1
|
Zhang B, Li S, Ding J, Guo J, Ma Z, Duan H. Rho-GTPases subfamily: cellular defectors orchestrating viral infection. Cell Mol Biol Lett 2025; 30:55. [PMID: 40316910 PMCID: PMC12049043 DOI: 10.1186/s11658-025-00722-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 03/27/2025] [Indexed: 05/04/2025] Open
Abstract
Ras homolog gene family-guanosine triphosphatases (Rho-GTPases), key molecular switches regulating cytoskeletal dynamics and cellular signaling, play a pivotal role in viral infections by modulating critical processes such as viral entry, replication, and release. This review elucidates the intricate mechanisms through which Rho-GTPases, via interactions with guanine nucleotide exchange factors (GEFs), GTPase-activating proteins (GAPs), and other signaling pathways, including the phosphoinositide 3-kinase/protein kinase B (PI3K/Akt), rat sarcoma (Ras), and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) pathways, facilitate viral pathogenesis. Specific viruses, such as influenza A virus (IAV), herpesviruses, human immunodeficiency virus (HIV), and respiratory syncytial virus (RSV), exploit Rho-GTPase-mediated cytoskeletal reorganization to enhance infectivity. For example, Rho-GTPases promote actin remodeling and membrane fusion, which are essential for viral entry and intracellular transport. Furthermore, Rho-GTPases modulate immune responses, often suppressing antiviral defenses to favor viral replication. Despite these insights, the molecular mechanisms underlying Rho-GTPase regulation during viral infections remain incompletely understood. Future research should focus on delineating the precise roles of Rho-GTPases in distinct viral life cycles, uncovering novel regulatory mechanisms, and developing targeted antiviral therapies that selectively inhibit Rho-GTPase signaling without compromising host cell functions. Such advancements could pave the way for broad-spectrum antiviral strategies, particularly against viruses that heavily rely on cytoskeletal manipulation for infection.
Collapse
Affiliation(s)
- Beibei Zhang
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, Xinjiang, China
| | - Shuli Li
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, Xinjiang, China
| | - Juntao Ding
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, Xinjiang, China
| | - Jingxia Guo
- Disease Prevention and Control Center of Xinjiang Production and Construction Corps, Urumqi, Xinjiang, China
| | - Zhenghai Ma
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, Xinjiang, China
| | - Hong Duan
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, China.
| |
Collapse
|
2
|
Liu H, Wang X, Liu Z, Li S, Hou Z. Osmoregulatory evolution of gills promoted salinity adaptation following the sea-land transition of crustaceans. MARINE LIFE SCIENCE & TECHNOLOGY 2025; 7:205-217. [PMID: 40417249 PMCID: PMC12102416 DOI: 10.1007/s42995-025-00298-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 04/15/2025] [Indexed: 05/27/2025]
Abstract
The sea-land transition is one of the most dramatic evolutionary changes and requires an adaptive genetic response to salinity changes and osmotic stress. Here, we used multi-species genomes and multi-tissue transcriptomes of the talitrid crustaceans, a living sea-land transition model, to investigate the adaptive genetic changes and osmoregulatory organs that facilitated their salinity adaptation. Genomic analyses detected numerous osmoregulatory genes in terrestrial talitrids undergoing gene family expansions and positive selection. Gene expression comparisons among species and tissues confirmed the gill being the primary organ responsible for ion transport and identified the genetic expression variation that enable talitrids to adapt to marine and land habitats. V-type H+-ATPases related to H+ transport play a crucial role in land adaptations, while genes related to the transport of inorganic ions (Na+, K+, Cl-) are upregulated in marine habitats. Our results demonstrate that talitrids have divergent genetic responses to salinity change that led to the uptake or excretion of ions in the gills and promoted habitat adaptation. These findings suggest that detecting gene expression changes in talitrids presents promising potential as a biomarker for salinity monitoring. Supplementary Information The online version contains supplementary material available at 10.1007/s42995-025-00298-6.
Collapse
Affiliation(s)
- Hongguang Liu
- State Key Laboratory of Animal Biodiversity Conservation and Integrated Pest Management, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101 China
| | - Xiaokun Wang
- State Key Laboratory of Animal Biodiversity Conservation and Integrated Pest Management, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101 China
- School of Life Sciences, Hebei University, Baoding, 071002 China
| | - Zeyu Liu
- State Key Laboratory of Animal Biodiversity Conservation and Integrated Pest Management, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Shuqiang Li
- State Key Laboratory of Animal Biodiversity Conservation and Integrated Pest Management, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101 China
| | - Zhonge Hou
- State Key Laboratory of Animal Biodiversity Conservation and Integrated Pest Management, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101 China
| |
Collapse
|
3
|
Tao R, Robertson AD, Fuller W, Gök C. Palmitoylation and regulation of potassium-dependent sodium/calcium exchangers (NCKX). Biosci Rep 2025; 45:1-11. [PMID: 39693635 PMCID: PMC12096950 DOI: 10.1042/bsr20241051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 12/11/2024] [Accepted: 12/18/2024] [Indexed: 12/20/2024] Open
Abstract
Cellular Ca2+ homeostasis is critical for normal cell physiology and is regulated by several mechanisms. Two major players in intracellular Ca2+ homeostasis in multiple tissues belong to the SLC8 (Na+/Ca2+ exchangers (NCXs); NCX1-3) and SLC24 (K+ dependent Na+/Ca2+ exchangers (NCKXs); NCKX1-5) families. It has been established that NCXs and NCKX4 are palmitoylated, and that palmitoylation promotes NCX1 inactivation. However, there is still little known about NCKXs' palmitoylation. We found that (1) NCKX3 and NCKX5, but not NCKX1, are palmitoylated, (2) Cys to Ala mutation at position 467 for NCXK3 and 325 for NCKX5 notably diminished palmitoylation and (3) reduced palmitoylation enhanced NCKX3 activity. Our findings bring novel insights into NCKX1, NCKX3 and NCKX5 palmitoylation and establish palmitoylation as an endogenous regulator of NCKX3 activity, paving the way for investigations evaluating the role of palmitoylation in NCKX3 function in health and disease.
Collapse
Affiliation(s)
- Ran Tao
- School of Cardiovascular and Metabolic Health, Sir James Black Building, University of Glasgow, Glasgow, G12 8QQ, U.K
| | - Alan D. Robertson
- School of Cardiovascular and Metabolic Health, Sir James Black Building, University of Glasgow, Glasgow, G12 8QQ, U.K
| | - William Fuller
- School of Cardiovascular and Metabolic Health, Sir James Black Building, University of Glasgow, Glasgow, G12 8QQ, U.K
| | - Caglar Gök
- School of Cardiovascular and Metabolic Health, Sir James Black Building, University of Glasgow, Glasgow, G12 8QQ, U.K
- School of Natural Sciences, College of Health and Science, University of Lincoln, Lincoln, LN6 7TS, U.K
| |
Collapse
|
4
|
Park G, Jin Z, Lu H, Du J. Clearing Amyloid-Beta by Astrocytes: The Role of Rho GTPases Signaling Pathways as Potential Therapeutic Targets. Brain Sci 2024; 14:1239. [PMID: 39766438 PMCID: PMC11674268 DOI: 10.3390/brainsci14121239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 12/05/2024] [Accepted: 12/07/2024] [Indexed: 01/11/2025] Open
Abstract
Astrocytes, vital support cells in the central nervous system (CNS), are crucial for maintaining neuronal health. In neurodegenerative diseases such as Alzheimer's disease (AD), astrocytes play a key role in clearing toxic amyloid-β (Aβ) peptides. Aβ, a potent neuroinflammatory trigger, stimulates astrocytes to release excessive glutamate and inflammatory factors, exacerbating neuronal dysfunction and death. Recent studies underscore the role of Rho GTPases-particularly RhoA, Rac1, and Cdc42-in regulating Aβ clearance and neuroinflammation. These key regulators of cytoskeletal dynamics and intracellular signaling pathways function independently through distinct mechanisms but may converge to modulate inflammatory responses. Their influence on astrocyte structure and function extends to regulating endothelin-converting enzyme (ECE) activity, which modulates vasoactive peptides such as endothelin-1 (ET-1). Through these processes, Rho GTPases impact vascular permeability and neuroinflammation, contributing to AD pathogenesis by affecting both Aβ clearance and cerebrovascular interactions. Understanding the interplay between Rho GTPases and the cerebrovascular system provides fresh insights into AD pathogenesis. Targeting Rho GTPase signaling pathways in astrocytes could offer a promising therapeutic approach to mitigate neuroinflammation, enhance Aβ clearance, and slow disease progression, ultimately improving cognitive outcomes in AD patients.
Collapse
Affiliation(s)
- Gyeongah Park
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, TN 38163, USA;
| | - Zhen Jin
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN 38163, USA;
| | - Hui Lu
- Department of Pharmacology and Physiology, School of Medicine, The George Washington University, Washington, DC 20037, USA;
| | - Jianyang Du
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, TN 38163, USA;
| |
Collapse
|
5
|
Kwon DH, Zhang F, McCray BA, Feng S, Kumar M, Sullivan JM, Im W, Sumner CJ, Lee SY. TRPV4-Rho GTPase complex structures reveal mechanisms of gating and disease. Nat Commun 2023; 14:3732. [PMID: 37353484 PMCID: PMC10290081 DOI: 10.1038/s41467-023-39345-0] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 06/08/2023] [Indexed: 06/25/2023] Open
Abstract
Crosstalk between ion channels and small GTPases is critical during homeostasis and disease, but little is known about the structural underpinnings of these interactions. TRPV4 is a polymodal, calcium-permeable cation channel that has emerged as a potential therapeutic target in multiple conditions. Gain-of-function mutations also cause hereditary neuromuscular disease. Here, we present cryo-EM structures of human TRPV4 in complex with RhoA in the ligand-free, antagonist-bound closed, and agonist-bound open states. These structures reveal the mechanism of ligand-dependent TRPV4 gating. Channel activation is associated with rigid-body rotation of the intracellular ankyrin repeat domain, but state-dependent interaction with membrane-anchored RhoA constrains this movement. Notably, many residues at the TRPV4-RhoA interface are mutated in disease and perturbing this interface by introducing mutations into either TRPV4 or RhoA increases TRPV4 channel activity. Together, these results suggest that RhoA serves as an auxiliary subunit for TRPV4, regulating TRPV4-mediated calcium homeostasis and disruption of TRPV4-RhoA interactions can lead to TRPV4-related neuromuscular disease. These insights will help facilitate TRPV4 therapeutics development.
