1
|
Rollins RE, Dierschke J, Obiegala A, von Buttlar H, Chitimia-Dobler L, Liedvogel M. Analysis of ticks (Acari: Ixodida) and associated microorganisms collected on the North Sea Island of Heligoland. Parasitol Res 2025; 124:34. [PMID: 40095135 PMCID: PMC11914315 DOI: 10.1007/s00436-025-08478-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Accepted: 03/04/2025] [Indexed: 03/19/2025]
Abstract
Heligoland is an island located in the North Sea, where vegetation was almost destroyed as a result of heavy bombardment during and after the Second World War. However, over the past 70 years, the vegetation has developed from scrub towards bushy or even forested environments. This change has most likely altered habitat suitability for various organisms, including many species of ticks. Ticks can act as major vectors for various pathogens of humans and animals; thus, characterizing the occurrence of a tick population and associated microorganism on the island is of great importance in relation to public and animal health. For this characterization on Heligoland, we flagged ticks at four different locations during June 2023 and 2024. In 2024, ticks were opportunistically sampled from house pets living on the island and during the annual ringing of common murre (Uria aalge) fledglings. In total, 267 ticks were collected over the 2 years which were identified morphologically, and confirmed molecularly if needed, to four species: Ixodes ricinus (n = 132), Haemaphysalis punctata (n = 47), Ixodes uriae (n = 3), and Alectorobius maritimus (n = 85), which for the latter represents the first report in Germany. Questing tick samples positive for Borrelia burgdorferi sensu lato, Rickettsia spp., Anaplasma phagocytophilum, and Babesia spp. were found in one or both years. Subsequent sequencing showed the presence of two Rickettsia species (R. helvetica, R. aeschlimannii), multiple Borrelia species (B. garinii, B. valaisiana, B. bavariensis, B. afzelii), and two Babesia species (Ba. venatorum, Ba. capreoli). Our research highlights a diverse tick and associated microorganism population on the island, which could pose public and animal health risks that will need to be monitored in the future.
Collapse
Affiliation(s)
- Robert E Rollins
- Institute of Avian Research "Vogelwarte Helgoland", An der Vogelwarte 21, 26386, Wilhelmshaven, Germany.
| | - Jochen Dierschke
- Institute of Avian Research "Vogelwarte Helgoland", An der Vogelwarte 21, 26386, Wilhelmshaven, Germany
| | - Anna Obiegala
- Institute of Animal Hygiene and Veterinary Public Health, University of Leipzig, Leipzig, Germany
- Institute of Ecology and Environmental Sciences of Paris, Sorbonne Universitée, Campus Pierre et Marie Curie - Paris 5e, Tour 44-34, Paris, France
| | | | - Lidia Chitimia-Dobler
- Bundeswehr Institute of Microbiology, Munich, Germany
- Fraunhofer Institute of Immunology, Infection and Pandemic Research, Penzberg, Germany
- Experimental Parasitology, Department of Veterinary Sciences, Faculty of Veterinary Medicine, Ludwig-Maximilians-Universität, LMU, Munich, Germany
| | - Miriam Liedvogel
- Institute of Avian Research "Vogelwarte Helgoland", An der Vogelwarte 21, 26386, Wilhelmshaven, Germany
| |
Collapse
|
2
|
Mahesh PP, Kolape J, Sultana H, Neelakanta G. McFarland Standards-Based Spectrophotometry Method for Calculating Approximate Multiplicity of Infection for an Obligate Intracellular Bacterium Anaplasma phagocytophilum. Microorganisms 2025; 13:662. [PMID: 40142553 PMCID: PMC11945594 DOI: 10.3390/microorganisms13030662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Revised: 02/28/2025] [Accepted: 03/07/2025] [Indexed: 03/28/2025] Open
Abstract
Anaplasma phagocytophilum is an obligate intracellular Gram-negative bacterium that causes human granulocytic anaplasmosis. Assessing the number of these bacteria is important for in vitro and in vivo infection studies. Colony count is used to set references for the multiplicity of infections in the case of culturable bacteria. However, the number of bacteria present inside the host cells, in which the bacteria are maintained, can be considered in the case of obligate intracellular bacteria. McFarland standards are a series of turbidity-based standards used to visually assess the approximate number of culturable bacteria. The turbidity of each standard can be related to their respective absorbances or optical densities (ODs). In this study, we describe a simple method to assess the approximate number of A. phagocytophilum based on McFarland standards. The ODs of cell-free crude extracts of A. phagocytophilum were used to assess the approximate number of bacteria while considering that the cell debris also contributes to the ODs. The consistency of this method was also tested using the bacterial cultures grown at different times. In summary, we provide a simple method to estimate the number of obligate intracellular bacteria for use in in vitro infection studies.
Collapse
Affiliation(s)
- P. P. Mahesh
- Department of Biomedical and Diagnostic Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, TN 37996, USA; (P.P.M.); (H.S.)
| | - Jaydeep Kolape
- Advanced Microscopy and Imaging Center, College of Arts and Sciences, University of Tennessee, Knoxville, TN 37996, USA
| | - Hameeda Sultana
- Department of Biomedical and Diagnostic Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, TN 37996, USA; (P.P.M.); (H.S.)
| | - Girish Neelakanta
- Department of Biomedical and Diagnostic Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, TN 37996, USA; (P.P.M.); (H.S.)
