1
|
Li S, Liu J, Meng L, Yin S, Wu H, Zou J, Yuan D, He H, Yin G, Jia X, Hao X, Shang S. Cellular immune signatures and differences of four porcine circovirus type 2 vaccines to heterologous PCV2d infection. NPJ Vaccines 2025; 10:92. [PMID: 40348755 PMCID: PMC12065864 DOI: 10.1038/s41541-025-01138-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Accepted: 04/21/2025] [Indexed: 05/14/2025] Open
Abstract
Multiple PCV2 vaccines originating from different antigens and formula are commercially available and have shown great effectiveness in protecting pigs from clinical disease. However, our understanding of the immune mechanisms underlying these vaccine-induced protection is fairly limited, except for antibody responses. Head-to-head comparisons of T-cell responses induced by these vaccines in pigs would provide valuable insights into the mechanisms of protective immunity against PCV2. Here, T-cell responses in peripheral blood of pigs after vaccination with four representative PCV2 vaccines, as well as local and systemic recall responses following challenge with a PCV2d strain were examined. All four PCV2 vaccines induce a rapid cellular immune response that could be detected as early as 7 days post-vaccination. Some vaccine-primed CD4 T cells exhibit multifunctionality, being capable of secreting double (IFNγ/TNFα) and even triple cytokines (IFNγ/TNFα/IL-2) simultaneously. In contrast, a weak CD8 T cell response was also detected in the vaccinated pigs but just IFNγ/TNFα double producer and lack of cytotoxicity. These vaccine-activated CD4 and CD8 T cells displayed phenotypes of effector memory or terminally-differentiated effector memory T cells, which rapidly expand to subsequent PCV2d challenges. Prior-vaccinated pigs exhibited a stronger T cell cytokine response post-challenge, being most evident in the spleen. Notably, the cellular immune response induced by different types of PCV2 vaccines exhibited high similarity in phenotypic and functional properties, while showing significant differences in kinetics and magnitude. These results advance our understanding of cell-mediated immune protection afforded by different PCV2 vaccines and unravel fundamental differences in cellular immune response induced by PCV2 vaccines utilizing diverse technologies.
Collapse
Affiliation(s)
- Shuai Li
- College of Veterinary Medicine, Institute of Comparative Medicine, Yangzhou University, Yangzhou, 225009, China
| | - Jiawei Liu
- College of Veterinary Medicine, Institute of Comparative Medicine, Yangzhou University, Yangzhou, 225009, China
| | - Lingbo Meng
- College of Veterinary Medicine, Institute of Comparative Medicine, Yangzhou University, Yangzhou, 225009, China
| | - Susu Yin
- College of Veterinary Medicine, Institute of Comparative Medicine, Yangzhou University, Yangzhou, 225009, China
| | - Hua Wu
- Zoetis Enterprise Management (Shanghai) Co. Ltd, Shanghai, 20080, China
- China International intellectech (Sichuan) Co. Ltd, Chengdu, 610000, China
| | - Jianwen Zou
- Zoetis Enterprise Management (Shanghai) Co. Ltd, Shanghai, 20080, China
| | - Dongbo Yuan
- Sichuan Center for Animal Disease Control and Prevention, Chengdu, 610041, China
| | - Hairong He
- Key Laboratory of Safety Assessment of Livestock and Poultry Inputs of the Ministry of Agriculture, Taizhou, 225300, China
| | - Guanghao Yin
- Key Laboratory of Safety Assessment of Livestock and Poultry Inputs of the Ministry of Agriculture, Taizhou, 225300, China
| | - Xianfeng Jia
- Key Laboratory of Safety Assessment of Livestock and Poultry Inputs of the Ministry of Agriculture, Taizhou, 225300, China
| | - Xiaoli Hao
- College of Veterinary Medicine, Institute of Comparative Medicine, Yangzhou University, Yangzhou, 225009, China
| | - Shaobin Shang
- College of Veterinary Medicine, Institute of Comparative Medicine, Yangzhou University, Yangzhou, 225009, China.
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, 225009, China.
| |
Collapse
|
2
|
Kroeger M, Temeeyasen G, Dilberger-Lawson S, Nelson E, Magtoto R, Gimenez-Lirola L, Piñeyro P. The porcine circovirus 3 humoral response: characterization of maternally derived antibodies and dynamic following experimental infection. Microbiol Spectr 2024; 12:e0087024. [PMID: 38916319 PMCID: PMC11302138 DOI: 10.1128/spectrum.00870-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 05/17/2024] [Indexed: 06/26/2024] Open
Abstract
Since Porcine Circovirus 3 (PCV3) was first identified in 2016, our understanding of the humoral response is still relatively scarce. Current knowledge of the PCV3 humoral response is primarily based on field studies identifying the seroprevalence of PCV3 Cap-induced antibodies. Studies on the humoral response following experimental PCV3 infection have conflicting results where one study reports the development of the Cap IgG response 7 days postinfection with no concurrent Cap IgM response, while a second study shows a Cap IgM response at the same time point with no detection of Cap IgG. The dynamics of the PCV3 Cap and Rep IgG following maternal antibody transfer and experimental infection have not been well characterized. Additionally, the cross-reactivity of convalescent serum from PCV2 and PCV3 experimentally infected animals to serologic methods of the alternate PCV has limited evaluation. Here, we show that maternally derived antibodies were detectable in piglet serum 7-9 weeks postfarrowing for the Cap IgG and 5-weeks-post farrowing for the Rep IgG using Cap- and Rep-specific enzyme linked immunosorbent assays (ELISA) and immunofluorescent assays (IFA) methods. Following experimental inoculation, Cap IgG was detected at 2-weeks-post inoculation and Rep IgG detection was delayed until 4-weeks-post inoculation. Furthermore, convalescent serum from either PCV2 or PCV3 methods displayed no cross-reactivity by serological methods against the other PCV. The information gained in this study highlights the development of both the Cap- and Rep-specific antibodies following experimental infection and through the transfer of maternal antibodies. The increased understanding of the dynamics of maternal antibody transfer and development of the humoral response following infection gained in the present study may aid in the establishment of husbandry practices and potential application of prophylactics to control PCV3 clinical disease. IMPORTANCE Research on Porcine Circovirus 3 (PCV3) immunology is vital for understanding and controlling this virus. Previous studies primarily relied on field observations, but they have shown conflicting results about the immunological response against PCV3. This study helps fill those gaps by looking at how antibodies develop in pigs, especially those maternal-derived, and their impact in neonatal pigs preventing PCV3-associated disease in piglets. In addition, we look at the dynamics of antibodies in experimental infections mimicking infection in pigs in the grower-phase condition. Understanding this process can help to develop better strategies to prevent PCV3 infection. Also, this research found that PCV2 and PCV3 do not cross-react, which is crucial for serological test development and results interpretation. Overall, this work is essential for improving swine health and farming practices in the face of PCV3 infections.
Collapse
Affiliation(s)
- Molly Kroeger
- Department of Veterinary Diagnostic and Production Animal Medicine, Iowa State University, Ames, Iowa, USA
| | - Gun Temeeyasen
- Department of Veterinary and Biomedical Sciences, South Dakota State University, Brookings, South Dakota, USA
| | - Steven Dilberger-Lawson
- Department of Veterinary and Biomedical Sciences, South Dakota State University, Brookings, South Dakota, USA
| | - Eric Nelson
- Department of Veterinary and Biomedical Sciences, South Dakota State University, Brookings, South Dakota, USA
| | - Ronaldo Magtoto
- Department of Veterinary Diagnostic and Production Animal Medicine, Iowa State University, Ames, Iowa, USA
| | - Luis Gimenez-Lirola
- Department of Veterinary Diagnostic and Production Animal Medicine, Iowa State University, Ames, Iowa, USA
| | - Pablo Piñeyro
- Department of Veterinary Diagnostic and Production Animal Medicine, Iowa State University, Ames, Iowa, USA
| |
Collapse
|
3
|
Lippke RT, De Conti ER, Hernig LF, Teixeira AP, de Quadros FA, Fiúza AT, Pereira JB, Ulguim RDR, Barcellos DESN, Takeuti KL. Assessment of sow herd frequency of PCV-2 using placental umbilical cord serum and serology in 18 breeding farms in Brazil. Front Vet Sci 2024; 11:1368644. [PMID: 38650853 PMCID: PMC11034369 DOI: 10.3389/fvets.2024.1368644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 03/13/2024] [Indexed: 04/25/2024] Open
Abstract
Porcine circovirus type 2 (PCV-2) is the agent of one of the most important diseases in the swine industry. Although it has been controlled through vaccination, viremic piglets at birth may represent a risk by reducing vaccination efficacy. Since there are few reports on the viremic status of pre-suckling piglets regarding PCV-2 infection, we assessed the PCV-2 frequency in sows housed in 18 breeding farms with no history of clinical PCVAD in Brazil, using placental umbilical cord serum (PUCS). The selection criteria were: breeding farms with more than 1,000 sows; sows not vaccinated for PCV-2 at least for 2 years prior to the study; farms with no history of PCV-2 clinical disease in the last 12 months; and production systems with a maximum of two sites. Blood from the umbilical cords in sow placenta or directly from piglet's immediately after birth was collected from 30 litters on each farm for PCR. In addition, blood from 538 sows was collected for PCV-2 antibody detection. A total of 17.29% of the PUCS tested positive. The PCV-2 DNA was detected in PUCS from 94.4% of all farms. A total of 94.8% of the sows was positive for PCV-2 antibodies. However, seronegative sows were detected in 44.4% of farms. All 18 farms had at least 46.9% seropositive dams. A higher percentage of seronegative sows was observed for farms with more than 10% of PCV-2-positive litters compared to those with ≤10% of PCV-2 positive litters (8.9 +/-1.7% vs. 1.5 +/- 0.7%, p < 0.01, respectively).
Collapse
Affiliation(s)
- Ricardo T. Lippke
- Boehringer-Ingelheim Animal Health do Brasil, São Paulo, Brazil
- Setor de Suínos, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Sampath V, Cho S, Lee BR, Kim NH, Kim IH. Enhancement of protective vaccine-induced antibody titer to swine diseases and growth performance by Amino-Zn, yucca extract, and β-mannanase feed additive in wean-finishing pigs. Front Vet Sci 2023; 10:1095877. [PMID: 37662989 PMCID: PMC10470888 DOI: 10.3389/fvets.2023.1095877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 07/26/2023] [Indexed: 09/05/2023] Open
Abstract
The primary purpose of this research is to determine the effect of Amino-Zn (AZn), Yucca schidigera extract (YE), and β-mannanase enzyme supplementation on growth performance, nutrient digestibility, fecal gas emission, and immune response in pigs. A total of 180 crossbred pigs (6.57 ± 1 kg) were randomly assigned to one of three dietary treatments: CON-corn soybean meal (basal diet); TRT1-CON +1,000 ppm AZn + 0.07% yucca extract (YE) + 0.05% β-mannanase; and TRT2-CON +2,000 ppm AZn + 0.07% YE+ 0.05% β-mannanase for 22 weeks. Each treatment had 12 replicates with 5 pigs per pen. Pigs fed a diet supplemented with AZn, YE, and β-mannanase linearly increased (p < 0.05) BW and average daily gain at weeks 6, 12, 17, and 18. In contrast, the gain-to-feed ratio showed a linear increase (p < 0.05) from weeks 6 to 17 and the overall trial period. Moreover, the inclusion of experimental diets linearly decreased (p > 0.05) noxious gas emissions such as ammonia, hydrogen sulfide, acetic acid, carbon dioxide, and methyl mercaptans. The dietary inclusion of AZn, YE, and β-mannanase significantly increased the serological immune responses to Mycoplasma hyopneumoniae (MH) and foot-and-mouth disease virus (FMDV-O type) at the end of week 6 and porcine circovirus-2 (PCV-2) at week 19. Based on this result, we infer that the combination of AZn, YE, and β-mannanase supplement would serve as a novel in-feed additive to enhance growth performance and act as a boosting agent and immune stimulatory to increase the efficacy of swine vaccinations.
Collapse
Affiliation(s)
- Vetriselvi Sampath
- Department of Animal Resources, Dankook University, Cheonan, Republic of Korea
| | - Sungbo Cho
- Department of Animal Resources, Dankook University, Cheonan, Republic of Korea
| | | | - Nam-Hun Kim
- ZinexBio Corporation, Asan, Republic of Korea
| | - In Ho Kim
- Department of Animal Resources, Dankook University, Cheonan, Republic of Korea
| |
Collapse
|
5
|
Ruedas-Torres I, Sánchez-Carvajal JM, Carrasco L, Pallarés FJ, Larenas-Muñoz F, Rodríguez-Gómez IM, Gómez-Laguna J. PRRSV-1 induced lung lesion is associated with an imbalance between costimulatory and coinhibitory immune checkpoints. Front Microbiol 2023; 13:1007523. [PMID: 36713151 PMCID: PMC9878400 DOI: 10.3389/fmicb.2022.1007523] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 12/16/2022] [Indexed: 01/15/2023] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) induces a dysregulation on the innate and adaptive immune responses. T-cell activation requires a proper interaction and precise balance between costimulatory and coinhibitory molecules, commonly known as immune checkpoints. This study aims to evaluate the expression of immune checkpoints in lung and tracheobronchial lymph node from piglets infected with two PRRSV-1 strains of different virulence during the early stage of infection. Seventy 4-week-old piglets were grouped into three experimental groups: (i) control, (ii) 3249-infected group (low virulent strain), and (iii) Lena-infected group (virulent strain) and were euthanized at 1, 3, 6, 8, and 13 days post-infection (dpi). Lung and tracheobronchial lymph node were collected to evaluate histopathological findings, PRRSV viral load and mRNA expression of costimulatory (CD28, CD226, TNFRSF9, SELL, ICOS, and CD40) and coinhibitory (CTLA4, TIGIT, PD1/PDL1, TIM3, LAG3, and IDO1) molecules through RT-qPCR. Our findings highlight a mild increase of costimulatory molecules together with an earlier and stronger up-regulation of coinhibitory molecules in both organs from PRRSV-1-infected animals, especially in the lung from virulent Lena-infected animals. The simultaneous expression of coinhibitory immune checkpoints could work in synergy to control and limit the inflammation-induced tissue damage. Further studies should be addressed to determine the role of these molecules in later stages of PRRSV infection.
