. Nicorandil has a trend to reduce the rate of target lesion revascularization. However, whether nicorandil inhibits intimal hyperplasia and the possible mechanisms underlying it remain to be determined. We aimed at assessing the effect of nicorandil on intimal hyperplasia in diabetic rats. METHODS After intraperitoneal injection of streptozotocin (STZ, 50 mg/kg), balloon injury model was established in carotid arteries of diabetic rats. Rats were randomized to vehicle, nicorandil (15 mg/kg/day) or 5-hydroxydecanoate (5-HD, 10 mg/kg/day), a mitochondrial ATP-sensitive potassium channel (mitoKATP channel)-selective antagonist. Perivascular delivery of εPKC siRNA was conducted to determine the role of εPKC pathway in intimal hyperplasia. In hyperglycemia environment (25 mM glucose), primary culture of vascular smooth muscle cells (VSMCs) were treated with nicorandil or 5-HD. Cell proliferation and cell migration were analyzed. RESULTS Intimal hyperplasia significantly increased 14 days after balloon injury in diabetic rats (p < 0.01). Nicorandil inhibited intima development, reduced inflammation and prevented cell proliferation in balloon-injured arteries (p < 0.01). The protective effects of nicorandil were reversed by 5-HD (p < 0.05). εPKC was activated in balloon-injured arteries (p < 0.01). Nicorandil inhibited εPKC activation by opening mitoKATP channel. Perivascular delivery of εPKC siRNA inhibited intimal hyperplasia, inflammation and cell proliferation (p < 0.01). High glucose-induced VSMCs proliferation and migration were inhibited by nicorandil. εPKC activation induced by high glucose was also inhibited by nicorandil and that is partially reversed by 5-HD. εPKC knockdown prevented VSMCs proliferation and migration (p < 0.01). CONCLUSIONS Our study demonstrates that nicorandil inhibits intimal hyperplasia in balloon-injured arteries in diabetic rats. Nicorandil also prevents VSMCs proliferation and migration induced by high glucose. The beneficial effect of nicorandil is conducted via opening mitoKATP channel and inhibiting εPKC activation.
Collapse
Affiliation(s)
- Ying Qian Zhang
- Department of Cardiology, Chinese PLA General Hospital, 28 Fuxing Rd, Beijing, 100853, China
| | - Feng Tian
- Department of Cardiology, Chinese PLA General Hospital, 28 Fuxing Rd, Beijing, 100853, China
| | - Ying Zhou
- Department of Cardiology, Chinese PLA General Hospital, 28 Fuxing Rd, Beijing, 100853, China
| | - Yun Dai Chen
- Department of Cardiology, Chinese PLA General Hospital, 28 Fuxing Rd, Beijing, 100853, China.
| | - Bo Li
- Department of Cardiology, Chinese PLA General Hospital, 28 Fuxing Rd, Beijing, 100853, China
| | - Qiang Ma
- Department of Cardiology, Chinese PLA General Hospital, 28 Fuxing Rd, Beijing, 100853, China
| | - Ying Zhang
- Department of Cardiology, Chinese PLA General Hospital, 28 Fuxing Rd, Beijing, 100853, China
| |
Collapse
|
15
|
Schaur RJ, Siems W, Bresgen N, Eckl PM. 4-Hydroxy-nonenal-A Bioactive Lipid Peroxidation Product. Biomolecules 2015; 5:2247-337. [PMID: 26437435 PMCID: PMC4693237 DOI: 10.3390/biom5042247] [Citation(s) in RCA: 155] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Revised: 07/24/2015] [Accepted: 07/29/2015] [Indexed: 12/23/2022] Open
Abstract
This review on recent research advances of the lipid peroxidation product 4-hydroxy-nonenal (HNE) has four major topics: I. the formation of HNE in various organs and tissues, II. the diverse biochemical reactions with Michael adduct formation as the most prominent one, III. the endogenous targets of HNE, primarily peptides and proteins (here the mechanisms of covalent adduct formation are described and the (patho-) physiological consequences discussed), and IV. the metabolism of HNE leading to a great number of degradation products, some of which are excreted in urine and may serve as non-invasive biomarkers of oxidative stress.
Collapse
Affiliation(s)
- Rudolf J Schaur
- Institute of Molecular Biosciences, University of Graz, Heinrichstrasse 33a, 8010 Graz, Austria.
| | - Werner Siems
- Institute for Medical Education, KortexMed GmbH, Hindenburgring 12a, 38667 Bad Harzburg, Germany.
| | - Nikolaus Bresgen
- Division of Genetics, Department of Cell Biology, University of Salzburg, Hellbrunnerstasse 34, 5020 Salzburg, Austria.
| | - Peter M Eckl
- Division of Genetics, Department of Cell Biology, University of Salzburg, Hellbrunnerstasse 34, 5020 Salzburg, Austria.
| |
Collapse
|
16
|
Wang K, Wen L, Peng W, Li H, Zhuang J, Lu Y, Liu B, Li X, Li W, Xu Y. Vinpocetine attenuates neointimal hyperplasia in diabetic rat carotid arteries after balloon injury. PLoS One 2014; 9:e96894. [PMID: 24819198 PMCID: PMC4018422 DOI: 10.1371/journal.pone.0096894] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2013] [Accepted: 04/13/2014] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Diabetes exacerbates abnormal vascular smooth muscle cell (VSMC) accumulation in response to arterial wall injury. Vinpocetine has been shown to improve vascular remolding; however, little is known about the direct effects of vinpocetine on vascular complications mediated by diabetes. The objective of this study was to determine the effects of vinpocetine on hyperglycemia-facilitated neointimal hyperplasia and explore its possible mechanism. MATERIALS AND METHODS Nondiabetic and diabetic rats were subjected to balloon injury of the carotid artery followed by 3-week treatment with either vinpocetine (10 mg/kg/day) or saline. Morphological analysis and proliferating cell nuclear antigen (PCNA) immunostaining were performed on day 21. Rat VSMCs proliferation was determined with 5-ethynyl-20-deoxyuridine cell proliferation assays. Chemokinesis was monitored with scratch assays, and production of reactive oxygen species (ROS) was assessed using a 2',7'-dichlorodihydrofluorescein diacetate (H2DCFDA) flow cytometric assay. Apoptosis was detected by annexin V-FITC/PI flow cytometric assay. Cell signaling was assessed by immunblotting. RESULTS Vinpocetine prevented intimal hyperplasia in carotid arteries in both normal (I/M ratio: 93.83 ± 26.45% versus 143.2 ± 38.18%, P<0.05) and diabetic animals (I/M ratio: 120.5 ± 42.55% versus 233.46 ± 33.98%, P<0.05) when compared to saline. The in vitro study demonstrated that vinpocetine significantly inhibited VSMCs proliferation and chemokinesis as well as ROS generation and apoptotic resistance, which was induced by high glucose (HG) treatment. Vinpocetine significantly abolished HG-induced phosphorylation of Akt and JNK1/2 without affecting their total levels. For downstream targets, HG-induced phosphorylation of IκBα was significantly inhibited by vinpocetine. Vinpocetine also attenuated HG-enhanced expression of PCNA, cyclin D1 and Bcl-2. CONCLUSIONS Vinpocetine attenuated neointimal formation in diabetic rats and inhibited HG-induced VSMCs proliferation, chemokinesis and apoptotic resistance by preventing ROS activation and affecting MAPK, PI3K/Akt, and NF-κB signaling.
Collapse
Affiliation(s)
- Ke Wang
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Li Wen
- Department of Cardiopulmonary Circulation, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Wenhui Peng
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Hailing Li
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jianhui Zhuang
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yuyan Lu
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Baoxin Liu
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xiankai Li
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Weiming Li
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yawei Xu
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
17
|
Salabei JK, Hill BG. Implications of autophagy for vascular smooth muscle cell function and plasticity. Free Radic Biol Med 2013; 65:693-703. [PMID: 23938401 PMCID: PMC3859773 DOI: 10.1016/j.freeradbiomed.2013.08.003] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Revised: 08/02/2013] [Accepted: 08/04/2013] [Indexed: 12/14/2022]
Abstract
Vascular smooth muscle cells (VSMCs) are fundamental in regulating blood pressure and distributing oxygen and nutrients to peripheral tissues. They also possess remarkable plasticity, with the capacity to switch to synthetic, macrophage-like, or osteochondrogenic phenotypes when cued by external stimuli. In arterial diseases such as atherosclerosis and restenosis, this plasticity seems to be critical and, depending on the disease context, can be deleterious or beneficial. Therefore, understanding the mechanisms regulating VSMC phenotype and survival is essential for developing new therapies for vascular disease as well as understanding how secondary complications due to surgical interventions develop. In this regard, the cellular process of autophagy is increasingly being recognized as a major player in vascular biology and a critical determinant of VSMC phenotype and survival. Although autophagy was identified in lesional VSMCs in the 1960s, our understanding of the implications of autophagy in arterial diseases and the stimuli promoting its activation in VSMCs is only now being elucidated. In this review, we highlight the evidence for autophagy occurring in VSMCs in vivo, elaborate on the stimuli and processes regulating autophagy, and discuss the current understanding of the role of autophagy in vascular disease.