Collapse
Affiliation(s)
- Do Hoon Kwon
- Department of Biochemistry, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Feng Zhang
- Department of Biochemistry, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Brett A McCray
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Shasha Feng
- Departments of Biological Sciences, Chemistry, and Bioengineering, Lehigh University, Bethlehem, PA, 18015, USA
| | - Meha Kumar
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Jeremy M Sullivan
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Wonpil Im
- Departments of Biological Sciences, Chemistry, and Bioengineering, Lehigh University, Bethlehem, PA, 18015, USA
| | - Charlotte J Sumner
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Seok-Yong Lee
- Department of Biochemistry, Duke University School of Medicine, Durham, NC, 27710, USA.
| |
Collapse
|
6
|
Liu T, Li T, Xu D, Wang Y, Zhou Y, Wan J, Huang CLH, Tan X. Small-conductance calcium-activated potassium channels in the heart: expression, regulation and pathological implications. Philos Trans R Soc Lond B Biol Sci 2023; 378:20220171. [PMID: 37122223 PMCID: PMC10150224 DOI: 10.1098/rstb.2022.0171] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 12/25/2022] [Indexed: 05/02/2023] Open
Abstract
Ca2+-activated K+ channels are critical to cellular Ca2+ homeostasis and excitability; they couple intracellular Ca2+ and membrane voltage change. Of these, the small, 4-14 pS, conductance SK channels include three, KCNN1-3 encoded, SK1/KCa2.1, SK2/KCa2.2 and SK3/KCa2.3, channel subtypes with characteristic, EC50 ∼ 10 nM, 40 pM, 1 nM, apamin sensitivities. All SK channels, particularly SK2 channels, are expressed in atrial, ventricular and conducting system cardiomyocytes. Pharmacological and genetic modification results have suggested that SK channel block or knockout prolonged action potential durations (APDs) and effective refractory periods (ERPs) particularly in atrial, but also in ventricular, and sinoatrial, atrioventricular node and Purkinje myocytes, correspondingly affect arrhythmic tendency. Additionally, mitochondrial SK channels may decrease mitochondrial Ca2+ overload and reactive oxygen species generation. SK channels show low voltage but marked Ca2+ dependences (EC50 ∼ 300-500 nM) reflecting their α-subunit calmodulin (CaM) binding domains, through which they may be activated by voltage-gated or ryanodine-receptor Ca2+ channel activity. SK function also depends upon complex trafficking and expression processes and associations with other ion channels or subunits from different SK subtypes. Atrial and ventricular clinical arrhythmogenesis may follow both increased or decreased SK expression through decreased or increased APD correspondingly accelerating and stabilizing re-entrant rotors or increasing incidences of triggered activity. This article is part of the theme issue 'The heartbeat: its molecular basis and physiological mechanisms'.
Collapse
Affiliation(s)
- Ting Liu
- Key Laboratory of Medical Electrophysiology of Ministry of Education, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan 646000, People's Republic of China
| | - Tao Li
- Key Laboratory of Medical Electrophysiology of Ministry of Education, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan 646000, People's Republic of China
- Department of Cardiology, the Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, People's Republic of China
| | - Dandi Xu
- Key Laboratory of Medical Electrophysiology of Ministry of Education, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan 646000, People's Republic of China
| | - Yan Wang
- Key Laboratory of Medical Electrophysiology of Ministry of Education, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan 646000, People's Republic of China
| | - Yafei Zhou
- Key Laboratory of Medical Electrophysiology of Ministry of Education, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan 646000, People's Republic of China
| | - Juyi Wan
- Department of Cardiovascular Surgery, the Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, People's Republic of China
| | - Christopher L.-H. Huang
- Key Laboratory of Medical Electrophysiology of Ministry of Education, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan 646000, People's Republic of China
- Physiological Laboratory and Department of Biochemistry, University of Cambridge, Cambridge CB2 3EG, UK
| | - Xiaoqiu Tan
- Key Laboratory of Medical Electrophysiology of Ministry of Education, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan 646000, People's Republic of China
- Department of Cardiology, the Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, People's Republic of China
- Department of Physiology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan 646000, People's Republic of China
| |
Collapse
|
7
|
Sharma R, Chen KT, Sharma R. Emerging evidence on Monkeypox: resurgence, global burden, molecular insights, genomics and possible management. Front Cell Infect Microbiol 2023; 13:1134712. [PMID: 37153147 PMCID: PMC10154632 DOI: 10.3389/fcimb.2023.1134712] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 02/20/2023] [Indexed: 05/09/2023] Open
Abstract
An outbreak of monkeypox (encoded enveloped double stranded DNA), resurgence and expansion has emerged in early 2022, posing a new threat to global health. Even though, many reports are available on monkeypox, still a comprehensive updated review is needed. Present updated review is focused to fill the research gaps pertaining to the monkeypox, and an extensive search was conducted in a number of databases, including Google Scholar, Scopus, Web of Science, and Science Direct. Although the disease usually progresses self-limiting, some patients require admission for kidney injury, pharyngitis, myocarditis, and soft tissue super infections. There is no well-known treatment available yet; still there has been a push for the use of antiviral therapy and tecovirimat as a promising option when dealing with co-morbidities. In this study, we mapped and discussed the updates and scientific developments surrounding monkeypox, including its potential molecular mechanisms, genomics, transmission, risk factors, diagnosis, prevention, vaccines, treatment, possible plant-based treatment along with their proposed mechanisms. Each day, a growing number of monkeypox cases are reported, and more cases are expected in the near future. As of now, monkeypox does not have a well-established and proven treatment, and several investigations are underway to find the best possible treatment from natural or synthetic drug sources. Multiple molecular mechanisms on pathophysiological cascades of monkeypox virus infection are discussed here along with updates on genomics, and possible preventive and therapeutic strategies.
Collapse
Affiliation(s)
- Ruchi Sharma
- Department of Rasa Shastra and Bhaishajya Kalpana, Faculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu University (BHU), Varanasi, Uttar Pradesh, India
| | - Kow-Tong Chen
- Department of Occupational Medicine, Tainan Municipal Hospital (managed by Show Chwan Medical Care Corporation), Tainan, Taiwan
- Department of Public Health, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Rohit Sharma
- Department of Rasa Shastra and Bhaishajya Kalpana, Faculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu University (BHU), Varanasi, Uttar Pradesh, India
| |
Collapse
|
8
|
Kwon DH, Zhang F, McCray BA, Kumar M, Sullivan JM, Sumner CJ, Lee SY. Structural insights into TRPV4-Rho GTPase signaling complex function and disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.15.532784. [PMID: 36993766 PMCID: PMC10055143 DOI: 10.1101/2023.03.15.532784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Abstract
Crosstalk between ion channels and small GTPases is critical during homeostasis and disease 1 , but little is known about the structural underpinnings of these interactions. TRPV4 is a polymodal, calcium-permeable cation channel that has emerged as a potential therapeutic target in multiple conditions 2-5 . Gain-of-function mutations also cause hereditary neuromuscular disease 6-11 . Here, we present cryo-EM structures of human TRPV4 in complex with RhoA in the apo, antagonist-bound closed, and agonist-bound open states. These structures reveal the mechanism of ligand-dependent TRPV4 gating. Channel activation is associated with rigid-body rotation of the intracellular ankyrin repeat domain, but state-dependent interaction with membrane-anchored RhoA constrains this movement. Notably, many residues at the TRPV4-RhoA interface are mutated in disease and perturbing this interface by introducing mutations into either TRPV4 or RhoA increases TRPV4 channel activity. Together, these results suggest that the interaction strength between TRPV4 and RhoA tunes TRPV4-mediated calcium homeostasis and actin remodeling, and that disruption of TRPV4-RhoA interactions leads to TRPV4-related neuromuscular disease, findings that will guide TRPV4 therapeutics development.
Collapse
|
9
|
Palmitoylation of Voltage-Gated Ion Channels. Int J Mol Sci 2022; 23:ijms23169357. [PMID: 36012639 PMCID: PMC9409123 DOI: 10.3390/ijms23169357] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 08/11/2022] [Accepted: 08/16/2022] [Indexed: 11/30/2022] Open
Abstract
Protein lipidation is one of the most common forms of posttranslational modification. This alteration couples different lipids, such as fatty acids, phospho- and glycolipids and sterols, to cellular proteins. Lipidation regulates different aspects of the protein’s physiology, including structure, stability and affinity for cellular membranes and protein–protein interactions. In this scenario, palmitoylation is the addition of long saturated fatty acid chains to amino acid residues of the proteins. The enzymes responsible for this modification are acyltransferases and thioesterases, which control the protein’s behavior by performing a series of acylation and deacylation cycles. These enzymes target a broad repertoire of substrates, including ion channels. Thus, protein palmitoylation exhibits a pleiotropic role by differential modulation of the trafficking, spatial organization and electrophysiological properties of ion channels. Considering voltage-gated ion channels (VGICs), dysregulation of lipidation of both the channels and the associated ancillary subunits correlates with the development of various diseases, such as cancer or mental disorders. Therefore, a major role for protein palmitoylation is currently emerging, affecting not only the dynamism and differential regulation of a moiety of cellular proteins but also linking to human health. Therefore, palmitoylation of VGIC, as well as related enzymes, constitutes a novel pharmacological tool for drug development to target related pathologies.
Collapse
|
10
|
Song C, Yue Q, Moseley A, Al-Khalili O, Wynne BM, Ma H, Wang L, Eaton DC. Myristoylated alanine-rich C kinase substrate-like protein-1 regulates epithelial sodium channel activity in renal distal convoluted tubule cells. Am J Physiol Cell Physiol 2020; 319:C589-C604. [PMID: 32639874 DOI: 10.1152/ajpcell.00218.2020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The epithelial sodium channel (ENaC) regulates blood pressure by fine-tuning distal nephron sodium reabsorption. Our previous work has shown that ENaC gating is regulated by anionic phospholipid phosphates, including phosphatidylinositol 4,5-bisphosphate (PIP2). The PIP2-dependent regulation of ENaC is mediated by the myristoylated alanine-rich protein kinase C substrate-like protein-1 (MLP-1). MLP-1 binds to and is a reversible source of PIP2 at the plasma membrane. We examined MLP-1 regulation of ENaC in distal convoluted tubule clonal cell line DCT-15 cells. Wild-type MLP-1 runs at an apparent molecular mass of 52 kDa despite having a predicted molecular mass of 21 kDa. Native MLP-1 consists of several distinct structural elements: an effector domain that is highly positively charged, sequesters PIP2, contains serines that are the target of PKC, and controls MLP-1 association with the membrane; a myristoylation domain that promotes association with the membrane; and a multiple homology 2 domain of previously unknown function. To further examine MLP-1 in DCT-15 cells, we constructed several MLP-1 mutants: WT, a full-length wild-type protein; S3A, three substitutions in the effector domain to prevent phosphorylation; S3D mimicked constitutive phosphorylation by replacing three serines with aspartates; and GA replaced the myristoylation site glycine with alanine, so GA could not be myristoylated. Each mutant was tagged with either NH2-terminal 3XFLAG or COOH-terminal mCherry or V5. Transfection with MLP mutants modified ENaC activity in DCT-15 cells: activity was highest in S3A and lowest in S3D, and the activity after transfection with either construct was significantly different from WT. In Western blots, when transfected with 3XFLAG-tagged MLP-1 mutants, the expression of the full length of MLP-1 at 52 kDa increased in mutant S3A-MLP-1-transfected DCT-15 cells and decreased in S3D-MLP-1-transfected DCT-15 cells. Several lower molecular mass bands were also detected that correspond to potential presumptive calpain cleavage products. Confocal imaging shows that the different mutants localize in different subcellular compartments consistent with their preferred location in the membrane or in the cytosol. Activation of protein kinase C increases phosphorylation of endogenous MLP-1 and reduces ENaC activity. Our results suggest a complicated role for proteolytic processing in MLP-1 regulation of ENaC.