| |
Collapse
|
3
|
Gęgotek A, Moniuszko-Malinowska A, Kruszewska E, Skrzydlewska E. Proteomic changes in serum of patients with Erythema migrans, Anaplasma phagocytophilum infection and co-infection. Microb Pathog 2025; 200:107337. [PMID: 39921043 DOI: 10.1016/j.micpath.2025.107337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 01/09/2025] [Accepted: 01/23/2025] [Indexed: 02/10/2025]
Abstract
BACKGROUND According to the worldwide growing number of examined tick-borne diseases, the aim of this study was to evaluate the changes in proteomic profile of human serum induced by the development of Erythema migrans (EM), human granulocytic anaplasmosis (AP) and co-infection before/after antibiotic therapy. METHODS A proteomics approach based on SDS-PAGE/LC-MS/MS analysis was used to determine the proteins expression and 15d-PGE2 adducts level with albumin isolated from the serum of patients and sex/age-matched healthy donors. FINDINGS In the serum proteome of the patients with EM or/and AP, significant changes occurred in the expression of the same top 15 modified proteins; however, each protein level was modified in the different way in terms of comparing B. burgdorferi and A. phagocytophilum infections, as well as before and after therapy. In the case of co-infection, the differences in protein expression before and after therapy were significantly lower than in the monoinfection. Moreover, both EM and AP infections/co-infection significantly increased the albumin ability to create adducts with 15d-PGE2. The therapy partially reversed this property only in the case of a single infection, but this effect was not observed for therapy of co-infections. INTERPRETATION The results demonstrate how challenging is the treatment of the tick-borne co-infections and how important is further analysis of this subject. Individual differences are also observed in each of examined in this study diseases, which makes it more difficult to develop a common biomarker for each of the tick-borne diseases.
Collapse
Affiliation(s)
- Agnieszka Gęgotek
- Department of Analytical Chemistry, Medical University of Bialystok, Mickiewicza 2D, 15-222, Bialystok, Poland.
| | - Anna Moniuszko-Malinowska
- Department of Infectious Diseases and Neuroinfections, Medical University of Bialystok, Zurawia 14, 15-540, Bialystok, Poland.
| | - Ewelina Kruszewska
- Department of Infectious Diseases and Neuroinfections, Medical University of Bialystok, Zurawia 14, 15-540, Bialystok, Poland.
| | - Elżbieta Skrzydlewska
- Department of Analytical Chemistry, Medical University of Bialystok, Mickiewicza 2D, 15-222, Bialystok, Poland.
| |
Collapse
|
4
|
Oufattole J, Piantadosi A, Telford SR, Laga AC, Solomon IH. Histological staining of tick bite skin biopsies for spirochetes and Powassan virus RNA. Microbiol Spectr 2025; 13:e0090224. [PMID: 39792004 PMCID: PMC11792453 DOI: 10.1128/spectrum.00902-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 12/10/2024] [Indexed: 01/12/2025] Open
Abstract
Ixodes scapularis is a vector of several human pathogens in the United States, including Borrelia burgdorferi, the cause of Lyme disease, and Powassan virus (POWV), an emerging cause of severe encephalitis. Skin biopsies from tick bite sites are frequently collected and tested for the presence of spirochetes (Borrelia spp.), which remain elusive. POWV testing is not performed despite the increasing incidence of POWV encephalitis. To determine the utility of staining skin biopsies for tick-borne pathogens, formalin-fixed paraffin-embedded specimens from 2010 to 2023 were examined by hematoxylin and eosin, Warthin-Starry stain, spirochete immunohistochemistry, and POWV in situ hybridization (ISH). These assays were optimized by staining histological sections from whole ticks, from which spirochetes were detected in two out of 14 patient-derived specimens, and POWV RNA was detected in multiple experimentally infected ticks. None of the 36 skin biopsies were positive for spirochetes, including 20 with retained tick mouth parts and six from patients with positive Lyme serology. POWV ISH was negative in all biopsies, including one laboratory confirmed case. Combining patients with skin biopsies and whole ticks (n = 50), spirochetes were detected in specimens from only 1/5 (20%) patients with suspected erythema chronicum migrans (ECM). Although limited, our data suggest a poor correlation between ECM and the detection of spirochetes, findings in concordance with the published literature. Similarly, the absence of detectable POWV RNA in any of the tested skin biopsies or patient-derived ticks, including one laboratory confirmed case, suggest the limited utility of POWV ISH for clinical use without further analysis with a larger sample size.IMPORTANCETick-borne infections, including Lyme and Powassan encephalitis, cause significant morbidity and mortality and are challenging to diagnose and study in humans. We examined skin biopsies from patients with tick bites to look for direct evidence of microbes by histochemical, immunohistochemical, and in situ hybridization stains. To validate these assays, we also tested the same stains on histological sections from whole ticks infected with spirochetes or Powassan virus. Examination of skin biopsies using similar tools may prove valuable in studying the pathogenesis of diseases, such as southern tick-associated rash illness, for which a causative pathogen has not yet been identified.
Collapse
Affiliation(s)
- Jihane Oufattole
- Department of Pathology, Brigham and Women’s Hospital, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Anne Piantadosi
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Sam R. Telford
- Department of Infectious Disease and Global Health, Tufts Lyme Disease Initiative, Tufts University, North Grafton, Massachusetts, USA
| | - Alvaro C. Laga
- Department of Pathology, Brigham and Women’s Hospital, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Isaac H. Solomon
- Department of Pathology, Brigham and Women’s Hospital, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
5
|
Goyal J, Goldman A, Go CC. Anaplasmosis in a 73-Year-Old Male From South Florida: A Case Report. Cureus 2025; 17:e77767. [PMID: 39981475 PMCID: PMC11841478 DOI: 10.7759/cureus.77767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 01/21/2025] [Indexed: 02/22/2025] Open
Abstract
Anaplasmosis is a tick-borne illness transmitted by the Ixodes scapularis tick in the Northeast and Midwest regions of the United States. Clinical symptoms of anaplasmosis can be non-specific, which may delay the diagnosis. This is a case of a 73-year-old male from South Florida who initially presented with non-specific febrile illness to an urgent care and was initially treated for a viral infection. Persistent febrile episodes prompted presentation to the emergency room. Initial findings of pancytopenia and fever worsened after the initiation of broad-spectrum antibiotics. Upon further history, the patient recounted recent travel to upstate New York and Canada, prompting a switch to intravenous doxycycline therapy for the presumptive diagnosis of tick-borne disease. Definitive diagnosis of anaplasmosis was confirmed via polymerase chain reaction. Since discharge with doxycycline therapy, the patient's symptoms and pancytopenia have fully resolved. Conducting a complete history and physical examination with concurrent laboratory studies is imperative for accurate diagnoses and improvement in patient outcomes.