Collapse
|
6
|
Tan CY, Thanawongnuwech R, Arshad SS, Hassan L, Fong MWC, Ooi PT. Genotype Shift of Malaysian Porcine Circovirus 2 (PCV2) from PCV2b to PCV2d within a Decade. Animals (Basel) 2022; 12:1849. [PMID: 35883396 PMCID: PMC9311952 DOI: 10.3390/ani12141849] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 07/15/2022] [Accepted: 07/19/2022] [Indexed: 12/18/2022] Open
Abstract
This paper aims to update the molecular status of porcine circovirus 2 (PCV2) in Malaysia. Firstly, the molecular detection rate of PCV2 in farm and sampled pig population were reported to be 83.78% (31/37 farms) and 83.54% (66/79 pigs) positive for PCV2, respectively. PCV2 was detected across all age groups, from fetuses, porkers to sows. Co-detection of PCV2 and PCV3 antigens was also reported at a rate of 28.77% (21/73). Secondly, PCV2 antigen was also detected in Malaysian abattoir lung samples: 18 out of 19 (94.74%) samples originating from clinically healthy finishers were tested positive. Further, this is the first study to confirm the circulation of PCV2 in the wild boar population roaming Peninsular Malaysia, where 28 out of 28 (100%) wild boar lung samples were found positive. One decade earlier, only genotype PCV2b was reported in Malaysia. This most recent update revealed that genotypes PCV2a, PCV2b and PCV2d were present, with PCV2d being the predominant circulating genotype. PCV2 cap gene nucleotide sequences in this study were found to be under negative selection pressure, with an estimated substitution rate of 1.102 × 10-3 substitutions/site/year (ssy).
Collapse
Affiliation(s)
- Chew Yee Tan
- Faculty of Veterinary Medicine, Universiti Putra Malaysia, UPM Serdang, Selangor 43400, Malaysia; (C.Y.T.); (S.S.A.); (L.H.); (M.W.C.F.)
| | - Roongroje Thanawongnuwech
- Department of Veterinary Pathology, Faculty of Veterinary Science, Chulalongkorn University, 39 Henri Dunant Road, Pathumwan, Bangkok 10330, Thailand;
| | - Siti Suri Arshad
- Faculty of Veterinary Medicine, Universiti Putra Malaysia, UPM Serdang, Selangor 43400, Malaysia; (C.Y.T.); (S.S.A.); (L.H.); (M.W.C.F.)
| | - Latiffah Hassan
- Faculty of Veterinary Medicine, Universiti Putra Malaysia, UPM Serdang, Selangor 43400, Malaysia; (C.Y.T.); (S.S.A.); (L.H.); (M.W.C.F.)
| | - Michelle Wai Cheng Fong
- Faculty of Veterinary Medicine, Universiti Putra Malaysia, UPM Serdang, Selangor 43400, Malaysia; (C.Y.T.); (S.S.A.); (L.H.); (M.W.C.F.)
| | - Peck Toung Ooi
- Faculty of Veterinary Medicine, Universiti Putra Malaysia, UPM Serdang, Selangor 43400, Malaysia; (C.Y.T.); (S.S.A.); (L.H.); (M.W.C.F.)
| |
Collapse
|
7
|
Five years of porcine circovirus 3: what have we learned about the clinical disease, immune pathogenesis, and diagnosis. Virus Res 2022; 314:198764. [PMID: 35367483 DOI: 10.1016/j.virusres.2022.198764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 03/25/2022] [Accepted: 03/26/2022] [Indexed: 11/24/2022]
|
8
|
Martínez-Boixaderas N, Garza-Moreno L, Sibila M, Segalés J. Impact of maternally derived immunity on immune responses elicited by piglet early vaccination against the most common pathogens involved in porcine respiratory disease complex. Porcine Health Manag 2022; 8:11. [PMID: 35296365 PMCID: PMC8928644 DOI: 10.1186/s40813-022-00252-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 03/01/2022] [Indexed: 11/20/2022] Open
Abstract
Background Newborn piglets can trigger an elementary immune response, but the acquirement of specific antibodies and/or cellular immunity against pathogens before they get infected post-natally is paramount to preserve their health. This is especially important for the pathogens involved in porcine respiratory disease complex (PRDC) as they are widespread, fairly resistant at environment, and genetically variable; moreover, some of them can cause intrauterine/early life infections. Main body Piglet protection can be achieved by either passive transfer of maternal derived immunity (MDI) and/or actively through vaccination. However, vaccinating piglets in the presence of remaining MDI might interfere with vaccine efficacy. Hence, the purpose of this work is to critically review the putative interference that MDI may exert on vaccine efficacy against PRDC pathogens. This knowledge is crucial to design a proper vaccination schedule. Conclusion MDI transferred from sows to offspring could potentially interfere with the development of an active humoral immune response. However, no conclusive interference has been shown regarding performance parameters based on the existing published literature.
Collapse
Affiliation(s)
- Núria Martínez-Boixaderas
- IRTA. Programa de Sanitat Animal. Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), 08193, Bellaterra (Barcelona), Catalonia, Spain.,Ceva Salud Animal, Avenida Diagonal, 609-615, 9º Planta, 08028, Barcelona, Spain
| | - Laura Garza-Moreno
- Ceva Salud Animal, Avenida Diagonal, 609-615, 9º Planta, 08028, Barcelona, Spain
| | - Marina Sibila
- IRTA. Programa de Sanitat Animal. Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), 08193, Bellaterra (Barcelona), Catalonia, Spain.,OIE Collaborating Centre for the Research and Control of Emerging and Re-Emerging Swine Diseases in Europe (IRTA-CReSA), 08193, Bellaterra, Catalonia, Spain.,Unitat mixta d'Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), 08193, Bellaterra, Catalonia, Spain
| | - Joaquim Segalés
- OIE Collaborating Centre for the Research and Control of Emerging and Re-Emerging Swine Diseases in Europe (IRTA-CReSA), 08193, Bellaterra, Catalonia, Spain. .,Departament de Sanitat i Anatomia Animals, Facultat de Veterinària, Universitat Autònoma de Barcelona, Bellaterra, 08193, Barcelona, Catalonia, Spain. .,Unitat mixta d'Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), 08193, Bellaterra, Catalonia, Spain.
| |
Collapse
|
9
|
Revisiting Porcine Circovirus Disease Diagnostic Criteria in the Current Porcine Circovirus 2 Epidemiological Context. Vet Sci 2022; 9:vetsci9030110. [PMID: 35324838 PMCID: PMC8953210 DOI: 10.3390/vetsci9030110] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 02/25/2022] [Accepted: 03/01/2022] [Indexed: 02/01/2023] Open
Abstract
Current knowledge on porcine circovirus diseases (PCVD) caused by Porcine circovirus 2 (PCV-2) includes the subclinical infection (PCV-2-SI), systemic (PCV-2-SD) and reproductive (PCV-2-RD) diseases, and porcine dermatitis and nephropathy syndrome (PDNS). Criteria to establish the diagnosis of these conditions have not changed over the years; thus, the triad composed by clinical signs, lesions and viral detection in lesions are still the hallmark for PCV-2-SD and PCV-2-RD. In contrast, PCV-2-SI diagnosis is not usually performed since this condition is perceived to be controlled by default through vaccination. PDNS is diagnosed by gross and histopathological findings, and PCV-2 detection is not recognized as a diagnostic criterion. Molecular biology methods as a proxy for PCVD diagnoses have been extensively used in the last decade, although these techniques should be mainly considered as monitoring tools rather than diagnostic ones. What has changed over the years is the epidemiological picture of PCV-2 through the massive use of vaccination, which allowed the decrease in infectious pressure paralleled with a decrease in overall herd immunity. Consequently, the need for establishing the diagnosis of PCVD has increased lately, especially in cases with a PCV-2-SD-like condition despite vaccination. Therefore, the objective of the present review is to update the current knowledge on diagnostic criteria for PCVDs and to contextualize the interest of using molecular biology methods in the overall picture of these diseases within variable epidemiological scenarios of PCV-2 infection.
Collapse
|
10
|
Ruiz A, Saporiti V, Huerta E, Balasch M, Segalés J, Sibila M. Exploratory Study of the Frequency of Detection and Tissue Distribution of Porcine Circovirus 3 (PCV-3) in Pig Fetuses at Different Gestational Ages. Pathogens 2022; 11:118. [PMID: 35215062 PMCID: PMC8877316 DOI: 10.3390/pathogens11020118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 01/17/2022] [Accepted: 01/18/2022] [Indexed: 02/01/2023] Open
Abstract
Porcine circovirus 3 (PCV-3) has been associated with several pig diseases. Despite the pathogenicity of this virus has not been completely clarified, reproductive disorders are consistently associated with its infection. The aim of the present work was to analyze the presence of PCV-3 DNA in tissues from pig fetuses from different gestational timepoints. The fetuses were obtained either from farms with no reproductive problems (NRP, n = 249; all of them from the last third of gestation) or from a slaughterhouse (S, n = 51; 49 of the second-third of gestation and 2 from the third one). Tissues collected included brain, heart, lung, kidney, and/or spleen. Overall, the frequency of detection of PCV-3 was significantly higher in fetuses from the last third of the gestation (69/251, 27.5%) when compared to those from the second-third (5/49, 10.2%), although the viral loads were not significantly different. Moreover, the frequency of detection in NRP fetuses (69/249, 27.7%) was significantly higher than in S ones (5/51, 9.8%). Furthermore, PCV-3 DNA was detected in all tissue types analyzed. In conclusion, the present study demonstrates a higher frequency of PCV-3 DNA detection in fetuses from late periods of the gestation and highlights wide organ distributions of the virus in pig fetuses.
Collapse
Affiliation(s)
- Albert Ruiz
- Zoetis Manufacturing & Research Spain S.L., Ctra. Camprodon s/n, La Riba, 17813 Girona, Spain; (A.R.); (M.B.)
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, 08193 Barcelona, Spain; (V.S.); (E.H.)
- OIE Collaborating Centre for the Research and Control of Emerging and Re-Emerging Swine Diseases in Europe (IRTA-CReSA), 08193 Barcelona, Spain;
| | - Viviane Saporiti
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, 08193 Barcelona, Spain; (V.S.); (E.H.)
- OIE Collaborating Centre for the Research and Control of Emerging and Re-Emerging Swine Diseases in Europe (IRTA-CReSA), 08193 Barcelona, Spain;
| | - Eva Huerta
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, 08193 Barcelona, Spain; (V.S.); (E.H.)
- OIE Collaborating Centre for the Research and Control of Emerging and Re-Emerging Swine Diseases in Europe (IRTA-CReSA), 08193 Barcelona, Spain;
| | - Mònica Balasch
- Zoetis Manufacturing & Research Spain S.L., Ctra. Camprodon s/n, La Riba, 17813 Girona, Spain; (A.R.); (M.B.)
| | - Joaquim Segalés
- OIE Collaborating Centre for the Research and Control of Emerging and Re-Emerging Swine Diseases in Europe (IRTA-CReSA), 08193 Barcelona, Spain;
- Departament de Sanitat i Anatomia Animals, Universitat Autònoma de Barcelona (UAB), 08193 Barcelona, Spain
- Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, UAB, 08193 Barcelona, Spain
| | - Marina Sibila
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, 08193 Barcelona, Spain; (V.S.); (E.H.)
- OIE Collaborating Centre for the Research and Control of Emerging and Re-Emerging Swine Diseases in Europe (IRTA-CReSA), 08193 Barcelona, Spain;
| |
Collapse
|
11
|
Ruedas-Torres I, Gómez-Laguna J, Sánchez-Carvajal JM, Larenas-Muñoz F, Barranco I, Pallarés FJ, Carrasco L, Rodríguez-Gómez IM. Activation of T-bet, FOXP3, and EOMES in Target Organs From Piglets Infected With the Virulent PRRSV-1 Lena Strain. Front Immunol 2021; 12:773146. [PMID: 34956200 PMCID: PMC8697429 DOI: 10.3389/fimmu.2021.773146] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 11/08/2021] [Indexed: 01/13/2023] Open
Abstract
Transcription factors (TFs) modulate genes involved in cell-type-specific proliferative and migratory properties, metabolic features, and effector functions. Porcine reproductive and respiratory syndrome virus (PRRSV) is one of the most important pathogen agents in the porcine industry; however, TFs have been poorly studied during the course of this disease. Therefore, we aimed to evaluate the expressions of the TFs T-bet, GATA3, FOXP3, and Eomesodermin (EOMES) in target organs (the lung, tracheobronchial lymph node, and thymus) and those of different effector cytokines (IFNG, TNFA, and IL10) and the Fas ligand (FASL) during the early phase of infection with PRRSV-1 strains of different virulence. Target organs from mock-, virulent Lena-, and low virulent 3249-infected animals humanely euthanized at 1, 3, 6, 8, and 13 days post-infection (dpi) were collected to analyze the PRRSV viral load, histopathological lesions, and relative quantification through reverse transcription quantitative PCR (RT-qPCR) of the TFs and cytokines. Animals belonging to both infected groups, but mainly those infected with the virulent Lena strain, showed upregulation of the TFs T-bet, EOMES, and FOXP3, together with an increase of the cytokine IFN-γ in target organs at the end of the study (approximately 2 weeks post-infection). These results are suggestive of a stronger polarization to Th1 cells and regulatory T cells (Tregs), but also CD4+ cytotoxic T lymphocytes (CTLs), effector CD8+ T cells, and γδT cells in virulent PRRSV-1-infected animals; however, their biological functionality should be the object of further studies.