Collapse
Affiliation(s)
- Chang Song
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China.,Division of Nephrology, Department of Medicine, Emory University, Atlanta, Georgia.,Department of Physiology, Emory University, Atlanta, Georgia
| | - Qiang Yue
- Division of Nephrology, Department of Medicine, Emory University, Atlanta, Georgia
| | - Auriel Moseley
- Division of Nephrology, Department of Medicine, Emory University, Atlanta, Georgia
| | - Otor Al-Khalili
- Division of Nephrology, Department of Medicine, Emory University, Atlanta, Georgia
| | - Brandi M Wynne
- Division of Nephrology & Hypertension, Department of Internal Medicine, University of Utah, Salt Lake City, Utah
| | - Heping Ma
- Department of Physiology, Emory University, Atlanta, Georgia
| | - Lihua Wang
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Douglas C Eaton
- Division of Nephrology, Department of Medicine, Emory University, Atlanta, Georgia
| |
Collapse
|
11
|
Augustin H, McGourty K, Allen MJ, Madem SK, Adcott J, Kerr F, Wong CT, Vincent A, Godenschwege T, Boucrot E, Partridge L. Reduced insulin signaling maintains electrical transmission in a neural circuit in aging flies. PLoS Biol 2017; 15:e2001655. [PMID: 28902870 PMCID: PMC5597081 DOI: 10.1371/journal.pbio.2001655] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Accepted: 08/04/2017] [Indexed: 12/11/2022] Open
Abstract
Lowered insulin/insulin-like growth factor (IGF) signaling (IIS) can extend healthy lifespan in worms, flies, and mice, but it can also have adverse effects (the “insulin paradox”). Chronic, moderately lowered IIS rescues age-related decline in neurotransmission through the Drosophila giant fiber system (GFS), a simple escape response neuronal circuit, by increasing targeting of the gap junctional protein innexin shaking-B to gap junctions (GJs). Endosomal recycling of GJs was also stimulated in cultured human cells when IIS was reduced. Furthermore, increasing the activity of the recycling small guanosine triphosphatases (GTPases) Rab4 or Rab11 was sufficient to maintain GJs upon elevated IIS in cultured human cells and in flies, and to rescue age-related loss of GJs and of GFS function. Lowered IIS thus elevates endosomal recycling of GJs in neurons and other cell types, pointing to a cellular mechanism for therapeutic intervention into aging-related neuronal disorders. Insulin and insulin-like growth factors play an important role in the nervous system development and function. Reduced insulin signaling, however, can improve symptoms of neurodegenerative diseases in different model organisms and protect against age-associated decline in neuronal function extending lifespan. Here, we analyze the effects of genetically attenuated insulin signaling on the escape response pathway in the fruit fly Drosophila melanogaster. This simple neuronal circuit is dominated by electrical synapses composed of the gap junctional shaking-B protein, which allows for the transfer of electrical impulses between cells. Transmission through the circuit is known to slow down with age. We show that this functional decline is prevented by systemic or circuit-specific suppression of insulin signaling due to the preservation of the number of gap junctional proteins in aging animals. Our experiments in a human cell culture system reveal increased membrane targeting of gap junctional proteins via small proteins Rab4 and Rab11 under reduced insulin conditions. We also find that increasing the level of these recycling-mediating proteins in flies preserves the escape response circuit output in old flies and suggests ways of improving the function of neuronal circuits dominated by electrical synapses during aging.
Collapse
Affiliation(s)
- Hrvoje Augustin
- Max Planck Institute for Biology of Aging, Köln, Germany
- Institute of Healthy Aging, and Genetics, Evolution, and Environment, University College London, London, United Kingdom
| | - Kieran McGourty
- Department of Structural and Molecular Biology, London, United Kingdom
| | - Marcus J. Allen
- School of Biosciences, University of Kent, Canterbury, Kent, United Kingdom
| | - Sirisha Kudumala Madem
- Department of Biological Sciences, Florida Atlantic University, Jupiter, Florida, United States of America
| | - Jennifer Adcott
- Max Planck Institute for Biology of Aging, Köln, Germany
- Institute of Healthy Aging, and Genetics, Evolution, and Environment, University College London, London, United Kingdom
| | - Fiona Kerr
- Max Planck Institute for Biology of Aging, Köln, Germany
- Institute of Healthy Aging, and Genetics, Evolution, and Environment, University College London, London, United Kingdom
| | - Chi Tung Wong
- Max Planck Institute for Biology of Aging, Köln, Germany
| | - Alec Vincent
- Max Planck Institute for Biology of Aging, Köln, Germany
| | - Tanja Godenschwege
- Department of Biological Sciences, Florida Atlantic University, Jupiter, Florida, United States of America
| | - Emmanuel Boucrot
- Department of Structural and Molecular Biology, London, United Kingdom
| | - Linda Partridge
- Max Planck Institute for Biology of Aging, Köln, Germany
- Institute of Healthy Aging, and Genetics, Evolution, and Environment, University College London, London, United Kingdom
- * E-mail:
| |
Collapse
|
12
|
Yuan J, Zhang X, Liu C, Duan H, Li F, Xiang J. Convergent Evolution of the Osmoregulation System in Decapod Shrimps. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2017; 19:76-88. [PMID: 28204969 DOI: 10.1007/s10126-017-9729-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Accepted: 01/09/2017] [Indexed: 06/06/2023]
Abstract
In adaptating to different aquatic environments, seawater (SW) and freshwater (FW) shrimps have exploited different adaptation strategies, which should generate clusters of genes with different adaptive features. However, little is known about the genetic basis of these physiological adaptations. Thus, in this study, we performed comparative transcriptomics and adaptive evolution analyses on SW and FW shrimps and found that convergent evolution may have happened on osmoregulation system of shrimps. We identified 275 and 234 positively selected genes in SW and FW shrimps, respectively, which enriched in the functions of ion-binding and membrane-bounded organelles. Among them, five (CaCC, BEST2, GPDH, NKA, and Integrin) and four (RasGAP, RhoGDI, CNK3, and ODC) osmoregulation-related genes were detected in SW and FW shrimps, respectively. All five genes in SW shrimps have been reported to have positive effects on ion transportation, whereas RasGAP and RhoGDI in FW shrimps are associated with negative control of ion transportation, and CNK3 and ODC play central roles in cation homeostasis. Besides, the phylogenetic tree reconstructed from the positively selected sites separated the SW and FW shrimps into two groups. Distinct subsets of parallel substitutions also have been found in these osmoregulation-related genes in SW and FW shrimps. Therefore, our results suggest that distinct convergent evolution may have occurred in the osmoregulation systems of SW and FW shrimps. Furthermore, positive selection of osmoregulation-related genes may be beneficial for the regulation of water and salt balance in decapod shrimps.
Collapse
Affiliation(s)
- Jianbo Yuan
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, 7, Nanhai Road, Qingdao, 266071, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China
| | - Xiaojun Zhang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, 7, Nanhai Road, Qingdao, 266071, China.
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China.
| | - Chengzhang Liu
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, 7, Nanhai Road, Qingdao, 266071, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China
| | - Hu Duan
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, 7, Nanhai Road, Qingdao, 266071, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China
| | - Fuhua Li
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, 7, Nanhai Road, Qingdao, 266071, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China
| | - Jianhai Xiang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, 7, Nanhai Road, Qingdao, 266071, China.
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China.
| |
Collapse
|
13
|
Zhang Z, Ledford HA, Park S, Wang W, Rafizadeh S, Kim HJ, Xu W, Lu L, Lau VC, Knowlton AA, Zhang XD, Yamoah EN, Chiamvimonvat N. Distinct subcellular mechanisms for the enhancement of the surface membrane expression of SK2 channel by its interacting proteins, α-actinin2 and filamin A. J Physiol 2016; 595:2271-2284. [PMID: 27779751 PMCID: PMC5374114 DOI: 10.1113/jp272942] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 10/19/2016] [Indexed: 12/16/2022] Open
Abstract
KEY POINTS Ion channels are transmembrane proteins that are synthesized within the cells but need to be trafficked to the cell membrane for the channels to function. Small-conductance, Ca2+ -activated K+ channels (SK, KCa 2) are unique subclasses of K+ channels that are regulated by Ca2+ inside the cells; they are expressed in human atrial myocytes and responsible for shaping atrial action potentials. We have previously shown that interacting proteins of SK2 channels are important for channel trafficking to the membrane. Using total internal reflection fluorescence (TIRF) and confocal microscopy, we studied the mechanisms by which the surface membrane localization of SK2 (KCa 2.2) channels is regulated by their interacting proteins. Understanding the mechanisms of SK channel trafficking may provide new insights into the regulation controlling the repolarization of atrial myocytes. ABSTRACT The normal function of ion channels depends critically on the precise subcellular localization and the number of channel proteins on the cell surface membrane. Small-conductance, Ca2+ -activated K+ channels (SK, KCa 2) are expressed in human atrial myocytes and are responsible for shaping atrial action potentials. Understanding the mechanisms of SK channel trafficking may provide new insights into the regulation controlling the repolarization of atrial myocytes. We have previously demonstrated that the C- and N-termini of SK2 channels interact with the actin-binding proteins α-actinin2 and filamin A, respectively. However, the roles of the interacting proteins on SK2 channel trafficking remain incompletely understood. Using total internal reflection fluorescence (TIRF) microscopy, we studied the mechanisms of surface membrane localization of SK2 (KCa 2.2) channels. When SK2 channels were co-expressed with filamin A or α-actinin2, the membrane fluorescence intensity of SK2 channels increased significantly. We next tested the effects of primaquine and dynasore on SK2 channels expression. Treatment with primaquine significantly reduced the membrane expression of SK2 channels. In contrast, treatment with dynasore failed to alter the surface membrane expression of SK2 channels. Further investigations using constitutively active or dominant-negative forms of Rab GTPases provided additional insights into the distinct roles of the two cytoskeletal proteins on the recycling processes of SK2 channels from endosomes. α-Actinin2 facilitated recycling of SK2 channels from both early and recycling endosomes while filamin A probably aids the recycling of SK2 channels from recycling endosomes.
Collapse
Affiliation(s)
- Zheng Zhang
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of California, Davis, CA, 95616, USA
| | - Hannah A Ledford
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of California, Davis, CA, 95616, USA
| | - Seojin Park
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of California, Davis, CA, 95616, USA
| | - Wenying Wang
- Department of Physiology and Cell Biology, University of Nevada, Reno, NV, 89557, USA
| | - Sassan Rafizadeh
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of California, Davis, CA, 95616, USA
| | - Hyo Jeong Kim
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of California, Davis, CA, 95616, USA
| | - Wilson Xu
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of California, Davis, CA, 95616, USA
| | - Ling Lu
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of California, Davis, CA, 95616, USA.,Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Microbiology, College of Life Sciences, Nanjing Normal University, Nanjing, 210046, China
| | - Victor C Lau
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of California, Davis, CA, 95616, USA
| | - Anne A Knowlton
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of California, Davis, CA, 95616, USA.,Department of Veterans Affairs, Northern California Health Care System, Mather, CA, 95655, USA
| | - Xiao-Dong Zhang
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of California, Davis, CA, 95616, USA
| | - Ebenezer N Yamoah
- Department of Physiology and Cell Biology, University of Nevada, Reno, NV, 89557, USA
| | - Nipavan Chiamvimonvat
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of California, Davis, CA, 95616, USA.,Department of Veterans Affairs, Northern California Health Care System, Mather, CA, 95655, USA
| |
Collapse
|
14
|
Chapter Five - Ubiquitination of Ion Channels and Transporters. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2016; 141:161-223. [DOI: 10.1016/bs.pmbts.2016.02.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
15
|
Chen J, Guo J, Yang T, Li W, Lamothe SM, Kang Y, Szendrey JA, Zhang S. Rab11-dependent Recycling of the Human Ether-a-go-go-related Gene (hERG) Channel. J Biol Chem 2015; 290:21101-21113. [PMID: 26152716 DOI: 10.1074/jbc.m115.636324] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2015] [Indexed: 02/01/2023] Open
Abstract
The human ether-a-go-go-related gene (hERG) encodes the pore-forming subunit of the rapidly activating delayed rectifier potassium channel (IKr). A reduction in the hERG current causes long QT syndrome, which predisposes affected individuals to ventricular arrhythmias and sudden death. We reported previously that hERG channels in the plasma membrane undergo vigorous internalization under low K(+) conditions. In the present study, we addressed whether hERG internalization occurs under normal K(+) conditions and whether/how internalized channels are recycled back to the plasma membrane. Using patch clamp, Western blot, and confocal imaging analyses, we demonstrated that internalized hERG channels can effectively recycle back to the plasma membrane. Low K(+)-enhanced hERG internalization is accompanied by an increased rate of hERG recovery in the plasma membrane upon reculture following proteinase K-mediated clearance of cell-surface proteins. The increased recovery rate is not due to enhanced protein synthesis, as hERG mRNA expression was not altered by low K(+) exposure, and the increased recovery was observed in the presence of the protein biosynthesis inhibitor cycloheximide. GTPase Rab11, but not Rab4, is involved in the recycling of hERG channels. Interfering with Rab11 function not only delayed hERG recovery in cells after exposure to low K(+) medium but also decreased hERG expression and function in cells under normal culture conditions. We concluded that the recycling pathway plays an important role in the homeostasis of plasma membrane-bound hERG channels.