Collapse
Affiliation(s)
- Jatin Goyal
- Internal Medicine, Herbert Wertheim College of Medicine, Florida International University, Miami, USA
| | - Alexandra Goldman
- Internal Medicine, Herbert Wertheim College of Medicine, Florida International University, Miami, USA
| | - Camille C Go
- Family Medicine, Baptist Health of South Florida, Miami, USA
| |
Collapse
|
6
|
Guru S, Mahar M, Guru N, Parent L. A Neurological Manifestation of Anaplasmosis: A Case Report. Cureus 2025; 17:e77877. [PMID: 39991338 PMCID: PMC11846626 DOI: 10.7759/cureus.77877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/23/2025] [Indexed: 02/25/2025] Open
Abstract
Human granulocytic anaplasmosis (HGA) is a tick-borne infection caused by a small intracellular gram-negative bacteria called Anaplasma phagocytophilum. It is a multisystemic disease, but neurological manifestations are rare. We report a rare neurological manifestation of stroke in a 65-year-old woman who presented initially with abdominal pain, nausea, vomiting, and dizziness. She developed worsening renal function and encephalopathy requiring hemodialysis and intubation for airway protection. Brain imaging showed acute infarcts. Morulae were seen on the peripheral smear. The diagnosis was confirmed with a positive Anaplasma PCR. Her mentation improved after 48 hours on doxycycline.
Collapse
Affiliation(s)
- Siddartha Guru
- Infectious Diseases, Penn State Health Milton S. Hershey Medical Center, Hershey, USA
| | - Marvi Mahar
- Infectious Diseases, Case Western Reserve University/University Hospitals Cleveland Medical Center, Cleveland, USA
| | - Navami Guru
- Internal Medicine, Greater Baltimore Medical Center, Towson, USA
| | - Leslie Parent
- Infectious Diseases, Penn State Health Milton S. Hershey Medical Center, Hershey, USA
| |
Collapse
|
7
|
Curtis MW, Lopez JE. Tick-Borne Diseases and Pregnancy: A Narrative Review Evaluating Pregnancy Complications Caused by Tick-Borne Diseases. Trop Med Infect Dis 2024; 9:254. [PMID: 39591260 PMCID: PMC11598240 DOI: 10.3390/tropicalmed9110254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 10/17/2024] [Accepted: 10/19/2024] [Indexed: 11/28/2024] Open
Abstract
Ticks are vectors of public health concern because the pathogens they transmit can cause detrimental diseases in humans. Lyme disease, tick-borne relapsing fever, human granulocytic anaplasmosis, Rocky Mountain spotted fever, tick-borne encephalitis, Crimean-Congo hemorrhagic fever, and babesiosis are some of the most common diseases caused by the pathogens transmitted by ticks. The overlap between human activities and tick habitats is growing, contributing to an increase in tick-borne disease cases. Unfortunately, pregnancy as a risk factor for tick-borne diseases is largely ignored. In this narrative review we use case reports, epidemiological studies, and animal studies to evaluate the maternal, pregnancy, and fetal outcomes caused by Lyme disease, tick-borne relapsing fever, human granulocytic anaplasmosis, Rocky Mountain spotted fever, tick-borne encephalitis, Crimean-Congo hemorrhagic fever, and babesiosis during pregnancy.
Collapse
Affiliation(s)
- Michael W. Curtis
- Department of Pediatrics, National School of Tropical Medicine, Baylor College of Medicine, Houston, TX 77030, USA;
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Job E. Lopez
- Department of Pediatrics, National School of Tropical Medicine, Baylor College of Medicine, Houston, TX 77030, USA;
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
8
|
Adamu A, Reyer F, Lawal N, Hassan AJ, Imam MU, Bello MB, Kraiczy P. Aetiologies of bacterial tick-borne febrile illnesses in humans in Africa: diagnostic limitations and the need for improvement. Front Med (Lausanne) 2024; 11:1419575. [PMID: 39351006 PMCID: PMC11441061 DOI: 10.3389/fmed.2024.1419575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 08/19/2024] [Indexed: 10/04/2024] Open
Abstract
Tick-borne febrile illnesses caused by pathogens like Anaplasma spp., Bartonella spp., Borrelia spp., Ehrlichia spp., Coxiella burnetii, Francisella tularensis, and Rickettsia spp., are significant health concerns in Africa. The epidemiological occurrence of these pathogens is closely linked to the habitats of their vectors, prevalent in rural and semi-urban areas where humans and livestock coexist. The overlapping clinical presentations, non-specific symptoms, and limited access to commercially available in vitro diagnostics in resource-limited settings exacerbate the complexity of accurate diagnoses. This review aimed to systematically extract and analyze existing literature on tick-borne febrile illnesses in Africa, highlighting the diagnostic challenges and presenting an up-to-date overview of the most relevant pathogens affecting human populations. A comprehensive literature search from January 1990 to June 2024 using databases like PubMed, Cochrane Library, Science Direct, EMBASE, and Google Scholar yielded 13,420 articles, of which 70 met the inclusion criteria. Anaplasma spp. were reported in Morocco, Egypt, and South Africa; Francisella spp. in Kenya and Ethiopia; Ehrlichia spp. in Cameroon; Bartonella spp. in Senegal, Namibia, South Africa, and Ethiopia; Borrelia spp. in Senegal, Gabon, Tanzania, and Ethiopia; Coxiella burnetii in 10 countries including Senegal, Mali, and South Africa; and Rickettsia spp. in 14 countries including Senegal, Algeria, and Uganda. Data were analyzed using a fixed-effect model in R version 4.0.1 and visualized on an African map using Tableau version 2022.2. This review highlights the urgent need for improved diagnostics to better manage and control tick-borne febrile illnesses in Africa.