Collapse
|
12
|
Time-series transcriptomic analysis of bronchoalveolar lavage cells from virulent and low virulent PRRSV-1-infected piglets. J Virol 2021; 96:e0114021. [PMID: 34851149 PMCID: PMC8826917 DOI: 10.1128/jvi.01140-21] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) has evolved to escape the immune surveillance for a survival advantage leading to a strong modulation of host’s immune responses and favoring secondary bacterial infections. However, limited data are available on how the immunological and transcriptional responses elicited by virulent and low-virulent PRRSV-1 strains are comparable and how they are conserved during the infection. To explore the kinetic transcriptional signature associated with the modulation of host immune response at lung level, a time-series transcriptomic analysis was performed in bronchoalveolar lavage cells upon experimental in vivo infection with two PRRSV-1 strains of different virulence, virulent subtype 3 Lena strain or the low-virulent subtype 1 3249 strain. The time-series analysis revealed overlapping patterns of dysregulated genes enriched in T-cell signaling pathways among both virulent and low-virulent strains, highlighting an upregulation of co-stimulatory and co-inhibitory immune checkpoints that were disclosed as Hub genes. On the other hand, virulent Lena infection induced an early and more marked “negative regulation of immune system process” with an overexpression of co-inhibitory receptors genes related to T-cell and NK cell functions, in association with more severe lung lesion, lung viral load, and BAL cell kinetics. These results underline a complex network of molecular mechanisms governing PRRSV-1 immunopathogenesis at lung level, revealing a pivotal role of co-inhibitory and co-stimulatory immune checkpoints in the pulmonary disease, which may have an impact on T-cell activation and related pathways. These immune checkpoints, together with the regulation of cytokine-signaling pathways, modulated in a virulence-dependent fashion, orchestrate an interplay among pro- and anti-inflammatory responses. IMPORTANCE Porcine reproductive and respiratory syndrome virus (PRRSV) is one of the major threats to swine health and global production, causing substantial economic losses. We explore the mechanisms involved in the modulation of host immune response at lung level performing a time-series transcriptomic analysis upon experimental infection with two PRRSV-1 strains of different virulence. A complex network of molecular mechanisms was revealed to control the immunopathogenesis of PRRSV-1 infection, highlighting an interplay among pro- and anti-inflammatory responses as a potential mechanism to restrict inflammation-induced lung injury. Moreover, a pivotal role of co-inhibitory and co-stimulatory immune checkpoints was evidenced, which may lead to progressive dysfunction of T cells, impairing viral clearance and leading to persistent infection, favoring as well secondary bacterial infections or viral rebound. However, further studies should be conducted to evaluate the functional role of immune checkpoints in advanced stages of PRRSV infection and explore a possible T-cell exhaustion state.
Collapse
|
13
|
Ruedas-Torres I, Rodríguez-Gómez IM, Sánchez-Carvajal JM, Guil-Luna S, Larenas-Muñoz F, Pallarés FJ, Carrasco L, Gómez-Laguna J. Up-Regulation of Immune Checkpoints in the Thymus of PRRSV-1-Infected Piglets in a Virulence-Dependent Fashion. Front Immunol 2021; 12:671743. [PMID: 34046040 PMCID: PMC8144631 DOI: 10.3389/fimmu.2021.671743] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 04/15/2021] [Indexed: 12/19/2022] Open
Abstract
Virulent porcine reproductive and respiratory syndrome virus (PRRSV) strains, such as the Lena strain, have demonstrated a higher thymus tropism than low virulent strains. Virulent PRRSV strains lead to severe thymus atrophy, which could be related to marked immune dysregulation. Impairment of T-cell functions through immune checkpoints has been postulated as a strategy executed by PRRSV to subvert the immune response, however, its role in the thymus, a primary lymphoid organ, has not been studied yet. Therefore, the goal of this study was to evaluate the expression of selected immune checkpoints (PD1/PDL1, CTLA4, TIM3, LAG3, CD200R1 and IDO1) in the thymus of piglets infected with two different PRRSV-1 strains. Thymus samples from piglets infected with the low virulent 3249 strain, the virulent Lena strain and mock-infected were collected at 1, 3, 6, 8 and 13 days post-infection (dpi) to analyze PRRSV viral load, relative quantification and immunohistochemical staining of immune checkpoints. PD1/PDL1, CTLA4, TIM3, LAG3 and IDO1 immune checkpoints were significantly up-regulated in the thymus of PRRSV infected piglets, especially in those infected with the virulent Lena strain from 6 dpi onwards. This up-regulation was associated with disease progression, high viral load and cell death. Co-expression of these molecules can affect T-cell development, maturation and selection, negatively regulating the host immune response against PRRSV.
Collapse
Affiliation(s)
- Inés Ruedas-Torres
- Department of Anatomy and Comparative Pathology and Toxicology, International Agrifood Campus of Excellence (ceiA3), Faculty of Veterinary Medicine, University of Córdoba, Córdoba, Spain
| | - Irene M Rodríguez-Gómez
- Department of Anatomy and Comparative Pathology and Toxicology, International Agrifood Campus of Excellence (ceiA3), Faculty of Veterinary Medicine, University of Córdoba, Córdoba, Spain
| | - José María Sánchez-Carvajal
- Department of Anatomy and Comparative Pathology and Toxicology, International Agrifood Campus of Excellence (ceiA3), Faculty of Veterinary Medicine, University of Córdoba, Córdoba, Spain
| | - Silvia Guil-Luna
- Maimónides Institute for Biomedical Research of Córdoba, IMIBIC, Córdoba, Spain
| | - Fernanda Larenas-Muñoz
- Department of Anatomy and Comparative Pathology and Toxicology, International Agrifood Campus of Excellence (ceiA3), Faculty of Veterinary Medicine, University of Córdoba, Córdoba, Spain
| | - Francisco J Pallarés
- Department of Anatomy and Comparative Pathology and Toxicology, International Agrifood Campus of Excellence (ceiA3), Faculty of Veterinary Medicine, University of Córdoba, Córdoba, Spain
| | - Librado Carrasco
- Department of Anatomy and Comparative Pathology and Toxicology, International Agrifood Campus of Excellence (ceiA3), Faculty of Veterinary Medicine, University of Córdoba, Córdoba, Spain
| | - Jaime Gómez-Laguna
- Department of Anatomy and Comparative Pathology and Toxicology, International Agrifood Campus of Excellence (ceiA3), Faculty of Veterinary Medicine, University of Córdoba, Córdoba, Spain
| |
Collapse
|
14
|
Pleguezuelos P, Sibila M, Cuadrado R, López-Jiménez R, Pérez D, Huerta E, Llorens AM, Núñez JI, Segalés J, López-Soria S. Exploratory field study on the effects of porcine circovirus 2 (PCV-2) sow vaccination at different physiological stages mimicking blanket vaccination. Porcine Health Manag 2021; 7:35. [PMID: 33902747 PMCID: PMC8077688 DOI: 10.1186/s40813-021-00213-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 04/10/2021] [Indexed: 01/04/2023] Open
Abstract
Background The objective of the present study was to explore the benefits of Porcine circovirus 2 (PCV-2) blanket vaccination in a sow herd on productive parameters, PCV-2 infection and immune status in sows and their progeny. For this purpose, 288 sows were distributed among four balanced experimental groups. One group remained as negative control group and the other three received 1 mL of PCV-2 Ingelvac Circoflex® intramuscularly at different productive cycle moments: before mating, mid gestation (42–49 days post-insemination) or late gestation (86–93 days post-insemination); phosphate buffered saline (PBS) was used as negative control item. Reproductive parameters from sows during gestation and body weight of their progeny from birth to weaning were recorded. Additionally, blood was collected from sows at each vaccination time and piglets at 3 weeks of age. Moreover, up to 4 placental umbilical cords (PUC) per sow were taken at peri-partum. Sera from sows and piglets were analysed for PCV-2 antibody detection using an enzyme-linked immunosorbent assay (ELISA). Sera from sows and PUC were tested to quantify viraemia using a real time quantitative polymerase chain reaction (qPCR) assay. Results Globally, results indicated that vaccinated sows showed heavier piglets at birth and at weaning, less cross-fostered piglets, lower viral load at farrowing as well as in PUC, and higher antibody levels at farrowing, compared to non-vaccinated ones. When all groups were compared among them, sows vaccinated at mid or late gestation had heavier piglets at birth than non-vaccinated sows, and lower proportion of PCV-2 positive PUC. Also, cross-fostering was less frequently practiced in sows vaccinated at pre-mating or mid gestation compared to non-vaccinated ones. Conclusions In conclusion, the present study points out that PCV-2 sow vaccination at different time points of their physiological status (mimicking blanket vaccination) offers benefits at production and serological and virological levels. Supplementary Information The online version contains supplementary material available at 10.1186/s40813-021-00213-2.
Collapse
Affiliation(s)
- Patricia Pleguezuelos
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain. .,OIE Collaborating Centre for the Research and Control of Emerging and Re-emerging Swine Diseases in Europe (IRTA-CReSA), Bellaterra, Spain.
| | - Marina Sibila
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain.,OIE Collaborating Centre for the Research and Control of Emerging and Re-emerging Swine Diseases in Europe (IRTA-CReSA), Bellaterra, Spain
| | - Raúl Cuadrado
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain.,OIE Collaborating Centre for the Research and Control of Emerging and Re-emerging Swine Diseases in Europe (IRTA-CReSA), Bellaterra, Spain
| | - Rosa López-Jiménez
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain.,OIE Collaborating Centre for the Research and Control of Emerging and Re-emerging Swine Diseases in Europe (IRTA-CReSA), Bellaterra, Spain
| | - Diego Pérez
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain.,OIE Collaborating Centre for the Research and Control of Emerging and Re-emerging Swine Diseases in Europe (IRTA-CReSA), Bellaterra, Spain
| | - Eva Huerta
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain.,OIE Collaborating Centre for the Research and Control of Emerging and Re-emerging Swine Diseases in Europe (IRTA-CReSA), Bellaterra, Spain
| | - Anna M Llorens
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain.,OIE Collaborating Centre for the Research and Control of Emerging and Re-emerging Swine Diseases in Europe (IRTA-CReSA), Bellaterra, Spain
| | - José Ignacio Núñez
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain.,OIE Collaborating Centre for the Research and Control of Emerging and Re-emerging Swine Diseases in Europe (IRTA-CReSA), Bellaterra, Spain
| | - Joaquim Segalés
- OIE Collaborating Centre for the Research and Control of Emerging and Re-emerging Swine Diseases in Europe (IRTA-CReSA), Bellaterra, Spain.,UAB, Centre de Recerca en Sanitat Animal (CReSA, IRTA- UAB), Campus de la Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain.,Departament de Sanitat i Anatomia Animals, Facultat de Veterinària, UAB, 08193, Bellaterra, Spain
| | - Sergio López-Soria
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain.,OIE Collaborating Centre for the Research and Control of Emerging and Re-emerging Swine Diseases in Europe (IRTA-CReSA), Bellaterra, Spain
| |
Collapse
|
15
|
Argüello H, Rodríguez-Gómez IM, Sánchez-Carvajal JM, Pallares FJ, Díaz I, Cabrera-Rubio R, Crispie F, Cotter PD, Mateu E, Martín-Valls G, Carrasco L, Gómez-Laguna J. Porcine reproductive and respiratory syndrome virus impacts on gut microbiome in a strain virulence-dependent fashion. Microb Biotechnol 2021; 15:1007-1016. [PMID: 33656781 PMCID: PMC8913879 DOI: 10.1111/1751-7915.13757] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 12/23/2020] [Accepted: 01/05/2021] [Indexed: 12/24/2022] Open
Abstract
Porcine reproductive and respiratory syndrome (PRRS) is a viral disease defined by reproductive problems, respiratory distress and a negative impact on growth rate and general condition. Virulent PRRS virus (PRRSV) strains have emerged in the last years with evident knowledge gaps in their impact on the host immune response. Thus, the present study examines the impact of acute PRRS virus (PRRSV) infection, with two strains of different virulence, on selected immune parameters and on the gut microbiota composition of infected pigs using 16S rRNA compositional sequencing. Pigs were infected with a low virulent (PRRS_3249) or a virulent (Lena) PRRSV‐1 strain and euthanized at 1, 3, 6, 8 or 13 days post‐inoculation (dpi). Faeces were collected from each animal at the necropsy time‐point. Alpha and beta diversity analyses demonstrated that infection, particularly with the Lena strain, impacted the microbiome composition from 6 dpi onwards. Taxonomic differences revealed that infected pigs had higher abundance of Treponema and Methanobrevibacter (FDR < 0.05). Differences were more considerable for Lena‐ than for PRRS_3249‐infected pigs, showing the impact of strain virulence in the intestinal changes. Lena‐infected pigs had reduced abundancies of anaerobic commensals such as Roseburia, Anaerostipes, Butyricicoccus and Prevotella (P < 0.05). The depletion of these desirable commensals was significantly correlated to infection severity measured by viraemia, clinical signs, lung lesions and immune parameters (IL‐6, IFN‐γ and Hp serum levels). Altogether, the results from this study demonstrate the indirect impact of PRRSV infection on gut microbiome composition in a strain virulence‐dependent fashion and its association with selected immune markers.
Collapse
Affiliation(s)
- Héctor Argüello
- Infectious Diseases and Epidemiology Unit, Department of Animal Health, Faculty of Veterinary Medicine, University of León, León, Spain
| | - Irene Magdalena Rodríguez-Gómez
- Department of Anatomy and Comparative Pathology and Toxicology, Faculty of Veterinary Medicine, University of Córdoba, International Excellence Agrifood Campus 'ceiA3', Córdoba, Spain
| | - Jose María Sánchez-Carvajal
- Department of Anatomy and Comparative Pathology and Toxicology, Faculty of Veterinary Medicine, University of Córdoba, International Excellence Agrifood Campus 'ceiA3', Córdoba, Spain
| | - Francisco José Pallares
- Department of Anatomy and Comparative Pathology, Faculty of Veterinary Medicine, University of Murcia, Mare Nostrum Excellence Campus, Murcia, Spain
| | - Iván Díaz
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Bellaterra, Spain
| | - Raúl Cabrera-Rubio
- Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork, Ireland.,APC Microbiome Ireland, Cork, Ireland
| | - Fiona Crispie
- Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork, Ireland.,APC Microbiome Ireland, Cork, Ireland
| | - Paul D Cotter
- Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork, Ireland.,APC Microbiome Ireland, Cork, Ireland.,Vistamilk, Fermoy, Co. Cork, Ireland
| | - Enric Mateu
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Bellaterra, Spain.,Department of Animal Health and Anatomy, Faculty of Veterinary Medicine, Autonomous University of Barcelona, Bellaterra, Spain
| | - Gerard Martín-Valls
- Department of Animal Health and Anatomy, Faculty of Veterinary Medicine, Autonomous University of Barcelona, Bellaterra, Spain
| | - Librado Carrasco
- Department of Anatomy and Comparative Pathology and Toxicology, Faculty of Veterinary Medicine, University of Córdoba, International Excellence Agrifood Campus 'ceiA3', Córdoba, Spain
| | - Jaime Gómez-Laguna
- Department of Anatomy and Comparative Pathology and Toxicology, Faculty of Veterinary Medicine, University of Córdoba, International Excellence Agrifood Campus 'ceiA3', Córdoba, Spain
| |
Collapse
|
16
|
Sánchez-Carvajal JM, Ruedas-Torres I, Carrasco L, Pallarés FJ, Mateu E, Rodríguez-Gómez IM, Gómez-Laguna J. Activation of regulated cell death in the lung of piglets infected with virulent PRRSV-1 Lena strain occurs earlier and mediated by cleaved Caspase-8. Vet Res 2021; 52:12. [PMID: 33482914 PMCID: PMC7821682 DOI: 10.1186/s13567-020-00882-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 12/16/2020] [Indexed: 02/06/2023] Open
Abstract
PRRSV-1 virulent strains cause high fever, marked respiratory disease and severe lesions in lung and lymphoid organs. Regulated cell death (RCD), such as apoptosis, necroptosis and pyroptosis, is triggered by the host to interrupt viral replication eliminating infected cells, however, although it seems to play a central role in the immunopathogenesis of PRRSV, there are significant gaps regarding their sequence and activation upon PRRSV-infection. The present study evaluated RCD events by means of caspases expression in the lung of PRRSV-1-infected pigs and their impact on pulmonary macrophage subpopulations and lung lesion. Conventional piglets were intranasally inoculated with the virulent subtype 3 Lena strain or the low virulent subtype 1 3249 strain and euthanised at 1, 3, 6, 8 and 13 dpi. Lena-infected piglets showed severe and early lung damage with a high frequency of PRRSV-N-protein+ cells, depletion of CD163+ cells and high viral load in the lung. The number of TUNEL+ cells was significantly higher than cCasp3+ cells in Lena-infected piglets during the first week post-infection. cCasp8 and to a lesser extent cCasp9 were activated by both PRRSV-1 strains after one week post-infection together with a replenishment of both CD163+ and Arg-1+ pulmonary macrophages. These results highlight the induction of other forms of RCD beyond apoptosis, such as, necroptosis and pyroptosis during the first week post-infection followed by the activation of, mainly, extrinsic apoptosis during the second week post-infection. The recovery of CD163+ macrophages at the end of the study represents an attempt to restore pulmonary macrophage subpopulations lost during the early stages of the infection but also a macrophage polarisation into M2 macrophages.
