1
|
Jaruga P, Kant M, Luzadder MM, Lloyd RS, Boldogh I, Dizdaroglu M. Inhibition by 4-(4-Bromo-2-oxo-3 H-benzimidazol-1-yl)- N-(4-iodophenyl)piperidine-1-carboxamide (TH5487) of the Activity of Human 8-Oxoguanine DNA Glycosylase-1 (OGG1) for the Excision of 2,6-Diamino-4-hydroxy-5-formamidopyrimidine, 4,6-Diamino-5-formamidopyrimidine, and 8-Oxoguanine from Oxidatively Damaged DNA. Biochemistry 2025; 64:1788-1796. [PMID: 40179276 PMCID: PMC12004446 DOI: 10.1021/acs.biochem.4c00419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 03/05/2025] [Accepted: 03/12/2025] [Indexed: 04/05/2025]
Abstract
DNA glycosylases of the base excision repair pathway have become clinically validated drug targets for the treatment of several diseases. Human OGG1 (hOGG1) is specific for the removal of the highly mutagenic 8-oxoguanine (8-oxo-Gua) and 2,6-diamino-4-hydroxy-5-formamidopyrimidine (FapyGua) from damaged DNA. To develop clinically approved drugs, various small-molecule inhibitors of hOGG1 have been developed to inhibit its glycosylase and lyase activities, with 4-(4-bromo-2-oxo-3H-benzimidazol-1-yl)-N-(4-iodophenyl)piperidine-1-carboxamide (TH5487) shown to be a potent inhibitor. The inhibition of hOGG1 by TH5487 has been shown to suppress cancer cell growth, pulmonary inflammation, and lung fibrosis and sensitize cancer cells to ionizing radiation, confirming hOGG1 as a target for pharmaceutical intervention. While the assays that identified TH5487 utilized an oligodeoxynucleotide with the target substrate being 8-hydroxyadenine mispaired with cytosine, measurements of TH5487-mediated inhibition of the release of 8-oxo-Gua and FapyGua have not been reported. In the present work, we investigated the inhibition of hOGG1 by TH5487 using genomic DNA with multiple lesions and gas chromatography-tandem mass spectrometry with isotope dilution to measure inhibition of hOGG1-catalyzed DNA base lesion removal from DNA. An oligodeoxynucleotide containing 8-oxo-Gua was also used to measure the half-maximal inhibitory concentration (IC50), which is 0.800 μmol/L ± 0.061 μmol/L. We show that TH5487 efficiently inhibits the excision of both 8-oxo-Gua and FapyGua, and a minor substrate 4,6-diamino-5-formamidopyrimidine (FapyAde) from DNA with the IC50 values of 1.6 μmol/L, 3.1 μmol/L, and 3.1 μmol/L, respectively. The results suggest that the approach used in the present work may be applied for future studies of hOGG1 inhibition by TH5487 on cellular and animal disease models.
Collapse
Affiliation(s)
- Pawel Jaruga
- Biomolecular
Measurement Division, National Institute
of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Melis Kant
- Biomolecular
Measurement Division, National Institute
of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Michael M. Luzadder
- Oregon
Institute of Occupational Health Sciences, Oregon Health & Science University, Portland, Oregon 97239, United States
| | - R. Stephen Lloyd
- Oregon
Institute of Occupational Health Sciences, Oregon Health & Science University, Portland, Oregon 97239, United States
- Department
of Molecular and Medical Genetics, Oregon
Health & Science University, Portland, Oregon 97239, United States
| | - Istvan Boldogh
- Department
of Microbiology and Immunology, University
of Texas Medical Branch at Galveston, Galveston, Texas 77555, United States
| | - Miral Dizdaroglu
- Biomolecular
Measurement Division, National Institute
of Standards and Technology, Gaithersburg, Maryland 20899, United States
| |
Collapse
|
2
|
Allen LH, Fenech M, LeVatte MA, West KP, Wishart DS. Multiomics: Functional Molecular Biomarkers of Micronutrients for Public Health Application. Annu Rev Nutr 2024; 44:125-153. [PMID: 39207879 DOI: 10.1146/annurev-nutr-062322-022751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Adequate micronutrient intake and status are global public health goals. Vitamin and mineral deficiencies are widespread and known to impair health and survival across the life stages. However, knowledge of molecular effects, metabolic pathways, biological responses to variation in micronutrient nutriture, and abilities to assess populations for micronutrient deficiencies and their pathology remain lacking. Rapidly evolving methodological capabilities in genomics, epigenomics, proteomics, and metabolomics offer unparalleled opportunities for the nutrition research community to link micronutrient exposure to cellular health; discover new, arguably essential micronutrients of microbial origin; and integrate methods of molecular biology, epidemiology, and intervention trials to develop novel approaches to assess and prevent micronutrient deficiencies in populations. In this review article, we offer new terminology to specify nutritional application of multiomic approaches and encourage collaboration across the basic to public health sciences to advance micronutrient deficiency prevention.
Collapse
Affiliation(s)
- Lindsay H Allen
- Western Human Nutrition Research Center, United States Department of Agriculture, Agricultural Research Service, Davis, California, USA
- Department of Nutrition, University of California, Davis, California, USA
| | - Michael Fenech
- Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, Australia
- Genome Health Foundation, North Brighton, South Australia, Australia
| | - Marcia A LeVatte
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Keith P West
- Center for Human Nutrition, Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA;
| | - David S Wishart
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
- Department of Computing Science, University of Alberta, Edmonton, Alberta, Canada
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, Canada
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
3
|
Kong W, Zhao Y, Dai X, You C. Methodologies for the detection and sequencing of the epigenetic-like oxidative DNA modification, 8-oxo-7,8-dihydroguanine. MUTATION RESEARCH. REVIEWS IN MUTATION RESEARCH 2024; 794:108516. [PMID: 39486616 DOI: 10.1016/j.mrrev.2024.108516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 10/26/2024] [Accepted: 10/27/2024] [Indexed: 11/04/2024]
Abstract
The human genome is constantly threatened by endogenous and environmental DNA damaging agents that can induce a variety of chemically modified DNA lesions including 8-oxo-7,8-dihydroguanine (OG). Increasing evidence has indicated that OG is not only a biomarker for oxidative DNA damage but also a novel epigenetic-like modification involved in regulation of gene expression in mammalian cells. Here we summarize the recent progress in OG research focusing on the following points: (i) the mechanism of OG production in organisms and its biological consequences in cells, (ii) the accurate identification of OG in low-abundance genomes and complex biological backgrounds, (iii) the development of OG sequencing methods. These studies will be helpful for further understanding of the molecular mechanisms of OG-induced mutagenesis and its potential roles in human development and diseases such as cancer.
Collapse
Affiliation(s)
- Weiheng Kong
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Molecular Science and Biomedicine Laboratory, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China; College of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong 273165, China
| | - Yingqi Zhao
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Molecular Science and Biomedicine Laboratory, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Xiaoxia Dai
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Molecular Science and Biomedicine Laboratory, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China.
| | - Changjun You
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Molecular Science and Biomedicine Laboratory, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China.
| |
Collapse
|
4
|
Rezaee M, Adhikary A. The Effects of Particle LET and Fluence on the Complexity and Frequency of Clustered DNA Damage. DNA 2024; 4:34-51. [PMID: 38282954 PMCID: PMC10810015 DOI: 10.3390/dna4010002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2024]
Abstract
Motivation Clustered DNA-lesions are predominantly induced by ionizing radiation, particularly by high-LET particles, and considered as lethal damage. Quantification of this specific type of damage as a function of radiation parameters such as LET, dose rate, dose, and particle type can be informative for the prediction of biological outcome in radiobiological studies. This study investigated the induction and complexity of clustered DNA damage for three different types of particles at an LET range of 0.5-250 keV/μm. Methods Nanometric volumes (36.0 nm3) of 15 base-pair DNA with its hydration shell was modeled. Electron, proton, and alpha particles at various energies were simulated to irradiate the nanometric volumes. The number of ionization events, low-energy electron spectra, and chemical yields for the formation of °OH, H°, e aq - , and H2O2 were calculated for each particle as a function of LET. Single- and double-strand breaks (SSB and DSB), base release, and clustered DNA-lesions were computed from the Monte-Carlo based quantification of the reactive species and measured yields of the species responsible for the DNA lesion formation. Results The total amount of DNA damage depends on particle type and LET. The number of ionization events underestimates the quantity of DNA damage at LETs higher than 10 keV/μm. Minimum LETs of 9.4 and 11.5 keV/μm are required to induce clustered damage by a single track of proton and alpha particles, respectively. For a given radiation dose, an increase in LET reduces the number of particle tracks, leading to more complex clustered DNA damage, but a smaller number of separated clustered damage sites. Conclusions The dependency of the number and the complexity of clustered DNA damage on LET and fluence suggests that the quantification of this damage can be a useful method for the estimation of the biological effectiveness of radiation. These results also suggest that medium-LET particles are more appropriate for the treatment of bulk targets, whereas high-LET particles can be more effective for small targets.
Collapse
Affiliation(s)
- Mohammad Rezaee
- Department of Radiation Oncology and Molecular Radiation Sciences, School of Medicine, Johns Hopkins University, 1550 Orleans St., Baltimore, MD 21231, USA
| | - Amitava Adhikary
- Department of Chemistry, Oakland University, 146 Library Drive, Rochester, MI 48309, USA
| |
Collapse
|
5
|
Cieślak M, Karwowski BT. The Effect of 8,5'-Cyclo 2'-deoxyadenosine on the Activity of 10-23 DNAzyme: Experimental and Theoretical Study. Int J Mol Sci 2024; 25:2519. [PMID: 38473767 DOI: 10.3390/ijms25052519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 02/16/2024] [Accepted: 02/19/2024] [Indexed: 03/14/2024] Open
Abstract
The in vivo effectiveness of DNAzymes 10-23 (Dz10-23) is limited due to the low concentration of divalent cations. Modifications of the catalytic loop are being sought to increase the activity of Dz10-23 in physiological conditions. We investigated the effect of 5'S or 5'R 5',8-cyclo-2'deoxyadenosine (cdA) on the activity of Dz10-23. The activity of Dz10-23 was measured in a cleavage assay using radiolabeled RNA. The Density Functional Tight Binding methodology with the self-consistent redistribution of Mulliken charge modification was used to explain different activities of DNAzymes. The substitution of 2'-deoxyadenosine with cdA in the catalytic loop decreased the activity of DNAzymes. Inhibition was dependent on the position of cdA and its absolute configuration. The order of activity of DNAzymes was as follows: wt-Dz > ScdA5-Dz ≈ RcdA15-Dz ≈ ScdA15-Dz > RcdA5-Dz. Theoretical studies revealed that the distance between phosphate groups at position 5 in RcdA5-Dz was significantly increased compared to wt-Dz, while the distance between O4 of dT4 and nonbonding oxygen of PO2 attached to 3'O of dG2 was much shorter. The strong inhibitory effect of RcdA5 may result from hampering the flexibility of the catalytic loop (increased rigidity), which is required for the proper positioning of Me2+ and optimal activity.
Collapse
Affiliation(s)
- Marcin Cieślak
- Food Science Department, Faculty of Pharmacy, Medical University of Lodz, ul. Muszynskiego 1, 90-151 Lodz, Poland
| | - Bolesław T Karwowski
- Food Science Department, Faculty of Pharmacy, Medical University of Lodz, ul. Muszynskiego 1, 90-151 Lodz, Poland
| |
Collapse
|
6
|
Halliwell B. Understanding mechanisms of antioxidant action in health and disease. Nat Rev Mol Cell Biol 2024; 25:13-33. [PMID: 37714962 DOI: 10.1038/s41580-023-00645-4] [Citation(s) in RCA: 152] [Impact Index Per Article: 152.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/17/2023] [Indexed: 09/17/2023]
Abstract
Several different reactive oxygen species (ROS) are generated in vivo. They have roles in the development of certain human diseases whilst also performing physiological functions. ROS are counterbalanced by an antioxidant defence network, which functions to modulate ROS levels to allow their physiological roles whilst minimizing the oxidative damage they cause that can contribute to disease development. This Review describes the mechanisms of action of antioxidants synthesized in vivo, antioxidants derived from the human diet and synthetic antioxidants developed as therapeutic agents, with a focus on the gaps in our current knowledge and the approaches needed to close them. The Review also explores the reasons behind the successes and failures of antioxidants in treating or preventing human disease. Antioxidants may have special roles in the gastrointestinal tract, and many lifestyle features known to promote health (especially diet, exercise and the control of blood glucose and cholesterol levels) may be acting, at least in part, by antioxidant mechanisms. Certain reactive sulfur species may be important antioxidants but more accurate determinations of their concentrations in vivo are needed to help assess their contributions.