Collapse
Affiliation(s)
- Abdulrahman Adamu
- Centre for Advanced Medical Research and Training, Usmanu Danfodiyo University Sokoto, Sokoto, Nigeria
- Department of Animal Health and Production Technology, Federal Polytechnic Bali, Taraba State, Nigeria
- Department of Veterinary Microbiology, Usmanu Danfodiyo University Sokoto, Sokoto, Nigeria
| | - Flavia Reyer
- Goethe University Frankfurt, Institute of Medical Microbiology and Infection Control, University Hospital of Frankfurt, Frankfurt, Germany
| | - Nafiú Lawal
- Centre for Advanced Medical Research and Training, Usmanu Danfodiyo University Sokoto, Sokoto, Nigeria
- Department of Veterinary Microbiology, Usmanu Danfodiyo University Sokoto, Sokoto, Nigeria
| | - Abdurrahman Jibril Hassan
- Centre for Advanced Medical Research and Training, Usmanu Danfodiyo University Sokoto, Sokoto, Nigeria
- Department of Veterinary Public and Preventive Medicine, Usmanu Danfodiyo University Sokoto, Sokoto, Nigeria
| | - Mustapha Umar Imam
- Centre for Advanced Medical Research and Training, Usmanu Danfodiyo University Sokoto, Sokoto, Nigeria
- Department of Medical Biochemistry, Usmanu Danfodiyo University Sokoto, Sokoto, Nigeria
| | - Muhammad Bashir Bello
- Infectious Disease Research Department, King Abdullah International Medical Research Center, Riyadh, Saudi Arabia
| | - Peter Kraiczy
- Goethe University Frankfurt, Institute of Medical Microbiology and Infection Control, University Hospital of Frankfurt, Frankfurt, Germany
| |
Collapse
|
9
|
Ranaweera CB, Shiva S, Madesh S, Chauhan D, Ganta RR, Zolkiewski M. Biochemical characterization of ClpB and DnaK from Anaplasma phagocytophilum. Cell Stress Chaperones 2024; 29:540-551. [PMID: 38908470 PMCID: PMC11268196 DOI: 10.1016/j.cstres.2024.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/12/2024] [Accepted: 06/17/2024] [Indexed: 06/24/2024] Open
Abstract
Anaplasma phagocytophilum is an intracellular tick-transmitted bacterial pathogen that infects neutrophils in mammals and causes granulocytic anaplasmosis. In this study, we investigated the molecular chaperones ClpB and DnaK from A. phagocytophilum. In Escherichia coli, ClpB cooperates with DnaK and its co-chaperones DnaJ and GrpE in ATP-dependent reactivation of aggregated proteins. Since ClpB is not produced in metazoans, it is a promising target for developing antimicrobial therapies, which generates interest in studies on that chaperone's role in pathogenic bacteria. We found that ClpB and DnaK are transcriptionally upregulated in A. phagocytophilum 3-5 days after infection of human HL-60 and tick ISE6 cells, which suggests an essential role of the chaperones in supporting the pathogen's intracellular life cycle. Multiple sequence alignments show that A. phagocytophilum ClpB and DnaK contain all structural domains that were identified in their previously studied orthologs from other bacteria. Both A. phagocytophilum ClpB and DnaK display ATPase activity, which is consistent with their participation in the ATP-dependent protein disaggregation system. However, despite a significant sequence similarity between the chaperones from A. phagocytophilum and those from E. coli, the former were not as effective as their E. coli orthologs during reactivation of aggregated proteins in vitro and in supporting the survival of E. coli cells under heat stress. We conclude that the A. phagocytophilum chaperones might have evolved with distinct biochemical properties to maintain the integrity of pathogenic proteins under unique stress conditions of an intracellular environment of host cells.
Collapse
Affiliation(s)
- Chathurange B Ranaweera
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS, USA
| | - Sunitha Shiva
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS, USA
| | - Swetha Madesh
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| | - Deepika Chauhan
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, MO, USA
| | - Roman R Ganta
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA; Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, MO, USA
| | - Michal Zolkiewski
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS, USA.
| |
Collapse
|
10
|
Dyczko D, Krysmann A, Kolanek A, Borczyk B, Kiewra D. Bacterial pathogens in Ixodes ricinus collected from lizards Lacerta agilis and Zootoca vivipara in urban areas of Wrocław, SW Poland- preliminary study. EXPERIMENTAL & APPLIED ACAROLOGY 2024; 93:409-420. [PMID: 38869727 PMCID: PMC11269471 DOI: 10.1007/s10493-024-00927-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 05/13/2024] [Indexed: 06/14/2024]
Abstract
The aim of this study was to determine the level of infection of Ixodes ricinus ticks with pathogens (Borrelia spp., Rickettsia spp., and Anaplasma spp.) collected from Lacerta agilis and Zootoca vivipara lizards in the urban areas of Wrocław (SW Poland). The study was carried out in July-August 2020. Lizards were caught by a noose attached to a pole or by bare hands, identified by species, and examined for the presence of ticks. Each lizard was then released at the site of capture. Ticks were removed with tweezers, identified by species using keys, and molecular tests were performed for the presence of pathogens. From 28 lizards (17 specimens of Z. vivipara and 11 specimens of L. agilis) a total of 445 ticks, including 321 larvae and 124 nymphs, identified as I. ricinus were collected. A larger number of ticks were obtained from L. agilis compared to Z. vivipara. Molecular tests for the presence of pathogens were performed on 445 specimens of I. ricinus. The nested PCR method for the fla gene allowed the detection of Borrelia spp. in 9.4% of ticks, and it was higher in ticks from L. agilis (12.0%) than from Z. vivipara (1.0%). The RFLP method showed the presence of three species, including two belonging to the B. burgdorferi s.l. complex (B. lusitaniae and B. afzelii), and B. miyamotoi. The overall level of infection of Rickettsia spp. was 19.3%, including 27.2% in ticks collected from Z. vivipara and 17.0% from L. agilis. Sequencing of randomly selected samples confirmed the presence of R. helvetica. DNA of Anaplasma spp. was detected only in one pool of larvae collected from L. agilis, and sample sequencing confirmed the presence of (A) phagocytophilum. The research results indicate the important role of lizards as hosts of ticks and their role in maintaining pathogens in the environment including urban agglomeration as evidenced by the first recorded presence of (B) miyamotoi and (A) phagocytophilum in I. ricinus ticks collected from L. agilis. However, confirmation of the role of sand lizards in maintaining (B) miyamotoi and A. phagocytophilum requires more studies and sampling of lizard tissue.