Collapse
Affiliation(s)
- Jose María Sánchez-Carvajal
- Department of Anatomy and Comparative Pathology and Toxicology, Faculty of Veterinary Medicine, University of Córdoba, 14014, Córdoba, Spain.
| | - Inés Ruedas-Torres
- Department of Anatomy and Comparative Pathology and Toxicology, Faculty of Veterinary Medicine, University of Córdoba, 14014, Córdoba, Spain.
| | - Librado Carrasco
- Department of Anatomy and Comparative Pathology and Toxicology, Faculty of Veterinary Medicine, University of Córdoba, 14014, Córdoba, Spain
| | - Francisco José Pallarés
- Department of Anatomy and Comparative Pathology and Toxicology, Faculty of Veterinary Medicine, University of Córdoba, 14014, Córdoba, Spain
| | - Enric Mateu
- Department of Animal Health and Anatomy, Faculty of Veterinary Medicine, Autonomous University of Barcelona, 08193, Bellaterra, Spain.,Institut de Recerca i Tecnologia Agroalimentàries - Centre de Recerca en Sanitat Animal (IRTA-CReSA), Campus de la Universitat Autònoma de Barcelona, 08193, Cerdanyola del Vallès, Spain
| | - Irene Magdalena Rodríguez-Gómez
- Department of Anatomy and Comparative Pathology and Toxicology, Faculty of Veterinary Medicine, University of Córdoba, 14014, Córdoba, Spain
| | - Jaime Gómez-Laguna
- Department of Anatomy and Comparative Pathology and Toxicology, Faculty of Veterinary Medicine, University of Córdoba, 14014, Córdoba, Spain
| |
Collapse
|
17
|
Sánchez-Carvajal JM, Rodríguez-Gómez IM, Ruedas-Torres I, Larenas-Muñoz F, Díaz I, Revilla C, Mateu E, Domínguez J, Martín-Valls G, Barranco I, Pallarés FJ, Carrasco L, Gómez-Laguna J. Activation of pro- and anti-inflammatory responses in lung tissue injury during the acute phase of PRRSV-1 infection with the virulent strain Lena. Vet Microbiol 2020; 246:108744. [PMID: 32605751 PMCID: PMC7265841 DOI: 10.1016/j.vetmic.2020.108744] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 05/29/2020] [Accepted: 05/31/2020] [Indexed: 12/16/2022]
Abstract
Lena virulent strain caused an increase in sera levels of IFN-γ and IL-6. Lung viral load and PRRSV-N-protein+ cells were inversely correlated with CD163+ macrophages in the lung. CD14+ cells infiltrated interstitium to possibly replenish macrophages subsets. Lena-induced microscopic lung injury was linked to an increase of iNOS+ cells. The increase of CD200R1+ and FoxP3+ cells was associated with the course of lung injury.
Porcine reproductive and respiratory syndrome virus (PRRSV) plays a key role in porcine respiratory disease complex modulating the host immune response and favouring secondary bacterial infections. Pulmonary alveolar macrophages (PAMs) are the main cells supporting PRRSV replication, with CD163 as the essential receptor for viral infection. Although interstitial pneumonia is by far the representative lung lesion, suppurative bronchopneumonia is described for PRRSV virulent strains. This research explores the role of several immune markers potentially involved in the regulation of the inflammatory response and sensitisation of lung to secondary bacterial infections by PRRSV-1 strains of different virulence. Conventional pigs were intranasally inoculated with the virulent subtype 3 Lena strain or the low virulent subtype 1 3249 strain and euthanised at 1, 3, 6 and 8 dpi. Lena-infected pigs exhibited more severe clinical signs, macroscopic lung score and viraemia associated with an increase of IL-6 and IFN-γ in sera compared to 3249-infected pigs. Extensive areas of lung consolidation corresponding with suppurative bronchopneumonia were observed in Lena-infected pigs. Lung viral load and PRRSV-N-protein+ cells were always higher in Lena-infected animals. PRRSV-N-protein+ cells were linked to a marked drop of CD163+ macrophages. The number of CD14+ and iNOS+ cells gradually increased along PRRSV-1 infection, being more evident in Lena-infected pigs. The frequency of CD200R1+ and FoxP3+ cells peaked late in both PRRSV-1 strains, with a strong correlation between CD200R1+ cells and lung injury in Lena-infected pigs. These results highlight the role of molecules involved in the earlier and higher extent of lung lesions in piglets infected with the virulent Lena strain, pointing out the activation of routes potentially involved in the restraint of the local inflammatory response.
Collapse
Affiliation(s)
- J M Sánchez-Carvajal
- Department of Anatomy and Comparative Pathology, Faculty of Veterinary Medicine, University of Córdoba, 14014, Córdoba, Spain.
| | - I M Rodríguez-Gómez
- Department of Anatomy and Comparative Pathology, Faculty of Veterinary Medicine, University of Córdoba, 14014, Córdoba, Spain
| | - I Ruedas-Torres
- Department of Anatomy and Comparative Pathology, Faculty of Veterinary Medicine, University of Córdoba, 14014, Córdoba, Spain
| | - F Larenas-Muñoz
- Department of Anatomy and Comparative Pathology, Faculty of Veterinary Medicine, University of Córdoba, 14014, Córdoba, Spain
| | - I Díaz
- Institut de Recerca i Tecnologia Agroalimentàries - Centre de Recerca en Sanitat Animal (IRTA-CReSA), Campus de la Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain
| | - C Revilla
- Department of Biotechnology, National Institute for Agricultural and Food Research and Technology (INIA), 28040, Madrid, Spain
| | - E Mateu
- Institut de Recerca i Tecnologia Agroalimentàries - Centre de Recerca en Sanitat Animal (IRTA-CReSA), Campus de la Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain; Department of Animal Health and Anatomy, Faculty of Veterinary Medicine, Autonomous University of Barcelona, 08193, Bellaterra, Spain
| | - J Domínguez
- Department of Biotechnology, National Institute for Agricultural and Food Research and Technology (INIA), 28040, Madrid, Spain
| | - G Martín-Valls
- Department of Animal Health and Anatomy, Faculty of Veterinary Medicine, Autonomous University of Barcelona, 08193, Bellaterra, Spain
| | - I Barranco
- Department of Anatomy and Comparative Pathology, Faculty of Veterinary Medicine, University of Córdoba, 14014, Córdoba, Spain
| | - F J Pallarés
- Department of Anatomy and Comparative Pathology, Faculty of Veterinary Medicine, University of Murcia, 30100, Murcia, Spain
| | - L Carrasco
- Department of Anatomy and Comparative Pathology, Faculty of Veterinary Medicine, University of Córdoba, 14014, Córdoba, Spain
| | - J Gómez-Laguna
- Department of Anatomy and Comparative Pathology, Faculty of Veterinary Medicine, University of Córdoba, 14014, Córdoba, Spain
| |
Collapse
|
18
|
Short communication: a modified Vaccinia virus Ankara-based Porcine circovirus 2 vaccine elicits strong antibody response upon prime-boost homologous immunization in a preclinical model. Braz J Microbiol 2020; 51:1439-1445. [PMID: 32144692 DOI: 10.1007/s42770-020-00247-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 02/17/2020] [Indexed: 10/24/2022] Open
Abstract
Porcine circovirus 2 (PCV2) infections are related to a number of syndromes and clinical manifestations, generally known as Porcine circovirus-associated diseases, which are related to losses in the swine industry. There are commercially available vaccines and new vaccines being tested, however, persistency of the PCV2 as an important pig pathogen, and the growing number of affected farms in different countries have suggested that there is room for vaccine improvement. In this study, we describe the construction and testing of a recombinant live vaccine based on a modified Vaccinia virus Ankara (MVA) vector expressing the PCV2b capsid protein (CAP). Using a two-dose homologous vaccination regimen, in mice, we demonstrated that the vaccine induced high titers of anti-PCV2 antibodies. The vaccine is stable upon lyophilization, and, together with the good immunogenicity potential observed, the results support further evaluation of the MVA-CAP vaccine in the target species.
Collapse
|
19
|
López-Lorenzo G, Díaz-Cao JM, Prieto A, López-Novo C, López CM, Díaz P, Rodríguez-Vega V, Díez-Baños P, Fernández G. Environmental distribution of Porcine Circovirus Type 2 (PCV2) in swine herds with natural infection. Sci Rep 2019; 9:14816. [PMID: 31616055 PMCID: PMC6794300 DOI: 10.1038/s41598-019-51473-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 10/01/2019] [Indexed: 11/09/2022] Open
Abstract
Porcine circovirus type 2 (PCV2) is the aetiological agent of PCV2-Systemic Disease (PCV2-SD) and PCV2-Subclinical Infection (PCV2-SI). PCV2 is highly resistant to environmental conditions, being able to remain in the farm environment and thus represent a risk for infection maintenance. The aim of this study was to identify, under field conditions, the possible critical points in the environment of non-vaccinated farrow-to-weaning swine farms where PCV2 could accumulate and persist. For that, environmental samples from five swine farms with PCV2-SD or PCV2-SI were taken and analysed by qPCR, including different farm areas, farm personnel and management implements. PCV2 DNA was detected in the environment of all farms (42.9% of positive samples). Overall, the PCV2-SD herd seemed to present more positive samples and higher viral loads than the PCV2-SI herds. At individual farm level, weaning areas appeared to be the most contaminated facilities. In addition, PCV2 was found at high levels in most samples from farm workers, especially work boots, suggesting that they may play a role in within-farm transmission. In addition, PCV2 was detected in areas without animals the like warehouses, offices and farm perimeter. Therefore, this study is helpful to improve measures to reduce within-farm PCV2 dissemination.
Collapse
Affiliation(s)
- Gonzalo López-Lorenzo
- Department of Animal Pathology (INVESAGA Group), Faculty of Veterinary Sciences, Universidade de Santiago de Compostela, 27002, Lugo, Spain
| | - José Manuel Díaz-Cao
- Department of Animal Pathology (INVESAGA Group), Faculty of Veterinary Sciences, Universidade de Santiago de Compostela, 27002, Lugo, Spain
| | - Alberto Prieto
- Department of Animal Pathology (INVESAGA Group), Faculty of Veterinary Sciences, Universidade de Santiago de Compostela, 27002, Lugo, Spain.
| | - Cynthia López-Novo
- Department of Animal Pathology (INVESAGA Group), Faculty of Veterinary Sciences, Universidade de Santiago de Compostela, 27002, Lugo, Spain
| | - Ceferino Manuel López
- Department of Animal Pathology (INVESAGA Group), Faculty of Veterinary Sciences, Universidade de Santiago de Compostela, 27002, Lugo, Spain
| | - Pablo Díaz
- Department of Animal Pathology (INVESAGA Group), Faculty of Veterinary Sciences, Universidade de Santiago de Compostela, 27002, Lugo, Spain
| | | | - Pablo Díez-Baños
- Department of Animal Pathology (INVESAGA Group), Faculty of Veterinary Sciences, Universidade de Santiago de Compostela, 27002, Lugo, Spain
| | - Gonzalo Fernández
- Department of Animal Pathology (INVESAGA Group), Faculty of Veterinary Sciences, Universidade de Santiago de Compostela, 27002, Lugo, Spain
| |
Collapse
|
20
|
Figueras-Gourgues S, Fraile L, Segalés J, Hernández-Caravaca I, López-Úbeda R, García-Vázquez FA, Gomez-Duran O, Grosse-Liesner B. Effect of Porcine circovirus 2 (PCV-2) maternally derived antibodies on performance and PCV-2 viremia in vaccinated piglets under field conditions. Porcine Health Manag 2019; 5:21. [PMID: 31516725 PMCID: PMC6727566 DOI: 10.1186/s40813-019-0128-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 07/16/2019] [Indexed: 12/19/2022] Open
Abstract
Background Nowadays, the most common presentation of PCV-2 is the subclinical infection in piglets after weaning. The success of PCV-2 vaccination is associated with the control of the clinical disease as well as the improvement of production parameters. In consequence, the objective of the present study was to analyse the effect of PCV-2 maternally derived antibody (MDA) levels on vaccine efficacy in piglets vaccinated at three weeks of age with a commercial PCV-2 subunit vaccine. The study was performed analysing a database with 6112 wean-to-slaughter piglets from 4 different European regions. Results Results showed that the use of the vaccine was able to decrease the PCV-2 viremia calculated as area under the curve (AUC = 60.29 ± 3.73), increase average daily weight gain (ADWG = 0.65 ± 0.01 kg/day) and reduce mortality (7%) in vaccinated piglets compared to non-vaccinated ones (AUC of 198.27 ± 6.14, 0.62 ± 0.01 kg/day and 11% respectively). The overall difference of ADWG between both groups was close to 30 g per day (p < 0.05), also when they were split for low and high levels of MDA titres. Moreover, the animals with the highest ADWG were observed in the group of piglets vaccinated with high or extremely high antibody titres (0.66 and 0.65 kg/day respectively). Considering only animals with extremely high antibody titres, both study groups performed similar, however there was a numerical difference of 10 g/day in favour of vaccinated piglets. Likewise, lack of correlation between ADWG and MDA was observed suggesting that no maternal antibody interference was present with the tested vaccine because the vaccinated animals grew faster compared to unvaccinated control animals, regardless of the level of maternal antibodies present at the time of vaccination. Conclusions The results of the present study demonstrated that the MDA against PCV-2 transferred through the colostrum intake has a protective effect against this viral infection. The vaccine used in the present study (Ingelvac CircoFLEX®) was effective when applied at three weeks of age and was not affected by the level of MDA at the time of vaccination.
