1
|
Utermann-Thüsing C, Mendez D, Stincone P, Petras D, Tasdemir D. Metabolomic signatures of pathogen suppression effect of Baltic eelgrass meadows in surrounding seawater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 979:179518. [PMID: 40288169 DOI: 10.1016/j.scitotenv.2025.179518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 04/16/2025] [Accepted: 04/22/2025] [Indexed: 04/29/2025]
Abstract
Organic molecules exuded into water column by marine organisms represent a significant portion of marine dissolved organic matter (DOM) that modulates biochemical interactions. Secreted allelochemicals have been suggested to be involved in regulation of pathogen abundance in seagrass meadows, however, seagrass exometabolome has remained unstudied. We aimed to identify seagrass exometabolites, within and outside meadows, and explore their potential involvement in pathogen suppression under varying environmental conditions. We collected seawater (SW) samples from eelgrass (Zostera marina)-vegetated (V) and non-vegetated (NV) areas across 5 locations spanning 270 km of coastline along the German Baltic Sea. Comparative LC-MS/MS-based untargeted computational metabolomics combined with statistical analyses and machine learning tools were employed to pinpoint (exo)metabolomic signatures of eelgrass leaves. Simultaneously, we measured abiotic parameters and the abundance of three common pathogenic taxa in seawater, and investigated spatiotemporal variations. Here we show the correlation of pathogen biomass and eelgrass pathogen reduction effect with increasing seawater temperature, eutrophication and anthropogenic influences. Exometabolomics studies revealed that eelgrass exudates contributed significantly to overall seawater DOM at molecular level, while SW overlying eelgrass meadows contained many chemical features unique to the eelgrass leaf metabolome. We identified four flavone aglycones as key biomarkers distinguishing SW-V and SW-NV samples. Their drastically increased concentrations correlated with the lowest pathogen biomass, suggesting their role in pathogen regulation. These combined analytical and microbiological approaches indicate that flavones are defensive allelochemicals released into eelgrass meadows upon environmental stress and serve as potential bioindicators of eelgrass' sanitation effect.
Collapse
Affiliation(s)
- Caroline Utermann-Thüsing
- GEOMAR Centre for Marine Biotechnology (GEOMAR-Biotech), Research Unit Marine Natural Products Chemistry, GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel 24148, Germany
| | - Daniel Mendez
- GEOMAR Centre for Marine Biotechnology (GEOMAR-Biotech), Research Unit Marine Natural Products Chemistry, GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel 24148, Germany
| | - Paolo Stincone
- Interfaculty Institute of Microbiology and Medicine, University of Tübingen, Tübingen 72076, Germany
| | - Daniel Petras
- Interfaculty Institute of Microbiology and Medicine, University of Tübingen, Tübingen 72076, Germany; Department of Biochemistry, University of California Riverside, Riverside, CA 92507, USA
| | - Deniz Tasdemir
- GEOMAR Centre for Marine Biotechnology (GEOMAR-Biotech), Research Unit Marine Natural Products Chemistry, GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel 24148, Germany; Faculty of Mathematics and Natural Sciences, Kiel University, Kiel 24118, Germany.
| |
Collapse
|
2
|
Lazzari R, Borja Cano M, Rivera Martínez A, Rubio Bueno M, Castella Rovira M, Puig Campmany M. Vibrio fluvialis cholangitis with bacteremia and refractory septic shock: a case report and review of the literature. Infection 2025:10.1007/s15010-025-02535-7. [PMID: 40377851 DOI: 10.1007/s15010-025-02535-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2025] [Accepted: 03/30/2025] [Indexed: 05/18/2025]
Abstract
Vibrio fluvialis is an emerging pathogen primarily associated with gastroenteritis, though an increasing number of extraintestinal infections have been reported. We present the first documented case in Europe of V. fluvialis cholangitis with liver abscess and bacteremia. An 85-year-old man with diabetes mellitus and chronic steroid use was admitted with severe epigastric pain but no fever or gastrointestinal symptoms. Initial laboratory tests were unremarkable, yet imaging revealed a hepatic abscess. Despite early antibiotic therapy, the patient rapidly developed refractory septic shock and died within 12 h. Blood cultures confirmed V. fluvialis. This case highlights the potential for severe V. fluvialis infections even in the absence of known seafood or seawater exposure. Given the global rise in raw seafood consumption, physicians should consider V. fluvialis as a potential pathogen in diabetic or immunocompromised patients presenting with hepatobiliary infections and sepsis.
Collapse
Affiliation(s)
- Roberto Lazzari
- Emergency Department, Hospital de la Santa Creu I Sant Pau, Barcelona, Spain
| | - María Borja Cano
- Emergency Department, Hospital de la Santa Creu I Sant Pau, Barcelona, Spain
| | - Alba Rivera Martínez
- Microbiology Department, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
- Sant Pau Institute of Biomedical Research (IIb Sant Pau), Barcelona, Spain
- Genetics and Microbiology Department, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Marc Rubio Bueno
- Microbiology Department, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
- Sant Pau Institute of Biomedical Research (IIb Sant Pau), Barcelona, Spain
| | | | - Mireia Puig Campmany
- Emergency Department, Hospital de la Santa Creu I Sant Pau, Barcelona, Spain.
- Department of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain.
| |
Collapse
|
3
|
Mkhize L, Marimani M, Duze ST. Characterization of Vibrio cholerae from the Jukskei River in Johannesburg, South Africa. Lett Appl Microbiol 2025; 78:ovaf036. [PMID: 40074537 DOI: 10.1093/lambio/ovaf036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 02/05/2025] [Accepted: 03/11/2025] [Indexed: 03/14/2025]
Abstract
The current study aimed to isolate and characterize Vibrio cholerae isolated from the Jukskei River, one of the largest Rivers in Johannesburg, South Africa. Water samples collected from the Jukskei River were subjected to culture-based methods for the detection and isolation of V. cholerae. Twenty-four V. cholerae were isolated, confirmed using real-time PCR, and sequenced using the MInION portable nanopore-sequencing device. Reference-based genome assemblies were constructed from the raw reads using the EPI2ME software followed by bioinformatics analysis using the Centre for Genomic Epidemiology website. All the V. cholerae isolates isolated from the Jukskei River were classified as non-O1/non-O139 and none of the isolates harbored the cholera toxin gene, ctxA. All 24 V. cholerae isolates belonged to sequence type 741, virulent genes including toxR, vspD, als, hlyA, makA, and rtxA as well as the Vibrio pathogenicity island 2 were detected amongst the isolates. Antimicrobial resistance genes (parC, varG, and gyrA) were detected in 83% of isolates. Although V. cholerae non-O1/non-O139 are not associated with epidemic cholera they can still cause mild to life-threatening illnesses. Therefore, increased surveillance should be considered to better understand the public health risks to the local community.
Collapse
Affiliation(s)
- Luyanda Mkhize
- Department of Clinical Microbiology and Infectious Diseases, Faculty of Health Science, University of the Witwatersrand, 7 York Road, Parktown, 2193, Gauteng, South Africa
| | - Musa Marimani
- Department of Anatomical Pathology, Faculty of Health Science, University of the Witwatersrand, 7 York Road, Parktown, 2193, Gauteng, South Africa
| | - Sanelisiwe Thinasonke Duze
- Department of Clinical Microbiology and Infectious Diseases, Faculty of Health Science, University of the Witwatersrand, 7 York Road, Parktown, 2193, Gauteng, South Africa
| |
Collapse
|
4
|
Seymour JR, McLellan SL. Climate change will amplify the impacts of harmful microorganisms in aquatic ecosystems. Nat Microbiol 2025; 10:615-626. [PMID: 40021939 DOI: 10.1038/s41564-025-01948-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 12/18/2024] [Indexed: 03/03/2025]
Abstract
More than 70% of the human population lives within five kilometres of a natural water feature. These aquatic ecosystems are heavily used for resource provision and recreation, and represent the interface between human populations and aquatic microbiomes, which can sometimes negatively impact human health. Diverse species of endemic aquatic microorganisms, including toxic microalgae and pathogenic bacteria, can be harmful to humans. Aquatic ecosystems are also subject to intrusions of allochthonous pathogenic microorganisms through pollution and runoff. Notably, environmental processes that amplify the abundance and impact of harmful aquatic microorganisms are occurring with increasing frequency owing to climate change. For instance, increases in water temperature stimulate outbreaks of pathogenic and toxic species, whereas more intense precipitation events escalate microbial contamination from stormwater discharge. In this Perspective we discuss the influence of aquatic microbiomes on the health and economies of human populations and examine how climate change is increasing these impacts.
Collapse
Affiliation(s)
- Justin R Seymour
- Climate Change Cluster, University of Technology Sydney, Broadway, New South Wales, Australia.
| | - Sandra L McLellan
- School of Freshwater Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| |
Collapse
|
5
|
Jia M, Li P, Yan Y, Liu X, Gao L, Zhu G, Chen Z. Antimicrobial susceptibility and genomic characterization of Vibrio cholerae non-O1/non-O139 isolated from clinical and environmental samples in Jiaxing City, China. FEMS Microbiol Lett 2025; 372:fnaf009. [PMID: 39824655 DOI: 10.1093/femsle/fnaf009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 12/29/2024] [Accepted: 01/16/2025] [Indexed: 01/20/2025] Open
Abstract
Non-O1/non-O139 (NOVC) strains inhabit aquatic environments and sporadically induce human illnesses. This study involved the virulence and antimicrobial genetic characterization of 176 NOVC strains, comprising 25 from clinical samples and 151 from environmental sources, collected between 2021 and 2023. The antimicrobial susceptibility of the examined NOVC population was predominantly high, exhibiting only poor susceptibility to colistin, with 89.2% resistance. The examination of virulence genes revealed that the majority of strains were positive for glucose metabolism (als gene) (169/176, 96.0%). Through multilocus sequence typing, the 176 NOVC strains were categorised into 121 sequence types, 79 of which were novel. NOVC strains demonstrate significant genetic variability and frequently engage in recombination. This work offers genetic characterization of the pathogenicity and antimicrobial resistance of a NOVC community. Our findings offer insights that may aid in the development of preventative and treatment methods for this pathogen.
Collapse
Affiliation(s)
- Miaomiao Jia
- Jiaxing Key Laboratory of Pathogenic Microbiology, Jiaxing Center for Disease Control and Prevention, Jiaxing 314050, China
| | - Ping Li
- Jiaxing Key Laboratory of Pathogenic Microbiology, Jiaxing Center for Disease Control and Prevention, Jiaxing 314050, China
| | - Yong Yan
- Jiaxing Key Laboratory of Pathogenic Microbiology, Jiaxing Center for Disease Control and Prevention, Jiaxing 314050, China
| | - Xuejuan Liu
- Jiaxing Key Laboratory of Pathogenic Microbiology, Jiaxing Center for Disease Control and Prevention, Jiaxing 314050, China
| | - Lei Gao
- Jiaxing Key Laboratory of Pathogenic Microbiology, Jiaxing Center for Disease Control and Prevention, Jiaxing 314050, China
| | - Guoying Zhu
- Jiaxing Key Laboratory of Pathogenic Microbiology, Jiaxing Center for Disease Control and Prevention, Jiaxing 314050, China
| | - Zhongwen Chen
- Jiaxing Key Laboratory of Pathogenic Microbiology, Jiaxing Center for Disease Control and Prevention, Jiaxing 314050, China
| |
Collapse
|
6
|
Candelli M, Sacco Fernandez M, Triunfo C, Piccioni A, Ojetti V, Franceschi F, Pignataro G. Vibrio vulnificus-A Review with a Special Focus on Sepsis. Microorganisms 2025; 13:128. [PMID: 39858896 PMCID: PMC11768060 DOI: 10.3390/microorganisms13010128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Revised: 12/28/2024] [Accepted: 01/08/2025] [Indexed: 01/27/2025] Open
Abstract
Vibrio vulnificus (V. vulnificus) is a Gram-negative, halophilic bacillus known for causing severe infections such as gastroenteritis, necrotizing fasciitis, and septic shock, with mortality rates exceeding 50% in high-risk individuals. Transmission occurs primarily through the consumption of contaminated seafood, exposure of open wounds to infected water, or, in rare cases, insect bites. The bacterium thrives in warm, brackish waters with high salinity levels, and its prevalence is rising due to the effects of climate change, including warming ocean temperatures and expanding coastal habitats. High-risk populations include individuals with underlying conditions such as chronic liver disease, diabetes, or immunosuppression, which heighten susceptibility to severe outcomes. The pathogenicity of V. vulnificus is mediated by an array of virulence factors, including hemolysins, proteases, and capsular polysaccharides, as well as mechanisms facilitating iron acquisition and immune system evasion. Clinical manifestations range from localized gastrointestinal symptoms to life-threatening systemic infections such as septicemia. Rare but severe complications, including pneumonia and meningitis, have also been reported. Treatment typically involves the use of doxycycline in combination with third-generation cephalosporins, although the emergence of multidrug-resistant strains is an escalating concern. Alternative therapeutic approaches under investigation include natural compounds such as resveratrol and the application of antimicrobial blue light. For necrotizing infections, prompt and aggressive surgical intervention remains essential to improving patient outcomes. As global temperatures continue to rise, understanding the epidemiology of V. vulnificus and developing innovative therapeutic strategies are critical to mitigating its growing public health impact.