Collapse
Affiliation(s)
- Joshua K Salabei
- Diabetes and Obesity Center, Institute of Molecular Cardiology, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Bradford G Hill
- Diabetes and Obesity Center, Institute of Molecular Cardiology, University of Louisville School of Medicine, Louisville, KY 40202, USA; Department of Biochemistry and Molecular Biology, University of Louisville School of Medicine, Louisville, KY 40202, USA; Department of Physiology and Biophysics, University of Louisville School of Medicine, Louisville, KY 40202, USA.
| |
Collapse
|
18
|
Ha YM, Lee DH, Kim M, Kang YJ. High glucose induces connective tissue growth factor expression and extracellular matrix accumulation in rat aorta vascular smooth muscle cells via extracellular signal-regulated kinase 1/2. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2013; 17:307-14. [PMID: 23946690 PMCID: PMC3741487 DOI: 10.4196/kjpp.2013.17.4.307] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2013] [Revised: 06/10/2013] [Accepted: 06/22/2013] [Indexed: 01/22/2023]
Abstract
Connective tissue growth factor (CTGF) is a potent pro-fibrotic factor, which is implicated in fibrosis through extracellular matrix (ECM) induction in diabetic cardiovascular complications. It is an important downstream mediator in the fibrotic action of transforming growth factor β (TGFβ) and is potentially induced by hyperglycemia in human vascular smooth muscle cells (VSMCs). Therefore, the goal of this study is to identify the signaling pathways of CTGF effects on ECM accumulation and cell proliferation in VSMCs under hyperglycemia. We found that high glucose stimulated the levels of CTGF mRNA and protein and followed by VSMC proliferation and ECM components accumulation such as collagen type 1, collagen type 3 and fibronectin. By depleting endogenous CTGF we showed that CTGF is indispensable for the cell proliferation and ECM components accumulation in high glucose-stimulated VSMCs. In addition, pretreatment with the MEK1/2 specific inhibitors, PD98059 or U0126 potently inhibited the CTGF production and ECM components accumulation in high glucose-stimulated VSMCs. Furthermore, knockdown with ERK1/2 MAPK siRNA resulted in significantly down regulated of CTGF production, ECM components accumulation and cell proliferation in high glucose-stimulated VSMCs. Finally, ERK1/2 signaling regulated Egr-1 protein expression and treatment with recombinant CTGF reversed the Egr-1 expression in high glucose-induced VSMCs. It is conceivable that ERK1/2 MAPK signaling pathway plays an important role in regulating CTGF expression and suggests that blockade of CTGF through ERK1/2 MAPK signaling may be beneficial for therapeutic target of diabetic cardiovascular complication such as atherosclerosis.
Collapse
Affiliation(s)
- Yu Mi Ha
- Department of Pharmacology, College of Medicine, Yeungnam University, Daegu 705-717, Korea. ; Department of Aging-Associated Vascular Disease Research Center, College of Medicine, Yeungnam University, Daegu 705-717, Korea
| | | | | | | |
Collapse
|
19
|
Haberzettl P, Hill BG. Oxidized lipids activate autophagy in a JNK-dependent manner by stimulating the endoplasmic reticulum stress response. Redox Biol 2013; 1:56-64. [PMID: 24024137 PMCID: PMC3757667 DOI: 10.1016/j.redox.2012.10.003] [Citation(s) in RCA: 341] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2012] [Accepted: 10/22/2012] [Indexed: 11/30/2022] Open
Abstract
Excessive production of unsaturated aldehydes from oxidized lipoproteins and membrane lipids is a characteristic feature of cardiovascular disease. Our previous studies show that unsaturated lipid peroxidation-derived aldehydes such as 4-hydroxy-trans-2-nonenal (HNE) promote autophagy in rat aortic smooth muscle cells (RASMC). In this study, we examined the mechanism by which HNE induces autophagy. Exposure of RASMC to HNE led to the modification of several proteins, most of which were identified by mass spectrometry and confocal microscopy to be localized to the endoplasmic reticulum (ER). HNE stimulated the phosphorylation of PKR-like ER kinase and eukaryotic initiation factor 2α and increased heme oxygenase-1 (HO-1) abundance. HNE treatment also increased LC3-II formation and the phosphorylation of JNK and p38. Pharmacological inhibition of JNK, but not p38, prevented HNE-induced HO-1 expression and LC3-II formation. Inhibition of JNK increased cell death in HNE-treated cells. Pretreatment with the chemical chaperone phenylbutryic acid prevented LC3-II formation as well as JNK phosphorylation and HO-1 induction. Taken together, these data suggest that autophagic responses triggered by unsaturated aldehydes could be attributed, in part, to ER stress, which stimulates autophagy by a JNK-dependent mechanism and promotes cell survival during oxidative stress.
Collapse
Key Words
- 4-hydroxynonenal
- ATF6, activating transcription factor 6
- Autophagy
- DMEM, Delbucco's Eagle Modified Medium
- DMSO, dimethylsulfoxide
- DNPH, 2,4-dinitrophenylhydrazine
- DTT, dithiothreitol
- ECL, enhanced chemiluminescence
- ER, endoplasmic reticulum
- FBS, fetal bovine serum
- Grp, glucose regulated protein
- HEPES, 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid
- HNE, 4-hydroxy-trans-2-nonenal
- HRP, horseradish peroxidase
- IRE, inositol requiring enzyme
- JNK
- JNK, c-jun N-terminal kinase
- LC3, microtubule-associated protein 1 light chain 3
- NP-40, noniodet P40
- Oxidative stress
- PDI, protein disulfide isomerase
- PERK, PKR-like ER kinase
- PVDF, polyvinylidene fluoride
- RASMC, rat aortic smooth muscle cells
- SDS, sodium dodecyl sulfate
- Smooth muscle cells
- UPR, unfolded protein response
- Unfolded protein response
- eIF2α, elongation initiation factor 2 α
Collapse
Affiliation(s)
- Petra Haberzettl
- Diabetes and Obesity Center, Institute of Molecular Cardiology, University of Louisville, Louisville, KY, USA
| | | |
Collapse
|
20
|
Vedantham S, Ananthakrishnan R, Schmidt AM, Ramasamy R. Aldose reductase, oxidative stress and diabetic cardiovascular complications. Cardiovasc Hematol Agents Med Chem 2012; 10:234-40. [PMID: 22632267 PMCID: PMC3629910 DOI: 10.2174/187152512802651097] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2011] [Revised: 03/29/2012] [Accepted: 04/23/2012] [Indexed: 05/25/2023]
Abstract
Cardiovascular disease represents the major cause of morbidity and mortality in patients with diabetes mellitus. Studies by us and others have implicated increased flux via aldose reductase (AR) as a key player in mediating diabetic complications, including cardiovascular complications. Data suggest that increased flux via AR in diabetics perpetuates increased injury after myocardial infarction, accelerates atherosclerotic lesion formation, and promotes restenosis via multiple mechanisms. Most importantly, studies have shown that increased generation of reactive oxygen species due to flux via AR has been a common feature in animal models of diabetic cardiovascular disease. Taken together, these considerations place AR in the center of biochemical and molecular stresses that characterize the cardiovascular complications of diabetes. Stopping AR-dependent signaling may hold the key to interrupting cycles of cellular perturbation and tissue damage in diabetic cardiovascular complications.
Collapse
Affiliation(s)
| | | | | | - Ravichandran Ramasamy
- Address correspondence to this author at the Diabetes Research Program, New York University Langone Medical Center, Smilow Research Building Room 901, 550 First Avenue, New York, NY 10016, USA; Tel: 212-263-9475; Fax: 212-263-9497;
| |
Collapse
|
21
|
Tang WH, Martin KA, Hwa J. Aldose reductase, oxidative stress, and diabetic mellitus. Front Pharmacol 2012; 3:87. [PMID: 22582044 PMCID: PMC3348620 DOI: 10.3389/fphar.2012.00087] [Citation(s) in RCA: 269] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2012] [Accepted: 04/19/2012] [Indexed: 01/02/2023] Open
Abstract
Diabetes mellitus (DM) is a complex metabolic disorder arising from lack of insulin production or insulin resistance (Diagnosis and classification of diabetes mellitus, 2007). DM is a leading cause of morbidity and mortality in the developed world, particularly from vascular complications such as atherothrombosis in the coronary vessels. Aldose reductase (AR; ALR2; EC 1.1.1.21), a key enzyme in the polyol pathway, catalyzes nicotinamide adenosine dinucleotide phosphate-dependent reduction of glucose to sorbitol, leading to excessive accumulation of intracellular reactive oxygen species (ROS) in various tissues of DM including the heart, vasculature, neurons, eyes, and kidneys. As an example, hyperglycemia through such polyol pathway induced oxidative stress, may have dual heart actions, on coronary blood vessel (atherothrombosis) and myocardium (heart failure) leading to severe morbidity and mortality (reviewed in Heather and Clarke, 2011). In cells cultured under high glucose conditions, many studies have demonstrated similar AR-dependent increases in ROS production, confirming AR as an important factor for the pathogenesis of many diabetic complications. Moreover, recent studies have shown that AR inhibitors may be able to prevent or delay the onset of cardiovascular complications such as ischemia/reperfusion injury, atherosclerosis, and atherothrombosis. In this review, we will focus on describing pivotal roles of AR in the pathogenesis of cardiovascular diseases as well as other diabetic complications, and the potential use of AR inhibitors as an emerging therapeutic strategy in preventing DM complications.