Collapse
Affiliation(s)
- Jeffery Chen
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | - Jun Guo
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | - Tonghua Yang
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | - Wentao Li
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | - Shawn M Lamothe
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | - Yudi Kang
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | - John A Szendrey
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | - Shetuan Zhang
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario K7L 3N6, Canada.
| |
Collapse
|
16
|
Rousset M, Cens T, Menard C, Bowerman M, Bellis M, Brusés J, Raoul C, Scamps F, Charnet P. Regulation of neuronal high-voltage activated Ca(V)2 Ca(2+) channels by the small GTPase RhoA. Neuropharmacology 2015; 97:201-9. [PMID: 26044639 DOI: 10.1016/j.neuropharm.2015.05.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Revised: 05/12/2015] [Accepted: 05/16/2015] [Indexed: 11/29/2022]
Abstract
High-Voltage-Activated (HVA) Ca(2+) channels are known regulators of synapse formation and transmission and play fundamental roles in neuronal pathophysiology. Small GTPases of Rho and RGK families, via their action on both cytoskeleton and Ca(2+) channels are key molecules for these processes. While the effects of RGK GTPases on neuronal HVA Ca(2+) channels have been widely studied, the effects of RhoA on the HVA channels remains however elusive. Using heterologous expression in Xenopus laevis oocytes, we show that RhoA activity reduces Ba(2+) currents through CaV2.1, CaV2.2 and CaV2.3 Ca(2+) channels independently of CaVβ subunit. This inhibition occurs independently of RGKs activity and without modification of biophysical properties and global level of expression of the channel subunit. Instead, we observed a marked decrease in the number of active channels at the plasma membrane. Pharmacological and expression studies suggest that channel expression at the plasma membrane is impaired via a ROCK-sensitive pathway. Expression of constitutively active RhoA in primary culture of spinal motoneurons also drastically reduced HVA Ca(2+) current amplitude. Altogether our data revealed that HVA Ca(2+) channels regulation by RhoA might govern synaptic transmission during development and potentially contribute to pathophysiological processes when axon regeneration and growth cone kinetics are impaired.
Collapse
Affiliation(s)
- Matthieu Rousset
- IBMM, CNRS UMR 5247, Université de Montpellier, 1919 route de Mende, 34293 Montpellier, France
| | - Thierry Cens
- IBMM, CNRS UMR 5247, Université de Montpellier, 1919 route de Mende, 34293 Montpellier, France
| | - Claudine Menard
- IBMM, CNRS UMR 5247, Université de Montpellier, 1919 route de Mende, 34293 Montpellier, France
| | - Melissa Bowerman
- Institut des Neurosciences, INSERM U1051, 80 rue Augustin Fliche, 34091 Montpellier, France
| | - Michel Bellis
- IBMM, CNRS UMR 5247, Université de Montpellier, 1919 route de Mende, 34293 Montpellier, France
| | - Juan Brusés
- Department of Natural Sciences, Mercy College, Dobbs Ferry, NY 10522, USA; Institute for Cell Biology and Neuroscience (CONICET-UBA), Buenos Aires, Argentina
| | - Cedric Raoul
- Institut des Neurosciences, INSERM U1051, 80 rue Augustin Fliche, 34091 Montpellier, France
| | - Frédérique Scamps
- Institut des Neurosciences, INSERM U1051, 80 rue Augustin Fliche, 34091 Montpellier, France
| | - Pierre Charnet
- IBMM, CNRS UMR 5247, Université de Montpellier, 1919 route de Mende, 34293 Montpellier, France.
| |
Collapse
|
17
|
Pavlov TS, Levchenko V, Staruschenko A. Role of Rho GDP dissociation inhibitor α in control of epithelial sodium channel (ENaC)-mediated sodium reabsorption. J Biol Chem 2014; 289:28651-9. [PMID: 25164814 DOI: 10.1074/jbc.m114.558262] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The epithelial sodium channel (ENaC) is expressed in the aldosterone-sensitive distal nephron where it performs sodium reabsorption from the lumen. We have recently shown that ENaC activity contributes to the development of salt-induced hypertension as a result of deficiency of EGF level. Previous studies revealed that Rho GDP-dissociation inhibitor α (RhoGDIα) is involved in the control of salt-sensitive hypertension and renal injury via Rac1, which is one of the small GTPases activating ENaC. Here we investigated the intracellular mechanism mediating the involvement of the RhoGDIα/Rac1 axis in the control of ENaC and the effect of EGF on ENaC in this pathway. We demonstrated that RhoGDIα is highly expressed in the cortical collecting ducts of mice and rats, and its expression is down-regulated in Dahl salt-sensitive rats fed a high salt diet. Knockdown of RhoGDIα in cultured cortical collecting duct principal cells increased ENaC subunits expression and ENaC-mediated sodium reabsorption. Furthermore, RhoGDIα deficiency causes enhanced response to EGF treatment. Patch clamp analysis reveals that RhoGDIα significantly decreases ENaC current density and prevents its up-regulation by RhoA and Rac1. Inhibition of Rho kinase with Y27632 had no effects on ENaC response to EGF either in control or RhoGDIα knocked down cells. However, EGF treatment increased levels of active Rac1, which was further enhanced in RhoGDIα-deficient cells. We conclude that changes in the RhoGDIα-dependent pathway have a permissive role in the Rac1-mediated enhancement of ENaC activity observed in salt-induced hypertension.
Collapse
Affiliation(s)
- Tengis S Pavlov
- From the Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin 53226
| | - Vladislav Levchenko
- From the Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin 53226
| | - Alexander Staruschenko
- From the Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin 53226
| |
Collapse
|
18
|
Jia Z, Ikeda R, Ling J, Gu JG. GTP-dependent run-up of Piezo2-type mechanically activated currents in rat dorsal root ganglion neurons. Mol Brain 2013; 6:57. [PMID: 24344923 PMCID: PMC3899620 DOI: 10.1186/1756-6606-6-57] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Accepted: 12/05/2013] [Indexed: 11/10/2022] Open
Abstract
Rapidly adapting mechanically activated channels (RA) are expressed in primary afferent neurons and identified as Piezo2 ion channels. We made whole-cell voltage-clamp recordings from cultured dorsal root ganglion (DRG) neurons to study RA channel regulation. RA currents showed gradual increases in current amplitude (current "run-up") after establishing whole-cell mode when 0.33 mM GTP or 0.33 mM GTPγS was included in the patch pipette internal solution. RA current run-up was also observed in HEK293 cells that heterologously expressed Piezo2 ion channels. No significant RA current run-up was observed in DRG neurons when GTP was omitted from the patch pipette internal solution, when GTP was replaced with 0.33 mM GDP, or when recordings were made under the perforated patch-clamp recording configuration. Our findings revealed a GTP-dependent up-regulation of the function of piezo2 ion channels in DRG neurons.
Collapse
Affiliation(s)
- Zhanfeng Jia
- Pain Research Center, Department of Anesthesiology, The University of Cincinnati College of Medicine, PO Box 670531, 231 Albert Sabin Way, Cincinnati, OH 45267, USA
- Department of Pharmacology, Hebei Medical University, 361 East Zhongshan Road, Shijiazhuang 050017, China
| | - Ryo Ikeda
- Pain Research Center, Department of Anesthesiology, The University of Cincinnati College of Medicine, PO Box 670531, 231 Albert Sabin Way, Cincinnati, OH 45267, USA
| | - Jennifer Ling
- Pain Research Center, Department of Anesthesiology, The University of Cincinnati College of Medicine, PO Box 670531, 231 Albert Sabin Way, Cincinnati, OH 45267, USA
| | - Jianguo G Gu
- Pain Research Center, Department of Anesthesiology, The University of Cincinnati College of Medicine, PO Box 670531, 231 Albert Sabin Way, Cincinnati, OH 45267, USA
| |
Collapse
|
19
|
Cao Y, Tao L, Shen S, Xiao J, Wu H, Li B, Wu X, Luo W, Xiao Q, Hu X, Liu H, Nie J, Lu S, Yuan B, Han Z, Xiao B, Yang Z, Li X. Cardiac ablation of Rheb1 induces impaired heart growth, endoplasmic reticulum-associated apoptosis and heart failure in infant mice. Int J Mol Sci 2013; 14:24380-98. [PMID: 24351823 PMCID: PMC3876117 DOI: 10.3390/ijms141224380] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2013] [Revised: 11/25/2013] [Accepted: 12/03/2013] [Indexed: 11/19/2022] Open
Abstract
Ras homologue enriched in brain 1 (Rheb1) plays an important role in a variety of cellular processes. In this study, we investigate the role of Rheb1 in the post-natal heart. We found that deletion of the gene responsible for production of Rheb1 from cardiomyocytes of post-natal mice resulted in malignant arrhythmias, heart failure, and premature death of these mice. In addition, heart growth impairment, aberrant metabolism relative gene expression, and increased cardiomyocyte apoptosis were observed in Rheb1-knockout mice prior to the development of heart failure and arrhythmias. Also, protein kinase B (PKB/Akt) signaling was enhanced in Rheb1-knockout mice, and removal of phosphatase and tensin homolog (Pten) significantly prolonged the survival of Rheb1-knockouts. Furthermore, signaling via the mammalian target of rapamycin complex 1 (mTORC1) was abolished and C/EBP homologous protein (CHOP) and phosphorylation levels of c-Jun N-terminal kinase (JNK) were increased in Rheb1 mutant mice. In conclusion, this study demonstrates that Rheb1 is important for maintaining cardiac function in post-natal mice via regulation of mTORC1 activity and stress on the endoplasmic reticulum. Moreover, activation of Akt signaling helps to improve the survival of mice with advanced heart failure. Thus, this study provides direct evidence that Rheb1 performs multiple important functions in the heart of the post-natal mouse. Enhancing Akt activity improves the survival of infant mice with advanced heart failure.