Collapse
Affiliation(s)
- S Figueras-Gourgues
- 1Department of Physiology, Faculty of Veterinary, Campus Mare Nostrum, University of Murcia, 30100 Murcia, Spain
| | - L Fraile
- 3Departamento de Ciencia Animal, Universidad de Lleida, Lleida, Spain
| | - J Segalés
- 4Departament de Sanitat i Anatomia Animals, Facultat de Veterinària, Universitat Autònoma Barcelona, 08193 Bellaterra, Spain.,5UAB, Centre de Recerca en Sanitat Animal (CRESA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - I Hernández-Caravaca
- 1Department of Physiology, Faculty of Veterinary, Campus Mare Nostrum, University of Murcia, 30100 Murcia, Spain
| | - R López-Úbeda
- 6Department of Cell Biology and Histology, Faculty of Medicine, Campus Mare Nostrum, University of Murcia, 30100 Murcia, Spain.,2IMIB-Arrixaca, Murcia, Spain
| | - F A García-Vázquez
- 1Department of Physiology, Faculty of Veterinary, Campus Mare Nostrum, University of Murcia, 30100 Murcia, Spain.,2IMIB-Arrixaca, Murcia, Spain
| | - O Gomez-Duran
- 7Boehringer Ingelheim Vetmedica GmbH AH Swine, Ingelheim, Germany
| | - B Grosse-Liesner
- 7Boehringer Ingelheim Vetmedica GmbH AH Swine, Ingelheim, Germany
| |
Collapse
|
21
|
Rodríguez-Gómez IM, Sánchez-Carvajal JM, Pallarés FJ, Mateu E, Carrasco L, Gómez-Laguna J. Virulent Lena strain induced an earlier and stronger downregulation of CD163 in bronchoalveolar lavage cells. Vet Microbiol 2019; 235:101-109. [PMID: 31282367 DOI: 10.1016/j.vetmic.2019.06.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 06/06/2019] [Accepted: 06/12/2019] [Indexed: 12/22/2022]
Abstract
Highly virulent porcine reproductive and respiratory syndrome virus (PRRSV) strains have increasingly overwhelmed Asia and Europe in recent years. This study aims to compare the clinical signs, gross and microscopic findings as well as the expression of CD163 within live pulmonary alveolar macrophages (PAMs) from bronchoalveolar lavage fluid (BALF) of pigs experimentally infected with two PRRSV strains of different virulence. Pigs were infected with either a subtype 1 PRRSV-1 3249 strain or a subtype 3 PRRSV-1 Lena strain and consecutively euthanized at 1, 3, 6, 8 and 13 days post-inoculation. Clinical signs were reported daily and BALF and lung tissue samples were collected at the different time-points and accordingly processed for their analysis. Pigs infected with Lena strain exhibited greater clinical signs as well as gross and microscopic lung scores compared to 3249-infected pigs. A decreased frequency of PAMs from BALF was observed early in pigs infected with Lena strain. Moreover, the frequency and median fluorescence intensity (MFI) of CD163 within PAMs were much lower in Lena-infected pigs than in 3249-infected pigs. This downregulation in CD163 was also observed in lung sections after the assessment of macrophages expressing CD163 by means of immunohistochemistry. This outcome may result from the effect of PRRSV replication, PRRSV-induced inflammation, the influx of immature macrophages to restore lung homeostasis and/or the evidence of CD163low cells after CD163+ cells decrease in BALF.
Collapse
Affiliation(s)
- Irene M Rodríguez-Gómez
- Department of Anatomy and Comparative Pathology, Faculty of Veterinary Medicine, University of Córdoba, International Excellence Agrifood Campus 'ceiA3', Córdoba, Spain.
| | - José M Sánchez-Carvajal
- Department of Anatomy and Comparative Pathology, Faculty of Veterinary Medicine, University of Córdoba, International Excellence Agrifood Campus 'ceiA3', Córdoba, Spain
| | - Francisco J Pallarés
- Department of Anatomy and Comparative Pathology, Faculty of Veterinary Medicine, University of Murcia, Mare Nostrum Excellence Campus, Murcia, Spain
| | - Enric Mateu
- Department of Animal Health and Anatomy, Faculty of Veterinary Medicine, Autonomous University of Barcelona, Bellaterra, Barcelona, Spain
| | - Librado Carrasco
- Department of Anatomy and Comparative Pathology, Faculty of Veterinary Medicine, University of Córdoba, International Excellence Agrifood Campus 'ceiA3', Córdoba, Spain
| | - Jaime Gómez-Laguna
- Department of Anatomy and Comparative Pathology, Faculty of Veterinary Medicine, University of Córdoba, International Excellence Agrifood Campus 'ceiA3', Córdoba, Spain
| |
Collapse
|
22
|
Klaumann F, Correa-Fiz F, Sibila M, Núñez JI, Segalés J. Infection dynamics of porcine circovirus type 3 in longitudinally sampled pigs from four Spanish farms. Vet Rec 2019; 184:619. [PMID: 31040218 DOI: 10.1136/vr.105219] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 02/25/2019] [Accepted: 03/10/2019] [Indexed: 12/23/2022]
Abstract
Porcine circovirus type 3 (PCV-3) is a recently discovered virus in domestic pigs and wild boar. The virus has been described in pigs with different clinical/pathological presentations and healthy animals, but the dynamics of infection is currently unknown. The aim of this study was to longitudinally monitor PCV-3 infection in 152 pigs from four different healthy farms (A, B, C and D) by means of PCR in serum. The selected animals were sampled five (farm A) or six (farms B-D) times from weaning until the end of the fattening period. PCV-3 genome was found in pigs from all tested ages and farms; few animals had an apparent long-term infection (4-23 weeks). PCV-3 frequency of detection remained fairly uniform along tested ages within farms A and C, but was more variable among sampling times in farms B and D. Eight partial genome sequences were obtained from six different animals. Phylogenetic tree and pairwise distance analysis showed high similarity among sequences and with available genomes from different countries. This is the first study on PCV-3 infection dynamics in longitudinally sampled pigs. Most pigs got infection during their life, although PCV-3 did not appear to be linked with any specific age.
Collapse
Affiliation(s)
- Francini Klaumann
- CAPES Foundation, Ministry of Education of Brazil, Brazilia, DF, Brazil.,IRTA, Centre de Recerca en Sanitat Animal (CReSA), IRTA-UAB, Bellaterra, Barcelona, Spain
| | - Florencia Correa-Fiz
- IRTA, Centre de Recerca en Sanitat Animal (CReSA), IRTA-UAB, Bellaterra, Barcelona, Spain
| | - Marina Sibila
- IRTA, Centre de Recerca en Sanitat Animal (CReSA), IRTA-UAB, Bellaterra, Barcelona, Spain
| | - José Ignacio Núñez
- IRTA, Centre de Recerca en Sanitat Animal (CReSA), IRTA-UAB, Bellaterra, Barcelona, Spain
| | - Joaquim Segalés
- UAB, Centre de Recerca en Sanitat Animal (CReSA), IRTA-UAB, Bellaterra, Barcelona, Spain.,Departament de Sanitat i Anatomia Animals, Facultat de Veterinària, UAB, Bellaterra, Barcelona, Spain
| |
Collapse
|
23
|
Klaumann F, Correa-Fiz F, Franzo G, Sibila M, Núñez JI, Segalés J. Current Knowledge on Porcine circovirus 3 (PCV-3): A Novel Virus With a Yet Unknown Impact on the Swine Industry. Front Vet Sci 2018; 5:315. [PMID: 30631769 PMCID: PMC6315159 DOI: 10.3389/fvets.2018.00315] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 11/28/2018] [Indexed: 12/21/2022] Open
Abstract
Porcine circovirus 3 (PCV-3) is a recently described virus belonging to the family Circoviridae. It represents the third member of genus Circovirus able to infect swine, together with PCV-1, considered non-pathogenic, and PCV-2, one of the most economically relevant viruses for the swine worldwide industry. PCV-3 was originally found by metagenomics analyses in 2015 in tissues of pigs suffering from porcine dermatitis and nephropathy syndrome, reproductive failure, myocarditis and multisystemic inflammation. The lack of other common pathogens as potential infectious agents of these conditions prompted the suspicion that PCV-3 might etiologically be involved in disease occurrence. Subsequently, viral genome was detected in apparently healthy pigs, and retrospective studies indicated that PCV-3 was already present in pigs by early 1990s. In fact, current evidence suggests that PCV-3 is a rather widespread virus worldwide. Recently, the virus DNA has also been found in wild boar, expanding the scope of infection susceptibility among the Suidae family; also, the potential reservoir role of this species for the domestic pig has been proposed. Phylogenetic studies with available PCV-3 partial and complete sequences from around the world have revealed high nucleotide identity (>96%), although two main groups and several subclusters have been described as well. Moreover, it has been proposed the existence of a most common ancestor dated around 50 years ago. Taking into account the economic importance and the well-known effects of PCV-2 on the swine industry, a new member of the same family like PCV-3 should not be neglected. Studies on epidemiology, pathogenesis, immunity and diagnosis are guaranteed in the next few years. Therefore, the present review will update the current knowledge and future trends of research on PCV-3.
Collapse
Affiliation(s)
- Francini Klaumann
- CAPES Foundation, Ministry of Education of Brazil, Brasília, Brazil.,IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Florencia Correa-Fiz
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Giovanni Franzo
- Department of Animal Medicine, Production and Health (MAPS), University of Padua, Padua, Italy
| | - Marina Sibila
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, Barcelona, Spain
| | - José I Núñez
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Joaquim Segalés
- UAB, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, Barcelona, Spain.,Departament de Sanitat i Anatomia Animals, Facultat de Veterinària, Universitat Autònoma de Barcelona, Barcelona, Spain
| |
Collapse
|
24
|
Karaffová V, Csank T, Mudroňová D, Király J, Revajová V, Gancarčíková S, Nemcová R, Pistl J, Vilček Š, Levkut M. Influence of Lactobacillus reuteri L26 Biocenol™ on immune response against porcine circovirus type 2 infection in germ-free mice. Benef Microbes 2017; 8:367-378. [PMID: 28504566 DOI: 10.3920/bm2016.0114] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Probiotic bacteria are frequently used for prevention of bacterial infections of the gastrointestinal tract, but there are only limited studies on their efficacy against viral gut infections in animals. The aim of this study was to investigate the effect of probiotic Lactobacillus reuteri L26 BiocenolTM on the innate and adaptive immune responses in germ-free Balb/c mice, experimentally infected by porcine circovirus type 2 (PCV2), which confers immunosuppressive effect. A total of 30 six-week-old female mice were divided into 3 groups and animals in experimental group LPCV (n=10) were inoculated with L. reuteri L26, animals in the control group (C; n=10) and experimental group PCV (n=10) received sterile De Man-Rogosa-Sharpe broth for 7 days. Subsequently, mice from both experimental groups were infected with PCV2; however, mice in the control group received virus cultivation medium (mock). Virus load in faeces, ileum and mesenteric lymph nodes (MLN); as well as gene expression of selected cytokines, immunoglobulin A (IgA) and polymeric Ig receptor (PIgR) in the ileum, and percentage of CD8+, CD19+ and CD49b+CD8- cells in the MLN were evaluated. Our results showed that L. reuteri significantly decreased the amount of PCV2 in faeces and in the ileum, and up-regulated the gene expression of chemokines, interferon (IFN)-γ, IgA and PIgR in the ileum. Increased IFN-γ mRNA level was accompanied by higher proportion of natural killer cells and up-regulated IgA and PIgR gene expressions were in accordance with significantly higher percentage of CD19+ lymphocytes in the MLN. These findings indicate that probiotic L. reuteri has an antiviral effect on PCV2 in the intestine which is mediated by stimulation of local gut immune response.
Collapse
Affiliation(s)
- V Karaffová
- 1 Department of Pathological Anatomy and Pathological Physiology, University of Veterinary Medicine and Pharmacy, Komenského 73, 04181 Košice, Slovakia
| | - T Csank
- 2 Department of Microbiology and Immunology, University of Veterinary Medicine and Pharmacy, Komenského 73, 04181 Košice, Slovakia
| | - D Mudroňová
- 2 Department of Microbiology and Immunology, University of Veterinary Medicine and Pharmacy, Komenského 73, 04181 Košice, Slovakia
| | - J Király
- 2 Department of Microbiology and Immunology, University of Veterinary Medicine and Pharmacy, Komenského 73, 04181 Košice, Slovakia
| | - V Revajová
- 1 Department of Pathological Anatomy and Pathological Physiology, University of Veterinary Medicine and Pharmacy, Komenského 73, 04181 Košice, Slovakia
| | - S Gancarčíková
- 2 Department of Microbiology and Immunology, University of Veterinary Medicine and Pharmacy, Komenského 73, 04181 Košice, Slovakia
| | - R Nemcová
- 2 Department of Microbiology and Immunology, University of Veterinary Medicine and Pharmacy, Komenského 73, 04181 Košice, Slovakia
| | - J Pistl
- 2 Department of Microbiology and Immunology, University of Veterinary Medicine and Pharmacy, Komenského 73, 04181 Košice, Slovakia
| | - Š Vilček
- 3 Department of Epizootiology and Parasitology, University of Veterinary Medicine and Pharmacy, Komenského 73, 04181 Košice, Slovakia
| | - M Levkut
- 1 Department of Pathological Anatomy and Pathological Physiology, University of Veterinary Medicine and Pharmacy, Komenského 73, 04181 Košice, Slovakia
| |
Collapse
|
25
|
Global Status of Porcine circovirus Type 2 and Its Associated Diseases in Sub-Saharan Africa. Adv Virol 2017; 2017:6807964. [PMID: 28386278 PMCID: PMC5366187 DOI: 10.1155/2017/6807964] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Revised: 02/13/2017] [Accepted: 02/23/2017] [Indexed: 12/27/2022] Open
Abstract
Globally, Porcine circovirus type 2 (PCV2) is a recognized viral pathogen of great economic value in pig farming. It is the major cause of ravaging postweaning multisystemic wasting syndrome (PMWS) and many other disease syndromes generally regarded as Porcine circovirus associated diseases (PCVAD) in Europe. PCV2 infections, specifically PMWS, had impacted huge economic loss on swine production at different regions of the world. It has been studied and reported at different parts of the globe including: North and South America, Europe, Asia, Oceania, Middle East, and the Caribbean. However, till date, this virus and its associated diseases have been grossly understudied in sub-Sahara African region and the entire continent at large. Two out of forty-nine, representing just about 4% of countries that make up sub-Sahara Africa presently, have limited records on reported cases and occurrence of the viral pathogen despite the ubiquitous nature of the virus. This review presents an overview of the discovery of Porcine circovirus and its associated diseases in global pig herds and emphasizes the latest trends in PCV2 vaccines and antiviral drugs development and the information gaps that exist on the occurrence of this important viral pathogen in swine herds of sub-Saharan Africa countries. This will serve as wake-up call for immediate and relevant actions by stakeholders in the region.