Collapse
Affiliation(s)
- Wai Ho Tang
- Section of Cardiovascular Medicine, Department of Internal Medicine, Yale School of Medicine, Yale University New Haven, CT, USA
| | | | | |
Collapse
|
22
|
Siddiqui MA, Kumar V, Kashyap MP, Agarwal M, Singh AK, Jahan S, Khanna VK, Al-Khedhairy AA, Musarrat J, Pant AB. Short-term exposure of 4-hydroxynonenal induces mitochondria-mediated apoptosis in PC12 cells. Hum Exp Toxicol 2012; 31:336-45. [DOI: 10.1177/0960327111432500] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
4-Hydroxynonenal (4-HNE) is one of the most reactive aldehydic by-products of lipid peroxidation. The role of 4-HNE in the etiology of various neurodegenerative disorders including cerebral ischemia/reperfusion, Alzheimer’s disease, Parkinson’s disease, etc. has been documented. We and others have reported that long-term toxic insults of 4-HNE triggers apoptotic signals and oxidative stress in various cells. However, the status of apoptosis following short-term exposure and underlying mechanisms has not been explored so far. We studied the apoptotic changes in PC12 cells receiving short-term exposure of 4-HNE. A significant dose-dependent induction in reactive oxygen species (ROS) and early response markers (c-Fos, c-Jun, and GAP-43) were observed in cells exposed to 4-HNE (10, 25, and 50 µM) for 1h. Following the exposure of PC12 cells to 4-HNE, the levels of protein and messenger RNA expressions of P53, Bax, and caspase 3 were significantly upregulated, whereas the levels of Bcl2 was downregulated. We could record the apoptotic signals and ROS generation in PC12 cells receiving 4-HNE exposure for such a short period of time. Induction in the expression and activity of caspase 3 has also indicated the mitochondrial mediation in the apoptosis induction.
Collapse
Affiliation(s)
- MA Siddiqui
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - V Kumar
- In Vitro Toxicology Laboratory, Indian Institute of Toxicology Research, Lucknow, India
| | - MP Kashyap
- In Vitro Toxicology Laboratory, Indian Institute of Toxicology Research, Lucknow, India
| | - M Agarwal
- In Vitro Toxicology Laboratory, Indian Institute of Toxicology Research, Lucknow, India
| | - AK Singh
- In Vitro Toxicology Laboratory, Indian Institute of Toxicology Research, Lucknow, India
| | - S Jahan
- In Vitro Toxicology Laboratory, Indian Institute of Toxicology Research, Lucknow, India
| | - VK Khanna
- In Vitro Toxicology Laboratory, Indian Institute of Toxicology Research, Lucknow, India
| | - AA Al-Khedhairy
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - J Musarrat
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - AB Pant
- In Vitro Toxicology Laboratory, Indian Institute of Toxicology Research, Lucknow, India
| |
Collapse
|
23
|
Cellular dysfunction in diabetes as maladaptive response to mitochondrial oxidative stress. EXPERIMENTAL DIABETES RESEARCH 2012; 2012:696215. [PMID: 22253615 PMCID: PMC3255456 DOI: 10.1155/2012/696215] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2011] [Accepted: 09/27/2011] [Indexed: 12/20/2022]
Abstract
Oxidative stress has been implicated in diabetes long-term complications. In this paper, we summarize the growing evidence suggesting that hyperglycemia-induced overproduction of superoxide by mitochondrial electron transport chain triggers a maladaptive response by affecting several metabolic and signaling pathways involved in the pathophysiology of cellular dysfunction and diabetic complications. In particular, it is our goal to describe physiological mechanisms underlying the mitochondrial free radical production and regulation to explain the oxidative stress derived from a high intracellular glucose concentration and the resulting maladaptive response that leads to a cellular dysfunction and pathological state. Finally, we outline potential therapies for diabetes focused to the prevention of mitochondrial oxidative damage.
Collapse
|
24
|
Abarikwu SO, Pant AB, Farombi EO. 4-Hydroxynonenal induces mitochondrial-mediated apoptosis and oxidative stress in SH-SY5Y human neuronal cells. Basic Clin Pharmacol Toxicol 2011; 110:441-8. [PMID: 22118713 DOI: 10.1111/j.1742-7843.2011.00834.x] [Citation(s) in RCA: 228] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Excessive and sustained increases in oxidative stress and apoptosis have been implicated in the pathogenesis of many diseases. In this study, we demonstrated that 4-hydroxynonenal (4-HNE), a product of lipid peroxidation in a range of concentration (0.1-50 μM) showed cytotoxic effects on SH-SY5Y cell culture at a concentration >5 μM at 4 hr of exposure. 4-HNE dose dependently decreased cell viability and significantly promoted reactive oxygen species formation and enhanced oxidative stress as reflected in the increased level of lipid peroxidation and catalase activity and decreased glutathione peroxidase activity as well as glutathione levels. 4-HNE-induced oxidative stress was associated with increased transcriptional and translational expressions of Bax and p53 in SH-SY5Y cells. Mitochondrial-mediated apoptosis was confirmed by increased expression and activity of caspase-3. Our data demonstrate that 4-HNE induces neuronal cell death through abnormal expression of apoptotic markers (p53, Bax and caspase-3). Oxidative stress may be involved in the initial priming of SH-SY5Y cells to 4-HNE-induced cytotoxicity in vitro.
Collapse
Affiliation(s)
- Sunny O Abarikwu
- Department of Chemical Sciences, College of Natural Sciences, Redeemer's University, Redemption City, Ogun State, Nigeria.
| | | | | |
Collapse
|
25
|
Amunom I, Dieter LJ, Tamasi V, Cai J, Conklin DJ, Srivastava S, Martin MV, Guengerich FP, Prough RA. Cytochromes P450 catalyze the reduction of α,β-unsaturated aldehydes. Chem Res Toxicol 2011; 24:1223-30. [PMID: 21766881 PMCID: PMC3180908 DOI: 10.1021/tx200080b] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The metabolism of α,β-unsaturated aldehydes, e.g., 4-hydroxynonenal, involves oxidation to carboxylic acids, reduction to alcohols, and glutathionylation to eventually form mercapturide conjugates. Recently, we demonstrated that P450s can oxidize aldehydes to carboxylic acids, a reaction previously thought to involve aldehyde dehydrogenase. When recombinant cytochrome P450 3A4 was incubated with 4-hydroxynonenal, O(2), and NADPH, several products were produced, including 1,4-dihydroxynonene (DHN), 4-hydroxy-2-nonenoic acid (HNA), and an unknown metabolite. Several P450s catalyzed the reduction reaction in the order (human) P450 2B6 ≅ P450 3A4 > P450 1A2 > P450 2J2 > (mouse) P450 2c29. Other P450s did not catalyze the reduction reaction (human P450 2E1 and rabbit P450 2B4). Metabolism by isolated rat hepatocytes showed that HNA formation was inhibited by cyanamide, while DHN formation was not affected. Troleandomycin increased HNA production 1.6-fold while inhibiting DHN formation, suggesting that P450 3A11 is a major enzyme involved in rat hepatic clearance of 4-HNE. A fluorescent assay was developed using 9-anthracenealdehyde to measure both reactions. Feeding mice a diet containing t-butylated hydroxyanisole increased the level of both activities with hepatic microsomal fractions but not proportionally. Miconazole (0.5 mM) was a potent inhibitor of these microsomal reduction reactions, while phenytoin and α-naphthoflavone (both at 0.5 mM) were partial inhibitors, suggesting the role of multiple P450 enzymes. The oxidative metabolism of these aldehydes was inhibited >90% in an Ar or CO atmosphere, while the reductive reactions were not greatly affected. These results suggest that P450s are significant catalysts of the reduction of α,β-unsaturated aldehydes in the liver.