Collapse
Affiliation(s)
- Barry Halliwell
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
- Neurobiology Research Programme, Life Sciences Institute, Centre for Life Sciences, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
7
|
Fenech MF, Bull CF, Van Klinken BJW. Protective Effects of Micronutrient Supplements, Phytochemicals and Phytochemical-Rich Beverages and Foods Against DNA Damage in Humans: A Systematic Review of Randomized Controlled Trials and Prospective Studies. Adv Nutr 2023; 14:1337-1358. [PMID: 37573943 PMCID: PMC10721466 DOI: 10.1016/j.advnut.2023.08.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 07/19/2023] [Accepted: 08/07/2023] [Indexed: 08/15/2023] Open
Abstract
Accumulation of deoxyribonucleic acid (DNA) damage diminishes cellular health, increases risk of developmental and degenerative diseases, and accelerates aging. Optimizing nutrient intake can minimize accrual of DNA damage. The objectives of this review are to: 1) assemble and systematically analyze high-level evidence for the effect of supplementation with micronutrients and phytochemicals on baseline levels of DNA damage in humans, and 2) use this knowledge to identify which of these essential micronutrients or nonessential phytochemicals promote DNA integrity in vivo in humans. We conducted systematic literature searches of the PubMed database to identify interventional, prospective, cross-sectional, or in vitro studies that explored the association between nutrients and established biomarkers of DNA damage associated with developmental and degenerative disease risk. Biomarkers included lymphocyte chromosome aberrations, lymphocyte and buccal cell micronuclei, DNA methylation, lymphocyte/leukocyte DNA strand breaks, DNA oxidation, telomere length, telomerase activity, and mitochondrial DNA mutations. Only randomized, controlled interventions and uncontrolled longitudinal intervention studies conducted in humans were selected for evaluation and data extraction. These studies were ranked for the quality of their study design. In all, 96 of the 124 articles identified reported studies that achieved a quality assessment score ≥ 5 (from a maximum score of 7) and were included in the final review. Based on these studies, nutrients associated with protective effects included vitamin A and its precursor β-carotene, vitamins C, E, B1, B12, folate, minerals selenium and zinc, and phytochemicals such as curcumin (with piperine), lycopene, and proanthocyanidins. These findings highlight the importance of nutrients involved in (i) DNA metabolism and repair (folate, vitamin B12, and zinc) and (ii) prevention of oxidative stress and inflammation (vitamins A, C, E, lycopene, curcumin, proanthocyanidins, selenium, and zinc). Supplementation with certain micronutrients and their combinations may reduce DNA damage and promote cellular health by improving the maintenance of genome integrity.
Collapse
Affiliation(s)
- Michael F Fenech
- Molecular Diagnostics Solutions, CSIRO Health & Biosecurity, Adelaide, South Australia, Australia; Clinical and Health Sciences, Health and Biomedical Innovation, University of South Australia, Adelaide, South Australia, Australia; Genome Health Foundation, North Brighton, South Australia, Australia.
| | - Caroline F Bull
- Molecular Diagnostics Solutions, CSIRO Health & Biosecurity, Adelaide, South Australia, Australia; School of Molecular and Biomedical Sciences, University of Adelaide, North Terrace, Adelaide, South Australia, Australia.
| | - B Jan-Willem Van Klinken
- GSK Consumer Healthcare (now named Haleon), Warren, New Jersey, USA; Brightseed, San Francisco, CA, United States.
| |
Collapse
|
8
|
Vartanian V, Krey JF, Chatterjee P, Curtis A, Six M, Rice SPM, Jones SM, Sampath H, Allen CN, Ryals RC, Lloyd RS, Barr‐Gillespie PG. Spontaneous allelic variant in deafness-blindness gene Ush1g resulting in an expanded phenotype. GENES, BRAIN, AND BEHAVIOR 2023; 22:e12849. [PMID: 37328946 PMCID: PMC10393423 DOI: 10.1111/gbb.12849] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/05/2023] [Accepted: 05/07/2023] [Indexed: 06/18/2023]
Abstract
Relationships between novel phenotypic behaviors and specific genetic alterations are often discovered using target-specific, directed mutagenesis or phenotypic selection following chemical mutagenesis. An alternative approach is to exploit deficiencies in DNA repair pathways that maintain genetic integrity in response to spontaneously induced damage. Mice deficient in the DNA glycosylase NEIL1 show elevated spontaneous mutations, which arise from translesion DNA synthesis past oxidatively induced base damage. Several litters of Neil1 knockout mice included animals that were distinguished by their backwards-walking behavior in open-field environments, while maintaining frantic forward movements in their home cage environment. Other phenotypic manifestations included swim test failures, head tilting and circling. Mapping of the mutation that conferred these behaviors showed the introduction of a stop codon at amino acid 4 of the Ush1g gene. Ush1gbw/bw null mice displayed auditory and vestibular defects that are commonly seen with mutations affecting inner-ear hair-cell function, including a complete lack of auditory brainstem responses and vestibular-evoked potentials. As in other Usher syndrome type I mutant mouse lines, hair cell phenotypes included disorganized and split hair bundles, as well as altered distribution of proteins for stereocilia that localize to the tips of row 1 or row 2. Disruption to the bundle and kinocilium displacement suggested that USH1G is essential for forming the hair cell's kinocilial links. Consistent with other Usher type 1 models, Ush1gbw/bw mice had no substantial retinal degeneration compared with Ush1gbw /+ controls. In contrast to previously described Ush1g alleles, this new allele provides the first knockout model for this gene.
Collapse
Affiliation(s)
- Vladimir Vartanian
- Oregon Institute of Occupational Health SciencesOregon Health & Science UniversityPortlandOregonUSA
| | - Jocelyn F. Krey
- Oregon Hearing Research Center and Vollum InstituteOregon Health & Science UniversityPortlandOregonUSA
| | - Paroma Chatterjee
- Oregon Hearing Research Center and Vollum InstituteOregon Health & Science UniversityPortlandOregonUSA
| | - Allison Curtis
- Department of Ophthalmology, Casey Eye InstituteOregon Health & Science UniversityPortlandOregonUSA
| | - Makayla Six
- Department of Ophthalmology, Casey Eye InstituteOregon Health & Science UniversityPortlandOregonUSA
| | - Sean P. M. Rice
- Oregon Institute of Occupational Health Sciences and School of Public HealthOregon Health & Science University‐Portland State UniversityPortlandOregonUSA
| | - Sherri M. Jones
- Department of Special Education and Communication DisordersUniversity of Nebraska‐LincolnLincolnNebraskaUSA
| | - Harini Sampath
- Department of Nutritional Sciences and New Jersey Institute for Food, Nutrition, and HealthRutgers UniversityNew BrunswickNew JerseyUSA
| | - Charles N. Allen
- Oregon Institute of Occupational Health Sciences and Department of Behavioral NeuroscienceOregon Health & Science UniversityPortlandOregonUSA
| | - Renee C. Ryals
- Department of Ophthalmology, Casey Eye InstituteOregon Health & Science UniversityPortlandOregonUSA
| | - R. Stephen Lloyd
- Oregon Institute of Occupational Health SciencesOregon Health & Science UniversityPortlandOregonUSA
- Department of Molecular and Medical GeneticsOregon Health & Science UniversityPortlandOregonUSA
| | - Peter G. Barr‐Gillespie
- Oregon Hearing Research Center and Vollum InstituteOregon Health & Science UniversityPortlandOregonUSA
| |
Collapse
|
9
|
Li J, Hu Z, Liu D, Wang P. Mass spectrometry-based assays for assessing replicative bypass and repair of DNA alkylation in cells. RSC Adv 2023; 13:15490-15497. [PMID: 37223415 PMCID: PMC10201546 DOI: 10.1039/d2ra08340j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 05/15/2023] [Indexed: 05/25/2023] Open
Abstract
Endogenous metabolism and environmental exposure can give rise to DNA alkylation, which can elicit deleterious biological consequences. In the search for reliable and quantitative analytical methods to elucidate the impact of DNA alkylation on the flow of genetic information, mass spectrometry (MS) has attracted increasing attention, owing to its unambiguous determination of molecular mass. The MS-based assays obviate conventional colony-picking methods and Sanger sequencing procedures, and retained the high sensitivity of postlabeling methods. With the help of the CRISPR/Cas9 gene editing method, MS-based assays showed high potential in studying individual functions of repair proteins and translesion synthesis (TLS) polymerases in DNA replication. In this mini-review, we have summarized the development of MS-based competitive and replicative adduct bypass (CRAB) assays and their recent applications in assessing the impact of alkylation on DNA replication. With further development of MS instruments for high resolving power and high throughput, these assays should be generally applicable and efficient in quantitative measurement of the biological consequences and repair of other DNA lesions.
Collapse
Affiliation(s)
- Jiaxian Li
- Institute of Surface Analysis and Chemical Biology, University of Jinan Jinan Shandong 250022 P. R. China
| | - Zhihai Hu
- Institute of Surface Analysis and Chemical Biology, University of Jinan Jinan Shandong 250022 P. R. China
| | - Dandan Liu
- Institute of Surface Analysis and Chemical Biology, University of Jinan Jinan Shandong 250022 P. R. China
| | - Pengcheng Wang
- Institute of Surface Analysis and Chemical Biology, University of Jinan Jinan Shandong 250022 P. R. China
| |
Collapse
|
10
|
Shadfar S, Parakh S, Jamali MS, Atkin JD. Redox dysregulation as a driver for DNA damage and its relationship to neurodegenerative diseases. Transl Neurodegener 2023; 12:18. [PMID: 37055865 PMCID: PMC10103468 DOI: 10.1186/s40035-023-00350-4] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 03/16/2023] [Indexed: 04/15/2023] Open
Abstract
Redox homeostasis refers to the balance between the production of reactive oxygen species (ROS) as well as reactive nitrogen species (RNS), and their elimination by antioxidants. It is linked to all important cellular activities and oxidative stress is a result of imbalance between pro-oxidants and antioxidant species. Oxidative stress perturbs many cellular activities, including processes that maintain the integrity of DNA. Nucleic acids are highly reactive and therefore particularly susceptible to damage. The DNA damage response detects and repairs these DNA lesions. Efficient DNA repair processes are therefore essential for maintaining cellular viability, but they decline considerably during aging. DNA damage and deficiencies in DNA repair are increasingly described in age-related neurodegenerative diseases, such as Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis and Huntington's disease. Furthermore, oxidative stress has long been associated with these conditions. Moreover, both redox dysregulation and DNA damage increase significantly during aging, which is the biggest risk factor for neurodegenerative diseases. However, the links between redox dysfunction and DNA damage, and their joint contributions to pathophysiology in these conditions, are only just emerging. This review will discuss these associations and address the increasing evidence for redox dysregulation as an important and major source of DNA damage in neurodegenerative disorders. Understanding these connections may facilitate a better understanding of disease mechanisms, and ultimately lead to the design of better therapeutic strategies based on preventing both redox dysregulation and DNA damage.
Collapse
Affiliation(s)
- Sina Shadfar
- Centre for Motor Neuron Disease Research, Macquarie Medical School, Macquarie University, Sydney, NSW, 2109, Australia.
| | - Sonam Parakh
- Centre for Motor Neuron Disease Research, Macquarie Medical School, Macquarie University, Sydney, NSW, 2109, Australia
| | - Md Shafi Jamali
- Centre for Motor Neuron Disease Research, Macquarie Medical School, Macquarie University, Sydney, NSW, 2109, Australia
| | - Julie D Atkin
- Centre for Motor Neuron Disease Research, Macquarie Medical School, Macquarie University, Sydney, NSW, 2109, Australia.
- La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Melbourne, VIC, 3086, Australia.
| |
Collapse
|
11
|
Standards for Quantitative Measurement of DNA Damage in Mammalian Cells. Int J Mol Sci 2023; 24:ijms24065427. [PMID: 36982502 PMCID: PMC10051712 DOI: 10.3390/ijms24065427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/07/2023] [Accepted: 03/09/2023] [Indexed: 03/18/2023] Open
Abstract
As the potential applications of DNA diagnostics continue to expand, there is a need for improved methods and standards for DNA analysis. This report describes several methods that could be considered for the production of reference materials for the quantitative measurement of DNA damage in mammalian cells. With the focus on DNA strand breaks, potentially useful methods for assessing DNA damage in mammalian cells are reviewed. The advantages and limitations of each method, as well as additional concerns with respect to reference material development, are also discussed. In conclusion, we outline strategies for developing candidate DNA damage reference materials that could be adopted by research laboratories in a wide variety of applications.
Collapse
|
12
|
Sun Y, Zhang H, Zhang X, Wang W, Chen Y, Cai Z, Wang Q, Wang J, Shi Y. Promotion of astrocyte-neuron glutamate-glutamine shuttle by SCFA contributes to the alleviation of Alzheimer's disease. Redox Biol 2023; 62:102690. [PMID: 37018970 PMCID: PMC10122027 DOI: 10.1016/j.redox.2023.102690] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 03/21/2023] [Accepted: 03/26/2023] [Indexed: 03/29/2023] Open
Abstract
The brain is particularly susceptible to oxidative damage which is a key feature of several neurodegenerative diseases, including Alzheimer's disease (AD), Parkinson's disease (PD) and Huntington's disease. The shuttling of glutathione (GSH) precursors from astrocytes to neurons has been shown to be instrumental for the neuroprotective activity. Here, we revealed that short chain fatty acids (SCFA), which have been related to AD and PD, could promote glutamate-glutamine shuttle to potentially resist oxidative damage in neurons at cellular level. Furthermore, we performed nine-month-long dietary SCFA supplementations in APPswe/PS1dE9 (APP/PS1) mice, and showed that it reshaped the homeostasis of microbiota and alleviated the cognitive impairment by reducing Aβ deposition and tau hyperphosphorylation. Single-cell RNA sequencing analysis of the hippocampus revealed SCFA can enhance astrocyte-neuron communication including glutamate-glutamine shuttle, mainly by acting on astrocyte in vivo. Collectively, our findings indicate that long-term dietary SCFA supplementations at early aging stage can regulate the neuroenergetics to alleviate AD, providing a promising direction for the development of new AD drug.
Collapse
|
13
|
Mani S, Dubey R, Lai IC, Babu MA, Tyagi S, Swargiary G, Mody D, Singh M, Agarwal S, Iqbal D, Kumar S, Hamed M, Sachdeva P, Almutary AG, Albadrani HM, Ojha S, Singh SK, Jha NK. Oxidative Stress and Natural Antioxidants: Back and Forth in the Neurological Mechanisms of Alzheimer's Disease. J Alzheimers Dis 2023; 96:877-912. [PMID: 37927255 DOI: 10.3233/jad-220700] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2023]
Abstract
Alzheimer's disease (AD) is characterized by the progressive degeneration of neuronal cells. With the increase in aged population, there is a prevalence of irreversible neurodegenerative changes, causing a significant mental, social, and economic burden globally. The factors contributing to AD are multidimensional, highly complex, and not completely understood. However, it is widely known that aging, neuroinflammation, and excessive production of reactive oxygen species (ROS), along with other free radicals, substantially contribute to oxidative stress and cell death, which are inextricably linked. While oxidative stress is undeniably important in AD, limiting free radicals and ROS levels is an intriguing and potential strategy for deferring the process of neurodegeneration and alleviating associated symptoms. Therapeutic compounds from natural sources have recently become increasingly accepted and have been effectively studied for AD treatment. These phytocompounds are widely available and a multitude of holistic therapeutic efficiencies for treating AD owing to their antioxidant, anti-inflammatory, and biological activities. Some of these compounds also function by stimulating cholinergic neurotransmission, facilitating the suppression of beta-site amyloid precursor protein-cleaving enzyme 1, α-synuclein, and monoamine oxidase proteins, and deterring the occurrence of AD. Additionally, various phenolic, flavonoid, and terpenoid phytocompounds have been extensively described as potential palliative agents for AD progression. Preclinical studies have shown their involvement in modulating the cellular redox balance and minimizing ROS formation, displaying them as antioxidant agents with neuroprotective abilities. This review emphasizes the mechanistic role of natural products in the treatment of AD and discusses the various pathological hypotheses proposed for AD.