Collapse
MESH Headings
- Animals
- Animals, Newborn
- Apoptosis
- Arrhythmias, Cardiac/etiology
- Arrhythmias, Cardiac/metabolism
- Arrhythmias, Cardiac/pathology
- Cells, Cultured
- Endoplasmic Reticulum/metabolism
- Heart/growth & development
- Heart/physiopathology
- Heart Failure/etiology
- Heart Failure/metabolism
- Heart Failure/pathology
- JNK Mitogen-Activated Protein Kinases/metabolism
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Monomeric GTP-Binding Proteins/deficiency
- Monomeric GTP-Binding Proteins/genetics
- Monomeric GTP-Binding Proteins/metabolism
- Myocytes, Cardiac/cytology
- Myocytes, Cardiac/metabolism
- Myocytes, Cardiac/pathology
- Neuropeptides/deficiency
- Neuropeptides/genetics
- Neuropeptides/metabolism
- PTEN Phosphohydrolase/metabolism
- Phosphoric Monoester Hydrolases/metabolism
- Phosphorylation
- Proto-Oncogene Proteins c-akt/metabolism
- Ras Homolog Enriched in Brain Protein
Collapse
Affiliation(s)
- Yunshan Cao
- Department of Cardiology, The First Affiliated Hospital with Nanjing Medical University, Nanjing 210029, China; E-Mails: (Y.C.); (L.T.); (S.S.); (J.X.); (H.W.); (B.L.); (X.W.); (H.L.); (Z.H.)
- MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing University, Nanjing 210061, China; E-Mails: (W.L.); (Q.X.); (X.H.); (J.N.); (S.L.); (B.Y.)
| | - Lichan Tao
- Department of Cardiology, The First Affiliated Hospital with Nanjing Medical University, Nanjing 210029, China; E-Mails: (Y.C.); (L.T.); (S.S.); (J.X.); (H.W.); (B.L.); (X.W.); (H.L.); (Z.H.)
- MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing University, Nanjing 210061, China; E-Mails: (W.L.); (Q.X.); (X.H.); (J.N.); (S.L.); (B.Y.)
| | - Shutong Shen
- Department of Cardiology, The First Affiliated Hospital with Nanjing Medical University, Nanjing 210029, China; E-Mails: (Y.C.); (L.T.); (S.S.); (J.X.); (H.W.); (B.L.); (X.W.); (H.L.); (Z.H.)
- MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing University, Nanjing 210061, China; E-Mails: (W.L.); (Q.X.); (X.H.); (J.N.); (S.L.); (B.Y.)
| | - Junjie Xiao
- Department of Cardiology, The First Affiliated Hospital with Nanjing Medical University, Nanjing 210029, China; E-Mails: (Y.C.); (L.T.); (S.S.); (J.X.); (H.W.); (B.L.); (X.W.); (H.L.); (Z.H.)
- Regeneration Lab and Experimental Center of Life sciences, School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Hang Wu
- Department of Cardiology, The First Affiliated Hospital with Nanjing Medical University, Nanjing 210029, China; E-Mails: (Y.C.); (L.T.); (S.S.); (J.X.); (H.W.); (B.L.); (X.W.); (H.L.); (Z.H.)
| | - Beibei Li
- Department of Cardiology, The First Affiliated Hospital with Nanjing Medical University, Nanjing 210029, China; E-Mails: (Y.C.); (L.T.); (S.S.); (J.X.); (H.W.); (B.L.); (X.W.); (H.L.); (Z.H.)
| | - Xiangqi Wu
- Department of Cardiology, The First Affiliated Hospital with Nanjing Medical University, Nanjing 210029, China; E-Mails: (Y.C.); (L.T.); (S.S.); (J.X.); (H.W.); (B.L.); (X.W.); (H.L.); (Z.H.)
- MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing University, Nanjing 210061, China; E-Mails: (W.L.); (Q.X.); (X.H.); (J.N.); (S.L.); (B.Y.)
| | - Wen Luo
- MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing University, Nanjing 210061, China; E-Mails: (W.L.); (Q.X.); (X.H.); (J.N.); (S.L.); (B.Y.)
| | - Qi Xiao
- MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing University, Nanjing 210061, China; E-Mails: (W.L.); (Q.X.); (X.H.); (J.N.); (S.L.); (B.Y.)
| | - Xiaoshan Hu
- MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing University, Nanjing 210061, China; E-Mails: (W.L.); (Q.X.); (X.H.); (J.N.); (S.L.); (B.Y.)
| | - Hailang Liu
- Department of Cardiology, The First Affiliated Hospital with Nanjing Medical University, Nanjing 210029, China; E-Mails: (Y.C.); (L.T.); (S.S.); (J.X.); (H.W.); (B.L.); (X.W.); (H.L.); (Z.H.)
| | - Junwei Nie
- MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing University, Nanjing 210061, China; E-Mails: (W.L.); (Q.X.); (X.H.); (J.N.); (S.L.); (B.Y.)
| | - Shuangshuang Lu
- MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing University, Nanjing 210061, China; E-Mails: (W.L.); (Q.X.); (X.H.); (J.N.); (S.L.); (B.Y.)
| | - Baiyin Yuan
- MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing University, Nanjing 210061, China; E-Mails: (W.L.); (Q.X.); (X.H.); (J.N.); (S.L.); (B.Y.)
| | - Zhonglin Han
- Department of Cardiology, The First Affiliated Hospital with Nanjing Medical University, Nanjing 210029, China; E-Mails: (Y.C.); (L.T.); (S.S.); (J.X.); (H.W.); (B.L.); (X.W.); (H.L.); (Z.H.)
| | - Bo Xiao
- The State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China; E-Mail:
| | - Zhongzhou Yang
- MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing University, Nanjing 210061, China; E-Mails: (W.L.); (Q.X.); (X.H.); (J.N.); (S.L.); (B.Y.)
- Authors to whom correspondence should be addressed; E-Mails: or (X.L.); (Z.Y.); Tel.: +86-25-8371-4511-6325 (X.L.); Fax: +86-25-8367-3396 (X.L.)
| | - Xinli Li
- Department of Cardiology, The First Affiliated Hospital with Nanjing Medical University, Nanjing 210029, China; E-Mails: (Y.C.); (L.T.); (S.S.); (J.X.); (H.W.); (B.L.); (X.W.); (H.L.); (Z.H.)
- Authors to whom correspondence should be addressed; E-Mails: or (X.L.); (Z.Y.); Tel.: +86-25-8371-4511-6325 (X.L.); Fax: +86-25-8367-3396 (X.L.)
| |
Collapse
|
20
|
Koh SD, Rhee PL. Ionic Conductance(s) in Response to Post-junctional Potentials. J Neurogastroenterol Motil 2013; 19:426-32. [PMID: 24199003 PMCID: PMC3816177 DOI: 10.5056/jnm.2013.19.4.426] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Revised: 08/28/2013] [Accepted: 08/30/2013] [Indexed: 01/29/2023] Open
Abstract
The gastrointestinal motility is regulated by extrinsic and intrinsic neural regulation. Intrinsic neural pathways are controlled by sensory input, inter-neuronal relay and motor output. Enteric motor neurons release many transmitters which affect post-junctional responses. Post-junctional responses can be excitatory and inhibitory depending on neurotransmitters. Excitatory neurotransmitters induce depolarization and contraction. In contrast, inhibitory neurotransmitters hyperpolarize and relaxe the gastrointestinal smooth muscle. Smooth muscle syncytium is composed of smooth muscle cells, interstitial cells of Cajal and platelet-derived growth factor receptor α-positive (PDGFRα(+)) cells (SIP syncytium). Specific expression of receptors and ion channels in these cells can be affected by neurotransmitters. In recent years, molecular reporter expression techniques are able to study the properties of ion channels and receptors in isolated specialized cells. In this review, we will discuss the mechanisms of ion channels to interpret the post-junctional responses in the gastrointestinal smooth muscles.
Collapse
Affiliation(s)
- Sang Don Koh
- Department of Physiology and Cell Biology, University of Nevada, School of Medicine, Reno, NV, USA
| | | |
Collapse
|
21
|
Loirand G, Sauzeau V, Pacaud P. Small G Proteins in the Cardiovascular System: Physiological and Pathological Aspects. Physiol Rev 2013; 93:1659-720. [DOI: 10.1152/physrev.00021.2012] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Small G proteins exist in eukaryotes from yeast to human and constitute the Ras superfamily comprising more than 100 members. This superfamily is structurally classified into five families: the Ras, Rho, Rab, Arf, and Ran families that control a wide variety of cell and biological functions through highly coordinated regulation processes. Increasing evidence has accumulated to identify small G proteins and their regulators as key players of the cardiovascular physiology that control a large panel of cardiac (heart rhythm, contraction, hypertrophy) and vascular functions (angiogenesis, vascular permeability, vasoconstriction). Indeed, basal Ras protein activity is required for homeostatic functions in physiological conditions, but sustained overactivation of Ras proteins or spatiotemporal dysregulation of Ras signaling pathways has pathological consequences in the cardiovascular system. The primary object of this review is to provide a comprehensive overview of the current progress in our understanding of the role of small G proteins and their regulators in cardiovascular physiology and pathologies.
Collapse
Affiliation(s)
- Gervaise Loirand
- INSERM, UMR S1087; University of Nantes; and CHU Nantes, l'Institut du Thorax, Nantes, France
| | - Vincent Sauzeau
- INSERM, UMR S1087; University of Nantes; and CHU Nantes, l'Institut du Thorax, Nantes, France
| | - Pierre Pacaud
- INSERM, UMR S1087; University of Nantes; and CHU Nantes, l'Institut du Thorax, Nantes, France
| |
Collapse
|
22
|
Cui Z, Zhang S. Regulation of the human ether-a-go-go-related gene (hERG) channel by Rab4 protein through neural precursor cell-expressed developmentally down-regulated protein 4-2 (Nedd4-2). J Biol Chem 2013; 288:21876-86. [PMID: 23792956 DOI: 10.1074/jbc.m113.461715] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The human ether-a-go-go-related gene (hERG) encodes the pore-forming α-subunit of the rapidly activating delayed rectifier K(+) channel in the heart, which plays a critical role in cardiac action potential repolarization. Dysfunction of IKr causes long QT syndrome, a cardiac electrical disorder that predisposes affected individuals to fatal arrhythmias and sudden death. The homeostasis of hERG channels in the plasma membrane depends on a balance between protein synthesis and degradation. Our recent data indicate that hERG channels undergo enhanced endocytic degradation under low potassium (hypokalemia) conditions. The GTPase Rab4 is known to mediate rapid recycling of various internalized proteins to the plasma membrane. In the present study, we investigated the effect of Rab4 on the expression level of hERG channels. Our data revealed that overexpression of Rab4 decreases the expression level of hERG in the plasma membrane. Rab4 does not affect the expression level of the Kv1.5 or EAG K(+) channels. Mechanistically, our data demonstrate that overexpression of Rab4 increases the expression level of endogenous Nedd4-2, a ubiquitin ligase that targets hERG but not Kv1.5 or EAG channels for ubiquitination and degradation. Nedd4-2 undergoes self- ubiquitination and degradation. Rab4 interferes with Nedd4-2 degradation, resulting in an increased expression level of Nedd4-2, which targets hERG. In summary, the present study demonstrates a novel pathway for hERG regulation; Rab4 decreases the hERG density at the plasma membrane by increasing the endogenous Nedd4-2 expression.
