1
|
Domingo JL. Updated Mini-Review on Polychlorinated Diphenyl Ethers (PCDEs) in Food: Levels and Dietary Intake. J Food Prot 2025; 88:100456. [PMID: 39880207 DOI: 10.1016/j.jfp.2025.100456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 01/19/2025] [Accepted: 01/21/2025] [Indexed: 01/31/2025]
Abstract
Polychlorinated diphenyl ethers (PCDEs) are a class of chlorinated aromatic compounds with structural similarities to polychlorinated biphenyls (PCBs) and polychlorinated dibenzo-p-dioxins/dibenzofurans (PCDD/Fs). Due to their physicochemical properties, PCDEs are highly resistant to degradation and tend to accumulate in soils, sediments, and aquatic organisms, making them capable of entering and persisting in the food chain. As with other persistent organic pollutants (POPs), diet represents the primary route of human exposure to PCDEs. This mini-review focuses on recent studies evaluating the concentrations of PCDEs in foodstuffs. The most recent available dietary intake, estimated in 2008, was 51.6 ng/day, showing an increase from 41 ng/day (reported in 2004). In both cases, the highest concentrations of ΣPCDEs were observed in fish and seafood (1,094.7 ng/kg wet weight in 2008). Notably, studies indicate that ΣPCDE levels are lower in cooked food samples compared to their raw counterparts. However, the potential health risks associated with dietary exposure to PCDEs remain uncertain, as no tolerable daily intake (TDI) values have been established for these compounds. This gap is directly linked to the absence of assigned toxic equivalency factors (TEFs) for PCDE congeners. Establishing TDIs and TEFs for PCDEs is critical to comprehensively assess their health risks and to inform regulatory and public health interventions.
Collapse
Affiliation(s)
- Jose L Domingo
- Universitat Rovira i Virgili Laboratory of Toxicology and Environmental Health, School of Medicine, 43201 Reus, Catalonia, Spain.
| |
Collapse
|
2
|
Alqahtani MA, El-Ghiaty MA, El-Mahrouk SR, El-Kadi AOS. Differential Modulatory Effects of Methylmercury (MeHg) on Ahr-regulated Genes in Extrahepatic Tissues of C57BL/6 Mice. Biol Trace Elem Res 2024; 202:5071-5080. [PMID: 38197905 DOI: 10.1007/s12011-023-04050-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 12/27/2023] [Indexed: 01/11/2024]
Abstract
Methylmercury (MeHg) and 2,3,7,8-tetrachlorodibenzodioxin (TCDD) are potent environmental pollutants implicated in the modulation of xenobiotic-metabolizing enzymes, particularly the cytochrome P450 1 family (CYP1) which is regulated by the aryl hydrocarbon receptor (AHR). However, the co-exposure to MeHg and TCDD raises concerns about their potential combined effects, necessitating thorough investigation. The primary objective of this study was to investigate the individual and combined effects of MeHg and TCDD on AHR-regulated CYP1 enzymes in mouse extrahepatic tissues. Therefore, C57BL/6 mice were administrated with MeHg (2.5 mg/kg) in the absence and presence of TCDD (15 μg/kg) for 6 and 24 h. The AHR-regulated CYP1 mRNA and protein expression levels were measured in the heart, lung, and kidney, using RT real-time PCR and western blot, respectively. Interestingly, treatment with MeHg exhibited mainly inhibitory effect, particularly, it decreased the basal level of Cyp1a1 and Cyp1a2 mRNA and protein, and that was more evident at the 24 h time point in kidney followed by heart. Similarly, when mice were co-exposed, MeHg was able to reduce the TCDD-induced Cyp1a1 and Cyp1a2 expression, however, MeHg potentiated kidney Cyp1b1 mRNA expression, opposing the observed change on its protein level. Also, MeHg induced antioxidant NAD(P)H:quinone oxidoreductase (NQO1) mRNA and protein in kidney, while heme-oxygenase (HO-1) mRNA was up-regulated in heart and kidney. In conclusion, this study reveals intricate interplay between MeHg and TCDD on AHR-regulated CYP1 enzymes, with interesting inhibitory effects observed that might be significant for procarcinogen metabolism. Varied responses across tissues highlight the potential implications for environmental health.
Collapse
Affiliation(s)
- Mohammed A Alqahtani
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, 2142J Katz Group-Rexall Centre for Pharmacy and Health Research, Edmonton, Alberta, T6G 2E1, Canada
| | - Mahmoud A El-Ghiaty
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, 2142J Katz Group-Rexall Centre for Pharmacy and Health Research, Edmonton, Alberta, T6G 2E1, Canada
| | - Sara R El-Mahrouk
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, 2142J Katz Group-Rexall Centre for Pharmacy and Health Research, Edmonton, Alberta, T6G 2E1, Canada
| | - Ayman O S El-Kadi
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, 2142J Katz Group-Rexall Centre for Pharmacy and Health Research, Edmonton, Alberta, T6G 2E1, Canada.
| |
Collapse
|
3
|
Orlowska K, Nault R, Ara J, LaPres JJ, Harkema J, Demireva EY, Xie H, Wilson RH, Bradfield CA, Yap D, Joshi A, Elferink CJ, Zacharewski T. Disruption of canonical AHR-mediated induction of hepatocyte PKM2 expression compromises antioxidant defenses and increases TCDD-induced hepatotoxicity. Redox Biol 2024; 77:103405. [PMID: 39490313 PMCID: PMC11543540 DOI: 10.1016/j.redox.2024.103405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Accepted: 10/19/2024] [Indexed: 11/05/2024] Open
Abstract
Metabolic reprogramming by the pyruvate kinase M2 isoform is associated with cell proliferation and reactive oxygen species (ROS) defenses. 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD), an environmental contaminant that induces ROS and hepatotoxicity, dose-dependently induces pyruvate kinase muscle isoform M2 (PKM2) in the liver. To further investigate its role in combating TCDD hepatotoxicity, a PkmΔDRE mouse was constructed lacking the dioxin response element mediating aryl hydrocarbon receptor (AHR) induction. TCDD failed to induce hepatic PKM2 in PkmΔDRE mice and in primary hepatocytes isolated from an AHR knockout model (AHRV375Afl/flAlb-CreERT2), demonstrating induction is AHR dependent. Both wild-type (WT) and PkmΔDRE mice exhibited dose-dependent increases in liver weight after treatment with TCDD every 4 days for 28 days. Glutathione (GSH) levels increased in WT mice while oxidized glutathione (GSSG) levels increased in both models with a 24-fold decrease in the GSH/GSSG ratio in PkmΔDRE mice suggesting lower antioxidant and recycling capacity. Moreover, TCDD-induced fibrosis was more severe in PkmΔDRE mice while PkmΔDRE hepatocytes exhibited greater cytotoxicity following co-treatment with TCDD and hydrogen peroxide. TCDD also induced PKM2 in human HepaRG™ cells with AHR enrichment at a conserved DRE core within the locus. These results suggest AHR-mediated PKM2 induction is a novel antioxidant response to TCDD.
Collapse
Affiliation(s)
- Karina Orlowska
- Biochemistry & Molecular Biology, Michigan State University, East Lansing, MI, 48824, USA; Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, 48824, USA
| | - Rance Nault
- Biochemistry & Molecular Biology, Michigan State University, East Lansing, MI, 48824, USA; Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, 48824, USA; Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, 48824, USA
| | - Jesmin Ara
- Biochemistry & Molecular Biology, Michigan State University, East Lansing, MI, 48824, USA
| | - John J LaPres
- Biochemistry & Molecular Biology, Michigan State University, East Lansing, MI, 48824, USA; Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, 48824, USA
| | - Jack Harkema
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, 48824, USA; Department of Pathobiology and Diagnostic Investigation, Michigan State University, East Lansing, MI, 48824, USA
| | - Elena Y Demireva
- Transgenic and Genome Editing Facility, Michigan State University, East Lansing, MI, 48824, USA; Institute for Quantitative Health Science & Engineering, Michigan State University, East Lansing, MI, 48824, USA
| | - Huirong Xie
- Transgenic and Genome Editing Facility, Michigan State University, East Lansing, MI, 48824, USA; Institute for Quantitative Health Science & Engineering, Michigan State University, East Lansing, MI, 48824, USA
| | - Rachel H Wilson
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Christopher A Bradfield
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Dianne Yap
- Department of Pharmacology and Toxicology, The University of Texas Medical Branch at Galveston, Galveston, TX, 77550, USA
| | - Aditya Joshi
- Department of Pharmacology and Toxicology, The University of Texas Medical Branch at Galveston, Galveston, TX, 77550, USA
| | - Cornelis J Elferink
- Department of Pharmacology and Toxicology, The University of Texas Medical Branch at Galveston, Galveston, TX, 77550, USA
| | - Tim Zacharewski
- Biochemistry & Molecular Biology, Michigan State University, East Lansing, MI, 48824, USA; Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, 48824, USA.
| |
Collapse
|
4
|
Zyoud SH. Global dioxin research trends and focal points: A century-long visual and bibliometric analysis (1923-2022). Toxicol Ind Health 2024; 40:504-518. [PMID: 38838663 DOI: 10.1177/07482337241257276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2024]
Abstract
Dioxin-like compounds, recognized by the World Health Organization (WHO) as among the most enduring toxic chemical substances in the environment, are linked to various occupational activities and industrial accidents worldwide. The aim of this study was to examine and present research publications on dioxins, pinpoint current research trends, identify research gaps, and highlight potential avenues for future exploration in the field. The study period for relevant research articles ranged from 1923 to December 31, 2022, and these articles were sourced from the Scopus database. The analysis involved the identification of key contributors to the field and the visualization of topics, themes, and international collaboration. VOSviewer software (version 1.6.20) was used for visualization analysis. A total of 11,620 publications on dioxins were documented in the Scopus database. The predominant category of these documents comprised 9780 original articles, which represents 84.17% of the total publications. The United States lead in the number of publications, with 3992 (34.35%), followed by Japan, with 1429 (12.3%), China, with 1005 (8.65%), and Germany, with 974 (8.38%). Before 2002, scholarly attention in this field focused primarily on the health effects, environmental fate, and mechanism of toxicity of tetrachlorodibenzo-p-dioxin (TCDD). However, a noticeable change in research focus has been observed since 2002, highlighting the emergence of a topic related to the health effects and environmental fate of polychlorinated dibenzo-p-dioxins (PCDDs) and polychlorinated dibenzofurans (PFDFs). This study is the first to conduct a comprehensive quantitative bibliometric analysis of dioxins over time. These findings indicate a significant increase in the overall growth of the dioxin literature over the past 30 years. These findings may prove crucial in guiding and organizing subsequent investigations related to dioxins.
Collapse
Affiliation(s)
- Sa'ed H Zyoud
- Poison Control and Drug Information Center (PCDIC), An-Najah National University, Nablus, Palestine
- Department of Clinical and Community Pharmacy, College of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine
- Clinical Research Centre, An-Najah National University Hospital, Nablus, Palestine
| |
Collapse
|
5
|
Fisher JA, Medgyesi DN, Deziel NC, Nuckols JR, Ward MH, Jones RR. Residential proximity to dioxin-emitting facilities and risk of non-Hodgkin lymphoma in the NIH-AARP Diet and Health Study. ENVIRONMENT INTERNATIONAL 2024; 188:108767. [PMID: 38795658 PMCID: PMC11218044 DOI: 10.1016/j.envint.2024.108767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 05/19/2024] [Accepted: 05/20/2024] [Indexed: 05/28/2024]
Abstract
BACKGROUND Polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) are persistent organic pollutants emitted from industrial sources. Residential proximity to these emissions has been associated with risk of non-Hodgkin lymphoma (NHL) in a limited number of studies. METHODS We evaluated associations between residential proximity to PCDD/F-emitting facilities and NHL in the NIH-AARP Diet and Health Study (N = 451,410), a prospective cohort enrolled in 1995-1996 in 6 states and 2 U.S. cities. We linked enrollment addresses with a U.S. Environmental Protection Agency database of 4,478 historical PCDD/F sources with estimated toxic equivalency quotient (TEQ) emissions. We evaluated associations between NHL and exposures during a historical period prior to enrollment (1980-1995) using an average emissions index, weighted by toxicity, distance, and wind direction (AEI-W [g TEQ/km2]) within 3-, 5- and 10 km of residences. We also evaluated proximity-only metrics indicating the presence/absence of one or more facilities within each distance, and metrics calculated separately for each facility type. We used Cox regression to estimate associations (hazard ratio, HR; 95 % confidence interval, 95 %CI) with NHL and major subtypes, adjusting for demographic, lifestyle, and dietary factors. RESULTS A total of 6,467 incident cases of NHL were diagnosed through 2011. Participants with an AEI-W ≥ 95th percentile had elevated risk of NHL compared to those unexposed at 3 km (HR = 1.16; 95 %CI = 0.89-1.52; p-trend = 0.24), 5 km (HR = 1.20;95 %CI = 0.99-1.46;p-trend = 0.05) and 10 km (HR = 1.15; 95 %CI = 0.99-1.34; p-trend = 0.04). We found a positive association at 5 km with follicular lymphoma (HR≥95vs.0 = 1.62; 95 %CI = 0.98-2.67; p-trend = 0.05) and a suggestive association for diffuse large B-cell lymphoma (HR≥95vs.0 = 1.40; 95 %CI = 0.91-2.14; p-trend = 0.11). NHL risk was also associated with high emissions from coal-fired power plants within 10 km (HR≥95vs.0 = 1.42; 95 %CI = 1.09-1.84; p-trend = 0.05). CONCLUSIONS Residential proximity to relatively high dioxin emissions from industrial sources may increase the risk of NHL and specific subtypes.
Collapse
Affiliation(s)
- Jared A Fisher
- Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA.
| | - Danielle N Medgyesi
- Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Nicole C Deziel
- Department of Environmental Health Sciences, Yale School of Public Health, New Haven, CT, USA
| | - John R Nuckols
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, USA; JRN Environmental Health Sciences, Ltd, North Bethesda, MD, USA
| | - Mary H Ward
- Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Rena R Jones
- Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| |
Collapse
|
6
|
Neira C, Mendoza GF, Bradley A, Gossett R, Rouse GW, Levin LA. Waste barrel contamination and macrobenthic communities in the San Pedro Basin DDT dumpsite. MARINE POLLUTION BULLETIN 2024; 203:116463. [PMID: 38776641 DOI: 10.1016/j.marpolbul.2024.116463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 05/02/2024] [Accepted: 05/03/2024] [Indexed: 05/25/2024]
Abstract
Industrial waste barrels were discarded from 1947 to 1961 at a DDT dumpsite in the San Pedro Basin (SPB) in southern California, USA at ~890 m. The barrels were studied for effects on sediment concentrations of DDX, PCBs, PAHs and sediment properties, and on benthic macrofaunal assemblages, including metazoan meiofaunal taxa >0.3 mm. DDX concentration was highest in the 2-6 cm fraction of the 10-cm deep cores studied but exhibited no correlation with macrofaunal density, composition or diversity. Macrofaunal diversity was lowest and distinct in sediments within discolored halos surrounding the barrels. Low macrobenthos density and diversity, high dominance by Entoprocta, and numerical prevalence of large nematodes may result from the very low oxygen concentrations in bottom waters (< 4.4 μM). There is potential for macrofauna to remobilize DDX into the water column and ultimately the food web in the SPB.
