1
|
Ireland RA, Tse BCY, Ashhurst AS, Don AS, Byrne SN. Narrowband UVB and Solar-Simulated UV Suppress Systemic Immune Responses through Different Mechanisms. J Invest Dermatol 2025:S0022-202X(25)00087-9. [PMID: 39909112 DOI: 10.1016/j.jid.2024.11.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 11/18/2024] [Accepted: 11/20/2024] [Indexed: 02/07/2025]
Abstract
UV-induced immune suppression contributes to skin carcinogenesis and may also explain how sunlight protects against nonskin autoimmune diseases, particularly multiple sclerosis. Narrowband UVB (NBUVB) phototherapy is an effective treatment for some skin diseases; however, its mechanism of action and its potential for treating diseases away from the skin are not well-understood. Solar-simulated UV modulates immune cells, in part, by altering lipids. However, whether NBUVB has the same effect on these cells and molecules is unknown. Exposure of mice to an immunosuppressive dose of NBUVB did not affect plasma lipid levels, which were altered after solar-simulated UV irradiation. Surprisingly, unlike what occurs after solar-simulated UV irradiation, dermal mast cells and lymphocyte recirculation were unaffected by NBUVB. NBUVB-irradiated skin showed a reduced number of epidermal CD207+ cells and cutaneous CD3+ T cells, and was infiltrated by Ly6G+ neutrophils. There was also an increase in the number of CD4+FoxP3+ T cells in the skin-draining lymph nodes and suppression of antigen-specific CD8+ T-cell activity in vivo. Thus, immunosuppressive NBUVB activates some but not all the pathways responsible for the immunosuppressive effects of solar-simulated UV. Understanding the wavelength-dependent effects of UVR on the immune system is essential to harness its immunomodulatory capacity to treat a wide range of diseases.
Collapse
Affiliation(s)
- Rachael A Ireland
- School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Sydney, Australia
| | - Benita C Y Tse
- School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Sydney, Australia
| | - Anneliese S Ashhurst
- School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Sydney, Australia
| | - Anthony S Don
- School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Sydney, Australia
| | - Scott N Byrne
- School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Sydney, Australia.
| |
Collapse
|
2
|
Kallenberger EM, Khandelwal A, Nath P, Nguyen SA, DiGiovanni J, Nathan CA. FGFR2 in the Development and Progression of Cutaneous Squamous Cell Cancer. Mol Carcinog 2025; 64:5-13. [PMID: 39466044 DOI: 10.1002/mc.23835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Accepted: 10/11/2024] [Indexed: 10/29/2024]
Abstract
Cutaneous squamous cell carcinoma (cSCC) is an increasingly common malignancy of the skin and the leading cause of death from skin cancer in adults over the age of 85. Fibroblast growth factor receptor 2 (FGFR2) has been identified as an important effector of signaling pathways that lead to the growth and development of cSCC. In recent years, there have been numerous studies evaluating the role FGFR2 plays in multiple cancers, its contribution to resistance to anticancer therapy, and new drugs that may be used to inhibit FGFR2. This review will provide an overview of our current understanding of FGFR2 and potential mechanisms in which we can target FGFR2 in cSCC. The goals of this review are the following: (1) to highlight our current knowledge of the role of FGFR2 in healthy skin and contrast this with its role in the development of cancer; (2) to further explain the specific molecular mechanisms that FGFR2 uses to promote tumorigenesis; (3) to describe how FGFR2 contributes to more invasive disease; (4) to describe its immunosuppressive effects in skin; and (5) to evaluate its effect on current anticancer therapy and discuss therapies on the horizon to target FGFR2 related malignancy.
Collapse
Affiliation(s)
- Ethan M Kallenberger
- Department of Otolaryngology-Head and Neck Surgery, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Alok Khandelwal
- Department of Oto/HNS, Health Sciences Center, Louisiana State University, Shreveport, Louisiana, USA
| | - Priyatosh Nath
- Department of Oto/HNS, Health Sciences Center, Louisiana State University, Shreveport, Louisiana, USA
| | - Shaun A Nguyen
- Department of Otolaryngology-Head and Neck Surgery, Medical University of South Carolina, Charleston, South Carolina, USA
| | - John DiGiovanni
- Department of Pharmacology, University of Texas, Austin, Texas, USA
| | - Cherie-Ann Nathan
- Department of Oto/HNS, Health Sciences Center, Louisiana State University, Shreveport, Louisiana, USA
| |
Collapse
|
3
|
Hu X, Du S, Chen M, Yang H, He J, Zhang L, Tan B, Wu T, Duan X. Single-Cell Sequencing Combined with Transcriptome Sequencing to Explore the Molecular Mechanisms Related to Skin Photoaging. J Inflamm Res 2024; 17:11137-11160. [PMID: 39713718 PMCID: PMC11662644 DOI: 10.2147/jir.s496328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 12/05/2024] [Indexed: 12/24/2024] Open
Abstract
Background The aging of skin is a diversified biological phenomenon, influenced by a combination of genetic and environmental factors. However, the specific mechanism of skin photoaging is not yet completely elucidated. Methods Gene expression profiles for photoaging patients were obtained from the Gene Expression Omnibus (GEO) collection. We conducted single-cell and intercellular communication investigations to identify potential gene sets. Predictive models were created using LASSO regression. The relationships between genes and immune cells were investigated using single sample gene set enrichment analysis (ssGSEA) and gene set variance analysis (GSVA). The molecular processes of important genes were studied using gene enrichment analysis. A miRNA network was created to look for target miRNAs connected with important genes, and transcriptional regulation analysis was used to identify related transcription factors. Finally, merging gene co-expression networks with drug prediction shows molecular pathways of photoaging and potential treatment targets. Furthermore, we validated the role of key genes, immune cell infiltration, and the Adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPK) pathway in photoaging, which were identified through bioinformatics analysis, using in vivo reverse transcription quantitative PCR (RT-qPCR), immunofluorescence labeling, and Western blotting. Results This study discovered three key genes, including Atp2b1, Plekho2, and Tspan13, which perform crucial functions in the photoaging process. Immune cell infiltration analysis showed increased M1 macrophages and CD4 memory T cells in the photoaging group. Further signaling pathway analysis indicated that these key genes are enriched in multiple immune and metabolic pathways. The significant roles of Atp2b1, Plekho2, Tspan13, M1 macrophages infiltration, CD4 memory T cells infiltration and the AMPK pathway in photoaging was validated in vivo. Conclusion This research revealed the underlying molecular mechanisms of photoaging, indicating that key genes such as Atp2b1 and Tspan13 play crucial roles in the regulation of immune cell infiltration and metabolic pathways. These findings provide a new theory for the treatment of photoaging and provide prospective targets for the advancement of relevant drugs.
Collapse
Affiliation(s)
- Xinru Hu
- Department of Dermatovenereology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, People’s Republic of China
| | - Shuang Du
- Department of Dermatovenereology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, People’s Republic of China
| | - Meng Chen
- Department of Dermatovenereology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, People’s Republic of China
| | - Hao Yang
- Department of Dermatovenereology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, People’s Republic of China
| | - Jia He
- Department of Dermatovenereology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, People’s Republic of China
| | - Lei Zhang
- Department of Dermatovenereology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, People’s Republic of China
| | - Bowen Tan
- Department of Dermatovenereology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, People’s Republic of China
| | - Tao Wu
- Department of Urology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, People’s Republic of China
| | - Xi Duan
- Department of Dermatovenereology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, People’s Republic of China
| |
Collapse
|
4
|
Brandlmaier M, Hoellwerth M, Koelblinger P, Lang R, Harrer A. Adjuvant PD-1 Checkpoint Inhibition in Early Cutaneous Melanoma: Immunological Mode of Action and the Role of Ultraviolet Radiation. Cancers (Basel) 2024; 16:1461. [PMID: 38672543 PMCID: PMC11047851 DOI: 10.3390/cancers16081461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 04/03/2024] [Accepted: 04/09/2024] [Indexed: 04/28/2024] Open
Abstract
Melanoma ranks as the fifth most common solid cancer in adults worldwide and is responsible for a significant proportion of skin-tumor-related deaths. The advent of immune checkpoint inhibition with anti-programmed death protein-1 (PD-1) antibodies has revolutionized the adjuvant treatment of high-risk, completely resected stage III/IV melanoma. However, not all patients benefit equally. Current strategies for improving outcomes involve adjuvant treatment in earlier disease stages (IIB/C) as well as perioperative treatment approaches. Interfering with T-cell exhaustion to counteract cancer immune evasion and the immunogenic nature of melanoma is key for anti-PD-1 effectiveness. Yet, the biological rationale for the efficacy of adjuvant treatment in clinically tumor-free patients remains to be fully elucidated. High-dose intermittent sun exposure (sunburn) is a well-known primary risk factor for melanomagenesis. Also, ultraviolet radiation (UVR)-induced immunosuppression may impair anti-cancer immune surveillance. In this review, we summarize the current knowledge about adjuvant anti-PD-1 blockade, including a characterization of the main cell types most likely responsible for its efficacy. In conclusion, we propose that local and systemic immunosuppression, to some extent UVR-mediated, can be restored by adjuvant anti-PD-1 therapy, consequently boosting anti-melanoma immune surveillance and the elimination of residual melanoma cell clones.
Collapse
Affiliation(s)
- Matthias Brandlmaier
- Department of Dermatology and Allergology, Paracelsus Medical University, 5020 Salzburg, Austria; (M.B.); (M.H.); (P.K.)
| | - Magdalena Hoellwerth
- Department of Dermatology and Allergology, Paracelsus Medical University, 5020 Salzburg, Austria; (M.B.); (M.H.); (P.K.)
| | - Peter Koelblinger
- Department of Dermatology and Allergology, Paracelsus Medical University, 5020 Salzburg, Austria; (M.B.); (M.H.); (P.K.)
| | - Roland Lang
- Department of Dermatology and Allergology, Paracelsus Medical University, 5020 Salzburg, Austria; (M.B.); (M.H.); (P.K.)
| | - Andrea Harrer
- Department of Dermatology and Allergology, Paracelsus Medical University, 5020 Salzburg, Austria; (M.B.); (M.H.); (P.K.)
- Department of Neurology, Christian Doppler University Hospital, Paracelsus Medical University and Center for Cognitive Neuroscience, 5020 Salzburg, Austria
| |
Collapse
|
5
|
Dang M, Yu J, Galant-Swafford J, Karam SD. The dichotomy of regulatory B cells in cancer versus allergic disease. Mol Carcinog 2024; 63:11-21. [PMID: 37712547 PMCID: PMC10994235 DOI: 10.1002/mc.23633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 09/02/2023] [Accepted: 09/05/2023] [Indexed: 09/16/2023]
Abstract
Regulatory B cells (Bregs) are an immunosuppressive cell phenotype that affects the immune system by limiting the inflammatory cascade. Dysregulation of Bregs can interestingly play a dichotomous role in the pathophysiology of many diseases and is especially highlighted when examining cancer pathology compared to allergic disease. This study reviews the existing literature on Bregs and compares their role in allergic disease in contrast to cancer development. Upregulation of Bregs in cancer states has been associated with poor prognostic outcomes across various cancer types, and Breg proliferation was associated with chronic interferon signaling, activation of the BCR-BTK (B cell receptor-Bruton's tyrosine kinase) pathway, and release of C-X-C motif ligand 13. In contrast, Breg dysfunction has been identified as a key mechanism in many allergic diseases, such as allergic asthma, allergic rhinitis, atopic dermatitis, and contact dermatitis. Development of Breg-targeted immunotherapies is currently at the preclinical level, but strategies differentially focus on Breg depletion in cancer versus Breg stimulation in allergy. Our review highlights the divergent functions that Bregs play in cancer compared to allergy. We conclude that natural homeostasis hinges on a fine balance between the dichotomous role of Bregs-over or underactivation can result in a pathological state.
Collapse
Affiliation(s)
- Melissa Dang
- Department of Internal Medicine, Sky Ridge Medical Center, Lone Tree, Colorado, USA
| | - Justin Yu
- Department of Otolaryngology—Head and Neck Surgery, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | | | - Sana D. Karam
- Department of Radiation Oncology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| |
Collapse
|
6
|
Chin T, Lee XE, Ng PY, Lee Y, Dreesen O. The role of cellular senescence in skin aging and age-related skin pathologies. Front Physiol 2023; 14:1297637. [PMID: 38074322 PMCID: PMC10703490 DOI: 10.3389/fphys.2023.1297637] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 11/07/2023] [Indexed: 12/21/2024] Open
Abstract
Aging is the result of a gradual functional decline at the cellular, and ultimately, organismal level, resulting in an increased risk of developing a variety of chronic illnesses, such as cardiovascular disease, stroke, cancer and diabetes. The skin is the largest organ of the human body, and the site where signs of aging are most visible. These signs include thin and dry skin, sagging, loss of elasticity, wrinkles, as well as aberrant pigmentation. The appearance of these features is accelerated by exposure to extrinsic factors such as ultraviolet (UV) radiation or pollution, as well as intrinsic factors including time, genetics, and hormonal changes. At the cellular level, aging is associated with impaired proteostasis and an accumulation of macromolecular damage, genomic instability, chromatin reorganization, telomere shortening, remodelling of the nuclear lamina, proliferation defects and premature senescence. Cellular senescence is a state of permanent growth arrest and a key hallmark of aging in many tissues. Due to their inability to proliferate, senescent cells no longer contribute to tissue repair or regeneration. Moreover, senescent cells impair tissue homeostasis, promote inflammation and extracellular matrix (ECM) degradation by secreting molecules collectively known as the "senescence-associated secretory phenotype" (SASP). Senescence can be triggered by a number of different stimuli such as telomere shortening, oncogene expression, or persistent activation of DNA damage checkpoints. As a result, these cells accumulate in aging tissues, including human skin. In this review, we focus on the role of cellular senescence during skin aging and the development of age-related skin pathologies, and discuss potential strategies to rejuvenate aged skin.