Collapse
Affiliation(s)
- Shalini Mani
- Centre for Emerging Diseases, Department of Biotechnology, Jaypee Institute of Information Technology, Noida, UP, India
| | - Rajni Dubey
- Division of Cardiology, Department of Internal Medicine, Taipei Medical University Hospital, Taipei, Taiwan
| | - I-Chun Lai
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Division of Radiation Oncology, Department of Oncology, Taipei Veterans General Hospital, Taipei, Taiwan
- The Ph.D. Program for Translational Medicine, College of Medical Science and Technology, Taipei Medical University and Academia Sinica, Taipei, Taiwan
| | - M Arockia Babu
- Institute of Pharmaceutical Research, GLA University, Mathura, India
| | - Sakshi Tyagi
- Centre for Emerging Diseases, Department of Biotechnology, Jaypee Institute of Information Technology, Noida, UP, India
| | - Geeta Swargiary
- Centre for Emerging Diseases, Department of Biotechnology, Jaypee Institute of Information Technology, Noida, UP, India
| | - Deepansh Mody
- Centre for Emerging Diseases, Department of Biotechnology, Jaypee Institute of Information Technology, Noida, UP, India
| | - Manisha Singh
- Centre for Emerging Diseases, Department of Biotechnology, Jaypee Institute of Information Technology, Noida, UP, India
| | - Shriya Agarwal
- Department of Molecular Sciences, Macquarie University, Sydney, Australia
| | - Danish Iqbal
- Department of Health Information Management, College of Applied Medical Sciences, Buraydah Private Colleges, Buraydah, Saudi Arabia
| | - Sanjay Kumar
- Department of Life Sciences, School of Basic Sciences and Research (SBSR), Sharda University, Greater Noida, Uttar Pradesh, India
| | - Munerah Hamed
- Department of Pathology, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | | | - Abdulmajeed G Almutary
- Department of Biomedical Sciences, College of Health Sciences, Abu Dhabi University, Abu Dhabi, United Arab Emirates
| | - Hind Muteb Albadrani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Imam Abdulrahman Bin Faisal University, Dammam, Eastern Province, Kingdom of Saudi Arabia
| | - Shreesh Ojha
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Abu Dhabi, United Arab Emirates
| | | | - Niraj Kumar Jha
- Department of Biotechnology, School of Engineering & Technology (SET), Sharda University, Greater Noida, Uttar Pradesh, India
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, India
- Department of Biotechnology, School of Applied & Life Sciences (SALS), Uttaranchal University, Dehradun, Uttarakhand, India
- Department of Biotechnology Engineering and Food Technology, Chandigarh University, Mohali, India
| |
Collapse
|
14
|
Pan L, Xue Y, Wang K, Zheng X, Boldogh I. Detection of Oxidatively Modified Base Lesion(s) in Defined DNA Sequences by FLARE Quantitative PCR. Methods Mol Biol 2023; 2701:115-134. [PMID: 37574478 DOI: 10.1007/978-1-0716-3373-1_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Assessment of DNA base and strand damage can be determined using a quantitative PCR assay that is based on the concept that damage blocks the progression of a thermostable polymerase thus resulting in decreased amplification. However, some of the mutagenic DNA base lesions cause little or no distortion in Watson-Crick base pairing. One of the most abundant such lesion is 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxo(d)Gua), although it affects the thermodynamic stability of the DNA, duplex 8-oxo(d)Gua does not inhibit DNA synthesis or arrest most of DNA or RNA polymerases during replication and transcription. When unrepaired, it is a pre-mutagenic base as it pairs with adenine in anti-syn conformation. Recent studies considered 8-oxo(d)Gua as an epigenetic-like mark and along with 8-oxoguanine DNA glycosylase1 (OGG1) and apurinic/apyrimidinic endonuclease1 (APE1) has roles in gene expression via nucleating transcription factor's promoter occupancy. Here, we introduce its identification through fragment length analysis with repair enzyme (FLARE)-coupled quantitative (q)-PCR. One of the strengths of the assay is that 8-oxo(d)Gua can be identified within short stretches of nuclear and mitochondrial DNA in ng quantities. Bellow we describe the benefits and limits of using FLARE qPCR to assess DNA damage in mammalian cells and provide a detailed protocol of the assay.
Collapse
Affiliation(s)
- Lang Pan
- Departments of Microbiology and Immunology, School of Medicine, University of Texas Medical Branch at Galveston, Galveston, TX, USA
| | - Yaoyao Xue
- Departments of Microbiology and Immunology, School of Medicine, University of Texas Medical Branch at Galveston, Galveston, TX, USA
| | - Ke Wang
- Departments of Microbiology and Immunology, School of Medicine, University of Texas Medical Branch at Galveston, Galveston, TX, USA
| | - Xu Zheng
- Departments of Microbiology and Immunology, School of Medicine, University of Texas Medical Branch at Galveston, Galveston, TX, USA
| | - Istvan Boldogh
- Departments of Microbiology and Immunology, School of Medicine, University of Texas Medical Branch at Galveston, Galveston, TX, USA.
| |
Collapse
|
15
|
Hong X, Hu Y, Yuan Z, Fang Z, Zhang X, Yuan Y, Guo C. Oxidatively Damaged Nucleic Acid: Linking Diabetes and Cancer. Antioxid Redox Signal 2022; 37:1153-1167. [PMID: 35946074 DOI: 10.1089/ars.2022.0096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Significance: Our current knowledge of the mechanism between diabetes and cancer is limited. Oxidatively damaged nucleic acid is considered a critical factor to explore the connections between these two diseases. Recent Advances: The link between diabetes mellitus and cancer has attracted increasing attention in recent years. Emerging evidence supports that oxidatively damaged nucleic acid caused by an imbalance between reactive oxygen species generation and elimination is a bridge connecting diabetes and cancer. 8-Oxo-7,8-dihydro-2'-deoxyguanosine and 8-oxo-7,8-dihydroguanosine assume important roles as biomarkers in assessing the relationship between oxidatively damaged nucleic acid and cancer. Critical Issues: The consequences of diabetes are extensive and may lead to the occurrence of cancer by influencing a combination of factors. At present, there is no direct evidence that diabetes causes cancer by affecting a single factor. Furthermore, the difficulty in controlling variables and differences in detection methods lead to poor reliability and repeatability of results, and there are no clear cutoff values for biomarkers to indicate cancer risk. Future Directions: A better understanding of connections as well as mechanisms between diabetes and cancer is still needed. Both diabetes and cancer are currently intractable diseases. Further exploration of the specific mechanism of oxidatively damaged nucleic acid in the connection between diabetes and cancer is urgently needed. In the future, it is necessary to further take oxidatively damaged nucleic acid as an entry point to provide new ideas for the diagnosis and treatment of diabetes and cancer. Experimental drugs targeting the repair process of oxidatively generated damage require an extensive preclinical evaluation and could ultimately provide new treatment strategies for these diseases. Antioxid. Redox Signal. 37, 1153-1167.
Collapse
Affiliation(s)
- Xiujuan Hong
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yiqiu Hu
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhijun Yuan
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhihao Fang
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaoxiao Zhang
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ying Yuan
- Department of Medical Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Cancer Center, Zhejiang University, Hangzhou, China
| | - Cheng Guo
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Cancer Center, Zhejiang University, Hangzhou, China
| |
Collapse
|
16
|
Mapping Genetics and Epigenetics to Explore the Pathways beyond the Correlated Ageing Phenotype. Genes (Basel) 2022; 13:genes13112169. [DOI: 10.3390/genes13112169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/11/2022] [Accepted: 11/19/2022] [Indexed: 11/22/2022] Open
Abstract
Ageing is defined by the decline in the biological and physiological functions over time, which leads to health problems and increases risks of diseases. The modern societies are characterised by an ageing population, which represents challenges for the healthcare system. Within this context, there is a need to better understand the biological mechanisms beyond ageing in order to optimise geriatric therapies and medical approaches. Herein, we suggest exploring the genetic and epigenetic patterns related to ageing and correlate them with the ageing-related phenotype of the biological entities in order to establish mechanistic links and map the molecular pathways. Such links would have diverse implications in basic research, in clinics, as well as for therapeutic studies.
Collapse
|
17
|
Li Z, Bi R, Sun S, Chen S, Chen J, Hu B, Jin H. The Role of Oxidative Stress in Acute Ischemic Stroke-Related Thrombosis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:8418820. [PMID: 36439687 PMCID: PMC9683973 DOI: 10.1155/2022/8418820] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 10/13/2022] [Accepted: 11/02/2022] [Indexed: 09/22/2023]
Abstract
Acute ischemic stroke is a serious life-threatening disease that affects almost 600 million people each year throughout the world with a mortality of more than 10%, while two-thirds of survivors remain disabled. However, the available treatments for ischemic stroke are still limited to thrombolysis and/or mechanical thrombectomy, and there is an urgent need for developing new therapeutic target. Recently, intravascular oxidative stress, derived from endothelial cells, platelets, and leukocytes, has been found to be tightly associated with stroke-related thrombosis. It not only promotes primary thrombus formation by damaging endothelial cells and platelets but also affects thrombus maturation and stability by modifying fibrin components. Thus, oxidative stress is expected to be a novel target for the prevention and treatment of ischemic stroke. In this review, we first discuss the mechanisms by which oxidative stress promotes stroke-related thrombosis, then summarize the oxidative stress biomarkers of stroke-related thrombosis, and finally put forward an antithrombotic therapy targeting oxidative stress in ischemic stroke.
Collapse
Affiliation(s)
- Zhifang Li
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Rentang Bi
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Shuai Sun
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Shengcai Chen
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Jiefang Chen
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Bo Hu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Huijuan Jin
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| |
Collapse
|
18
|
Akbari M, Nilsen HL, Montaldo NP. Dynamic features of human mitochondrial DNA maintenance and transcription. Front Cell Dev Biol 2022; 10:984245. [PMID: 36158192 PMCID: PMC9491825 DOI: 10.3389/fcell.2022.984245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 08/02/2022] [Indexed: 12/03/2022] Open
Abstract
Mitochondria are the primary sites for cellular energy production and are required for many essential cellular processes. Mitochondrial DNA (mtDNA) is a 16.6 kb circular DNA molecule that encodes only 13 gene products of the approximately 90 different proteins of the respiratory chain complexes and an estimated 1,200 mitochondrial proteins. MtDNA is, however, crucial for organismal development, normal function, and survival. MtDNA maintenance requires mitochondrially targeted nuclear DNA repair enzymes, a mtDNA replisome that is unique to mitochondria, and systems that control mitochondrial morphology and quality control. Here, we provide an overview of the current literature on mtDNA repair and transcription machineries and discuss how dynamic functional interactions between the components of these systems regulate mtDNA maintenance and transcription. A profound understanding of the molecular mechanisms that control mtDNA maintenance and transcription is important as loss of mtDNA integrity is implicated in normal process of aging, inflammation, and the etiology and pathogenesis of a number of diseases.
Collapse
Affiliation(s)
- Mansour Akbari
- Department of Medical Biology, Faculty of Health Sciences, UiT-The Arctic University of Norway, Tromsø, Norway
| | - Hilde Loge Nilsen
- Department of Clinical Molecular Biology, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Unit for precision medicine, Akershus University Hospital, Nordbyhagen, Norway
- Department of Microbiology, Oslo University Hospital, Oslo, Norway
| | - Nicola Pietro Montaldo
- Department of Clinical Molecular Biology, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- *Correspondence: Nicola Pietro Montaldo,
| |
Collapse
|
19
|
Krokidis MG, Prasinou P, Efthimiadou EK, Boari A, Ferreri C, Chatgilialoglu C. Effects of Aging and Disease Conditions in Brain of Tumor-Bearing Mice: Evaluation of Purine DNA Damages and Fatty Acid Pool Changes. Biomolecules 2022; 12:1075. [PMID: 36008969 PMCID: PMC9405824 DOI: 10.3390/biom12081075] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/28/2022] [Accepted: 08/01/2022] [Indexed: 02/04/2023] Open
Abstract
The consequences of aging and disease conditions in tissues involve reactive oxygen species (ROS) and related molecular alterations of different cellular compartments. We compared a murine model of immunodeficient (SCID) xenografted young (4 weeks old) and old (17 weeks old) mice with corresponding controls without tumor implantation and carried out a compositional evaluation of brain tissue for changes in parallel DNA and lipids compartments. DNA damage was measured by four purine 5',8-cyclo-2'-deoxynucleosides, 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxo-dG), and 8-oxo-7,8-dihydro-2'-deoxyadenosine (8-oxo-dA). In brain lipids, the twelve most representative fatty acid levels, which were mostly obtained from the transformation of glycerophospholipids, were followed up during the aging and disease progressions. The progressive DNA damage due to age and tumoral conditions was confirmed by raised levels of 5'S-cdG and 5'S-cdA. In the brain, the remodeling involved a diminution of palmitic acid accompanied by an increase in arachidonic acid, along both age and tumor progressions, causing increases in the unsaturation index, the peroxidation index, and total TFA as indicators of increased oxidative and free radical reactivity. Our results contribute to the ongoing debate on the central role of DNA and genome instability in the aging process, and on the need for a holistic vision, which implies choosing the best biomarkers for such monitoring. Furthermore, our data highlight brain tissue for its lipid remodeling response and inflammatory signaling, which seem to prevail over the effects of DNA damage.