Collapse
Affiliation(s)
- Carlos Neira
- Integrative Oceanography Division, Scripps Institution of Oceanography, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0206, United States of America.
| | - Guillermo F Mendoza
- Integrative Oceanography Division, Scripps Institution of Oceanography, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0206, United States of America
| | - Angelica Bradley
- Integrative Oceanography Division, Scripps Institution of Oceanography, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0206, United States of America
| | - Richard Gossett
- Physis Environmental Laboratories, 1904 E. Wright Circle, Anaheim, CA 92806-6028, United States of America
| | - Greg W Rouse
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0202, United States of America
| | - Lisa A Levin
- Integrative Oceanography Division, Scripps Institution of Oceanography, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0206, United States of America
| |
Collapse
|
7
|
Sun XF, Xu Y, Small MJ, Yaron D, Zeng EY. Modeled Pathways and Fluxes of PCB Dechlorination by Redox Potentials. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:5347-5356. [PMID: 38478968 DOI: 10.1021/acs.est.3c07584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
Dechlorination is one of the main processes for the natural degradation of polychlorinated biphenyls (PCBs) in an anaerobic environment. However, PCB dechlorination pathways and products vary with PCB congeners, types of functional dechlorinating bacteria, and environmental conditions. The present study develops a novel model for determining dechlorination pathways and fluxes by tracking redox potential variability, transforming the complex dechlorination process into a stepwise sequence. The redox potential is calculated via the Gibbs free energy of formation, PCB concentrations in reactants and products, and environmental conditions. Thus, the continuous change in the PCB congener composition can be tracked during dechlorination processes. The new model is assessed against four measurements from several published studies on PCB dechlorination. The simulation errors in all four measurements are calculated between 2.67 and 35.1% under minimum (n = 0) and maximum (n = 34) numbers of co-eluters, respectively. The dechlorination fluxes for para-dechlorination pathways dominate PCB dechlorination in all measurements. Furthermore, the model also considers multiple-step dechlorination pathways containing intermediate PCB congeners absent in both the reactants and the products. The present study indicates that redox potential might be an appropriate indicator for predicting PCB dechlorination pathways and fluxes even without prior knowledge of the functional dechlorinating bacteria.
Collapse
Affiliation(s)
- Xiang-Fei Sun
- Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 511443, China
| | - Yan Xu
- Department of Municipal Engineering, School of Civil Engineering, Southeast University, Nanjing 210096, China
| | - Mitchell J Small
- Departments of Civil & Environmental Engineering and Engineering & Public Policy, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - David Yaron
- Departments of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Eddy Y Zeng
- Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 511443, China
| |
Collapse
|
8
|
Ye C, Tu Y, Ling H, Chen Y, Liu Y, Zhang R, Zhang X. Occurrence, physicochemical properties and environmental behavior of polychlorinated dibenzothiophenes: A comprehensive review and future perspectives. ENVIRONMENTAL RESEARCH 2024; 245:118007. [PMID: 38154561 DOI: 10.1016/j.envres.2023.118007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 11/30/2023] [Accepted: 12/20/2023] [Indexed: 12/30/2023]
Abstract
Polychlorinated dibenzothiophenes (PCDTs) are a form of emerging pollutant that has attracted great attention due to their structural resemblance to dioxins, which cast detrimental influence on the ecosystem and human health. This review shows the current status of research on PCDTs, focusing on their environmental occurrence, physicochemical properties, environmental behavior, and toxicity. Studies have suggested that the steps leading to the formation of PCDTs resemble those generating polychlorinated dibenzo-p-dioxin/dibenzofurans (PCDD/Fs), indicating their probable origin from the same sources. Furthermore, they may undergo a dechlorination process as a result of their photodegradation in the environment and metabolic reaction occurring within organisms, which could result in the conversion of these substances into additional pollutants like dibenzothiophene. PCDTs exist widely in the environmental media and have high logKOW values (>4.0), indicating their tendency to bioaccumulate. Moreover, the prediction results of EPI (Estimation Program Interface) Suite demonstrated a strong accumulation capacity for tetra-CDTs in fish compared to other chlorinated PCDTs. The biotransformation half-life of PCDTs would prolong with an increasing number of substituted Cl atoms in fish. A limited number of studies have also suggested that PCDTs can cause damage to the liver and immune system in living organisms, and the toxicity of PCDTs depends on the number and position of substituted Cl atoms. Future studies should be conducted on processes causing PCDT toxicity as well as their behavior and fate in actual environments.
Collapse
Affiliation(s)
- Chunmeng Ye
- Jiangsu Environmental Engineering Technology Co., Ltd. Jiangsu Environmental Protection Group Co., Ltd. Jiangsu Nanjing 210036, China; Key Laboratory of Environmental Remediation and Ecological Health, Ministry of Industry and Information Technology, China
| | - Yong Tu
- Jiangsu Environmental Engineering Technology Co., Ltd. Jiangsu Environmental Protection Group Co., Ltd. Jiangsu Nanjing 210036, China; Key Laboratory of Environmental Remediation and Ecological Health, Ministry of Industry and Information Technology, China
| | - Hong Ling
- Jiangsu Environmental Engineering Technology Co., Ltd. Jiangsu Environmental Protection Group Co., Ltd. Jiangsu Nanjing 210036, China; Key Laboratory of Environmental Remediation and Ecological Health, Ministry of Industry and Information Technology, China
| | - Yong Chen
- Jiangsu Environmental Engineering Technology Co., Ltd. Jiangsu Environmental Protection Group Co., Ltd. Jiangsu Nanjing 210036, China; Key Laboratory of Environmental Remediation and Ecological Health, Ministry of Industry and Information Technology, China.
| | - Yang Liu
- Jiangsu Environmental Engineering Technology Co., Ltd. Jiangsu Environmental Protection Group Co., Ltd. Jiangsu Nanjing 210036, China; Key Laboratory of Environmental Remediation and Ecological Health, Ministry of Industry and Information Technology, China
| | - Rui Zhang
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, China
| | - Xuesheng Zhang
- School of Resources and Environmental Engineering, Anhui University, Anhui Hefei 230601, China.
| |
Collapse
|
9
|
Cai Y, Hu J, Guo Y, Shen X. Molecular Cloning, Characterization, and Expression of a Receptor for Activated Protein Kinase C1 (RACK1) Gene in Exopalaemon carinicauda Zoea Larvae under Aroclor 1254 Stress. BIOLOGY 2024; 13:174. [PMID: 38534444 DOI: 10.3390/biology13030174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 02/13/2024] [Accepted: 02/22/2024] [Indexed: 03/28/2024]
Abstract
The receptor for activated protein kinase C1 (RACK1) belongs to the typical WD repeat family, which is extremely conservative and important in multiple signal transduction pathways related to growth and development that coordinate the intracellular role of various life activities. As a novel protein with versatile functions, it was found in a variety of organisms. In a previous study, we identified the RACK1 sequence of white shrimp from transcriptome data. In this study, we employed specialized bioinformatics software to conduct an in-depth analysis of EcRACK1 and compare its amino acid sequence homology with other crustaceans. Furthermore, we investigated the expression patterns of RACK1 at different developmental stages and tissues, as well as at various time points after exposure to Aroclor 1245, aiming to elucidate its function and potential response towards Aroclor 1245 exposure. The length of EcRACK1 is 957 nucleotides, which encodes 318 amino acids. Moreover, there were seven typical WD repeats in EcRACK1, which have more than a 96% sequence identity with the RACK1 proteins of Penaeus. The results of tissue expression and spatiotemporal expression showed that it was significantly increased in the II and IV stages, but had a significant tissue specificity in the hepatopancreas, spermary, and muscle tissues of E. carinicauda, adult stage. Compared to the control, EcRACK1 was significantly induced in E. carinicauda zoea larvae exposed to Aroclor 1254 for 6, 10, 20, and 30 d (p < 0.05). These results suggested that EcRACK1 may play an important role in the larval development and environmental defense of E. carinicauda.
Collapse
Affiliation(s)
- Yuefeng Cai
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Jie Hu
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Yepeng Guo
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Xin Shen
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
| |
Collapse
|
10
|
Healey AM, Fenner KN, O'Dell CT, Lawrence BP. Aryl hydrocarbon receptor activation alters immune cell populations in the lung and bone marrow during coronavirus infection. Am J Physiol Lung Cell Mol Physiol 2024; 326:L313-L329. [PMID: 38290163 PMCID: PMC11281796 DOI: 10.1152/ajplung.00236.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 01/11/2024] [Accepted: 01/11/2024] [Indexed: 02/01/2024] Open
Abstract
Respiratory viral infections are one of the major causes of illness and death worldwide. Symptoms associated with respiratory infections can range from mild to severe, and there is limited understanding of why there is large variation in severity. Environmental exposures are a potential causative factor. The aryl hydrocarbon receptor (AHR) is an environment-sensing molecule expressed in all immune cells. Although there is considerable evidence that AHR signaling influences immune responses to other immune challenges, including respiratory pathogens, less is known about the impact of AHR signaling on immune responses during coronavirus (CoV) infection. In this study, we report that AHR activation significantly altered immune cells in the lungs and bone marrow of mice infected with a mouse CoV. AHR activation transiently reduced the frequency of multiple cells in the mononuclear phagocyte system, including monocytes, interstitial macrophages, and dendritic cells in the lung. In the bone marrow, AHR activation altered myelopoiesis, as evidenced by a reduction in granulocyte-monocyte progenitor cells and an increased frequency of myeloid-biased progenitor cells. Moreover, AHR activation significantly affected multiple stages of the megakaryocyte lineage. Overall, these findings indicate that AHR activation modulates multiple aspects of the immune response to a CoV infection. Given the significant burden of respiratory viruses on human health, understanding how environmental exposures shape immune responses to infection advances our knowledge of factors that contribute to variability in disease severity and provides insight into novel approaches to prevent or treat disease.NEW & NOTEWORTHY Our study reveals a multifaceted role for aryl hydrocarbon receptor (AHR) signaling in the immune response to coronavirus (CoV) infection. Sustained AHR activation during in vivo mouse CoV infection altered the frequency of mature immune cells in the lung and modulated emergency hematopoiesis, specifically myelopoiesis and megakaryopoiesis, in bone marrow. This provides new insight into immunoregulation by the AHR and extends our understanding of how environmental exposures can impact host responses to respiratory viral infections.
Collapse
Affiliation(s)
- Alicia M Healey
- Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, New York, United States
| | - Kristina N Fenner
- Department of Environmental Medicine, University of Rochester School of Medicine and Dentistry, Rochester, New York, United States
| | - Colleen T O'Dell
- Department of Environmental Medicine, University of Rochester School of Medicine and Dentistry, Rochester, New York, United States
| | - B Paige Lawrence
- Department of Environmental Medicine, University of Rochester School of Medicine and Dentistry, Rochester, New York, United States
- Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, New York, United States
| |
Collapse
|
11
|
Bonati L, Motta S, Callea L. The AhR Signaling Mechanism: A Structural Point of View. J Mol Biol 2024; 436:168296. [PMID: 37797832 DOI: 10.1016/j.jmb.2023.168296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/23/2023] [Accepted: 09/28/2023] [Indexed: 10/07/2023]
Abstract
The Aryl hydrocarbon Receptor (AhR) is a well-known sensor of xenobiotics; moreover, it is considered a promising drug target as it is involved in the regulation of many patho-physiological processes. For these reasons the study of its ligand-activated transcription mechanism has stimulated several studies for over twenty years. In this review we highlight the key role of molecular structural information in understanding the different steps of the signaling mechanism. The architecture of the AhR cytosolic complex, encompassing the hsp90 chaperone protein and the XAP2 and p23 co-chaperones, has become available in the last year thanks to Cryo-EM experiments. The structure of the AhR ligand-binding (PAS-B) domain has remained elusive for a long time; it has been predicted by homology modelling, based on known PAS systems, and its ligand-bound forms were modelled through ligand molecular docking. Although very recently some structural information on this domain has become available, considerable efforts are still needed to determine the binding geometries of the AhR key ligands by experimental high-resolution studies. On the other hand, the dimeric structure of AhR with the ARNT protein, bound to the specific DNA responsive element, was partially determined by X-ray crystallography and it was completed by homology modelling. On the whole the current structural knowledge of the main protein complexes that form over the AhR mechanism opens the way to confirm and further investigate the main steps of the proposed ligand-activated transcription mechanism of the AhR.
Collapse
Affiliation(s)
- Laura Bonati
- Department of Earth and Environmental Sciences, University of Milano-Bicocca, Piazza della Scienza 1, 20126 Milan, Italy.
| | - Stefano Motta
- Department of Earth and Environmental Sciences, University of Milano-Bicocca, Piazza della Scienza 1, 20126 Milan, Italy.
| | - Lara Callea
- Department of Earth and Environmental Sciences, University of Milano-Bicocca, Piazza della Scienza 1, 20126 Milan, Italy.
| |
Collapse
|
12
|
DeVito M, Bokkers B, van Duursen MBM, van Ede K, Feeley M, Antunes Fernandes Gáspár E, Haws L, Kennedy S, Peterson RE, Hoogenboom R, Nohara K, Petersen K, Rider C, Rose M, Safe S, Schrenk D, Wheeler MW, Wikoff DS, Zhao B, van den Berg M. The 2022 world health organization reevaluation of human and mammalian toxic equivalency factors for polychlorinated dioxins, dibenzofurans and biphenyls. Regul Toxicol Pharmacol 2024; 146:105525. [PMID: 37972849 PMCID: PMC10870838 DOI: 10.1016/j.yrtph.2023.105525] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 10/21/2023] [Accepted: 11/01/2023] [Indexed: 11/19/2023]
Abstract
In October 2022, the World Health Organization (WHO) convened an expert panel in Lisbon, Portugal in which the 2005 WHO TEFs for chlorinated dioxin-like compounds were reevaluated. In contrast to earlier panels that employed expert judgement and consensus-based assignment of TEF values, the present effort employed an update to the 2006 REP database, a consensus-based weighting scheme, a Bayesian dose response modeling and meta-analysis to derive "Best-Estimate" TEFs. The updated database contains almost double the number of datasets from the earlier version and includes metadata that informs the weighting scheme. The Bayesian analysis of this dataset results in an unbiased quantitative assessment of the congener-specific potencies with uncertainty estimates. The "Best-Estimate" TEF derived from the model was used to assign 2022 WHO-TEFs for almost all congeners and these values were not rounded to half-logs as was done previously. The exception was for the mono-ortho PCBs, for which the panel agreed to retain their 2005 WHO-TEFs due to limited and heterogenous data available for these compounds. Applying these new TEFs to a limited set of dioxin-like chemical concentrations measured in human milk and seafood indicates that the total toxic equivalents will tend to be lower than when using the 2005 TEFs.
Collapse
Affiliation(s)
- Michael DeVito
- Center for Computational Toxicology and Exposure, United States Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Bas Bokkers
- Centre for Safety of Substances and Products, National Institute for Public Health, And the Environment (RIVM), Bilthoven, the Netherlands
| | - Majorie B M van Duursen
- Amsterdam Institute for Life and Environment, Environmental Health & Toxicology, Vrije Universiteit, Amsterdam, the Netherlands
| | | | | | | | | | - Sean Kennedy
- Department of Biology, University of Ottawa, Canada
| | | | - Ron Hoogenboom
- Wageningen Food Safety Research (WFSR), Wageningen, the Netherlands
| | - Keiko Nohara
- Health and Environmental Risk Division, National Institute for Environmental Studies, Tsukuba, 305-8506, Japan
| | - Kim Petersen
- Department of Nutrition and Food Safety, Standards and Scientific Advice on Food and Nutrition, World Health Organization, Geneva Switzerland.
| | - Cynthia Rider
- National Institute of Environmental Health Science, Division of the Translational Toxicology, Durham, USA
| | - Martin Rose
- FERA Science Ltd, Sand Hutton, York, YO41 1LZ, UK; Manchester Institute of Biotechnology, University of Manchester, Manchester, UK
| | - Stephen Safe
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX, 77843, USA
| | - Dieter Schrenk
- Food Chemistry and Toxicology Department, University of Kaiserslautern, D-67663, Kaiserslautern, Germany
| | - Matthew W Wheeler
- Biostatistics and Computational Biology Branch, National Institute of Environmental Health Sciences, RTP, NC, USA
| | | | - Bin Zhao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Martin van den Berg
- Institute for Risk Assessment Sciences, Utrecht University, Yalelaan 104, 3584 CM, Utrecht, the Netherlands
| |
Collapse
|
13
|
Krause T, Moenning JL, Lamp J, Maul R, Schenkel H, Fürst P, Pieper R, Numata J. Transfer of polychlorinated dibenzo- p-dioxins and dibenzofurans (PCDD/Fs) and polychlorinated biphenyls (PCBs) from oral exposure into cow's milk - Part I: state of knowledge and uncertainties. Nutr Res Rev 2023; 36:448-470. [PMID: 36089770 DOI: 10.1017/s0954422422000178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Polychlorinated dibenzo-para-dioxins (PCDDs) and dibenzofurans (PCDFs) (collectively and colloquially referred to as 'dioxins') as well as polychlorinated biphenyls (PCBs) are persistent and ubiquitous environmental contaminants that may unintentionally enter and accumulate along the food chain. Owing to their chronic toxic effects in humans and bioaccumulative properties, their presence in feed and food requires particular attention. One important exposure pathway for consumers is consumption of milk and dairy products. Their transfer from feed to milk has been studied for the past 50 years to quantify the uptake and elimination kinetics. We extracted transfer parameters (transfer rate, transfer factor, biotransfer factor and elimination half-lives) in a machine-readable format from seventy-six primary and twenty-nine secondary literature items. Kinetic data for some toxicologically relevant dioxin congeners and the elimination half-lives of dioxin-like PCBs are still not available. A well-defined selection of transfer parameters from literature was statistically analysed and shown to display high variability. To understand this variability, we discuss the data with an emphasis on influencing factors, such as experimental conditions, cow performance parameters and metabolic state. While no universal interpretation could be derived, a tendency for increased transfer into milk is apparently connected to an increase in milk yield and milk fat yield as well as during times of body fat mobilisation, for example during the negative energy balance after calving. Over the past decades, milk yield has increased to over 40 kg/d during high lactation, so more research is needed on how this impacts feed to food transfer for PCDD/Fs and PCBs.