Collapse
Affiliation(s)
- Marcello Candelli
- Emergency, Anesthesiological and Reanimation Sciences Department, Fondazione Policlinico Universitario A. Gemelli—IRCCS of Rome, 00168 Rome, Italy; (M.C.); (M.S.F.); (C.T.); (A.P.); (F.F.)
| | - Marta Sacco Fernandez
- Emergency, Anesthesiological and Reanimation Sciences Department, Fondazione Policlinico Universitario A. Gemelli—IRCCS of Rome, 00168 Rome, Italy; (M.C.); (M.S.F.); (C.T.); (A.P.); (F.F.)
| | - Cristina Triunfo
- Emergency, Anesthesiological and Reanimation Sciences Department, Fondazione Policlinico Universitario A. Gemelli—IRCCS of Rome, 00168 Rome, Italy; (M.C.); (M.S.F.); (C.T.); (A.P.); (F.F.)
| | - Andrea Piccioni
- Emergency, Anesthesiological and Reanimation Sciences Department, Fondazione Policlinico Universitario A. Gemelli—IRCCS of Rome, 00168 Rome, Italy; (M.C.); (M.S.F.); (C.T.); (A.P.); (F.F.)
| | - Veronica Ojetti
- Department of Internal Medicine, UniCamillus International Medical University of Rome, 00131 Rome, Italy;
| | - Francesco Franceschi
- Emergency, Anesthesiological and Reanimation Sciences Department, Fondazione Policlinico Universitario A. Gemelli—IRCCS of Rome, 00168 Rome, Italy; (M.C.); (M.S.F.); (C.T.); (A.P.); (F.F.)
| | - Giulia Pignataro
- Emergency, Anesthesiological and Reanimation Sciences Department, Fondazione Policlinico Universitario A. Gemelli—IRCCS of Rome, 00168 Rome, Italy; (M.C.); (M.S.F.); (C.T.); (A.P.); (F.F.)
| |
Collapse
|
7
|
Zeidler C, Szott V, Alter T, Huehn-Lindenbein S, Fleischmann S. Prevalence of Vibrio spp. in Seafood from German Supermarkets and Fish Markets. Foods 2024; 13:3987. [PMID: 39766929 PMCID: PMC11675752 DOI: 10.3390/foods13243987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 11/29/2024] [Accepted: 12/06/2024] [Indexed: 01/11/2025] Open
Abstract
This study investigates the prevalence of Vibrio spp. in seafood from supermarkets and fish markets in Berlin, Germany. A total of 306 seafood samples, including shrimp and mussels, were bought from supermarkets between March 2023 and January 2024. Samples were analysed using the ISO standard method and multiplex PCR to identify V. parahaemolyticus, V. alginolyticus, V. cholerae and V. vulnificus. The results indicated an overall Vibrio spp. prevalence of 56%. Among the positive samples, the most prevalent species found was V. parahaemolyticus (58%), followed by V. alginolyticus (42%), V. cholerae non-O1/non-O139 (25%), and V. vulnificus (4%). Samples obtained from supermarkets exhibited a lower prevalence (50%) than those received from fish markets (91%). Virulence genes such as ctxA, tdh, or trh were not detected in the respective Vibrio species. Nevertheless, the high prevalence underscores the need and urgency of continuous seafood surveillance.
Collapse
Affiliation(s)
- Christopher Zeidler
- School of Veterinary Medicine Center for Veterinary Public Health, Institute of Food Safety and Hygiene, Freie Universität Berlin, Königsweg 69, 14163 Berlin, Germany; (C.Z.); (V.S.); (T.A.)
- Faculty of Life Sciences and Technology, University of Applied Sciences, Berliner Hochschule für Technik, Luxemburger Str. 10, 13353 Berlin, Germany;
| | - Vanessa Szott
- School of Veterinary Medicine Center for Veterinary Public Health, Institute of Food Safety and Hygiene, Freie Universität Berlin, Königsweg 69, 14163 Berlin, Germany; (C.Z.); (V.S.); (T.A.)
| | - Thomas Alter
- School of Veterinary Medicine Center for Veterinary Public Health, Institute of Food Safety and Hygiene, Freie Universität Berlin, Königsweg 69, 14163 Berlin, Germany; (C.Z.); (V.S.); (T.A.)
| | - Stephan Huehn-Lindenbein
- Faculty of Life Sciences and Technology, University of Applied Sciences, Berliner Hochschule für Technik, Luxemburger Str. 10, 13353 Berlin, Germany;
| | - Susanne Fleischmann
- School of Veterinary Medicine Center for Veterinary Public Health, Institute of Food Safety and Hygiene, Freie Universität Berlin, Königsweg 69, 14163 Berlin, Germany; (C.Z.); (V.S.); (T.A.)
| |
Collapse
|
8
|
Jacqueline C, Román Soto S, Herrera-Leon S. Non-toxigenic cases of Vibrio cholerae in Spain from 2012 to 2022. Microb Genom 2024; 10:001315. [PMID: 39661068 PMCID: PMC11633944 DOI: 10.1099/mgen.0.001315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 10/01/2024] [Indexed: 12/12/2024] Open
Abstract
Non-toxigenic non-O1/non-O139 Vibrio cholerae (NVC) isolates are associated with diarrhoeal disease globally. NVC-related infections are on the rise, representing one of the most striking examples of emerging human diseases linked to climate change. This study aims to give a better picture of the evolution of NCV incidence in Spain from 2012 to 2022. In this context, we realized a descriptive analysis and a logistic regression using the isolates submitted to the National Center of Microbiology (NCM) during this period. To elucidate the heterogeneity of sporadic clinical strains of NVC among patients residing in Spain, we conducted whole-genome sequencing (WGS) of a selection of isolates. First, we observed an increase in the number of isolates sent to the NCM after 2019, which was not concomitant to a change in the national surveillance protocol. Furthermore, the number of cases and hospitalizations increased with age. Second, we found a high diversity of NVC strains, which suggested that the usefulness of WGS studies might be limited in waterborne outbreak situations to find the infectious source. Finally, we characterized the genetic determinants responsible for antimicrobial resistance and virulence and found that 21% of the isolates were resistant to β-lactamases. To the best of our knowledge, the present study is the first in Spain to report genomic data on non-toxigenic cases at the national level. Because of the high percentage of hospitalization observed for NVC cases (40%), it might be beneficial to test for V. cholerae in all the suspected cases.
Collapse
Affiliation(s)
- Camille Jacqueline
- Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Spain
- European Public Health Microbiology Training Program (EUPHEM), European Centre for Disease Prevention and Control (ECDC), Stockholm, Sweden
| | - Sergio Román Soto
- Laboratorio de Microbiología Clínica y Biología Molecular, Hospital Comarcal de Melilla, Rusadir, Spain
| | - Silvia Herrera-Leon
- Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Spain
| |
Collapse
|
9
|
Radeva S, Vergiev S, Georgiev G, Niyazi D. Emerging Vibrio vulnificus-Associated Infections After Seawater Exposure-Cases from the Bulgarian Black Sea Coast. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:1748. [PMID: 39596933 PMCID: PMC11595927 DOI: 10.3390/medicina60111748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 10/17/2024] [Accepted: 10/23/2024] [Indexed: 11/29/2024]
Abstract
Objectives: The aim of the current report is to present three cases of necrotizing fasciitis and sepsis caused by Vibrio vulnificus on the Bulgarian Black Sea coast. Materials and Methods: Two of the patients are males, 70 and 86 years of age, respectively, and one is an 86-year-old female. Data were collected from the patients' examination records. V. vulnificus was isolated on 5% sheep blood agar from wound and blood samples and identified by the automated system Phoenix M50 (BD, Franklin Lakes, NJ, USA). Antimicrobial susceptibility was tested with two well-known methods (disk diffusion and broth microdilution). Results: All of the patients were admitted to our hospital due to pain, swelling, ulceration, and bullae on the legs and were febrile. They underwent surgery and received intensive care support. One of the patients developed septicemia and septic shock; one of his legs was amputated, but the outcome was fatal. The other patient received immediate approptiate antibiotic and surgical treatment, and the outcome was favorable. The third patient underwent emergency fasciotomy but died a few hours after admission. Conclusions: Global climate change is affecting the distribution of Vibrio spp., and their incidence is expected to increase. It is important to highlight the need for awareness among immunocompromised and elderly patients of the potential threat posed by V. vulnificus infections.
Collapse
Affiliation(s)
- Stephanie Radeva
- Microbiology Laboratory, Multidisciplinary Hospital for Active Treatment “Heart and Brain”, 8000 Burgas, Bulgaria
- Department of Microbiology and Virology, Medical University of Varna, 9002 Varna, Bulgaria;
| | - Stoyan Vergiev
- Department of Ecology and Environmental Protection, Technical University of Varna, 9010 Varna, Bulgaria;
| | - Georgi Georgiev
- Anesthesiology and Intensive Care Ward, Multidisciplinary Hospital for Active Treatment “Heart and Brain”, 8000 Burgas, Bulgaria;
| | - Denis Niyazi
- Department of Microbiology and Virology, Medical University of Varna, 9002 Varna, Bulgaria;
- Microbiology Laboratory, University Multidisciplinary Hospital for Active Treatment “St. Marina”, 9010 Varna, Bulgaria
| |
Collapse
|
10
|
Kataržytė M, Gyraitė G, Kalvaitienė G, Vaičiūtė D, Budrytė O, Bučas M. Potentially Pathogenic Vibrio spp. in Algal Wrack Accumulations on Baltic Sea Sandy Beaches. Microorganisms 2024; 12:2101. [PMID: 39458410 PMCID: PMC11509979 DOI: 10.3390/microorganisms12102101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 10/11/2024] [Accepted: 10/14/2024] [Indexed: 10/28/2024] Open
Abstract
The Vibrio bacteria known to cause infections to humans and wildlife have been largely overlooked in coastal environments affected by beach wrack accumulations from seaweed or seagrasses. This study presents findings on the presence and distribution of potentially pathogenic Vibrio species on coastal beaches that are used for recreation and are affected by red-algae-dominated wrack. Using species-specific primers and 16S rRNA gene amplicon sequencing, we identified V. vulnificus, V. cholerae (non-toxigenic), and V. alginolyticus, along with 14 operational taxonomic units (OTUs) belonging to the Vibrio genus in such an environment. V. vulnificus and V. cholerae were most frequently found in water at wrack accumulation sites and within the wrack itself compared to sites without wrack. Several OTUs were exclusive to wrack accumulation sites. For the abundance and presence of V. vulnificus and the presence of V. cholerae, the most important factors in the water were the proportion of V. fucoides in the wrack, chl-a, and CDOM. Specific Vibrio OTUs correlated with salinity, water temperature, cryptophyte, and blue-green algae concentrations. To better understand the role of wrack accumulations in Vibrio abundance and community composition, future research should include different degradation stages of wrack, evaluate the link with nutrient release, and investigate microbial food-web interactions within such ecosystems, focusing on potentially pathogenic Vibrio species that could be harmful both for humans and wildlife.
Collapse
Affiliation(s)
- Marija Kataržytė
- Marine Research Institute, Klaipėda University, University Avenue 17, 92295 Klaipėda, Lithuania; (G.G.); (G.K.); (D.V.); (M.B.)
| | - Greta Gyraitė
- Marine Research Institute, Klaipėda University, University Avenue 17, 92295 Klaipėda, Lithuania; (G.G.); (G.K.); (D.V.); (M.B.)
| | - Greta Kalvaitienė
- Marine Research Institute, Klaipėda University, University Avenue 17, 92295 Klaipėda, Lithuania; (G.G.); (G.K.); (D.V.); (M.B.)
| | - Diana Vaičiūtė
- Marine Research Institute, Klaipėda University, University Avenue 17, 92295 Klaipėda, Lithuania; (G.G.); (G.K.); (D.V.); (M.B.)
| | - Otilija Budrytė
- Marine Research Institute, Klaipėda University, University Avenue 17, 92295 Klaipėda, Lithuania; (G.G.); (G.K.); (D.V.); (M.B.)