Collapse
Affiliation(s)
- Zhi Cui
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | | |
Collapse
|
23
|
Sheikh IA, Koley H, Chakrabarti MK, Hoque KM. The Epac1 signaling pathway regulates Cl- secretion via modulation of apical KCNN4c channels in diarrhea. J Biol Chem 2013; 288:20404-15. [PMID: 23720748 DOI: 10.1074/jbc.m113.467860] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The apical membrane of intestinal epithelia expresses intermediate conductance K(+) channel (KCNN4), which provides the driving force for Cl(-) secretion. However, its role in diarrhea and regulation by Epac1 is unknown. Previously we have established that Epac1 upon binding of cAMP activates a PKA-independent mechanism of Cl(-) secretion via stimulation of Rap2-phospholipase Cε-[Ca(2+)]i signaling. Here we report that Epac1 regulates surface expression of KCNN4c channel through its downstream Rap1A-RhoA-Rho-associated kinase (ROCK) signaling pathway for sustained Cl(-) secretion. Depletion of Epac1 protein and apical addition of TRAM-34, a specific KCNN4 inhibitor, significantly abolished cAMP-stimulated Cl(-) secretion and apical K(+) conductance (IK(ap)) in T84WT cells. The current-voltage relationship of basolaterally permeabilized monolayers treated with Epac1 agonist 8-(4-chlorophenylthio)-2'-O- methyladenosine 3',5'-cyclic monophosphate showed the presence of an inwardly rectifying and TRAM-34-sensitive K(+) channel in T84WT cells that was absent in Epac1KDT84 cells. Reconstructed confocal images in Epac1KDT84 cells revealed redistribution of KCNN4c proteins into subapical intracellular compartment, and a biotinylation assay showed ∼83% lower surface expression of KCNN4c proteins compared with T84WT cells. Further investigation revealed that an Epac1 agonist activates Rap1 to facilitate IK(ap). Both RhoA inhibitor (GGTI298) and ROCK inhibitor (H1152) significantly reduced cAMP agonist-stimulated IK(ap), whereas the latter additionally reduced colocalization of KCNN4c with the apical membrane marker wheat germ agglutinin in T84WT cells. In vivo mouse ileal loop experiments showed reduced fluid accumulation by TRAM-34, GGTI298, or H1152 when injected together with cholera toxin into the loop. We conclude that Rap1A-dependent signaling of Epac1 involving RhoA-ROCK is an important regulator of intestinal fluid transport via modulation of apical KCNN4c channels, a finding with potential therapeutic value in diarrheal diseases.
Collapse
Affiliation(s)
- Irshad Ali Sheikh
- Division of Molecular Pathophysiology, National Institute of Cholera and Enteric Diseases, P-33 CIT Road, Scheme-XM, Beliaghata, Kolkata 700010, India
| | | | | | | |
Collapse
|
24
|
Caza TN, Talaber G, Perl A. Metabolic regulation of organelle homeostasis in lupus T cells. Clin Immunol 2012; 144:200-13. [PMID: 22836085 PMCID: PMC3423541 DOI: 10.1016/j.clim.2012.07.001] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2012] [Accepted: 07/03/2012] [Indexed: 12/23/2022]
Abstract
Abnormal T-cell signaling and activation are characteristic features in systemic lupus erythematosus (SLE). Lupus T cells are shifted toward an over-activated state, important signaling pathways are rewired, and signaling molecules are replaced. Disturbances in metabolic and organelle homeostasis, importantly within the mitochondrial, endosomal, and autophagosomal compartments, underlie the changes in signal transduction. Mitochondrial hyperpolarization, enhanced endosomal recycling, and dysregulated autophagy are hallmarks of pathologic organelle homeostasis in SLE. This review is focused on the metabolic checkpoints of endosomal traffic that control immunological synapse formation and mitophagy and may thus serve as targets for treatment in SLE.
Collapse
Affiliation(s)
- Tiffany N Caza
- Department of Medicine, State University of New York Upstate Medical University, Syracuse, 13210, USA
| | | | | |
Collapse
|
25
|
Abstract
Small GTPases function as molecular switches in cell signaling, alternating between an inactive, GDP-bound state, and active GTP-bound state. βPix is one of guanine nucleotide exchange factors (GEFs) that catalyze the exchange of bound GDP for ambient GTP. The central goal of this review article is to summarize recent findings on βPix and the role it plays in kidney pathology and physiology. Recent studies shed new light on several key questions concerning the signaling mechanisms mediated by βPix. This manuscript provides a review of the various mechanisms whereby βPix has been shown to function within the kidney through a wide range of actions. Both canonical GEF activity and non-canonical signaling pathways mediated by βPix are discussed. Distribution patterns of βPix in the kidney will be also covered. Much has yet to be discerned, but it is clear that βPix plays a significant role in the kidney.
Collapse
|
26
|
Abstract
The central goal of this overview article is to summarize recent findings in renal epithelial transport,focusing chiefly on the connecting tubule (CNT) and the cortical collecting duct (CCD).Mammalian CCD and CNT are involved in fine-tuning of electrolyte and fluid balance through reabsorption and secretion. Specific transporters and channels mediate vectorial movements of water and solutes in these segments. Although only a small percent of the glomerular filtrate reaches the CNT and CCD, these segments are critical for water and electrolyte homeostasis since several hormones, for example, aldosterone and arginine vasopressin, exert their main effects in these nephron sites. Importantly, hormones regulate the function of the entire nephron and kidney by affecting channels and transporters in the CNT and CCD. Knowledge about the physiological and pathophysiological regulation of transport in the CNT and CCD and particular roles of specific channels/transporters has increased tremendously over the last two decades.Recent studies shed new light on several key questions concerning the regulation of renal transport.Precise distribution patterns of transport proteins in the CCD and CNT will be reviewed, and their physiological roles and mechanisms mediating ion transport in these segments will also be covered. Special emphasis will be given to pathophysiological conditions appearing as a result of abnormalities in renal transport in the CNT and CCD.
Collapse
Affiliation(s)
- Alexander Staruschenko
- Department of Physiology and Kidney Disease Center, Medical College of Wisconsin, Milwaukee, Wisconsin, USA.
| |
Collapse
|
27
|
Butterworth MB, Edinger RS, Silvis MR, Gallo LI, Liang X, Apodaca G, Frizzell RA, Fizzell RA, Johnson JP. Rab11b regulates the trafficking and recycling of the epithelial sodium channel (ENaC). Am J Physiol Renal Physiol 2012; 302:F581-90. [PMID: 22129970 PMCID: PMC3353647 DOI: 10.1152/ajprenal.00304.2011] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2011] [Accepted: 11/22/2011] [Indexed: 11/22/2022] Open
Abstract
Expression of the epithelial sodium channel (ENaC) at the apical membrane of cortical collecting duct (CCD) principal cells is modulated by regulated trafficking mediated by vesicle insertion and retrieval. Small GTPases are known to facilitate vesicle trafficking, recycling, and membrane fusion events; however, little is known about the specific Rab family members that modify ENaC surface density. Using a mouse CCD cell line that endogenously expresses ENaC (mpkCCD), the channel was localized to both Rab11a- and Rab11b-positive endosomes by immunoisolation and confocal fluorescent microscopy. Expression of a dominant negative (DN) form of Rab11a or Rab11b significantly reduced the basal and cAMP-stimulated ENaC-dependent sodium (Na(+)) transport. The greatest reduction in Na(+) transport was observed with the expression of DN-Rab11b. Furthermore, small interfering RNA-mediated knockdown of each Rab11 isoform demonstrated the requirement for Rab11b in ENaC surface expression. These data indicate that Rab11b, and to a lesser extent Rab11a, is involved in establishing the constitutive and cAMP-stimulated Na(+) transport in mpkCCD cells.
Collapse
Affiliation(s)
- Michael B Butterworth
- Department of Cell Biology and Physiology, University of Pittsburgh, Pittsburgh, PA 15261, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Meijering RAM, Zhang D, Hoogstra-Berends F, Henning RH, Brundel BJJM. Loss of proteostatic control as a substrate for atrial fibrillation: a novel target for upstream therapy by heat shock proteins. Front Physiol 2012; 3:36. [PMID: 22375124 PMCID: PMC3284689 DOI: 10.3389/fphys.2012.00036] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2011] [Accepted: 02/09/2012] [Indexed: 12/19/2022] Open
Abstract
Atrial fibrillation (AF) is the most common, sustained clinical tachyarrhythmia associated with significant morbidity and mortality. AF is a persistent condition with progressive structural remodeling of the atrial cardiomyocytes due to the AF itself, resulting in cellular changes commonly observed in aging and in other heart diseases. While rhythm control by electrocardioversion or drug treatment is the treatment of choice in symptomatic AF patients, its efficacy is still limited. Current research is directed at preventing first-onset AF by limiting the development of substrates underlying AF progression and resembles mechanism-based therapy. Upstream therapy refers to the use of non-ion channel anti-arrhythmic drugs that modify the atrial substrate- or target-specific mechanisms of AF, with the ultimate aim to prevent the occurrence (primary prevention) or recurrence of the arrhythmia following (spontaneous) conversion (secondary prevention). Heat shock proteins (HSPs) are molecular chaperones and comprise a large family of proteins involved in the protection against various forms of cellular stress. Their classical function is the conservation of proteostasis via prevention of toxic protein aggregation by binding to (partially) unfolded proteins. Our recent data reveal that HSPs prevent electrical, contractile, and structural remodeling of cardiomyocytes, thus attenuating the AF substrate in cellular, Drosophila melanogaster, and animal experimental models. Furthermore, studies in humans suggest a protective role for HSPs against the progression from paroxysmal AF to persistent AF and in recurrence of AF. In this review, we discuss upregulation of the heat shock response system as a novel target for upstream therapy to prevent derailment of proteostasis and consequently progression and recurrence of AF.
Collapse
Affiliation(s)
- Roelien A M Meijering
- Department of Clinical Pharmacology, Groningen University Institute for Drug Exploration, University Medical Center Groningen, University of Groningen Groningen, Netherlands
| | | | | | | | | |
Collapse
|
29
|
Radhakrishnan K, Krieger A, Dibué M, Hescheler J, Schneider T. APLP1 and Rab5A interact with the II-III loop of the voltage-gated Ca-channel Ca(v)2.3 and modulate its internalization differently. Cell Physiol Biochem 2011; 28:603-12. [PMID: 22178872 DOI: 10.1159/000335756] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/09/2011] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Voltage gated calcium channels (VGCCs) regulate cellular activity in response to membrane depolarization by altering calcium homeostasis. Because calcium is the most versatile second messenger, regulation of the amount of VGCCs at the plasma membrane is highly critical for several essential cellular processes. Among the different types of VGCCs, the Ca(v)2.3 calcium channel and its regulation mechanisms are least understood due to Ca(v)2.3's resistance to most pharmacological agents. METHODS In order to study regulation and surface expression of Ca(v)2.3, a yeast two hybrid (Y2H) screen with the II-III loop of human Ca(v)2.3 as bait, was performed. APLP1, a member of the APP gene family and Rab5A, an endocytotic catalyst were identified as putative interaction partners. The interaction were confirmed by immunoprecipitation. To study the functional importance of the interaction, patch-clamp recordings in Ca(v)2.3 stably transfected HEK-293 cells (2C6) and surface biotin endocytosis assays were performed. RESULTS We are able to show that the II-III loop of the Ca(v)2.3 calcium channel binds APLP1 and that this binding promotes internalization of the channel. In addition, Rab5A also binds to the same loop of the channel and exerts an inhibitory effect on APLP1 mediated channel internalization. CONCLUSIONS This study identifies a regulation mechanism of Ca(v)2.3's surface expression, which implicates APLP1 as a regulator of calcium homeostasis. Thus APLP1 may play a crucial role in neuropathological mechanisms, which involve modulation of surface expression of voltage-gated Ca(2+) channels.