Collapse
Affiliation(s)
- Torsten Krause
- Department of Safety and Quality of Milk and Fish, Max Rubner-Institut (MRI), Hermann-Weigmann-Straße 1, 24103Kiel, Germany
| | - Jan-Louis Moenning
- Department Safety in the Food Chain, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Straße 8-10, 10589 Berlin, Germany
| | - Julika Lamp
- Department of Safety and Quality of Milk and Fish, Max Rubner-Institut (MRI), Hermann-Weigmann-Straße 1, 24103Kiel, Germany
| | - Ronald Maul
- Department of Safety and Quality of Milk and Fish, Max Rubner-Institut (MRI), Hermann-Weigmann-Straße 1, 24103Kiel, Germany
| | - Hans Schenkel
- Department of Animal Nutrition, University of Hohenheim, Emil-Wolff-Str. 10, 70599 Stuttgart, Germany
| | - Peter Fürst
- Chemical and Veterinary Analytical Institute Münsterland-Emscher-Lippe (CVUA-MEL), Joseph-König-Straße 40, 48147 Münster, Germany
| | - Robert Pieper
- Department Safety in the Food Chain, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Straße 8-10, 10589 Berlin, Germany
| | - Jorge Numata
- Department Safety in the Food Chain, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Straße 8-10, 10589 Berlin, Germany
| |
Collapse
|
14
|
Long M, Wielsøe M, Bech BH, Henriksen TB, Bonefeld-Jørgensen EC. Maternal serum dioxin-like activity and gestational age at birth and indices of foetal growth: The Aarhus birth cohort. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 897:165286. [PMID: 37422229 DOI: 10.1016/j.scitotenv.2023.165286] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/27/2023] [Accepted: 07/01/2023] [Indexed: 07/10/2023]
Abstract
Human exposure to lipophilic persistent organic pollutants (lipPOP) is ubiquitous and life-long, beginning during foetal development. Exposure to lipPOP elicits a number of species and tissue specific responses including dioxin-like activity which involve the activation of aryl hydrocarbon receptor (AhR). This study aims i) to describe the combined dioxin-like activity in serum from Danish pregnant women collected during 2011-2013; ii) to assess the association between maternal serum dioxin-like activity, gestational age at birth and foetal growth indices. The serum lipPOP fraction was extracted using Solid Phase Extraction and cleaned-up on Supelco multi-layer silica and florisil columns. The combined dioxin-like activity of the extract was determined using the AhR reporter gene bioassay, expressed as 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) toxic equivalent (TEQ) [AhR-TEQ (pg/g lipid)]. The associations of AhR-TEQ and foetal growth indices (birth weight, birth length and head circumference) and gestational age were assessed by linear regression models. We detected AhR-TEQ in 93.9 % of maternal first trimester serum samples, with a median level of 185 pg/g lipid. Each ln-unit increase in AhR-TEQ was associated with an increase in birth weight of 36 g (95 % CI: 5; 68), birth length of 0.2 cm (95 % CI: 0.01; 0.3) and pregnancy duration of 1 day (95 % CI: 0; 1.5). In women who never smoked, higher AhR-TEQ values were associated with higher birth weight and longer duration of gestation, while in smokers the association was the opposite. Mediation analyses suggested that gestational age may mediate the association of AhR-TEQ with foetal growth indices. We conclude that AhR activating substances are present in the bloodstream of almost all pregnant women in Denmark and the AhR-TEQ level was around four times higher than previously reported. The AhR-TEQ was associated with slightly longer gestational duration and thereby higher birth weight and birth length.
Collapse
Affiliation(s)
- Manhai Long
- Centre for Arctic Health & Molecular Epidemiology, Department of Public Health, Aarhus University, Denmark.
| | - Maria Wielsøe
- Centre for Arctic Health & Molecular Epidemiology, Department of Public Health, Aarhus University, Denmark.
| | - Bodil Hammer Bech
- Research unit for Epidemiology, Department of Public Health, Aarhus University, Aarhus, Denmark.
| | - Tine Brink Henriksen
- Perinatal Epidemiology Research Unit, Department of Clinical Medicine, Aarhus University, Denmark; Department of Pediatrics, Aarhus University Hospital, Denmark.
| | - Eva Cecilie Bonefeld-Jørgensen
- Centre for Arctic Health & Molecular Epidemiology, Department of Public Health, Aarhus University, Denmark; Greenland Center for Health Research, University of Greenland, Nuuk, Greenland.
| |
Collapse
|
15
|
Ring C, Blanchette A, Klaren WD, Fitch S, Haws L, Wheeler MW, DeVito M, Walker N, Wikoff D. A multi-tiered hierarchical Bayesian approach to derive toxic equivalency factors for dioxin-like compounds. Regul Toxicol Pharmacol 2023; 143:105464. [PMID: 37516304 PMCID: PMC11110530 DOI: 10.1016/j.yrtph.2023.105464] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 07/07/2023] [Accepted: 07/25/2023] [Indexed: 07/31/2023]
Abstract
In 2005, the World Health Organization (WHO) re-evaluated Toxic Equivalency factors (TEFs) developed for dioxin-like compounds believed to act through the Ah receptor based on an updated database of relative estimated potency (REP)(REP2004 database). This re-evalution identified the need to develop a consistent approach for dose-response modeling. Further, the WHO Panel discussed the significant heterogeneity of experimental datasets and dataset quality underlying the REPs in the database. There is a critical need to develop a quantitative, and quality weighted approach to characterize the TEF for each congener. To address this, a multi-tiered approach that combines Bayesian dose-response fitting and meta-regression with a machine learning model to predict REPS' quality categorizations was developed to predict the most likely relationship between each congener and its reference and derive model-predicted TEF uncertainty distributions. As a proof of concept, this 'Best-Estimate TEF workflow' was applied to the REP2004 database to derive TEF point-estimates and characterizations of uncertainty for all congeners. Model-TEFs were similar to the 2005 WHO TEFs, with the data-poor congeners having larger levels of uncertainty. This transparent and reproducible computational workflow incorporates WHO expert panel recommendations and represents a substantial improvement in the TEF methodology.
Collapse
Affiliation(s)
| | | | | | | | | | - Matthew W Wheeler
- National Institute of Environmental Health Sciences/National Institutes of Health, Research Triangle Park, NC, USA.
| | - Michael DeVito
- Environmental Protection Agency, Center for Computational Toxicology and Exposure, Research Triangle Park, NC, USA.
| | - Nigel Walker
- National Institute of Environmental Health Sciences/National Institutes of Health, Research Triangle Park, NC, USA.
| | | |
Collapse
|
16
|
Riddick DS. Fifty Years of Aryl Hydrocarbon Receptor Research as Reflected in the Pages of Drug Metabolism and Disposition. Drug Metab Dispos 2023; 51:657-671. [PMID: 36653119 DOI: 10.1124/dmd.122.001009] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/10/2023] [Accepted: 01/12/2023] [Indexed: 01/19/2023] Open
Abstract
The induction of multiple drug-metabolizing enzymes by halogenated and polycyclic aromatic hydrocarbon toxicants is mediated by the aryl hydrocarbon receptor (AHR). This fascinating receptor also has natural dietary and endogenous ligands, and much is now appreciated about the AHR's developmental and physiologic roles, as well as its importance in cancer and other diseases. The past several years has witnessed increasing emphasis on understanding the multifaceted roles of the AHR in the immune system. Most would agree that the "discovery" of the AHR occurred in 1976, with the report of specific binding of a high affinity radioligand in mouse liver, just three years after the launch of the journal Drug Metabolism and Disposition (DMD) in 1973. Over the ensuing 50 years, the AHR and DMD have led parallel and often intersecting lives. The overall goal of this mini-review is to provide a decade-by-decade overview of major historical landmark discoveries in the AHR field and to highlight the numerous contributions made by publications appearing in the pages of DMD. It is hoped that this historical tour might inspire current and future research in the AHR field. SIGNIFICANCE STATEMENT: With the launch of Drug Metabolism and Disposition (DMD) in 1973 and the discovery of the aryl hydrocarbon receptor (AHR) in 1976, the journal and the receptor have led parallel and often intersecting lives over the past 50 years. Tracing the history of the AHR can reveal how knowledge in the field has evolved to the present and highlight the important contributions made by discoveries reported in DMD. This may inspire additional DMD papers reporting future AHR landmark discoveries.
Collapse
Affiliation(s)
- David S Riddick
- Department of Pharmacology and Toxicology, Medical Sciences Building, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
17
|
Zhang X, Xiong W, Wu Q, Nian K, Pan X, Crump D, Wang X, Lin Y, Zhang X, Zhang R. Bioaccumulation, Trophic Transfer, and Biotransformation of Polychlorinated Diphenyl Ethers in a Simulated Aquatic Food Chain. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:5751-5760. [PMID: 36975752 DOI: 10.1021/acs.est.2c08216] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Polychlorinated diphenyl ethers (PCDEs) are detected in aquatic environments and demonstrate adverse effects in aquatic organisms. However, data regarding the environmental behavior of PCDEs in aquatic ecosystems are lacking. In the present study, a simulated aquatic food chain (Scenedesmus obliquus-Daphnia magna-Danio rerio) was constructed in a lab setting, and the bioaccumulation, trophic transfer, and biotransformation of 12 PCDE congeners were quantitatively investigated for the first time. The log-transformed bioaccumulation factors (BCFs) of PCDEs in S. obliquus, D. magna, and D. rerio were in the range of 2.94-3.77, 3.29-4.03, and 2.42-2.89 L/kg w.w., respectively, indicating the species-specific bioaccumulation of PCDE congeners. The BCF values increased significantly with the increasing number of substituted Cl atoms, with the exception of CDE 209. The number of Cl atoms at the para and meta positions were found to be the major positive contributing factors for BCFs in the case of the same number of substituted Cl. The lipid-normalized biomagnification factors (BMFs) of S. obliquus to D. magna, D. magna to D. rerio, and the whole food chain for the 12 PCDE congeners ranged at 1.08-2.27, 0.81-1.64, and 0.88-3.64, respectively, suggesting that some congeners had BMFs comparable to PBDEs and PCBs. Dechlorination was the only metabolic pathway observed for S. obliquus and D. magna. For D. rerio, dechlorination, methoxylation, and hydroxylation metabolic pathways were observed. 1H nuclear magnetic resonance (NMR) experiments and theoretical calculations confirmed that methoxylation and hydroxylation occurred at the ortho position of the benzene rings. In addition, reliable quantitative structure-property relationship (QSPR) models were constructed to qualitatively describe the relationships between molecular structure descriptors and BCFs for PCDEs. These findings provide insights into the movement and transformation of PCDEs in aquatic ecosystems.
Collapse
Affiliation(s)
- Xuesheng Zhang
- School of Resources and Environmental Engineering, Anhui University, Hefei, Anhui 230601, China
- Laboratory of Wetland Protection and Ecological Restoration, Anhui University, Hefei, Anhui 230601, China
| | - Wenli Xiong
- School of Resources and Environmental Engineering, Anhui University, Hefei, Anhui 230601, China
- Laboratory of Wetland Protection and Ecological Restoration, Anhui University, Hefei, Anhui 230601, China
| | - Qiuxuan Wu
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, China
| | - Kainan Nian
- School of Resources and Environmental Engineering, Anhui University, Hefei, Anhui 230601, China
- Laboratory of Wetland Protection and Ecological Restoration, Anhui University, Hefei, Anhui 230601, China
| | - Xiaoxue Pan
- School of Resources and Environmental Engineering, Anhui University, Hefei, Anhui 230601, China
| | - Doug Crump
- Ecotoxicology and Wildlife Health Division, Environment and Climate Change Canada, National Wildlife Research Centre, Carleton University, 1125 Colonel By Drive, Ottawa K1A 0H3, Canada
| | - Xiaoxiang Wang
- Institute for Carbon-Neutral Technology, Shenzhen Polytechnic, Shenzhen 518055, China
| | - Yishan Lin
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi'an 710127, China
| | - Xiaowei Zhang
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, P. R. China
| | - Rui Zhang
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, China
| |
Collapse
|
18
|
Cholico GN, Orlowska K, Fling RR, Sink WJ, Zacharewski NA, Fader KA, Nault R, Zacharewski T. Consequences of reprogramming acetyl-CoA metabolism by 2,3,7,8-tetrachlorodibenzo-p-dioxin in the mouse liver. Sci Rep 2023; 13:4138. [PMID: 36914879 PMCID: PMC10011583 DOI: 10.1038/s41598-023-31087-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 03/06/2023] [Indexed: 03/14/2023] Open
Abstract
2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) is a persistent environmental contaminant that induces the progression of steatosis to steatohepatitis with fibrosis in mice. Furthermore, TCDD reprograms hepatic metabolism by redirecting glycolytic intermediates while inhibiting lipid metabolism. Here, we examined the effect of TCDD on hepatic acetyl-coenzyme A (acetyl-CoA) and β-hydroxybutyrate levels as well as protein acetylation and β-hydroxybutyrylation. Acetyl-CoA is not only a central metabolite in multiple anabolic and catabolic pathways, but also a substrate used for posttranslational modification of proteins and a surrogate indicator of cellular energy status. Targeted metabolomic analysis revealed a dose-dependent decrease in hepatic acetyl-CoA levels coincident with the phosphorylation of pyruvate dehydrogenase (E1), and the induction of pyruvate dehydrogenase kinase 4 and pyruvate dehydrogenase phosphatase, while repressing ATP citrate lyase and short-chain acyl-CoA synthetase gene expression. In addition, TCDD dose-dependently reduced the levels of hepatic β-hydroxybutyrate and repressed ketone body biosynthesis gene expression. Moreover, levels of total hepatic protein acetylation and β-hydroxybutyrylation were reduced. AMPK phosphorylation was induced consistent with acetyl-CoA serving as a cellular energy status surrogate, yet subsequent targets associated with re-establishing energy homeostasis were not activated. Collectively, TCDD reduced hepatic acetyl-CoA and β-hydroxybutyrate levels eliciting starvation-like conditions despite normal levels of food intake.