- Institute of Agriculture, Lithuanian Research Centre for Agriculture and Forestry, Instituto al. 1, Akademija, 58344 Kėdainiai, Lithuania
| | - Martynas Bučas
- Marine Research Institute, Klaipėda University, University Avenue 17, 92295 Klaipėda, Lithuania; (G.G.); (G.K.); (D.V.); (M.B.)
| |
Collapse
|
11
|
Fernández-Juárez V, Riedinger DJ, Gusmao JB, Delgado-Zambrano LF, Coll-García G, Papazachariou V, Herlemann DPR, Pansch C, Andersson AF, Labrenz M, Riemann L. Temperature, sediment resuspension, and salinity drive the prevalence of Vibrio vulnificus in the coastal Baltic Sea. mBio 2024; 15:e0156924. [PMID: 39297655 PMCID: PMC11481517 DOI: 10.1128/mbio.01569-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 07/31/2024] [Indexed: 10/19/2024] Open
Abstract
The number of Vibrio-related infections in humans, e.g., by Vibrio vulnificus, has increased along the coasts of the Baltic Sea. Due to climate change, vibriosis risk is expected to increase. It is, therefore, pertinent to design a strategy for mitigation of the vibriosis threat in the Baltic Sea area, but a prerequisite is to identify the environmental conditions promoting the occurrence of pathogenic Vibrio spp., like V. vulnificus. To address this, we sampled three coastal Baltic sites in Finland, Germany, and Denmark with salinities between 6 and 21 from May to October 2022. The absolute and relative abundances of Vibrio spp. and V. vulnificus in water were compared to environmental conditions, including the presence of the eelgrass Zostera marina, which has been suggested to reduce pathogenic Vibrio species abundance. In the water column, V. vulnificus only occurred at the German station between July and August at salinity 8.1-11.2. Temperature and phosphate (PO43-) were identified as the most influencing factors for Vibrio spp. and V. vulnificus. The accumulation of Vibrio spp. in the sediment and the co-occurrence with sediment bacteria in the water column indicate that sediment resuspension contributed to V. vulnificus abundance. Interestingly, V. vulnificus co-occurred with specific cyanobacteria taxa, as well as specific bacteria associated with cyanobacteria. Although we found no reduction in Vibrio spp. or V. vulnificus associated with eelgrass beds, our study underscores the importance of extended heatwaves and sediment resuspension, which may elevate the availability of PO43-, for Vibrio species levels at intermediate salinities in the Baltic Sea. IMPORTANCE Elevated sea surface temperatures are increasing the prevalence of pathogenic Vibrio at higher latitudes. The recent increase in Vibrio-related wound infections and deaths along the Baltic coasts is, therefore, of serious health concern. We used culture-independent data generated from three Baltic coastal sites in Denmark, Germany, and Finland from May to October (2022), with a special focus on Vibrio vulnificus, and combined it with environmental data. Our temporal model shows that temperature, combined with sediment resuspension, drives the prevalence of V. vulnificus at intermediate salinities in the coastal Baltic Sea.
Collapse
Affiliation(s)
- Víctor Fernández-Juárez
- Marine Biological Section, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - David J. Riedinger
- Department of Biological Oceanography, Leibniz Institute for Baltic Sea Research Warnemünde (IOW), Rostock, Germany
| | - Joao Bosco Gusmao
- Environmental and Marine Biology, Åbo Akademi University, Turku, Finland
| | | | - Guillem Coll-García
- Marine Biological Section, Department of Biology, University of Copenhagen, Copenhagen, Denmark
- Microbiology, Biology Department, University of the Balearic Islands, Palma de Mallorca, Spain
- Environmental Microbiology Group, Mediterranean Institute for Advanced Studies (CSIC-UIB), Esporles, Spain
| | - Vasiliki Papazachariou
- Marine Biological Section, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Daniel P. R. Herlemann
- Department of Biological Oceanography, Leibniz Institute for Baltic Sea Research Warnemünde (IOW), Rostock, Germany
- Estonian University of Life Sciences, Tartu, Estonia
| | - Christian Pansch
- Environmental and Marine Biology, Åbo Akademi University, Turku, Finland
| | - Anders F. Andersson
- Science for Life Laboratory, Department of Gene Technology, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Matthias Labrenz
- Department of Biological Oceanography, Leibniz Institute for Baltic Sea Research Warnemünde (IOW), Rostock, Germany
| | - Lasse Riemann
- Marine Biological Section, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
12
|
Marino A, Cacopardo B, Villa L, D'Emilio A, Piro S, Nunnari G. Think Vibrio, Think Rare: Non-O1-Non-O139- Vibrio cholerae Bacteremia in Advanced Lung Cancer-A Case Report. Trop Med Infect Dis 2024; 9:224. [PMID: 39330913 PMCID: PMC11436073 DOI: 10.3390/tropicalmed9090224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 09/19/2024] [Accepted: 09/20/2024] [Indexed: 09/28/2024] Open
Abstract
Vibrio cholerae, a Gram-negative bacterium, is widely known as the cause of cholera, an acute diarrheal disease. While only certain strains are capable of causing cholera, non-O1/non-O139 V. cholerae strains (NOVC) can lead to non-pathogenic colonization or mild illnesses such as gastroenteritis. In immunocompromised patients, however, NOVC can cause severe infections, including rare cases of bacteremia, especially in those with underlying conditions like liver disease, hematologic disorders, and malignancies. This case report presents a rare instance of NOVC bacteremia in a 71-year-old patient with advanced lung cancer, illustrating the clinical presentation, diagnostic challenges, and treatment interventions required. The patient presented with fever, asthenia, and confusion, and was found to have bacteremia caused by NOVC, confirmed through blood cultures and molecular analysis. Treatment with intravenous ceftriaxone and ciprofloxacin led to a rapid clinical improvement and resolution of the infection. This case, along with an overview of similar incidents, underscores the importance of considering NOVC in differential diagnoses for immunocompromised patients presenting with fever, and highlights the necessity of timely diagnosis and targeted antimicrobial therapy to achieve favorable outcomes.
Collapse
Affiliation(s)
- Andrea Marino
- Department of Clinical and Experimental Medicine, Unit of Infectious Diseases, ARNAS Garibaldi Hospital, University of Catania, 95122 Catania, Italy
| | - Bruno Cacopardo
- Department of Clinical and Experimental Medicine, Unit of Infectious Diseases, ARNAS Garibaldi Hospital, University of Catania, 95122 Catania, Italy
| | - Laura Villa
- Department of Infectious Diseases, Istituto Superiore di Sanità, 00161 Rome, Italy
| | - Adriana D'Emilio
- Clinical Pathology and Clinical Molecular Biology Unit, "Garibaldi Centro" Hospital, ARNAS Garibaldi, 95122 Catania, Italy
| | - Salvatore Piro
- Department of Clinical and Experimental Medicine, University of Catania, 95122 Catania, Italy
| | - Giuseppe Nunnari
- Department of Clinical and Experimental Medicine, Unit of Infectious Diseases, ARNAS Garibaldi Hospital, University of Catania, 95122 Catania, Italy
| |
Collapse
|
13
|
Haque F, Lampe FC, Hajat S, Stavrianaki K, Hasan SMT, Faruque ASG, Ahmed T, Jubayer S, Kelman I. Is heat wave a predictor of diarrhoea in Dhaka, Bangladesh? A time-series analysis in a South Asian tropical monsoon climate. PLOS GLOBAL PUBLIC HEALTH 2024; 4:e0003629. [PMID: 39226251 PMCID: PMC11371214 DOI: 10.1371/journal.pgph.0003629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 07/29/2024] [Indexed: 09/05/2024]
Abstract
While numerous studies have assessed the association between temperature and diarrhoea in various locations, evidence of relationship between heat wave and diarrhoea is scarce. We defined elevated daily mean and maximum temperature over the 95th and 99th percentiles lasting for at least one day between March to October 1981-2010 as TAV95 and TAV99 and D95 and D99 heat wave, respectively. We investigated the association between heat wave and daily counts of hospitalisations for all-cause diarrhoea in Dhaka, Bangladesh using time series regression analysis employing constrained distributed lag-linear models. Effects were assessed for all ages and children aged under 5 years of age. Diarrhoea hospitalisation increased by 6.7% (95% CI: 4.6%- 8.9%), 8.3% (3.7-13.1), 7.0 (4.8-9.3) and 7.4 (3.1-11.9) in all ages on a TAV95, TAV99, D95 and D99 heat wave day, respectively. These effects were more pronounced for under-5 children with an increase of 13.9% (95% CI: 8.3-19.9), 24.2% (11.3-38.7), 17.0 (11.0-23.5) and 19.5 (7.7-32.6) in diarrhoea hospitalisations on a TAV95, TAV99, D95 and D99 heat wave day, respectively. At lags of 3 days, we noticed a negative association indicating a 'harvesting' effect. Our findings suggest that heat wave was a significant risk factor for diarrhoea hospitalisation in Dhaka. Further research is needed to elucidate the causal pathways and identify the preventive measures necessary to mitigate the impacts of heat waves on diarrhoea. Given that no heat wave definitions exist for Dhaka, these results may help to define heat waves for Dhaka and trigger public health interventions including heat alerts to prevent heat-related morbidity in Dhaka, Bangladesh.
Collapse
Affiliation(s)
- Farhana Haque
- Institute for Global Health (IGH), University College London (UCL), London, United Kingdom
- UK Public Health Rapid Support Team (UK-PHRST), Department of Infectious Disease Epidemiology, London School of Hygiene and Tropical Medicine (LSHTM), London, United Kingdom
| | - Fiona C. Lampe
- Institute for Global Health (IGH), University College London (UCL), London, United Kingdom
| | - Shakoor Hajat
- Department of Public Health, Environments and Society, London School of Hygiene and Tropical Medicine (LSHTM), London, United Kingdom
| | - Katerina Stavrianaki
- Department of Statistical Science, Department of Risk and Disaster Reduction, University College London (UCL), London, United Kingdom
| | | | - A. S. G. Faruque
- Nutrition and Clinical Services Division, icddr,b, Dhaka, Bangladesh
| | - Tahmeed Ahmed
- Nutrition and Clinical Services Division, icddr,b, Dhaka, Bangladesh
| | - Shamim Jubayer
- National Heart Foundation Hospital and Research Institute (NHF&RI), Dhaka, Bangladesh
| | - Ilan Kelman
- Department of Risk and Disaster Reduction, Institute for Global Health (IGH), University College London (UCL), London, United Kingdom
- University of Agder, Kristiansand, Norway
| |
Collapse
|
14
|
Manchal N, Young MK, Castellanos ME, Leggat P, Adegboye O. A systematic review and meta-analysis of ambient temperature and precipitation with infections from five food-borne bacterial pathogens. Epidemiol Infect 2024; 152:e98. [PMID: 39168633 PMCID: PMC11736460 DOI: 10.1017/s0950268824000839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 04/18/2024] [Accepted: 05/20/2024] [Indexed: 08/23/2024] Open
Abstract
Studies on climate variables and food pathogens are either pathogen- or region-specific, necessitating a consolidated view on the subject. This study aims to systematically review all studies on the association of ambient temperature and precipitation on the incidence of gastroenteritis and bacteraemia from Salmonella, Shigella, Campylobacter, Vibrio, and Listeria species. PubMed, Ovid MEDLINE, Scopus, and Web of Science databases were searched up to 9 March 2023. We screened 3,204 articles for eligibility and included 83 studies in the review and three in the meta-analysis. Except for one study on Campylobacter, all showed a positive association between temperature and Salmonella, Shigella, Vibrio sp., and Campylobacter gastroenteritis. Similarly, most of the included studies showed that precipitation was positively associated with these conditions. These positive associations were found regardless of the effect measure chosen. The pooled incidence rate ratio (IRR) for the three studies that included bacteraemia from Campylobacter and Salmonella sp. was 1.05 (95 per cent confidence interval (95% CI): 1.03, 1.06) for extreme temperature and 1.09 (95% CI: 0.99, 1.19) for extreme precipitation. If current climate trends continue, our findings suggest these pathogens would increase patient morbidity, the need for hospitalization, and prolonged antibiotic courses.