Collapse
Affiliation(s)
- Toby Chin
- Lee Kong Chiang School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Xin Er Lee
- A*STAR Skin Research Labs (A*SRL), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Pei Yi Ng
- A*STAR Skin Research Labs (A*SRL), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Yaelim Lee
- Mechanobiology Institute, National University of Singapore, T-Lab, Singapore, Singapore
| | - Oliver Dreesen
- A*STAR Skin Research Labs (A*SRL), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
- Mechanobiology Institute, National University of Singapore, T-Lab, Singapore, Singapore
| |
Collapse
|
7
|
Huang Y, Zhu L, Cheng S, Dai R, Huang C, Song Y, Peng B, Li X, Wen J, Gong Y, Hu Y, Qian L, Zhu L, Zhang F, Yu L, Yi C, Gu W, Ling Z, Ma L, Tang W, Peng L, Shi G, Zhang Y, Sun B. Solar ultraviolet B radiation promotes α-MSH secretion to attenuate the function of ILC2s via the pituitary-lung axis. Nat Commun 2023; 14:5601. [PMID: 37699899 PMCID: PMC10497598 DOI: 10.1038/s41467-023-41319-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 08/30/2023] [Indexed: 09/14/2023] Open
Abstract
The immunomodulatory effects of ultraviolet B (UVB) radiation in human diseases have been described. Whether type 2 lung inflammation is directly affected by solar ultraviolet (UV) radiation is not fully understood. Here, we show a possible negative correlation between solar UVB radiation and asthmatic inflammation in humans and mice. UVB exposure to the eyes induces hypothalamus-pituitary activation and α-melanocyte-stimulating hormone (α-MSH) accumulation in the serum to suppress allergic airway inflammation by targeting group 2 innate lymphoid cells (ILC2) through the MC5R receptor in mice. The α-MSH/MC5R interaction limits ILC2 function through attenuation of JAK/STAT and NF-κB signaling. Consistently, we observe that the plasma α-MSH concentration is negatively correlated with the number and function of ILC2s in the peripheral blood mononuclear cells (PBMC) of patients with asthma. We provide insights into how solar UVB radiation-driven neuroendocrine α-MSH restricts ILC2-mediated lung inflammation and offer a possible strategy for controlling allergic diseases.
Collapse
Affiliation(s)
- Yuying Huang
- State Key Laboratory of Cell Biology, Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Lin Zhu
- State Key Laboratory of Cell Biology, Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Shipeng Cheng
- State Key Laboratory of Cell Biology, Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Ranran Dai
- Department of Pulmonary and Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chunrong Huang
- Department of Pulmonary and Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yanyan Song
- Department of Biostatistics, Clinical Research Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bo Peng
- Department of Pulmonary and Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xuezhen Li
- State Key Laboratory of Cell Biology, Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Jing Wen
- State Key Laboratory of Cell Biology, Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Yi Gong
- Huashan Hospital Affiliated to Fudan University, Shanghai, China
| | - Yunqian Hu
- Department of Pulmonary and Critical Care Medicine, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Ling Qian
- Department of Pulmonary and Critical Care Medicine, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| | - Linyun Zhu
- Shanghai Putuo District Central Hospital, Shanghai, China
| | - Fengying Zhang
- Shanghai Putuo District People's Hospital, Shanghai, China
| | - Li Yu
- Department of Pulmonary and Critical Care Medicine, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Chunyan Yi
- State Key Laboratory of Cell Biology, Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Wangpeng Gu
- State Key Laboratory of Cell Biology, Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Zhiyang Ling
- State Key Laboratory of Cell Biology, Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Liyan Ma
- State Key Laboratory of Cell Biology, Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Wei Tang
- Department of Pulmonary and Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Li Peng
- Shanghai Key Laboratory of Meteorology and Health, Shanghai Meteorological Service, Shanghai, China.
| | - Guochao Shi
- Department of Pulmonary and Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Yaguang Zhang
- State Key Laboratory of Cell Biology, Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China.
- Med-X Institute, Center for Immunological and Metabolic Diseases, The First Affiliated Hospital of Xi'an JiaoTong University, Xi'an JiaoTong University, Xi'an, Shaanxi, P. R. China.
| | - Bing Sun
- State Key Laboratory of Cell Biology, Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China.
| |
Collapse
|
8
|
Radiation from UV-A to Red Light Induces ROS-Dependent Release of Neutrophil Extracellular Traps. Int J Mol Sci 2023; 24:ijms24065770. [PMID: 36982847 PMCID: PMC10051944 DOI: 10.3390/ijms24065770] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/15/2023] [Accepted: 03/16/2023] [Indexed: 03/22/2023] Open
Abstract
Neutrophils release decondensed chromatin or extracellular traps (NETs) in response to various physiological and pharmacological stimuli. Apart from host defensive functions, NETs play an essential role in the pathogenesis of various autoimmune, inflammatory, and malignant diseases. In recent years, studies have been performed on photo-induced NET formation, mainly activated by UV radiation. Understanding the mechanisms of NET release under the influence of UV and visible light is important to control the consequences of the damaging effects of electromagnetic radiation. Raman spectroscopy was applied to record characteristic Raman frequencies of various reactive oxygen species (ROS) and low-frequency lattice vibrational modes for citrulline. NETosis was induced by irradiation with wavelength-switchable LED sources. Fluorescence microscopy was used to visualize and quantify NET release. The ability of five wavelengths of radiation, from UV-A to red light, to induce NETosis was investigated at three different energy doses. We demonstrated, for the first time, that NET formation is activated not only by UV-A but also by three spectra of visible light: blue, green, and orange, in a dose-dependent manner. Using inhibitory analysis, we established that light-induced NETosis proceeds through NADPH oxidase and PAD4. The development of new drugs designed to suppress NETosis, especially when induced by exposure to intense UV and visible light, can help to mitigate light-induced photoaging and other damaging effects of electromagnetic radiation.
Collapse
|
9
|
Tse BCY, Ferguson AL, Koay YC, Grau GE, Don AS, Byrne SN. Exposure to solar ultraviolet radiation establishes a novel immune suppressive lipidome in skin-draining lymph nodes. Front Immunol 2023; 13:1045731. [PMID: 36741361 PMCID: PMC9895826 DOI: 10.3389/fimmu.2022.1045731] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 12/22/2022] [Indexed: 01/21/2023] Open
Abstract
The ability of ultraviolet radiation to suppress the immune system is thought to be central to both its beneficial (protection from autoimmunity) and detrimental (carcinogenic) effects. Previous work revealed a key role for lipids particularly platelet-activating factor and sphingosine-1-phosphate in mediating UV-induced immune suppression. We therefore hypothesized that there may be other UV-induced lipids that have immune regulatory roles. To assess this, mice were exposed to an immune suppressive dose of solar-simulated UV (8 J/cm2). Lipidomic analysis identified 6 lipids (2 acylcarnitines, 2 neutral lipids, and 2 phospholipids) with significantly increased levels in the skin-draining lymph nodes of UV-irradiated mice. Imaging mass spectrometry of the lipids in combination with imaging mass cytometry identification of lymph node cell subsets indicated a preferential location of UV-induced lipids to T cell areas. In vitro co-culture of skin-draining lymph node lipids with lymphocytes showed that lipids derived from UV-exposed mice have no effect on T cell activation but significantly inhibited T cell proliferation, indicating that the lipids play an immune regulatory role. These studies are important first steps in identifying novel lipids that contribute to UV-mediated immune suppression.
Collapse
Affiliation(s)
- Benita C. Y. Tse
- The University of Sydney, School of Medical Sciences, Faculty of Medicine and Health, Sydney, NSW, Australia
| | - Angela L. Ferguson
- The University of Sydney, School of Medical Sciences, Faculty of Medicine and Health, Sydney, NSW, Australia
| | - Yen Chin Koay
- The University of Sydney, School of Medical Sciences, Faculty of Medicine and Health, Sydney, NSW, Australia,Heart Research Institute, The University of Sydney, Sydney, NSW, Australia
| | - Georges E. Grau
- The University of Sydney, School of Medical Sciences, Faculty of Medicine and Health, Sydney, NSW, Australia
| | - Anthony S. Don
- The University of Sydney, School of Medical Sciences, Faculty of Medicine and Health, Sydney, NSW, Australia
| | - Scott N. Byrne
- The University of Sydney, School of Medical Sciences, Faculty of Medicine and Health, Sydney, NSW, Australia,Westmead Institute for Medical Research, Centre for Immunology and Allergy Research, Sydney, NSW, Australia,*Correspondence: Scott N. Byrne,
| |
Collapse
|
10
|
Maz MP, Martens JWS, Hannoudi A, Reddy AL, Hile GA, Kahlenberg JM. Recent advances in cutaneous lupus. J Autoimmun 2022; 132:102865. [PMID: 35858957 PMCID: PMC10082587 DOI: 10.1016/j.jaut.2022.102865] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/03/2022] [Accepted: 07/04/2022] [Indexed: 11/25/2022]
Abstract
Cutaneous lupus erythematosus (CLE) is an inflammatory and autoimmune skin condition that affects patients with systemic lupus erythematosus (SLE) and exists as an isolated entity without associated SLE. Flares of CLE, often triggered by exposure to ultraviolet (UV) light result in lost productivity and poor quality of life for patients and can be associated with trigger of systemic inflammation. In the past 10 years, the knowledge of CLE etiopathogenesis has grown, leading to promising targets for better therapies. Development of lesions likely begins in a pro-inflammatory epidermis, conditioned by excess type I interferon (IFN) production to undergo increased cell death and inflammatory cytokine production after UV light exposure. The reasons for this inflammatory predisposition are not well-understood, but may be an early event, as ANA + patients without criteria for autoimmune disease exhibit similar (although less robust) findings. Non-lesional skin of SLE patients also exhibits increased innate immune cell infiltration, conditioned by excess IFNs to release pro-inflammatory cytokines, and potentially increase activation of the adaptive immune system. Plasmacytoid dendritic cells are also found in non-lesional skin and may contribute to type I IFN production, although this finding is now being questioned by new data. Once the inflammatory cycle begins, lesional infiltration by numerous other cell populations ensues, including IFN-educated T cells. The heterogeneity amongst lesional CLE subtypes isn't fully understood, but B cells appear to discriminate discoid lupus erythematosus from other subtypes. Continued discovery will provide novel targets for additional therapeutic pursuits. This review will comprehensively discuss the contributions of tissue-specific and immune cell populations to the initiation and propagation of disease.
Collapse
Affiliation(s)
- Mitra P Maz
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, 48109, USA; Program in Immunology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Jacob W S Martens
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, 48109, USA; Program in Immunology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Andrew Hannoudi
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Alayka L Reddy
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Grace A Hile
- Department of Dermatology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - J Michelle Kahlenberg
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, 48109, USA; Department of Dermatology, University of Michigan, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
11
|
Liu Y, Liu Y, Deng J, Wu X, He W, Mu X, Nie X. Molecular mechanisms of Marine-Derived Natural Compounds as photoprotective strategies. Int Immunopharmacol 2022; 111:109174. [PMID: 35998505 DOI: 10.1016/j.intimp.2022.109174] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 08/02/2022] [Accepted: 08/14/2022] [Indexed: 11/16/2022]
Abstract
Excessive exposure of the skin to ultraviolet radiation (UVR) causes oxidative stress, inflammation, immunosuppression, apoptosis, and changes in the extracellular matrix, which lead to the development of photoaging and photodamage of skin. At the molecular level, these pathological changes are mainly caused by the activation of related protein kinases and downstream transcription pathways, the increase of matrix metalloproteinase, the formation of reactive oxygen species, and the combined action of cytokines and inflammatory mediators. At present, the photostability, toxicity, and damage to marine ecosystems of most sun protection products in the market have affected their efficacy and safety. Another way is to use natural products produced by various marine species. Marine organisms have evolved a variety of molecular strategies to protect themselves from the harmful effects of ultraviolet radiation, and their unique chemicals have attracted more and more attention in the research of photoprotection and photoaging resistance. This article provides an extensive description of the recent literature on the potential of Marine-Derived Natural Compounds (MDNCs) as photoprotective and photoprotective agents. It reviews the positive effects of MDNCs in counteracting UV-induced oxidative stress, inflammation, DNA damage, apoptosis, immunosuppression, and extracellular matrix degradation. Some MDNCs have the potential to develop feasible solutions for related phenomena, such as photoaging and photodamage caused by UVR.