Collapse
Affiliation(s)
- Dagmara Dyczko
- Department of Microbial Ecology and Acaroentomology, Faculty of Biological Sciences, University of Wrocław, Przybyszewskiego 63/77, Wrocław, 51-148, Poland.
| | - Alicja Krysmann
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, NMBU, Ås, Norway
| | - Aleksandra Kolanek
- Department of Geoinformatics and Cartography, Institute of Geography and Regional Development, Faculty of Earth Sciences and Environmental Management, University of Wrocław, pl. Uniwersytecki 1, Wrocław, 50-137, Poland
| | - Bartosz Borczyk
- Department of Evolutionary Biology and Conservation of Vertebrates, Faculty of Biological Sciences, University of Wrocław, Sienkiewicza 21, Wrocław, 50-335, Poland
| | - Dorota Kiewra
- Department of Microbial Ecology and Acaroentomology, Faculty of Biological Sciences, University of Wrocław, Przybyszewskiego 63/77, Wrocław, 51-148, Poland
| |
Collapse
|
11
|
Malik S, Brucato MF, Faiver L, Phan T, Yassin MH, Bishop JM, Kapoor S. Severe Fatal ARDS Due to Untreated Human Granulocytic Anaplasmosis in a 67-Year-Old Man: A Case Report. AMERICAN JOURNAL OF CASE REPORTS 2024; 25:e943966. [PMID: 39004878 PMCID: PMC11315614 DOI: 10.12659/ajcr.943966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 06/07/2024] [Accepted: 05/22/2024] [Indexed: 07/16/2024]
Abstract
BACKGROUND Anaplasmosis, or human granulocytic anaplasmosis (HGA), is a tick-borne diseased caused by a gram-negative, intracellular bacterium, Anaplasma phagocytophilum. HGA usually presents with mild symptoms but can be more severe. This report describes a 67-year-old male resident of rural Pennsylvania, admitted to the hospital after a fall, who developed fatal acute respiratory distress syndrome (ARDS) associated with human granulocytic anaplasmosis (HGA) following transmission of Anaplasma phagocytophilum by a tick bite (Ixodes scapularis). CASE REPORT A 67-year-old man, resident of rural Pennsylvania, with history of diabetes mellitus, presented after falling from a 7-foot-tall ladder, sustaining right-sided hemopneumothorax, multiple right rib fractures, and unstable T12 vertebra fracture. He required tube thoracostomy and underwent T9-L2 posterior spinal fusion surgery. His initial labs showed leukopenia, thrombocytopenia, and elevated transaminase levels. His course was complicated by cardiac arrest and acute respiratory failure, consistent with severe ARDS. He received high positive end-expiratory pressure (PEEP) ventilation, prone positioning, and neuromuscular paralysis to improve refractory hypoxemia. Bronchoalveolar lavage (BAL) for bacterial, fungal, viral pathogens, Covid-19, respiratory viral panel, Mycoplasma pneumoniae, and Chlamydia pneumoniae were negative. his family withdrew medical care, knowing the patient's own wishes, and the patient died. Polymerase chain reaction (PCR) for Anaplasma DNA came back positive after the patient's death. His peripheral smear was then examined, showing morulae inside the cytoplasm of infected neutrophils. CONCLUSIONS This report describes the atypical presentation of a case of HGA and highlights that in parts of the world where tick-borne diseases are endemic, disease awareness, high index of clinical suspicion, and early diagnosis and management are required.
Collapse
Affiliation(s)
- Shehryar Malik
- Department of Internal Medicine, University of Pittsburgh Medical Center Mercy Hospital, Pittsburgh, PA, USA
| | - Martha F. Brucato
- Department of Critical Care Medicine, University of Pittsburgh Medical Center Mercy Hospital, Pittsburgh, PA, USA
| | - Laura Faiver
- Department of Critical Care Medicine, University of Pittsburgh Medical Center Mercy Hospital, Pittsburgh, PA, USA
| | - Tung Phan
- Division of Clinical Microbiology, Department of Pathology, University of Pittsburgh Medical Center Mercy Hospital, Pittsburgh, PA, USA
| | - Mohamed H. Yassin
- Division of Infectious Diseases, University of Pittsburgh Medical Center Mercy Hospital, Pittsburgh, PA, USA
| | - Jonathan M. Bishop
- Department of Critical Care Medicine, University of Pittsburgh Medical Center Mercy Hospital, Pittsburgh, PA, USA
| | - Sumit Kapoor
- Department of Critical Care Medicine, University of Pittsburgh Medical Center Mercy Hospital, Pittsburgh, PA, USA
| |
Collapse
|
12
|
Miao Y, Guo W, Zhang W, Chen Z, Mian D, Li R, Xu A, Chen M, Li D. Detection of Bartonella spp. in farmed deer (Artiodactyla: Cervidae) using multiplex assays in the Qinghai-Tibet Plateau, China. Microbiol Spectr 2024; 12:e0412023. [PMID: 38785439 PMCID: PMC11218516 DOI: 10.1128/spectrum.04120-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 04/05/2024] [Indexed: 05/25/2024] Open
Abstract
In this study, we investigated the prevalence of Bartonella in deer from Qilian County, Qinghai Province, China. Blood samples were collected from 69 red deer, 40 white-lipped deer, and 27 sika deer. The detection of Bartonella spp. has been conducted. The overall prevalence of Bartonella was 33.6% (46/135). Species-specific prevalence was 50.72% in red deer (35/69), 20.00% in white-lipped deer (8/40), and 11.11% in sika deer (3/27). There were significant differences in the prevalence rates among the different species of deer. The amplicon sequence comparison revealed a high homology of the ruminant-associated Bartonella spp. Nanopore sequencing further confirmed the results. Bartonella reads were presented in each of the qPCR-positive samples. Phylogenetic analysis indicated that the Bartonella sequences detected in deer blood were closely related to ruminant-borne Bartonella spp. In summary, we reported the Bartonella prevalence of different deer species in Qinghai, and there were at least one species of ruminant-associated Bartonella, B. schoenbuchensis. IMPORTANCE This is the first report about Bartonella infections in the deer population from China. We found that there were two species of Bartonella and an unidentified species of Bartonella among the unculturing strains carried by these deer populations. We first used Nanopore sequencing to detect Bartonella from deer blood samples and indicated that Nanopore sequencing is beneficial to detect pathogens due to its advantage of real-time and high sensitivity.