Collapse
Affiliation(s)
- Immaculate Amunom
- Department of Biochemistry and Molecular Biology, University of Louisville School of Medicine. Louisville, KY
| | - Laura J. Dieter
- Department of Biochemistry and Molecular Biology, University of Louisville School of Medicine. Louisville, KY
| | - Viola Tamasi
- Department of Genetics, Cell Biology, and Immunobiology, Semmelweis University, Budapest, Hungary
| | - Jan Cai
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine. Louisville, KY
| | - Daniel J. Conklin
- Department of Medicine/Cardiovascular Medicine, University of Louisville School of Medicine. Louisville, KY
| | - Sanjay Srivastava
- Department of Medicine/Cardiovascular Medicine, University of Louisville School of Medicine. Louisville, KY
| | - Martha V. Martin
- Department of Biochemistry and Center in Molecular Toxicology, Vanderbilt University School of Medicine, Nashville, TN
| | - F. Peter Guengerich
- Department of Biochemistry and Center in Molecular Toxicology, Vanderbilt University School of Medicine, Nashville, TN
| | - Russell A. Prough
- Department of Biochemistry and Molecular Biology, University of Louisville School of Medicine. Louisville, KY
| |
Collapse
|
26
|
Zhao J, Jiang T, Li H, Zhang Y, Zhang N. Aldose reductase regulates TNF-α-induced inducible nitric oxide synthase expression in human mesangial cells. Mol Biol Rep 2011; 39:1815-22. [DOI: 10.1007/s11033-011-0923-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2010] [Accepted: 05/21/2011] [Indexed: 02/06/2023]
|
27
|
Baba SP, Hellmann J, Srivastava S, Bhatnagar A. Aldose reductase (AKR1B3) regulates the accumulation of advanced glycosylation end products (AGEs) and the expression of AGE receptor (RAGE). Chem Biol Interact 2011; 191:357-63. [PMID: 21276777 PMCID: PMC3145413 DOI: 10.1016/j.cbi.2011.01.024] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2010] [Revised: 01/19/2011] [Accepted: 01/20/2011] [Indexed: 01/14/2023]
Abstract
Diabetes results in enhanced chemical modification of proteins by advanced lipoxidation end products (ALEs) and advanced glycation end products (AGEs) precursors. These modifications have been linked to the development of several secondary diabetic complications. Our previous studies showed that aldose reductase (AR; AKR1B3) catalyzes the reduction of ALEs and AGEs precursors; however, the in vivo significance of this metabolic pathway during diabetes and obesity has not been fully assessed. Therefore we examined the role of AR in regulating ALEs and AGEs formation in murine models of diet-induced obesity and streptozotocin-induced diabetes. In comparison with wild-type (WT) and AR-null mice fed normal chow, mice fed a high-fat (HF) diet (42% kcal fat) showed increased accumulation of AGEs and protein-acrolein adducts in the plasma. AGEs and acrolein adducts were also increased in the epididymal fat of WT and AR-null mice fed a HF diet. Deletion of AR increased the accumulation of 4-hydroxy-trans-2-nonenal (HNE) protein adduct in the plasma and increased the expression of the AGE receptor (RAGE) in HF fed mice. No change in AGEs formation was observed in the kidneys of HF-fed mice. In comparison, renal tissue from AR-null mice treated with streptozotocin showed greater AGE accumulation than streptozotocin-treated WT mice. These data indicated that AR regulated the accumulation of lipid peroxidation derived aldehydes and AGEs under conditions of severe, but not mild, hyperglycemia and that deletion of AR increased RAGE-induction via mechanisms that were independent of AGEs accumulation.
Collapse
Affiliation(s)
- Shahid P Baba
- Diabetes and Obesity Center, University of Louisville, Louisville, KY 40202, USA.
| | | | | | | |
Collapse
|
28
|
Abstract
In the past years aldose reductase (AKR1B1; AR) is thought to be involved in the pathogenesis of secondary diabetic complications such as retinopathy, neuropathy, nephropathy and cataractogenesis. Subsequently, a number of AR inhibitors have been developed and tested for diabetic complications. Although, these inhibitors have found to be safe for human use, they have not been successful at the clinical studies because of limited efficacy. Recently, the potential physiological role of AR has been reassessed from a different point of view. Diverse groups suggested that AR besides reducing glucose, also efficiently reduces oxidative stress-generated lipid peroxidation-derived aldehydes and their glutathione conjugates. Since lipid aldehydes alter cellular signals by regulating the activation of transcription factors such as NF-kB and AP1, inhibition of AR could inhibit such events. Indeed, a wide array of recent experimental evidence indicates that the inhibition of AR prevents oxidative stress-induced activation of NF-kB and AP1 signals that lead to cell death or growth. Further, AR inhibitors have been shown to prevent inflammatory complications such as sepsis, asthma, colon cancer and uveitis in rodent animal models. The new experimental in-vitro and in-vivo data has provided a basis for investigating the clinical efficacy of AR inhibitors in preventing other inflammatory complications than diabetes. This review describes how the recent studies have identified novel plethoric physiological and pathophysiological significance of AR in mediating inflammatory complications, and how the discovery of such new insights for this old enzyme could have considerable importance in envisioning potential new therapeutic strategies for the prevention or treatment of inflammatory diseases.
Collapse
Affiliation(s)
- Kota V Ramana
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas, 77555
| |
Collapse
|
29
|
Seaward AVC, Burke SD, Croy BA. Interferon gamma contributes to preimplantation embryonic development and to implantation site structure in NOD mice. Hum Reprod 2010; 25:2829-39. [PMID: 20813805 PMCID: PMC2957476 DOI: 10.1093/humrep/deq236] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Pre-eclampsia, a syndrome usually accompanied by incomplete spiral arterial modification, occurs at an increased frequency in diabetic women. Hyperglycemia in non-obese type 1 diabetic (NOD) mice impairs gestational spiral arterial remodeling despite high local levels of interferon gamma (Ifng), the triggering cytokine in mice. Pregnancies in NOD.Ifng(-/-) mice were assessed to investigate this issue. METHODS Fecundity was assessed using the breeding history, flushing of preimplantation embryos and histological and morphometric studies of implantation sites in normoglycemic (n-) and hyperglycemic (d-) females of NOD.Ifng(-/-) and NOD genotypes. RESULTS NOD.Ifng(-/-) but not NOD mice are mostly infertile. In NOD.Ifng(-/-), copulation often does not result in a post-implantation pregnancy. Defective fertilization and delayed preimplantation development limit n-NOD.Ifng(-/-) fertility, and both mechanisms are exacerbated by hyperglycemia. At mid-gestation, implantation sites in n-NOD.Ifng(-/-) and n-NOD mice are histologically similar. However, in d-NOD.Ifng(-/-), there is minimal development of spiral arteries, hypertrophy of the myometrial region containing uterine Natural Killer (uNK) cells and a deficit in cytoplasmic granule formation in the uNK cells. CONCLUSIONS Ifng contributes to the success of fertilization and to the rate of preimplantation mouse embryo development in normogylcemic and hyperglycemic pregnancies. A physiological role for this cytokine in human preimplantation development merits investigation.
Collapse
Affiliation(s)
- A V C Seaward
- Department of Anatomy and Cell Biology, Queen's University, Room 915, Botterell Hall, Kingston, ON, Canada
| | | | | |
Collapse
|
30
|
Siddiqui MA, Kashyap MP, Khanna VK, Yadav S, Pant AB. NGF induced differentiated PC12 cells as in vitro tool to study 4-hydroxynonenal induced cellular damage. Toxicol In Vitro 2010; 24:1681-8. [PMID: 20570720 DOI: 10.1016/j.tiv.2010.05.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2009] [Revised: 05/05/2010] [Accepted: 05/30/2010] [Indexed: 11/28/2022]
Abstract
Investigations were carried out to examine the suitability of PC12 cells as an in vitro tool to examine 4-hydroxynonenal (4-HNE)-induced toxicity in nervous tissue. On day 8 of differentiation, markers of neural effects and oxidative stress were measured following exposure of PC12 cells to 1-50 microM 4-HNE for 1-8h. Endpoints included dopamine DA-D(2) receptor and glutathione S-transferase (GSTP1-1) protein levels, 4-HNE-protein binding, glutathione (GSH) concentrations and intracellular calcium levels. GSH levels were maximally depleted after 4h. 4-HNE also induced depletion of GSTP1-1 and increased intracellular Ca(++), with the latter seen as early as 1h after exposure. Responses at 8h were not greater than responses at earlier times. The experiments suggest that PC12 cells could be an in vitro tool for understanding toxicant-cell interactions, especially those that result in oxidative stress.