Collapse
Affiliation(s)
- Marios G. Krokidis
- Istituto per la Sintesi Organica e la Fotoreattività, Consiglio Nazionale delle Ricerche, Via Piero Gobetti 101, 40129 Bologna, Italy
- Institute of Nanoscience and Nanotechnology, National Center for Scientific Research “Demokritos”, 15310 Athens, Greece
| | - Paraskevi Prasinou
- Faculty of Veterinary Medicine, University of Teramo, 64100 Teramo, Italy
| | - Eleni K. Efthimiadou
- Institute of Nanoscience and Nanotechnology, National Center for Scientific Research “Demokritos”, 15310 Athens, Greece
- Department of Chemistry, National and Kapodistrian University of Athens, 15784 Athens, Greece
| | - Andrea Boari
- Faculty of Veterinary Medicine, University of Teramo, 64100 Teramo, Italy
| | - Carla Ferreri
- Istituto per la Sintesi Organica e la Fotoreattività, Consiglio Nazionale delle Ricerche, Via Piero Gobetti 101, 40129 Bologna, Italy
| | - Chryssostomos Chatgilialoglu
- Istituto per la Sintesi Organica e la Fotoreattività, Consiglio Nazionale delle Ricerche, Via Piero Gobetti 101, 40129 Bologna, Italy
- Center for Advanced Technologies, Adam Mickiewicz University, 61-614 Poznan, Poland
| |
Collapse
|
20
|
Niu Y, Zhu Q, Zong C. Single-cell Damagenome Profiling by Linear Copying and Splitting based Whole Genome Amplification (LCS-WGA). Bio Protoc 2022; 12:e4357. [PMID: 35434195 PMCID: PMC8983167 DOI: 10.21769/bioprotoc.4357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 10/19/2021] [Accepted: 02/01/2022] [Indexed: 02/08/2024] Open
Abstract
Spontaneous DNA damage frequently occurs on the human genome, and it could alter gene expression by inducing mutagenesis or epigenetic changes. Therefore, it is highly desired to profile DNA damage distribution on the human genome and identify the genes that are prone to DNA damage. Here, we present a novel single-cell whole-genome amplification method which employs linear-copying followed by a split-amplification scheme, to efficiently remove amplification errors and achieve accurate detection of DNA damage in individual cells. In comparison to previous methods that measure DNA damage, our method uses a next-generation sequencing platform to detect misincorporated bases derived from spontaneous DNA damage with single-cell resolution.
Collapse
Affiliation(s)
- Yichi Niu
- Department of Molecular and Human Genetics, Baylor College of Medicine, TX, USA
- Genetics & Genomics Program, Baylor College of Medicine, TX, USA
| | - Qiangyuan Zhu
- Department of Molecular and Human Genetics, Baylor College of Medicine, TX, USA
| | - Chenghang Zong
- Department of Molecular and Human Genetics, Baylor College of Medicine, TX, USA
- Genetics & Genomics Program, Baylor College of Medicine, TX, USA
- Cancer and Cell Biology Program, Baylor College of Medicine, TX, USA
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, TX, USA
- McNair Medical Institute, Baylor College of Medicine, TX, USA
| |
Collapse
|
21
|
Goshtasbi H, Pakchin PS, Movafeghi A, Barar J, Castejon AM, Omidian H, Omidi Y. Impacts of oxidants and antioxidants on the emergence and progression of Alzheimer's disease. Neurochem Int 2021; 153:105268. [PMID: 34954260 DOI: 10.1016/j.neuint.2021.105268] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 11/29/2021] [Accepted: 12/21/2021] [Indexed: 01/06/2023]
Abstract
The brain shows a high sensitivity to oxidative stress (OS). Thus, the maintenance of homeostasis of the brain regarding the reduction-oxidation (redox) situation is crucial for the regular function of the central nervous systems (CNS). The imbalance between the reactive oxygen species (ROS) and the cellular mechanism might lead to the emergence of OS, causing profound cell death as well as tissue damages and initiating neurodegenerative disorders (NDDs). Characterized by the cytoplasmic growth of neurofibrillary tangles and extracellular β-amyloid plaques, Alzheimer's disease (AD) is a complex NDD that causes dementia in adult life with severe manifestations. Nuclear factor erythroid 2-related factor 2 (NRF2) is a key transcription factor that regulates the functional expression of OS-related genes and the functionality of endogenous antioxidants. In the case of oxidative damage, NRF2 is transferred to the nucleus and attached to the antioxidant response element (ARE) that enhances the sequence to initiate transcription of the cell-protecting genes. This review articulates various mechanisms engaged with the generation of active and reactive species of endogenous and exogenous oxidants and focuses on the antioxidants as a body defense system regarding the NRF2-ARE signaling path in the CNS.
Collapse
Affiliation(s)
- Hamieh Goshtasbi
- Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran; Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Parvin Samadi Pakchin
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Movafeghi
- Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Jaleh Barar
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran; Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ana M Castejon
- College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL, 33328, United States
| | - Hossein Omidian
- College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL, 33328, United States
| | - Yadollah Omidi
- College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL, 33328, United States.
| |
Collapse
|
22
|
Zhu Q, Niu Y, Gundry M, Zong C. Single-cell damagenome profiling unveils vulnerable genes and functional pathways in human genome toward DNA damage. SCIENCE ADVANCES 2021; 7:eabf3329. [PMID: 34215579 PMCID: PMC11060043 DOI: 10.1126/sciadv.abf3329] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 05/19/2021] [Indexed: 06/13/2023]
Abstract
We report a novel single-cell whole-genome amplification method (LCS-WGA) that can efficiently capture spontaneous DNA damage existing in single cells. We refer to these damage-associated single-nucleotide variants as "damSNVs," and the whole-genome distribution of damSNVs as the damagenome. We observed that in single human neurons, the damagenome distribution was significantly correlated with three-dimensional genome structures. This nonuniform distribution indicates different degrees of DNA damage effects on different genes. Next, we identified the functionals that were significantly enriched in the high-damage genes. Similar functionals were also enriched in the differentially expressed genes (DEGs) detected by single-cell transcriptome of both Alzheimer's disease (AD) and autism spectrum disorder (ASD). This result can be explained by the significant enrichment of high-damage genes in the DEGs of neurons for both AD and ASD. The discovery of high-damage genes sheds new lights on the important roles of DNA damage in human diseases and disorders.
Collapse
Affiliation(s)
- Qiangyuan Zhu
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Yichi Niu
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Michael Gundry
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Chenghang Zong
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA.
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
- McNair Medical Institute, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| |
Collapse
|
23
|
Kant M, Jaruga P, Coskun E, Ward S, Stark AD, Baumann T, Becker D, Adhikary A, Sevilla MD, Dizdaroglu M. Ne-22 Ion-Beam Radiation Damage to DNA: From Initial Free Radical Formation to Resulting DNA-Base Damage. ACS OMEGA 2021; 6:16600-16611. [PMID: 34235332 PMCID: PMC8246699 DOI: 10.1021/acsomega.1c01954] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 05/31/2021] [Indexed: 06/13/2023]
Abstract
We report on the physicochemical processes and the products of DNA damage involved in Ne-22 ion-beam radiation of hydrated (12 ± 3 H2O/nucleotide) salmon testes DNA at 77 K. Free radicals trapped at 77 K were identified using electron spin resonance (ESR) spectroscopy. The measurement of DNA damage using two different techniques of mass spectrometry revealed the formation of numerous DNA products. Results obtained by ESR spectroscopy showed that as the linear energy transfer (LET) of the ion-beam radiation increases along the beam track, the production of DNA radicals correspondingly increases until just before the Bragg peak is reached. Yields of DNA products along the ion-beam track were in excellent agreement with the radical production. This work is the first to use the combination of ESR spectroscopy and mass spectrometric techniques enabling a better understanding of mechanisms of radiation damage to DNA by heavy ion beams detailing the formation of DNA free radicals and their subsequent products.
Collapse
Affiliation(s)
- Melis Kant
- Biomolecular
Measurement Division, National Institute
of Standards and Technology, 100 Bureau Drive, Gaithersburg, Maryland 20899, United States
| | - Pawel Jaruga
- Biomolecular
Measurement Division, National Institute
of Standards and Technology, 100 Bureau Drive, Gaithersburg, Maryland 20899, United States
| | - Erdem Coskun
- Biomolecular
Measurement Division, National Institute
of Standards and Technology, 100 Bureau Drive, Gaithersburg, Maryland 20899, United States
- Institute
for Bioscience & Biotechnology Research, University of Maryland, 9600 Gudelsky Way, Rockville, Maryland 20850, United
States
| | - Samuel Ward
- Department
of Chemistry, Oakland University, 146 Library Drive, Rochester, Michigan 48309, United States
| | - Alexander D. Stark
- Department
of Chemistry, Oakland University, 146 Library Drive, Rochester, Michigan 48309, United States
| | - Thomas Baumann
- National
Superconducting Cyclotron Laboratory, Michigan
State University, 640
South Shaw Lane, East Lansing, Michigan 48824, United
States
| | - David Becker
- Department
of Chemistry, Oakland University, 146 Library Drive, Rochester, Michigan 48309, United States
| | - Amitava Adhikary
- Department
of Chemistry, Oakland University, 146 Library Drive, Rochester, Michigan 48309, United States
| | - Michael D. Sevilla
- Department
of Chemistry, Oakland University, 146 Library Drive, Rochester, Michigan 48309, United States
| | - Miral Dizdaroglu
- Biomolecular
Measurement Division, National Institute
of Standards and Technology, 100 Bureau Drive, Gaithersburg, Maryland 20899, United States
| |
Collapse
|
24
|
DNA glycosylase deficiency leads to decreased severity of lupus in the Polb-Y265C mouse model. DNA Repair (Amst) 2021; 105:103152. [PMID: 34186496 DOI: 10.1016/j.dnarep.2021.103152] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 05/22/2021] [Accepted: 06/02/2021] [Indexed: 10/21/2022]
Abstract
The Polb gene encodes DNA polymerase beta (Pol β), a DNA polymerase that functions in base excision repair (BER) and microhomology-mediated end-joining. The Pol β-Y265C protein exhibits low catalytic activity and fidelity, and is also deficient in microhomology-mediated end-joining. We have previously shown that the PolbY265C/+ and PolbY265C/C mice develop lupus. These mice exhibit high levels of antinuclear antibodies and severe glomerulonephritis. We also demonstrated that the low catalytic activity of the Pol β-Y265C protein resulted in accumulation of BER intermediates that lead to cell death. Debris released from dying cells in our mice could drive development of lupus. We hypothesized that deletion of the Neil1 and Ogg1 DNA glycosylases that act upstream of Pol β during BER would result in accumulation of fewer BER intermediates, resulting in less severe lupus. We found that high levels of antinuclear antibodies are present in the sera of PolbY265C/+ mice deleted of Ogg1 and Neil1 DNA glycosylases. However, these mice develop significantly less severe renal disease, most likely due to high levels of IgM in their sera.
Collapse
|
25
|
Zhao Y, Liu Y, Chen Y, Wu X, Xiao Q, Li C, Li M, Hu W, Gu H, Lu S. Exposure to parabens and associations with oxidative stress in adults from South China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 774:144917. [PMID: 33609835 DOI: 10.1016/j.scitotenv.2020.144917] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 12/13/2020] [Accepted: 12/27/2020] [Indexed: 06/12/2023]
Abstract
Parabens are widely applied as preservatives in cosmetics, drugs and food. Previous studies suggested that parabens could exhibit potential risks to human health. However, data on human exposure levels and health effects of parabens remain limited, especially in the potential effects on DNA oxidative stress. This study aimed to investigate urinary levels of parabens in adults from South China and explore the relationships between urinary parabens and DNA oxidative stress. Five short chain parabens, including methyl paraben (MeP), ethyl paraben (EtP), n-propyl paraben (PrP), butyl paraben (BuP) and benzyl paraben (BzP), were determined in urine from 319 adults in Shenzhen, China. MeP, EtP and PrP were frequently detected in urine samples (detection frequencies >66.5%), suggesting broad exposure in South China adults. Median concentrations of MeP, EtP, PrP, BuP and BzP were 5.78, 0.39, 0.35, 0.01 and 0.02 μg/L, respectively. A significantly positive correlation was observed between the urinary concentrations of MeP and PrP (p < 0.01), suggesting similar sources for these two chemicals. In addition, participants with alcohol consumption exhibited significantly lower paraben concentrations in urine than those without alcohol drinking (p < 0.05). Significant association was observed between urinary concentrations of parabens and 8-hydroxy-2'-deoxyguanosine (8-OHdG) levels (p < 0.01), while no significant dose-response relationship was found (p > 0.05). A potential risk from PrP exposure was found in South China adults.