Collapse
Affiliation(s)
- Naveen Manchal
- Public Health and Tropical Medicine, College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, QLD, Australia
| | - Megan K. Young
- Metro North Public Health Unit, Metro North Hospital and Health Service, Brisbane, Australia
- School of Medicine and Dentistry, Griffith University, Gold Coast, Australia
- Faculty of Medicine, School of Public Health, University of Queensland, Brisbane, QLD, Australia
| | - Maria Eugenia Castellanos
- Public Health and Tropical Medicine, College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, QLD, Australia
- Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, QLD, Australia
- World Health Organization Collaborating Centre for Vector-Borne and Neglected Tropical Diseases, James Cook University, Townsville, QLD, Australia
| | - Peter Leggat
- Public Health and Tropical Medicine, College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, QLD, Australia
- Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, QLD, Australia
- World Health Organization Collaborating Centre for Vector-Borne and Neglected Tropical Diseases, James Cook University, Townsville, QLD, Australia
- School of Public Health, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Oyelola Adegboye
- Public Health and Tropical Medicine, College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, QLD, Australia
- Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, QLD, Australia
- World Health Organization Collaborating Centre for Vector-Borne and Neglected Tropical Diseases, James Cook University, Townsville, QLD, Australia
- Menzies School of Health Research, Charles Darwin University, Darwin, NT, Australia
| |
Collapse
|
15
|
EFSA Panel on Biological Hazards (BIOHAZ), Koutsoumanis K, Allende A, Alvarez‐Ordóñez A, Bolton D, Bover‐Cid S, Chemaly M, De Cesare A, Herman L, Hilbert F, Lindqvist R, Nauta M, Nonno R, Peixe L, Ru G, Simmons M, Skandamis P, Baker‐Austin C, Hervio‐Heath D, Martinez‐Urtaza J, Caro ES, Strauch E, Thébault A, Guerra B, Messens W, Simon AC, Barcia‐Cruz R, Suffredini E. Public health aspects of Vibrio spp. related to the consumption of seafood in the EU. EFSA J 2024; 22:e8896. [PMID: 39045511 PMCID: PMC11263920 DOI: 10.2903/j.efsa.2024.8896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2024] Open
Abstract
Vibrio parahaemolyticus, Vibrio vulnificus and non-O1/non-O139 Vibrio cholerae are the Vibrio spp. of highest relevance for public health in the EU through seafood consumption. Infection with V. parahaemolyticus is associated with the haemolysins thermostable direct haemolysin (TDH) and TDH-related haemolysin (TRH) and mainly leads to acute gastroenteritis. V. vulnificus infections can lead to sepsis and death in susceptible individuals. V. cholerae non-O1/non-O139 can cause mild gastroenteritis or lead to severe infections, including sepsis, in susceptible individuals. The pooled prevalence estimate in seafood is 19.6% (95% CI 13.7-27.4), 6.1% (95% CI 3.0-11.8) and 4.1% (95% CI 2.4-6.9) for V. parahaemolyticus, V. vulnificus and non-choleragenic V. cholerae, respectively. Approximately one out of five V. parahaemolyticus-positive samples contain pathogenic strains. A large spectrum of antimicrobial resistances, some of which are intrinsic, has been found in vibrios isolated from seafood or food-borne infections in Europe. Genes conferring resistance to medically important antimicrobials and associated with mobile genetic elements are increasingly detected in vibrios. Temperature and salinity are the most relevant drivers for Vibrio abundance in the aquatic environment. It is anticipated that the occurrence and levels of the relevant Vibrio spp. in seafood will increase in response to coastal warming and extreme weather events, especially in low-salinity/brackish waters. While some measures, like high-pressure processing, irradiation or depuration reduce the levels of Vibrio spp. in seafood, maintaining the cold chain is important to prevent their growth. Available risk assessments addressed V. parahaemolyticus in various types of seafood and V. vulnificus in raw oysters and octopus. A quantitative microbiological risk assessment relevant in an EU context would be V. parahaemolyticus in bivalve molluscs (oysters), evaluating the effect of mitigations, especially in a climate change scenario. Knowledge gaps related to Vibrio spp. in seafood and aquatic environments are identified and future research needs are prioritised.
Collapse
|
16
|
Zhang Q, Alter T, Strauch E, Eichhorn I, Borowiak M, Deneke C, Fleischmann S. German coasts harbor non-O1/non-O139 Vibrio cholerae with clinical virulence gene profiles. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2024; 120:105587. [PMID: 38518953 DOI: 10.1016/j.meegid.2024.105587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 03/05/2024] [Accepted: 03/19/2024] [Indexed: 03/24/2024]
Abstract
Non-O1/non-O139 Vibrio cholerae (NOVC) are ubiquitous in aquatic ecosystems. In rare cases, they can cause intestinal and extra-intestinal infections in human. This ability is associated with various virulence factors. The presence of NOVC in German North Sea and Baltic Sea was observed in previous studies. However, data on virulence characteristics are still scarce. Therefore, this work aimed to investigating the virulence potential of NOVC isolated in these two regions. In total, 31 NOVC strains were collected and subjected to whole genome sequencing. In silico analysis of the pathogenic potential was performed based on the detection of genes involved in colonization and virulence. Phenotypic assays, including biofilm formation, mobility and human serum resistance assays were applied for validation. Associated toxin genes (hlyA, rtxA, chxA and stn), pathogenicity islands (Vibrio pathogenicity island 2 (VPI-II) and Vibrio seventh pathogenicity island 2 (VSP-II)) and secretion systems (Type II, III and VI secretion system) were observed. A maximum likelihood analysis from shared core genes revealed a close relationship between clinical NOVCs published in NCBI and environmental strains from this study. NOVC strains are more mobile at 37 °C than at 25 °C, and 68% of the NOVC strains could form strong biofilms at both temperatures. All tested strains were able to lyse erythrocytes from both human and sheep blood. Additionally, one strain could survive up to 60% and seven strains up to 40% human serum at 37 °C. Overall, the genetic virulence profile as well as the phenotypic virulence characteristics of the investigated NOVC from the German North Sea and Baltic Sea suggest potential human pathogenicity.
Collapse
Affiliation(s)
- Quantao Zhang
- School of Veterinary Medicine, Institute of Food Safety and Food Hygiene, Freie Universität Berlin, Königsweg 69, 14163 Berlin, Germany.
| | - Thomas Alter
- School of Veterinary Medicine, Institute of Food Safety and Food Hygiene, Freie Universität Berlin, Königsweg 69, 14163 Berlin, Germany.
| | - Eckhard Strauch
- Department of Biological Safety, German Federal Institute for Risk Assessment, Diedersdorfer Weg 1, 12277 Berlin, Germany.
| | - Inga Eichhorn
- School of Veterinary Medicine, Institute of Microbiology and Epizootics, Freie Universität Berlin, Robert-von-Ostertag-Straße 7-13, 14163 Berlin, Germany; Robert Koch Institute, Genome Competence Centre (MF1), Seestraße 10, 13353 Berlin, Germany.
| | - Maria Borowiak
- Department of Biological Safety, German Federal Institute for Risk Assessment, Diedersdorfer Weg 1, 12277 Berlin, Germany.
| | - Carlus Deneke
- Department of Biological Safety, German Federal Institute for Risk Assessment, Diedersdorfer Weg 1, 12277 Berlin, Germany.
| | - Susanne Fleischmann
- School of Veterinary Medicine, Institute of Food Safety and Food Hygiene, Freie Universität Berlin, Königsweg 69, 14163 Berlin, Germany.
| |
Collapse
|
17
|
Basic A, Blomqvist S, Charalampakis G, Dahlén G. Antibiotic resistance among Aerobic Gram-Negative Bacilli isolated from patients with oral inflammatory dysbiotic conditions-a retrospective study. FRONTIERS IN DENTAL MEDICINE 2024; 5:1293202. [PMID: 39935966 PMCID: PMC11811782 DOI: 10.3389/fdmed.2024.1293202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 02/19/2024] [Indexed: 02/13/2025] Open
Abstract
Introduction Aerobic gram-negative bacilli (AGNB) are not part of the resident oral microflora but are occasionally found in high abundance under inflammatory dysbiotic conditions at various oral niches. The aim of the present study was to investigate the identity and antibiotic susceptibility of AGNB isolated from patients in Sweden with mucosal lesions, periodontitis, and peri-implantitis, with special attention to antibiotic resistance and on the presence of phenotypic Extended Spectrum Beta-Lactamase (ESBL) isolates. Materials and methods Microbiolgical samples were harvested from 211 patients in total, experiencing mucosal lesions (N = 113), periodontitis (N = 62), or peri-implantitis (N = 36). The growth of AGNBs was semiquantified by selective and non-selective culture and the strains were isolated, identified, and tested for antibiotic susceptibility. A total of 251 AGNB strains, occurring in moderate to heavy growth (>100 CFU/ml sample), indicating a dysbiotic microbiota, were identified. The disc diffusion method was used for screening of the antibiotic susceptibility of the isolates. Phenotypic identification of ESBL isolates was based on resistance to ceftazidime and/or cefotaxime. Results The most commonly detected AGNB isolates in oral inflammatory dysbiotic conditions were fermentative species belonging to Enterobacteriaceae e.g. Citrobacter spp., Enterobacter spp., Escherichia coli, Klebsiella spp, and the non-fermentative environmental Burkholderia cepacia, Pseudomonas spp., and Stenotrophomonas maltophilia. No clear trends were seen in frequency of the various species in samples from mucosal lesions, severe periodontitis, and peri-implantitis cases. The 138 Enterobacteriaceae isolates and 113 environmental AGNB isolated showed a high antibiotic resistance in general against antibiotics commonly used in dentistry (Amoxicillin, Amoxicillin + Clavulanic acid, Ampicillin, Clindamycin, Doxycycline, Erythromycin, Oxacillin, PenicillinV, and Tetracycline). The majority of these isolates were susceptible to ciprofloxacin. Ten isolates (4.1%) were phenotypically classified as ESBL positive. The ESBL isolates were predominantly found among isolates of S. maltophilia, while only one ESBL positive isolate was found among Enterobacteriaceae. Conclusions Phenotypically identified ESBL isolates can occasionally be present among oral AGNB strains isolated in abundance from the dysbiotic microbiota occurring in cases with oral mucosal lesions, severe periodontitis, or peri-implantitis.
Collapse
Affiliation(s)
| | | | | | - G. Dahlén
- Department of Oral Microbiology and Immunology, Institute of Odontology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
18
|
Morgado ME, Brumfield KD, Mitchell C, Boyle MM, Colwell RR, Sapkota AR. Increased incidence of vibriosis in Maryland, U.S.A., 2006-2019. ENVIRONMENTAL RESEARCH 2024; 244:117940. [PMID: 38101724 PMCID: PMC10922380 DOI: 10.1016/j.envres.2023.117940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 11/30/2023] [Accepted: 12/11/2023] [Indexed: 12/17/2023]
Abstract
BACKGROUND Vibrio spp. naturally occur in warm water with moderate salinity. Infections with non-cholera Vibrio (vibriosis) cause an estimated 80,000 illnesses and 100 fatalities each year in the United States. Climate associated changes to environmental parameters in aquatic ecosystems are largely promoting Vibrio growth, and increased incidence of vibriosis is being reported globally. However, vibriosis trends in the northeastern U.S. (e.g., Maryland) have not been evaluated since 2008. METHODS Vibriosis case data for Maryland (2006-2019; n = 611) were obtained from the COVIS database. Incidence rates were calculated using U.S. Census Bureau population estimates for Maryland. A logistic regression model, including region, age group, race, gender, occupation, and exposure type, was used to estimate the likelihood of hospitalization. RESULTS Comparing the 2006-2012 and 2013-2019 periods, there was a 39% (p = 0.01) increase in the average annual incidence rate (per 100,000 population) of vibriosis, with V. vulnificus infections seeing the greatest percentage increase (53%, p = 0.01), followed by V. parahaemolyticus (47%, p = 0.05). The number of hospitalizations increased by 58% (p = 0.01). Since 2010, there were more reported vibriosis cases with a hospital duration ≥10 days. Patients from the upper eastern shore region and those over the age of 65 were more likely (OR = 6.8 and 12.2) to be hospitalized compared to other patients. CONCLUSIONS Long-term increases in Vibrio infections, notably V. vulnificus wound infections, are occurring in Maryland. This trend, along with increased rates in hospitalizations and average hospital durations, underscore the need to improve public awareness, water monitoring, post-harvest seafood interventions, and environmental forecasting ability.