Collapse
Affiliation(s)
- M A Siddiqui
- Indian Institute of Toxicology Research, Lucknow, India
| | | | | | | | | |
Collapse
|
31
|
Abstract
Hyperglycemia and reduced insulin actions affect many biological processes. One theory is that aberrant metabolism of glucose via several pathways including the polyol pathway causes cellular toxicity. Aldose reductase (AR) is a multifunctional enzyme that reduces aldehydes. Under diabetic conditions AR converts glucose into sorbitol, which is then converted to fructose. This article reviews the biology and pathobiology of AR actions. AR expression varies considerably among species. In humans and rats, the higher level of AR expression is associated with toxicity. Flux via AR is increased by ischemia and its inhibition during ischemia reperfusion reduces injury. However, similar pharmacological effects are not observed in mice unless they express a human AR transgene. This is because mice have much lower levels of AR expression, probably insufficient to generate toxic byproducts. Human AR expression in LDL receptor knockout mice exacerbates vascular disease, but only under diabetic conditions. In contrast, a recent report suggests that genetic ablation of AR increased atherosclerosis and increased hydroxynonenal in arteries. It was hypothesized that AR knockout prevented reduction of toxic aldehydes. Like many in vivo effects found in genetically manipulated animals, interpretation requires the reproduction of human-like physiology. For AR, this will require tissue specific expression of AR in sites and at levels that approximate those in humans.
Collapse
Affiliation(s)
- Ravichandran Ramasamy
- Department of Surgery, Columbia University College of Physicians and Surgeons, New York, NY 10032, USA.
| | | |
Collapse
|
32
|
Tammali R, Saxena A, Srivastava SK, Ramana KV. Aldose reductase regulates vascular smooth muscle cell proliferation by modulating G1/S phase transition of cell cycle. Endocrinology 2010; 151:2140-50. [PMID: 20308528 PMCID: PMC2869260 DOI: 10.1210/en.2010-0160] [Citation(s) in RCA: 211] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2010] [Accepted: 02/22/2010] [Indexed: 11/19/2022]
Abstract
Abnormal proliferation of vascular smooth muscle cells (VSMC) is a key feature of development of cardiovascular complications, atherosclerosis, and restenosis. Patients with diabetes have higher risk for restenosis after coronary angioplasty than nondiabetic patients due to hyperglycemia-induced release of cytokines such as TNF-alpha. However, the molecular mechanisms regulating VSMC proliferation remain unclear. Herein, we report that inhibition of the polyol pathway enzyme aldose reductase (AR) prevents high glucose (HG)- and/or TNF-alpha-induced VSMC proliferation by accumulating cells at the G1 phase of the cell cycle. Treatment of VSMC with AR inhibitor sorbinil prevented HG- as well as TNF-alpha-induced phosphorylation of retinoblastoma protein and activation of E2F-1. Inhibition of AR also prevented HG- and TNF-alpha-induced phosphorylation of cyclin-dependent kinase (cdk)-2 and expression of G1/S transition regulatory proteins such as cyclin D1, cyclin E, cdk-4, c-myc, and proliferative cell nuclear antigen. More importantly, inhibition of AR prevented the increased expression of E2F-1 and proliferative cell nuclear antigen in diabetic rat aorta. Treatment of VSMC with the most abundant and toxic lipid aldehyde 4-hydroxy-trans-2-nonenal (HNE) or its glutathione conjugate [glutathionyl (GS)-HNE] or AR-catalyzed product of GS-HNE, GS-1,4-dihydroxynonane, resulted in increased E2F-1 expression. Inhibition of AR prevented HNE- or GS-HNE-induced but not GS-1,4-dihydroxynonane-induced up-regulation of E2F-1. Collectively, these results show that AR could regulate HG- and TNF-alpha-induced VSMC proliferation by altering the activation of G1/S-phase proteins such as E2F-1, cdks, and cyclins. Thus, inhibition of AR may be a useful therapeutic approach in preventing vascular complications.
Collapse
MESH Headings
- Aldehyde Reductase/antagonists & inhibitors
- Aldehyde Reductase/genetics
- Aldehyde Reductase/metabolism
- Animals
- Aorta/metabolism
- Blotting, Western
- Cell Cycle/drug effects
- Cell Cycle/physiology
- Cell Proliferation
- Cell Survival/drug effects
- Cells, Cultured
- Cyclins/genetics
- Cyclins/metabolism
- Diabetes Mellitus, Experimental/genetics
- Diabetes Mellitus, Experimental/metabolism
- Dose-Response Relationship, Drug
- E2F1 Transcription Factor/genetics
- E2F1 Transcription Factor/metabolism
- G1 Phase
- Glucose/pharmacology
- Imidazolidines/pharmacology
- Male
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Phosphorylation/drug effects
- RNA Interference
- Rats
- Rats, Sprague-Dawley
- Retinoblastoma Protein/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- S Phase
- Tumor Necrosis Factor-alpha/pharmacology
Collapse
Affiliation(s)
- Ravinder Tammali
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas 77555-0647, USA
| | | | | | | |
Collapse
|
33
|
Baba SP, Barski OA, Ahmed Y, O'Toole TE, Conklin DJ, Bhatnagar A, Srivastava S. Reductive metabolism of AGE precursors: a metabolic route for preventing AGE accumulation in cardiovascular tissue. Diabetes 2009; 58:2486-97. [PMID: 19651811 PMCID: PMC2768164 DOI: 10.2337/db09-0375] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE To examine the role of aldo-keto reductases (AKRs) in the cardiovascular metabolism of the precursors of advanced glycation end products (AGEs). RESEARCH DESIGN AND METHODS Steady-state kinetic parameters of AKRs with AGE precursors were determined using recombinant proteins expressed in bacteria. Metabolism of methylglyoxal and AGE accumulation were studied in human umbilical vein endothelial cells (HUVECs) and C57 wild-type, akr1b3 (aldose reductase)-null, cardiospecific-akr1b4 (rat aldose reductase), and akr1b8 (FR-1)-transgenic mice. AGE accumulation and atherosclerotic lesions were studied 12 weeks after streptozotocin treatment of C57, akr1b3-null, and apoE- and akr1b3-apoE-null mice. RESULTS Higher levels of AGEs were generated in the cytosol than at the external surface of HUVECs cultured in high glucose, indicating that intracellular metabolism may be an important regulator of AGE accumulation and toxicity. In vitro, AKR 1A and 1B catalyzed the reduction of AGE precursors, whereas AKR1C, AKR6, and AKR7 were relatively ineffective. Highest catalytic efficiency was observed with AKR1B1. Acetol formation in methylglyoxal-treated HUVECs was prevented by the aldose reductase inhibitor sorbinil. Acetol was generated in hearts perfused with methylglyoxal, and its formation was increased in akr1b4- or akr1b8-transgenic mice. Reduction of AGE precursors was diminished in hearts from akr1b3-null mice. Diabetic akr1b3-null mice accumulated more AGEs in the plasma and the heart than wild-type mice, and deletion of akr1b3 increased AGE accumulation and atherosclerotic lesion formation in apoE-null mice. CONCLUSIONS Aldose reductase-catalyzed reduction is an important pathway in the endothelial and cardiac metabolism of AGE precursors, and it prevents AGE accumulation and atherosclerotic lesion formation.
Collapse
Affiliation(s)
- Shahid P. Baba
- From the Diabetes and Obesity Center, University of Louisville, Louisville, Kentucky
| | - Oleg A. Barski
- From the Diabetes and Obesity Center, University of Louisville, Louisville, Kentucky
| | - Yonis Ahmed
- From the Diabetes and Obesity Center, University of Louisville, Louisville, Kentucky
| | - Timothy E. O'Toole
- From the Diabetes and Obesity Center, University of Louisville, Louisville, Kentucky
| | - Daniel J. Conklin
- From the Diabetes and Obesity Center, University of Louisville, Louisville, Kentucky
| | - Aruni Bhatnagar
- From the Diabetes and Obesity Center, University of Louisville, Louisville, Kentucky
| | - Sanjay Srivastava
- From the Diabetes and Obesity Center, University of Louisville, Louisville, Kentucky
- Corresponding author: Sanjay Srivastava,
| |
Collapse
|
34
|
Huang P, Zhang Y, Jiang T, Zeng W, Zhang N. Role of aldose reductase in the high glucose induced expression of fibronectin in human mesangial cells. Mol Biol Rep 2009; 37:3017-21. [DOI: 10.1007/s11033-009-9869-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2009] [Accepted: 09/29/2009] [Indexed: 11/28/2022]
|
35
|
Srivastava S, Vladykovskaya E, Barski OA, Spite M, Kaiserova K, Petrash JM, Chung SS, Hunt G, Dawn B, Bhatnagar A. Aldose reductase protects against early atherosclerotic lesion formation in apolipoprotein E-null mice. Circ Res 2009; 105:793-802. [PMID: 19729598 DOI: 10.1161/circresaha.109.200568] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
RATIONALE Atherosclerotic lesion formation is associated with the accumulation of oxidized lipids. Products of lipid oxidation, particularly aldehydes, stimulate cytokine production and enhance monocyte adhesion; however, their contribution to atherosclerotic lesion formation remains unclear. OBJECTIVE To test the hypothesis that inhibition of aldehyde removal by aldose reductase (AR), which metabolizes both free and phospholipid aldehydes, exacerbates atherosclerotic lesion formation. METHODS AND RESULTS In atherosclerotic lesions of apolipoprotein (apo)E-null mice, AR protein was located in macrophage-rich regions and its abundance increased with lesion progression. Treatment of apoE-null mice with AR inhibitors sorbinil or tolrestat increased early lesion formation but did not affect the formation of advanced lesions. Early lesions of AR(-/-)/apoE(-/-) mice maintained on high-fat diet were significantly larger when compared with age-matched AR(+/+)/apoE(-/-) mice. The increase in lesion area attributable to deletion of the AR gene was seen in both male and female mice. Pharmacological inhibition or genetic ablation of AR also increased the lesion formation in male mice made diabetic by streptozotocin treatment. Lesions in AR(-/-)/apoE(-/-) mice exhibited increased collagen and macrophage content and a decrease in smooth muscle cells. AR(-/-)/apoE(-/-) mice displayed a greater accumulation of the AR substrate 4-hydroxy trans-2-nonenal (HNE) in the plasma and protein-HNE adducts in arterial lesions than AR(+/+)/apoE(-/-) mice. CONCLUSIONS These observations indicate that AR is upregulated in atherosclerotic lesions and it protects against early stages of atherogenesis by removing toxic aldehydes generated in oxidized lipids.