Collapse
Affiliation(s)
- Yiqiu Liu
- Key Lab of the Basic Pharmacology of the Ministry of Education, Zunyi Medical University, Zunyi 563006, China
| | - Ye Liu
- Key Lab of the Basic Pharmacology of the Ministry of Education, Zunyi Medical University, Zunyi 563006, China
| | - Junyu Deng
- Key Lab of the Basic Pharmacology of the Ministry of Education, Zunyi Medical University, Zunyi 563006, China
| | - Xingqian Wu
- Key Lab of the Basic Pharmacology of the Ministry of Education, Zunyi Medical University, Zunyi 563006, China; Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563006, China
| | - Wenjie He
- Key Lab of the Basic Pharmacology of the Ministry of Education, Zunyi Medical University, Zunyi 563006, China; Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563006, China
| | - Xingrui Mu
- Key Lab of the Basic Pharmacology of the Ministry of Education, Zunyi Medical University, Zunyi 563006, China; Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563006, China
| | - Xuqiang Nie
- Key Lab of the Basic Pharmacology of the Ministry of Education, Zunyi Medical University, Zunyi 563006, China; Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563006, China; College of Pharmacy, Zunyi Medical University, Zunyi 563006, China.
| |
Collapse
|
12
|
Photoaging: UV radiation-induced inflammation and immunosuppression accelerate the aging process in the skin. Inflamm Res 2022; 71:817-831. [PMID: 35748903 PMCID: PMC9307547 DOI: 10.1007/s00011-022-01598-8] [Citation(s) in RCA: 154] [Impact Index Per Article: 51.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/02/2022] [Indexed: 02/08/2023] Open
Abstract
Background Excessive exposure of the skin to UV radiation (UVR) triggers a remodeling of the immune system and leads to the photoaging state which is reminiscent of chronological aging. Over 30 years ago, it was observed that UVR induced an immunosuppressive state which inhibited skin contact hypersensitivity. Methods Original and review articles encompassing inflammation and immunosuppression in the photoaging and chronological aging processes were examined from major databases including PubMed, Scopus, and Google Scholar. Results Currently it is known that UVR treatment can trigger a cellular senescence and inflammatory state in the skin. Chronic low-grade inflammation stimulates a counteracting immunosuppression involving an expansion of immunosuppressive cells, e.g., regulatory T cells (Treg), myeloid-derived suppressor cells (MDSC), and regulatory dendritic cells (DCreg). This increased immunosuppressive activity not only suppresses the function of effector immune cells, a state called immunosenescence, but it also induces bystander degeneration of neighboring cells. Interestingly, the chronological aging process also involves an accumulation of pro-inflammatory senescent cells and signs of chronic low-grade inflammation, called inflammaging. There is also clear evidence that inflammaging is associated with an increase in anti-inflammatory and immunosuppressive activities which promote immunosenescence. Conclusion It seems that photoaging and normal aging evoke similar processes driven by the remodeling of the immune system. However, it is likely that there are different molecular mechanisms inducing inflammation and immunosuppression in the accelerated photoaging and the chronological aging processes.
Collapse
|
13
|
Anene CA, Taggart E, Harwood CA, Pennington DJ, Wang J. Decosus: An R Framework for Universal Integration of Cell Proportion Estimation Methods. Front Genet 2022; 13:802838. [PMID: 35432466 PMCID: PMC9011041 DOI: 10.3389/fgene.2022.802838] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 03/04/2022] [Indexed: 12/26/2022] Open
Abstract
The assessment of the cellular heterogeneity and abundance in bulk tissue samples is essential for characterising cellular and organismal states. Computational approaches to estimate cellular abundance from bulk RNA-Seq datasets have variable performances, often requiring benchmarking matrices to select the best performing methods for individual studies. However, such benchmarking investigations are difficult to perform and assess in typical applications because of the absence of gold standard/ground-truth cellular measurements. Here we describe Decosus, an R package that integrates seven methods and signatures for deconvoluting cell types from gene expression profiles (GEP). Benchmark analysis on a range of datasets with ground-truth measurements revealed that our integrated estimates consistently exhibited stable performances across datasets than individual methods and signatures. We further applied Decosus to characterise the immune compartment of skin samples in different settings, confirming the well-established Th1 and Th2 polarisation in psoriasis and atopic dermatitis, respectively. Secondly, we revealed immune system-related UV-induced changes in sun-exposed skin. Furthermore, a significant motivation in the design of Decosus is flexibility and the ability for the user to include new gene signatures, algorithms, and integration methods at run time.
Collapse
Affiliation(s)
- Chinedu A. Anene
- Centre for Cancer Genomics and Computational Biology, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
- Centre for Cancer Biology and Therapy, School of Applied Science, London South Bank University, London, United Kingdom
| | - Emma Taggart
- Centre for Immunobiology, Barts and the London School of Medicine, Blizard Institute, Queen Mary University of London, London, United Kingdom
| | - Catherine A. Harwood
- Centre for Cell Biology and Cutaneous Research, Barts and The London School of Medicine and Dentistry, Blizard Institute, Queen Mary University of London, London, United Kingdom
- Department of Dermatology, The Royal London Hospital, Barts Health NHS Trust, London, United Kingdom
| | - Daniel J. Pennington
- Centre for Immunobiology, Barts and the London School of Medicine, Blizard Institute, Queen Mary University of London, London, United Kingdom
| | - Jun Wang
- Centre for Cancer Genomics and Computational Biology, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| |
Collapse
|
14
|
Pavletić B, Runzheimer K, Siems K, Koch S, Cortesão M, Ramos-Nascimento A, Moeller R. Spaceflight Virology: What Do We Know about Viral Threats in the Spaceflight Environment? ASTROBIOLOGY 2022; 22:210-224. [PMID: 34981957 PMCID: PMC8861927 DOI: 10.1089/ast.2021.0009] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Viruses constitute a significant part of the human microbiome, so wherever humans go, viruses are brought with them, even on space missions. In this mini review, we focus on the International Space Station (ISS) as the only current human habitat in space that has a diverse range of viral genera that infect microorganisms from bacteria to eukaryotes. Thus, we have reviewed the literature on the physical conditions of space habitats that have an impact on both virus transmissibility and interaction with their host, which include UV radiation, ionizing radiation, humidity, and microgravity. Also, we briefly comment on the practices used on space missions that reduce virus spread, that is, use of antimicrobial surfaces, spacecraft sterilization practices, and air filtration. Finally, we turn our attention to the health threats that viruses pose to space travel. Overall, even though efforts are taken to ensure safe conditions during human space travel, for example, preflight quarantines of astronauts, we reflect on the potential risks humans might be exposed to and how those risks might be aggravated in extraterrestrial habitats.
Collapse
Affiliation(s)
- Bruno Pavletić
- German Aerospace Center (DLR), Institute of Aerospace Medicine, Radiation Biology Department, Aerospace Microbiology Research Group, Linder Hoehe, Cologne (Köln), Germany
| | - Katharina Runzheimer
- German Aerospace Center (DLR), Institute of Aerospace Medicine, Radiation Biology Department, Aerospace Microbiology Research Group, Linder Hoehe, Cologne (Köln), Germany
| | - Katharina Siems
- German Aerospace Center (DLR), Institute of Aerospace Medicine, Radiation Biology Department, Aerospace Microbiology Research Group, Linder Hoehe, Cologne (Köln), Germany
| | - Stella Koch
- German Aerospace Center (DLR), Institute of Aerospace Medicine, Radiation Biology Department, Aerospace Microbiology Research Group, Linder Hoehe, Cologne (Köln), Germany
| | - Marta Cortesão
- German Aerospace Center (DLR), Institute of Aerospace Medicine, Radiation Biology Department, Aerospace Microbiology Research Group, Linder Hoehe, Cologne (Köln), Germany
| | - Ana Ramos-Nascimento
- German Aerospace Center (DLR), Institute of Aerospace Medicine, Radiation Biology Department, Aerospace Microbiology Research Group, Linder Hoehe, Cologne (Köln), Germany
| | - Ralf Moeller
- German Aerospace Center (DLR), Institute of Aerospace Medicine, Radiation Biology Department, Aerospace Microbiology Research Group, Linder Hoehe, Cologne (Köln), Germany
- Address correspondence to: Ralf Moeller, German Aerospace Center (DLR), Institute of Aerospace Medicine, Radiation Biology Department, Aerospace Microbiology, Linder Hoehe, Building 24, Room 104, D-51147 Köln, Germany
| |
Collapse
|
15
|
de Carvalho HN. Latitude impact on Pandemic Sars-Cov-2 2020 outbreaks and possible utility of UV indexes in predictions of regional daily infections and deaths. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY 2022; 10:100108. [PMID: 35039805 PMCID: PMC8755417 DOI: 10.1016/j.jpap.2022.100108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
The importance of two related factors _ latitude and solar ultraviolet radiation _ has been insufficiently recognized as determining the spread of pandemic Sars-CoV-2 outbreaks across the globe. In this study we provide evidence of the impact of latitude and investigate how daily RT-PCR diagnosed infections and deaths are quantitively correlated with the UV component of Solar light. Here, we present regression analyses using daily national numbers from Austria and from Portugal with daily ultraviolet indexes of two selected locations in these territories, obtained from a Satellite source. These countries, have similar surfaces areas and population size but Austria's mean latitude is 9° up-north. The equations derived from regression analyses of those two variables are comparable for both countries, fit best the fall (2nd) pandemic wave and can be a useful non-R(t) (rate of transmission) dependent predictive tool. Similar equations were derived for deaths that follow infections within a few weeks delay. Strong correlations depend on the size of the region/country from which infections are collected, the robustness of screening practices, ideally kept through weekends and holidays. Besides the forecasting usefulness of such correlations, these findings also suggest that covid-19 transmission co-exists with a Sars-Cov-2 specific UV-induced immunosuppression response. While in 2020, intensity of pandemic spring and fall waves reflect a Solar UV-light modulation, we relate exceptional low temperature and humidity with additional waves, as the winter 2020/2021 3rd wave, felt in the western European countries. This work may help understanding this Pandemic phenomenon and dealing with similar catastrophes in the future.
Collapse
|
16
|
Tse BCY, Ireland RA, Lee JY, Marsh-Wakefield F, Kok LF, Don AS, Byrne SN. Exposure to Systemic Immunosuppressive Ultraviolet Radiation Alters T Cell Recirculation through Sphingosine-1-Phosphate. THE JOURNAL OF IMMUNOLOGY 2021; 207:2278-2287. [PMID: 34561229 DOI: 10.4049/jimmunol.2001261] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 08/25/2021] [Indexed: 11/19/2022]
Abstract
Systemic suppression of adaptive immune responses is a major way in which UV radiation contributes to skin cancer development. Immune suppression is also likely to explain how UV protects from some autoimmune diseases, such as multiple sclerosis. However, the mechanisms underlying UV-mediated systemic immune suppression are not well understood. Exposure of C57BL/6 mice to doses of UV known to suppress systemic autoimmunity led to the accumulation of cells within the skin-draining lymph nodes and away from non-skin-draining lymph nodes. Transfer of CD45.1+ cells from nonirradiated donors into CD45.2+ UV-irradiated recipients resulted in preferential accumulation of donor naive T cells and a decrease in activated T cells within skin-draining lymph nodes. A single dose of immune-suppressive UV was all that was required to cause a redistribution of naive and central memory T cells from peripheral blood to the skin-draining lymph nodes. Specifically, CD69-independent increases in sphingosine-1-phosphate (S1P) receptor 1-negative naive and central memory T cells occurred in these lymph nodes. Mass spectrometry analysis showed UV-mediated activation of sphingosine kinase 1 activity, resulting in an increase in S1P levels within the lymph nodes. Topical application of a sphingosine kinase inhibitor on the skin prior to UV irradiation eliminated the UV-induced increase in lymph node S1P and T cell numbers. Thus, exposure to immunosuppressive UV disrupts T cell recirculation by manipulating the S1P pathway.
Collapse
Affiliation(s)
- Benita C Y Tse
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Rachael A Ireland
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia.,Westmead Institute for Medical Research, Centre for Immunology and Allergy Research, Westmead, New South Wales, Australia; and
| | - Jun Yup Lee
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Felix Marsh-Wakefield
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Lai Fong Kok
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Anthony S Don
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia.,Centenary Institute, The University of Sydney, Sydney, New South Wales, Australia
| | - Scott N Byrne
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia; .,Westmead Institute for Medical Research, Centre for Immunology and Allergy Research, Westmead, New South Wales, Australia; and
| |
Collapse
|
17
|
Lin F, Sun X, Lei J, Xu AE. Altered circulating memory T cells in vitiligo cases followed NB-UVB therapy. PHOTODERMATOLOGY PHOTOIMMUNOLOGY & PHOTOMEDICINE 2021; 38:76-82. [PMID: 34265118 PMCID: PMC9292791 DOI: 10.1111/phpp.12719] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 06/11/2021] [Accepted: 07/10/2021] [Indexed: 11/28/2022]
Abstract
Background Vitiligo represents a commonly diagnosed autoimmune disease caused by the depletion of epidermal melanocytes. Many subsets of T cells contribute to vitiligo pathogenesis, including resident and circulating memory T cells. Objectives To analyze the amounts of CD4+ and CD8+memory T‐cell subsets in peripheral blood specimens from vitiligo patients and alterations caused by narrowband ultraviolet B (NB‐UVB) phototherapy. Methods Circulating CD4+ and CD8+ central memory T (TCM) and effector memory T (TEM) cell frequencies in 33 patients with non‐segmental vitiligo and 16 healthy donors were evaluated by flow cytometry. Related chemokine levels were also detected. Results Peripheral blood CD4+ TCM and CD8+ TCM counts were markedly reduced in vitiligo cases while they were higher in active vitiligo compared with stable vitiligo cases. Circulating CD8+ TCM frequency in vitiligo was closely related to disease duration. Interestingly, CD4+ TCM and CD8+ TCM frequencies, alongside CXCL9 and CXCL10 amounts in peripheral blood of patients with vitiligo, were significantly decreased after NB‐UVB phototherapy. Conclusions Decreased frequencies of circulating CD4+ TCM and CD8+ TCM by NB‐UVB suggest a possible immunosuppressive effect of phototherapy. The chemokines CXCL9 and CXCL10 are the bridge between circulating and skin resident memory T cells. NB‐UVB blocks the homing of circulating memory T cells into vitiligo lesions by down‐regulating CXCL9 and CXCL10. Targeting the above proteins could provide novel, durable treatment options to cure and prevent flares of this disease.