Collapse
|
26
|
Krakowka S, Ellis J, McNeilly F, Waldner C, Allan G. Features of Porcine Circovirus-2 Disease: Correlations between Lesions, Amount and Distribution of Virus, and Clinical Outcome. J Vet Diagn Invest 2016; 17:213-22. [PMID: 15948294 DOI: 10.1177/104063870501700301] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Tissue sets from 36 snatch-farrowed colostrum-deprived (SF/CD) and 71 Caesarian-derived gnotobiotic swine infected with porcine circovirus type 2 (PCV-2) as neonates were examined and scored for the types and tissue distribution of histologic lesions associated with this viral infection. The occurrence and severity of these lesions were correlated with qualitative and quantitative determinations of viral burden in tissues by immunohistochemistry (IHC) and tissue titrations for infectious virus, respectively. These measures were, in turn, related to 1 of 3 categories of clinical disease expressed in PCV-2–infected swine as subclinical infection, preclinical postweaning multisystemic wasting syndrome (PMWS), and clinically evident PMWS, respectively. Statistically significant ( P < 0.05 to 0.001) associations between both measures of viral burden, the severity of histologic lesions and the stage of disease were obtained. Discrimination between and among categories of disease was best accomplished by a combination of IHC and histopathology. The results of this study confirm that viral burden in PCV-2–infected tissues, specifically lymphoid tissues and liver, directly correlate with severity of clinical disease expression in PCV-2 infected swine.
Collapse
Affiliation(s)
- Steven Krakowka
- Department of Veterinary Biosciences, College of Veterinary Medicine, Ohio State University, Columbus, OH 43210, USA
| | | | | | | | | |
Collapse
|
27
|
Martelli P, Saleri R, Ferrarini G, De Angelis E, Cavalli V, Benetti M, Ferrari L, Canelli E, Bonilauri P, Arioli E, Caleffi A, Nathues H, Borghetti P. Impact of maternally derived immunity on piglets' immune response and protection against porcine circovirus type 2 (PCV2) after vaccination against PCV2 at different age. BMC Vet Res 2016; 12:77. [PMID: 27170186 PMCID: PMC4864921 DOI: 10.1186/s12917-016-0700-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Accepted: 05/01/2016] [Indexed: 01/29/2023] Open
Abstract
BACKGROUND This study was aimed at evaluating the clinical protection, the level of Porcine circovirus type 2 (PCV2) viremia and the immune response (antibodies and IFN-γ secreting cells (SC)) in piglets derived from PCV2 vaccinated sows and themselves vaccinated against PCV2 at different age, namely at 4, 6 and 8 weeks. The cohort study has been carried out over three subsequent production cycles (replicates). At the start/enrolment, 46 gilts were considered at first mating, bled and vaccinated. At the first, second and third farrowing, dams were bled and re-vaccinated at the subsequent mating after weaning piglets. Overall 400 piglets at each farrowing (first, second and third) were randomly allocated in three different groups (100 piglets/group) based on the timing of vaccination (4, 6 or 8 weeks of age). A fourth group was kept non-vaccinated (controls). Piglets were vaccinated intramuscularly with one dose (2 mL) of a commercial PCV2a-based subunit vaccine (Porcilis® PCV). Twenty animals per group were bled at weaning and from vaccination to slaughter every 4 weeks for the detection of PCV2 viremia, humoral and cell-mediated immune responses. Clinical signs and individual treatments (morbidity), mortality, and body weight of all piglets were recorded. RESULTS All vaccination schemes (4, 6 and 8 weeks of age) were able to induce an antibody response and IFN-γ SC. The highest clinical and virological protection sustained by immune reactivity was observed in pigs vaccinated at 6 weeks of age. Overall, repeated PCV2 vaccination in sows at mating and the subsequent higher levels of maternally derived antibodies did not significantly interfere with the induction of both humoral and cell-mediated immunity in their piglets after vaccination. CONCLUSIONS The combination of vaccination in sows at mating and in piglets at 6 weeks of age was more effective for controlling PCV2 natural infection, than other vaccination schemas, thus sustaining that some interference of MDA with the induction of an efficient immune response could be considered. In conclusion, optimal vaccination strategy needs to balance the levels of passive immunity, the management practices and timing of infection.
Collapse
Affiliation(s)
- Paolo Martelli
- Department of Veterinary Science, University of Parma, Via del Taglio, 10 - 43126, Parma, Italy.
| | - Roberta Saleri
- Department of Veterinary Science, University of Parma, Via del Taglio, 10 - 43126, Parma, Italy
| | - Giulia Ferrarini
- Department of Veterinary Science, University of Parma, Via del Taglio, 10 - 43126, Parma, Italy
| | - Elena De Angelis
- Department of Veterinary Science, University of Parma, Via del Taglio, 10 - 43126, Parma, Italy
| | - Valeria Cavalli
- Department of Veterinary Science, University of Parma, Via del Taglio, 10 - 43126, Parma, Italy
| | - Michele Benetti
- Department of Veterinary Science, University of Parma, Via del Taglio, 10 - 43126, Parma, Italy
| | - Luca Ferrari
- Department of Veterinary Science, University of Parma, Via del Taglio, 10 - 43126, Parma, Italy
| | - Elena Canelli
- Department of Veterinary Science, University of Parma, Via del Taglio, 10 - 43126, Parma, Italy
| | - Paolo Bonilauri
- Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna (IZSLER), Via Pitagora, 2-42100, Reggio, Emilia, Italy
| | | | | | - Heiko Nathues
- Swine Clinic, Department of Clinical Veterinary Medicine, Vetsuisse Faculty, University of Bern, Bremgartenstrasse 109a, CH-3012, Bern, Switzerland
| | - Paolo Borghetti
- Department of Veterinary Science, University of Parma, Via del Taglio, 10 - 43126, Parma, Italy
| |
Collapse
|
28
|
Immunity Elicited by an Experimental Vaccine Based on Recombinant Flagellin-Porcine Circovirus Type 2 Cap Fusion Protein in Piglets. PLoS One 2016; 11:e0147432. [PMID: 26848967 PMCID: PMC4746120 DOI: 10.1371/journal.pone.0147432] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Accepted: 01/03/2016] [Indexed: 01/09/2023] Open
Abstract
In a recent study, we reported that a recombinant protein from fusion expression of flagellin to porcine circovirus type 2 (PCV2) Cap induced robust humoral and cell-mediated immunity that afforded full protection for PCV2 infection using BALB/c mice. Here, we further evaluated the immunogenicity and protection of the recombinant protein using specific pathogen free (SPF) pigs. Twenty-five 3-week-old piglets without passively acquired immunity were divided into 5 groups. All piglets except negative controls were challenged with a virulent PCV2 at 21 days after booster vaccination and necropsied at 21 days post-challenge. Vaccination of piglets with the recombinant protein without adjuvant induced strong humoral and cellular immune responses as observed by high levels of PCV2-specific IgG antibodies and neutralizing antibodies, as well as frequencies of PCV2-specific IFN-γ-secreting cells that conferred good protection against PCV2 challenge, with significant reduced PCV2 viremia, mild lesions, low PCV2 antigen-positive cells, as well as improved body weight gain, comparable to piglets vaccinated with a commercial PCV2 subunit vaccine. These results further demonstrated that the recombinant flagellin-Cap fusion protein is capable of inducing solid protective humoral and cellular immunity when administered to pigs, thereby becoming an effective PCV2 vaccine candidate for control of PCV2 infection.
Collapse
|
29
|
Kekarainen T, Segalés J. Porcine circovirus 2 immunology and viral evolution. Porcine Health Manag 2015; 1:17. [PMID: 28405423 PMCID: PMC5382452 DOI: 10.1186/s40813-015-0012-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Accepted: 11/11/2015] [Indexed: 02/08/2023] Open
Abstract
Porcine circovirus 2 (PCV2) has and is still causing important economic losses to pig industry. This is due to PCV2-systemic disease (PCV2-SD), formerly known as postweaning multi-systemic wasting syndrome (PMWS), which increases mortality rates and slows down the growth of the animals, as well as other conditions collectively included within the so-called porcine circovirus diseases (PCVD). PCV2-SD affected pigs are considered to be immunosuppressed, with severe lymphocyte depletion and evidence of secondary infections. However, PCV2-infected pigs not developing the disease are able to mount humoral and cellular immune responses and clear the virus or limit the infection. On the contrary, insufficient amounts of neutralizing antibodies have been linked to increased PCV2 replication, severe lymphoid lesions and development of PCV2-SD. Central role in controlling PCV2 infection are played by the antigen specific memory T cells. These cells persist long term post-infection or vaccination and are able to expand rapidly after recall antigen recognition. Most farms in the main pig producing countries are applying vaccination against PCV2 to prevent the disease and improve the farm performance. Vaccines do not induce sterilizing immunity and PCV2 keeps on circulating even in farms applying vaccination. This, together with the high mutation rate of PCV2, world-wide fluctuations in the genotype dominance and emergence of novel genetic variants, warrant close molecular survey of the virus in the field.
Collapse
Affiliation(s)
- Tuija Kekarainen
- Centre de Recerca en Sanitat Animal (CReSA), Institute of Agrifood Research and Technology (IRTA), Bellaterra, Cerdanyola del Vallès, Spain
| | - Joaquim Segalés
- Centre de Recerca en Sanitat Animal (CReSA), Institute of Agrifood Research and Technology (IRTA), Bellaterra, Cerdanyola del Vallès, Spain.,Departament de Sanitat i Anatomia Animals, Universitat Autònoma de Barcelona, Bellaterra, Cerdanyola del Vallès, Spain
| |
Collapse
|
30
|
Patterson R, Eley T, Browne C, Martineau HM, Werling D. Oral application of freeze-dried yeast particles expressing the PCV2b Cap protein on their surface induce protection to subsequent PCV2b challenge in vivo. Vaccine 2015; 33:6199-205. [PMID: 26476879 PMCID: PMC4654422 DOI: 10.1016/j.vaccine.2015.10.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Revised: 09/29/2015] [Accepted: 10/01/2015] [Indexed: 11/30/2022]
Abstract
PCV2 is the underlying cause for an economically devastating disease of pigs. Vaccine construct was PCV2b Cap protein expressed on the surface of yeast. Oral vaccination of freeze-dried yeast-Cap did not induce negative side effects. Application protected pigs from subsequent PCV2b challenge. Vaccination reduced pro-inflammatory but increased antiviral cytokine expression.
Porcine circovirus type 2 (PCV2) is now endemic in every major pig producing country, causing PCV-associated disease (PCVAD), linked with large scale economic losses. Current vaccination strategies are based on the capsid protein of the virus and are reasonably successful in preventing PCVAD but fail to induce sterile immunity. Additionally, vaccinating whole herds is expensive and time consuming. In the present study a “proof of concept” vaccine trial was employed to test the effectiveness of powdered freeze-dried recombinant Saccharomyces cerevisiae yeast stably expressing the capsid protein of PCV2b on its surface as an orally applied vaccine. PCV2-free pigs were given 3 doses of vaccine or left un-vaccinated before challenge with a defined PCV2b strain. Rectal temperatures were measured and serum and faeces samples were collected weekly. At the end of the study, pigs were euthanized, tissue samples taken and tested for PCV2b load by qPCR and immunohistochemistry. The peak of viraemia in sera and faeces of unvaccinated pigs was higher than that of vaccinated pigs. Additionally more sIgA was found in faeces of vaccinated pigs than unvaccinated. Vaccination was associated with lower serum concentrations of TNFα and IL-1β but higher concentrations of IFNα and IFNγ in comparison to the unvaccinated animals. At the end of the trial, a higher viral load was found in several lymphatic tissues and the ileum of unvaccinated pigs in comparison to vaccinated pigs. The difference between groups was especially apparent in the ileum. The results presented here demonstrate a possible use for recombinant S. cerevisiae expressing viral proteins as an oral vaccine against PCV2. A powdered freeze-dried recombinant S. cerevisiae used as an oral vaccine could be mixed with feed and may offer a cheap and less labour intensive alternative to inoculation with the additional advantage that no cooling chain would be required for vaccine transport and storage.