Collapse
Affiliation(s)
- Sanjay Srivastava
- Diabetes and Obesity Center, Institute of Molecular Cardiology, Division of Cardiovascular Medicine, Department of Medicine, University of Louisville, Louisville, KY 40202, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Wang S, Li Y. Expression of constitutively active cGMP-dependent protein kinase inhibits glucose-induced vascular smooth muscle cell proliferation. Am J Physiol Heart Circ Physiol 2009; 297:H2075-83. [PMID: 19717728 DOI: 10.1152/ajpheart.00521.2009] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Previously, we have demonstrated that cGMP-dependent protein kinase (PKG) activity is downregulated in vessels from diabetic animals or in vascular smooth muscle cells (VSMCs) exposed to high-glucose conditions, contributing to diabetes-associated vessel dysfunction. However, whether decreased PKG activity plays a role in hyperglycemia-induced proliferation of VSMCs is unknown. In this report, high-glucose-mediated decreased PKG activity in VSMCs was restored by transfection of cells with expression vector for the catalytic domain of PKG-I (PKG-CD, constitutive active PKG). The effect of glucose on cell proliferation was determined. Our data demonstrated that high glucose exposure stimulated VSMC proliferation and G1 to S phase progression of the cell cycle, which was inhibited by restoration of PKG activity. Expression of constitutively active PKG inhibited G1 phase exit in VSMCs under high glucose conditions, which was accompanied by an inhibition of retinoblastoma protein (Rb) phosphorylation (a key switch for G1 to S phase cell cycle progression). Glucose-induced cyclin E expression and cyclin E-cyclin-dependent kinase 2 activity was also reduced by expression of PKG-CD in VSMCs. Moreover, expression of PKG-CD suppressed glucose-induced p27 degradation. These data demonstrate that restoring the high-glucose-mediated decrease in PKG activity in VSMCs inhibits glucose-induced abnormal VSMC proliferation occurring upstream of Rb phosphorylation. Our work provides the first direct evidence linking decreased PKG activity to high glucose-induced proliferation and cell cycle progression in VSMCs, suggesting that strategies to increase PKG activity might be useful in preventing abnormal VSMC proliferation in diabetic patients and might provide treatments for diabetes-associated proliferative vascular diseases.
Collapse
Affiliation(s)
- Shuxia Wang
- Graduate Center for Nutritional Sciences, University of Kentucky, Wethington Bldg, Rm. 517, 900 S. Limestone St, Lexington, KY, USA.
| | | |
Collapse
|
37
|
Arsenic exacerbates atherosclerotic lesion formation and inflammation in ApoE-/- mice. Toxicol Appl Pharmacol 2009; 241:90-100. [PMID: 19682479 DOI: 10.1016/j.taap.2009.08.004] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2009] [Revised: 08/03/2009] [Accepted: 08/04/2009] [Indexed: 11/24/2022]
Abstract
Exposure to arsenic-contaminated water has been shown to be associated with cardiovascular disease, especially atherosclerosis. We examined the effect of arsenic exposure on atherosclerotic lesion formation, lesion composition and nature in ApoE-/- mice. Early post-natal exposure (3-week-old mice exposed to 49 ppm arsenic as NaAsO(2) in drinking water for 7 weeks) increased the atherosclerotic lesion formation by 3- to 5-fold in the aortic valve and the aortic arch, without affecting plasma cholesterol. Exposure to arsenic for 13 weeks (3-week-old mice exposed to 1, 4.9 and 49 ppm arsenic as NaAsO(2) in drinking water) increased the lesion formation and macrophage accumulation in a dose-dependent manner. Temporal studies showed that continuous arsenic exposure significantly exacerbated the lesion formation throughout the aortic tree at 16 and 36 weeks of age. Withdrawal of arsenic for 12 weeks after an initial exposure for 21 weeks (to 3-week-old mice) significantly decreased lesion formation as compared with mice continuously exposed to arsenic. Similarly, adult exposure to 49 ppm arsenic for 24 weeks, starting at 12 weeks of age increased lesion formation by 2- to 3.6-fold in the aortic valve, the aortic arch and the abdominal aorta. Lesions of arsenic-exposed mice displayed a 1.8-fold increase in macrophage accumulation whereas smooth muscle cell and T-lymphocyte contents were not changed. Expression of pro-inflammatory chemokine MCP-1 and cytokine IL-6 and markers of oxidative stress, protein-HNE and protein-MDA adducts were markedly increased in lesions of arsenic-exposed mice. Plasma concentrations of MCP-1, IL-6 and MDA were also significantly elevated in arsenic-exposed mice. These data suggest that arsenic exposure increases oxidative stress, inflammation and atherosclerotic lesion formation.
Collapse
|
38
|
Reddy ABM, Ramana KV, Srivastava S, Bhatnagar A, Srivastava SK. Aldose reductase regulates high glucose-induced ectodomain shedding of tumor necrosis factor (TNF)-alpha via protein kinase C-delta and TNF-alpha converting enzyme in vascular smooth muscle cells. Endocrinology 2009; 150:63-74. [PMID: 18772236 PMCID: PMC2630901 DOI: 10.1210/en.2008-0677] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2008] [Accepted: 08/25/2008] [Indexed: 12/18/2022]
Abstract
Chronic low-grade inflammation has emerged as a key contributor to the cardiovascular complications of diabetes, however, the mechanisms by which diabetes increases inflammation remain poorly understood. Here, we report that exposure to high glucose (HG) stimulates ectodomain shedding of TNF-alpha from rat aortic smooth muscle cells in culture. Our results show that exposure to HG decreases membrane-associated TNF-alpha. This decrease in unprocessed TNF-alpha was prevented by the aldose reductase (AR) inhibitor sorbinil and AR small interference RNA. Treatment with HG, but not equimolar mannitol or 3-O-methyl glucose, resulted in phosphorylation and activation of TNF-alpha converting enzyme (TACE) (ADAM17), which were attenuated by sorbinil or AR-specific small interference RNA. HG-induced TACE phosphorylation and TNF-alpha processing were also prevented by TNF-alpha protease inhibitor-1, an inhibitor of TACE. Inhibition of protein kinase C (PKC)-delta by rottlerin prevented HG-induced TACE activation and the accumulation of unprocessed TNF-alpha. Treatment with sorbinil decreased elevated levels of circulating TNF-alpha in streptozotocin-treated diabetic rats. Sorbinil treatment also decreased the expression of TNF-alpha, matrix metalloproteinase-2, matrix metalloproteinase-9, and increased tissue inhibitor of metalloproteinase-3 in vascular smooth muscle cells treated with HG and in balloon-injured carotid arteries of diabetic rats. These results indicate that HG-induced TNF-alpha shedding could be attributed to TACE activation, which is regulated, in part, by PKC-delta and AR. Therefore, inhibition of TACE by TNF-alpha protease inhibitor-1, or pharmacological inhibition of PKC-delta or AR may represent useful strategies for treating vascular inflammation associated with diabetes.