Collapse
Affiliation(s)
- Yu Miao
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Wentao Guo
- Qinghai Provincial Institute of Endemic Disease Control and Prevention, Xining, China
| | - Wen Zhang
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Zhizheng Chen
- Qilian County Center for Disease Control and Prevention, Haibei Tibetan Autonomous Prefecture, Qilian, China
| | - Delan Mian
- Qilian County Center for Disease Control and Prevention, Haibei Tibetan Autonomous Prefecture, Qilian, China
| | - Ruixiao Li
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
- School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Ailing Xu
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Min Chen
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Dongmei Li
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| |
Collapse
|
13
|
Choi KS, Hwang S, Kim MC, Cho HC, Park YJ, Ji MJ, Han SW, Chae JS. Molecular surveillance of zoonotic pathogens from wild rodents in the Republic of Korea. PLoS Negl Trop Dis 2024; 18:e0012306. [PMID: 38976750 PMCID: PMC11257403 DOI: 10.1371/journal.pntd.0012306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 07/18/2024] [Accepted: 06/21/2024] [Indexed: 07/10/2024] Open
Abstract
BACKGROUND Rodents are recognized as major reservoirs of numerous zoonotic pathogens and are involved in the transmission and maintenance of infectious diseases. Furthermore, despite their importance, diseases transmitted by rodents have been neglected. To date, there have been limited epidemiological studies on rodents, and information regarding their involvement in infectious diseases in the Republic of Korea (ROK) is still scarce. METHODOLOGY/PRINCIPAL FINDINGS We investigated rodent-borne pathogens using nested PCR/RT-PCR from 156 rodents including 151 Apodemus agrarius and 5 Rattus norvegicus from 27 regions in eight provinces across the ROK between March 2019 and November 2020. Spleen, kidney, and blood samples were used to detect Anaplasma phagocytophilum, Bartonella spp., Borrelia burgdorferi sensu lato group, Coxiella burnetii, Leptospira interrogans, and severe fever with thrombocytopenia syndrome virus (SFTSV). Of the 156 rodents, 73 (46.8%) were infected with Bartonella spp., 25 (16.0%) with C. burnetii, 24 (15.4%) with L. interrogans, 21 (13.5%) with A. phagocytophilum, 9 (5.8%) with SFTSV, and 5 (3.2%) with Borrelia afzelii. Co-infections with two and three pathogens were detected in 33 (21.1%) and 11 rodents (7.1%), respectively. A. phagocytophilum was detected in all regions, showing a widespread occurrence in the ROK. The infection rates of Bartonella spp. were 83.3% for B. grahamii and 16.7% for B. taylorii. CONCLUSIONS/SIGNIFICANCE To the best of our knowledge, this is the first report of C. burnetii and SFTSV infections in rodents in the ROK. This study also provides the first description of various rodent-borne pathogens through an extensive epidemiological survey in the ROK. These results suggest that rodents harbor various pathogens that pose a potential threat to public health in the ROK. Our findings provide useful information on the occurrence and distribution of zoonotic pathogens disseminated among rodents and emphasize the urgent need for rapid diagnosis, prevention, and control strategies for these zoonotic diseases.