Collapse
Affiliation(s)
- Fuquan Lin
- Department of Dermatology, Hangzhou Third People's Hospital, Affiliated Hangzhou Dermatology Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiukun Sun
- Department of Dermatology, Hangzhou Third People's Hospital, Affiliated Hangzhou Dermatology Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jiehao Lei
- Department of Dermatology, Hangzhou Third People's Hospital, Affiliated Hangzhou Dermatology Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ai-E Xu
- Department of Dermatology, Hangzhou Third People's Hospital, Affiliated Hangzhou Dermatology Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
18
|
Estadt SN, Maz MP, Musai J, Kahlenberg JM. Mechanisms of Photosensitivity in Autoimmunity. J Invest Dermatol 2021; 142:849-856. [PMID: 34167786 DOI: 10.1016/j.jid.2021.05.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 05/06/2021] [Accepted: 05/07/2021] [Indexed: 12/11/2022]
Abstract
Aberrant responses to UV light frequently lead to the formation of skin lesions and the activation of systemic inflammation in some autoimmune diseases, especially systemic lupus erythematosus. Whereas the effects of UV light on the skin have been studied for decades, only recently have some of the mechanisms that contribute to abnormal responses to UV light in patients with autoimmune diseases been uncovered. This review will discuss the biology of UV in the epidermis and discuss the abnormal epidermal and inflammatory mechanisms that contribute to photosensitivity. Further research is required to fully understand how to normalize UV-mediated inflammation in patients with autoimmune diseases.
Collapse
Affiliation(s)
- Shannon N Estadt
- Division of Rheumatology, Department of Internal Medicine, Michigan Medicine, University of Michigan, Ann Arbor, Michigan, USA; Graduate Program in Immunology, Medical School, University of Michigan, Ann Arbor, Michigan, USA
| | - Mitra P Maz
- Division of Rheumatology, Department of Internal Medicine, Michigan Medicine, University of Michigan, Ann Arbor, Michigan, USA; Graduate Program in Immunology, Medical School, University of Michigan, Ann Arbor, Michigan, USA
| | - Jon Musai
- Division of Rheumatology, Department of Internal Medicine, Michigan Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - J Michelle Kahlenberg
- Division of Rheumatology, Department of Internal Medicine, Michigan Medicine, University of Michigan, Ann Arbor, Michigan, USA; Department of Dermatology, Michigan Medicine, University of Michigan, Ann Arbor, Michigan, USA.
| |
Collapse
|
19
|
Subbiahanadar Chelladurai K, Selvan Christyraj JD, Azhagesan A, Paulraj VD, Jothimani M, Yesudhason BV, Chellathurai Vasantha N, Ganesan M, Rajagopalan K, Venkatachalam S, Benedict J, John Samuel JK, Selvan Christyraj JRS. Exploring the effect of UV-C radiation on earthworm and understanding its genomic integrity in the context of H2AX expression. Sci Rep 2020; 10:21005. [PMID: 33273505 PMCID: PMC7713072 DOI: 10.1038/s41598-020-77719-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 11/17/2020] [Indexed: 01/28/2023] Open
Abstract
Maintaining genomic stability is inevitable for organism survival and it is challenged by mutagenic agents, which include ultraviolet (UV) radiation. Whenever DNA damage occurs, it is sensed by DNA-repairing proteins and thereby performing the DNA-repair mechanism. Specifically, in response to DNA damage, H2AX is a key protein involved in initiating the DNA-repair processes. In this present study, we investigate the effect of UV-C on earthworm, Perionyx excavatus and analyzed the DNA-damage response. Briefly, we expose the worms to different doses of UV-C and find that worms are highly sensitive to UV-C. As a primary response, earthworms produce coelomic fluid followed by autotomy. However, tissue inflammation followed by death is observed when we expose worm to increased doses of UV-C. In particular, UV-C promotes damages in skin layers and on the contrary, it mediates the chloragogen and epithelial outgrowth in intestinal tissues. Furthermore, UV-C promotes DNA damages followed by upregulation of H2AX on dose-dependent manner. Our finding confirms DNA damage caused by UV-C is directly proportional to the expression of H2AX. In short, we conclude that H2AX is present in the invertebrate earthworm, which plays an evolutionarily conserved role in DNA damage event as like that in higher animals.
Collapse
Affiliation(s)
- Karthikeyan Subbiahanadar Chelladurai
- grid.412427.60000 0004 1761 0622Regeneration and Stem Cell Biology Lab, Centre for Molecular and Nanomedical Sciences, International Research Centre, Sathyabama Institute of Science and Technology, Chennai, 600119 Tamilnadu India
| | - Jackson Durairaj Selvan Christyraj
- grid.412427.60000 0004 1761 0622Regeneration and Stem Cell Biology Lab, Centre for Molecular and Nanomedical Sciences, International Research Centre, Sathyabama Institute of Science and Technology, Chennai, 600119 Tamilnadu India
| | - Ananthaselvam Azhagesan
- grid.412427.60000 0004 1761 0622Regeneration and Stem Cell Biology Lab, Centre for Molecular and Nanomedical Sciences, International Research Centre, Sathyabama Institute of Science and Technology, Chennai, 600119 Tamilnadu India ,grid.412813.d0000 0001 0687 4946Present Address: Centre for Nanobiotechnology, Vellore Institute of Technology, Vellore, 632014 Tamilnadu India
| | - Vennila Devi Paulraj
- grid.412427.60000 0004 1761 0622Regeneration and Stem Cell Biology Lab, Centre for Molecular and Nanomedical Sciences, International Research Centre, Sathyabama Institute of Science and Technology, Chennai, 600119 Tamilnadu India
| | - Muralidharan Jothimani
- grid.412427.60000 0004 1761 0622Regeneration and Stem Cell Biology Lab, Centre for Molecular and Nanomedical Sciences, International Research Centre, Sathyabama Institute of Science and Technology, Chennai, 600119 Tamilnadu India ,grid.411312.40000 0001 0363 9238Present Address: Department of Bioinformatics, Science Campus, Alagappa University, Karaikudi, 630004 Tamilnadu India
| | - Beryl Vedha Yesudhason
- grid.412427.60000 0004 1761 0622Regeneration and Stem Cell Biology Lab, Centre for Molecular and Nanomedical Sciences, International Research Centre, Sathyabama Institute of Science and Technology, Chennai, 600119 Tamilnadu India
| | - Niranjan Chellathurai Vasantha
- grid.412427.60000 0004 1761 0622Regeneration and Stem Cell Biology Lab, Centre for Molecular and Nanomedical Sciences, International Research Centre, Sathyabama Institute of Science and Technology, Chennai, 600119 Tamilnadu India
| | - Mijithra Ganesan
- grid.412427.60000 0004 1761 0622Regeneration and Stem Cell Biology Lab, Centre for Molecular and Nanomedical Sciences, International Research Centre, Sathyabama Institute of Science and Technology, Chennai, 600119 Tamilnadu India
| | - Kamarajan Rajagopalan
- grid.412427.60000 0004 1761 0622Regeneration and Stem Cell Biology Lab, Centre for Molecular and Nanomedical Sciences, International Research Centre, Sathyabama Institute of Science and Technology, Chennai, 600119 Tamilnadu India
| | - Saravanakumar Venkatachalam
- grid.412427.60000 0004 1761 0622Regeneration and Stem Cell Biology Lab, Centre for Molecular and Nanomedical Sciences, International Research Centre, Sathyabama Institute of Science and Technology, Chennai, 600119 Tamilnadu India
| | - Johnson Benedict
- grid.412427.60000 0004 1761 0622Regeneration and Stem Cell Biology Lab, Centre for Molecular and Nanomedical Sciences, International Research Centre, Sathyabama Institute of Science and Technology, Chennai, 600119 Tamilnadu India
| | - Jemima Kamalapriya John Samuel
- grid.252262.30000 0001 0613 6919Department of Biotechnology, Anna University of Technology, Tiruchirappalli, 620024 Tamilnadu India
| | - Johnson Retnaraj Samuel Selvan Christyraj
- grid.412427.60000 0004 1761 0622Regeneration and Stem Cell Biology Lab, Centre for Molecular and Nanomedical Sciences, International Research Centre, Sathyabama Institute of Science and Technology, Chennai, 600119 Tamilnadu India
| |
Collapse
|
20
|
Le Guernic A, Geffard A, Rioult D, Bigot-Clivot A, Leprêtre M, Palos Ladeiro M. Cellular and molecular complementary immune stress markers for the model species Dreissena polymorpha. FISH & SHELLFISH IMMUNOLOGY 2020; 107:452-462. [PMID: 33197585 DOI: 10.1016/j.fsi.2020.10.027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 09/25/2020] [Accepted: 10/27/2020] [Indexed: 06/11/2023]
Abstract
This study aimed to combine cellular and molecular analyses for better detail the effects of various stresses on a sentinel species of freshwater invertebrate. For this purpose, the hemocytes of the zebra mussel, Dreissena polymorpha, were exposed to different stresses at two different intensities, high or low: chemical (cadmium and ionomycin), physical (ultraviolet B), or biological ones (Cryptosporidium parvum and Toxoplasma gondii). After exposure, flow cytometry and droplet digital PCR analyses were performed on the same pools of hemocytes. Several responses related to necrosis, apoptosis, phagocytosis, production of nitric oxide and expression level of several genes related to the antioxidant, detoxification and immune systems were evaluated. Results showed that hemocyte integrity was compromised by both chemical and physical stress, and cellular markers of phagocytosis reacted to ionomycin and protozoa. While cadmium induced oxidative stress and necrosis, ionomycin tends to modulate the immune response of hemocytes. Although both biological stresses led to a similar immune response, C. parvum oocysts induced more effects than T. gondii, notably through the expression of effector caspases gene and an increase in hemocyte necrosis. This suggests different management of the two protozoa by the cell. This work provides new knowledge of biomarkers in the zebra mussel, at both cellular and molecular levels, and contributes to elucidate the mechanisms of action of different kinds of stress in this species.
Collapse
Affiliation(s)
- Antoine Le Guernic
- Reims Champagne-Ardenne University (URCA), Campus Moulin de La Housse, UMR-I02 SEBIO, 51687, Reims, France.
| | - Alain Geffard
- Reims Champagne-Ardenne University (URCA), Campus Moulin de La Housse, UMR-I02 SEBIO, 51687, Reims, France
| | - Damien Rioult
- Reims Champagne-Ardenne University (URCA), Campus Moulin de La Housse, UMR-I02 SEBIO, 51687, Reims, France; Plateau Technique Mobile en Cytométrie Environnementale MOBICYTE, URCA/INERIS, URCA, 51687, Reims, France
| | - Aurélie Bigot-Clivot
- Reims Champagne-Ardenne University (URCA), Campus Moulin de La Housse, UMR-I02 SEBIO, 51687, Reims, France
| | - Maxime Leprêtre
- Reims Champagne-Ardenne University (URCA), Campus Moulin de La Housse, UMR-I02 SEBIO, 51687, Reims, France
| | - Mélissa Palos Ladeiro
- Reims Champagne-Ardenne University (URCA), Campus Moulin de La Housse, UMR-I02 SEBIO, 51687, Reims, France
| |
Collapse
|
21
|
Naseri S, Steiniche T, Bæhr Georgsen J, Thomsen R, Ladekarl M, Heje M, Engberg Damsgaard T, Bønnelykke-Behrndtz ML. Tumor Ulceration, Reduced Infiltration of CD8-Lymphocytes, High Neutrophil-to-CD8-Lymphocyte Ratio and Absence of MC Virus are Negative Prognostic Markers for Patients with Merkel Cell Carcinoma. Cancers (Basel) 2020; 12:cancers12040888. [PMID: 32268526 PMCID: PMC7226107 DOI: 10.3390/cancers12040888] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 04/02/2020] [Accepted: 04/04/2020] [Indexed: 11/16/2022] Open
Abstract
(1) Background: Merkel cell carcinoma (MCC) is caused by the Merkel cell polyomavirus and UV radiation. Understanding of the underlying biology is limited, but identification of prognostic markers may lead to better prognostic stratification for the patients. (2) Methods: Ninety patients diagnosed with MCC (1996–2012) were included. Virus status was estimated by polymerase chain reaction (qPCR) and immunohistochemistry (IHC). Ulceration status, PD-L1, cd66b neutrophils, cd8 lymphocytes and biomarkers of vascularization (cd34 endothelial cells) and migration (e-cadherin) were estimated by IHC and analyzed with digital pathology. (3) Results: Virus was present in 47% of patient samples and correlated with lower E-cadherin expression (p = 0.0005), lower neutrophil-to-CD8 lymphocyte ratio (N:CD8 ratio) (p = 0.02) and increased PD-L1 expression (p = 0.03). Ulceration was associated with absence of virus (p = 0.03), increased neutrophil infiltration (p < 0.0001) and reduced CD8 lymphocyte infiltration (p = 0.04). In multivariate analysis, presence of virus (p = 0.01), ulceration (p = 0.05) and increased CD8 lymphocyte infiltration (p = 0.001) showed independent prognostic impacts on MCC-specific survival. (3) Conclusions: In this study, we found that a high N:CD8 ratio, ulceration, virus-negative status and absence of CD8 lymphocytes are negative prognostic markers. Accurate prognostic stratification of the patients may be important in the clinical setting for determination of adjuvant treatment.