Collapse
Affiliation(s)
- Giovan N Cholico
- Biochemistry and Molecular Biology, Michigan State University, Biochemistry Building, 603 Wilson Road, East Lansing, MI, 48824, USA
- Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, 48824, USA
| | - Karina Orlowska
- Biochemistry and Molecular Biology, Michigan State University, Biochemistry Building, 603 Wilson Road, East Lansing, MI, 48824, USA
- Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, 48824, USA
| | - Russell R Fling
- Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, 48824, USA
- Microbiology & Molecular Genetics, Michigan State University, East Lansing, MI, 48824, USA
| | - Warren J Sink
- Biochemistry and Molecular Biology, Michigan State University, Biochemistry Building, 603 Wilson Road, East Lansing, MI, 48824, USA
- Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, 48824, USA
| | - Nicholas A Zacharewski
- Biochemistry and Molecular Biology, Michigan State University, Biochemistry Building, 603 Wilson Road, East Lansing, MI, 48824, USA
| | - Kelly A Fader
- Biochemistry and Molecular Biology, Michigan State University, Biochemistry Building, 603 Wilson Road, East Lansing, MI, 48824, USA
- Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, 48824, USA
| | - Rance Nault
- Biochemistry and Molecular Biology, Michigan State University, Biochemistry Building, 603 Wilson Road, East Lansing, MI, 48824, USA
- Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, 48824, USA
| | - Tim Zacharewski
- Biochemistry and Molecular Biology, Michigan State University, Biochemistry Building, 603 Wilson Road, East Lansing, MI, 48824, USA.
- Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, 48824, USA.
| |
Collapse
|
19
|
Wu Q, Wu Q, Wang X, Zhang X, Zhang R. Polychlorinated Diphenyl Ethers in the Environment: A Review and Future Perspectives. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:3982. [PMID: 36900991 PMCID: PMC10002337 DOI: 10.3390/ijerph20053982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 02/18/2023] [Accepted: 02/21/2023] [Indexed: 06/18/2023]
Abstract
Polychlorinated diphenyl ethers (PCDEs) are a class of synthetic halogenated aromatic compounds, which have gradually attracted widespread attention due to potential environmental risks to humans and ecosystems. This paper presents a literature review of research on PCDEs using PubMed, Web of Science and Google Scholar as search engines/databases with no constraints on publishing year or number. A total of 98 publications on the sources, environmental levels, environmental behavior and fate, synthesis and analysis and toxicology of PCDEs were retrieved. Existing studies have shown that PCDEs widely exist in the environment with the ability of long-range transport, bioaccumulation and biomagnification, which are almost comparable to polychlorinated biphenyls. They can elicit adverse effects including hepatic oxidative stress, immunosuppression, endocrine disorders, growth retardation, malformations, reduced fertility and increased mortality in organisms, among which some seem to be related to the activation of the aryl hydrocarbon receptor. PCDEs can be metabolized into other organic pollutants, such as hydroxylated and methoxylated PCDEs and even polychlorinated dibenzo-p-dioxins and furans through biotransformation, photolysis and pyrolysis reactions in the environment. Compared with reviews on PCDEs published previously, some new information and findings are summarized in this review, such as new sources, current environmental exposure levels, main metabolism pathways in aquatic organisms, acute toxicity data for more species and relationships between structural parameters and toxicity and bioaccumulation potentials of PCDE congeners. Finally, current research deficiencies and future research perspectives are proposed to facilitate the assessment of health and ecological risks of PCDEs.
Collapse
Affiliation(s)
- Qiuxuan Wu
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, China
| | - Qiong Wu
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, China
| | - Xiaoxiang Wang
- Institute for Carbon-Neutral Technology, Shenzhen Polytechnic, Shenzhen 518055, China
| | - Xuesheng Zhang
- School of Resources and Environmental Engineering, Anhui University, Hefei 230601, China
- Laboratory of Wetland Protection and Ecological Restoration, Anhui University, Hefei 230601, China
| | - Rui Zhang
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, China
| |
Collapse
|
20
|
Alvarado R, Cárdenas G, Nogueira JJ, Ramos-Berdullas N, Mandado M. On the Permeation of Polychlorinated Dibenzodioxins and Dibenzofurans through Lipid Membranes: Classical MD and Hybrid QM/MM-EDA Analysis. MEMBRANES 2022; 13:28. [PMID: 36676835 PMCID: PMC9865757 DOI: 10.3390/membranes13010028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/19/2022] [Accepted: 12/21/2022] [Indexed: 06/17/2023]
Abstract
The permeation of dioxin-like pollutants, namely, chlorinated dibenzodioxins and dibenzofurans, through lipid membranes has been simulated using classic molecular dynamics (CMD) combined with the umbrella sampling approach. The most toxic forms of chlorinated dibenzodioxin and dibenzofuran, 2,3,7,8-tetrachloro-p-dibenzodioxin (TCDD) and 2,3,7,8-tetrachlorodibenzofuran (TCDF), and a dioleyl-phosphatidylcholine (DOPC) lipid membrane of 50 Å wide have been chosen for our study. The free energy profile shows the penetration process is largely favoured thermodynamically (ΔG ≈ -12 kcal/mol), with a progressively decrease of the free energy until reaching the energy minima at distances of 8 Å and 9.5 Å from the centre of the membrane for, respectively, TCDD and TCDF. At the centre of the membrane, both molecules display subtle local maxima with free energy differences of 0.5 and 1 kcal/mol with respect to the energy minima for TCDD and TCDF, respectively. Furthermore, the intermolecular interactions between the molecules and the lipid membrane have been characterized at the minima and the local maxima using hybrid quantum mechanics/molecular mechanics energy decomposition analysis (QM/MM-EDA). Total interaction energies of -17.5 and -16.5 kcal/mol have been found at the energy minima for TCDD and TCDF, respectively. In both cases, the dispersion forces govern the molecule-membrane interactions, no significant changes have been found at the local maxima, in agreement with the classical free energy profile. The small differences found in the results obtained for TCDD and TCDF point out that the adsorption and diffusion processes through the cell membrane are not related to the different toxicity shown by these pollutants.
Collapse
Affiliation(s)
- Raúl Alvarado
- Department of Physical Chemistry, University of Vigo, Lagoas-Marcosende s/n, 36310 Vigo, Spain
| | - Gustavo Cárdenas
- Department of Chemistry, Universidad Autónoma de Madrid, Calle Francisco Tomás y Valiente, 7, 28049 Madrid, Spain
| | - Juan J. Nogueira
- Department of Chemistry, Universidad Autónoma de Madrid, Calle Francisco Tomás y Valiente, 7, 28049 Madrid, Spain
- IADCHEM, Institute for Advanced Research in Chemistry, Universidad Autónoma de Madrid, Calle Francisco Tomás y Valiente, 7, 28049 Madrid, Spain
| | - Nicolás Ramos-Berdullas
- Department of Physical Chemistry, University of Vigo, Lagoas-Marcosende s/n, 36310 Vigo, Spain
| | - Marcos Mandado
- Department of Physical Chemistry, University of Vigo, Lagoas-Marcosende s/n, 36310 Vigo, Spain
| |
Collapse
|
21
|
Yang Y, Wang L, Zhao Y, Ma F, Lin Z, Liu Y, Dong Z, Chen G, Liu D. PBDEs disrupt homeostasis maintenance and regeneration of planarians due to DNA damage, proliferation and apoptosis anomaly. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 248:114287. [PMID: 36371889 DOI: 10.1016/j.ecoenv.2022.114287] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 11/03/2022] [Accepted: 11/09/2022] [Indexed: 06/16/2023]
Abstract
Polybrominated diphenyl ethers (PBDEs) are widely used as brominated flame retardants in the manufacturing industry, belonging to persistent organic pollutants in the environment. Planarians are the freshwater worms, with strong regenerative ability and extreme sensitivity to environmental toxicants. This study aimed to evaluate the potential acute comprehensive effects of PBDE-47/-209 on freshwater planarians. Methods to detect the effects include: detection of oxidative stress, observation of morphology and histology, detection of DNA fragmentation, and detection of cell proliferation and apoptosis. In the PBDE-47 treatment group, planarians showed increased oxidative stress intensity, severe tissue damage, increased DNA fragmentation level, and increased cell proliferation and apoptosis. In the PBDE-209 treatment group, planarians showed decreased oxidative stress intensity, slight tissue damage, almost unchanged DNA fragmentation level and apoptosis, proliferation increased only on the first day after treatment. In conclusion, both PBDE-47 and PBDE-209 are dangerous environmental hazardous material that can disrupt planarians homeostasis, while the toxicity of PBDE-47 is sever than PBDE-209 that PBDE-47 can lead to the death of planarians.
Collapse
Affiliation(s)
- Yibo Yang
- College of Life Science, Henan Normal University, Xinxiang City, 453007 Henan, China
| | - Lei Wang
- College of Life Science, Henan Normal University, Xinxiang City, 453007 Henan, China
| | - Yuhao Zhao
- College of Life Science, Henan Normal University, Xinxiang City, 453007 Henan, China
| | - Fuhao Ma
- College of Life Science, Henan Normal University, Xinxiang City, 453007 Henan, China
| | - Ziyi Lin
- College of Life Science, Henan Normal University, Xinxiang City, 453007 Henan, China
| | - Yingyu Liu
- College of Life Science, Henan Normal University, Xinxiang City, 453007 Henan, China
| | - Zimei Dong
- College of Life Science, Henan Normal University, Xinxiang City, 453007 Henan, China.
| | - Guangwen Chen
- College of Life Science, Henan Normal University, Xinxiang City, 453007 Henan, China.
| | - Dezeng Liu
- College of Life Science, Henan Normal University, Xinxiang City, 453007 Henan, China
| |
Collapse
|
22
|
Kruger E, Toraih EA, Hussein MH, Shehata SA, Waheed A, Fawzy MS, Kandil E. Thyroid Carcinoma: A Review for 25 Years of Environmental Risk Factors Studies. Cancers (Basel) 2022; 14:6172. [PMID: 36551665 PMCID: PMC9777404 DOI: 10.3390/cancers14246172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 12/07/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
Environmental factors are established contributors to thyroid carcinomas. Due to their known ability to cause cancer, exposure to several organic and inorganic chemical toxicants and radiation from nuclear weapons, fallout, or medical radiation poses a threat to global public health. Halogenated substances like organochlorines and pesticides can interfere with thyroid function. Like phthalates and bisphenolates, polychlorinated biphenyls and their metabolites, along with polybrominated diethyl ethers, impact thyroid hormones biosynthesis, transport, binding to target organs, and impair thyroid function. A deeper understanding of environmental exposure is crucial for managing and preventing thyroid cancer. This review aims to investigate the relationship between environmental factors and the development of thyroid cancer.
Collapse
Affiliation(s)
- Eva Kruger
- School of Medicine, Tulane University, New Orleans, LA 70112, USA
| | - Eman A. Toraih
- Division of Endocrine and Oncologic Surgery, Department of Surgery, School of Medicine, Tulane University, New Orleans, LA 70112, USA
- Medical Genetics Unit, Department of Histology and Cell Biology, Faculty of Medicine, Suez Canal University, Ismailia 41522, Egypt
| | - Mohammad H. Hussein
- Division of Endocrine and Oncologic Surgery, Department of Surgery, School of Medicine, Tulane University, New Orleans, LA 70112, USA
| | - Shaimaa A. Shehata
- Department of Forensic Medicine and Clinical Toxicology, Faculty of Medicine, Suez Canal University, Ismailia 41522, Egypt
| | - Amani Waheed
- Department of Community Medicine, Faculty of Medicine, Suez Canal University, Ismailia 41522, Egypt
| | - Manal S. Fawzy
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Suez Canal University, Ismailia 41522, Egypt
- Department of Biochemistry, Faculty of Medicine, Northern Border University, Arar 1321, Saudi Arabia
| | - Emad Kandil
- Division of Endocrine and Oncologic Surgery, Department of Surgery, School of Medicine, Tulane University, New Orleans, LA 70112, USA
| |
Collapse
|
23
|
Faiad W, Soukkarieh C, Murphy DJ, Hanano A. Effects of dioxins on animal spermatogenesis: A state-of-the-art review. FRONTIERS IN REPRODUCTIVE HEALTH 2022; 4:1009090. [PMID: 36339774 PMCID: PMC9634422 DOI: 10.3389/frph.2022.1009090] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 09/28/2022] [Indexed: 11/23/2022] Open
Abstract
The male reproductive system is especially affected by dioxins, a group of persistent environmental pollutants, resulting in irreversible abnormalities including effects on sexual function and fertility in adult males and possibly on the development of male offspring. The reproductive toxicity caused by dioxins is mostly mediated by an aryl hydrocarbon receptor (AhR). In animals, spermatogenesis is a highly sensitive and dynamic process that includes proliferation and maturation of germ cells. Spermatogenesis is subject to multiple endogenous and exogenous regulatory factors, including a wide range of environmental toxicants such as dioxins. This review discusses the toxicological effects of dioxins on spermatogenesis and their relevance to male infertility. After a detailed categorization of the environmental contaminants affecting the spermatogenesis, the exposure pathways and bioavailability of dioxins in animals was briefly reviewed. The effects of dioxins on spermatogenesis are then outlined in detail. The endocrine-disrupting effects of dioxins in animals and humans are discussed with a particular focus on their effects on the expression of spermatogenesis-related genes. Finally, the impacts of dioxins on the ratio of X and Y chromosomes, the status of serum sex hormones, the quality and fertility of sperm, and the transgenerational effects of dioxins on male reproduction are reviewed.
Collapse
Affiliation(s)
- Walaa Faiad
- Department of Animal Biology, Faculty of Sciences, University of Damascus, Damascus, Syria
| | - Chadi Soukkarieh
- Department of Animal Biology, Faculty of Sciences, University of Damascus, Damascus, Syria
| | - Denis J. Murphy
- School of Applied Sciences, University of South Wales, Wales, United Kingdom
| | - Abdulsamie Hanano
- Department of Molecular Biology and Biotechnology, Atomic Energy Commission of Syria (AECS), Damascus, Syria,Correspondence: Abdulsamie Hanano
| |
Collapse
|
24
|
Osimitz TG, Droege W, Hendriks G, Blais MS. Evaluation of potential toxicity of smoke from controlled burns of furnished rooms - effect of flame retardancy. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2022; 85:783-797. [PMID: 35702027 DOI: 10.1080/15287394.2022.2087812] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
It has been reported that incorporation of fire retardants into home furnishings and electronics increases the toxicity of smoke produced during combustion in house fires. Studies have been limited to exercises in analytical chemistry but the biological effects of emissions, particularly regarding chronic toxicity, have not been investigated. The combustion of furnishings with and without chemical flame retardants (FR) regarding (1) ignition resistance and fire progression, (2) chemical composition of smoke (analytical chemistry), and (3) toxicity was compared. Data demonstrated that flame retarded furnishings slowed the generation of toxic levels of acutely toxic gases. The potential chronic toxicity of smoke was assessed using the ToxTracker® assay. Smoke samples from rooms with less flame retarded furnishings exhibited a lesser response in this assay than smoke samples from rooms with flame retarded furnishings. Chemicals associated with activation of the aryl hydrocarbon receptor (AHR), namely benzo[b]fluoranthene, benzo[a]anthracene, benzo[a]pyrene, chrysene, and indeno[1,2,3-cd]pyrene, were not found in smoke from more flame retarded furnished rooms, but were present only in smoke from rooms with less flame retarded furnishings. In conclusion, smoke resulting from combustion of flame retarded furnishings did not increase indicators of potential chronic toxicity hazards relative to non-flame retarded furnishings.