Collapse
Affiliation(s)
- Kyoung-Seong Choi
- Department of Animal Science and Biotechnology, College of Ecology and Environmental Science, Kyungpook National University, Sangju, Republic of Korea
| | - Sunwoo Hwang
- Department of Animal Science and Biotechnology, College of Ecology and Environmental Science, Kyungpook National University, Sangju, Republic of Korea
| | - Myung Cheol Kim
- Department of Ecological Science, College of Ecology and Environmental Science, Kyungpook National University, Sangju, Republic of Korea
| | - Hyung-Chul Cho
- Department of Animal Science and Biotechnology, College of Ecology and Environmental Science, Kyungpook National University, Sangju, Republic of Korea
| | - Yu-Jin Park
- Department of Animal Science and Biotechnology, College of Ecology and Environmental Science, Kyungpook National University, Sangju, Republic of Korea
| | - Min-Jeong Ji
- Department of Animal Science and Biotechnology, College of Ecology and Environmental Science, Kyungpook National University, Sangju, Republic of Korea
| | - Sun-Woo Han
- Laboratory of Veterinary Internal Medicine, BK21 FOUR Future Veterinary Medicine Leading Education and Research Centre, Research Institute for Veterinary Science and College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | - Joon-Seok Chae
- Laboratory of Veterinary Internal Medicine, BK21 FOUR Future Veterinary Medicine Leading Education and Research Centre, Research Institute for Veterinary Science and College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
14
|
Sri-in C, Thongmeesee K, Wechtaisong W, Yurayart N, Rittisornthanoo G, Akarapas C, Bunphungbaramee N, Sipraya N, Riana E, Bui TTH, Kamkong P, Maikaew U, Kongmakee P, Saedan A, Bartholomay LC, Tiawsirisup S. Tick diversity and molecular detection of Anaplasma, Babesia, and Theileria from Khao Kheow open zoo, Chonburi Province, Thailand. Front Vet Sci 2024; 11:1430892. [PMID: 39015109 PMCID: PMC11250040 DOI: 10.3389/fvets.2024.1430892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 06/17/2024] [Indexed: 07/18/2024] Open
Abstract
Ticks are obligate blood-feeding ectoparasites notorious for their role as vectors for various pathogens, posing health risks to pets, livestock, wildlife, and humans. Wildlife also notably serves as reservoir hosts for tick-borne pathogens and plays a pivotal role in the maintenance and dissemination of these pathogenic agents within ecosystems. This study investigated the diversity of ticks and pathogens in wildlife and their habitat by examining ticks collected at Khao Kheow Open Zoo, Chonburi Province, Thailand. Tick samples were collected for 1 year from March 2021 to March 2022 by vegetation dragging and direct sampling from wildlife. A total of 10,436 ticks or 449 tick pools (1-50 ticks per pool) underwent screening for pathogen presence through conventional PCR and DNA sequencing. Out of the 298 samples (66.37%) where bacteria and protozoa were detected, encompassing 8,144 ticks at all stages, 114 positive samples from the PCR screenings were specifically chosen for detailed nucleotide sequencing and comprehensive analysis. Four species of ticks were conclusively identified through the application of PCR, namely, Rhipicephalus microplus, Dermacentor auratus, Haemaphysalis lagrangei, and Haemaphysalis wellingtoni. The highest infection rate recorded was for Anaplasma spp. at 55.23% (248/449), followed by Babesia spp. and Theileria spp. at 29.62% (133/449) and 16.26% (73/449), respectively. Among bacteria identified, three Anaplasma genotypes were closely related to an unidentified Anaplasma spp., A. phagocytophilum, and A. bovis. Among protozoa, only an unidentified Babesia spp. was found, whereas two Theileria genotypes found were closely related to unidentified Theileria spp. and T. equi. Significantly, our findings revealed coinfection with Anaplasma spp., Theileria spp., and Babesia spp. While blood samples from wildlife were not specifically collected to assess infection in this study, the data on the presence of various pathogens in ticks observed can serve as valuable indicators to assess the health status of wildlife populations and to monitor disease dynamics. The findings could be valuable in developing programs for the treatment, prevention, and control of tick-borne illnesses in this area. However, additional research is required to determine the ticks' ability to transmit these pathogens and enhance the current understanding of the relationship among pathogens, ticks, and hosts.
Collapse
Affiliation(s)
- Chalida Sri-in
- Center of Excellence in Animal Vector-Borne Diseases, Veterinary Parasitology Unit, Department of Veterinary Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Kritsada Thongmeesee
- Center of Excellence in Animal Vector-Borne Diseases, Veterinary Parasitology Unit, Department of Veterinary Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
- Veterinary Pathobiology Graduate Program, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Wittawat Wechtaisong
- Center of Excellence in Animal Vector-Borne Diseases, Veterinary Parasitology Unit, Department of Veterinary Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Nichapat Yurayart
- Center of Excellence in Animal Vector-Borne Diseases, Veterinary Parasitology Unit, Department of Veterinary Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Ganyawee Rittisornthanoo
- 6 Year Veterinary Student, Academic Year 2022, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Chatlada Akarapas
- 6 Year Veterinary Student, Academic Year 2022, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Natcha Bunphungbaramee
- 6 Year Veterinary Student, Academic Year 2022, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Natthanicha Sipraya
- 6 Year Veterinary Student, Academic Year 2022, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Elizabeth Riana
- Center of Excellence in Animal Vector-Borne Diseases, Veterinary Parasitology Unit, Department of Veterinary Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
- International Graduate Program of Veterinary Science and Technology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Thuong Thi Huyen Bui
- Center of Excellence in Animal Vector-Borne Diseases, Veterinary Parasitology Unit, Department of Veterinary Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
- International Graduate Program of Veterinary Science and Technology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Patchana Kamkong
- Parasitology Unit, Department of Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Umaporn Maikaew
- Khao Kheow Open Zoo, Zoological Park Organization, Bangpra, Sriracha, Chonburi, Thailand
| | - Piyaporn Kongmakee
- Animal Conservation and Research Institute, The Zoological Park Organization of Thailand, Bangkok, Thailand
| | - Arpussara Saedan
- Animal Conservation and Research Institute, The Zoological Park Organization of Thailand, Bangkok, Thailand
| | - Lyric C. Bartholomay
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, United States
| | - Sonthaya Tiawsirisup
- Center of Excellence in Animal Vector-Borne Diseases, Veterinary Parasitology Unit, Department of Veterinary Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
15
|
Pustijanac E, Buršić M, Millotti G, Paliaga P, Iveša N, Cvek M. Tick-Borne Bacterial Diseases in Europe: Threats to public health. Eur J Clin Microbiol Infect Dis 2024; 43:1261-1295. [PMID: 38676855 DOI: 10.1007/s10096-024-04836-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 04/22/2024] [Indexed: 04/29/2024]
Abstract
BACKGROUND Tick-borne diseases, caused by bacterial pathogens, pose a growing threat to public health in Europe. This paper provides an overview of the historical context of the discovery of the most impactful pathogens transmitted by ticks, including Borrelia burgdorferi sensu lato, Rickettsia spp., Anaplasma spp., Francisella spp., Ehrlichia spp., and Neoehrlichia mikurensis. Understanding the historical context of their discovery provides insight into the evolution of our understanding of these pathogens. METHODS AND RESULTS Systematic investigation of the prevalence and transmission dynamics of these bacterial pathogens is provided, highlighting the intricate relationships among ticks, host organisms, and the environment. Epidemiology is explored, providing an in-depth analysis of clinical features associated with infections. Diagnostic methodologies undergo critical examination, with a spotlight on technological advancements that enhance detection capabilities. Additionally, the paper discusses available treatment options, addressing existing therapeutic strategies and considering future aspects. CONCLUSIONS By integrating various pieces of information on these bacterial species, the paper aims to provide a comprehensive resource for researchers and healthcare professionals addressing the impact of bacterial tick-borne diseases in Europe. This review underscores the importance of understanding the complex details influencing bacterial prevalence and transmission dynamics to better combat these emerging public health threats.