Collapse
Affiliation(s)
- Simon Naseri
- Department of Plastic Surgery, Aalborg University Hospital, 9000 Aalborg, Denmark
- Correspondence:
| | - Torben Steiniche
- Department of Pathology, Aarhus University Hospital, 8200 Aarhus, Denmark; (T.S.); (J.B.G.)
| | - Jeanette Bæhr Georgsen
- Department of Pathology, Aarhus University Hospital, 8200 Aarhus, Denmark; (T.S.); (J.B.G.)
| | - Rune Thomsen
- Department of Biomedicine, Aarhus University, 8200 Aarhus, Denmark;
| | - Morten Ladekarl
- Department of Oncology, Clinical Cancer Research Center, Aalborg University Hospital, 9000 Aalborg, Denmark;
| | - Martin Heje
- Department of Plastic Surgery, Vejle Hospital, 7100 Vejle, Denmark;
| | - Tine Engberg Damsgaard
- Department of Plastic Surgery and Burns Treatment, Rigshospitalet, 2100 Copenhagen, Denmark;
| | | |
Collapse
|
22
|
Tse BCY, Byrne SN. Lipids in ultraviolet radiation-induced immune modulation. Photochem Photobiol Sci 2020; 19:870-878. [DOI: 10.1039/d0pp00146e] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Ultraviolet (UV) radiation modulates cutaneous lipids which in turn mediates immune suppression – a key mechanism conferring both detrimental and beneficial impacts of sun exposure on human health.
Collapse
Affiliation(s)
- Benita C. Y. Tse
- The University of Sydney
- School of Medical Sciences
- Faculty of Medicine and Health
- Sydney
- Australia
| | - Scott N. Byrne
- The University of Sydney
- School of Medical Sciences
- Faculty of Medicine and Health
- Sydney
- Australia
| |
Collapse
|
23
|
Sil P, Suwanpradid J, Muse G, Gruzdev A, Liu L, Corcoran DL, Willson CJ, Janardhan K, Grimm S, Myers P, Degraff LM, MacLeod AS, Martinez J. Noncanonical autophagy in dermal dendritic cells mediates immunosuppressive effects of UV exposure. J Allergy Clin Immunol 2019; 145:1389-1405. [PMID: 31837371 DOI: 10.1016/j.jaci.2019.11.041] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 10/10/2019] [Accepted: 11/05/2019] [Indexed: 12/14/2022]
Abstract
BACKGROUND Control of the inflammatory response is critical to maintaining homeostasis, and failure to do so contributes to the burden of chronic inflammation associated with several disease states. The mechanisms that underlie immunosuppression, however, remain largely unknown. Although defects in autophagy machinery have been associated with inflammatory pathologic conditions, we now appreciate that autophagic components participate in noncanonical pathways distinct from classical autophagy. We have previously demonstrated that LC3-associated phagocytosis (LAP), a noncanonical autophagic process dependent on Rubicon (rubicon autophagy regulator [RUBCN]), contributes to immunosuppression. OBJECTIVE We used Rubcn-/- mice to examine the role of the LAP pathway in mediating the UV-induced immunotolerant program in a model of contact hypersensitivity (CHS). METHODS Flow cytometry and transcriptional analysis were used to measure immune cell infiltration and activation in the skin of Rubcn+/+ and Rubcn-/- mice during the CHS response. RESULTS Here, we demonstrate that LAP is required for UV-induced immunosuppression and that UV exposure induces a broadly anti-inflammatory transcriptional program dependent on Rubicon. Rubcn-/- mice are resistant to UV-induced immunosuppression and instead display exaggerated inflammation in a model of CHS. Specifically, RUBCN deficiency in CD301b+ dermal dendritic cells results in their increased antigen presentation capacity and subsequent hyperactivation of the CD8+ T-cell response. CONCLUSIONS LAP functions to limit the immune response and is critical in maintaining the balance between homeostasis and inflammation.
Collapse
Affiliation(s)
- Payel Sil
- Immunity, Inflammation, and Disease Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC
| | | | - Ginger Muse
- Immunity, Inflammation, and Disease Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC
| | - Artiom Gruzdev
- Knockout Mouse Core Laboratory, Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC
| | - Liwen Liu
- Molecular Genomics Core Laboratory, Signal Transduction Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC
| | - David L Corcoran
- Duke Center for Genomic and Computational Biology, Duke University Medical Center, Durham, NC
| | | | | | - Sara Grimm
- Division of Intramural Research, Research Triangle Park, NC
| | - Page Myers
- Comparative Medicine Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC
| | - Laura Miller Degraff
- Immunity, Inflammation, and Disease Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC
| | - Amanda S MacLeod
- Department of Dermatology, Duke University, Durham, NC; Department of Immunology, Duke University, Durham, NC; Department of Molecular Genetics and Microbiology, Duke University, Durham, NC
| | - Jennifer Martinez
- Immunity, Inflammation, and Disease Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC.
| |
Collapse
|
24
|
Bernard JJ, Gallo RL, Krutmann J. Photoimmunology: how ultraviolet radiation affects the immune system. Nat Rev Immunol 2019; 19:688-701. [PMID: 31213673 DOI: 10.1038/s41577-019-0185-9] [Citation(s) in RCA: 171] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/24/2019] [Indexed: 02/07/2023]
Abstract
Ultraviolet (UV) radiation is a ubiquitous component of the environment that has important effects on a wide range of cell functions. Short-wavelength UVB radiation induces sunburn and is a potent immunomodulator, yet longer-wavelength, lower-energy UVA radiation also has effects on mammalian immunity. This Review discusses current knowledge regarding the mechanisms by which UV radiation can modify innate and adaptive immune responses and how this immunomodulatory capacity can be both beneficial in the case of inflammatory and autoimmune diseases, and detrimental in the case of skin cancer and the response to several infectious agents.
Collapse
Affiliation(s)
- Jamie J Bernard
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, USA. .,Division of Dermatology, Department of Medicine, Michigan State University, East Lansing, MI, USA.
| | - Richard L Gallo
- Department of Dermatology, University of California, San Diego, La Jolla, CA, USA
| | - Jean Krutmann
- IUF-Leibniz Research Institute for Environmental Medicine, Düsseldorf, Germany.,Medical Faculty, Heinrich Heine University, Duesseldorf, Germany
| |
Collapse
|
25
|
Mo X, Preston S, Zaidi MR. Macroenvironment-gene-microenvironment interactions in ultraviolet radiation-induced melanomagenesis. Adv Cancer Res 2019; 144:1-54. [PMID: 31349897 DOI: 10.1016/bs.acr.2019.03.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cutaneous malignant melanoma is one of the few major cancers that continue to exhibit a positive rate of increase in the developed world. A wealth of epidemiological data has undisputedly implicated ultraviolet radiation (UVR) from sunlight and artificial sources as the major risk factor for melanomagenesis. However, the molecular mechanisms of this cause-and-effect relationship remain murky and understudied. Recent efforts on multiple fronts have brought unprecedented expansion of our knowledge base on this subject and it is now clear that melanoma is caused by a complex interaction between genetic predisposition and environmental exposure, primarily to UVR. Here we provide an overview of the effects of the macroenvironment (UVR) on the skin microenvironment and melanocyte-specific intrinsic (mostly genetic) landscape, which conspire to produce one of the deadliest malignancies.
Collapse
Affiliation(s)
- Xuan Mo
- Fels Institute for Cancer Research and Molecular Biology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Sarah Preston
- Fels Institute for Cancer Research and Molecular Biology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - M Raza Zaidi
- Fels Institute for Cancer Research and Molecular Biology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States.
| |
Collapse
|
26
|
Hart PH, Norval M. Ultraviolet radiation-induced immunosuppression and its relevance for skin carcinogenesis. Photochem Photobiol Sci 2018; 17:1872-1884. [PMID: 29136080 DOI: 10.1039/c7pp00312a] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The realisation that UV radiation (UVR) exposure could induce a suppressed immune environment for the initiation of carcinogenesis in the skin was first described more than 40 years ago. Van der Leun and his colleagues contributed to this area in the 1980s and 90s by experiments in mice involving UV wavelength and dose-dependency in the formation of such tumours, in addition to illustrating both the local and systemic effect of the UVR on the immune system. Since these early days, many aspects of the complex pathways of UV-induced immunosuppression have been studied and are outlined in this review. Although most experimental work has involved mice, it is clear that UVR also causes reduced immune responses in humans. Evidence showing the importance of the immune system in determining the risk of human skin cancers is explained, and details of how UVR exposure can down-regulate immunity in the formation and progression of such tumours reviewed. With increasing knowledge of these links and the mechanisms of UVR-induced immunosuppression, novel approaches to enhance immunity to skin tumour antigens in humans are becoming apparent which, hopefully, will reduce the burden of UVR-induced skin cancers in the future.
Collapse
Affiliation(s)
- Prue H Hart
- Telethon Kids Institute, University of Western Australia, Perth, Australia.
| | | |
Collapse
|
27
|
Hesterberg RS, Amorrortu RP, Zhao Y, Hampras S, Akuffo AA, Fenske N, Cherpelis B, Balliu J, Vijayan L, Epling-Burnette PK, Rollison DE. T Regulatory Cell Subpopulations Associated with Recent Ultraviolet Radiation Exposure in a Skin Cancer Screening Cohort. THE JOURNAL OF IMMUNOLOGY 2018; 201:3269-3281. [PMID: 30389774 DOI: 10.4049/jimmunol.1800940] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 09/25/2018] [Indexed: 12/31/2022]
Abstract
UV radiation (UVR) causing DNA damage is a well-documented risk factor for nonmelanoma skin cancer. Although poorly understood, UVR may also indirectly contribute to carcinogenesis by promoting immune evasion. To our knowledge, we report the first epidemiological study designed to investigate the association between quantitative measures of UVR, obtained using a spectrophotometer, and circulating T regulatory (Treg) cells. In addition to total Treg cells, the proportion of functionally distinct Treg cell subsets defined by CD45RA and CD27 phenotypic markers, graded expression of FOXP3 and CD25, and those expressing cutaneous lymphocyte-associated Ag and the chemokine receptor CCR4 were enumerated in 350 individuals undergoing routine skin cancer screening exams and determined not to have prevalent skin cancer. No associations were identified for UVR exposure or the overall proportion of circulating Treg cells; however, Treg cell subpopulations with an activation-associated phenotype, CD45RA-/CD27-, and those expressing cutaneous homing receptors were significantly positively associated with UVR. These subpopulations of Treg cells also differed by age, sex, and race. After stratification by natural skin tone, and adjusting for age and sex, we found that spectrophotometer-based measures of UVR exposure, but not self-reported measures of past sun exposure, were positively correlated with the highest levels of these Treg cell subpopulations, particularly among lighter-skinned individuals. Findings from this large epidemiologic study highlight the diversity of human Treg cell subpopulations associated with UVR, thus raising questions about the specific coordinated expression of CD45RA, CD27, CCR4, and cutaneous lymphocyte-associated Ag on Treg cells and the possibility that UVR contributes to nonmelanoma skin cancer carcinogenesis through Treg cell-mediated immune evasion.
Collapse
Affiliation(s)
- Rebecca S Hesterberg
- Department of Immunology, Moffitt Cancer Center, Tampa, FL 33612.,Cancer Biology Ph.D. Program, University of South Florida, Tampa, FL 33612
| | | | - Yayi Zhao
- Department of Cancer Epidemiology, Moffitt Cancer Center, Tampa, FL 33612; and
| | - Shalaka Hampras
- Department of Cancer Epidemiology, Moffitt Cancer Center, Tampa, FL 33612; and
| | - Afua A Akuffo
- Department of Immunology, Moffitt Cancer Center, Tampa, FL 33612.,Cancer Biology Ph.D. Program, University of South Florida, Tampa, FL 33612
| | - Neil Fenske
- Department of Dermatology and Cutaneous Surgery, University of South Florida College of Medicine, Tampa, FL 33612
| | - Basil Cherpelis
- Department of Dermatology and Cutaneous Surgery, University of South Florida College of Medicine, Tampa, FL 33612
| | - Juliana Balliu
- Department of Cancer Epidemiology, Moffitt Cancer Center, Tampa, FL 33612; and
| | - Laxmi Vijayan
- Department of Cancer Epidemiology, Moffitt Cancer Center, Tampa, FL 33612; and
| | | | - Dana E Rollison
- Department of Cancer Epidemiology, Moffitt Cancer Center, Tampa, FL 33612; and
| |
Collapse
|
28
|
Jung JW, Veitch M, Bridge JA, Overgaard NH, Cruz JL, Linedale R, Franklin ME, Saunders NA, Simpson F, Frazer IH, Steptoe RJ, Wells JW. Clinically-Relevant Rapamycin Treatment Regimens Enhance CD8 + Effector Memory T Cell Function In The Skin and Allow their Infiltration into Cutaneous Squamous Cell Carcinoma. Oncoimmunology 2018; 7:e1479627. [PMID: 30228949 DOI: 10.1080/2162402x.2018.1479627] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 05/15/2018] [Accepted: 05/16/2018] [Indexed: 10/28/2022] Open
Abstract
Patients receiving immunosuppressive drugs to prevent organ transplant rejection exhibit a greatly increased risk of developing cutaneous squamous cell carcinoma (SCC). However, not all immunosuppressive drugs confer the same risk. Randomised, controlled trials demonstrate that switching renal transplant recipients receiving calcineurin inhibitor-based therapies to mammalian target of rapamycin (mTOR) inhibitors results in a reduced incidence of de novo SSC formation, and can even result in the regression of pre-existing premalignant lesions. However, the contribution played by residual immune function in this setting is unclear. We examined the hypotheses that mTOR inhibitors promote the enhanced differentiation and function of CD8+ memory T cells in the skin. Here, we demonstrate that the long-term oral administration of rapamycin to achieve clinically-relevant whole blood drug target thresholds, creates a "low rapamycin dose" environment in the skin. While both rapamycin and the calcineurin inhibitor tacrolimus elongated the survival of OVA-expressing skin grafts, and inhibited short-term antigen-specific CD8+ T cell responses, rapamycin but not tacrolimus permitted the statistically significant infiltration of CD8+ effector memory T cells into UV-induced SCC lesions. Furthermore, rapamycin uniquely enhanced the number and function of CD8+ effector and central memory T cells in a model of long-term contact hypersensitivity provided that rapamycin was present during the antigen sensitization phase. Thus, our findings suggest that patients switched to mTOR inhibitor regimens likely experience enhanced CD8+ memory T cell function to new antigen-challenges in their skin, which could contribute to their lower risk of de novo SSC formation and regression of pre-existing premalignant lesions.