Collapse
Affiliation(s)
- Robert Patterson
- Department of Pathology and Pathogen Biology, Royal Veterinary College, Hawkshead Lane, Hatfield, UK
| | - Thomas Eley
- Department of Pathology and Pathogen Biology, Royal Veterinary College, Hawkshead Lane, Hatfield, UK
| | - Christopher Browne
- Department of Pathology and Pathogen Biology, Royal Veterinary College, Hawkshead Lane, Hatfield, UK
| | - Henny M Martineau
- Department of Pathology and Pathogen Biology, Royal Veterinary College, Hawkshead Lane, Hatfield, UK
| | - Dirk Werling
- Department of Pathology and Pathogen Biology, Royal Veterinary College, Hawkshead Lane, Hatfield, UK.
| |
Collapse
|
31
|
Agostini PDS, Manzanilla EG, de Blas C, Fahey AG, da Silva CA, Gasa J. Managing variability in decision making in swine growing-finishing units. Ir Vet J 2015; 68:20. [PMID: 26328057 PMCID: PMC4553928 DOI: 10.1186/s13620-015-0048-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Accepted: 08/28/2015] [Indexed: 11/10/2022] Open
Abstract
Background Analysis of data collected from pig farms may be useful to understand factors affecting pig health and productive performance. However, obtaining these data and drawing conclusions from them can be done at different levels and presents several challenges. In the present study, information from 688 batches of growing-finishing (GF) pigs (average initial and final body weight of 19.1 and 108.5 kg respectively) from 404 GF farms integrated in 7 companies was obtained between July 2008 and July 2010 in Spain by survey. Management and facility factors associated with feed conversion ratio (FCR) and mortality were studied by multiple linear regression analysis in each single company (A to G) and in an overall database (OD). Factors studied were geographic location of the farm, trimester the pigs entered the farm, breed of sire and sex segregation in pens (BREGENSEG), use of circovirus vaccine, number of origins the pigs were obtained from, age of the farm, percentage of slatted floor, type of feeder, drinker and ventilation, number of phases and form of feed, antibiotic administration system, water source, and number and initial weight of pigs. Results In two or more companies studied and/or in OD, the trimester when pigs were placed in the farm, BREGENSEG, number of origins of the pigs, age of the farm and initial body weight were factors associated with FCR. Regarding mortality, trimester of placement, number of origins of the pigs, water source in the farm, number of pigs placed and the initial body weight were relevant factors. Age of the farm, antibiotic administration system, and water source were only provided by some of the studied companies and were not included in the OD model, however, when analyzed in particular companies these three variables had an important effect and may be variables of interest in companies that do not record them. Conclusions Analysing data collected from farms at different levels helps better understand factors associated with productive performance of pig herds. Out of the studied factors trimester of placement and number of origins of the pigs were the most relevant factors associated with FCR and mortality.
Collapse
Affiliation(s)
- Piero da Silva Agostini
- Grup de Nutrició, Maneig i Benestar Animal, Department de Ciència Animal i dels Aliments, Universitat Autònoma de Barcelona, Bellaterra, 08193 Spain
| | - Edgar Garcia Manzanilla
- Pig Development Department, Animal and Grassland Research and Innovation Centre, Teagasc, Moorepark, Fermoy, Co. Cork, Ireland
| | - Carlos de Blas
- Departamento de Producción Animal, Escuela Técnica de Ingenieros Agrónomos, Universidad Politécnica de Madrid, Madrid, 28040 Spain
| | - Alan G Fahey
- School of Agriculture and Food Science, University College Dublin, Dublin 4, Belfield Ireland
| | - Caio Abercio da Silva
- Departamento de Zootecnia, Universidade Estadual de Londrina, Londrina, 86051-970 Brazil
| | - Josep Gasa
- Grup de Nutrició, Maneig i Benestar Animal, Department de Ciència Animal i dels Aliments, Universitat Autònoma de Barcelona, Bellaterra, 08193 Spain
| |
Collapse
|
32
|
Patterson R, Nevel A, Diaz AV, Martineau HM, Demmers T, Browne C, Mavrommatis B, Werling D. Exposure to environmental stressors result in increased viral load and further reduction of production parameters in pigs experimentally infected with PCV2b. Vet Microbiol 2015; 177:261-9. [PMID: 25866129 PMCID: PMC4441105 DOI: 10.1016/j.vetmic.2015.03.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2014] [Revised: 03/06/2015] [Accepted: 03/12/2015] [Indexed: 11/30/2022]
Abstract
Environmental stress increases viral load of PCV2b in serum and tissue. Environmental stress exacerbates PCV2b induced weight loss. Environmental stress and PCV2b reduce ADG and impact negatively on FCR.
Porcine circovirus type 2 (PCV2) has been identified as the essential, but not sole, underlying infectious component for PCV-associated diseases (PCVAD). Several co-factors have been suggested to convert an infection with PCV2 into the clinical signs of PCVAD, including co-infection with a secondary pathogen and the genetic background of the pig. In the present study, we investigated the role of environmental stressors in the form of changes in environmental temperature and increased stocking-density on viral load in serum and tissue, average daily weight gain (ADG) and food conversion rate (FCR) of pigs experimentally infected with a defined PCV2b strain over an eight week period. These stressors were identified recently as risk factors leading to the occurrence of severe PCVAD on a farm level. In the current study, PCV2-free pigs were housed in separate, environmentally controlled rooms, and the experiment was performed in a 2 × 2 factorial design. In general, PCV2b infection reduced ADG and increased FCR, and these were further impacted on by the environmental stressors. Furthermore, all stressors led to an increased viral load in serum and tissue as assessed by qPCR, although levels did not reach statistical significance. Our data suggest that there is no need for an additional pathogen to develop PCVAD in conventional status pigs, and growth retardation and clinical signs can be induced in PCV2 infected pigs that are exposed to environmental stressors alone.
Collapse
Affiliation(s)
- Robert Patterson
- Royal Veterinary College, Department of Pathology and Pathogen Biology, Hawkshead Lane, AL9 7TA, UK
| | - Amanda Nevel
- Royal Veterinary College, Department of Pathology and Pathogen Biology, Hawkshead Lane, AL9 7TA, UK
| | - Adriana V Diaz
- Royal Veterinary College, Department of Pathology and Pathogen Biology, Hawkshead Lane, AL9 7TA, UK
| | - Henny M Martineau
- Royal Veterinary College, Department of Pathology and Pathogen Biology, Hawkshead Lane, AL9 7TA, UK
| | - Theo Demmers
- Royal Veterinary College, Department of Clinical Sciences, Hawkshead Lane, AL9 7TA, UK
| | - Christopher Browne
- Royal Veterinary College, Department of Pathology and Pathogen Biology, Hawkshead Lane, AL9 7TA, UK
| | - Bettina Mavrommatis
- Royal Veterinary College, Department of Pathology and Pathogen Biology, Hawkshead Lane, AL9 7TA, UK
| | - Dirk Werling
- Royal Veterinary College, Department of Pathology and Pathogen Biology, Hawkshead Lane, AL9 7TA, UK.
| |
Collapse
|
33
|
PCV2 vaccination induces IFN-γ/TNF-α co-producing T cells with a potential role in protection. Vet Res 2015; 46:20. [PMID: 25888899 PMCID: PMC4348102 DOI: 10.1186/s13567-015-0157-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Accepted: 01/30/2015] [Indexed: 01/12/2023] Open
Abstract
Porcine circovirus type 2 (PCV2) is one of the economically most important pathogens for swine production worldwide. Vaccination is a powerful tool to control porcine circovirus diseases (PCVD). However, it is not fully understood how PCV2 vaccination interacts with the porcine immune system. Especially knowledge on the cellular immune response against PCV2 is sparse. In this study we analysed antigen-specific T cell responses against PCV2 in a controlled vaccination and infection experiment. We focused on the ability of CD4+ T cells to produce cytokines using multicolour flow cytometry (FCM). Vaccination with a PCV2 subunit vaccine (Ingelvac CircoFLEX®) induced PCV2-specific antibodies only in five out of 12 animals. Conversely, vaccine-antigen specific CD4+ T cells which simultaneously produced IFN-γ and TNF-α and had a phenotype of central and effector memory T cells were detected in all vaccinated piglets. After challenge, seroconversion occurred earlier in vaccinated and infected pigs compared to the non-vaccinated, infected group. Vaccinated pigs were fully protected against viremia after subsequent challenge. Therefore, our data suggests that the induction of IFN-γ/TNF-α co-producing T cells by PCV2 vaccination may serve as a potential correlate of protection for this type of vaccine.
Collapse
|
34
|
Segalés J. Best practice and future challenges for vaccination against porcine circovirus type 2. Expert Rev Vaccines 2014; 14:473-87. [DOI: 10.1586/14760584.2015.983084] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Joaquim Segalés
- Centre de Recerca en Sanitat Animal (CReSA), UAB-IRTA, Campus de la Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
- Departament de Sanitat i d’Anatomia Animals, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
| |
Collapse
|
35
|
Swine, human or avian influenza viruses differentially activates porcine dendritic cells cytokine profile. Vet Immunol Immunopathol 2013; 154:25-35. [PMID: 23689011 DOI: 10.1016/j.vetimm.2013.04.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2012] [Revised: 04/04/2013] [Accepted: 04/06/2013] [Indexed: 12/23/2022]
Abstract
Swine influenza virus (SwIV) is considered a zoonosis and the fact that swine may act as an intermediate reservoir for avian influenza virus, potentially infectious for humans, highlights its relevance and the need to understand the interaction of different influenza viruses with the porcine immune system. Thus, in vitro porcine bone marrow-derived dendritic cell (poBMDCs) were infected with a circulating SwIV A/Swine/Spain/SF32071/2007(H3N2), 2009 human pandemic influenza virus A/Catalonia/63/2009(H1N1), low pathogenic avian influenza virus (LPAIV) A/Anas plathyrhynchos/Spain/1877/2009(aH7N2) or high pathogenic avian influenza virus (HPAIV) A/Chicken/Italy/5093/1999(aH7N1). Swine influenza virus H3N2 infection induced an increase of SLA-I and CD80/86 at 16 and 24h post infection (hpi), whereas the other viruses did not. All viruses induced gene expression of NF-κB, TGF-β, IFN-β and IL-10 at the mRNA level in swine poBMDCs to different extents and in a time-dependent manner. All viruses induced the secretion of IL-12 mostly at 24hpi whereas IL-18 was detected at all tested times. Only swH3N2 induced IFN-α in a time-dependent manner. Swine H3N2, aH7N2 and aH7N1 induced secretion of TNF-α also in a time-dependent manner. Inhibition of NF-κB resulted in a decrease of IFN-α and IL-12 secretion by swH3N2-infected poBMDC at 24hpi, suggesting a role of this transcription factor in the synthesis of these cytokines. Altogether, these data might help in understanding the relationship between influenza viruses and porcine dendritic cells in the innate immune response in swine controlled through soluble mediators and transcription factors.
Collapse
|
36
|
Martelli P, Ardigò P, Ferrari L, Morganti M, De Angelis E, Bonilauri P, Luppi A, Guazzetti S, Caleffi A, Borghetti P. Concurrent vaccinations against PCV2 and PRRSV: Study on the specific immunity and clinical protection in naturally infected pigs. Vet Microbiol 2013. [DOI: 10.1016/j.vetmic.2012.11.016] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
37
|
Heißenberger B, Weissenbacher-Lang C, Hennig-Pauka I, Ritzmann M, Ladinig A. Efficacy of vaccination of 3-week-old piglets with Circovac® against porcine circovirus diseases (PCVD). ACTA ACUST UNITED AC 2013. [DOI: 10.1016/j.trivac.2013.02.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
38
|
Mussá T, Rodríguez-Cariño C, Sánchez-Chardi A, Baratelli M, Costa-Hurtado M, Fraile L, Domínguez J, Aragon V, Montoya M. Differential interactions of virulent and non-virulent H. parasuis strains with naïve or swine influenza virus pre-infected dendritic cells. Vet Res 2012; 43:80. [PMID: 23157617 PMCID: PMC3585918 DOI: 10.1186/1297-9716-43-80] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2012] [Accepted: 10/31/2012] [Indexed: 12/24/2022] Open
Abstract
Pigs possess a microbiota in the upper respiratory tract that includes Haemophilus parasuis. Pigs are also considered the reservoir of influenza viruses and infection with this virus commonly results in increased impact of bacterial infections, including those by H. parasuis. However, the mechanisms involved in host innate responses towards H. parasuis and their implications in a co-infection with influenza virus are unknown. Therefore, the ability of a non-virulent H. parasuis serovar 3 (SW114) and a virulent serovar 5 (Nagasaki) strains to interact with porcine bone marrow dendritic cells (poBMDC) and their modulation in a co-infection with swine influenza virus (SwIV) H3N2 was examined. At 1 hour post infection (hpi), SW114 interaction with poBMDC was higher than that of Nagasaki, while at 8 hpi both strains showed similar levels of interaction. The co-infection with H3N2 SwIV and either SW114 or Nagasaki induced higher levels of IL-1β, TNF-α, IL-6, IL-12 and IL-10 compared to mock or H3N2 SwIV infection alone. Moreover, IL-12 and IFN-α secretion differentially increased in cells co-infected with H3N2 SwIV and Nagasaki. These results pave the way for understanding the differences in the interaction of non-virulent and virulent strains of H. parasuis with the swine immune system and their modulation in a viral co-infection.
Collapse
Affiliation(s)
- Tufária Mussá
- Centre de Recerca en Sanitat Animal (CReSA), UAB-IRTA, Campus de la Universitat Autònoma de Barcelona (UAB), 08193 Bellaterra, Barcelona, Spain.
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Epidemiology and transmission of porcine circovirus type 2 (PCV2). Virus Res 2012; 164:78-89. [DOI: 10.1016/j.virusres.2011.12.002] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2011] [Revised: 11/25/2011] [Accepted: 12/01/2011] [Indexed: 12/11/2022]
|
40
|
Mussá T, Rodriguez-Cariño C, Pujol M, Córdoba L, Busquets N, Crisci E, Dominguez J, Fraile L, Montoya M. Interaction of porcine conventional dendritic cells with swine influenza virus. Virology 2011; 420:125-34. [DOI: 10.1016/j.virol.2011.09.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2011] [Revised: 06/20/2011] [Accepted: 09/01/2011] [Indexed: 10/17/2022]
|
41
|
Langohr IM, Stevenson GW, Nelson EA, Lenz SD, Wei H, Pogranichniy RM. Experimental co-infection of pigs with Bovine viral diarrhea virus 1 and Porcine circovirus-2. J Vet Diagn Invest 2011; 24:51-64. [DOI: 10.1177/1040638711417142] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The role of Bovine viral diarrhea virus (BVDV) in the development of Porcine circovirus-2 (PCV-2)-associated disease (PCVAD) was investigated in 2 experimental studies. In the first, separate groups of germ-free pigs were inoculated with filtered tissue homogenate (from diseased pigs) containing PCV-2b + BVDV-1–like virus (group 1), PCV-2a + BVDV-1–like virus (group 4), BVDV-1–like virus only (group 3), or PCV-2b + BVDV-1–like virus following a BVDV vaccination protocol (group 2). This last group was used to test if BVDV vaccination would prevent clinical PCVAD in this model. Many of the inoculated pigs had mild multisystemic inflammation consistent with classic PCVAD. One vaccinated, dually inoculated pig had acute respiratory distress followed by death at 21 days postinfection. Lesions in this pig resembled the severe form of PCVAD observed in the field since the fall of 2004, suggesting a role of ruminant pestiviruses and/or vaccination in the development of this disease. In the second study, cesarean-derived, colostrum-deprived pigs were inoculated with PCV-2b and a cytopathic strain of BVDV-1 (cpBVDV-NADL) either alone or in combination. Clinical signs of PCVAD were seen in a single animal inoculated only with PCV-2b. This pig had growth retardation followed by acute respiratory distress leading to death 30 days postinfection. Pulmonary lesions in this animal were similar to those seen in the pig that died in the first study. Infection with cpBVDV-NADL did not enhance PCV-2b replication or lesion formation.