Collapse
Affiliation(s)
- Michele E Morgado
- Maryland Institute for Applied Environmental Health, University of Maryland School of Public Health, College Park, MD, USA
| | - Kyle D Brumfield
- Maryland Pathogen Research Institute, University of Maryland, College Park, MD, USA; University of Maryland Institute for Advanced Computer Studies, University of Maryland, College Park, MD, USA
| | - Clifford Mitchell
- Prevention and Health Promotion Administration, Maryland Department of Health, Baltimore, MD, USA
| | - Michelle M Boyle
- Prevention and Health Promotion Administration, Maryland Department of Health, Baltimore, MD, USA
| | - Rita R Colwell
- Maryland Pathogen Research Institute, University of Maryland, College Park, MD, USA; University of Maryland Institute for Advanced Computer Studies, University of Maryland, College Park, MD, USA
| | - Amy R Sapkota
- Maryland Institute for Applied Environmental Health, University of Maryland School of Public Health, College Park, MD, USA.
| |
Collapse
|
19
|
Wang Y, Hou Y, Liu X, Lin N, Dong Y, Liu F, Xia W, Zhao Y, Xing W, Chen J, Chen C. Rapid visual nucleic acid detection of Vibrio alginolyticus by recombinase polymerase amplification combined with CRISPR/Cas13a. World J Microbiol Biotechnol 2023; 40:51. [PMID: 38146036 DOI: 10.1007/s11274-023-03847-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 11/18/2023] [Indexed: 12/27/2023]
Abstract
Vibrio alginolyticus (V. alginolyticus) is a common pathogen in the ocean. In addition to causing serious economic losses in aquaculture, it can also infect humans. The rapid detection of nucleic acids of V. alginolyticus with high sensitivity and specificity in the field is very important for the diagnosis and treatment of infection caused by V. alginolyticus. Here, we established a simple, fast and effective molecular method for the identification of V. alginolyticus that does not rely on expensive instruments and professionals. The method integrates recombinase polymerase amplification (RPA) technology with CRISPR system in a single PCR tube. Using this method, the results can be visualized by lateral flow dipstick (LFD) in less than 50 min, we named this method RPA-CRISPR/Cas13a-LFD. The method was confirmed to achieve high specificity for the detection of V. alginolyticus with no cross-reactivity with similar Vibrio and common clinical pathogens. This diagnostic method shows high sensitivity; the detection limit of the RPA-CRISPR/Cas13a-LFD is 10 copies/µL. We successfully identified 35 V. alginolyticus strains from a total of 55 different bacterial isolates and confirmed their identity by (Matrix-assisted laser desorption ionization time-of-flight mass spectrometry, MALDI-TOF MS). We also applied this method on infected mice blood, and the results were both easily and rapidly obtained. In conclusion, RPA-CRISPR/Cas13a-LFD offers great potential as a useful tool for reliable and rapid diagnosis of V. alginolyticus infection, especially in limited conditions.
Collapse
Affiliation(s)
- Yanan Wang
- Department of Clinical Laboratory, The Six Medical Center of PLA General Hospital, No. 6 Fucheng Road, Beijing, 100048, China
- Hebei North University, Zhangjiakou, Hebei, China
| | - Yachao Hou
- Department of Clinical Laboratory, The Six Medical Center of PLA General Hospital, No. 6 Fucheng Road, Beijing, 100048, China
- Hebei North University, Zhangjiakou, Hebei, China
| | - Xinping Liu
- Department of Clinical Laboratory, The Six Medical Center of PLA General Hospital, No. 6 Fucheng Road, Beijing, 100048, China
| | - Na Lin
- Institute of Clinical Laboratory, The 900Th Hospital, Xiamen University, Fuzhou, China
| | - Youyou Dong
- Department of Clinical Laboratory, The Six Medical Center of PLA General Hospital, No. 6 Fucheng Road, Beijing, 100048, China
| | - Fei Liu
- Institute of Clinical Laboratory, The 900Th Hospital, Xiamen University, Fuzhou, China
| | - Wenrong Xia
- Bei Jing Institute of Basic Medical Sciences, Beijing, China
| | - Yongqi Zhao
- Bei Jing Institute of Basic Medical Sciences, Beijing, China
| | - Weiwei Xing
- Bei Jing Institute of Basic Medical Sciences, Beijing, China.
| | - Jin Chen
- Institute of Clinical Laboratory, The 900Th Hospital, Xiamen University, Fuzhou, China.
- Institute of Clinical Medicine, The Second Affiliated Hospital of Hainan Medical University, Haikou, China.
| | - Changguo Chen
- Department of Clinical Laboratory, The Six Medical Center of PLA General Hospital, No. 6 Fucheng Road, Beijing, 100048, China.
| |
Collapse
|
20
|
Schmidt K, Scholz HC, Appelt S, Michel J, Jacob D, Dupke S. Virulence and resistance patterns of Vibrio cholerae non-O1/non-O139 acquired in Germany and other European countries. Front Microbiol 2023; 14:1282135. [PMID: 38075873 PMCID: PMC10703170 DOI: 10.3389/fmicb.2023.1282135] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 10/30/2023] [Indexed: 01/25/2025] Open
Abstract
Global warming has caused an increase in the emergence of Vibrio species in marine and estuarine environments as well as fresh water bodies. Over the past decades, antimicrobial resistance (AMR) has evolved among Vibrio species toward various antibiotics commonly used for the treatment of Vibrio infections. In this study, we assessed virulence and resistance patterns of Vibrio cholerae non-O1/non-O139 strains derived from Germany and other European countries. A total of 63 clinical and 24 environmental Vibrio cholerae non-O1/non-O139 strains, collected between 2011 and 2021, were analyzed. In silico antibiotic resistances were compared with resistance phenotypes according to EUCAST breakpoints. Additionally, genetic relatedness between isolates was assessed by two cgMLST schemes (SeqSphere +, pubMLST). Both cgMLST schemes yielded similar results, indicating high genetic diversity among V. cholerae non-O1/non-O139 isolates. Some isolates were found to be genetically closely related (allelic distance < 20), which suggests an epidemiological link. Thirty-seven virulence genes (VGs) were identified among 87 V. cholerae non-O1/non-O139 isolates, which resulted in 38 virulence profiles (VPs). VPs were similar between clinical and environmental isolates, with the exception of one clinical isolate that displayed a higher abundance of VGs. Also, a cluster of 11 environmental isolates was identified to have the lowest number of VGs. Among all strains, the predominant virulence factors were quorum sensing protein (luxS), repeats-in-toxins (rtxC/rtxD), hemolysin (hlyA) and different type VI secretion systems (T6SS) genes. The genotypic profiles revealed antibiotic resistance genes (ARGs) associated with resistance to beta-lactams, quinolones, macrolides, tetracycline, antifolate, aminoglycosides, fosfomycin, phenicols and sulfonamide. Carbapenemase gene VCC-1 was detected in 10 meropenem-resistant V. cholerae non-O1/non-O139 isolates derived from surface water in Germany. The proportion of resistance among V. cholerae non-O1/non-O139 species isolates against first line treatment (3rd generation cephalosporin, tetracycline and fluoroquinolone) was low. Empirical treatment would likely have been effective for all of the clinical V. cholerae non-O1/non-O139 isolates examined. Nevertheless, carbapenem-resistant isolates have been present in fresh water in Germany and might represent a reservoir for ARGs. Monitoring antimicrobial resistance is crucial for public health authorities to minimize the risks for the human population.
Collapse
Affiliation(s)
- Katarzyna Schmidt
- Mycotic and Parasitic Agents and Mycobacteria, Robert Koch Institute, Berlin, Germany
- ECDC Fellowship Programme, Public Health Microbiology Path (EUPHEM), European Centre for Disease Prevention and Control (ECDC), Stockholm, Sweden
| | - Holger C Scholz
- Centre for Biological Threats and Special Pathogens, Highly Pathogenic Microorganisms (ZBS 2), Robert Koch Institute, Berlin, Germany
| | - Sandra Appelt
- Centre for Biological Threats and Special Pathogens, Highly Pathogenic Microorganisms (ZBS 2), Robert Koch Institute, Berlin, Germany
| | - Jana Michel
- Centre for Biological Threats and Special Pathogens, Highly Pathogenic Microorganisms (ZBS 2), Robert Koch Institute, Berlin, Germany
| | - Daniela Jacob
- Centre for Biological Threats and Special Pathogens, Highly Pathogenic Microorganisms (ZBS 2), Robert Koch Institute, Berlin, Germany
| | - Susann Dupke
- Centre for Biological Threats and Special Pathogens, Highly Pathogenic Microorganisms (ZBS 2), Robert Koch Institute, Berlin, Germany
| |
Collapse
|
21
|
Rehm C, Kolm C, Pleininger S, Heger F, Indra A, Reischer GH, Farnleitner AAH, Kirschner AKT. Vibrio cholerae-An emerging pathogen in Austrian bathing waters? Wien Klin Wochenschr 2023; 135:597-608. [PMID: 37530997 PMCID: PMC10651712 DOI: 10.1007/s00508-023-02241-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 06/11/2023] [Indexed: 08/03/2023]
Abstract
Vibrio cholerae, an important human pathogen, is naturally occurring in specific aquatic ecosystems. With very few exceptions, only the cholera-toxigenic strains belonging to the serogroups O1 and O139 are responsible for severe cholera outbreaks with epidemic or pandemic potential. All other nontoxigenic, non-O1/non-O139 V. cholerae (NTVC) strains may cause various other diseases, such as mild to severe infections of the ears, of the gastrointestinal and urinary tracts as well as wound and bloodstream infections. Older, immunocompromised people and patients with specific preconditions have an elevated risk. In recent years, worldwide reports demonstrated that NTVC infections are on the rise, caused amongst others by elevated water temperatures due to global warming.The aim of this review is to summarize the knowledge gained during the past two decades on V. cholerae infections and its occurrence in bathing waters in Austria, with a special focus on the lake Neusiedler See. We investigated whether NTVC infections have increased and which specific environmental conditions favor the occurrence of NTVC. We present an overview of state of the art methods that are currently available for clinical and environmental diagnostics. A preliminary public health risk assessment concerning NTVC infections related to the Neusiedler See was established. In order to raise awareness of healthcare professionals for NTVC infections, typical symptoms, possible treatment options and the antibiotic resistance status of Austrian NTVC isolates are discussed.
Collapse
Affiliation(s)
- Carmen Rehm
- Division Water Quality and Health, Karl-Landsteiner University of Health Sciences, Krems, Austria
- Institute for Hygiene and Applied Immunology - Water Microbiology, Medical University Vienna, Vienna, Austria
- Interuniversity Cooperation Centre Water & Health
| | - Claudia Kolm
- Division Water Quality and Health, Karl-Landsteiner University of Health Sciences, Krems, Austria
- Interuniversity Cooperation Centre Water & Health
- Institute for Chemical, Environmental and Bioscience Engineering, Research Group Microbiology and Molecular Diagnostics 166/5/3, Technische Universität Wien, Vienna, Austria
| | - Sonja Pleininger
- Institute for Medical Microbiology and Hygiene, National Reference Centre for Vibrio cholerae, Austrian Agency for Health and Food Safety (AGES), Vienna, Austria
| | - Florian Heger
- Institute for Medical Microbiology and Hygiene, National Reference Centre for Vibrio cholerae, Austrian Agency for Health and Food Safety (AGES), Vienna, Austria
| | - Alexander Indra
- Institute for Medical Microbiology and Hygiene, National Reference Centre for Vibrio cholerae, Austrian Agency for Health and Food Safety (AGES), Vienna, Austria
- Paracelsus Medical University Salzburg, Salzburg, Austria
| | - Georg H Reischer
- Interuniversity Cooperation Centre Water & Health
- Institute for Chemical, Environmental and Bioscience Engineering, Research Group Microbiology and Molecular Diagnostics 166/5/3, Technische Universität Wien, Vienna, Austria
| | - Andreas A H Farnleitner
- Division Water Quality and Health, Karl-Landsteiner University of Health Sciences, Krems, Austria
- Interuniversity Cooperation Centre Water & Health
- Institute for Chemical, Environmental and Bioscience Engineering, Research Group Microbiology and Molecular Diagnostics 166/5/3, Technische Universität Wien, Vienna, Austria
| | - Alexander K T Kirschner
- Division Water Quality and Health, Karl-Landsteiner University of Health Sciences, Krems, Austria.
- Institute for Hygiene and Applied Immunology - Water Microbiology, Medical University Vienna, Vienna, Austria.
- Interuniversity Cooperation Centre Water & Health, .
| |
Collapse
|
22
|
Sacheli R, Philippe C, Meex C, Mzougui S, Melin P, Hayette MP. Occurrence of Vibrio spp. in Selected Recreational Water Bodies in Belgium during 2021 Bathing Season. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:6932. [PMID: 37887670 PMCID: PMC10606296 DOI: 10.3390/ijerph20206932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 10/11/2023] [Accepted: 10/12/2023] [Indexed: 10/28/2023]
Abstract
In recent years, a global increase in the number of reports of human vibriosis involving V. cholerae non-O1/O139 (NOVC) and other Vibrio spp. has been observed. In this context, the Belgian National Reference Center for Vibrio conducted an assessment of the presence of Vibrio spp. in recreational waters. Water sampling was performed monthly in different lakes in Wallonia and Flanders, including the North Sea. The collected water was then filtrated and cultured, and Vibrio spp. was quantified according to the Most Probable Number (MPN). Presumptive colonies were confirmed via MALDI-TOF, and PCR for virulence genes was applied if justified. No Vibrio spp. was found in the analyzed water bodies in Wallonia. However, NOVC was isolated from three different lakes in Flanders and from coastal water. In addition, V. alginolyticus and V. parahaemolyticus were also detected in coastal water. No clear impact of the pH and temperature was observed on Vibrio spp. occurrence. Our study demonstrates the presence of Vibrio spp. in different bathing water bodies, mostly in the north of Belgium, and supports the recommendation to include Vibrio spp. as a water quality indicator for bathing water quality assessment to ensure the safety of water recreational users in Belgium.