Collapse
Affiliation(s)
- Aramati B M Reddy
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, 301 University Boulevard, Galveston, Texas 77555-0647, USA
| | | | | | | | | |
Collapse
|
39
|
Tammali R, Reddy ABM, Ramana KV, Petrash JM, Srivastava SK. Aldose reductase deficiency in mice prevents azoxymethane-induced colonic preneoplastic aberrant crypt foci formation. Carcinogenesis 2008; 30:799-807. [PMID: 19028703 DOI: 10.1093/carcin/bgn246] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Aldose reductase (AR; EC 1.1.1.21), an nicotinamide adenine dinucleotide phosphate-dependent aldo-keto reductase, has been shown to be involved in oxidative stress signaling initiated by inflammatory cytokines, chemokines and growth factors. Recently, we have shown that inhibition of this enzyme prevents the growth of colon cancer cells in vitro as well as in nude mice xenografts. Herein, we investigated the mediation of AR in the formation of colonic preneoplastic aberrant crypt foci (ACF) using azoxymethane (AOM)-induced colon cancer mice model. Male BALB/c mice were administrated with AOM without or with AR inhibitor, sorbinil and at the end of the protocol, all the mice were euthanized and colons were evaluated for ACF formation. Administration of sorbinil significantly lowered the number of AOM-induced ACF. Similarly, AR-null mice administered with AOM demonstrated significant resistance to ACF formation. Furthermore, inhibition of AR or knockout of AR gene in the mice significantly prevented AOM-induced expression of inducible nitric oxide synthase and cyclooxygenase-2 proteins as well as their messenger RNA. AR inhibition or knockdown also significantly decreased the phosphorylation of protein kinase C (PKC) beta2 and nuclear factor kappa binding protein as well as expression of preneoplastic marker proteins such as cyclin D1 and beta-catenin in mice colons. Our results suggest that AR mediates the formation of ACF in AOM-treated mice and thereby inhibition of AR could provide an effective chemopreventive approach for the treatment of colon cancer.
Collapse
Affiliation(s)
- Ravinder Tammali
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555-0647, USA
| | | | | | | | | |
Collapse
|
40
|
Kabututu Z, Manin M, Pointud JC, Maruyama T, Nagata N, Lambert S, Lefrançois-Martinez AM, Martinez A, Urade Y. Prostaglandin F2alpha synthase activities of aldo-keto reductase 1B1, 1B3 and 1B7. J Biochem 2008; 145:161-8. [PMID: 19010934 DOI: 10.1093/jb/mvn152] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Here, we show that three enzymes belonging to the 1B group of the aldo-keto reductase (AKR) superfamily, i.e., human placental aldose reductase (AKR1B1), mouse kidney aldose reductase (AKR1B3) and mouse vas deferens protein (AKR1B7), catalyse the reduction of prostaglandin (PG) H(2), a common intermediate of various prostanoids, to form PGF(2alpha) in the presence of NADPH. AKR1B1, AKR1B3 and AKR1B7 displayed higher affinities for PGH(2) (K(m) = 1.9, 9.3 and 3.8 microM, respectively) and V(max) values (26, 53 and 44 nmol/min/mg protein, respectively) than did the human lung PGF(2alpha) synthase (AKR1C3; 18 microM and 4 nmol/min/mg protein, respectively). The PGF(2alpha) synthase activity of AKR1B1 and AKR1B3 was efficiently inhibited by two AKR inhibitors, tolrestat (K(i) = 3.6 and 0.26 microM, respectively) and sorbinil (K(i) = 21.7 and 0.89 microM, respectively), in a non-competitive or mixed-type manner, whereas that of AKR1B7 was not sensitive to these inhibitors (K(i) = 9.2 and 18 mM, respectively). These data provide a molecular basis for investigating novel functional roles for AKR1B members and PGF(2alpha) as mediators of physiological and pathological processes in mammalian organisms.
Collapse
Affiliation(s)
- Zakayi Kabututu
- Department of Molecular Behavioral Biology, Osaka Bioscience Institute, 6-2-4 Furuedai, Suita, Osaka 565-0874, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Yamada S, Inaba M, Shidara K, Okada S, Emoto M, Ishimura E, Nishizawa Y. Association of glycated albumin, but not glycated hemoglobin, with peripheral vascular calcification in hemodialysis patients with type 2 diabetes. Life Sci 2008; 83:516-9. [PMID: 18760286 DOI: 10.1016/j.lfs.2008.08.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2008] [Revised: 07/22/2008] [Accepted: 08/02/2008] [Indexed: 11/20/2022]
Abstract
AIMS Elevated HbA(1C) is a predictor of mortality as well as peripheral vascular calcification in hemodialysis (HD) patients with diabetes. However, improved glycemic control as reflected by reduction in HbA(1C) may dismiss the relationship between HbA(1C) and mortality in those patients, due possibly to the underestimation of HbA(1C) by erythropoietin use. This study was to establish the significance of glycated albumin (GA) as a useful marker of peripheral vascular calcification in diabetic HD patients, in comparison with HbA(1C). MAIN METHODS We examined 49 HD patients with type 2 diabetes (37 men and 12 women). Peripheral vascular calcification at hand arteries was checked on a simple X-ray photograph. GA and HbA(1C) were determined just before HD session. KEY FINDINGS The prevalence of peripheral vascular calcification was significantly higher in diabetic patients (65.3%) than in non-diabetic patients (27.0%). Multiple regression analyses in diabetic patients showed that both HD duration and GA were significantly associated with the presence of peripheral vascular calcification. When GA was replaced by HbA(1C) in the same model, HbA(1C) failed to show a significant association. However, when a weekly dose of erythropoietin was simultaneously included in addition to HD duration and HbA(1C), both HbA(1C) as well as HD duration emerged as a significant factor associated with the presence of peripheral vascular calcification. SIGNIFICANCE The present study suggested that GA might be a better indicator of glycemic control, and raise the possibility that improvement of glycemic control might prevent against the development of peripheral vascular calcification in diabetic HD patients.
Collapse
Affiliation(s)
- Shinsuke Yamada
- Department of Metabolism, Endocrinology and Molecular Medicine, Internal Medicine, Osaka City University Graduate School of Medicine, Osaka, Japan
| | | | | | | | | | | | | |
Collapse
|
42
|
Popov D, Constantinescu E. Arterial smooth muscle cells dysfunction in hyperglycaemia and hyperglycaemia associated with hyperlipidaemia: from causes to effects. Arch Physiol Biochem 2008; 114:150-60. [PMID: 18484281 DOI: 10.1080/13813450802033990] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Given the important role of smooth muscle cells in arterial wall dysfunction in diabetes, as well as in diabetes associated with accelerated atherosclerosis, we provide a brief review of the recent achievements in identification of signalling molecules underlying their altered cellular responses, and examine the consequences of these pathological insults on smooth muscle cells properties. The original results emerging from the Golden Syrian hamster model (rendered diabetic or simultaneously hyperlipidaemic-diabetic) and from human aortic smooth muscle cells cultured in 25 mM glucose (to mimic diabetic condition) or sera of obese type 2 diabetic patients (to mimic the metabolic syndrome condition) are presented in this context. We conclude this review with several open issues disclosed by the most recent literature that deserve essential attention for targeting the translational medicine.
Collapse
Affiliation(s)
- Doina Popov
- Institute of Cellular Biology and Pathology N. Simionescu, 8 B.P. Hasdeu Street, Bucharest, Romania.
| | | |
Collapse
|
43
|
Unsaturated lipid peroxidation-derived aldehydes activate autophagy in vascular smooth-muscle cells. Biochem J 2008; 410:525-34. [DOI: 10.1042/bj20071063] [Citation(s) in RCA: 326] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Proteins modified by aldehydes generated from oxidized lipids accumulate in cells during oxidative stress and are commonly detected in diseased or aged tissue. The mechanisms by which cells remove aldehyde-adducted proteins, however, remain unclear. Here, we report that products of lipid peroxidation such as 4-HNE (4-hydroxynonenal) and acrolein activate autophagy in rat aortic smooth-muscle cells in culture. Exposure to 4-HNE led to the modification of several proteins, as detected by anti-protein–4-HNE antibodies or protein-bound radioactivity in [3H]4-HNE-treated cells. The 4-HNE-modified proteins were gradually removed from cells. The removal of 4-HNE-modified proteins was not affected by the oxidized protein hydrolase inhibitor, acetyl leucine chloromethyl ketone, or lactacystin, although it was significantly decreased by PSI (proteasome inhibitor I), the lysosome/proteasome inhibitor MG-132 (carbobenzoxy-L-leucyl-L-leucyl-leucinal), insulin or the autophagy inhibitor 3-MA (3-methyladenine). Pre-incubation of cells with rapamycin accelerated the removal of 4-HNE-modified proteins. Treatment with 4-HNE, nonenal and acrolein, but not nonanal or POVPC (1-palmitoyl-2-oxovaleroyl phosphatidyl choline), caused a robust increase in LC3-II (microtubule-associated protein 1 light chain 3-II) formation, which was increased also by rapamycin, but prevented by insulin. Electron micrographs of 4-HNE-treated cells showed extensive vacuolization, pinocytic body formation, crescent-shaped phagophores, and multilamellar vesicles. Treatment with 3-MA and MG-132, but not proteasome-specific inhibitors, induced cell death in 4-HNE-treated cells. Collectively, these results show that lipid peroxidation-derived aldehydes stimulate autophagy, which removes aldehyde-modified proteins, and that inhibition of autophagy precipitates cell death in aldehyde-treated cells. Autophagy may be an important mechanism for the survival of arterial smooth-muscle cells under conditions associated with excessive lipid peroxidation.