Collapse
Affiliation(s)
- Yang Zhao
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou 510006, PR China
| | - Yanlin Liu
- School of Traffic and Environment, Shenzhen Institute of Information Technology, Shenzhen 518172, PR China
| | - Yining Chen
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou 510006, PR China
| | - Xiaoling Wu
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou 510006, PR China
| | - Qinru Xiao
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou 510006, PR China
| | - Chun Li
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou 510006, PR China
| | - Minhui Li
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou 510006, PR China
| | - Wanting Hu
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou 510006, PR China
| | - Huiqiao Gu
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou 510006, PR China
| | - Shaoyou Lu
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou 510006, PR China.
| |
Collapse
|
26
|
Balogun TA, Buliaminu KD, Chukwudozie OS, Tiamiyu ZA, Idowu TJ. Anticancer Potential of Moringa oleifera on BRCA-1 Gene: Systems Biology. Bioinform Biol Insights 2021; 15:11779322211010703. [PMID: 35173424 PMCID: PMC8842389 DOI: 10.1177/11779322211010703] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Accepted: 03/29/2021] [Indexed: 11/17/2022] Open
Abstract
Breast cancer has consistently been a global challenge that is prevalent among women. There is a continuous increase in the high number of women mortality rates because of breast cancer and affecting nations at all modernization levels. Women with high-risk factors, including hereditary, obesity, and menopause, have the possibility of developing breast cancer growth. With the advent of radiotherapy, chemotherapy, hormone therapy, and surgery in breast cancer treatment, breast cancer survivors have increased. Also, the design and development of drugs targeting therapeutic enzymes effectively treat the tumour cells early. However, long-term use of anticancer drugs has been linked to severe side effects. This research aims to develop potential drug candidates from Moringa oleifera, which could serve as anticancer agents. In silico analysis using Schrödinger Molecular Drug Discovery Suite and SWISS ADME was employed to determine the therapeutic potential of phytochemicals from M oleifera against breast cancer via molecular docking, pharmacokinetic parameters, and drug-like properties. The result shows that rutin, vicenin-2, and quercetin-3-O-glucoside have the highest binding energy of −7.522, −6.808, and −6.635 kcal/mol, respectively, in the active site of BRCA-1. The essential amino acids involved in the protein-ligand interaction following active site analysis are ASN 1678, ASN 1774, GLY 1656, LEU 1657, GLN 1779, LYS 1702, SER 1655, PHE 1662, ARG 1699, GLU 1698, and VAL 1654. Thus, we propose that bioactive compounds from M oleifera may be potential novel drug candidates in the treatment of breast cancer.
Collapse
Affiliation(s)
- Toheeb A Balogun
- Department of Biochemistry, Adekunle Ajasin University, Akungba, Nigeria
| | | | | | - Zainab A Tiamiyu
- Department of Biochemistry and Molecular Biology, Federal University Dutsin-ma, Dutsin-Ma, Nigeria
| | - Taiwo J Idowu
- Department of Plant Science, Olabisi Onabanjo University, Ago-Iwoye, Nigeria
| |
Collapse
|
27
|
Aybastıer Ö, Demir C. Optimization and validation of ultrasensitive GC-MS/MS method to measure oxidatively induced DNA damage products and role of antioxidants in oxidation mechanism. J Pharm Biomed Anal 2021; 200:114068. [PMID: 33865050 DOI: 10.1016/j.jpba.2021.114068] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 03/30/2021] [Accepted: 04/08/2021] [Indexed: 01/03/2023]
Abstract
Oxidation of DNA due to exposure to reactive oxygen species (ROS) is a major source of DNA damage. ROS induced damage to DNA plays an important role in some diseases such as various cancers, aging and neurodegenerative diseases. The detection of DNA oxidation products plays a major role in assessing the mutagenicity potential of specific exposure. The GC-MS/MS method was developed for the ultrasensitive determination of individual DNA damage products. The validation results revealed that the proposed method was reliable and sensitive. Multiple response surface methodology (MRSM) was used to optimize derivatization conditions of oxidatively DNA base damage products before GC-MS/MS analysis. The optimum derivatization conditions were determined as 40 min for derivatization time, 120 °C for derivatization temperature and 1.4 for BSTFA/pyridine ratio under nitrogen atmosphere. The effects of thymol, carvacrol and thymoquinone as antioxidants were investigated on oxidative DNA damage. The determination of the oxidatively induced DNA damage products was performed after adding DNA and antioxidants with different concentrations under oxidative stress. Eighteen DNA base damage products were analyzed simultaneously using GC-MS/MS. This study showed a significant decrease in the amount of DNA base damage products when the antioxidants were present in the medium.
Collapse
Affiliation(s)
- Önder Aybastıer
- Bursa Uludag University, Faculty of Science and Arts, Department of Chemistry, 16059, Bursa, Turkey
| | - Cevdet Demir
- Bursa Uludag University, Faculty of Science and Arts, Department of Chemistry, 16059, Bursa, Turkey.
| |
Collapse
|
28
|
Chao MR, Evans MD, Hu CW, Ji Y, Møller P, Rossner P, Cooke MS. Biomarkers of nucleic acid oxidation - A summary state-of-the-art. Redox Biol 2021; 42:101872. [PMID: 33579665 PMCID: PMC8113048 DOI: 10.1016/j.redox.2021.101872] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/12/2021] [Accepted: 01/15/2021] [Indexed: 12/12/2022] Open
Abstract
Oxidatively generated damage to DNA has been implicated in the pathogenesis of a wide variety of diseases. Increasingly, interest is also focusing upon the effects of damage to the other nucleic acids, RNA and the (2′-deoxy-)ribonucleotide pools, and evidence is growing that these too may have an important role in disease. LC-MS/MS has the ability to provide absolute quantification of specific biomarkers, such as 8-oxo-7,8-dihydro-2′-deoxyGuo (8-oxodG), in both nuclear and mitochondrial DNA, and 8-oxoGuo in RNA. However, significant quantities of tissue are needed, limiting its use in human biomonitoring studies. In contrast, the comet assay requires much less material, and as little as 5 μL of blood may be used, offering a minimally invasive means of assessing oxidative stress in vivo, but this is restricted to nuclear DNA damage only. Urine is an ideal matrix in which to non-invasively study nucleic acid-derived biomarkers of oxidative stress, and considerable progress has been made towards robustly validating these measurements, not least through the efforts of the European Standards Committee on Urinary (DNA) Lesion Analysis. For urine, LC-MS/MS is considered the gold standard approach, and although there have been improvements to the ELISA methodology, this is largely limited to 8-oxodG. Emerging DNA adductomics approaches, which either comprehensively assess the totality of adducts in DNA, or map DNA damage across the nuclear and mitochondrial genomes, offer the potential to considerably advance our understanding of the mechanistic role of oxidatively damaged nucleic acids in disease. Oxidatively damaged nucleic acids are implicated in the pathogenesis of disease. LC-MS/MS, comet assay and ELISA are often used to study oxidatively damaged DNA. Urinary oxidatively damaged nucleic acids non-invasively reflect oxidative stress. DNA adductomics will aid understanding the role of ROS damaged DNA in disease.
Collapse
Affiliation(s)
- Mu-Rong Chao
- Department of Occupational Safety and Health, Chung Shan Medical University, Taichung, 402, Taiwan; Department of Occupational Medicine, Chung Shan Medical University Hospital, Taichung, 402, Taiwan
| | - Mark D Evans
- Leicester School of Allied Health Sciences, Faculty of Health & Life Sciences, De Montfort University, The Gateway, Leicester, LE1 9BH, United Kingdom
| | - Chiung-Wen Hu
- Department of Public Health, Chung Shan Medical University, Taichung, 402, Taiwan
| | - Yunhee Ji
- Department of Environmental Health Sciences, Florida International University, Miami, FL, 33199, USA
| | - Peter Møller
- Section of Environmental Health, Department of Public Health, University of Copenhagen, Øster Farimagsgade 5A, DK, 1014, Copenhagen K, Denmark
| | - Pavel Rossner
- Department of Nanotoxicology and Molecular Epidemiology, Institute of Experimental Medicine of the CAS, 142 20, Prague, Czech Republic
| | - Marcus S Cooke
- Oxidative Stress Group, Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, Tampa, FL, 33620, USA.
| |
Collapse
|
29
|
Chatgilialoglu C, Ferreri C, Krokidis MG, Masi A, Terzidis MA. On the relevance of hydroxyl radical to purine DNA damage. Free Radic Res 2021; 55:384-404. [PMID: 33494618 DOI: 10.1080/10715762.2021.1876855] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Hydroxyl radical (HO•) is the most reactive toward DNA among the reactive oxygen species (ROS) generated in aerobic organisms by cellular metabolisms. HO• is generated also by exogenous sources such as ionizing radiations. In this review we focus on the purine DNA damage by HO• radicals. In particular, emphasis is given on mechanistic aspects for the various lesion formation and their interconnections. Although the majority of the purine DNA lesions like 8-oxo-purine (8-oxo-Pu) are generated by various ROS (including HO•), the formation of 5',8-cyclopurine (cPu) lesions in vitro and in vivo relies exclusively on the HO• attack. Methodologies generally utilized for the purine lesions quantification in biological samples are reported and critically discussed. Recent results on cPu and 8-oxo-Pu lesions quantification in various types of biological specimens associated with the cellular repair efficiency as well as with distinct pathologies are presented, providing some insights on their biological significance.
Collapse
Affiliation(s)
- Chryssostomos Chatgilialoglu
- ISOF, Consiglio Nazionale delle Ricerche, Bologna, Italy.,Center for Advanced Technologies, Adam Mickiewicz University, Poznan, Poland
| | - Carla Ferreri
- ISOF, Consiglio Nazionale delle Ricerche, Bologna, Italy
| | - Marios G Krokidis
- Institute of Nanoscience and Nanotechnology, NCSR "Demokritos", Athens, Greece
| | - Annalisa Masi
- ISOF, Consiglio Nazionale delle Ricerche, Bologna, Italy.,Istituto di Cristallografia, Consiglio Nazionale delle Ricerche, Monterotondo, Italy
| | - Michael A Terzidis
- Department of Nutritional Sciences and Dietetics, International Hellenic University, Thessaloniki, Greece
| |
Collapse
|
30
|
Atha DH, Coskun E, Erdem O, Tona A, Reipa V, Nelson BC. Genotoxic Effects of Etoposide, Bleomycin, and Ethyl Methanesulfonate on Cultured CHO Cells: Analysis by GC-MS/MS and Comet Assay. J Nucleic Acids 2020; 2020:8810105. [PMID: 32802493 PMCID: PMC7414336 DOI: 10.1155/2020/8810105] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 06/13/2020] [Accepted: 07/07/2020] [Indexed: 01/13/2023] Open
Abstract
To evaluate methods for analysis of genotoxic effects on mammalian cell lines, we tested the effect of three common genotoxic agents on Chinese hamster ovary (CHO) cells by single-cell gel electrophoresis (comet assay) and gas chromatography-tandem mass spectrometry (GC-MS/MS). Suspension-grown CHO cells were separately incubated with etoposide, bleomycin, and ethyl methanesulfonate and analyzed by an alkaline comet assay and GC-MS/MS. Although DNA strand breaks were detected by the comet assay after treatment with all three agents, GC-MS/MS could only detect DNA nucleobase lesions oxidatively induced by bleomycin. This demonstrates that although GC-MS/MS has limitations in detection of genotoxic effects, it can be used for selected chemical genotoxins that contribute to oxidizing processes. The comet assay, used in combination with GC-MS/MS, can be a more useful approach to screen a wide range of chemical genotoxins as well as to monitor other DNA-damaging factors.
Collapse
Affiliation(s)
- Donald H. Atha
- National Institute of Standards and Technology, Biosystems and Biomaterials Division, Materials Measurement Laboratory, Gaithersburg, MD 20899, USA
| | - Erdem Coskun
- National Institute of Standards and Technology, Biomolecular Measurement Division, Materials Measurement Laboratory, Gaithersburg, MD 20899, USA
- University of Maryland, Institute for Bioscience and Biotechnology Research, Rockville, MD 20850, USA
| | - Onur Erdem
- National Institute of Standards and Technology, Biomolecular Measurement Division, Materials Measurement Laboratory, Gaithersburg, MD 20899, USA
- University of Health Sciences Turkey, Department of Pharmaceutical Toxicology, Gulhane Faculty of Pharmacy, 06010 Ankara, Turkey
| | - Alessandro Tona
- National Institute of Standards and Technology, Biosystems and Biomaterials Division, Materials Measurement Laboratory, Gaithersburg, MD 20899, USA
| | - Vytas Reipa
- National Institute of Standards and Technology, Biosystems and Biomaterials Division, Materials Measurement Laboratory, Gaithersburg, MD 20899, USA
| | - Bryant C. Nelson
- National Institute of Standards and Technology, Biosystems and Biomaterials Division, Materials Measurement Laboratory, Gaithersburg, MD 20899, USA
| |
Collapse
|
31
|
Arslan J, Jamshed H, Qureshi H. Early Detection and Prevention of Alzheimer's Disease: Role of Oxidative Markers and Natural Antioxidants. Front Aging Neurosci 2020; 12:231. [PMID: 32848710 PMCID: PMC7397955 DOI: 10.3389/fnagi.2020.00231] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 07/01/2020] [Indexed: 12/18/2022] Open
Abstract
Oxidative stress (OS) contributes to Alzheimer’s disease (AD) pathology. OS can be a result of increased reactive oxygen/nitrogen species, reduced antioxidants, oxidatively damaged molecules, and/or a combination of these factors. Scientific literature is scarce for the markers of OS-specific for detecting AD at an early stage. The first aim of the current review is to provide an overview of the potential OS markers in the brain, cerebrospinal fluid (CSF), blood and/or urine that can be used for early diagnosis of human AD. The reason for exploring OS markers is that the proposed antioxidant therapies against AD appear to start too late to be effective. The second aim is to evaluate the evidence for natural antioxidants currently proposed to prevent or treat AD symptoms. To address these two aims, we critically evaluated the studies on humans in which various OS markers for detecting AD at an early stage were presented. Non-invasive OS markers that can detect mild cognitive impairment (MCI) and AD at an early stage in humans with greater specificity and sensitivity are primarily related to lipid peroxidation. However, a combination of OS markers, family history, and other biochemical tests are needed to detect the disease early on. We also report that the long-term use of vitamins (vitamin E as in almonds) and polyphenol-rich foods (curcumin/curcuminoids of turmeric, ginkgo biloba, epigallocatechin-3-gallate in green tea) seem justified for ameliorating AD symptoms. Future research on humans is warranted to justify the use of natural antioxidants.