Collapse
Affiliation(s)
- Rosalie Sacheli
- Department of Clinical Microbiology, Belgian National Reference Center Vibrio cholerae and Vibrio parahaemolyticus, Center for Interdisciplinary Research on Medicines (CIRM), University Hospital of Liege, 4000 Liège, Belgium; (C.P.); (C.M.); (S.M.); (P.M.); (M.-P.H.)
| | | | | | | | | | | |
Collapse
|
23
|
Alam MT, Stern SR, Frison D, Taylor K, Tagliamonte MS, Nazmus SS, Paisie T, Hilliard NB, Jones RG, Iovine NM, Cherabuddi K, Mavian C, Myers P, Salemi M, Ali A, Morris JG. Seafood-Associated Outbreak of ctx-Negative Vibrio mimicus Causing Cholera-Like Illness, Florida, USA. Emerg Infect Dis 2023; 29:2141-2144. [PMID: 37735754 PMCID: PMC10521627 DOI: 10.3201/eid2910.230486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/23/2023] Open
Abstract
Vibrio mimicus caused a seafood-associated outbreak in Florida, USA, in which 4 of 6 case-patients were hospitalized; 1 required intensive care for severe diarrhea. Strains were ctx-negative but carried genes for other virulence determinants (hemolysin, proteases, and types I-IV and VI secretion systems). Cholera toxin-negative bacterial strains can cause cholera-like disease.
Collapse
Affiliation(s)
| | | | - Devin Frison
- University of Florida Emerging Pathogens Institute, Gainesville, Florida, USA (M.T. Alam, M.S. Tagliamonte, S.N. Sakib, T. Paisie, C. Mavian, M. Salemi, A. Ali, J.G Morris, Jr.)
- University of Florida College of Public Health and Health Professions, Gainesville (M.T. Alam, S.S. Nazmus, A. Ali)
- University of Florida College of Medicine, Gainesville (S.R. Stern, K. Taylor, M.S. Tagliamonte, T. Paisie, R.G. Jones, N.M. Iovine, K. Cherabuddi, C. Mavian, M. Salemi, J.G. Morris, Jr.)
- Florida Department of Health in Alachua County, Gainesville (D. Frison, P. Myers)
- University of Florida Health and Shands Hospital, Gainesville (N.B. Hilliard, N.M. Iovine, K. Cherabuddi)
| | - Katie Taylor
- University of Florida Emerging Pathogens Institute, Gainesville, Florida, USA (M.T. Alam, M.S. Tagliamonte, S.N. Sakib, T. Paisie, C. Mavian, M. Salemi, A. Ali, J.G Morris, Jr.)
- University of Florida College of Public Health and Health Professions, Gainesville (M.T. Alam, S.S. Nazmus, A. Ali)
- University of Florida College of Medicine, Gainesville (S.R. Stern, K. Taylor, M.S. Tagliamonte, T. Paisie, R.G. Jones, N.M. Iovine, K. Cherabuddi, C. Mavian, M. Salemi, J.G. Morris, Jr.)
- Florida Department of Health in Alachua County, Gainesville (D. Frison, P. Myers)
- University of Florida Health and Shands Hospital, Gainesville (N.B. Hilliard, N.M. Iovine, K. Cherabuddi)
| | - Massimiliano S. Tagliamonte
- University of Florida Emerging Pathogens Institute, Gainesville, Florida, USA (M.T. Alam, M.S. Tagliamonte, S.N. Sakib, T. Paisie, C. Mavian, M. Salemi, A. Ali, J.G Morris, Jr.)
- University of Florida College of Public Health and Health Professions, Gainesville (M.T. Alam, S.S. Nazmus, A. Ali)
- University of Florida College of Medicine, Gainesville (S.R. Stern, K. Taylor, M.S. Tagliamonte, T. Paisie, R.G. Jones, N.M. Iovine, K. Cherabuddi, C. Mavian, M. Salemi, J.G. Morris, Jr.)
- Florida Department of Health in Alachua County, Gainesville (D. Frison, P. Myers)
- University of Florida Health and Shands Hospital, Gainesville (N.B. Hilliard, N.M. Iovine, K. Cherabuddi)
| | - S. Sakib Nazmus
- University of Florida Emerging Pathogens Institute, Gainesville, Florida, USA (M.T. Alam, M.S. Tagliamonte, S.N. Sakib, T. Paisie, C. Mavian, M. Salemi, A. Ali, J.G Morris, Jr.)
- University of Florida College of Public Health and Health Professions, Gainesville (M.T. Alam, S.S. Nazmus, A. Ali)
- University of Florida College of Medicine, Gainesville (S.R. Stern, K. Taylor, M.S. Tagliamonte, T. Paisie, R.G. Jones, N.M. Iovine, K. Cherabuddi, C. Mavian, M. Salemi, J.G. Morris, Jr.)
- Florida Department of Health in Alachua County, Gainesville (D. Frison, P. Myers)
- University of Florida Health and Shands Hospital, Gainesville (N.B. Hilliard, N.M. Iovine, K. Cherabuddi)
| | - Taylor Paisie
- University of Florida Emerging Pathogens Institute, Gainesville, Florida, USA (M.T. Alam, M.S. Tagliamonte, S.N. Sakib, T. Paisie, C. Mavian, M. Salemi, A. Ali, J.G Morris, Jr.)
- University of Florida College of Public Health and Health Professions, Gainesville (M.T. Alam, S.S. Nazmus, A. Ali)
- University of Florida College of Medicine, Gainesville (S.R. Stern, K. Taylor, M.S. Tagliamonte, T. Paisie, R.G. Jones, N.M. Iovine, K. Cherabuddi, C. Mavian, M. Salemi, J.G. Morris, Jr.)
- Florida Department of Health in Alachua County, Gainesville (D. Frison, P. Myers)
- University of Florida Health and Shands Hospital, Gainesville (N.B. Hilliard, N.M. Iovine, K. Cherabuddi)
| | - Nicole B. Hilliard
- University of Florida Emerging Pathogens Institute, Gainesville, Florida, USA (M.T. Alam, M.S. Tagliamonte, S.N. Sakib, T. Paisie, C. Mavian, M. Salemi, A. Ali, J.G Morris, Jr.)
- University of Florida College of Public Health and Health Professions, Gainesville (M.T. Alam, S.S. Nazmus, A. Ali)
- University of Florida College of Medicine, Gainesville (S.R. Stern, K. Taylor, M.S. Tagliamonte, T. Paisie, R.G. Jones, N.M. Iovine, K. Cherabuddi, C. Mavian, M. Salemi, J.G. Morris, Jr.)
- Florida Department of Health in Alachua County, Gainesville (D. Frison, P. Myers)
- University of Florida Health and Shands Hospital, Gainesville (N.B. Hilliard, N.M. Iovine, K. Cherabuddi)
| | - Riley G. Jones
- University of Florida Emerging Pathogens Institute, Gainesville, Florida, USA (M.T. Alam, M.S. Tagliamonte, S.N. Sakib, T. Paisie, C. Mavian, M. Salemi, A. Ali, J.G Morris, Jr.)
- University of Florida College of Public Health and Health Professions, Gainesville (M.T. Alam, S.S. Nazmus, A. Ali)
- University of Florida College of Medicine, Gainesville (S.R. Stern, K. Taylor, M.S. Tagliamonte, T. Paisie, R.G. Jones, N.M. Iovine, K. Cherabuddi, C. Mavian, M. Salemi, J.G. Morris, Jr.)
- Florida Department of Health in Alachua County, Gainesville (D. Frison, P. Myers)
- University of Florida Health and Shands Hospital, Gainesville (N.B. Hilliard, N.M. Iovine, K. Cherabuddi)
| | - Nicole M. Iovine
- University of Florida Emerging Pathogens Institute, Gainesville, Florida, USA (M.T. Alam, M.S. Tagliamonte, S.N. Sakib, T. Paisie, C. Mavian, M. Salemi, A. Ali, J.G Morris, Jr.)
- University of Florida College of Public Health and Health Professions, Gainesville (M.T. Alam, S.S. Nazmus, A. Ali)
- University of Florida College of Medicine, Gainesville (S.R. Stern, K. Taylor, M.S. Tagliamonte, T. Paisie, R.G. Jones, N.M. Iovine, K. Cherabuddi, C. Mavian, M. Salemi, J.G. Morris, Jr.)
- Florida Department of Health in Alachua County, Gainesville (D. Frison, P. Myers)
- University of Florida Health and Shands Hospital, Gainesville (N.B. Hilliard, N.M. Iovine, K. Cherabuddi)
| | - Kartik Cherabuddi
- University of Florida Emerging Pathogens Institute, Gainesville, Florida, USA (M.T. Alam, M.S. Tagliamonte, S.N. Sakib, T. Paisie, C. Mavian, M. Salemi, A. Ali, J.G Morris, Jr.)
- University of Florida College of Public Health and Health Professions, Gainesville (M.T. Alam, S.S. Nazmus, A. Ali)
- University of Florida College of Medicine, Gainesville (S.R. Stern, K. Taylor, M.S. Tagliamonte, T. Paisie, R.G. Jones, N.M. Iovine, K. Cherabuddi, C. Mavian, M. Salemi, J.G. Morris, Jr.)
- Florida Department of Health in Alachua County, Gainesville (D. Frison, P. Myers)
- University of Florida Health and Shands Hospital, Gainesville (N.B. Hilliard, N.M. Iovine, K. Cherabuddi)
| | - Carla Mavian
- University of Florida Emerging Pathogens Institute, Gainesville, Florida, USA (M.T. Alam, M.S. Tagliamonte, S.N. Sakib, T. Paisie, C. Mavian, M. Salemi, A. Ali, J.G Morris, Jr.)
- University of Florida College of Public Health and Health Professions, Gainesville (M.T. Alam, S.S. Nazmus, A. Ali)
- University of Florida College of Medicine, Gainesville (S.R. Stern, K. Taylor, M.S. Tagliamonte, T. Paisie, R.G. Jones, N.M. Iovine, K. Cherabuddi, C. Mavian, M. Salemi, J.G. Morris, Jr.)
- Florida Department of Health in Alachua County, Gainesville (D. Frison, P. Myers)
- University of Florida Health and Shands Hospital, Gainesville (N.B. Hilliard, N.M. Iovine, K. Cherabuddi)
| | - Paul Myers
- University of Florida Emerging Pathogens Institute, Gainesville, Florida, USA (M.T. Alam, M.S. Tagliamonte, S.N. Sakib, T. Paisie, C. Mavian, M. Salemi, A. Ali, J.G Morris, Jr.)
- University of Florida College of Public Health and Health Professions, Gainesville (M.T. Alam, S.S. Nazmus, A. Ali)
- University of Florida College of Medicine, Gainesville (S.R. Stern, K. Taylor, M.S. Tagliamonte, T. Paisie, R.G. Jones, N.M. Iovine, K. Cherabuddi, C. Mavian, M. Salemi, J.G. Morris, Jr.)
- Florida Department of Health in Alachua County, Gainesville (D. Frison, P. Myers)
- University of Florida Health and Shands Hospital, Gainesville (N.B. Hilliard, N.M. Iovine, K. Cherabuddi)
| | - Marco Salemi
- University of Florida Emerging Pathogens Institute, Gainesville, Florida, USA (M.T. Alam, M.S. Tagliamonte, S.N. Sakib, T. Paisie, C. Mavian, M. Salemi, A. Ali, J.G Morris, Jr.)
- University of Florida College of Public Health and Health Professions, Gainesville (M.T. Alam, S.S. Nazmus, A. Ali)
- University of Florida College of Medicine, Gainesville (S.R. Stern, K. Taylor, M.S. Tagliamonte, T. Paisie, R.G. Jones, N.M. Iovine, K. Cherabuddi, C. Mavian, M. Salemi, J.G. Morris, Jr.)