Collapse
|
25
|
Orlowska K, Fling RR, Nault R, Sink WJ, Schilmiller AL, Zacharewski T. Dioxin-elicited decrease in cobalamin redirects propionyl-CoA metabolism to the β-oxidation-like pathway resulting in acrylyl-CoA conjugate buildup. J Biol Chem 2022; 298:102301. [PMID: 35931118 PMCID: PMC9418907 DOI: 10.1016/j.jbc.2022.102301] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/19/2022] [Accepted: 07/20/2022] [Indexed: 11/30/2022] Open
Abstract
2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) is a persistent environmental contaminant that induces diverse biological and toxic effects, including reprogramming intermediate metabolism, mediated by the aryl hydrocarbon receptor. However, the specific reprogramming effects of TCDD are unclear. Here, we performed targeted LC-MS analysis of hepatic extracts from mice gavaged with TCDD. We detected an increase in S-(2-carboxyethyl)-L-cysteine, a conjugate from the spontaneous reaction between the cysteine sulfhydryl group and highly reactive acrylyl-CoA, an intermediate in the cobalamin (Cbl)-independent β-oxidation-like metabolism of propionyl-CoA. TCDD repressed genes in both the canonical Cbl-dependent carboxylase and the alternate Cbl-independent β-oxidation-like pathways as well as inhibited methylmalonyl-CoA mutase (MUT) at lower doses. Moreover, TCDD decreased serum Cbl levels and hepatic cobalt levels while eliciting negligible effects on gene expression associated with Cbl absorption, transport, trafficking, or derivatization to 5'-deoxy-adenosylcobalamin (AdoCbl), the required MUT cofactor. Additionally, TCDD induced the gene encoding aconitate decarboxylase 1 (Acod1), the enzyme responsible for decarboxylation of cis-aconitate to itaconate, and dose-dependently increased itaconate levels in hepatic extracts. Our results indicate MUT inhibition is consistent with itaconate activation to itaconyl-CoA, a MUT suicide inactivator that forms an adduct with adenosylcobalamin. This adduct in turn inhibits MUT activity and reduces Cbl levels. Collectively, these results suggest the decrease in MUT activity is due to Cbl depletion following TCDD treatment, which redirects propionyl-CoA metabolism to the alternate Cbl-independent β-oxidation-like pathway. The resulting hepatic accumulation of acrylyl-CoA likely contributes to TCDD-elicited hepatotoxicity and the multihit progression of steatosis to steatohepatitis with fibrosis.
Collapse
Affiliation(s)
- Karina Orlowska
- Biochemistry & Molecular Biology, Michigan State University, East Lansing, Michigan, USA,Institute for Integrative Toxicology, Michigan State University, East Lansing, Michigan, USA
| | - Russ R. Fling
- Institute for Integrative Toxicology, Michigan State University, East Lansing, Michigan, USA,Microbiology & Molecular Genetics, Michigan Sptate University, East Lansing, Michigan, USA
| | - Rance Nault
- Biochemistry & Molecular Biology, Michigan State University, East Lansing, Michigan, USA,Institute for Integrative Toxicology, Michigan State University, East Lansing, Michigan, USA
| | - Warren J. Sink
- Biochemistry & Molecular Biology, Michigan State University, East Lansing, Michigan, USA,Institute for Integrative Toxicology, Michigan State University, East Lansing, Michigan, USA
| | - Anthony L. Schilmiller
- Mass Spectrometry and Metabolomics Core, Michigan State University, East Lansing, Michigan, USA
| | - Tim Zacharewski
- Biochemistry & Molecular Biology, Michigan State University, East Lansing, Michigan, USA; Institute for Integrative Toxicology, Michigan State University, East Lansing, Michigan, USA.
| |
Collapse
|
26
|
Haque N, Tischkau SA. Sexual Dimorphism in Adipose-Hypothalamic Crosstalk and the Contribution of Aryl Hydrocarbon Receptor to Regulate Energy Homeostasis. Int J Mol Sci 2022; 23:ijms23147679. [PMID: 35887027 PMCID: PMC9322714 DOI: 10.3390/ijms23147679] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/08/2022] [Accepted: 07/09/2022] [Indexed: 11/16/2022] Open
Abstract
There are fundamental sex differences in the regulation of energy homeostasis. Better understanding of the underlying mechanisms of energy balance that account for this asymmetry will assist in developing sex-specific therapies for sexually dimorphic diseases such as obesity. Multiple organs, including the hypothalamus and adipose tissue, play vital roles in the regulation of energy homeostasis, which are regulated differently in males and females. Various neuronal populations, particularly within the hypothalamus, such as arcuate nucleus (ARC), can sense nutrient content of the body by the help of peripheral hormones such leptin, derived from adipocytes, to regulate energy homeostasis. This review summarizes how adipose tissue crosstalk with homeostatic network control systems in the brain, which includes energy regulatory regions and the hypothalamic–pituitary axis, contribute to energy regulation in a sex-specific manner. Moreover, development of obesity is contingent upon diet and environmental factors. Substances from diet and environmental contaminants can exert insidious effects on energy metabolism, acting peripherally through the aryl hydrocarbon receptor (AhR). Developmental AhR activation can impart permanent alterations of neuronal development that can manifest a number of sex-specific physiological changes, which sometimes become evident only in adulthood. AhR is currently being investigated as a potential target for treating obesity. The consensus is that impaired function of the receptor protects from obesity in mice. AhR also modulates sex steroid receptors, and hence, one of the objectives of this review is to explain why investigating sex differences while examining this receptor is crucial. Overall, this review summarizes sex differences in the regulation of energy homeostasis imparted by the adipose–hypothalamic axis and examines how this axis can be affected by xenobiotics that signal through AhR.
Collapse
Affiliation(s)
- Nazmul Haque
- Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, IL 62702, USA;
| | - Shelley A. Tischkau
- Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, IL 62702, USA;
- Department of Medical Microbiology, Immunology and Cell Biology, Southern Illinois University School of Medicine, Springfield, IL 62702, USA
- Correspondence:
| |
Collapse
|
27
|
Current Therapeutic Landscape and Safety Roadmap for Targeting the Aryl Hydrocarbon Receptor in Inflammatory Gastrointestinal Indications. Cells 2022; 11:cells11101708. [PMID: 35626744 PMCID: PMC9139855 DOI: 10.3390/cells11101708] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/30/2022] [Accepted: 05/16/2022] [Indexed: 02/07/2023] Open
Abstract
Target modulation of the AhR for inflammatory gastrointestinal (GI) conditions holds great promise but also the potential for safety liabilities both within and beyond the GI tract. The ubiquitous expression of the AhR across mammalian tissues coupled with its role in diverse signaling pathways makes development of a “clean” AhR therapeutically challenging. Ligand promiscuity and diversity in context-specific AhR activation further complicates targeting the AhR for drug development due to limitations surrounding clinical translatability. Despite these concerns, several approaches to target the AhR have been explored such as small molecules, microbials, PROTACs, and oligonucleotide-based approaches. These various chemical modalities are not without safety liabilities and require unique de-risking strategies to parse out toxicities. Collectively, these programs can benefit from in silico and in vitro methodologies that investigate specific AhR pathway activation and have the potential to implement thresholding parameters to categorize AhR ligands as “high” or “low” risk for sustained AhR activation. Exploration into transcriptomic signatures for AhR safety assessment, incorporation of physiologically-relevant in vitro model systems, and investigation into chronic activation of the AhR by structurally diverse ligands will help address gaps in our understanding regarding AhR-dependent toxicities. Here, we review the role of the AhR within the GI tract, novel therapeutic modality approaches to target the AhR, key AhR-dependent safety liabilities, and relevant strategies that can be implemented to address drug safety concerns. Together, this review discusses the emerging therapeutic landscape of modalities targeting the AhR for inflammatory GI indications and offers a safety roadmap for AhR drug development.
Collapse
|
28
|
Vazquez-Rivera E, Rojas BL, Carney PR, Marrero-Valentin JL, Bradfield CA. Enhanced sensitivity of an Ah-receptor system in yeast through condition modification and use of mammalian modifiers. Toxicol Rep 2022; 9:513-520. [PMID: 35356645 PMCID: PMC8958262 DOI: 10.1016/j.toxrep.2022.03.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 03/03/2022] [Accepted: 03/04/2022] [Indexed: 11/25/2022] Open
Abstract
Proteins, such as the Ah receptor (AHR), hold potential as sensors to detect ligands in environmental and biological samples, and may also serve as tools to regulate biosynthetic and industrial processes. The AHR is also a prototype system for the PAS superfamily that can sense and mediate adaptation to signals as diverse as light, voltage, oxygen and an array of small molecules. The yeast, S. cerevisiae, has proven to be an important model to study the signal transduction of sensors like the AHR because of its ease of use, numerous available strategies for genetic manipulation, and capacity for heterologous expression. To better understand the utility of sensor proteins as components of yeast detection systems, we characterized a chimeric AHR-LexA system that drives expression from a Lex operator (LexO) driven, beta-galactosidase (β-Gal) reporter. In this report, we demonstrate that improvements in assays sensitivity and pharmacology can arise from the careful optimization of yeast growth phase and the duration of ligand exposure. We also report that the coexpression of heterotypic modifiers from mammalian cells (e.g., the ARA9 and ARA3 proteins), can improve yeast assay performance. We propose that complementing these assay improvements with previously reported yeast mutations described by others will expand the utility of the AHR for biotechnology applications.
Collapse
Affiliation(s)
- Emmanuel Vazquez-Rivera
- Molecular and Environmental Toxicology Center, McArdle Laboratory for Cancer Research, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706, USA
| | - Brenda L. Rojas
- Molecular and Environmental Toxicology Center, McArdle Laboratory for Cancer Research, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706, USA
| | - Patrick R. Carney
- Molecular and Environmental Toxicology Center, McArdle Laboratory for Cancer Research, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706, USA
| | - Jose L. Marrero-Valentin
- Molecular and Environmental Toxicology Center, McArdle Laboratory for Cancer Research, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706, USA
| | - Christopher A. Bradfield
- Molecular and Environmental Toxicology Center, McArdle Laboratory for Cancer Research, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706, USA
| |
Collapse
|
29
|
Xu S, Hansen S, Rautio A, Järvelin MR, Abass K, Rysä J, Palaniswamy S, Huber S, Grimalt JO, Dumas P, Odland JØ. Monitoring temporal trends of dioxins, organochlorine pesticides and chlorinated paraffins in pooled serum samples collected from Northern Norwegian women: The MISA cohort study. ENVIRONMENTAL RESEARCH 2022; 204:111980. [PMID: 34474033 DOI: 10.1016/j.envres.2021.111980] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 08/25/2021] [Accepted: 08/25/2021] [Indexed: 06/13/2023]
Abstract
The ubiquitous presence of legacy and emerging persistent organic pollutants (POPs) in the environmental matrices poses a potential hazard to the humans and creating public health concerns. The present study aimed to evaluate dioxins, dioxin-like polychlorinated biphenyls (PCBs), organochlorine pesticides (OCPs) and chlorinated paraffins (CPs) concentrations in serum of women (postpartum, pregnant and non-pregnant) from Northern Norway to better understand their exposure and contamination status as well as temporal trends across 2007-2009 (MISA 1) to 2019 (MISA 2). Sixty-two blood samples from the MISA 1 cohort and 38 samples from MISA 2 were randomly selected in this study (n = 100). Ninety samples from postpartum (MISA 1) and pregnant women (MISA 2) were randomly combined into 9 pools, with 9-11 individual samples contributing to each pool keeping the groups of pregnant and postpartum women. Remaining 10 samples from non-pregnant women (MISA 2) were allocated into separate group. Geometric mean, minimum and maximum were used to describe the serum concentrations of pooled POPs in MISA cohort. Mann-Whitney U test and independent sample t-test were applied for trend analysis of blood levels of POPs between MISA 1 and MISA 2. We found the serum concentrations of selected POPs in this study to be at lower range. Serum concentrations of dibenzo-p-dioxins (PCDDs) (p = 0.010), polychlorinated dibenzofurans (PCDFs) (p = 0.002), dioxins-like PCBs (p = 0.001), hexachlorobenzene (HCB) (p < 0.001) and p,p'-dichlorodiphenyldichloroethylene (p,p'-DDE) (p = 0.002) were decreased between the studied time. In contrast, the serum concentrations of medium chain chlorinated paraffins showed an increasing trend between 2007 and 2009 and 2019 (p = 0.019). Our findings report a particular concern of emerging contaminant medium chain chlorinated paraffin exposure to humans. Future observational studies with repeated measurements of chlorinated paraffins in general populations worldwide and large sample size are warranted.
Collapse
Affiliation(s)
- Shanshan Xu
- Department of Public Health and Nursing, Norwegian University of Science and Technology, Trondheim, 7491, Norway
| | - Solrunn Hansen
- Department of Health and Care Sciences, UiT the Arctic University of Norway, Tromsø, 9037, Norway
| | - Arja Rautio
- Arctic Health, Faculty of Medicine, University of Oulu, Oulu, Finland; Thule Institute, University of Arctic, University of Oulu, Oulu, Finland
| | - Marjo-Riitta Järvelin
- Center for Life Course Health Research, Faculty of Medicine, University of Oulu, Oulu, Finland; Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, United Kingdom; Unit of Primary Care, Oulu University Hospital, Oulu, Finland; MRC-PHE Centre for Environment and Health, School of Public Health, Imperial College London, London, United Kingdom; Department of Life Sciences, College of Health and Life Sciences, Brunel University London, London, United Kingdom
| | - Khaled Abass
- Arctic Health, Faculty of Medicine, University of Oulu, Oulu, Finland; Department of Pesticides, Menoufia University, Menoufia, Egypt
| | - Jaana Rysä
- Faculty of Health Sciences, School of Pharmacy, University of Eastern Finland, Kuopio, Finland
| | - Saranya Palaniswamy
- Center for Life Course Health Research, Faculty of Medicine, University of Oulu, Oulu, Finland; Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, United Kingdom
| | - Sandra Huber
- Department of Laboratory Medicine, University Hospital of North Norway, Sykehusveien 38, Tromsø, NO-9038, Norway
| | - Joan O Grimalt
- Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Jordi Girona 18, Barcelona, Catalonia, 08034, Spain
| | - Pierre Dumas
- Institut Nacional de Santé Publique du Québec (INSPQ), Québec City, Canada
| | - Jon Øyvind Odland
- Department of Public Health and Nursing, Norwegian University of Science and Technology, Trondheim, 7491, Norway; Department of General Hygiene I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, 119992, Russia.
| |
Collapse
|
30
|
Yang W, Huang X, Wu Q, Shi J, Zhang X, Ouyang L, Crump D, Zhang X, Zhang R. Acute toxicity of polychlorinated diphenyl ethers (PCDEs) in three model aquatic organisms (Scenedesmus obliquus, Daphnia magna, and Danio rerio) of different trophic levels. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 805:150366. [PMID: 34818752 DOI: 10.1016/j.scitotenv.2021.150366] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 09/07/2021] [Accepted: 09/12/2021] [Indexed: 06/13/2023]
Abstract
The frequent detection of polychlorinated diphenyl ethers (PCDEs) in aquatic systems has aroused widespread concerns, however, their potential hazard to aquatic ecosystems has been poorly understood. Here the acute toxicity of 12 PCDE congeners was evaluated in three model aquatic organisms representing different trophic levels following OECD test guidelines, including green algae (Scenedesmus obliquus), water flea (Daphnia magna), and zebrafish (Danio rerio). Dose-dependent increases in growth inhibition and mortality were observed for all tested PCDE congeners. Most of the PCDE congeners, in particular 3,3',4,4'-tetra-CDE, were highly toxic to the three aquatic organisms with EC50 or LC50 values below 1 mg L-1. Their toxicities were generally comparable with those of certain polychlorinated biphenyls (PCBs) and polybrominated diphenyl ethers (PBDEs). Moreover, D. magna was the most sensitive species among the three aquatic organisms. In addition, the EC50 or LC50 values had an extremely significant correlation with the n-octanol-water partition coefficient (logKow) of the PCDE congeners. The established quantitative structure-property relationship (QSPR) models indicated that the molecular polarizability (α) could significantly influence the acute toxicity of PCDEs on Daphnia magna and Danio rerio, and the energy of the lowest unoccupied molecular orbital (ELUMO) is the key factor of the acute toxicity of PCDEs in Scenedesmus obliquus. In addition, even at environmental levels, 3,3',4,4'-tetra-CDE could induced seveve oxidative damages in the three aquactic species. These findings would contribute to the understanding of adverse effects of PCDEs in aquatic organisms.