Collapse
Affiliation(s)
- Jamshed Arslan
- Department of Basic Medical Sciences, Faculty of Pharmacy, Barrett Hodgson University, Karachi, Pakistan
| | - Humaira Jamshed
- Department of Integrated Sciences and Mathematics, Dhanani School of Science and Engineering, Habib University, Karachi, Pakistan
| | - Humaira Qureshi
- Department of Integrated Sciences and Mathematics, Dhanani School of Science and Engineering, Habib University, Karachi, Pakistan
| |
Collapse
|
32
|
Chatgilialoglu C, Eriksson LA, Krokidis MG, Masi A, Wang S, Zhang R. Oxygen Dependent Purine Lesions in Double-Stranded Oligodeoxynucleotides: Kinetic and Computational Studies Highlight the Mechanism for 5',8-Cyclopurine Formation. J Am Chem Soc 2020; 142:5825-5833. [PMID: 32129616 DOI: 10.1021/jacs.0c00945] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The reaction of HO• radical with DNA is intensively studied both mechanistically and analytically for lesions formation. Several aspects related to the reaction paths of purine moieties with the formation of 5',8-cyclopurines (cPu), 8-oxopurines (8-oxo-Pu), and their relationship are not well understood. In this study, we investigated the reaction of HO• radical with a 21-mer double-stranded oligodeoxynucleotide (ds-ODNs) in γ-irradiated aqueous solutions under various oxygen concentrations and accurately quantified the six purine lesions (i.e., four cPu and two 8-oxo-Pu) by LC-MS/MS analysis using isotopomeric internal standards. In the absence of oxygen, 8-oxo-Pu lesions are only ∼4 times more than cPu lesions. By increasing oxygen concentration, the 8-oxo-Pu and the cPu gradually increase and decrease, respectively, reaching a gap of ∼130 times at 2.01 × 10-4 M of O2. Kinetic treatment of the data allows to estimate the C5' radical competition between cyclization and oxygen trapping in ds-ODNs, and lastly the rate constants of the four cyclization steps. Tailored computational studies by means of dispersion-corrected DFT calculations were performed on the CGC and TAT in their double-strand models for each cPu diastereoisomer along with the complete reaction pathways of the cyclization steps. Our findings reveal unheralded reaction mechanisms that resolve the long-standing issues with C5' radical cyclization in purine moieties of DNA sequences.
Collapse
Affiliation(s)
- Chryssostomos Chatgilialoglu
- Istituto per la Sintesi Organica e la Fotoreattività, Consiglio Nazionale delle Ricerche, 40129 Bologna, Italy.,Center for Advanced Technologies, Adam Mickiewicz University, 61-614 Poznań, Poland
| | - Leif A Eriksson
- Department of Chemistry and Molecular Biology, University of Gothenburg, 40530 Göteborg, Sweden
| | - Marios G Krokidis
- Institute of Nanoscience and Nanotechnology, N.C.S.R. "Demokritos", Agia Paraskevi Attikis 15310, Athens, Greece
| | - Annalisa Masi
- Istituto per la Sintesi Organica e la Fotoreattività, Consiglio Nazionale delle Ricerche, 40129 Bologna, Italy
| | - Shudong Wang
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Rubo Zhang
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| |
Collapse
|
33
|
Yun BH, Guo J, Bellamri M, Turesky RJ. DNA adducts: Formation, biological effects, and new biospecimens for mass spectrometric measurements in humans. MASS SPECTROMETRY REVIEWS 2020; 39:55-82. [PMID: 29889312 PMCID: PMC6289887 DOI: 10.1002/mas.21570] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 04/25/2018] [Indexed: 05/18/2023]
Abstract
Hazardous chemicals in the environment and diet or their electrophilic metabolites can form adducts with genomic DNA, which can lead to mutations and the initiation of cancer. In addition, reactive intermediates can be generated in the body through oxidative stress and damage the genome. The identification and measurement of DNA adducts are required for understanding exposure and the causal role of a genotoxic chemical in cancer risk. Over the past three decades, 32 P-postlabeling, immunoassays, gas chromatography/mass spectrometry, and liquid chromatography/mass spectrometry (LC/MS) methods have been established to assess exposures to chemicals through measurements of DNA adducts. It is now possible to measure some DNA adducts in human biopsy samples, by LC/MS, with as little as several milligrams of tissue. In this review article, we highlight the formation and biological effects of DNA adducts, and highlight our advances in human biomonitoring by mass spectrometric analysis of formalin-fixed paraffin-embedded tissues, untapped biospecimens for carcinogen DNA adduct biomarker research.
Collapse
Affiliation(s)
- Byeong Hwa Yun
- Masonic Cancer Center and Department of Medicinal Chemistry, University of Minnesota, 2231 6 St. SE, Minneapolis, Minnesota, 55455, United States
| | - Jingshu Guo
- Masonic Cancer Center and Department of Medicinal Chemistry, University of Minnesota, 2231 6 St. SE, Minneapolis, Minnesota, 55455, United States
| | - Medjda Bellamri
- Masonic Cancer Center and Department of Medicinal Chemistry, University of Minnesota, 2231 6 St. SE, Minneapolis, Minnesota, 55455, United States
| | - Robert J. Turesky
- Masonic Cancer Center and Department of Medicinal Chemistry, University of Minnesota, 2231 6 St. SE, Minneapolis, Minnesota, 55455, United States
| |
Collapse
|
34
|
Abstract
Alzheimer disease (AD) is a major cause of age-related dementia. We do not fully understand AD aetiology and pathogenesis, but oxidative damage is a key component. The brain mostly uses glucose for energy, but in AD and amnestic mild cognitive impairment glucose metabolism is dramatically decreased, probably owing, at least in part, to oxidative damage to enzymes involved in glycolysis, the tricarboxylic acid cycle and ATP biosynthesis. Consequently, ATP-requiring processes for cognitive function are impaired, and synaptic dysfunction and neuronal death result, with ensuing thinning of key brain areas. We summarize current research on the interplay and sequence of these processes and suggest potential pharmacological interventions to retard AD progression.
Collapse
|
35
|
Chatgilialoglu C, Krokidis MG, Masi A, Barata-Vallejo S, Ferreri C, Terzidis MA, Szreder T, Bobrowski K. New Insights into the Reaction Paths of Hydroxyl Radicals with Purine Moieties in DNA and Double-Stranded Oligodeoxynucleotides. Molecules 2019; 24:molecules24213860. [PMID: 31717733 PMCID: PMC6865195 DOI: 10.3390/molecules24213860] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 10/22/2019] [Accepted: 10/23/2019] [Indexed: 11/21/2022] Open
Abstract
The reaction of hydroxyl radical (HO•) with DNA produces many primary reactive species and many lesions as final products. In this study, we have examined the optical spectra of intermediate species derived from the reaction of HO• with a variety of single- and double-stranded oligodeoxynucleotides and ct-DNA in the range of 1 μs to 1 ms by pulse radiolysis using an Intensified Charged Coupled Device (ICCD) camera. Moreover, we applied our published analytical protocol based on an LC-MS/MS system with isotopomeric internal standards to enable accurate and precise measurements of purine lesion formation. In particular, the simultaneous measurement of the four purine 5′,8-cyclo-2′-deoxynucleosides (cPu) and two 8-oxo-7,8-dihydro-2′-deoxypurine (8-oxo-Pu) was obtained upon reaction of genetic material with HO• radicals generated either by γ-radiolysis or Fenton-type reactions. Our results contributed to the debate in the literature regarding absolute level of lesions, method of HO• radical generation, 5′R/5′S diastereomeric ratio in cPu, and relative abundance between cPu and 8-oxo-Pu.
Collapse
Affiliation(s)
- Chryssostomos Chatgilialoglu
- Istituto per la Sintesi Organica e la Fotoreattività, Consiglio Nazionale delle Ricerche, 40129 Bologna, Italy; (M.G.K.); (A.M.); (C.F.); (M.A.T.)
- Center for Advanced Technologies, Adam Mickiewicz University, 61-614 Poznań, Poland
- Correspondence: (C.C.); (K.B.); Tel.: +39-051-6398309 (C.C.)
| | - Marios G. Krokidis
- Istituto per la Sintesi Organica e la Fotoreattività, Consiglio Nazionale delle Ricerche, 40129 Bologna, Italy; (M.G.K.); (A.M.); (C.F.); (M.A.T.)
- Institute of Nanoscience and Nanotechnology, N.C.S.R. “Demokritos”, 15310 Agia Paraskevi Attikis, Greece
| | - Annalisa Masi
- Istituto per la Sintesi Organica e la Fotoreattività, Consiglio Nazionale delle Ricerche, 40129 Bologna, Italy; (M.G.K.); (A.M.); (C.F.); (M.A.T.)
| | - Sebastian Barata-Vallejo
- Istituto per la Sintesi Organica e la Fotoreattività, Consiglio Nazionale delle Ricerche, 40129 Bologna, Italy; (M.G.K.); (A.M.); (C.F.); (M.A.T.)
- Departamento de Quimíca Organíca, Facultad de Farmacia y Bioquimíca, Universidad de Buenos Aires, Junin 954, Buenos Aires CP 1113, Argentina
| | - Carla Ferreri
- Istituto per la Sintesi Organica e la Fotoreattività, Consiglio Nazionale delle Ricerche, 40129 Bologna, Italy; (M.G.K.); (A.M.); (C.F.); (M.A.T.)
| | - Michael A. Terzidis
- Istituto per la Sintesi Organica e la Fotoreattività, Consiglio Nazionale delle Ricerche, 40129 Bologna, Italy; (M.G.K.); (A.M.); (C.F.); (M.A.T.)
- Centre of Radiation Research and Technology, Institute of Nuclear Chemistry and Technology, Dorodna 16, 03-195 Warsaw, Poland;
| | - Tomasz Szreder
- Centre of Radiation Research and Technology, Institute of Nuclear Chemistry and Technology, Dorodna 16, 03-195 Warsaw, Poland;
| | - Krzysztof Bobrowski
- Centre of Radiation Research and Technology, Institute of Nuclear Chemistry and Technology, Dorodna 16, 03-195 Warsaw, Poland;
- Correspondence: (C.C.); (K.B.); Tel.: +39-051-6398309 (C.C.)
| |
Collapse
|
36
|
Ma J, Denisov SA, Adhikary A, Mostafavi M. Ultrafast Processes Occurring in Radiolysis of Highly Concentrated Solutions of Nucleosides/Tides. Int J Mol Sci 2019; 20:ijms20194963. [PMID: 31597345 PMCID: PMC6801490 DOI: 10.3390/ijms20194963] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 09/30/2019] [Accepted: 10/01/2019] [Indexed: 12/18/2022] Open
Abstract
Among the radicals (hydroxyl radical (•OH), hydrogen atom (H•), and solvated electron (esol−)) that are generated via water radiolysis, •OH has been shown to be the main transient species responsible for radiation damage to DNA via the indirect effect. Reactions of these radicals with DNA-model systems (bases, nucleosides, nucleotides, polynucleotides of defined sequences, single stranded (ss) and double stranded (ds) highly polymeric DNA, nucleohistones) were extensively investigated. The timescale of the reactions of these radicals with DNA-models range from nanoseconds (ns) to microseconds (µs) at ambient temperature and are controlled by diffusion or activation. However, those studies carried out in dilute solutions that model radiation damage to DNA via indirect action do not turn out to be valid in dense biological medium, where solute and water molecules are in close contact (e.g., in cellular environment). In that case, the initial species formed from water radiolysis are two radicals that are ultrashort-lived and charged: the water cation radical (H2O•+) and prethermalized electron. These species are captured by target biomolecules (e.g., DNA, proteins, etc.) in competition with their inherent pathways of proton transfer and relaxation occurring in less than 1 picosecond. In addition, the direct-type effects of radiation, i.e., ionization of macromolecule plus excitations proximate to ionizations, become important. The holes (i.e., unpaired spin or cation radical sites) created by ionization undergo fast spin transfer across DNA subunits. The exploration of the above-mentioned ultrafast processes is crucial to elucidate our understanding of the mechanisms that are involved in causing DNA damage via direct-type effects of radiation. Only recently, investigations of these ultrafast processes have been attempted by studying concentrated solutions of nucleosides/tides under ambient conditions. Recent advancements of laser-driven picosecond electron accelerators have provided an opportunity to address some long-term puzzling questions in the context of direct-type and indirect effects of DNA damage. In this review, we have presented key findings that are important to elucidate mechanisms of complex processes including excess electron-mediated bond breakage and hole transfer, occurring at the single nucleoside/tide level.
Collapse
Affiliation(s)
- Jun Ma
- Department of Nuclear Science and Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China.
- Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215000, China.
| | - Sergey A Denisov
- Laboratoire de Chimie Physique, UMR 8000 CNRS/Université Paris-Sud, Bât. 349, 91405 Orsay, CEDEX, France.
| | - Amitava Adhikary
- Department of Chemistry, Oakland University, 146 Library Drive, Rochester, MI 48309, USA.
| | - Mehran Mostafavi
- Laboratoire de Chimie Physique, UMR 8000 CNRS/Université Paris-Sud, Bât. 349, 91405 Orsay, CEDEX, France.
| |
Collapse
|
37
|
Scanlan LD, Coskun SH, Jaruga P, Hanna SK, Sims CM, Almeida JL, Catoe D, Coskun E, Golan R, Dizdaroglu M, Nelson BC. Measurement of Oxidatively Induced DNA Damage in Caenorhabditis elegans with High-Salt DNA Extraction and Isotope-Dilution Mass Spectrometry. Anal Chem 2019; 91:12149-12155. [PMID: 31454479 PMCID: PMC6996937 DOI: 10.1021/acs.analchem.9b01503] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Caenorhabditis elegans is used extensively as a medical and toxicological model organism. However, little is known about background levels of oxidatively induced DNA damage in the nematode or how culturing methods affect DNA damage levels. The tough C. elegans cuticle makes it challenging to extract genomic DNA without harsh procedures that can artifactually increase DNA damage. Therefore, a mild extraction protocol based on enzymatic digestion of the C. elegans cuticle with high-salt phase-separation of DNA has been developed and optimized. This method allows for efficient extraction of >50 μg DNA using a minimum of 250000 nematodes grown in liquid culture. The extracted DNA exhibited acceptable RNA levels (<10% contamination), functionality in polymerase chain reaction assays, and reproducible DNA fragmentation. Gas chromatography/tandem mass spectrometry (GC-MS/MS) with isotope-dilution measured lower lesion levels in high-salt extracts than in phenol extracts. Phenolic extraction produced a statistically significant increase in 8-hydroxyguanine, a known artifact, and additional artifactual increases in 2,6-diamino-4-hydroxy-5-formamidopyrimidine, 4,6-diamino-5-formamidopyrimidine, and 8-hydroxyadenine. The high-salt DNA extraction procedure utilizes green solvents and reagents and minimizes artifactual DNA damage, making it more suitable for molecular and toxicological studies in C. elegans. This is, to our knowledge, the first use of GC-MS/MS to measure multiple 8,5'-cyclopurine-2'-deoxynucleosides in a toxicologically important terrestrial organism.