- Florida Department of Health in Alachua County, Gainesville (D. Frison, P. Myers)
- University of Florida Health and Shands Hospital, Gainesville (N.B. Hilliard, N.M. Iovine, K. Cherabuddi)
| | | | | |
Collapse
|
24
|
Dupke S, Buchholz U, Fastner J, Förster C, Frank C, Lewin A, Rickerts V, Selinka HC. Impact of climate change on waterborne infections and intoxications. JOURNAL OF HEALTH MONITORING 2023; 8:62-77. [PMID: 37342430 PMCID: PMC10278370 DOI: 10.25646/11402] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 12/21/2022] [Indexed: 06/22/2023]
Abstract
Progressive climate change holds the potential for increasing human health risks from waterborne infections and intoxications, e. g. through an increase in pathogen concentrations in water bodies, through the establishment of new pathogens or through possible changes in pathogen properties. This paper presents some examples of potential impacts of climate change in Germany. Non-cholera Vibrio occur naturally in seawater, but can proliferate significantly in shallow water at elevated temperatures. In the case of Legionella, climate change could lead to temporary or longer-term increased incidences of legionellosis due to the combination of warm and wet weather. Higher temperatures in piped cold water or lower temperatures in piped hot water may also create conditions conducive to higher Legionella concentrations. In nutrient-rich water bodies, increased concentrations of toxigenic cyanobacteria may occur as temperatures rise. Heavy rainfall following storms or prolonged periods of heat and drought can lead to increased levels of human pathogenic viruses being washed into water bodies. Rising temperatures also pose a potential threat to human health through pathogens causing mycoses and facultatively pathogenic micro-organisms: increased infection rates with non-tuberculous mycobacteria or fungi have been documented after extreme weather events.
Collapse
Affiliation(s)
- Susann Dupke
- Robert Koch Institute Centre for Biological Threats and Special PathogensBerlin, Germany
| | - Udo Buchholz
- Robert Koch Institute Department of Infectious Disease Epidemiology Berlin, Germany
| | - Jutta Fastner
- German Environment Agency Department of Drinking Water and Swimming Pool Water Hygiene Berlin, Germany
| | - Christina Förster
- German Environment Agency Department of Drinking Water and Swimming Pool Water Hygiene Bad Elster, Germany
| | - Christina Frank
- Robert Koch Institute Department of Infectious Disease Epidemiology Berlin, Germany
| | - Astrid Lewin
- Robert Koch Institute Department of Infectious Diseases Berlin, Germany
| | - Volker Rickerts
- Robert Koch Institute Department of Infectious Diseases Berlin, Germany
| | | |
Collapse
|
25
|
Schütt EM, Hundsdörfer MAJ, von Hoyningen-Huene AJE, Lange X, Koschmider A, Oppelt N. First Steps towards a near Real-Time Modelling System of Vibrio vulnificus in the Baltic Sea. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:ijerph20085543. [PMID: 37107825 PMCID: PMC10138452 DOI: 10.3390/ijerph20085543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/24/2023] [Accepted: 04/10/2023] [Indexed: 05/11/2023]
Abstract
Over the last two decades, Vibrio vulnificus infections have emerged as an increasingly serious public health threat along the German Baltic coast. To manage related risks, near real-time (NRT) modelling of V. vulnificus quantities has often been proposed. Such models require spatially explicit input data, for example, from remote sensing or numerical model products. We tested if data from a hydrodynamic, a meteorological, and a biogeochemical model are suitable as input for an NRT model system by coupling it with field samples and assessing the models' ability to capture known ecological parameters of V. vulnificus. We also identify the most important predictors for V. vulnificus in the Baltic Sea by leveraging the St. Nicolas House Analysis. Using a 27-year time series of sea surface temperature, we have investigated trends of V. vulnificus season length, which pinpoint hotspots mainly in the east of our study region. Our results underline the importance of water temperature and salinity on V. vulnificus abundance but also highlight the potential of air temperature, oxygen, and precipitation to serve as predictors in a statistical model, albeit their relationship with V. vulnificus may not be causal. The evaluated models cannot be used in an NRT model system due to data availability constraints, but promising alternatives are presented. The results provide a valuable basis for a future NRT model for V. vulnificus in the Baltic Sea.
Collapse
Affiliation(s)
- Eike M. Schütt
- Earth Observation and Modelling, Department of Geography, Kiel University, 24118 Kiel, Germany
- Correspondence:
| | - Marie A. J. Hundsdörfer
- Earth Observation and Modelling, Department of Geography, Kiel University, 24118 Kiel, Germany
| | | | - Xaver Lange
- Leibniz Institute for Baltic Sea Research Warnemünde, 18119 Rostock, Germany
| | - Agnes Koschmider
- Business Informatics and Process Analytics, University of Bayreuth, 95447 Bayreuth, Germany
| | - Natascha Oppelt
- Earth Observation and Modelling, Department of Geography, Kiel University, 24118 Kiel, Germany
| |
Collapse
|
26
|
Rehm C, Lippert K, Indra A, Kolarević S, Kračun‐Kolarević M, Leopold M, Steinbacher S, Schachner I, Campostrini L, Risslegger A, Farnleitner AH, Kolm C, Kirschner AK. First report on the occurrence of Vibrio cholerae nonO1/nonO139 in natural and artificial lakes and ponds in Serbia: Evidence for a long-distance transfer of strains and the presence of Vibrio paracholerae. ENVIRONMENTAL MICROBIOLOGY REPORTS 2023; 15:142-152. [PMID: 36779243 PMCID: PMC10103850 DOI: 10.1111/1758-2229.13136] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 11/09/2022] [Indexed: 05/20/2023]
Abstract
Vibrio cholerae are natural inhabitants of specific aquatic environments. Strains not belonging to serogroups O1 and O139 are usually unable to produce cholera toxin and cause cholera. However, non-toxigenic V. cholerae (NTVC) are able to cause a variety of mild-to-severe human infections (via seafood consumption or recreational activities). The number of unreported cases is considered substantial, as NTVC infections are not notifiable and physicians are mostly unaware of this pathogen. In the northern hemisphere, NTVC infections have been reported to increase due to global warming. In Eastern Europe, climatic and geological conditions favour the existence of inland water-bodies harbouring NTVC. We thus investigated the occurrence of NTVC in nine Serbian natural and artificial lakes and ponds, many of them used for fishing and bathing. With the exception of one highly saline lake, all investigated water-bodies harboured NTVC, ranging from 5.4 × 101 to 1.86 × 104 CFU and 4.5 × 102 to 5.6 × 106 genomic units per 100 ml. The maximum values observed were in the range of bathing waters in other countries, where infections have been reported. Interestingly, 7 out of 39 fully sequenced presumptive V. cholerae isolates were assigned as V. paracholerae, a recently described sister species of V. cholerae. Some clones and sublineages of both V. cholerae and V. paracholerae were shared by different environments indicating an exchange of strains over long distances. Important pathogenicity factors such as hlyA, toxR, and ompU were present in both species. Seasonal monitoring of ponds/lakes used for recreation in Serbia is thus recommended to be prepared for potential occurrence of infections promoted by climate change-induced rise in water temperatures.
Collapse
Affiliation(s)
- Carmen Rehm
- Division Water Quality and Health, Department of Physiology, Pharmacology and MicrobiologyKarl Landsteiner University of Health SciencesKremsAustria
- Institute for Hygiene and Applied Immunology – Water MicrobiologyMedical University ViennaViennaAustria
- Interuniversity Cooperation Centre Water & HealthAustria
| | - Kathrin Lippert
- Institute für Medical Microbiology and Hygiene, Austrian Agency for Health and Food SafetyViennaAustria
| | - Alexander Indra
- Institute für Medical Microbiology and Hygiene, Austrian Agency for Health and Food SafetyViennaAustria
| | - Stoimir Kolarević
- Institute for Biological Research ¨Siniša Stanković¨, National Institute of the Republic of Serbia, Department for Hydroecology and Water ProtectionUniversity of BelgradeBelgradeSerbia
| | - Margareta Kračun‐Kolarević
- Institute for Biological Research ¨Siniša Stanković¨, National Institute of the Republic of Serbia, Department for Hydroecology and Water ProtectionUniversity of BelgradeBelgradeSerbia
| | - Melanie Leopold
- Division Water Quality and Health, Department of Physiology, Pharmacology and MicrobiologyKarl Landsteiner University of Health SciencesKremsAustria
- Interuniversity Cooperation Centre Water & HealthAustria
- Institute for Chemical, Environmental and Bioscience Engineering, Technische Universität WienViennaAustria
| | - Sophia Steinbacher
- Division Water Quality and Health, Department of Physiology, Pharmacology and MicrobiologyKarl Landsteiner University of Health SciencesKremsAustria
- Interuniversity Cooperation Centre Water & HealthAustria
- Institute for Chemical, Environmental and Bioscience Engineering, Technische Universität WienViennaAustria
| | - Iris Schachner
- Institute for Hygiene and Applied Immunology – Water MicrobiologyMedical University ViennaViennaAustria
- Interuniversity Cooperation Centre Water & HealthAustria
| | - Lena Campostrini
- Institute for Hygiene and Applied Immunology – Water MicrobiologyMedical University ViennaViennaAustria
- Interuniversity Cooperation Centre Water & HealthAustria
| | - Alexandra Risslegger
- Division Water Quality and Health, Department of Physiology, Pharmacology and MicrobiologyKarl Landsteiner University of Health SciencesKremsAustria
- Interuniversity Cooperation Centre Water & HealthAustria
| | - Andreas H. Farnleitner
- Division Water Quality and Health, Department of Physiology, Pharmacology and MicrobiologyKarl Landsteiner University of Health SciencesKremsAustria
- Interuniversity Cooperation Centre Water & HealthAustria
- Institute for Chemical, Environmental and Bioscience Engineering, Technische Universität WienViennaAustria
| | - Claudia Kolm
- Division Water Quality and Health, Department of Physiology, Pharmacology and MicrobiologyKarl Landsteiner University of Health SciencesKremsAustria
- Interuniversity Cooperation Centre Water & HealthAustria
- Institute for Chemical, Environmental and Bioscience Engineering, Technische Universität WienViennaAustria
| | - Alexander K.T. Kirschner
- Division Water Quality and Health, Department of Physiology, Pharmacology and MicrobiologyKarl Landsteiner University of Health SciencesKremsAustria
- Institute for Hygiene and Applied Immunology – Water MicrobiologyMedical University ViennaViennaAustria
- Interuniversity Cooperation Centre Water & HealthAustria
| |
Collapse
|
27
|
Rahman MS, Currò S, Carraro L, Cardazzo B, Balzan S, Novelli E, Fontana F, Caburlotto G, Manfrin A, Fasolato L. Retrospective analysis of <em>Vibrio</em> spp. isolated from marketed crustaceans using multilocus sequence analysis. Ital J Food Saf 2023; 12:11045. [PMID: 37064522 PMCID: PMC10102960 DOI: 10.4081/ijfs.2023.11045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 02/01/2023] [Indexed: 03/11/2023] Open
Abstract
The genus Vibrio includes bacteria with different morphological and metabolic characteristics responsible for different human and animal diseases. An accurate identification is essential to assess the risks in regard to aquatic organisms and consequently to public health. The Multilocus Sequence Analysis (MLSA) scheme developed on the basis of 4 housekeeping genes (gyrB, pyrH, recA and atpA) was applied to identify 92 Vibrio strains isolated from crustaceans in 2011. Concatenated sequences were used for the phylogenetic and population analyses and the results were compared with those from biochemical identification tests. From the phylogenetic analysis, 10 clusters and 4 singletons emerged, whereas the population analysis highlighted 12 subpopulations that were well supported by phylogeny with few exceptions. The retrospective analysis allowed correct re-attribution of isolated species, indicating how, for some pathogens, there may be an overestimation of phenotypic identification (e.g. V. parahaemolyticus). Use of the PubMLST Vibrio database highlighted a possible genetic link between Sequence Type (ST) 529 and ST195 (V. alginolyticus) isolated from a human case in Norway during 2018. In addition to the identification of major risk groups of V. cholerae, V. vulnificus and V. parahaemolyticus, MLSA could be a valid support for species considered a minor risk, such as V. alginolyticus, V. mimicus and V. fluvialis. Due to the increased incidence of vibriosis in Europe, the application of different tools will also have to be considered to investigate the possible epidemiological links of the various species in the perspective of Open Science to protect the consumer.
Collapse
|
28
|
Amaro C, Carmona-Salido H. Vibrio vulnificus, an Underestimated Zoonotic Pathogen. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1404:175-194. [PMID: 36792876 DOI: 10.1007/978-3-031-22997-8_9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
V. vulnificus, continues being an underestimated yet lethal zoonotic pathogen. In this chapter, we provide a comprehensive review of numerous aspects of the biology, epidemiology, and virulence mechanisms of this poorly understood pathogen. We will emphasize the widespread role of horizontal gene transfer in V. vulnificus specifically virulence plasmids and draw parallels from aquaculture farms to human health. By placing current findings in the context of climate change, we will also contend that fish farms act as evolutionary drivers that accelerate species evolution and the emergence of new virulent groups. Overall, we suggest that on-farm control measures should be adopted both to protect animals from Vibriosis, and also as a public health measure to prevent the emergence of new zoonotic groups.