Collapse
Affiliation(s)
- Ingeborg M. Langohr
- Department of Pathobiology and Diagnostic Investigation, College of Veterinary Medicine, Michigan State University, East Lansing, MI (Langohr)
- Department of Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA (Stevenson)
- Department of Veterinary Science, South Dakota State University, Brookings, SD (Nelson)
- Department of Comparative Pathobiology, School of Veterinary Medicine, Purdue University, West Lafayette, IN (Lenz, Wei, Pogranichniy)
| | - Gregory W. Stevenson
- Department of Pathobiology and Diagnostic Investigation, College of Veterinary Medicine, Michigan State University, East Lansing, MI (Langohr)
- Department of Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA (Stevenson)
- Department of Veterinary Science, South Dakota State University, Brookings, SD (Nelson)
- Department of Comparative Pathobiology, School of Veterinary Medicine, Purdue University, West Lafayette, IN (Lenz, Wei, Pogranichniy)
| | - Eric A. Nelson
- Department of Pathobiology and Diagnostic Investigation, College of Veterinary Medicine, Michigan State University, East Lansing, MI (Langohr)
- Department of Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA (Stevenson)
- Department of Veterinary Science, South Dakota State University, Brookings, SD (Nelson)
- Department of Comparative Pathobiology, School of Veterinary Medicine, Purdue University, West Lafayette, IN (Lenz, Wei, Pogranichniy)
| | - Stephen D. Lenz
- Department of Pathobiology and Diagnostic Investigation, College of Veterinary Medicine, Michigan State University, East Lansing, MI (Langohr)
- Department of Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA (Stevenson)
- Department of Veterinary Science, South Dakota State University, Brookings, SD (Nelson)
- Department of Comparative Pathobiology, School of Veterinary Medicine, Purdue University, West Lafayette, IN (Lenz, Wei, Pogranichniy)
| | - Huiling Wei
- Department of Pathobiology and Diagnostic Investigation, College of Veterinary Medicine, Michigan State University, East Lansing, MI (Langohr)
- Department of Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA (Stevenson)
- Department of Veterinary Science, South Dakota State University, Brookings, SD (Nelson)
- Department of Comparative Pathobiology, School of Veterinary Medicine, Purdue University, West Lafayette, IN (Lenz, Wei, Pogranichniy)
| | - Roman M. Pogranichniy
- Department of Pathobiology and Diagnostic Investigation, College of Veterinary Medicine, Michigan State University, East Lansing, MI (Langohr)
- Department of Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA (Stevenson)
- Department of Veterinary Science, South Dakota State University, Brookings, SD (Nelson)
- Department of Comparative Pathobiology, School of Veterinary Medicine, Purdue University, West Lafayette, IN (Lenz, Wei, Pogranichniy)
| |
Collapse
|
42
|
Grau-Roma L, Fraile L, Segalés J. Recent advances in the epidemiology, diagnosis and control of diseases caused by porcine circovirus type 2. Vet J 2011; 187:23-32. [DOI: 10.1016/j.tvjl.2010.01.018] [Citation(s) in RCA: 104] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2009] [Revised: 01/26/2010] [Accepted: 01/31/2010] [Indexed: 10/19/2022]
|
43
|
Martelli P, Ferrari L, Morganti M, De Angelis E, Bonilauri P, Guazzetti S, Caleffi A, Borghetti P. One dose of a porcine circovirus 2 subunit vaccine induces humoral and cell-mediated immunity and protects against porcine circovirus-associated disease under field conditions. Vet Microbiol 2010; 149:339-51. [PMID: 21216540 DOI: 10.1016/j.vetmic.2010.12.008] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2010] [Revised: 11/18/2010] [Accepted: 12/07/2010] [Indexed: 11/25/2022]
Abstract
This study investigated the efficacy of a one-dose porcine circovirus 2 (PCV2) subunit vaccine based on the PCV2 Cap protein expressed in a baculovirus system on two different farms at which a history of porcine circovirus-associated disease (PCVD) was present. Morbidity, mortality, average daily weight gain, carcass weight, PCV2 load in serum and vaccine immunogenicity were assessed. Serology to porcine reproductive and respiratory syndrome virus (PRRSV) and Mycoplasma hyopneumoniae was performed. A double-blind, randomised, and controlled field trial was performed distributing 818 piglets between two treatment groups. At inclusion (weaning at 21 ± 3 days of age), 408 animals (group B) received a 2-mL intramuscular dose of Porcilis PCV(®) (vaccinated group). Controls (group A, 410 pigs) received 2 mL of the adjuvant Diluvac Forte(®) intramuscularly. Weights were recorded at inclusion and at 12 and 26 weeks of age, and the average daily weight gain (ADWG) was calculated. The carcass weights of the pigs from farm 2 were recorded at slaughter (274 days old). All dead animals (died or culled) underwent autopsy to classify them as PMWS-affected or not. At each farm, blood samples were taken from 22 pigs/group for serologic studies. A beneficial effect was found after vaccination with a single dose of a PCV2 Cap vaccine against PCVD. The vaccination reduced the mortality rate and morbidity, reduced PCV2 viremia and viral load, improved productive performances (e.g. ADWG: +70 g/day between 12 and 26 weeks of age when viremia and the specific disease occurred) as well as carcass weight at slaughter age (+4.5 kg). These effects were associated with virologic and clinical protection from the immunogenicity of the vaccine measured as activation of both a humoral and a cellular immune response.
Collapse
Affiliation(s)
- Paolo Martelli
- Department of Animal Health, University of Parma, Parma, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Patterson AR, Madson DM, Halbur PG, Opriessnig T. Shedding and infection dynamics of porcine circovirus type 2 (PCV2) after natural exposure. Vet Microbiol 2010; 149:225-9. [PMID: 21111548 DOI: 10.1016/j.vetmic.2010.10.021] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2010] [Accepted: 10/22/2010] [Indexed: 12/01/2022]
Abstract
The objective of this study was to determine the amount of porcine circovirus type 2 (PCV2) shed in nasal, oral and fecal secretions over time following natural PCV2 infection. Fecal, oral and nasal swabs and blood were collected at regular intervals starting at 28 days post-farrowing (DPF) until 209 DPF from four pigs naturally infected with PCV2. PCV2 DNA was detected in all sample types. There were no differences in the amount of PCV2 DNA present in different sample types over time. PCV2 DNA was detectable in sera and secretions in pigs through 209 DPF. Natural exposure to PCV2 results in a long term infection and PCV2 is shed in similar amounts by nasal, oral and fecal routes.
Collapse
Affiliation(s)
- A R Patterson
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, 1600 S. 16th Street, Ames, IA 50011, USA
| | | | | | | |
Collapse
|
45
|
Alarcon P, Velasova M, Werling D, Stärk KDC, Chang YM, Nevel A, Pfeiffer DU, Wieland B. Assessment and quantification of post-weaning multi-systemic wasting syndrome severity at farm level. Prev Vet Med 2010; 98:19-28. [PMID: 21036410 DOI: 10.1016/j.prevetmed.2010.09.022] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2010] [Revised: 09/27/2010] [Accepted: 09/30/2010] [Indexed: 10/18/2022]
Abstract
Post-weaning multi-systemic wasting syndrome (PMWS) causes major economic losses for the English pig industry and severity of clinical signs and economic impact vary considerably between affected farms. We present here a novel approach to quantify severity of PMWS based on morbidity and mortality data and presence of porcine circovirus type 2 (PCV2). In 2008-2009, 147 pig farms across England, non-vaccinating for PCV2, were enrolled in a cross-sectional study. Factor analysis was used to generate variables representing biologically meaningful aspects of variation among qualitative and quantitative morbidity variables. Together with other known variables linked to PMWS, the resulting factors were included in a principal component analysis (PCA) to derive an algorithm for PMWS severity. Factor analysis resulted in two factors: Morbidity Factor 1 (MF1) representing mainly weaner and grower morbidity, and Morbidity Factor 2 (MF2) which mainly reflects variation in finisher morbidity. This indicates that farms either had high morbidity mainly in weaners/growers or mainly in finishers. Subsequent PCA resulted in the extraction of one component representing variation in MF1, post-weaning mortality and percentage of PCV2 PCR positive animals. Component scores were normalised to a value range from 0 to 10 and farms classified into: non or slightly affected farms with a score <4, moderately affected farms with scores 4-6.5 and highly affected farms with a score >6.5. The identified farm level PMWS severities will be used to identify risk factors related to these, to assess the efficacy of PCV2 vaccination and investigating the economic impact of potential control measures.
Collapse
Affiliation(s)
- Pablo Alarcon
- Department of Veterinary Clinical Sciences, Royal Veterinary College, Hatfield AL9 7TA, United Kingdom.
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Immune responses and vaccine-induced immunity against Porcine circovirus type 2. Vet Immunol Immunopathol 2010; 136:185-93. [DOI: 10.1016/j.vetimm.2010.03.025] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2009] [Revised: 03/29/2010] [Accepted: 03/30/2010] [Indexed: 11/22/2022]
|
47
|
López-Soria S, Maldonado J, Riera P, Nofrarías M, Espinal A, Valero O, Blanchard P, Jestin A, Casal J, Domingo M, Artigas C, Segalés J. Selected Swine Viral Pathogens in Indoor Pigs in Spain. Seroprevalence and Farm-Level Characteristics. Transbound Emerg Dis 2010; 57:171-9. [DOI: 10.1111/j.1865-1682.2010.01135.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
48
|
Hansen M, Pors S, Bille-Hansen V, Kjerulff S, Nielsen O. Occurrence and Tissue Distribution of Porcine Circovirus Type 2 Identified by Immunohistochemistry in Danish Finishing Pigs at Slaughter. J Comp Pathol 2010; 142:109-21. [DOI: 10.1016/j.jcpa.2009.07.059] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2009] [Revised: 05/12/2009] [Accepted: 07/30/2009] [Indexed: 11/27/2022]
|
49
|
Gillespie J, Opriessnig T, Meng XJ, Pelzer K, Buechner-Maxwell V. Porcine circovirus type 2 and porcine circovirus-associated disease. J Vet Intern Med 2009; 23:1151-63. [PMID: 19780932 PMCID: PMC7166794 DOI: 10.1111/j.1939-1676.2009.0389.x] [Citation(s) in RCA: 192] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2009] [Revised: 08/02/2009] [Accepted: 08/12/2009] [Indexed: 11/28/2022] Open
Abstract
Porcine circovirus type 2 (PCV2) belongs to the viral family Circoviridae and to the genus Circovirus. Circoviruses are small, single-stranded nonenveloped DNA viruses that have an unsegmented circular genome. PCV2 is the primary causative agent of several syndromes collectively known as porcine circovirus-associated disease (PCVAD). Many of the syndromes associated with PCVAD are a result of coinfection with PCV2 virus and other agents such as Mycoplasma and porcine reproductive and respiratory syndrome virus. PCV2 infection is present in every major swine-producing country in the world, and the number of identified cases of PCVAD is rapidly increasing. In the United States, the disease has cost producers an average of 3-4 dollars per pig with peak losses ranging up to 20 dollars per pig. The importance of this disease has stimulated investigations aimed at identifying risk factors associated with infection and minimizing these risks through modified management practices and development of vaccination strategies. This paper provides an overview of current knowledge relating to PCV2 and PCVAD with an emphasis on information relevant to the swine veterinarian.
Collapse
Affiliation(s)
- J Gillespie
- Department of Large Animal Clinical Sciences, Virginia-Maryland Regional College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | | | | | | | | |
Collapse
|
50
|
Sibila M, Martínez-Guinó L, Huerta E, Llorens A, Mora M, Grau-Roma L, Kekarainen T, Segalés J. Swine torque teno virus (TTV) infection and excretion dynamics in conventional pig farms. Vet Microbiol 2009; 139:213-8. [PMID: 19559548 DOI: 10.1016/j.vetmic.2009.05.017] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2009] [Revised: 05/15/2009] [Accepted: 05/28/2009] [Indexed: 11/27/2022]
Abstract
Torque teno virus (TTV) is a non-enveloped, single-stranded DNA (ssDNA) virus infecting human and non-primate species. Two genogroups of TTV (TTV1 and TTV2) have been described in swine so far. In the present study, TTV1 and TTV2 prevalences in serum, and nasal as well as rectal swabs of 55 randomly selected piglets from seven Spanish multi-site farms, were monitored from 1 to 15 weeks of age. Also, blood from their dams (n=41) were taken at 1 week post-farrowing. Samples were tested by means of two TTV genogroup specific PCRs. Although prevalence of TTV1 and TTV2 in sows was relatively high (54% and 32%, respectively), it was not directly associated to their prevalence in the offspring. Percentage of viremic pigs for both TTV genogroups followed similar dynamics, increasing progressively over time, with the highest rate of detection at 11 weeks of age for TTV1 and at 15 weeks for TTV2. Forty-two (76%) and 33 (60%) of the 55 studied pigs were TTV1 and TTV2 PCR positive in serum, respectively, in more than one sampling time. TTV1 and TTV2 viremia lasted in a number of animals up to 15 and 8 weeks, respectively. Co-infection with both TTV genogroups in serum was detected at all sampling points, but at 1 week of age. On the contrary, there were animals PCR negative to both genogroups in serum at all sampling times but at 15 weeks of age. During the study period, TTV1 and TTV2 nasal shedding increased also over time and faecal excretion was intermittent and of low percentage (<20%). In conclusion, the present study describes for the first time the infection dynamics of TTV1 and TTV2 as well as the nasal and faecal excretion throughout the life of pigs from conventional, multi-site farms. Moreover, results indicate that both swine TTV genogroups are able to establish persistent infections in a number of pigs.
Collapse
Affiliation(s)
- M Sibila
- Centre de Recerca en Sanitat Animal, UAB-IRTA, Campus de la Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain.
| | | | | | | | | | | | | | | |
Collapse
|