Collapse
Affiliation(s)
- Leona D. Scanlan
- Material Measurement Laboratory – Biomolecular Measurement Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Sanem Hosbas Coskun
- Material Measurement Laboratory – Biosystems and Biomaterials Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
- Gazi University, Faculty of Pharmacy, Ankara, 06330, Turkey
| | - Pawel Jaruga
- Material Measurement Laboratory – Biomolecular Measurement Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Shannon K. Hanna
- Material Measurement Laboratory – Biosystems and Biomaterials Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Christopher M. Sims
- Material Measurement Laboratory – Biosystems and Biomaterials Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Jamie L. Almeida
- Material Measurement Laboratory – Biosystems and Biomaterials Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - David Catoe
- Material Measurement Laboratory – Biosystems and Biomaterials Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Erdem Coskun
- Material Measurement Laboratory – Biomolecular Measurement Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Rachel Golan
- Material Measurement Laboratory – Biomolecular Measurement Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Miral Dizdaroglu
- Material Measurement Laboratory – Biomolecular Measurement Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Bryant C. Nelson
- Material Measurement Laboratory – Biosystems and Biomaterials Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| |
Collapse
|
38
|
|
39
|
Minko IG, Vartanian VL, Tozaki NN, Linde OK, Jaruga P, Coskun SH, Coskun E, Qu C, He H, Xu C, Chen T, Song Q, Jiao Y, Stone MP, Egli M, Dizdaroglu M, McCullough AK, Lloyd RS. Characterization of rare NEIL1 variants found in East Asian populations. DNA Repair (Amst) 2019; 79:32-39. [PMID: 31100703 PMCID: PMC6677271 DOI: 10.1016/j.dnarep.2019.05.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 04/30/2019] [Accepted: 05/01/2019] [Indexed: 10/26/2022]
Abstract
The combination of chronic dietary exposure to the fungal toxin, aflatoxin B1 (AFB1), and hepatitis B viral (HBV) infection is associated with an increased risk for early onset hepatocellular carcinomas (HCCs). An in-depth knowledge of the mechanisms driving carcinogenesis is critical for the identification of genetic risk factors affecting the susceptibility of individuals who are HBV infected and AFB1 exposed. AFB1-induced mutagenesis is characterized by G to T transversions. Hence, the DNA repair pathways that function on AFB1-induced DNA adducts or base damage from HBV-induced inflammation are anticipated to have a strong role in limiting carcinogenesis. These pathways define the mutagenic burden in the target tissues and ultimately limit cellular progression to cancer. Murine data have demonstrated that NEIL1 in the DNA base excision repair pathway was significantly more important than nucleotide excision repair relative to elevated risk for induction of HCCs. These data suggest that deficiencies in NEIL1 could contribute to the initiation of HCCs in humans. To investigate this hypothesis, publicly-available data on variant alleles of NEIL1 were analyzed and compared with genome sequencing data from HCC tissues derived from individuals residing in Qidong County (China). Three variant alleles were identified and the corresponding A51V, P68H, and G245R enzymes were characterized for glycosylase activity on genomic DNA containing a spectrum of oxidatively-induced base damage and an oligodeoxynucleotide containing a site-specific AFB1-formamidopyrimidine guanine adduct. Although the efficiency of the P68H variant was modestly decreased, the A51V and G245R variants showed nearly wild-type activities. Consistent with biochemical findings, molecular modeling of these variants demonstrated only slight local structural alterations. However, A51V was highly temperature sensitive suggesting that its biological activity would be greatly reduced. Overall, these studies have direct human health relevance pertaining to genetic risk factors and biochemical pathways previously not recognized as germane to induction of HCCs.
Collapse
Affiliation(s)
- Irina G Minko
- Oregon Institute of Occupational Health Sciences, Oregon Health & Science University, Portland, OR, 97239, United States
| | - Vladimir L Vartanian
- Oregon Institute of Occupational Health Sciences, Oregon Health & Science University, Portland, OR, 97239, United States
| | - Naoto N Tozaki
- Oregon Institute of Occupational Health Sciences, Oregon Health & Science University, Portland, OR, 97239, United States
| | - Oskar K Linde
- Oregon Institute of Occupational Health Sciences, Oregon Health & Science University, Portland, OR, 97239, United States
| | - Pawel Jaruga
- Biomolecular Measurement Division, National Institute of Standards and Technology, Gaithersburg, MD, 20899, United States
| | - Sanem Hosbas Coskun
- Biomolecular Measurement Division, National Institute of Standards and Technology, Gaithersburg, MD, 20899, United States
| | - Erdem Coskun
- Biomolecular Measurement Division, National Institute of Standards and Technology, Gaithersburg, MD, 20899, United States
| | - Chunfeng Qu
- State Key Lab of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China
| | - Huan He
- State Key Lab of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China
| | - Chungui Xu
- State Key Lab of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China
| | - Taoyang Chen
- Qidong Liver Cancer Institute & Qidong People's Hospital, Qidong, 226200, Jiangsu Province, China
| | - Qianqian Song
- State Key Lab of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China
| | - Yuchen Jiao
- State Key Lab of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China
| | - Michael P Stone
- Department of Chemistry, Vanderbilt University, Nashville, TN, 37235, United States
| | - Martin Egli
- Department of Biochemistry, Vanderbilt University, Nashville, TN, 37232, United States
| | - Miral Dizdaroglu
- Biomolecular Measurement Division, National Institute of Standards and Technology, Gaithersburg, MD, 20899, United States
| | - Amanda K McCullough
- Oregon Institute of Occupational Health Sciences, Oregon Health & Science University, Portland, OR, 97239, United States; Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, OR, 97239, United States
| | - R Stephen Lloyd
- Oregon Institute of Occupational Health Sciences, Oregon Health & Science University, Portland, OR, 97239, United States; Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, OR, 97239, United States; Department of Physiology and Pharmacology, Oregon Health & Science University, Portland, OR, 97239, United States.
| |
Collapse
|
40
|
5',8-Cyclopurine Lesions in DNA Damage: Chemical, Analytical, Biological, and Diagnostic Significance. Cells 2019; 8:cells8060513. [PMID: 31141888 PMCID: PMC6628319 DOI: 10.3390/cells8060513] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Revised: 05/18/2019] [Accepted: 05/22/2019] [Indexed: 12/14/2022] Open
Abstract
Purine 5′,8-cyclo-2′-deoxynucleosides (cPu) are tandem-type lesions observed among the DNA purine modifications and identified in mammalian cellular DNA in vivo. These lesions can be present in two diasteroisomeric forms, 5′R and 5′S, for each 2′-deoxyadenosine and 2′-deoxyguanosine moiety. They are generated exclusively by hydroxyl radical attack to 2′-deoxyribose units generating C5′ radicals, followed by cyclization with the C8 position of the purine base. This review describes the main recent achievements in the preparation of the cPu molecular library for analytical and DNA synthesis applications for the studies of the enzymatic recognition and repair mechanisms, their impact on transcription and genetic instability, quantitative determination of the levels of lesions in various types of cells and animal model systems, and relationships between the levels of lesions and human health, disease, and aging, as well as the defining of the detection limits and quantification protocols.
Collapse
|
41
|
Emerging Technologies in Mass Spectrometry-Based DNA Adductomics. High Throughput 2019; 8:ht8020013. [PMID: 31091740 PMCID: PMC6630665 DOI: 10.3390/ht8020013] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 04/19/2019] [Accepted: 05/09/2019] [Indexed: 12/11/2022] Open
Abstract
The measurement of DNA adducts, the covalent modifications of DNA upon the exposure to the environmental and dietary genotoxicants and endogenously produced electrophiles, provides molecular evidence for DNA damage. With the recent improvements in the sensitivity and scanning speed of mass spectrometry (MS) instrumentation, particularly high-resolution MS, it is now feasible to screen for the totality of DNA damage in the human genome through DNA adductomics approaches. Several MS platforms have been used in DNA adductomic analysis, each of which has its strengths and limitations. The loss of 2′-deoxyribose from the modified nucleoside upon collision-induced dissociation is the main transition feature utilized in the screening of DNA adducts. Several advanced data-dependent and data-independent scanning techniques originated from proteomics and metabolomics have been tailored for DNA adductomics. The field of DNA adductomics is an emerging technology in human exposure assessment. As the analytical technology matures and bioinformatics tools become available for analysis of the MS data, DNA adductomics can advance our understanding about the role of chemical exposures in DNA damage and disease risk.
Collapse
|
42
|
Membrane Lipidome Reorganization and Accumulation of Tissue DNA Lesions in Tumor-Bearing Mice: An Exploratory Study. Cancers (Basel) 2019; 11:cancers11040480. [PMID: 30987375 PMCID: PMC6520748 DOI: 10.3390/cancers11040480] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 04/01/2019] [Accepted: 04/02/2019] [Indexed: 12/27/2022] Open
Abstract
Increased rates of reactive oxygen/nitrogen species (ROS/RNS) are involved in almost all cancer types, associated with tumor development and progression, causing damage to biomolecules such as proteins, nucleic acids and membrane lipids, in different biological compartments. We used a human tumor xenograft mouse model to evaluate for the first time in parallel the remodeling of fatty acid moieties in erythrocyte membrane phospholipids and the level of ROS-induced DNA lesions in liver and kidney tissues. Using liquid chromatography tandem mass spectrometry the 5'R and 5'S diastereoisomers of 5',8-cyclo-2'-deoxyadenosine and 5',8-cyclo-2'-deoxyguanosine, together with 8-oxo-7,8-dihydro-2'-deoxyadenosine, were determined in mice at young (4- and 5-weeks) and old (17-weeks) ages and compared with control SCID mice without tumor implantation. Tumor-bearing mice showed a higher level of ROS-damaged nucleosides in genomic DNA as the age and tumor progress, compared to controls (1.07-1.53-fold in liver and 1.1-1.4-fold in kidney, respectively). The parallel fatty acid profile of erythrocyte membranes showed a profound lipid remodeling during tumor and age progression consisting of PUFA consumption and SFA enrichment (ca 28% and 58%, respectively, in late stage tumor-bearing mice), markers of enhanced oxidative and proliferative processes, respectively. Membrane lipid remodeling and ROS-induced DNA lesions may be combined to afford an integrated scenario of cancer progression and ageing, reinforcing a holistic vision among molecular markers rather than the biomarker identification in a single compartment.
Collapse
|
43
|
Zhang K, Perussello CA, Milosavljević V, Cullen PJ, Sun DW, Tiwari BK. Diagnostics of plasma reactive species and induced chemistry of plasma treated foods. Crit Rev Food Sci Nutr 2019; 59:812-825. [DOI: 10.1080/10408398.2018.1564731] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Kexin Zhang
- Department of Food Chemistry and Technology, Teagasc Food Research Centre, Dublin, Ireland
- Food Refrigeration and Computerized Food Technology (FRCFT), School of Biosystems and Food Engineering, University College Dublin, National University of Ireland, Dublin, Ireland
| | - Camila A. Perussello
- Department of Food Chemistry and Technology, Teagasc Food Research Centre, Dublin, Ireland
| | - Vladimir Milosavljević
- BioPlasma Group, School of Food Science and Environmental Health, Dublin Institute of Technology, Dublin, Ireland
| | - P. J. Cullen
- BioPlasma Group, School of Food Science and Environmental Health, Dublin Institute of Technology, Dublin, Ireland
- School of Chemical and Biomolecular, University of Sydney, Australia
| | - Da-Wen Sun
- Food Refrigeration and Computerized Food Technology (FRCFT), School of Biosystems and Food Engineering, University College Dublin, National University of Ireland, Dublin, Ireland
| | - Brijesh K. Tiwari
- Department of Food Chemistry and Technology, Teagasc Food Research Centre, Dublin, Ireland
| |
Collapse
|
44
|
Tankovskaia SA, Kotb OM, Dommes OA, Paston SV. Application of spectral methods for studying DNA damage induced by gamma-radiation. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2018; 200:85-92. [PMID: 29674243 DOI: 10.1016/j.saa.2018.04.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 04/05/2018] [Accepted: 04/06/2018] [Indexed: 06/08/2023]
Abstract
Spectral methods can provide a variety of possibilities to determine several types of radiation-induced DNA damage, such as nucleobase destruction and local denaturation. DNA UV absorption and CD spectra measured at room temperature undergo noticeable alteration under the action of γ-radiation. We have applied the Spirin method of total nucleobases determination, and have measured the molar extinction coefficient of DNA and DNA CD spectra for solutions with different NaCl concentrations (3mM-3.2M) and containing MgCl2, exposed to γ-radiation with the doses of 0-103Gy. The melting temperatures of DNA in irradiated solutions at the doses of 0-50Gy were obtained with the help of spectrophotometric melting. It was found that the amount of destructed nucleobases and radiation-induced loss of DNA helicity significantly decreases with the rise of the ionic strength of the irradiated solution. Substitution of a portion of Na+ ions on Mg2+ while keeping the total ionic strength constant (μ=5mM) does not affect the considered radiation effects. The role of the structure and composition of the DNA secondary hydration layer in the radiation-induced damages is discussed.