Collapse
Affiliation(s)
- Carmen Amaro
- Departamento de Microbiología y Ecología, & Instituto Universitario de Biotecnologia i Biomedicina (BIOTECMED), Universitat de València, Burjassot, Valencia, Spain.
| | - Héctor Carmona-Salido
- Departamento de Microbiología y Ecología, & Instituto Universitario de Biotecnologia i Biomedicina (BIOTECMED), Universitat de València, Burjassot, Valencia, Spain
| |
Collapse
|
29
|
Environmental Reservoirs of Pathogenic Vibrio spp. and Their Role in Disease: The List Keeps Expanding. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1404:99-126. [PMID: 36792873 DOI: 10.1007/978-3-031-22997-8_6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
Vibrio species are natural inhabitants of aquatic environments and have complex interactions with the environment that drive the evolution of traits contributing to their survival. These traits may also contribute to their ability to invade or colonize animal and human hosts. In this review, we attempt to summarize the relationships of Vibrio spp. with other organisms in the aquatic environment and discuss how these interactions could potentially impact colonization of animal and human hosts.
Collapse
|
30
|
Hu L, Fu Y, Zhang S, Pan Z, Xia J, Zhu P, Guo J. An Assay Combining Droplet Digital PCR With Propidium Monoazide Treatment for the Accurate Detection of Live Cells of Vibrio vulnificus in Plasma Samples. Front Microbiol 2022; 13:927285. [PMID: 35910629 PMCID: PMC9335127 DOI: 10.3389/fmicb.2022.927285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 06/24/2022] [Indexed: 11/17/2022] Open
Abstract
Vibrio vulnificus (V. vulnificus) is one of the most common pathogenic Vibrio species to humans; therefore, the establishment of timely and credible detection methods has become an urgent requirement for V. vulnificus illness surveillance. In this study, an assay combining droplet digital PCR (ddPCR) with propidium monoazide (PMA) treatment was developed for detecting V. vulnificus. The primers/probes targeting the V. vulnificus hemolysin A (vvhA) gene, amplification procedures, and PMA processing conditions involved in the assay were optimized. Then, we analyzed the specificity, sensitivity, and ability to detect live cell DNA while testing the performance of PMA-ddPCR in clinical samples. The optimal concentrations of primers and probes were 1.0 and 0.3 μM, respectively. The annealing temperature achieving the highest accuracy in ddPCR assay was 60°C. With an initial V. vulnificus cell concentration of 108 CFU/mL (colony-forming units per milliliter), the optimal strategy to distinguish live cells from dead cells was to treat samples with 100 μM PMA for 15 min in the dark and expose them to LED light with an output wavelength of 465 nm for 10 min. The specificity of the PMA-ddPCR assay was tested on 27 strains, including seven V. vulnificus strains and 20 other bacterial strains. Only the seven V. vulnificus strains were observed with positive signals in specificity analysis. Comparative experiments on the detection ability of PMA-ddPCR and PMA-qPCR in pure cultures and plasma samples were performed. The limit of detection (LOD) and the limit of quantitation (LOQ) in pure culture solutions of V. vulnificus were 29.33 and 53.64 CFU/mL in PMA-ddPCR, respectively. For artificially clinical sample tests in PMA-ddPCR, V. vulnificus could be detected at concentrations as low as 65.20 CFU/mL. The sensitivity of the PMA-ddPCR assay was 15- to 40-fold more sensitive than the PMA-qPCR in this study. The PMA-ddPCR assay we developed provides a new insight to accurately detect live cells of V. vulnificus in clinical samples, which is of great significance to enhance public health safety and security capability and improve the emergency response level for V. vulnificus infection.
Collapse
Affiliation(s)
- Ling Hu
- Hangzhou Medical College, Hangzhou, China
- Ningbo Stomatology Hospital, Ningbo, China
| | - Yidong Fu
- Hwa Mei Hospital, University of Chinese Academy of Sciences, Ningbo, China
- Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Ningbo, China
- Key Laboratory of Diagnosis and Treatment of Digestive System Tumors of Zhejiang Province, Ningbo, China
| | - Shun Zhang
- Hwa Mei Hospital, University of Chinese Academy of Sciences, Ningbo, China
- Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Ningbo, China
- Key Laboratory of Diagnosis and Treatment of Digestive System Tumors of Zhejiang Province, Ningbo, China
| | - Zhilei Pan
- Hwa Mei Hospital, University of Chinese Academy of Sciences, Ningbo, China
| | - Jiang Xia
- Pilot Gene Technologies (Hangzhou) Co., Ltd., Hangzhou, China
| | - Peng Zhu
- Hwa Mei Hospital, University of Chinese Academy of Sciences, Ningbo, China
- Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Ningbo, China
- Key Laboratory of Diagnosis and Treatment of Digestive System Tumors of Zhejiang Province, Ningbo, China
- *Correspondence: Peng Zhu,
| | - Jing Guo
- Hangzhou Medical College, Hangzhou, China
- Ningbo Stomatology Hospital, Ningbo, China
- Jing Guo,
| |
Collapse
|
31
|
Cai J, Hao Y, Xu R, Zhang Y, Ma Y, Zhang Y, Wang Q. Differential binding of LuxR in response to temperature gauges switches virulence gene expression in Vibrio alginolyticus. Microbiol Res 2022; 263:127114. [PMID: 35878491 DOI: 10.1016/j.micres.2022.127114] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 06/04/2022] [Accepted: 07/05/2022] [Indexed: 12/26/2022]
Abstract
Vibrio pathogens must cope with temperature changes for proper thermo-adaptation and virulence gene expression. LuxR is a quorum-sensing (QS) master regulator of vibrios, playing roles in response to temperature alteration. However, the molecular mechanisms how LuxR is involved in adapting to different temperatures in bacteria have not been precisely elucidated. In this study, using chromatin immunoprecipitation and nucleotide sequencing (ChIP-seq), we identified 272 and 22 enriched loci harboring LuxR-binding peaks at ambient temperature (30 ˚C) and heat shock (42 ˚C) in the Vibrio alginolyticus genome, respectively. Analysis with the MEME (multiple EM for motif elicitation) algorithm indicated that the binding motifs of LuxR varied from temperatures. Three novel binding regions (the promoter of orf00292, orf00397 and fadD) of LuxR were identified and verified that the rising temperature causes the decreasing binding affinity of LuxR to these promoters. Meanwhile, the expression of orf00292, orf00397 and fadD were regulated by LuxR. Moreover, the weak binding of LuxR to the promoter of extracellular protease (Asp) was attributed to the attenuated Asp expression at thermal stress conditions. Taken together, our study demonstrated distinct binding characteristics of LuxR in response to temperature changes, thus highlighting LuxR as a thermo-sensor to switch and control virulence gene expression in V. alginolyticus.
Collapse
Affiliation(s)
- Jingxiao Cai
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Yuan Hao
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Rongjing Xu
- Yantai Tianyuan Aquatic Co. Ltd., Yantai, Shandong, China
| | - Yuanxing Zhang
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519000, China; Shanghai Engineering Research Center of Maricultured Animal Vaccines, Shanghai 200237, China
| | - Yue Ma
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China; Shanghai Engineering Research Center of Maricultured Animal Vaccines, Shanghai 200237, China; Shanghai Collaborative Innovation Center for Biomanufacturing, 130 Meilong Road, Shanghai 200237, China
| | - Yibei Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China; Shanghai Engineering Research Center of Maricultured Animal Vaccines, Shanghai 200237, China.
| | - Qiyao Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China; Shanghai Engineering Research Center of Maricultured Animal Vaccines, Shanghai 200237, China; Shanghai Collaborative Innovation Center for Biomanufacturing, 130 Meilong Road, Shanghai 200237, China
| |
Collapse
|
32
|
Amato E, Riess M, Thomas-Lopez D, Linkevicius M, Pitkänen T, Wołkowicz T, Rjabinina J, Jernberg C, Hjertqvist M, MacDonald E, Antony-Samy JK, Dalsgaard Bjerre K, Salmenlinna S, Fuursted K, Hansen A, Naseer U. Epidemiological and microbiological investigation of a large increase in vibriosis, northern Europe, 2018. Euro Surveill 2022; 27:2101088. [PMID: 35837965 PMCID: PMC9284918 DOI: 10.2807/1560-7917.es.2022.27.28.2101088] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
BackgroundVibriosis cases in Northern European countries and countries bordering the Baltic Sea increased during heatwaves in 2014 and 2018.AimWe describe the epidemiology of vibriosis and the genetic diversity of Vibrio spp. isolates from Norway, Sweden, Denmark, Finland, Poland and Estonia in 2018, a year with an exceptionally warm summer.MethodsIn a retrospective study, we analysed demographics, geographical distribution, seasonality, causative species and severity of non-travel-related vibriosis cases in 2018. Data sources included surveillance systems, national laboratory notification databases and/or nationwide surveys to public health microbiology laboratories. Moreover, we performed whole genome sequencing and multilocus sequence typing of available isolates from 2014 to 2018 to map their genetic diversity.ResultsIn 2018, we identified 445 non-travel-related vibriosis cases in the study countries, considerably more than the median of 126 cases between 2014 and 2017 (range: 87-272). The main reported mode of transmission was exposure to seawater. We observed a species-specific geographical disparity of vibriosis cases across the Nordic-Baltic region. Severe vibriosis was associated with infections caused by Vibrio vulnificus (adjOR: 17.2; 95% CI: 3.3-90.5) or Vibrio parahaemolyticus (adjOR: 2.1; 95% CI: 1.0-4.5), age ≥ 65 years (65-79 years: adjOR: 3.9; 95% CI: 1.7-8.7; ≥ 80 years: adjOR: 15.5; 95% CI: 4.4-54.3) or acquiring infections during summer (adjOR: 5.1; 95% CI: 2.4-10.9). Although phylogenetic analysis revealed diversity between Vibrio spp. isolates, two V. vulnificus clusters were identified.ConclusionShared sentinel surveillance for vibriosis during summer may be valuable to monitor this emerging public health issue.
Collapse
Affiliation(s)
- Ettore Amato
- Department of Infection Control and Preparedness, Norwegian Institute of Public Health, Oslo, Norway,European Programme for Public Health Microbiology Training (EUPHEM), European Centre for Disease Prevention and Control (ECDC), Stockholm, Sweden
| | - Maximilian Riess
- Department of Microbiology, Public Health Agency of Sweden, Department of Microbiology, Stockholm, Sweden,European Programme for Public Health Microbiology Training (EUPHEM), European Centre for Disease Prevention and Control (ECDC), Stockholm, Sweden
| | - Daniel Thomas-Lopez
- Department of Bacteria, Parasites and Fungi, Division of Infectious Disease Preparedness, Statens Serum Institut, Copenhagen, Denmark,European Programme for Public Health Microbiology Training (EUPHEM), European Centre for Disease Prevention and Control (ECDC), Stockholm, Sweden
| | - Marius Linkevicius
- Finnish Institute for Health and Welfare, Department of Health Security, Helsinki, Finland,European Programme for Public Health Microbiology Training (EUPHEM), European Centre for Disease Prevention and Control (ECDC), Stockholm, Sweden
| | - Tarja Pitkänen
- Finnish Institute for Health and Welfare, Department of Health Security, Kuopio, Finland,University of Helsinki, Helsinki, Finland
| | | | - Jelena Rjabinina
- Health Board, Department of CD Surveillance and Control, Tallinn, Estonia
| | - Cecilia Jernberg
- Department of Microbiology, Public Health Agency of Sweden, Department of Microbiology, Stockholm, Sweden
| | - Marika Hjertqvist
- Public Health Agency of Sweden, Department of Communicable Disease Control and Health Protection, Stockholm, Sweden
| | - Emily MacDonald
- Department of Infection Control and Preparedness, Norwegian Institute of Public Health, Oslo, Norway
| | | | - Karsten Dalsgaard Bjerre
- Data Integration and Analysis, Division of Infectious Disease Preparedness, Statens Serum Institut, Copenhagen, Denmark
| | - Saara Salmenlinna
- Finnish Institute for Health and Welfare, Department of Health Security, Helsinki, Finland
| | - Kurt Fuursted
- Department of Bacteria, Parasites and Fungi, Division of Infectious Disease Preparedness, Statens Serum Institut, Copenhagen, Denmark
| | - Anette Hansen
- Public Health Agency of Sweden, Department of Communicable Disease Control and Health Protection, Stockholm, Sweden
| | - Umaer Naseer
- Department of Infection Control and Preparedness, Norwegian Institute of Public Health, Oslo, Norway
| |
Collapse
|