Collapse
Affiliation(s)
- Ji-Won Jung
- The University of Queensland Diamantina Institute, Translational Research Institute, Brisbane, QLD Australia
| | - Margaret Veitch
- The University of Queensland Diamantina Institute, Translational Research Institute, Brisbane, QLD Australia
| | - Jennifer A Bridge
- The University of Queensland Diamantina Institute, Translational Research Institute, Brisbane, QLD Australia
| | - Nana H Overgaard
- The University of Queensland Diamantina Institute, Translational Research Institute, Brisbane, QLD Australia.,Division of Immunology & Vaccinology, National Veterinary Institute, Technical University of Denmark, Lyngby, Denmark
| | - Jazmina L Cruz
- The University of Queensland Diamantina Institute, Translational Research Institute, Brisbane, QLD Australia
| | - Richard Linedale
- The University of Queensland Diamantina Institute, Translational Research Institute, Brisbane, QLD Australia
| | - Michael E Franklin
- Department of Clinical Pharmacology, Princess Alexandra Hospital, Queensland Health, Brisbane, QLD, Australia
| | - Nicholas A Saunders
- The University of Queensland Diamantina Institute, Translational Research Institute, Brisbane, QLD Australia
| | - Fiona Simpson
- The University of Queensland Diamantina Institute, Translational Research Institute, Brisbane, QLD Australia
| | - Ian H Frazer
- The University of Queensland Diamantina Institute, Translational Research Institute, Brisbane, QLD Australia
| | - Raymond J Steptoe
- The University of Queensland Diamantina Institute, Translational Research Institute, Brisbane, QLD Australia
| | - James W Wells
- The University of Queensland Diamantina Institute, Translational Research Institute, Brisbane, QLD Australia
| |
Collapse
|
29
|
Patra V, Laoubi L, Nicolas JF, Vocanson M, Wolf P. A Perspective on the Interplay of Ultraviolet-Radiation, Skin Microbiome and Skin Resident Memory TCRαβ+ Cells. Front Med (Lausanne) 2018; 5:166. [PMID: 29900173 PMCID: PMC5988872 DOI: 10.3389/fmed.2018.00166] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 05/11/2018] [Indexed: 12/21/2022] Open
Abstract
The human skin is known to be inhabited by diverse microbes, including bacteria, fungi, viruses, archaea, and mites. This microbiome exerts a protective role against infections by promoting immune development and inhibiting pathogenic microbes to colonize skin. One of the factors having an intense effect on the skin and its resident microbes is ultraviolet-radiation (UV-R). UV-R can promote or inhibit the growth of microbes on the skin and modulate the immune system which can be either favorable or harmful. Among potential UV-R targets, skin resident memory T cells (TRM) stand as well positioned immune cells at the forefront within the skin. Both CD4+ or CD8+ αβ TRM cells residing permanently in peripheral tissues have been shown to play prominent roles in providing accelerated and long-lived specific immunity, tissue homeostasis, wound repair. Nevertheless, their response upon UV-R exposure or signals from microbiome are poorly understood compared to resident TCRγδ cells. Skin TRM survive for long periods of time and are exposed to innumerable antigens during lifetime. The interplay of TRM with skin residing microbes may be crucial in pathophysiology of various diseases including psoriasis, atopic dermatitis and polymorphic light eruption. In this article, we share our perspective about how UV-R may directly shape the persistence, phenotype, specificity, and function of skin TRM; and moreover, whether UV-R alters barrier function, leading to microbial-specific skin TRM, disrupting the healthy balance between skin microbiome and skin immune cells, and resulting in chronic inflammation and diseased skin.
Collapse
Affiliation(s)
- VijayKumar Patra
- Centre International de Recherche en Infectiologie, Institut National de la Santé et de la Recherche Médicale, U1111, Université Claude Bernard Lyon 1, Centre National de la Recherche Scientifique, UMR5308, Ecole Normale Supérieure de Lyon, Université de Lyon, Lyon, France.,Center for Medical Research, Medical University of Graz, Graz, Austria.,Research Unit for Photodermatology, Department of Dermatology, Medical University of Graz, Graz, Austria
| | - Léo Laoubi
- Centre International de Recherche en Infectiologie, Institut National de la Santé et de la Recherche Médicale, U1111, Université Claude Bernard Lyon 1, Centre National de la Recherche Scientifique, UMR5308, Ecole Normale Supérieure de Lyon, Université de Lyon, Lyon, France
| | - Jean-François Nicolas
- Centre International de Recherche en Infectiologie, Institut National de la Santé et de la Recherche Médicale, U1111, Université Claude Bernard Lyon 1, Centre National de la Recherche Scientifique, UMR5308, Ecole Normale Supérieure de Lyon, Université de Lyon, Lyon, France.,Allergy and Clinical Immunology Department, Lyon Sud University Hospital, Pierre-Bénite, France
| | - Marc Vocanson
- Centre International de Recherche en Infectiologie, Institut National de la Santé et de la Recherche Médicale, U1111, Université Claude Bernard Lyon 1, Centre National de la Recherche Scientifique, UMR5308, Ecole Normale Supérieure de Lyon, Université de Lyon, Lyon, France
| | - Peter Wolf
- Research Unit for Photodermatology, Department of Dermatology, Medical University of Graz, Graz, Austria
| |
Collapse
|
30
|
Liu X, Huang H, Gao H, Wu X, Zhang W, Yu B, Dou X. Regulatory B cells induced by ultraviolet B through toll-like receptor 4 signalling contribute to the suppression of contact hypersensitivity responses in mice. Contact Dermatitis 2018; 78:117-130. [PMID: 29205369 DOI: 10.1111/cod.12913] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 09/23/2017] [Accepted: 09/24/2017] [Indexed: 12/16/2022]
Abstract
BACKGROUND Ultraviolet (UV) B irradiation is known to suppress contact hypersensitivity (CHS) responses in mouse models by suppressing immune responses. However, the cellular mechanisms responsible for UVB-induced systemic suppression remain unclear. Regulatory B cells have been reported to play an inhibitory role during CHS. It is presently unknown whether regulatory B cells contribute to the effect of UVB phototherapy. OBJECTIVE To investigate the inductive effect of UVB on regulatory B cells and the underlying mechanisms by using a CHS mouse model. METHODS CHS was induced with oxazolone, and evaluated by histopathology, flow cytometry, and quantitative real-time polymerase chain reaction. RESULT We found that UVB irradiation induced regulatory B cell expansion and ameliorated CHS. UVB-induced regulatory B cells contribute to systemic immunosuppression by inhibiting the proliferation of T cells. Moreover, we determined that toll-like receptor (TLR) 4, the expression of which was upregulated in B cells after UVB exposure, played an essential role in the induction of regulatory B cells. CONCLUSION Our data identified regulatory B cells as regulators of UVB-induced immunosuppression in CHS, and suggest the importance of the UVB-TLR4 axis in the generation of regulatory B cells.
Collapse
Affiliation(s)
- Xiaoming Liu
- Shenzhen Key Laboratory for Translational Medicine of Dermatology, Shenzhen Peking University - the Hong Kong University of Science and Technology Medical Centre, Shenzhen, 518036, China
- Department of Dermatology and Venereology, Peking University Shenzhen Hospital, Shenzhen, 518036, China
| | - Haiyan Huang
- Department of Dermatology and Venereology, Peking University Shenzhen Hospital, Shenzhen, 518036, China
| | - Hongbin Gao
- Shenzhen Key Laboratory for Translational Medicine of Dermatology, Shenzhen Peking University - the Hong Kong University of Science and Technology Medical Centre, Shenzhen, 518036, China
- Department of Dermatology and Venereology, Peking University Shenzhen Hospital, Shenzhen, 518036, China
| | - Xia Wu
- Department of Dermatology and Venereology, Peking University Shenzhen Hospital, Shenzhen, 518036, China
- Postgraduate School, Guangzhou Medical University, Guangzhou, 511436, China
| | - Wei Zhang
- Shenzhen Key Laboratory for Translational Medicine of Dermatology, Shenzhen Peking University - the Hong Kong University of Science and Technology Medical Centre, Shenzhen, 518036, China
| | - Bo Yu
- Shenzhen Key Laboratory for Translational Medicine of Dermatology, Shenzhen Peking University - the Hong Kong University of Science and Technology Medical Centre, Shenzhen, 518036, China
- Department of Dermatology and Venereology, Peking University Shenzhen Hospital, Shenzhen, 518036, China
| | - Xia Dou
- Department of Dermatology and Venereology, Peking University Shenzhen Hospital, Shenzhen, 518036, China
| |
Collapse
|
31
|
Wolf P, Weger W, Patra V, Gruber-Wackernagel A, Byrne SN. Desired response to phototherapy vs photoaggravation in psoriasis: what makes the difference? Exp Dermatol 2018; 25:937-944. [PMID: 27376966 DOI: 10.1111/exd.13137] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/29/2016] [Indexed: 12/13/2022]
Abstract
Psoriasis commonly responds beneficially to UV radiation from natural sunlight or artificial sources. Therapeutic mechanisms include the proapoptotic and immunomodulating effects of UV, affecting many cells and involving a variety of pro- and anti-inflammatory cytokines, downregulating the Th17/IL-23 response with simultaneous induction of regulatory immune cells. However, exposure to UV radiation in a subset of psoriasis patients leads to exacerbation of the disease. We herein shed light on the predisposing factors of photosensitive psoriasis, including genetics (such as HLA-Cw*0602 or CARD14), gender and coexisting photodermatoses such as polymorphic light eruption (PLE) in the context of potential molecular mechanisms behind therapeutic photoresponsiveness or photoaggravation. UV-induced damage/pathogen-associated molecular patterns, damage to self-coding RNA (signalling through Toll-like receptors), certain antimicrobial peptides and/or inflammasome activation may induce innate immunity, leading to psoriasis at the site of UV exposure when there is concomitant, predisposing resistance against UV-induced suppression of the adaptive immune response (like in PLE) that otherwise would act to reduce psoriasis.
Collapse
Affiliation(s)
- Peter Wolf
- Research Unit for Photodermatology, Department of Dermatology, Medical University of Graz, Graz, Austria
| | - Wolfgang Weger
- Research Unit for Photodermatology, Department of Dermatology, Medical University of Graz, Graz, Austria
| | - VijayKumar Patra
- Research Unit for Photodermatology, Department of Dermatology, Medical University of Graz, Graz, Austria
| | | | - Scott N Byrne
- Cellular Photoimmunology Group, Infectious Diseases and Immunology, Sydney Medical School, Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
32
|
Geraghty NJ, Mansfield KJ, Fuller SJ, Watson D, Sluyter R. The P2X7 receptor is not essential for development of imiquimod-induced psoriasis-like inflammation in mice. Purinergic Signal 2017; 13:405-415. [PMID: 28597172 PMCID: PMC5714832 DOI: 10.1007/s11302-017-9569-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2017] [Accepted: 04/13/2017] [Indexed: 02/06/2023] Open
Abstract
Psoriasis is a chronic inflammatory skin disorder, characterised by epidermal hyperplasia (acanthosis) and leukocyte infiltration of the skin. Current therapies are inadequate, highlighting the need for new therapeutic targets. The P2X7 receptor is implicated in the pathogenesis of psoriasis. This study investigated the role of P2X7 in imiquimod (IMQ)-induced psoriasis-like inflammation. Topically applied IMQ caused twofold greater ear swelling in BALB/c mice compared to C57BL/6 mice, which encode a partial loss-of-function missense mutation in the P2RX7 gene. However, there was no difference in histological skin pathology (acanthosis and leukocyte infiltration) between the two strains. IMQ treatment up-regulated P2X7 expression in skin from both mouse strains. Additionally, IMQ induced ATP release from cultured human keratinocytes, a process independent of cell death. Injection of the P2X7 antagonist Brilliant Blue G (BBG) but not A-804598 partly reduced ear swelling compared to vehicle-injected control mice. Neither antagonist altered skin pathology. Moreover, no difference in ear swelling or skin pathology was observed between C57BL/6 and P2X7 knock-out (KO) mice. Flow cytometric analysis of IMQ-treated skin from C57BL/6 and P2X7 KO mice demonstrated similar leukocyte infiltration, including neutrophils, macrophages and T cells. In conclusion, this study demonstrates that P2X7 is not essential for development of IMQ-induced psoriasis-like inflammation but does not exclude a role for this receptor in psoriasis development in humans or other mouse models of this disease.