Collapse
Affiliation(s)
- Kayalvizhi Radhakrishnan
- Institute for Neurophysiology and Center for Molecular Medicine Cologne, University of Cologne, Robert-Koch-Strasse 39, Cologne, Germany.
| | | | | | | | | |
Collapse
|
30
|
Duan JH, Wang Y, Duarte D, Vasko MR, Nicol GD, Hingtgen CM. Ras signaling pathways mediate NGF-induced enhancement of excitability of small-diameter capsaicin-sensitive sensory neurons from wildtype but not Nf1+/- mice. Neurosci Lett 2011; 496:70-4. [PMID: 21501659 PMCID: PMC3101079 DOI: 10.1016/j.neulet.2011.03.083] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2011] [Revised: 03/18/2011] [Accepted: 03/28/2011] [Indexed: 11/30/2022]
Abstract
Nerve growth factor (NGF) activates multiple downstream effectors, including Ras, phosphoinositide-3 kinase, and sphingomyelins. However, pathway mediating the NGF-induced augmentation of sensory neuronal excitability remains largely unknown. We previously reported that small-diameter sensory neurons with a heterozygous mutation of the Nf1 gene (Nf1+/-) exhibited increased excitability. The protein product of the Nf1 gene is neurofibromin, a guanosine triphosphatase-activating protein (GAP) for p21ras (Ras) that accelerates the conversion of active Ras-GTP to inactive Ras-GDP. Thus, Nf1+/- cells have augmented basal and stimulated Ras activity. To investigate whether NGF-induced increases in excitability of small-diameter sensory neurons are dependent on Ras signaling, an antibody that blocks the activation of Ras, Y13-259, was perfused into the cell. Under these conditions, the enhanced excitability produced by NGF was suppressed in wildtype neurons but the excitability of Nf1+/- neurons was unaltered. In addition, expression of a dominant-negative form of Ras abolished the ability of NGF to increase the excitability of small-diameter sensory neurons. These results demonstrate that NGF enhances excitability of small-diameter sensory neurons in a Ras-dependent manner while the consequences of decreased expression of neurofibromin cannot be restored by blocking Ras signaling; suggesting that Ras-initiated signaling pathways can regulate both transcriptional and posttranslational control of ion channels important in neuronal excitability.
Collapse
Affiliation(s)
- J-H. Duan
- Department of Pharmacology and Toxicology, Indiana University, Indianapolis, IN, 46202
| | - Yue Wang
- Department of Pharmacology and Toxicology, Indiana University, Indianapolis, IN, 46202
| | - D. Duarte
- Department of Pharmacology and Toxicology, Indiana University, Indianapolis, IN, 46202
| | - M. R. Vasko
- Department of Pharmacology and Toxicology, Indiana University, Indianapolis, IN, 46202
| | - G. D. Nicol
- Department of Pharmacology and Toxicology, Indiana University, Indianapolis, IN, 46202
| | - C. M. Hingtgen
- Department of Pharmacology and Toxicology, Indiana University, Indianapolis, IN, 46202
- Department of Neurology School of Medicine, Indiana University, Indianapolis, IN, 46202
| |
Collapse
|
31
|
Karpushev AV, Levchenko V, Ilatovskaya DV, Pavlov TS, Staruschenko A. Novel role of Rac1/WAVE signaling mechanism in regulation of the epithelial Na+ channel. Hypertension 2011; 57:996-1002. [PMID: 21464391 DOI: 10.1161/hypertensionaha.110.157784] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The epithelial Na(+) channel (ENaC) is an essential channel responsible for Na(+) reabsorption in the aldosterone-sensitive distal nephron. Consequently, ENaC is a major effector impacting systemic blood volume and pressure. We have shown recently that Rac1 increases ENaC activity, whereas Cdc42 fails to change channel activity. Here we tested whether Rac1 signaling plays a physiological role in modulating ENaC in native tissue and polarized epithelial cells. We found that Rac1 inhibitor NSC23766 markedly decreased ENaC activity in freshly isolated collecting ducts. Knockdown of Rac1 in native principal cells decreased ENaC-mediated sodium reabsorption and the number of channels at the apical plasma membrane. Members of the Wiskott-Aldrich syndrome protein (WASP) family play a central role in the control of the actin cytoskeleton. N-WASP functions downstream of Cdc42, whereas WAVEs are effectors of Rac1 activity. N-WASP and all 3 isoforms of WAVE significantly increased ENaC activity when coexpressed in Chinese hamster ovary cells. However, wiskostatin, an inhibitor of N-WASP, had no effect on ENaC activity. Immunoblotting demonstrated the presence of WAVE1 and WAVE2 and absence of N-WASP and WAVE3 in mpkCCD(c14) and M-1 principal cells. Immunohistochemistry analysis also revealed localization of WAVE1 and WAVE2 but not N-WASP in the cortical collecting duct of Sprague-Dawley rat kidneys. Moreover, patch clamp analysis revealed that Rac1 and WAVE1/2 are parts of the same signaling pathway with respect to activation of ENaC. Thus, our findings suggest that Rac1 is essential for ENaC activity and regulates the channel via WAVE proteins.
Collapse
Affiliation(s)
- Alexey V Karpushev
- Department of Physiology, Medical College of Wisconsin, 8701 Watertown Plank Rd, Milwaukee, WI 53226, USA
| | | | | | | | | |
Collapse
|
32
|
O'Meara CC, Lazar J, Hoffman M, Moreno C, Jacob HJ. Refined mapping of the renal failure RF-3 quantitative trait locus. J Am Soc Nephrol 2010; 22:518-25. [PMID: 21127141 DOI: 10.1681/asn.2010060661] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Rf-3, a quantitative trait locus (QTL) on rat chromosome 3, affects the development of CKD in Fawn-Hooded Hypertensive (FHH) rats. This QTL spans 110 Mb and approximately 1400 genes; therefore, narrowing the position of this locus is necessary to elucidate potential candidate genes. Here, we used congenic models and comparative genomics to refine the Rf-3 candidate region. We generated congenic lines carrying smaller intervals (subcongenics) of the Rf-3 region and used these lines to reduce the Rf-3 candidate region by 94% (to 7.1 Mb). We used comparative genomics to identify QTL for both nephropathy and albuminuria in the syntenic region of this interval for both human and mouse. We also used the overlapping homologous regions to reduce the number of likely positional candidate genes to 13 known or predicted genes. By combining congenic models and cross-species studies, we narrowed the list of candidate genes to a level that we could sequence the whole interval to further identify the causative gene in future studies.
Collapse
Affiliation(s)
- Caitlin C O'Meara
- Human and Molecular Genetics Center, Department of Physiology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
| | | | | | | | | |
Collapse
|
33
|
Butterworth MB. Regulation of the epithelial sodium channel (ENaC) by membrane trafficking. BIOCHIMICA ET BIOPHYSICA ACTA 2010; 1802:1166-77. [PMID: 20347969 PMCID: PMC2921481 DOI: 10.1016/j.bbadis.2010.03.010] [Citation(s) in RCA: 101] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/22/2009] [Revised: 03/15/2010] [Accepted: 03/20/2010] [Indexed: 02/07/2023]
Abstract
The epithelial Na(+) channel (ENaC) is a major regulator of salt and water reabsorption in a number of epithelial tissues. Abnormalities in ENaC function have been directly linked to several human disease states including Liddle syndrome, psuedohypoaldosteronism, and cystic fibrosis and may be implicated in salt-sensitive hypertension. ENaC activity in epithelial cells is regulated both by open probability and channel number. This review focuses on the regulation of ENaC in the cells of the kidney cortical collecting duct by trafficking and recycling. The trafficking of ENaC is discussed in the broader context of epithelial cell vesicle trafficking. Well-characterized pathways and protein interactions elucidated using epithelial model cells are discussed, and the known overlap with ENaC regulation is highlighted. In following the life of ENaC in CCD epithelial cells the apical delivery, internalization, recycling, and destruction of the channel will be discussed. While a number of pathways presented still need to be linked to ENaC regulation and many details of the regulation of ENaC trafficking remain to be elucidated, knowledge of these mechanisms may provide further insights into ENaC activity in normal and disease states.
Collapse
Affiliation(s)
- Michael B Butterworth
- Department Cell Biology and Physiology, University of Pittsburgh, Pittsburgh, PA 15261, USA.
| |
Collapse
|
34
|
Alkhalil A, Hammamieh R, Hardick J, Ichou MA, Jett M, Ibrahim S. Gene expression profiling of monkeypox virus-infected cells reveals novel interfaces for host-virus interactions. Virol J 2010; 7:173. [PMID: 20667104 PMCID: PMC2920256 DOI: 10.1186/1743-422x-7-173] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2010] [Accepted: 07/28/2010] [Indexed: 12/18/2022] Open
Abstract
Monkeypox virus (MPV) is a zoonotic Orthopoxvirus and a potential biothreat agent that causes human disease with varying morbidity and mortality. Members of the Orthopoxvirus genus have been shown to suppress antiviral cell defenses, exploit host cell machinery, and delay infection-induced cell death. However, a comprehensive study of all host genes and virus-targeted host networks during infection is lacking. To better understand viral strategies adopted in manipulating routine host biology on global scale, we investigated the effect of MPV infection on Macaca mulatta kidney epithelial cells (MK2) using GeneChip rhesus macaque genome microarrays. Functional analysis of genes differentially expressed at 3 and 7 hours post infection showed distinctive regulation of canonical pathways and networks. While the majority of modulated histone-encoding genes exhibited sharp copy number increases, many of its transcription regulators were substantially suppressed; suggesting involvement of unknown viral factors in host histone expression. In agreement with known viral dependence on actin in motility, egress, and infection of adjacent cells, our results showed extensive regulation of genes usually involved in controlling actin expression dynamics. Similarly, a substantial ratio of genes contributing to cell cycle checkpoints exhibited concerted regulation that favors cell cycle progression in G1, S, G2 phases, but arrest cells in G2 phase and inhibits entry into mitosis. Moreover, the data showed that large number of infection-regulated genes is involved in molecular mechanisms characteristic of cancer canonical pathways. Interestingly, ten ion channels and transporters showed progressive suppression during the course of infection. Although the outcome of this unusual channel expression on cell osmotic homeostasis remains unknown, instability of cell osmotic balance and membrane potential has been implicated in intracellular pathogens egress. Our results highlight the role of histones, actin, cell cycle regulators, and ion channels in MPV infection, and propose these host functions as attractive research focal points in identifying novel drug intervention sites.