Collapse
|
44
|
Ramana KV, Reddy ABM, Tammali R, Srivastava SK. Aldose reductase mediates endotoxin-induced production of nitric oxide and cytotoxicity in murine macrophages. Free Radic Biol Med 2007; 42:1290-302. [PMID: 17382209 PMCID: PMC1885210 DOI: 10.1016/j.freeradbiomed.2007.01.033] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2006] [Revised: 01/17/2007] [Accepted: 01/18/2007] [Indexed: 01/13/2023]
Abstract
Aldose reductase (AR) is a ubiquitously expressed protein with pleiotrophic roles as an efficient catalyst for the reduction of toxic lipid aldehydes and mediator of hyperglycemia, cytokine, and growth factor-induced redox-sensitive signals that cause secondary diabetic complications. Although AR inhibition has been shown to be protective against oxidative stress signals, the role of AR in regulating nitric oxide (NO) synthesis and NO-mediated apoptosis has not been elucidated to date. We therefore investigated the role of AR in regulating lipopolysaccharide (LPS)-induced NO synthesis and apoptosis in RAW 264.7 macrophages. Inhibition or RNA interference ablation of AR suppressed LPS-stimulated production of NO and overexpression of iNOS mRNA. Inhibition or ablation of AR also prevented the LPS-induced apoptosis, cell cycle arrest, activation of caspase-3, p38-MAPK, JNK, NF-kappaB, and AP1. In addition, AR inhibition prevented the LPS-induced down-regulation of Bcl-xl and up-regulation of Bax and Bak in macrophages. L-Arginine increased and L-NAME decreased the severity of cell death caused by LPS and AR inhibitors prevented it. Furthermore, inhibition of AR prevents cell death caused by HNE and GS-HNE, but not GS-DHN. Our findings for the first time suggest that AR-catalyzed lipid aldehyde-glutathione conjugates regulate the LPS-induced production of inflammatory marker NO and cytotoxicity in RAW 264.7 cells. Inhibition or ablation of AR activity may be a potential therapeutic target in endotoximia and other inflammatory diseases.
Collapse
Affiliation(s)
- Kota V Ramana
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555, USA.
| | | | | | | |
Collapse
|
45
|
High glucose upregulates connective tissue growth factor expression in human vascular smooth muscle cells. BMC Cell Biol 2007; 8:1. [PMID: 17224075 PMCID: PMC1781444 DOI: 10.1186/1471-2121-8-1] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2006] [Accepted: 01/16/2007] [Indexed: 11/10/2022] Open
Abstract
Background Connective tissue growth factor (CTGF) is a potent profibrotic factor, which is implicated in fibroblast proliferation, angiogenesis and extracellular matrix (ECM) synthesis. It is a downstream mediator of some of the effects of transforming growth factor β (TGFβ) and is potentially induced by hyperglycemia in human renal mesangial cells. However, whether high glucose could induce the CTGF expression in vascular smooth muscle cells (VSMCs) remains unknown. Therefore, this study was designed to test whether high glucose could regulate CTGF expression in human VSMC. The effect of modulating CTGF expression on VSMC proliferation and migration was further investigated. Results Expression of CTGF mRNA was up-regulated as early as 6 hours in cultured human VSMCs after exposed to high glucose condition, followed by ECM components (collagen type I and fibronectin) accumulation. The upregulation of CTGF mRNA appears to be TGFβ-dependent since anti-TGFβ antibody blocks the effect of high glucose on CTGF gene expression. A small interference RNA (siRNA) targeting CTGF mRNA (CTGF-siRNA) effectively suppressed CTGF up-regulation stimulated by high glucose up to 79% inhibition. As a consequence of decreased expression of CTGF gene, the deposition of ECM proteins in the VSMC was also declined. Moreover, CTGF-siRNA expressing vector partially inhibited the high glucose-induced VSMC proliferation and migration. Conclusion Our data suggest that in the development of macrovascular complications in diabetes, CTGF might be an important factor involved in the patho-physiological responses to high glucose in human VSMCs. In addition, the modulatory effects of CTGF-siRNA during this process suggest that specific targeting CTGF by RNA interference could be useful in preventing intimal hyperplasia in diabetic macrovascular complications.
Collapse
|
46
|
Ramana KV, Srivastava SK. Mediation of aldose reductase in lipopolysaccharide-induced inflammatory signals in mouse peritoneal macrophages. Cytokine 2006; 36:115-22. [PMID: 17174561 PMCID: PMC1850149 DOI: 10.1016/j.cyto.2006.11.003] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2006] [Revised: 10/13/2006] [Accepted: 11/01/2006] [Indexed: 12/18/2022]
Abstract
Aldose reductase (AR; AKR1B1) a member of aldo-keto reductase super family, that we had shown earlier mediates cytotoxic signals induced by high glucose, cytokines and growth factors, also mediates the inflammatory signals induced by Gram-negative bacterial endotoxin, lipopolysaccharide (LPS). Inhibition of AR by three distinct AR inhibitors sorbinil, tolrestat or zopolrestat suppressed the LPS-induced production of inflammatory cytokines such as TNF-alpha, IL-6, IL-1beta, IFN-gamma, and chemokine MCP-1 in murine peritoneal macrophages. Inhibition of AR also prevented the production of nitric oxide, and prostaglandin E2 and expression of iNOS and Cox-2 proteins. The LPS-induced DNA binding activity of NF-kappaB and AP1 were significantly inhibited by AR inhibitors, and this effect was mediated through the inhibition of phosphorylation of IkappaB-alpha, IKK alpha/beta and PKC. These results suggest the therapeutic use of AR inhibitors as anti-inflammatory drugs.
Collapse
Affiliation(s)
- Kota V Ramana
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, 301 University Boulevard 6.638 Basic Science Building, Galveston, TX 77555-0647, USA.
| | | |
Collapse
|
47
|
Ramana KV, Fadl AA, Tammali R, Reddy ABM, Chopra AK, Srivastava SK. Aldose reductase mediates the lipopolysaccharide-induced release of inflammatory mediators in RAW264.7 murine macrophages. J Biol Chem 2006; 281:33019-29. [PMID: 16956889 DOI: 10.1074/jbc.m603819200] [Citation(s) in RCA: 310] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Abnormal production of inflammatory cytokines and chemokines is a key feature of bacterial endotoxin, lipopolysaccharide (LPS)-induced inflammation, and cytotoxicity; however, the mechanisms regulating production of inflammatory markers remain unclear. Herein, we show that inhibition of the aldehyde-metabolizing enzyme aldose reductase (AR; AKR1B3) modulates NF-kappaB-dependent activation of inflammatory cytokines and chemokines in mouse serum, liver, heart, and spleen. Pharmacological inhibition or small interfering RNA ablation of AR prevented the biosynthesis of tumor necrosis factor-alpha, interleukin 1beta, interleukin-6, macrophage-chemoattractant protein-1, and cyclooxygenase-2 and prostaglandin E(2) in LPS-activated RAW264.7 murine macrophages. The AR inhibition or ablation significantly attenuated LPS-induced activation of protein kinase C (PKC) and phospholipase C (PLC), nuclear translocation of NF-kappaB, and phosphorylation and proteolytic degradation of IkappaBalpha in macrophages. Furthermore, treatment of macrophages with 4-hydroxy-trans-2-nonenal (HNE), and cell-permeable esters of glutathionyl-4-hydroxynonanal (GS-HNE) and glutathionyl-1,4-dihydroxynonane (GS-DHN) activated NF-kappaB and PLC/PKC. Pharmacological inhibition or antisense ablation of AR that catalyzes the reduction of GS-HNE to GS-DHN prevented PLC, PKC, IKKalpha/beta, and NF-kappaB activation caused by HNE and GS-HNE, but not by GS-DHN, suggesting that reduced GS-lipid aldehydes catalyzed by AR propagate LPS-induced production of inflammatory markers. Collectively, these data provide evidence that inhibition of AR may be a significant therapeutic approach in preventing bacterial endotoxin-induced sepsis and tissue damage.
Collapse
Affiliation(s)
- Kota V Ramana
- Department of Biochemistry, University of Texas Medical Branch, Galveston, Texas 77555, USA.
| | | | | | | | | | | |
Collapse
|