Collapse
Affiliation(s)
- Svetlana A Tankovskaia
- Department of Molecular Biophysics and Polymer Physics, Faculty of Physics, Saint-Petersburg State University, Ulyanovskaya, 3, St. Petersburg 198504, Russia
| | - Omar M Kotb
- Department of Molecular Biophysics and Polymer Physics, Faculty of Physics, Saint-Petersburg State University, Ulyanovskaya, 3, St. Petersburg 198504, Russia; Department of Physics, Faculty of Science, Zagazig University, Sharkia Gov, Zagazig 44519, Egypt
| | - Olga A Dommes
- Institute of Macromolecular Compounds, Bolshoy pr. 31, 199004 Saint-Petersburg, Russia
| | - Sofia V Paston
- Department of Molecular Biophysics and Polymer Physics, Faculty of Physics, Saint-Petersburg State University, Ulyanovskaya, 3, St. Petersburg 198504, Russia.
| |
Collapse
|
45
|
Yun BH, Guo J, Turesky RJ. Formalin-Fixed Paraffin-Embedded Tissues-An Untapped Biospecimen for Biomonitoring DNA Adducts by Mass Spectrometry. TOXICS 2018; 6:E30. [PMID: 29865161 PMCID: PMC6027047 DOI: 10.3390/toxics6020030] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Revised: 05/21/2018] [Accepted: 05/25/2018] [Indexed: 01/03/2023]
Abstract
The measurement of DNA adducts provides important information about human exposure to genotoxic chemicals and can be employed to elucidate mechanisms of DNA damage and repair. DNA adducts can serve as biomarkers for interspecies comparisons of the biologically effective dose of procarcinogens and permit extrapolation of genotoxicity data from animal studies for human risk assessment. One major challenge in DNA adduct biomarker research is the paucity of fresh frozen biopsy samples available for study. However, archived formalin-fixed paraffin-embedded (FFPE) tissues with clinical diagnosis of disease are often available. We have established robust methods to recover DNA free of crosslinks from FFPE tissues under mild conditions which permit quantitative measurements of DNA adducts by liquid chromatography-mass spectrometry. The technology is versatile and can be employed to screen for DNA adducts formed with a wide range of environmental and dietary carcinogens, some of which were retrieved from section-cuts of FFPE blocks stored at ambient temperature for up to nine years. The ability to retrospectively analyze FFPE tissues for DNA adducts for which there is clinical diagnosis of disease opens a previously untapped source of biospecimens for molecular epidemiology studies that seek to assess the causal role of environmental chemicals in cancer etiology.
Collapse
Affiliation(s)
- Byeong Hwa Yun
- Masonic Cancer Center and Department of Medicinal Chemistry, University of Minnesota, 2231 6th St. SE, Minneapolis, MN 55455, USA.
| | - Jingshu Guo
- Masonic Cancer Center and Department of Medicinal Chemistry, University of Minnesota, 2231 6th St. SE, Minneapolis, MN 55455, USA.
| | - Robert J Turesky
- Masonic Cancer Center and Department of Medicinal Chemistry, University of Minnesota, 2231 6th St. SE, Minneapolis, MN 55455, USA.
| |
Collapse
|
46
|
Gutteridge JMC, Halliwell B. Mini-Review: Oxidative stress, redox stress or redox success? Biochem Biophys Res Commun 2018; 502:183-186. [PMID: 29752940 DOI: 10.1016/j.bbrc.2018.05.045] [Citation(s) in RCA: 138] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 05/08/2018] [Indexed: 01/19/2023]
Abstract
The first life forms evolved in a highly reducing environment. This reduced state is still carried by cells today, which makes the concept of "reductive stress" somewhat redundant. When oxygen became abundant on the Earth, due to the evolution of photosynthesis, life forms had to adapt or become extinct. Living organisms did adapt, proliferated and an explosion of new life forms resulted, using reactive oxygen species (ROS) to drive their evolution. Adaptation to oxygen and its reduction intermediates necessitated the simultaneous evolution of select antioxidant defences, carefully regulated to allow ROS to perform their major roles. Clearly this "oxidative stress" did not cause a major problem to the evolution of complex life forms. Why not? Iron and oxygen share a close relationship in aerobic evolution. Iron is used in proteins to transport oxygen, promote electron transfers, and catalyse chemical reactions. In all of these functions, iron is carefully sequestered within proteins and restricted from reacting with ROS, this sequestration being one of our major antioxidant defences. Iron was abundant to life forms before the appearance of oxygen. However, oxygen caused its oxidative precipitation from solution and thereby decreased its bioavailability and thus the risk of iron-dependent oxidative damage. Micro-organisms had to adapt and develop strategies involving siderophores to acquire iron from the environment and eventually their host. This battle for iron between bacteria and animal hosts continues today, and is a much greater daily threat to our survival than "oxidative stress" and "redox stress".
Collapse
Affiliation(s)
| | - Barry Halliwell
- Department of Biochemistry and Centre for Life Sciences, National University of Singapore, #04-19, 28 Medical Drive, 117456, Singapore.
| |
Collapse
|
47
|
Ceylan D, Tuna G, Kirkali G, Tunca Z, Can G, Arat HE, Kant M, Dizdaroglu M, Özerdem A. Oxidatively-induced DNA damage and base excision repair in euthymic patients with bipolar disorder. DNA Repair (Amst) 2018; 65:64-72. [PMID: 29626765 DOI: 10.1016/j.dnarep.2018.03.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 03/29/2018] [Accepted: 03/29/2018] [Indexed: 01/08/2023]
Abstract
Oxidatively-induced DNA damage has previously been associated with bipolar disorder. More recently, impairments in DNA repair mechanisms have also been reported. We aimed to investigate oxidatively-induced DNA lesions and expression of DNA glycosylases involved in base excision repair in euthymic patients with bipolar disorder compared to healthy individuals. DNA base lesions including both base and nucleoside modifications were measured using gas chromatography-tandem mass spectrometry and liquid chromatography-tandem mass spectrometry with isotope-dilution in DNA samples isolated from leukocytes of euthymic patients with bipolar disorder (n = 32) and healthy individuals (n = 51). The expression of DNA repair enzymes OGG1 and NEIL1 were measured using quantitative real-time polymerase chain reaction. The levels of malondialdehyde were measured using high performance liquid chromatography. Seven DNA base lesions in DNA of leukocytes of patients and healthy individuals were identified and quantified. Three of them had significantly elevated levels in bipolar patients when compared to healthy individuals. No elevation of lipid peroxidation marker malondialdehyde was observed. The level of OGG1 expression was significantly reduced in bipolar patients compared to healthy individuals, whereas the two groups exhibited similar levels of NEIL1 expression. Our results suggest that oxidatively-induced DNA damage occurs and base excision repair capacity may be decreased in bipolar patients when compared to healthy individuals. Measurement of oxidatively-induced DNA base lesions and the expression of DNA repair enzymes may be of great importance for large scale basic research and clinical studies of bipolar disorder.
Collapse
Affiliation(s)
- Deniz Ceylan
- Vocational School of Health Services, Izmir University of Economics, Izmir, Turkey; Department of Neuroscience, Health Sciences Institute, Dokuz Eylul University, Izmir, Turkey.
| | - Gamze Tuna
- Department of Molecular Medicine, Health Sciences Institute, Dokuz Eylul University, Izmir, Turkey
| | - Güldal Kirkali
- Thoracic and Gastrointestinal Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Building 10, Bethesda, MD, 20892, USA
| | - Zeliha Tunca
- Department of Psychiatry, School of Medicine, Dokuz Eylul University, Izmir, Turkey
| | - Güneş Can
- Department of Psychiatry, Mardin State Hospital, Mardin, Turkey
| | - Hidayet Ece Arat
- Department of Psychology, Istanbul Gelişim University, Istanbul, Turkey, Turkey
| | - Melis Kant
- Department of Medical Biochemistry, Health Sciences Institute, Dokuz Eylul University, Izmir, Turkey
| | - Miral Dizdaroglu
- Biomolecular Measurement Division, National Institute of Standards and Technology, Gaithersburg, MD, 20899, USA.
| | - Ayşegül Özerdem
- Department of Neuroscience, Health Sciences Institute, Dokuz Eylul University, Izmir, Turkey; Department of Psychiatry, School of Medicine, Dokuz Eylul University, Izmir, Turkey
| |
Collapse
|
48
|
Gonzalez-Hunt CP, Wadhwa M, Sanders LH. DNA damage by oxidative stress: Measurement strategies for two genomes. CURRENT OPINION IN TOXICOLOGY 2018. [DOI: 10.1016/j.cotox.2017.11.001] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
49
|
Guo J, Villalta PW, Turesky RJ. Data-Independent Mass Spectrometry Approach for Screening and Identification of DNA Adducts. Anal Chem 2017; 89:11728-11736. [PMID: 28977750 PMCID: PMC5727898 DOI: 10.1021/acs.analchem.7b03208] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Long-term exposures to environmental toxicants and endogenous electrophiles are causative factors for human diseases including cancer. DNA adducts reflect the internal exposure to genotoxicants and can serve as biomarkers for risk assessment. Liquid chromatography-multistage mass spectrometry (LC-MSn) is the most common method for biomonitoring DNA adducts, generally targeting single exposures and measuring up to several adducts. However, the data often provide limited evidence for a role of a chemical in the etiology of cancer. An "untargeted" method is required that captures global exposures to chemicals, by simultaneously detecting their DNA adducts in the genome; some of which may induce cancer-causing mutations. We established a wide selected ion monitoring tandem mass spectrometry (wide-SIM/MS2) screening method utilizing ultraperformance-LC nanoelectrospray ionization Orbitrap MSn with online trapping to enrich bulky, nonpolar adducts. Wide-SIM scan events are followed by MS2 scans to screen for modified nucleosides by coeluting peaks containing precursor and fragment ions differing by -116.0473 Da, attributed to the neutral loss of deoxyribose. Wide-SIM/MS2 was shown to be superior in sensitivity, specificity, and breadth of adduct coverage to other tested adductomic methods with detection possible at adduct levels as low as 4 per 109 nucleotides. Wide-SIM/MS2 data can be analyzed in a "targeted" fashion by generation of extracted ion chromatograms or in an "untargeted" fashion where a chromatographic peak-picking algorithm can be used to detect putative DNA adducts. Wide-SIM/MS2 successfully detected DNA adducts, derived from chemicals in the diet and traditional medicines and from lipid peroxidation products, in human prostate and renal specimens.
Collapse
Affiliation(s)
- Jingshu Guo
- Masonic Cancer Center, College of Pharmacy, 2231 Sixth Street SE, Minneapolis, Minnesota 55455
- Department of Medicinal Chemistry, College of Pharmacy, 2231 Sixth Street SE, Minneapolis, Minnesota 55455
| | - Peter W. Villalta
- Masonic Cancer Center, College of Pharmacy, 2231 Sixth Street SE, Minneapolis, Minnesota 55455
| | - Robert J. Turesky
- Masonic Cancer Center, College of Pharmacy, 2231 Sixth Street SE, Minneapolis, Minnesota 55455
- Department of Medicinal Chemistry, College of Pharmacy, 2231 Sixth Street SE, Minneapolis, Minnesota 55455
| |
Collapse
|
50
|
Jaruga P, Coskun E, Kimbrough K, Jacob A, Johnson WE, Dizdaroglu M. Biomarkers of oxidatively induced DNA damage in dreissenid mussels: A genotoxicity assessment tool for the Laurentian Great Lakes. ENVIRONMENTAL TOXICOLOGY 2017; 32:2144-2153. [PMID: 28568507 PMCID: PMC5669367 DOI: 10.1002/tox.22427] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 04/03/2017] [Accepted: 04/06/2017] [Indexed: 05/03/2023]
Abstract
Activities of fast growing human population are altering freshwater ecosystems, endangering their inhabitants and public health. Organic and trace compounds have a high potential for adverse impacts on aquatic organisms in some Great Lakes tributaries. Toxic compounds in tissues of organisms living in contaminated environments change their metabolism and alter cellular components. We measured oxidatively induced DNA damage in the soft tissues of dreissenid mussels to check on the possible contaminant-induced impact on their DNA. The animals were obtained from archived samples of the National Oceanic and Atmospheric Administration (NOAA) Mussel Watch Program. Mussels were collected from the harbor of Ashtabula River in Ohio, and a reference area located at the Lake Erie shore. Using gas chromatography-tandem mass spectrometry with isotope dilution, we identified and quantified numerous oxidatively modified DNA bases and 8,5'-cyclopurine-2'-deoxynucleosides. We found significant differences in the concentrations of these potentially mutagenic and/or lethal lesions in the DNA of mussels from the harbor as compared to the animals collected at the reference site. These results align NOAA's data showing that elevated concentrations of polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), and heavy metals were found in mussels within the harbor as compared to mussels collected in the reference site. The measured DNA lesions can be used as biomarkers for identifying DNA damage in mussels from polluted and reference sites. Such biomarkers are needed to identify the bioeffects of contaminants in affected organisms, as well as whether remedial actions have proven successful in reducing observed toxic effects.
Collapse
Affiliation(s)
- Pawel Jaruga
- Biomolecular Measurement Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
- Correspondence to: P. Jaruga, Biomolecular Measurement Division, National Institute of Standards and Technology, 100 Bureau Drive, MS 8315, Gaithersburg, MD 20899, USA, Phone: 301-975-4617; Fax: 301-975-2125;
| | - Erdem Coskun
- Biomolecular Measurement Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Kimani Kimbrough
- NOAA’s National Centers for Coastal Ocean Science, National Oceanic and Atmospheric Administration, Silver Spring, MD 20910, United States
| | - Annie Jacob
- Consolidated Safety Services, 10301 Democracy Lane, Suite 300 Fairfax, Virginia 22030, United States
| | - W. Edward Johnson
- NOAA’s National Centers for Coastal Ocean Science, National Oceanic and Atmospheric Administration, Silver Spring, MD 20910, United States
| | - Miral Dizdaroglu
- Biomolecular Measurement Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| |
Collapse
|