Collapse
Affiliation(s)
- Wenhui Yang
- School of Resources and Environmental Engineering, Anhui University, Hefei 230601, Anhui, China; Laboratory of Wetland Protection and Ecological Restoration, Anhui University, Hefei 230601, Anhui, China
| | - Xinxin Huang
- School of Resources and Environmental Engineering, Anhui University, Hefei 230601, Anhui, China; Laboratory of Wetland Protection and Ecological Restoration, Anhui University, Hefei 230601, Anhui, China
| | - Qiuxuan Wu
- School of Water Conservancy and Environment, University of Jinan, Jinan 100085, China
| | - Jiaqi Shi
- Nanjing Institute of Environmental Sciences of the Ministry of Ecology and Environment, Nanjing 210042, Jiangsu, China
| | - Xuesheng Zhang
- School of Resources and Environmental Engineering, Anhui University, Hefei 230601, Anhui, China; Laboratory of Wetland Protection and Ecological Restoration, Anhui University, Hefei 230601, Anhui, China.
| | - Lingwen Ouyang
- School of Resources and Environmental Engineering, Anhui University, Hefei 230601, Anhui, China; Laboratory of Wetland Protection and Ecological Restoration, Anhui University, Hefei 230601, Anhui, China
| | - Doug Crump
- Ecotoxicology and Wildlife Health Division, Environment and Climate Change Canada, National Wildlife Research Centre, Carleton University, 1125 Colonel By Drive, Ottawa K1A 0H3, Canada
| | - Xiaowei Zhang
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Rui Zhang
- School of Water Conservancy and Environment, University of Jinan, Jinan 100085, China.
| |
Collapse
|
31
|
Regan SL, Williams MT, Vorhees CV. Review of rodent models of attention deficit hyperactivity disorder. Neurosci Biobehav Rev 2022; 132:621-637. [PMID: 34848247 PMCID: PMC8816876 DOI: 10.1016/j.neubiorev.2021.11.041] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 11/22/2021] [Accepted: 11/23/2021] [Indexed: 01/03/2023]
Abstract
Attention deficit hyperactivity disorder (ADHD) is a polygenic neurodevelopmental disorder that affects 8-12 % of children and >4 % of adults. Environmental factors are believed to interact with genetic predispositions to increase susceptibility to ADHD. No existing rodent model captures all aspects of ADHD, but several show promise. The main genetic models are the spontaneous hypertensive rat, dopamine transporter knock-out (KO) mice, dopamine receptor subtype KO mice, Snap-25 KO mice, guanylyl cyclase-c KO mice, and latrophilin-3 KO mice and rats. Environmental factors thought to contribute to ADHD include ethanol, nicotine, PCBs, lead (Pb), ionizing irradiation, 6-hydroxydopamine, neonatal hypoxia, some pesticides, and organic pollutants. Model validation criteria are outlined, and current genetic models evaluated against these criteria. Future research should explore induced multiple gene KOs given that ADHD is polygenic and epigenetic contributions. Furthermore, genetic models should be combined with environmental agents to test for interactions.
Collapse
Affiliation(s)
- Samantha L. Regan
- Neuroscience Graduate Program, University of Cincinnati, Cincinnati, OH 45229
| | - Michael T. Williams
- Department of Pediatrics, University of Cincinnati College of Medicine, and Division of Neurology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229
| | - Charles V. Vorhees
- Department of Pediatrics, University of Cincinnati College of Medicine, and Division of Neurology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229,Corresponding author: Charles V. Vorhees, Ph.D., Div. of Neurology, Cincinnati Children’s Hospital Medical Center, 3333 Burnet Ave., Cincinnati, OH 45229, USA:
| |
Collapse
|
32
|
Ezechiáš M. The agonistic bioanalytical equivalent concentration: A novel tool for assessing the endocrine activity of environmental mixtures. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2022; 89:103781. [PMID: 34871798 DOI: 10.1016/j.etap.2021.103781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 11/30/2021] [Accepted: 12/01/2021] [Indexed: 06/13/2023]
Abstract
Cell-based bioassays are very sensitive and allow integrative effect screening of the whole environmental sample, which is usually composed of a mixture of agonists and antagonists. Measured toxicity is usually expressed as a bioanalytical equivalent concentration. So far, it is not possible to distinguish which part of this value is caused by the agonists and which by the antagonists. In this article, we present a simple method to analyze the dose-response curve of a mixture and to determine an agonistic bioanalytical equivalent concentration: a concentration of a reference chemical that would elicit the same effect as do only agonists in an unknown mixture. The method has been validated using several artificially prepared mixtures of agonists and competitive antagonists measured in a recombinant yeast assay. No difference was observed between the calculated equivalent concentrations and the used concentrations of the agonist in the mixture.
Collapse
Affiliation(s)
- Martin Ezechiáš
- The Laboratory of Environmental Biotechnology, Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, Prague 142 20, Czech Republic.
| |
Collapse
|
33
|
Aluru N, Engelhardt J. OUP accepted manuscript. Toxicol Sci 2022; 188:75-87. [PMID: 35477799 PMCID: PMC9237993 DOI: 10.1093/toxsci/kfac044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Exposure to environmental toxicants during preconception has been shown to affect offspring health and epigenetic mechanisms such as DNA methylation are hypothesized to be involved in adverse outcomes. However, studies addressing the effects of exposure to environmental toxicants during preconception on epigenetic changes in gametes are limited. The objective of this study is to determine the effect of preconceptional exposure to a dioxin-like polychlorinated biphenyl (3,3',4,4',5-pentachlorobiphenyl [PCB126]) on DNA methylation and gene expression in testis. Adult zebrafish were exposed to 3 and 10 nM PCB126 for 24 h and testis tissue was sampled at 7 days postexposure for histology, DNA methylation, and gene expression profiling. Reduced representation bisulfite sequencing revealed 37 and 92 differentially methylated regions (DMRs) in response to 3 and 10 nM PCB126 exposures, respectively. Among them, 19 DMRs were found to be common between both PCB126 treatment groups. Gene ontology (GO) analysis of DMRs revealed that enrichment of terms such as RNA processing, iron-sulfur cluster assembly, and gluconeogenesis. Gene expression profiling showed differential expression of 40 and 1621 genes in response to 3 and 10 nM PCB126 exposures, respectively. GO analysis of differentially expressed genes revealed enrichment of terms related to xenobiotic metabolism, oxidative stress, and immune function. There is no overlap in the GO terms or individual genes between DNA methylation and RNA sequencing results, but functionally many of the altered pathways have been shown to cause spermatogenic defects.
Collapse
Affiliation(s)
| | - Jan Engelhardt
- Bioinformatics Group, Department of Computer Science and Interdisciplinary Center for Bioinformatics, University of Leipzig, Leipzig D-04107, Germany
- Department of Evolutionary Biology, University of Vienna, Vienna A-1030, Austria
| |
Collapse
|
34
|
Vazquez-Rivera E, Rojas B, Parrott JC, Shen AL, Xing Y, Carney PR, Bradfield CA. The aryl hydrocarbon receptor as a model PAS sensor. Toxicol Rep 2021; 9:1-11. [PMID: 34950569 PMCID: PMC8671103 DOI: 10.1016/j.toxrep.2021.11.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 11/19/2021] [Accepted: 11/24/2021] [Indexed: 01/02/2023] Open
Abstract
Proteins containing PER-ARNT-SIM (PAS) domains are commonly associated with environmental adaptation in a variety of organisms. The PAS domain is found in proteins throughout Archaea, Bacteria, and Eukarya and often binds small-molecules, supports protein-protein interactions, and transduces input signals to mediate an adaptive physiological response. Signaling events mediated by PAS sensors can occur through induced phosphorelays or genomic events that are often dependent upon PAS domain interactions. In this perspective, we briefly discuss the diversity of PAS domain containing proteins, with particular emphasis on the prototype member, the aryl hydrocarbon receptor (AHR). This ligand-activated transcription factor acts as a sensor of the chemical environment in humans and many chordates. We conclude with the idea that since mammalian PAS proteins often act through PAS-PAS dimers, undocumented interactions of this type may link biological processes that we currently think of as independent. To support this idea, we present a framework to guide future experiments aimed at fully elucidating the spectrum of PAS-PAS interactions with an eye towards understanding how they might influence environmental sensing in human and wildlife populations.
Collapse
Affiliation(s)
- Emmanuel Vazquez-Rivera
- Molecular and Environmental Toxicology Center, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706, United States
| | - Brenda Rojas
- Molecular and Environmental Toxicology Center, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706, United States
| | - Jessica C. Parrott
- Molecular and Environmental Toxicology Center, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706, United States
| | - Anna L. Shen
- Molecular and Environmental Toxicology Center, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706, United States
- McArdle Laboratory for Cancer Research, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706, United States
| | - Yongna Xing
- Molecular and Environmental Toxicology Center, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706, United States
- McArdle Laboratory for Cancer Research, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706, United States
| | - Patrick R. Carney
- Molecular and Environmental Toxicology Center, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706, United States
- McArdle Laboratory for Cancer Research, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706, United States
| | - Christopher A. Bradfield
- Molecular and Environmental Toxicology Center, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706, United States
- McArdle Laboratory for Cancer Research, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706, United States
| |
Collapse
|
35
|
Han H, Safe S, Jayaraman A, Chapkin RS. Diet-Host-Microbiota Interactions Shape Aryl Hydrocarbon Receptor Ligand Production to Modulate Intestinal Homeostasis. Annu Rev Nutr 2021; 41:455-478. [PMID: 34633858 PMCID: PMC8667662 DOI: 10.1146/annurev-nutr-043020-090050] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The aryl hydrocarbon receptor (AhR) is a ligand-activated basic-helix-loop-helix transcription factor that binds structurally diverse ligands and senses cues from environmental toxicants and physiologically relevant dietary/microbiota-derived ligands. The AhR is an ancient conserved protein and is widely expressed across different tissues in vertebrates and invertebrates. AhR signaling mediates a wide range of cellular functions in a ligand-, cell type-, species-, and context-specific manner. Dysregulation of AhR signaling is linked to many developmental defects and chronic diseases. In this review, we discuss the emerging role of AhR signaling in mediating bidirectional host-microbiome interactions. We also consider evidence showing the potential for the dietary/microbial enhancement ofhealth-promoting AhR ligands to improve clinical pathway management in the context of inflammatory bowel diseases and colon tumorigenesis.
Collapse
Affiliation(s)
- Huajun Han
- Program in Integrative Nutrition and Complex Diseases and Department of Nutrition, Texas A&M University, College Station, Texas 77843, USA;
- Department of Biochemistry & Biophysics, Texas A&M University, College Station, Texas 77843, USA
| | - Stephen Safe
- Department of Biochemistry & Biophysics, Texas A&M University, College Station, Texas 77843, USA
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, Texas 77843, USA
| | - Arul Jayaraman
- Department of Chemical Engineering, Texas A&M University, College Station, Texas 77843, USA
| | - Robert S Chapkin
- Program in Integrative Nutrition and Complex Diseases and Department of Nutrition, Texas A&M University, College Station, Texas 77843, USA;
- Department of Biochemistry & Biophysics, Texas A&M University, College Station, Texas 77843, USA
| |
Collapse
|
36
|
Distribution, Source and Potential Risk Assessment of Polychlorinated Biphenyls (PCBs) in Sediments from the Liaohe River Protected Area, China. SUSTAINABILITY 2021. [DOI: 10.3390/su131910750] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
This study aimed to assess the occurrence, distribution, toxicity equivalency and health risks of dl-PCBs (dioxin-like PCBs) from nine sites collected in surface sediments from Liaohe River Protected Area. ∑dl-PCBs concentrations in sediments range from 79.2 to 365.1 pg/g. Sediment profiles showed that pentachlorobiphenyl is the most abundant congener among all sampling sites. The results of principal component analysis and cluster analysis indicated that PCBs were mainly derived from electronic waste and paint additives in the sediments of Liaohe River Protected Area. Toxic equivalent quantity (TEQ) values of the PCBs in the Liaohe River Protected Area sediments are at comparatively lower levels compared with the previously reported data. Hazardous ratio (HR) for human health risk assessment allied to cancer was found to be lower than the non-carcinogenic risk assessment within an acceptable range.
Collapse
|
37
|
Ortiz-Delgado JB, Funes V, Albendín G, Scala E, Sarasquete C. Toxicity of malathion during Senegalese sole, Solea senegalensis larval development and metamorphosis: Histopathological disorders and effects on type B esterases and CYP1A enzymatic systems. ENVIRONMENTAL TOXICOLOGY 2021; 36:1894-1910. [PMID: 34156741 DOI: 10.1002/tox.23310] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 05/24/2021] [Accepted: 06/13/2021] [Indexed: 06/13/2023]
Abstract
The toxicity of malathion to Solea senegalensis was studied in a static renewal bioassay during its first month of larval life (between 4 and 30 dph). Through the use of different biomarkers and biochemical, cellular and molecular approaches (inhibition of cholinesterases [ChEs], changes in cytochrome P450-1A [CYP1A] and the study of histopathological alterations), the effects of three concentrations of malathion (1.56, 3.12, and 6.25 μg/L) have been analyzed. In subacute exposure, malathion inhibited cholinesterase activities (AChE, BChE, CbE) in a dose- and time-dependent manner, ranging the inhibition percentage from 20% to 90%. However, the expression levels of CYP1A and AChE transcripts or proteins were not modified. Additionally, exposure to malathion provoked histopathological alterations in several organ systems of Senegalese sole in a time- and dose dependent way, namely disruption of parenchymal architecture in the liver, epithelial desquamation, pyknotic nuclei and steatosis in the intestine, disorganization of supporting cartilage, and sings of hyperplasia and hypertrophy in the gills and degeneration of the epithelial cells from the renal tubules. Malathion exposure also provoked strong disorganization of cardiac fibers from the heart. The findings provide evidence that exposure to sublethal concentrations of malathion that provoked serious injury to the fish S. senegalensis, were below the expected environmental concentrations reported in many other ecosystems and different fish species,revealing a higher sensitivity for Solea senegalensis to malathion exposure, thus reinforcing its use as sentinel species for environmental pollution in coastal and estuarine environments.
Collapse
Affiliation(s)
- Juan Bosco Ortiz-Delgado
- Instituto de Ciencias Marinas de Andalucía-ICMAN, CSIC Campus Universitario Río San Pedro, Cádiz
| | - Victoria Funes
- IFAPA Centro el Toruño, Camino Tiro de Pichón, Cádiz, Spain
| | - Gemma Albendín
- CEIMAR, Universidad de Cádiz, Campus Universitario Río San Pedro, Cádiz, Spain
| | - Emanuele Scala
- Instituto de Ciencias Marinas de Andalucía-ICMAN, CSIC Campus Universitario Río San Pedro, Cádiz
| | - Carmen Sarasquete
- Instituto de Ciencias Marinas de Andalucía-ICMAN, CSIC Campus Universitario Río San Pedro, Cádiz
| |
Collapse
|
38
|
Segner H, Bailey C, Tafalla C, Bo J. Immunotoxicity of Xenobiotics in Fish: A Role for the Aryl Hydrocarbon Receptor (AhR)? Int J Mol Sci 2021; 22:ijms22179460. [PMID: 34502366 PMCID: PMC8430475 DOI: 10.3390/ijms22179460] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 08/25/2021] [Accepted: 08/27/2021] [Indexed: 02/07/2023] Open
Abstract
The impact of anthropogenic contaminants on the immune system of fishes is an issue of growing concern. An important xenobiotic receptor that mediates effects of chemicals, such as halogenated aromatic hydrocarbons (HAHs) and polyaromatic hydrocarbons (PAHs), is the aryl hydrocarbon receptor (AhR). Fish toxicological research has focused on the role of this receptor in xenobiotic biotransformation as well as in causing developmental, cardiac, and reproductive toxicity. However, biomedical research has unraveled an important physiological role of the AhR in the immune system, what suggests that this receptor could be involved in immunotoxic effects of environmental contaminants. The aims of the present review are to critically discuss the available knowledge on (i) the expression and possible function of the AhR in the immune systems of teleost fishes; and (ii) the impact of AhR-activating xenobiotics on the immune systems of fish at the levels of immune gene expression, immune cell proliferation and immune cell function, immune pathology, and resistance to infectious disease. The existing information indicates that the AhR is expressed in the fish immune system, but currently, we have little understanding of its physiological role. Exposure to AhR-activating contaminants results in the modulation of numerous immune structural and functional parameters of fish. Despite the diversity of fish species studied and the experimental conditions investigated, the published findings rather uniformly point to immunosuppressive actions of xenobiotic AhR ligands in fish. These effects are often associated with increased disease susceptibility. The fact that fish populations from HAH- and PAH-contaminated environments suffer immune disturbances and elevated disease susceptibility highlights that the immunotoxic effects of AhR-activating xenobiotics bear environmental relevance.