Collapse
Affiliation(s)
- Nicholas J Geraghty
- School of Biological Sciences, University of Wollongong, Wollongong, NSW, Australia
- Centre for Medical and Molecular Bioscience, University of Wollongong, Wollongong, NSW, Australia
- Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia
| | - Kylie J Mansfield
- Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia
- School of Medicine, University of Wollongong, Wollongong, NSW, Australia
| | - Stephen J Fuller
- Sydney Medical School, University of Sydney, Sydney, NSW, Australia
| | - Debbie Watson
- School of Biological Sciences, University of Wollongong, Wollongong, NSW, Australia
- Centre for Medical and Molecular Bioscience, University of Wollongong, Wollongong, NSW, Australia
- Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia
| | - Ronald Sluyter
- School of Biological Sciences, University of Wollongong, Wollongong, NSW, Australia.
- Centre for Medical and Molecular Bioscience, University of Wollongong, Wollongong, NSW, Australia.
- Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia.
| |
Collapse
|
33
|
Abstract
Preclinical infection model systems are extremely valuable tools to aid in our understanding of Human Papillomavirus (HPV) biology, disease progression, prevention, and treatments. In this context, rodent papillomaviruses and their respective infection models are useful tools but remain underutilized resources in the field of papillomavirus biology. Two rodent papillomaviruses, MnPV1, which infects the Mastomys species of multimammate rats, and MmuPV1, which infects laboratory mice, are currently the most studied rodent PVs. Both of these viruses cause malignancy in the skin and can provide attractive infection models to study the lesser understood cutaneous papillomaviruses that have been frequently associated with HPV-related skin cancers. Of these, MmuPV1 is the first reported rodent papillomavirus that can naturally infect the laboratory strain of mice. MmuPV1 is an attractive model virus to study papillomavirus pathogenesis because of the ubiquitous availability of lab mice and the fact that this mouse species is genetically modifiable. In this review, we have summarized the knowledge we have gained about PV biology from the study of rodent papillomaviruses and point out the remaining gaps that can provide new research opportunities.
Collapse
|
34
|
Noske K. Secreted immunoregulatory proteins in the skin. J Dermatol Sci 2017; 89:3-10. [PMID: 29111181 DOI: 10.1016/j.jdermsci.2017.10.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 10/06/2017] [Indexed: 01/25/2023]
Abstract
The skin, thought initially to protect the body passively from pathogenic organisms and other environmental insults, is now recognised additionally as a sophisticated immune organ that actively regulates local immunity. Studies linking local innate and adaptive immunity to skin health and disease have revealed a complex network of cell communication and cytokine signalling. Here, we review the last 10 years of literature on this topic, and its relevance to skin immunity.
Collapse
Affiliation(s)
- Katharina Noske
- The University of Queensland Diamantina Institute, Translational Research Institute, Woolloongabba 4102, QLD, Australia.
| |
Collapse
|
35
|
Bai X, Hu B, Yan Q, Luo T, Qu B, Jiang N, Liu J, Zhu Y. Effects of meteorological factors on the incidence of meningococcal meningitis. Afr Health Sci 2017; 17:820-826. [PMID: 29085410 PMCID: PMC5656194 DOI: 10.4314/ahs.v17i3.25] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND AND OBJECTIVES Substantial climate changes have led to the emergence and re-emergence of various infectious diseases worldwide, presenting an imperative need to explore the effects of meteorological factors on serious contagious disease incidences such as that of meningococcal meningitis (MCM). METHODS The incidences of MCM and meteorology data between 1981 and 2010 were obtained from Chaoyang city. Structure Equation Modeling was used to analyze the relationships between meteorological factors and the incidence of MCM, using the LISREL software. RESULTS The SEM results showed that Adjusted Goodness of Fit Index (AGFI) = 0.30, Goodness of Fit Index (GFI) = 0.63, and Root Mean Square Error of Approximation (RMSEA) = 0.31. Humidity and temperature both had negative correlations with MCM incidence, with factor loads of -0.32 and -0.43, while sunshine was positively correlated with a factor load of 0.42. For specific observable variables, average air pressure, average evaporation, average air temperature, and average ground temperature exerted stronger influence, with item loads between observable variables and MCM incidence being -0.42, 0.34, -0.32, and -0.32 respectively. CONCLUSION Public health institutions should pay more attention to the meteorological variables of humidity, sunshine, and temperature in prospective MCM control and prevention.
Collapse
Affiliation(s)
- Xue Bai
- School of Public Health, China Medical University, Shenyang, Liaoning Province, 110013, China
| | - Bingxue Hu
- School of Public Health, China Medical University, Shenyang, Liaoning Province, 110013, China
| | - Qi Yan
- School of Public Health, China Medical University, Shenyang, Liaoning Province, 110013, China
| | - Ting Luo
- School of Public Health, China Medical University, Shenyang, Liaoning Province, 110013, China
| | - Bo Qu
- School of Public Health, China Medical University, Shenyang, Liaoning Province, 110013, China
| | - Nan Jiang
- School of Public Health, China Medical University, Shenyang, Liaoning Province, 110013, China
| | - Jie Liu
- School of Public Health, China Medical University, Shenyang, Liaoning Province, 110013, China
| | - Yaxin Zhu
- School of Public Health, China Medical University, Shenyang, Liaoning Province, 110013, China
| |
Collapse
|
36
|
Sirolimus Increases T-Cell Abundance in the Sun Exposed Skin of Kidney Transplant Recipients. Transplant Direct 2017; 3:e171. [PMID: 28706974 PMCID: PMC5498012 DOI: 10.1097/txd.0000000000000694] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2017] [Accepted: 04/26/2017] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Kidney transplant recipients (KTRs) receiving the mammalian target of rapamycin inhibitor sirolimus may display a reduced risk of skin cancer development compared to KTRs receiving calcineurin inhibitors. Despite studies investigating the effects of these 2 drug classes on T cells in patient blood, the effect these drugs may have in patient skin is not yet known. METHODS Fifteen patients with chronic kidney disease (not recipients of immunosuppressive drugs), and 30 KTRs (15 receiving a calcineurin inhibitor, and 15 receiving sirolimus) provided matched samples of blood, sun exposed (SE) and non-SE skin. The abundance of total CD8+ and CD4+ T cells, memory CD8+ and CD4+ T cells, and regulatory T (Treg) cells in each sample was then assessed by flow cytometry. RESULTS Sirolimus treatment significantly increased absolute numbers of CD4+ T cells, memory CD8+- and CD4+ T cells, and Treg cells in SE skin versus paired samples of non-SE skin. No differences were found in the absolute number of any T cell subset in the blood. Correlation analysis revealed that the percentage of T cell subsets in the blood does not always accurately reflect the percentage of T-cell subsets in the skin of KTRs. Furthermore, sirolimus significantly disrupts the balance of memory CD4+ T cells in the skin after chronic sun exposure. CONCLUSIONS This study demonstrated that immunosuppressive drug class and sun exposure modify the abundance of multiple T-cell subsets in the skin of KTRs. Correlation analysis revealed that the prevalence of Treg cells in KTR blood does not accurately reflect the prevalence of Treg cells in KTR skin.
Collapse
|
37
|
Suwanpradid J, Holcomb ZE, MacLeod AS. Emerging Skin T-Cell Functions in Response to Environmental Insults. J Invest Dermatol 2017; 137:288-294. [PMID: 27784595 PMCID: PMC5552043 DOI: 10.1016/j.jid.2016.08.013] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Revised: 08/12/2016] [Accepted: 08/18/2016] [Indexed: 01/12/2023]
Abstract
Skin is the primary barrier between the body and the outside world, functioning not only as a physical barrier, but also as an immunologic first line of defense. A large number of T cells populate the skin. This review highlights the ability of these cutaneous T cells to regulate skin-specific environmental threats, including microbes, injuries, solar UV radiation, and allergens. Since much of this knowledge has been advanced from murine studies, we focus our review on how the mouse state has informed the human state, emphasizing the key parallels and differences.
Collapse
Affiliation(s)
- Jutamas Suwanpradid
- Department of Dermatology, Duke University Medical Center, Durham, North Carolina, USA
| | - Zachary E Holcomb
- Department of Dermatology, Duke University Medical Center, Durham, North Carolina, USA; Duke University School of Medicine, Durham, North Carolina, USA
| | - Amanda S MacLeod
- Department of Dermatology, Duke University Medical Center, Durham, North Carolina, USA; Department of Immunology, Duke University Medical Center, Durham, North Carolina, USA; Pinnell Center for Investigative Dermatology and Skin Disease Research Center, Duke University Medical Center, Durham, North Carolina, USA.
| |
Collapse
|
38
|
Liu L, Zhang W, Gao T, Li C. Is UV an etiological factor of acral melanoma? JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2016; 26:539-545. [PMID: 26464096 DOI: 10.1038/jes.2015.60] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2015] [Revised: 07/29/2015] [Accepted: 08/13/2015] [Indexed: 06/05/2023]
Abstract
Ultraviolet (UV) radiation is a major environmental risk factor for melanoma, particularly among Caucasians. However, studies have generated conflicting results on the role of UV exposure in the development of acral melanoma, the most prevalent subtype of melanoma in non-Caucasians. In this review, we analyzed studies that have examined the relationship between acral melanoma and UV and show that acral melanoma has specific epidemiological and genetic characteristics, with a lower frequency or absence of UV-induced features. Therefore, we postulate that UV is probably not involved in the etiology of acral melanoma. However, further epidemiological and laboratory studies are required to fully address this controversial issue, which may lead to a better understanding of the pathogenesis and prevention of acral melanoma.
Collapse
Affiliation(s)
- Lin Liu
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Weigang Zhang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Tianwen Gao
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Chunying Li
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
39
|
Costa NL, Gonçalves AS, Martins AFL, Arantes DAC, Silva TA, Batista AC. Characterization of dendritic cells in lip and oral cavity squamous cell carcinoma. J Oral Pathol Med 2016; 45:418-24. [PMID: 26514660 DOI: 10.1111/jop.12380] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/30/2015] [Indexed: 11/28/2022]
Abstract
BACKGROUND There may be differences in the antitumor immunity induced by dendritic cells (DCs) during the development of squamous cell carcinoma (SCC) located in the lip rather than in the oral cavity. The aim of this study was to evaluate the number of immature and mature DCs in SCC and potentially malignant disorders of the oral cavity and lip. METHODS Immunohistochemistry was used to identify the number (cells/mm(2) ) of immature (CD1a(+) ) or mature (CD83(+) ) DCs in samples of oral cavity SCC (OCSCC) (n = 39), lip SCC (LSCC) (n = 23), leukoplakia (LK) (n = 21), actinic cheilitis (AC) (n = 13), and normal mucosa of the oral cavity (OC control, n = 12) and the lip (lip control, n = 11). RESULTS The number of CD1a(+) cells tended to be higher in the OC control samples compared with the LK (P = 0.04) and OCSCC (P = 0.21). Unlike, this cell population was lower in the lip control than in AC or LSCC (P < 0.05). The number of CD83(+) cells was increased in the LSCC samples compared with the AC and lip control (P = 0.0001) and in OCSCC compared with both the LK (P = 0.001) and OC control (P = 0.0001) samples. LSCC showed an elevated number of CD1a(+) and CD83(+) cells compared with OCSCC (P = 0.03). The population of mature DCs was lower than the population of immature DCs in all of the tested groups (P < 0.05). CONCLUSION There were a greater number of both mature and immature DC populations in the LSCC samples than in the OCSCC, which could contribute to establishing a more effective immune antitumor response for this neoplasm.
Collapse
Affiliation(s)
- Nádia Lago Costa
- Department of Oral Medicine (Oral Pathology, Stomatology and Radiology), School of Dentistry, Federal University of Goiás, Goiânia, Brazil
| | - Andréia Souza Gonçalves
- Department of Oral Medicine (Oral Pathology, Stomatology and Radiology), School of Dentistry, Federal University of Goiás, Goiânia, Brazil
| | - Allisson Filipe Lopes Martins
- Department of Oral Medicine (Oral Pathology, Stomatology and Radiology), School of Dentistry, Federal University of Goiás, Goiânia, Brazil
| | - Diego Antônio Costa Arantes
- Department of Oral Medicine (Oral Pathology, Stomatology and Radiology), School of Dentistry, Federal University of Goiás, Goiânia, Brazil
| | - Tarcília Aparecida Silva
- Department of Oral Surgery and Pathology, Dental School, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Aline Carvalho Batista
- Department of Oral Medicine (Oral Pathology, Stomatology and Radiology), School of Dentistry, Federal University of Goiás, Goiânia, Brazil
| |
Collapse
|
40
|
Kok LF, Marsh-Wakefield F, Marshall JE, Gillis C, Halliday GM, Byrne SN. B cells are required for sunlight protection of mice from a CNS-targeted autoimmune attack. J Autoimmun 2016; 73:10-23. [PMID: 27289166 DOI: 10.1016/j.jaut.2016.05.016] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Revised: 05/27/2016] [Accepted: 05/31/2016] [Indexed: 01/09/2023]
Abstract
The ultraviolet (UV) radiation contained in sunlight is a powerful immune suppressant. While exposure to UV is associated with protection from the development of autoimmune diseases, particularly multiple sclerosis, the precise mechanism by which UV achieves this protection is not currently well understood. Regulatory B cells play an important role in preventing autoimmunity and activation of B cells is a major way in which UV suppresses adaptive immune responses. Whether UV-protection from autoimmunity is mediated by the activation of regulatory B cells has never been considered before. When C57BL/6 mice were exposed to low, physiologically relevant doses of UV, a unique population of B cells was activated in the skin draining lymph nodes. As determined by flow cytometry, CD1d(low)CD5(-)MHC-II(hi)B220(hi) UV-activated B cells expressed significantly higher levels of CD19, CD21/35, CD25, CD210 and CD268 as well as the co-stimulatory molecules CD80, CD86, CD274 and CD275. Experimental autoimmune encephalomyelitis (EAE) in mice immunized with MOG/CFA was reduced by exposure to UV. UV significantly inhibited demyelination and infiltration of inflammatory cells into the spinal cord. Consequently, UV-exposed groups showed elevated IL-10 levels in secondary lymphoid organs, delayed EAE onset, reduced peak EAE score and significantly suppressed overall disease incidence and burden. Importantly, protection from EAE could be adoptively transferred using B cells isolated from UV-exposed, but not unirradiated hosts. Indeed, UV-protection from EAE was dependent on UV activation of lymph node B cells because UV could not protect mice from EAE who were pharmacologically depleted of B cells using antibodies. Thus, UV maintenance of a pool of unique regulatory B cells in peripheral lymph nodes appears to be essential to prevent an autoimmune attack on the central nervous system.