Collapse
Affiliation(s)
- Abdulnaser Alkhalil
- United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Maryland 21702, USA
| | - Rasha Hammamieh
- Division of Pathology, Walter Reed Army Institute of Research, Silver Spring, MD, 20910, USA
| | - Justin Hardick
- United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Maryland 21702, USA
| | - Mohamed Ait Ichou
- United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Maryland 21702, USA
| | - Marti Jett
- Division of Pathology, Walter Reed Army Institute of Research, Silver Spring, MD, 20910, USA
| | - Sofi Ibrahim
- United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Maryland 21702, USA
| |
Collapse
|
35
|
Pavlov TS, Chahdi A, Ilatovskaya DV, Levchenko V, Vandewalle A, Pochynyuk O, Sorokin A, Staruschenko A. Endothelin-1 inhibits the epithelial Na+ channel through betaPix/14-3-3/Nedd4-2. J Am Soc Nephrol 2010; 21:833-43. [PMID: 20338996 DOI: 10.1681/asn.2009080885] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Epithelial Na+ channels (ENaCs) mediate sodium reabsorption in the cortical collecting duct (CCD), but the regulatory pathways that modulate the activity of these channels are incompletely understood. Here, we observed that endothelin-1 (ET-1) attenuates ENaC activity acutely by reducing the channel's open probability and chronically by decreasing the number of channels in the plasma membrane. To investigate whether beta1Pix, a signaling protein activated by ET-1, mediates ENaC activity, we reconstituted ENaC in CHO cells with or without coexpressed beta1Pix and found that beta1Pix negatively regulates ENaC. Knockdown of betaPix in native principal cells abolished the ET-1-induced decrease in ENaC channel number. Furthermore, we found that betaPix does not decrease ENaC activity through its guanine nucleotide exchange factor (GEF) activity for Rac1 and Cdc42. Instead, coexpression of beta1Pix mutant constructs revealed that beta1Pix affects ENaC activity through binding 14-3-3 proteins. Coimmunoprecipitation experiments supported a physical interaction between beta1Pix and 14-3-3beta in cultured principal cells. Coexpression of 14-3-3beta increased ENaC activity in CHO cells, but concomitant expression of beta1Pix attenuated this increase. Recruitment of 14-3-3beta by beta1Pix impaired the interaction of 14-3-3beta with the ubiquitin ligase Nedd4-2, thereby promoting ubiquitination and degradation of ENaC. Taken together, these results suggest that the inhibitory effects of chronic ET-1 on ENaC result from betaPix interacting with the 14-3-3/Nedd4-2 pathway.
Collapse
Affiliation(s)
- Tengis S Pavlov
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Intact cytoskeleton is required for small G protein dependent activation of the epithelial Na+ channel. PLoS One 2010; 5:e8827. [PMID: 20098689 PMCID: PMC2809106 DOI: 10.1371/journal.pone.0008827] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2009] [Accepted: 01/04/2010] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND The Epithelial Na(+) Channel (ENaC) plays a central role in control of epithelial surface hydration and vascular volume. Similar to other ion channels, ENaC activity is regulated, in part, by cortical cytoskeleton. Besides, the cytoskeleton is an established target for small G proteins signaling. Here we studied whether ENaC activity is modulated by changes in the state of the cytoskeleton and whether cytoskeletal elements are involved in small G protein mediated increase of ENaC activity. METHODS AND FINDINGS First, the functional importance of the cytoskeleton was established with whole-cell patch clamp experiments recording ENaC reconstituted in CHO cells. Pretreatment with Cytochalasin D (CytD; 10 microg/ml; 1-2 h) or colchicine (500 microM; 1-3 h) to disassembly F-actin and destroy microtubules, respectively, significantly decreased amiloride sensitive current. However, acute application of CytD induced rapid increase in macroscopic current. Single channel measurements under cell-attached conditions revealed similar observations. CytD rapidly increased ENaC activity in freshly isolated rat collecting duct, polarized epithelial mouse mpkCCD(c14) cells and HEK293 cells transiently transfected with ENaC subunits. In contrast, colchicine did not have an acute effect on ENaC activity. Small G proteins RhoA, Rac1 and Rab11a markedly increase ENaC activity. 1-2 h treatment with colchicine or CytD abolished effects of these GTPases. Interestingly, when cells were coexpressed with ENaC and RhoA, short-term treatment with CytD decreased ENaC activity. CONCLUSIONS We conclude that cytoskeleton is involved in regulation of ENaC and is necessary for small G protein mediated increase of ENaC activity.
Collapse
|
37
|
Zhang Y, Li Q, Zhu F, Cui J, Li K, Li Q, Wang R, Wang W, Wang W, Yan W. Subcellular localization of APMCF1 and its biological significance of expression pattern in normal and malignant human tissues. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2009; 28:111. [PMID: 19664239 PMCID: PMC2731735 DOI: 10.1186/1756-9966-28-111] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2009] [Accepted: 08/09/2009] [Indexed: 12/01/2022]
Abstract
Background APMCF1 is a novel human gene first cloned from apoptotic MCF-7 cells. Our previous study found ectogenic APMCF1 could induce G1 arrest in hepatocarcinoma cell line HHCC. In order to search its broad expression profile for further understanding of its mechanism in tumor, we investigated a subcellular location of APMCF1 and performed an immunohistochemistry study including various tumor and normal tissues. Discovery from the expression characterization of AMPCF1 may have applicability in the analysis of its biological function in tumor. Methods We investigated subcellular localization of APMCF1 by transient transfection in green monkey kidney epithelial cells (COS-7) with a fusion protein vector pEGFP-APMCF1 and detected expression profile in a broad range of normal and malignant human tissues via tissue microarray (TMA) by immunohistochemistry with polyclonal antibody first produced in our laboratory. Results EGFP-APMCF1 was generally localized in the cytoplasm of COS-7 cell. Positive staining of APMCF1 was found in liver, lung, breast, colon, stomach, esophagus and testis, exhibited a ubiquitous expression pattern while its expression was up-regulated in tumor tissues compared with corresponding normal tissues. Normal brain neuron cells also showed expression of APMCF1, but negative in gliocyte cells and glioma. Both the normal and tumor tissues of ovary were absent of APMCF1 expression. Positive immunostaining for APMCF1 with large samples in liver, colon, esophagus, lung and breast carcinomas were 96% (51/53), 80% (44/55), 57% (30/53), 58% (33/57) and 34% (16/47) respectively. Conclusion These results revealed a cytoplastic expression pattern of APMCF1 and up-regulated in tumour tissues suggesting APMCF1 may have potential relationship with oncogenesis. The data presented should serve as a useful reference for further studies of APMCF1 functions in tumorigenesis and might provide a potential anti-tumor target.
Collapse
Affiliation(s)
- Yaqing Zhang
- Department of Pathology, State Key Laboratory of GI Cancer Biology, Xijing Hospital, Fourth Military Medical University, Shaanxi Province, PR China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Karpushev AV, Levchenko V, Pavlov TS, Lam V, Vinnakota KC, Vandewalle A, Wakatsuki T, Staruschenko A. Regulation of ENaC expression at the cell surface by Rab11. Biochem Biophys Res Commun 2008; 377:521-525. [PMID: 18926797 PMCID: PMC2612579 DOI: 10.1016/j.bbrc.2008.10.014] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2008] [Accepted: 10/03/2008] [Indexed: 11/20/2022]
Abstract
The epithelial Na(+) channel (ENaC) is an essential channel responsible for Na(+) reabsorption. Coexpression of Rab11a and Rab3a small G proteins with ENaC results in a significant increase in channel activity. In contrast, coexpression of Rab5, Rab27a, and Arf-1 had no effect or slightly decreased ENaC activity. Inhibition of MEK with PD98059, Rho-kinase with Y27632 or PI3-kinase with LY294002 had no effect on ENaC activity in Rab11a-transfected CHO cells. Fluorescence imaging methods demonstrate that Rab11a colocalized with ENaC. Rab11a increases ENaC activity in an additive manner with dominant-negative dynamin, which is a GTPase responsible for endocytosis. Brefeldin A, an inhibitor of intracellular protein translocation, blocked the stimulatory action of Rab11a on ENaC activity. We conclude that ENaC channels, present on the apical plasma membrane, are being exchanged with channels from the intracellular pool in a Rab11-dependent manner.
Collapse
Affiliation(s)
- Alexey V Karpushev
- Department of Physiology, Medical College of Wisconsin, 8701 Watertown Plank Rd., Milwaukee, WI 53226, USA
| | - Vladislav Levchenko
- Department of Physiology, Medical College of Wisconsin, 8701 Watertown Plank Rd., Milwaukee, WI 53226, USA
| | - Tengis S Pavlov
- Department of Physiology, Medical College of Wisconsin, 8701 Watertown Plank Rd., Milwaukee, WI 53226, USA
| | - Vy Lam
- Biotechnology & Bioengineering Center, Medical College of Wisconsin, 8701 Watertown Plank Rd., Milwaukee, WI 53226, USA
| | - Kalyan C Vinnakota
- Biotechnology & Bioengineering Center, Medical College of Wisconsin, 8701 Watertown Plank Rd., Milwaukee, WI 53226, USA
| | - Alain Vandewalle
- INSERM, U773, Centre de Recherche Biomedicale Bichat-Beaujon CRB3, Universite Paris, Paris, France
| | - Tetsuro Wakatsuki
- Department of Physiology, Medical College of Wisconsin, 8701 Watertown Plank Rd., Milwaukee, WI 53226, USA; Biotechnology & Bioengineering Center, Medical College of Wisconsin, 8701 Watertown Plank Rd., Milwaukee, WI 53226, USA
| | - Alexander Staruschenko
- Department of Physiology, Medical College of Wisconsin, 8701 Watertown Plank Rd., Milwaukee, WI 53226, USA; Kidney Disease Center, Medical College of Wisconsin, 8701 Watertown Plank Rd., Milwaukee, WI 53226, USA.
| |
Collapse
|
39
|
Yu L, Helms MN, Yue Q, Eaton DC. Single-channel analysis of functional epithelial sodium channel (ENaC) stability at the apical membrane of A6 distal kidney cells. Am J Physiol Renal Physiol 2008; 295:F1519-27. [PMID: 18784262 DOI: 10.1152/ajprenal.00605.2007] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Epithelial sodium channels (ENaC) play an essential role in maintaining total body fluid and electrolyte homeostasis. As such, abnormal expression of ENaC at the cell surface is linked to several important human diseases. Although the stability of ENaC subunits has been extensively studied by protein biochemical analysis, the half-life of the functional channel in the apical membrane remains controversial. Because the functional stability of the multisubunit channel may be more physiologically relevant than the stability of individual subunit proteins, we performed studies of functional ENaC channels using A6 epithelial cells, a Xenopus laevis distal nephron cell line. We recorded single-channel activity in over 400 cells with the translation blockers cycloheximide (CHX) or puromycin, as well as the intracellular protein trafficking inhibitors brefeldin A (BFA) or nocodazole. Our cell-attached, single-channel recordings allow us to quantify the channel density in the apical membrane, as well as to determine channel open probability (Po) from control (untreated) cells and from cells at different times of drug treatment. The data suggest that the half-life of ENaC channels is approximately 3.5 h following puromycin, BFA, and nocodazole treatment. Furthermore, these three drugs had no significant effect on the Po of ENaC for at least 6 h after exposure. A decrease in apical channel number and Po was observed following 2 h of CHX inhibition of protein synthesis, and the apparent channel half-life was closer to 1.5 h following CHX treatment. Treatment of cells with the translation inhibitors does not alter the expression of the protease furin, and therefore changes in protease activity cannot explain changes in ENaC Po. Confocal images show that BFA and nocodazole both disrupt most of the Golgi apparatus after 1-h exposure. In cells with the Golgi totally disrupted by overnight exposure to BFA, 20% of apical ENaC channels remained functional. This result suggests that ENaC is delivered to the apical membrane via a pathway that might bypass the Golgi vesicular trafficking pathway, or that there might be two pools of channels with markedly different half-lives in the apical membrane.
Collapse
Affiliation(s)
- Ling Yu
- Center for Cell and Molecular Signaling, Department of Physiology, Emory University School of Medicine, Whitehead Biomedical Research Bldg. 615 Michael St., Atlanta, GA 30322, USA.
| | | | | | | |
Collapse
|