Collapse
Affiliation(s)
- Helmut Segner
- Centre for Fish and Wildlife Health, Department of Pathobiology and Infectious Diseases, Vetsuisse Faculty, University of Bern, 3012 Bern, Switzerland
| | | | | | - Jun Bo
- Laboratory of Marine Biology and Ecology, Third Institute of Oceanography, Xiamen 361005, China
| |
Collapse
|
39
|
Cholico GN, Fling RR, Zacharewski NA, Fader KA, Nault R, Zacharewski TR. Thioesterase induction by 2,3,7,8-tetrachlorodibenzo-p-dioxin results in a futile cycle that inhibits hepatic β-oxidation. Sci Rep 2021; 11:15689. [PMID: 34344994 PMCID: PMC8333094 DOI: 10.1038/s41598-021-95214-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Accepted: 07/15/2021] [Indexed: 02/07/2023] Open
Abstract
2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD), a persistent environmental contaminant, induces steatosis by increasing hepatic uptake of dietary and mobilized peripheral fats, inhibiting lipoprotein export, and repressing β-oxidation. In this study, the mechanism of β-oxidation inhibition was investigated by testing the hypothesis that TCDD dose-dependently repressed straight-chain fatty acid oxidation gene expression in mice following oral gavage every 4 days for 28 days. Untargeted metabolomic analysis revealed a dose-dependent decrease in hepatic acyl-CoA levels, while octenoyl-CoA and dicarboxylic acid levels increased. TCDD also dose-dependently repressed the hepatic gene expression associated with triacylglycerol and cholesterol ester hydrolysis, fatty acid binding proteins, fatty acid activation, and 3-ketoacyl-CoA thiolysis while inducing acyl-CoA hydrolysis. Moreover, octenoyl-CoA blocked the hydration of crotonyl-CoA suggesting short chain enoyl-CoA hydratase (ECHS1) activity was inhibited. Collectively, the integration of metabolomics and RNA-seq data suggested TCDD induced a futile cycle of fatty acid activation and acyl-CoA hydrolysis resulting in incomplete β-oxidation, and the accumulation octenoyl-CoA levels that inhibited the activity of short chain enoyl-CoA hydratase (ECHS1).
Collapse
Affiliation(s)
- Giovan N Cholico
- Department of Biochemistry and Molecular Biology, Michigan State University, Biochemistry Building, 603 Wilson Road, East Lansing, MI, 48824, USA
- Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, 48824, USA
| | - Russell R Fling
- Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, 48824, USA
- Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, 48824, USA
| | - Nicholas A Zacharewski
- Department of Biochemistry and Molecular Biology, Michigan State University, Biochemistry Building, 603 Wilson Road, East Lansing, MI, 48824, USA
| | - Kelly A Fader
- Department of Biochemistry and Molecular Biology, Michigan State University, Biochemistry Building, 603 Wilson Road, East Lansing, MI, 48824, USA
- Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, 48824, USA
| | - Rance Nault
- Department of Biochemistry and Molecular Biology, Michigan State University, Biochemistry Building, 603 Wilson Road, East Lansing, MI, 48824, USA
- Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, 48824, USA
| | - Timothy R Zacharewski
- Department of Biochemistry and Molecular Biology, Michigan State University, Biochemistry Building, 603 Wilson Road, East Lansing, MI, 48824, USA.
- Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, 48824, USA.
| |
Collapse
|
40
|
Berninger JP, Tillitt DE. Response to Gard et al.'s (2021) Comments on the Critical Review "Polychlorinated Biphenyl Tissue-Concentration Thresholds for Survival, Growth, and Reproduction in Fish". ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2021; 40:2098-2109. [PMID: 34291841 DOI: 10.1002/etc.5074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 04/09/2021] [Indexed: 06/13/2023]
Affiliation(s)
- Jason P Berninger
- Columbia Environmental Research Center, US Geological Survey, Department of the Interior, Columbia, Missouri
| | - Donald E Tillitt
- Columbia Environmental Research Center, US Geological Survey, Department of the Interior, Columbia, Missouri
| |
Collapse
|
41
|
Gupta A, Singh AK, Kumar R, Jamieson S, Pandey AK, Bishayee A. Neuroprotective Potential of Ellagic Acid: A Critical Review. Adv Nutr 2021; 12:1211-1238. [PMID: 33693510 PMCID: PMC8321875 DOI: 10.1093/advances/nmab007] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 09/02/2020] [Accepted: 01/19/2021] [Indexed: 02/06/2023] Open
Abstract
Ellagic acid (EA) is a dietary polyphenol present in various fruits, vegetables, herbs, and nuts. It exists either independently or as part of complex structures, such as ellagitannins, which release EA and several other metabolites including urolithins following absorption. During the past few decades, EA has drawn considerable attention because of its vast range of biological activities as well as its numerous molecular targets. Several studies have reported that the oxidative stress-lowering potential of EA accounts for its broad-spectrum pharmacological attributes. At the biochemical level, several mechanisms have also been associated with its therapeutic action, including its efficacy in normalizing lipid metabolism and lipidemic profile, regulating proinflammatory mediators, such as IL-6, IL-1β, and TNF-α, upregulating nuclear factor erythroid 2-related factor 2 and inhibiting NF-κB action. EA exerts appreciable neuroprotective activity by its free radical-scavenging action, iron chelation, initiation of several cell signaling pathways, and alleviation of mitochondrial dysfunction. Numerous in vivo studies have also explored the neuroprotective attribute of EA against various neurotoxins in animal models. Despite the increasing number of publications with experimental evidence, a critical analysis of available literature to understand the full neuroprotective potential of EA has not been performed. The present review provides up-to-date, comprehensive, and critical information regarding the natural sources of EA, its bioavailability, metabolism, neuroprotective activities, and underlying mechanisms of action in order to encourage further studies to define the clinical usefulness of EA for the management of neurological disorders.
Collapse
Affiliation(s)
- Ashutosh Gupta
- Department of Biochemistry, University of Allahabad, Prayagraj, Uttar Pradesh, India
| | - Amit Kumar Singh
- Department of Biochemistry, University of Allahabad, Prayagraj, Uttar Pradesh, India
| | - Ramesh Kumar
- Department of Biochemistry, University of Allahabad, Prayagraj, Uttar Pradesh, India
| | - Sarah Jamieson
- Lake Erie College of Osteopathic Medicine, Bradenton, FL, USA
| | - Abhay Kumar Pandey
- Department of Biochemistry, University of Allahabad, Prayagraj, Uttar Pradesh, India
| | - Anupam Bishayee
- Lake Erie College of Osteopathic Medicine, Bradenton, FL, USA
| |
Collapse
|
42
|
Zhu Z, Shi J, Huang X, Zhang X, Li Y, Qin L, Zhang R, Liu B. Bioaccumulation, Metabolism, and Biomarker Responses in Hyriopsis cumingii Exposed to 4-Mono-Chlorinated Dibenzothiophene. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2021; 40:1873-1882. [PMID: 33683752 DOI: 10.1002/etc.5033] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 02/01/2021] [Accepted: 03/04/2021] [Indexed: 06/12/2023]
Abstract
Polychlorinated dibenzothiophenes (PCDTs) are sulfur analogues of polychlorinated dibenzofurans with prevalent occurrence in aquatic environments and potential ecological risks. However, data on the behavior and toxicity of PCDTs in aquatic organisms remain scarce. In the present study, the bioaccumulation, metabolism, and oxidative damage of 4-mono-chlorinated dibenzothiophene (4-mono-CDT) in freshwater mussel (Hyriopsis cumingii) were investigated after exposure to 4-mono-CDT in semistatic water. The uptake rates, depuration rates, half-lives, and bioconcentration factors of 4-mono-CDT in hepatopancreas, gill, and muscle tissues ranged from 0.492 to 1.652 L d-1 g-1 dry weight, from 0.117 to 0.308 d-1 , from 2.250 to 5.924 d, and from 2.903 to 8.045 × 103 L kg-1 dry weight, respectively. A dechlorinated metabolite (dibenzothiophene) was detected in hepatopancreas tissue, indicating that dechlorination was the main metabolic pathway of 4-mono-CDT. As the exposure time increased, the activities of superoxide dismutase, catalase, and glutathione peroxidase were induced or inhibited in the different experimental groups. The malondialdehyde content increased with increasing 4-mono-CDT dose and exposure time. A higher concentration of 4-mono-CDT corresponded to a greater integrated biomarker response in each tissue and greater oxidative damage. The antioxidant enzymes in hepatopancreas were more sensitive to 4-mono-CDT than those in gill. The results provide useful information on the behavior and ecotoxicity of PCDTs in freshwater mussels. Environ Toxicol Chem 2021;40:1873-1882. © 2021 SETAC.
Collapse
Affiliation(s)
- Ziqing Zhu
- School of Resources and Environmental Engineering, Anhui University, Anhui Hefei, China
- Laboratory of Wetland Protection and Ecological Restoration, Anhui University, Anhui Hefei, China
| | - Jiaqi Shi
- Nanjing Institute of Environmental Sciences of the Ministry of Ecological Environment, Jiangsu Nanjing, China
| | - Xinxin Huang
- School of Resources and Environmental Engineering, Anhui University, Anhui Hefei, China
- Laboratory of Wetland Protection and Ecological Restoration, Anhui University, Anhui Hefei, China
| | - Xuesheng Zhang
- School of Resources and Environmental Engineering, Anhui University, Anhui Hefei, China
- Laboratory of Wetland Protection and Ecological Restoration, Anhui University, Anhui Hefei, China
| | - Yucheng Li
- School of Resources and Environmental Engineering, Anhui University, Anhui Hefei, China
- Laboratory of Wetland Protection and Ecological Restoration, Anhui University, Anhui Hefei, China
| | - Li Qin
- State Key Laboratory of Environmental Chemistry and Eco-toxicology, Research Centre for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing, China
| | - Rui Zhang
- School of Resources and Environment, University of Jinan, Shandong Jinan, China
| | - Bingxiang Liu
- School of Resources and Environmental Engineering, Anhui University, Anhui Hefei, China
- Laboratory of Wetland Protection and Ecological Restoration, Anhui University, Anhui Hefei, China
| |
Collapse
|
43
|
Sirohi D, Al Ramadhani R, Knibbs LD. Environmental exposures to endocrine disrupting chemicals (EDCs) and their role in endometriosis: a systematic literature review. REVIEWS ON ENVIRONMENTAL HEALTH 2021; 36:101-115. [PMID: 32903210 DOI: 10.1515/reveh-2020-0046] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Accepted: 07/22/2020] [Indexed: 06/11/2023]
Abstract
PURPOSE Endocrine-related diseases and disorders are on the rise globally. Synthetically produced environmental chemicals (endocrine-disrupting chemicals (EDCs)) mimic hormones like oestrogen and alter signalling pathways. Endometriosis is an oestrogen-dependent condition, affecting 10-15% of women of the reproductive age, and has substantial impacts on the quality of life. The aetiology of endometriosis is believed to be multifactorial, ranging from genetic causes to immunologic dysfunction due to environmental exposure to EDCs. Hence, we undertook a systematic review and investigated the epidemiological evidence for an association between EDCs and the development of endometriosis. We also aimed to assess studies on the relationship between body concentration of EDCs and the severity of endometriosis. METHOD Following PRISMA guidelines, a structured search of PubMed, Embase and Scopus was conducted (to July 2018). The included studies analysed the association between one or more EDCs and the prevalence of endometriosis. The types of EDCs, association and outcome, participant characteristics and confounding variables were extracted and analysed. Quality assessment was performed using standard criteria. RESULTS In total, 29 studies were included. Phthalate esters were positively associated with the prevalence of endometriosis. The majority (71%) of studies revealed a significant association between bisphenol A, organochlorinated environmental pollutants (dioxins, dioxin-like compounds, organochlorinated pesticides, polychlorinated biphenyls) and the prevalence of endometriosis. A positive association between copper, chromium and prevalence of endometriosis was demonstrated in one study only. Cadmium, lead and mercury were not associated with the prevalence of endometriosis. There were conflicting results for the association between nickel and endometriosis. The relationship of EDCs and severity of endometriosis was not established in the studies. CONCLUSION We found some evidence to suggest an association between phthalate esters, bisphenol A, organochlorinated environmental pollutants and the prevalence of endometriosis. Disentangling these exposures from various other factors that affect endometriosis is complex, but an important topic for further research.
Collapse
Affiliation(s)
- Diksha Sirohi
- School of Public Health, Faculty of Medicine, The University of Queensland, Herston, QLD 4006, Australia
| | - Ruqaiya Al Ramadhani
- School of Public Health, Faculty of Medicine, The University of Queensland, Herston, QLD 4006, Australia
| | - Luke D Knibbs
- School of Public Health, Faculty of Medicine, The University of Queensland, Herston, QLD 4006, Australia
| |
Collapse
|
44
|
Haedrich J, Stumpf C, Denison MS. Bioanalytical screening of low levels of dioxins and dioxin-like PCBs in pig meat (pork) for checking compliance with EU maximum and action levels using highly sensitive "third generation" recombinant H4L7.5c2 rat hepatoma cells. ENVIRONMENTAL SCIENCES EUROPE 2021; 33:33. [PMID: 33828936 PMCID: PMC7973644 DOI: 10.1186/s12302-021-00474-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Accepted: 03/02/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Low maximum and action levels set by the European Union for polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) and dioxin-like polychlorinated biphenyls (DL-PCBs) in pig meat (pork) have led to a demand for reliable and cost-effective bioanalytical screening methods implemented upstream of gas chromatography/high-resolution mass spectrometry confirmatory technology, that can detect low levels of contamination in EU-regulated foods with quick turn-around times. RESULTS Based on the Chemically Activated LUciferase gene eXpression (CALUX) bioassay, extraction and clean-up steps were optimized for recovery and reproducibility within working ranges significantly lower than in current bioassays. A highly sensitive "3rd generation" recombinant rat hepatoma cell line (H4L7.5c2) containing 20 dioxin responsive elements was exposed to pork sample extracts, and their PCDD/Fs and DL-PCBs levels were evaluated by measuring luciferase activity. The method was validated according to the provisions of Commission Regulation (EU) 2017/644 of 5 April 2017 with spiking experiments performed selectively for PCDD/Fs and DL-PCBs and individual calibration for PCDD/Fs, DL-PCBs and the calculated sum of PCDD/Fs and DL-PCBs. The resulting performance parameters met all legal specifications as confirmed by re-calibration using authentic samples. Cut-off concentrations for assessing compliance with low maximum levels and action levels set for PCDD/Fs and DL-PCBs within a range of 0.50-1.25 pg WHO-TEQ/g fat were derived, ensuring low rates of false-compliant results (ß-error < 1%) and keeping the rate of false-noncompliant results well under control (α-error < 12%). CONCLUSIONS We present a fast and efficient bioanalytical routine method validated according to the European Union's legal requirements on the basis of authentic samples, allowing the analyst to reliably identify pork samples and any other EU-regulated foods of animal origin suspected to be noncompliant with a high level of performance and turn-around times of 52 h. This was facilitated in particular by a quick and efficient extraction step followed by selective clean-up, use of a highly sensitive "3rd generation" H4L7.5c2 recombinant rat hepatoma cell CALUX bioassay, and optimized assay performance with improved calibrator precision and reduced lack-of-fit errors. New restrictions are proposed for the calibrator bias and the unspecific background contribution to reportable results. The procedure can utilize comparably small sample amounts and allows an annual throughput of 840-1000 samples per lab technician. The described bioanalytical method contributes to the European Commission's objective of generating accurate and reproducible analytical results according to Commission Regulation (EU) 2017/644 across the European Union.