Collapse
Affiliation(s)
- Lai Fong Kok
- Cellular Photoimmunology Group, Discipline of Infectious Diseases and Immunology, Sydney Medical School at the Charles Perkins Centre, University of Sydney, Australia
| | - Felix Marsh-Wakefield
- Cellular Photoimmunology Group, Discipline of Infectious Diseases and Immunology, Sydney Medical School at the Charles Perkins Centre, University of Sydney, Australia
| | - Jacqueline E Marshall
- Cellular Photoimmunology Group, Discipline of Infectious Diseases and Immunology, Sydney Medical School at the Charles Perkins Centre, University of Sydney, Australia
| | - Caitlin Gillis
- Discipline of Dermatology at the Bosch Institute, Sydney Medical School, University of Sydney and Royal Prince Alfred Hospital, Australia
| | - Gary M Halliday
- Cellular Photoimmunology Group, Discipline of Infectious Diseases and Immunology, Sydney Medical School at the Charles Perkins Centre, University of Sydney, Australia; Discipline of Dermatology at the Bosch Institute, Sydney Medical School, University of Sydney and Royal Prince Alfred Hospital, Australia
| | - Scott N Byrne
- Cellular Photoimmunology Group, Discipline of Infectious Diseases and Immunology, Sydney Medical School at the Charles Perkins Centre, University of Sydney, Australia; Discipline of Dermatology at the Bosch Institute, Sydney Medical School, University of Sydney and Royal Prince Alfred Hospital, Australia.
| |
Collapse
|
41
|
Uberoi A, Yoshida S, Frazer IH, Pitot HC, Lambert PF. Role of Ultraviolet Radiation in Papillomavirus-Induced Disease. PLoS Pathog 2016; 12:e1005664. [PMID: 27244228 PMCID: PMC4887022 DOI: 10.1371/journal.ppat.1005664] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Accepted: 05/06/2016] [Indexed: 01/16/2023] Open
Abstract
Human papillomaviruses are causally associated with 5% of human cancers. The recent discovery of a papillomavirus (MmuPV1) that infects laboratory mice provides unique opportunities to study the life cycle and pathogenesis of papillomaviruses in the context of a genetically manipulatable host organism. To date, MmuPV1-induced disease has been found largely to be restricted to severely immunodeficient strains of mice. In this study, we report that ultraviolet radiation (UVR), specifically UVB spectra, causes wild-type strains of mice to become highly susceptible to MmuPV1-induced disease. MmuPV1-infected mice treated with UVB develop warts that progress to squamous cell carcinoma. Our studies further indicate that UVB induces systemic immunosuppression in mice that correlates with susceptibility to MmuPV1-associated disease. These findings provide new insight into how MmuPV1 can be used to study the life cycle of papillomaviruses and their role in carcinogenesis, the role of host immunity in controlling papillomavirus-associated pathogenesis, and a basis for understanding in part the role of UVR in promoting HPV infection in humans.
Collapse
Affiliation(s)
- Aayushi Uberoi
- McArdle Laboratory for Cancer Research, Department of Oncology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Satoshi Yoshida
- McArdle Laboratory for Cancer Research, Department of Oncology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Ian H. Frazer
- The University of Queensland Diamantina Institute, Translational Research Institute, Brisbane, Queensland, Australia
| | - Henry C. Pitot
- McArdle Laboratory for Cancer Research, Department of Oncology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Paul F. Lambert
- McArdle Laboratory for Cancer Research, Department of Oncology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- * E-mail:
| |
Collapse
|
42
|
Abstract
Living on a sun-drenched planet has necessitated adaption to and protection from the harmful effects of solar ultraviolet (UV) radiation, particularly skin cancer. However, convincing epidemiological and recent empirical evidence also supports a protective effect of UV against a range of diseases including multiple sclerosis, asthma and cardiovascular disease. Despite years of research attention into the biological effects of sunlight exposure, we are still far from being able to fully answer the question: How much sunlight is enough? This is probably because the answer is dependent on many complex and interacting variables. Many talented researchers are focused on exploring whether UV-induced vitamin D explains some of these effects. This perspectives article proposes an alternative hypothesis, namely that targeting UV-induced immune suppression by affecting the activation of regulatory cells and molecules will be of therapeutic benefit.
Collapse
Affiliation(s)
- Scott N Byrne
- Cellular Photoimmunology Group, Discipline of Infectious Diseases and Immunology, Sydney Medical School, University of Sydney, Australia.
| |
Collapse
|
43
|
Nicolaou A, Mauro C, Urquhart P, Marelli-Berg F. Polyunsaturated Fatty Acid-derived lipid mediators and T cell function. Front Immunol 2014; 5:75. [PMID: 24611066 PMCID: PMC3933826 DOI: 10.3389/fimmu.2014.00075] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Accepted: 02/11/2014] [Indexed: 01/10/2023] Open
Abstract
Fatty acids are involved in T cell biology both as nutrients important for energy production as well as signaling molecules. In particular, polyunsaturated fatty acids are known to exhibit a range of immunomodulatory properties that progress through T cell mediated events, although the molecular mechanisms of these actions have not yet been fully elucidated. Some of these immune activities are linked to polyunsaturated fatty acid-induced alteration of the composition of cellular membranes and the consequent changes in signaling pathways linked to membrane raft-associated proteins. However, significant aspects of the polyunsaturated fatty acid bioactivities are mediated through their transformation to specific lipid mediators, products of cyclooxygenase, lipoxygenase, or cytochrome P450 enzymatic reactions. Resulting bioactive metabolites including prostaglandins, leukotrienes, and endocannabinoids are produced by and/or act upon T leukocytes through cell surface receptors and have been shown to alter T cell activation and differentiation, proliferation, cytokine production, motility, and homing events. Detailed appreciation of the mode of action of these lipids presents opportunities for the design and development of therapeutic strategies aimed at regulating T cell function.
Collapse
Affiliation(s)
- Anna Nicolaou
- Manchester Pharmacy School, Faculty of Medical and Human Sciences, The University of Manchester , Manchester , UK
| | - Claudio Mauro
- Centre for Biochemical Pharmacology, William Harvey Research Institute, Queen Mary University of London , London , UK
| | - Paula Urquhart
- Manchester Pharmacy School, Faculty of Medical and Human Sciences, The University of Manchester , Manchester , UK
| | - Federica Marelli-Berg
- Centre for Biochemical Pharmacology, William Harvey Research Institute, Queen Mary University of London , London , UK
| |
Collapse
|
44
|
The association of ultraviolet radiation-B (305 nm), season of diagnosis, and latitude on the survival outcome of prostate cancer in the high UV environment of Australia. Cancer Causes Control 2013; 24:2005-11. [PMID: 23974842 DOI: 10.1007/s10552-013-0277-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Accepted: 08/14/2013] [Indexed: 10/26/2022]
Abstract
BACKGROUND Positive associations between sun exposure and cancer survival have been observed in regions of high latitudes, where ambient solar ultraviolet (SUV) radiation is generally low. PURPOSE We examined the effects of ambient ultraviolet-B radiation (UVB) at time of diagnosis, season of diagnosis and latitude of residence on survival outcome from prostate cancer. METHOD Regression models for relative survival were used to estimate relative excess risks (RER) of death after diagnosis of prostate cancer from cancer registries in Eastern Australia (Queensland, New South Wales, Victoria and Tasmania). RESULTS Relative excess risks was increased with diagnosis in summer (RER = 1.20; 95 % CI 1.14-1.26) relative to winter, high ambient UVB at the time of diagnosis (>60 mW/m(2); RER = 1.10; 95 % CI 1.05-1.15) relative to low SUV (<30 mW/m(2)), and with residence in high latitudes (35°S-43°S; RER = 1.20; 95 % CI 1.14-1.26) relative to low latitudes (9°S-29.9°S). RER was highest for summer diagnosis in all three latitude bands, after adjusting for age, follow-up period, and socioeconomic status. CONCLUSION The contradictory outcome from season and latitude suggests that their use as surrogates for UV warrants validation. Our data suggest that high ambient solar ultraviolet radiation at the time of diagnosis of prostate cancer increases the risk of dying from this cancer.
Collapse
|
45
|
|
46
|
Leighton S, Kok LF, Halliday GM, Byrne SN. Inhibition of UV-induced uric acid production using Allopurinol prevents suppression of the contact hypersensitivity response. Exp Dermatol 2013; 22:189-94. [DOI: 10.1111/exd.12096] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/18/2013] [Indexed: 11/28/2022]
Affiliation(s)
| | | | - Gary M. Halliday
- Discipline of Dermatology; Bosch Institute; Faculty of Medicine; Sydney Medical School; University of Sydney; Sydney; NSW; Australia
| | | |
Collapse
|
47
|
Ultraviolet radiation effects on the proteome of skin cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 990:111-9. [PMID: 23378007 DOI: 10.1007/978-94-007-5896-4_8] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Proteomic studies to date have had limited use as an investigative tool in the skin's response to UV radiation. These studies used cell lines and reconstructed skin and have shown evidence of cell injury with oxidative damage and stress induced heat shock proteins. Others changes included altered cytokeratin and cytoskeletal proteins with enhanced expression of TRIM29 as the keratinocytes regenerate. The associated DNA repair requires polη, Rad18/Rad16 and Rev1. In the whole animal these events would be associated with inflammation, remodelling of the epidermis and modulation of the immune response. Longer term changes include ageing and skin cancers such as melanoma, squamous cell carcinoma and basal cell carcinoma. In the future proteomics will be used to explore these important aspects of photobiology. Better characterisation of the proteins involved should lead to a greater understanding of the skin's response to UV radiation.
Collapse
|
48
|
Halliday GM, Zhou Y, Sou PW, Huang XXJ, Rana S, Bugeja MJ, Painter N, Scolyer RA, Muchardt C, Di Girolamo N, Lyons JG. The absence of Brm exacerbates photocarcinogenesis. Exp Dermatol 2012; 21:599-604. [PMID: 22775994 DOI: 10.1111/j.1600-0625.2012.01522.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Brm is an ATPase subunit of the SWI/SNF chromatin-remodelling complex. Previously, we identified a novel hotspot mutation in Brm in human skin cancer, which is caused by exposure to ultraviolet radiation (UVR). As SWI/SNF is involved in DNA repair, we investigated whether Brm-/- mice had enhanced photocarcinogenesis. P53+/- and Brm-/-p53+/- mice were also examined as the p53 tumor suppressor gene is mutated early during human skin carcinogenesis. Mice were exposed to a low-dose irradiation protocol that caused few skin tumors in wild-type mice. Brm-/- mice with both p53 alleles intact had an increased incidence of skin and ocular tumors compared to Brm+/+p53+/+ controls. Brm loss in p53+/- mice did not further enhance skin or ocular cancer incidence beyond the increased photocarcinogenesis in p53+/- mice. However, the skin tumors that arose early in Brm-/- p53+/- mice had a higher growth rate. Brm-/- did not prevent UVR-induced apoptotic sunburn cell formation, which is a protective response. Unexpectedly, Brm-/- inhibited UVR-induced immunosuppression, which would be predicted to reduce rather than enhance photocarcinogenesis. In conclusion, the absence of Brm increased skin and ocular photocarcinogenesis. Even when one allele of p53 is lost, Brm has additional tumor suppressing capability.
Collapse
Affiliation(s)
- Gary M Halliday
- Discipline of Dermatology, Bosch Institute, Sydney Medical School, University of Sydney, Sydney, NSW, Australia.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Abstract
This chapter describes how skin immune system (SIS) is specifically involved in the development of cutaneous melanoma. Local immune surveillance is presented as a complex process that comprises markers to be monitored in disease's evolution and in therapy. The ranking of tissue or soluble immune markers in a future panel of diagnostic/prognostic panel are evaluated. Taking into account the difficulties of cutaneous melanoma patients' management, this chapter shows the immune surveillance at the skin level, the conditions that favor the tumor escape from the immunological arm, the immune pattern of skin melanoma with diagnostic/prognostic relevance, the circulatory immune markers, and, last but not least, how immune markers are used in immune-therapy monitoring. The chapter cannot be exhaustive but will give the reader a glimpse of the complex immune network that lies within tumor escape and where to search for immune-therapeutical targets in skin melanoma.
Collapse
Affiliation(s)
- Monica Neagu
- Immunobiology Laboratory, "Victor Babes" National Institute of Pathology, Bucharest, Romania.
| |
Collapse
|
50
|
Halliday GM, Damian DL, Rana S, Byrne SN. The suppressive effects of ultraviolet radiation on immunity in the skin and internal organs: Implications for autoimmunity. J Dermatol Sci 2012; 66:176-82. [DOI: 10.1016/j.jdermsci.2011.12.009] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2011] [Revised: 11/28/2011] [Accepted: 12/05/2011] [Indexed: 02/06/2023]
|