Collapse
Affiliation(s)
- Johannes Haedrich
- European Union Reference Laboratory (EU-RL) for Dioxins and PCBs in Feed and Food, CVUA Freiburg, Bissierstraße 5, 79114 Freiburg, Germany
- Ringstr. 5, 79252 Stegen, Germany
| | - Claudia Stumpf
- European Union Reference Laboratory (EU-RL) for Dioxins and PCBs in Feed and Food, CVUA Freiburg, Bissierstraße 5, 79114 Freiburg, Germany
| | - Michael S. Denison
- Department of Environmental Toxicology, University of California Davis (UCD), One Shields Avenue, Davis, CA 95616 USA
| |
Collapse
|
45
|
Kumari R, Dhankhar P, Dalal V. Structure-based mimicking of hydroxylated biphenyl congeners (OHPCBs) for human transthyretin, an important enzyme of thyroid hormone system. J Mol Graph Model 2021; 105:107870. [PMID: 33647754 DOI: 10.1016/j.jmgm.2021.107870] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 01/22/2021] [Accepted: 02/15/2021] [Indexed: 01/06/2023]
Abstract
In humans, transthyretin (hTTR) is a plasma protein act as a transporter of thyroxine (T4) in the blood. Polychlorinated biphenyls (PCBs) are used in coolants, transformers, plasticizers, and pesticide extenders, etc. due to their physical properties, chemical stability, and dielectric properties. Cytochrome P450 can oxidize the PCBs into hydroxylated PCBs (OHPCBs) which can further interact with hTTR results in hepatoxicity, loss of metabolic rate, memory problems, and neurotoxicity. Molecular docking results show that OHPCBs bind at the active site of hTTR with a more binding affinity as compared to T4. Further, molecular dynamics simulation has been done to confirm the stability of hTTR-OHPCBs complexes. Several analysis parameters like RMSD, RMSF, Rg, SASA, hydrogen bonds numbers, PCA, and FEL revealed that binding of OHPCBs with hTTR results in the formation of stable hTTR-OHPCBs complexes. Individual residues decomposition analysis confirms that Lys15, Leu17, Ala108, Ala109, Leu110, Ser117, and Thr119 of hTTR plays a major role in the binding of OHPCBs to form the lower energy hTTR-OHPCBs complexes. Molecular docking and simulations results emphasize that OHPCBs can efficiently bind at the active site of hTTR, which further leads to inhibition of transportation of T4 in human blood.
Collapse
Affiliation(s)
- Reena Kumari
- Department of Mathematics and Statistics, Swami Vivekanand Subharti University, Meerut, 250005, India
| | - Poonam Dhankhar
- Department of Biotechnology, IIT Roorkee, Uttarakhand, 247667, India
| | - Vikram Dalal
- Department of Biotechnology, IIT Roorkee, Uttarakhand, 247667, India.
| |
Collapse
|
46
|
Giannattasio R, Lisco G, Giagulli VA, Settembrini S, De Pergola G, Guastamacchia E, Lombardi G, Triggiani V. Bone Disruption and Environmental Pollutants. Endocr Metab Immune Disord Drug Targets 2021; 22:704-715. [PMID: 33461478 DOI: 10.2174/1871530321666210118163538] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 11/06/2020] [Accepted: 11/24/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Endocrine Disrupting Chemicals (EDCs) are ubiquitous and may significantly contribute in environmental pollution, thus contaminating humans and wildlife. Environmental pollutants could interfere with bone homeostasis by means of different mechanisms, which include hormonal imbalance, direct osteoblasts toxicity and enanchment of osteoclasts activity, thus leading to osteopenia or osteoporosis. Among these, bisphenols, dioxins, polycyclic aromatic hydrocarbons, polychlorobiphenyls, poly- and perfluoroalkyls, phthalates, parabens, organotins and cadmium may play a role in bone distuption. METHODS PubMed/MEDLINE, ISI-web of knowledge and Google scholar databases were searched for medical subject headings terms and free-text word related to the aforementioned classes of chemicals and bone metabolism and remodelling for better clarifying and understanding the main mechanisms of bone disruption. RESULTS Several of EDCs act as xenoestrogens. Considering that estrogens play a significant role in regulating bone remodeling, most of these chemicals generate hormonal imbalance with possible detrimental consequences on bone tissue structure and its mechanical and non-mechanical properties. DISCUSSION A lot of evidences about bone distruptors came from in vitro studies or animal models, and conduct to equivocal results. In addition, a few data derived form humans and most of these data focused on the impact of EDCs on bone mineral density without considering their influence on long-term fracture risk. Moreover, it should be taken into account that humans are exposed to a mixture of EDCs and the final effect on bone metabolism might be the result of either a synergism or antagonist effects among them. Age of first exposure, cumulative dose exposure over time, and the usually observed non-monotonic dose-response curve for EDCs should be considered as other important variable influencing the final effect on bone metabolism. CONCLUSION Taking into account these variables, observational studies are needed to better analyze this issue both for echological purpose and to preserve bone health.
Collapse
Affiliation(s)
- Raffaele Giannattasio
- ASL Napoli 1 Centro, DS 29, SPS San Gennaro, Service of Endocrinology, Via San Gennaro dei Poveri 25, 80136, Naples. Italy
| | - Giuseppe Lisco
- Interdisciplinary Department of Medicine - Section of Internal Medicine, Geriatrics, Endocrinology and Rare Diseases. School of Medicine, University of Bari, Piazza Giulio Cesare 11, Policlinico of Bari, Bari. Italy
| | - Vito Angelo Giagulli
- Interdisciplinary Department of Medicine - Section of Internal Medicine, Geriatrics, Endocrinology and Rare Diseases. School of Medicine, University of Bari, Piazza Giulio Cesare 11, Policlinico of Bari, Bari. Italy
| | - Silvio Settembrini
- ASL Napoli 1 Centro, DS 26, Metabolic, Endocrine and Diabetes Unit Pellegrini Hospital, Naples. Italy
| | - Giovanni De Pergola
- Department of Biomedical Sciences and Human Oncology, Section of Internal Medicine and Clinical Oncology, University of Bari Aldo Moro, Piazza Giulio Cesare 11, 70124 Bari. Italy
| | - Edoardo Guastamacchia
- Interdisciplinary Department of Medicine - Section of Internal Medicine, Geriatrics, Endocrinology and Rare Diseases. School of Medicine, University of Bari, Piazza Giulio Cesare 11, Policlinico of Bari, Bari. Italy
| | | | - Vincenzo Triggiani
- Interdisciplinary Department of Medicine - Section of Internal Medicine, Geriatrics, Endocrinology and Rare Diseases. School of Medicine, University of Bari, Piazza Giulio Cesare 11, Policlinico of Bari, Bari. Italy
| |
Collapse
|
47
|
Furue M, Ishii Y, Tsukimori K, Tsuji G. Aryl Hydrocarbon Receptor and Dioxin-Related Health Hazards-Lessons from Yusho. Int J Mol Sci 2021; 22:ijms22020708. [PMID: 33445793 PMCID: PMC7828254 DOI: 10.3390/ijms22020708] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 01/08/2021] [Accepted: 01/09/2021] [Indexed: 12/15/2022] Open
Abstract
Poisoning by high concentrations of dioxin and its related compounds manifests variable toxic symptoms such as general malaise, chloracne, hyperpigmentation, sputum and cough, paresthesia or numbness of the extremities, hypertriglyceridemia, perinatal abnormalities, and elevated risks of cancer-related mortality. Such health hazards are observed in patients with Yusho (oil disease in Japanese) who had consumed rice bran oil highly contaminated with 2,3,4,7,8-pentachlorodibenzofuran, polychlorinated biphenyls, and polychlorinated quaterphenyls in 1968. The blood concentrations of these congeners in patients with Yusho remain extremely elevated 50 years after onset. Dioxins exert their toxicity via aryl hydrocarbon receptor (AHR) through the generation of reactive oxygen species (ROS). In this review article, we discuss the pathogenic implication of AHR in dioxin-induced health hazards. We also mention the potential therapeutic use of herbal drugs targeting AHR and ROS in patients with Yusho.
Collapse
Affiliation(s)
- Masutaka Furue
- Research and Clinical Center for Yusho and Dioxin, Kyushu University Hospital, Fukuoka 812-8582, Japan;
- Department of Dermatology, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
- Correspondence: ; Tel.: +81-92-642-5581; Fax: +81-92-642-5600
| | - Yuji Ishii
- Division of Pharmaceutical Cell Biology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka 812-8582, Japan;
| | - Kiyomi Tsukimori
- Department of Obstetrics, Perinatal Center, Fukuoka Children’s Hospital, Fukuoka 813-0017, Japan;
| | - Gaku Tsuji
- Research and Clinical Center for Yusho and Dioxin, Kyushu University Hospital, Fukuoka 812-8582, Japan;
- Department of Dermatology, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| |
Collapse
|
48
|
Jung JH, Yim B, Jeong S, Yoon MS, Kim BM, Ha SY, Kim M, Rhee JS, Lee YM. Development and Evaluation of Olive Flounder cyp1a1-Luciferase Assay for Effective Detection of CYP1A-Inducing Contaminants in Coastal Sediments. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:15170-15179. [PMID: 33197181 DOI: 10.1021/acs.est.0c06921] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Flounders have been widely used as indicator species for monitoring the benthic environment of marine coastal regions owing to their habitat and feeding preferences in or on sandy sediments. Here, a single-step, sensitive, specific, and simple luciferase assay was developed, using the olive flounder cyp1a1 gene, for effective detection of CYP1A-inducing contaminants in coastal sediments. The developed cyp1a1-luciferase assay was highly sensitive to the widely used CYP1A inducers 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), benzo[a]pyrene (B[a]P), and 3,3',4,4',5-pentachlorobiphenyl (PCB 126). In the case of TCDD, significant dose-dependent increases in luciferase activity (0.3-300 ng/L) were detected. The assay was more sensitive to PCB 126 than to B[a]P. The assay also involved the highly sensitive expression of luciferase to extracted mixtures of PCBs and polycyclic aromatic hydrocarbons (PAHs) collected from coastal sediments. PCBs were more capable of cyp1a1 induction in the assay system at small doses than PAHs in environmental samples. Using the cyp1a1-luciferase assay along with water or sediment chemistry will certainly aid in diagnosing CYP1A-inducing contaminants in coastal environments.
Collapse
Affiliation(s)
- Jee-Hyun Jung
- Risk Assessment Research Center, Korea Institute of Ocean Science and Technology, Geoje 53201, Republic of Korea
- Department of Ocean Science, Korea University of Science and Technology, Daejeon 34113, Republic of Korea
| | - Bora Yim
- Department of Biotechnology, College of Convergence Engineering, Sangmyung University, Seoul 03016, Republic of Korea
| | - Sol Jeong
- Department of Molecular Medicine, School of Medicine, Gachon University, Incheon 21999, Republic of Korea
- Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon 21999, Republic of Korea
| | - Mee-Sup Yoon
- Department of Molecular Medicine, School of Medicine, Gachon University, Incheon 21999, Republic of Korea
- Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon 21999, Republic of Korea
| | - Bo-Mi Kim
- Unit of Research for Practical Application, Korea Polar Research Institute, Incheon 21990, Republic of Korea
| | - Sung Yong Ha
- Risk Assessment Research Center, Korea Institute of Ocean Science and Technology, Geoje 53201, Republic of Korea
| | - Moonkoo Kim
- Risk Assessment Research Center, Korea Institute of Ocean Science and Technology, Geoje 53201, Republic of Korea
- Department of Ocean Science, Korea University of Science and Technology, Daejeon 34113, Republic of Korea
| | - Jae-Sung Rhee
- Department of Marine Science, College of Natural Sciences, Incheon National University, Incheon 22012, Republic of Korea
| | - Young-Mi Lee
- Department of Biotechnology, College of Convergence Engineering, Sangmyung University, Seoul 03016, Republic of Korea
| |
Collapse
|
49
|
Mahfouz S, Mansour G, Murphy DJ, Hanano A. Dioxin impacts on lipid metabolism of soil microbes: towards effective detection and bioassessment strategies. BIORESOUR BIOPROCESS 2020. [DOI: 10.1186/s40643-020-00347-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
AbstractDioxins are the most toxic known environmental pollutants and are mainly formed by human activities. Due to their structural stability, dioxins persist for extended periods and can be transported over long distances from their emission sources. Thus, dioxins can be accumulated to considerable levels in both human and animal food chains. Along with sediments, soils are considered the most important reservoirs of dioxins. Soil microorganisms are therefore highly exposed to dioxins, leading to a range of biological responses that can impact the diversity, genetics and functional of such microbial communities. Dioxins are very hydrophobic with a high affinity to lipidic macromolecules in exposed organisms, including microbes. This review summarizes the genetic, molecular and biochemical impacts of dioxins on the lipid metabolism of soil microbial communities and especially examines modifications in the composition and architecture of cell membranes. This will provide a useful scientific benchmark for future attempts at soil ecological risk assessment, as well as in identifying potential dioxin-specific-responsive lipid biomarkers. Finally, potential uses of lipid-sequestering microorganisms as a part of biotechnological approaches to the bio-management of environmental contamination with dioxins are discussed.
Collapse
|
50
|
Capanni F, Muñoz-Arnanz J, Marsili L, Fossi MC, Jiménez B. Assessment of PCDD/Fs, dioxin-like PCBs and PBDEs in Mediterranean striped dolphins. MARINE POLLUTION BULLETIN 2020; 156:111207. [PMID: 32510364 DOI: 10.1016/j.marpolbul.2020.111207] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 04/20/2020] [Accepted: 04/21/2020] [Indexed: 06/11/2023]
Abstract
Bio-accumulation of high levels of persistent organic pollutants represent a serious conservation concern for Mediterranean marine odontocetes. In this study, blubber samples from 10 striped dolphins (Stenella coeruleoalba) stranded along the Italian coasts during 2015-2016 were analyzed. All specimens showed dl-PCBs > PBDEs ≫ PCDD/Fs. Median concentrations were 1820 ng/g l.w., 456 ng/g l.w. and 23.9 pg/g l.w., respectively. dl-PCBs accounted for 93.3% of total TEQs. PBDE concentrations suggest that the Mediterranean basin may be considered a hotspot for organobromine compounds. OCDD did not represent the greatest contributor to PCDD/Fs profile, most likely due to a change in dioxin environmental sources in the last two-three decades. Despite international regulations, the present study emphasized that POP exposure levels in Mediterranean striped dolphins have not declined significantly in recent years. Toxicological and risk assessment studies on this sentinel species may provide an early indication of potential adverse health effects on Mediterranean ecosystems.
Collapse
Affiliation(s)
- Francesca Capanni
- Dept. Instrumental Analysis and Environmental Chemistry, Institute of Organic Chemistry (IQOG-CSIC), Juan de la Cierva 3, 28006 Madrid, Spain; Dept. Physical Sciences, Earth and Environment, University of Siena, via P. A. Mattioli 4, 53100 Siena, Italy.
| | - Juan Muñoz-Arnanz
- Dept. Instrumental Analysis and Environmental Chemistry, Institute of Organic Chemistry (IQOG-CSIC), Juan de la Cierva 3, 28006 Madrid, Spain
| | - Letizia Marsili
- Dept. Physical Sciences, Earth and Environment, University of Siena, via P. A. Mattioli 4, 53100 Siena, Italy
| | - M Cristina Fossi
- Dept. Physical Sciences, Earth and Environment, University of Siena, via P. A. Mattioli 4, 53100 Siena, Italy
| | - Begoña Jiménez
- Dept. Instrumental Analysis and Environmental Chemistry, Institute of Organic Chemistry (IQOG-CSIC), Juan de la Cierva 3, 28006 Madrid, Spain
| |
Collapse
|