Collapse
Affiliation(s)
- Emina Pustijanac
- Faculty of Natural Sciences, Juraj Dobrila University of Pula, Zagrebačka 30, 52100, Pula, Croatia.
| | - Moira Buršić
- Faculty of Natural Sciences, Juraj Dobrila University of Pula, Zagrebačka 30, 52100, Pula, Croatia
| | - Gioconda Millotti
- Faculty of Natural Sciences, Juraj Dobrila University of Pula, Zagrebačka 30, 52100, Pula, Croatia
| | - Paolo Paliaga
- Faculty of Natural Sciences, Juraj Dobrila University of Pula, Zagrebačka 30, 52100, Pula, Croatia
| | - Neven Iveša
- Faculty of Natural Sciences, Juraj Dobrila University of Pula, Zagrebačka 30, 52100, Pula, Croatia
| | - Maja Cvek
- Faculty of Medicine, University of Rijeka, Braće Branchetta 20, 51000, Rijeka, Croatia
- Teaching Institute of Public Health of the Region of Istria, Nazorova 23, 52100, Pula, Croatia
| |
Collapse
|
16
|
Tang J, Xu J, Liu XH, Lv FZ, Yao QJ, Zhou XF, Lu HY, Yu TM, Jiang ZZ, Jin XZ, Guo F, Yu XJ. Prevalence and genetic diversity of Anaplasma and Ehrlichia in ticks and domesticated animals in Suizhou County, Hubei Province, China. Sci Rep 2024; 14:12621. [PMID: 38824201 PMCID: PMC11144266 DOI: 10.1038/s41598-024-63267-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 05/27/2024] [Indexed: 06/03/2024] Open
Abstract
Anaplasma and Ehrlichia are tick-borne bacterial pathogens that cause anaplasmoses and ehrlichioses in humans and animals. In this study, we examined the prevalence of Anaplasma and Ehrlichia species in ticks and domesticated animals in Suizhou County, Hubei Province in the central China. We used PCR amplification and DNA sequencing of the 16S rRNA, groEL, and gltA genes to analyze. We collected 1900 ticks, including 1981 Haemaphysalis longicornis and 9 Rhipicephalus microplus, 159 blood samples of goats (n = 152), cattle (n = 4), and dogs (n = 3) from May to August of 2023. PCR products demonstrated that Anaplasma bovis, Anaplasma capra, and an Ehrlichia species were detected in the H. longicornis with the minimum infection rates (MIR) of 1.11%, 1.32%, and 0.05%, respectively; A. bovis, A. capra, and unnamed Anaplasma sp. were detected in goats with an infection rate of 26.31%, 1.31% and 1.97%, respectively. Anaplasma and Ehrlichia species were not detected from cattle, dogs and R. microplus ticks. The genetic differences in the groEL gene sequences of the Anaplasma in the current study were large, whereas the 16S rRNA and gltA gene sequences were less disparate. This study shows that ticks and goats in Suizhou County, Hubei Province carry multiple Anaplasma species and an Ehrlichia species, with relatively higher infection rate of A. bovis in goats. Our study indicates that multiple Anaplasma and Ehrlichia species exist in ticks and goats in the central China with potential to cause human infection.
Collapse
Affiliation(s)
- Ju Tang
- State Key Laboratory of Virology, School of Public Health, Wuhan University, Wuhan, Hubei, China
| | - Jiao Xu
- State Key Laboratory of Virology, School of Public Health, Wuhan University, Wuhan, Hubei, China
| | - Xiao-Hui Liu
- Suizhou Center for Disease Control and Prevention, Suizhou, Hubei Province, China
| | - Fang-Zhi Lv
- Suizhou Center for Disease Control and Prevention, Suizhou, Hubei Province, China
| | - Qiu-Ju Yao
- Suizhou Center for Disease Control and Prevention, Suizhou, Hubei Province, China
| | - Xiao-Fan Zhou
- State Key Laboratory of Virology, School of Public Health, Wuhan University, Wuhan, Hubei, China
| | - Hui-Ya Lu
- State Key Laboratory of Virology, School of Public Health, Wuhan University, Wuhan, Hubei, China
| | - Tian-Mei Yu
- State Key Laboratory of Virology, School of Public Health, Wuhan University, Wuhan, Hubei, China
| | - Ze-Zheng Jiang
- State Key Laboratory of Virology, School of Public Health, Wuhan University, Wuhan, Hubei, China
| | - Xiao-Zhou Jin
- Suizhou Center for Disease Control and Prevention, Suizhou, Hubei Province, China.
| | - Fang Guo
- Suizhou Center for Disease Control and Prevention, Suizhou, Hubei Province, China.
| | - Xue-Jie Yu
- State Key Laboratory of Virology, School of Public Health, Wuhan University, Wuhan, Hubei, China.
| |
Collapse
|
17
|
Kim KG, Hwang DJ, Park JW, Ryu MG, Kim Y, Yang SJ, Lee JE, Lee GS, Lee JH, Park JS, Seo JM, Kim SH. Distribution and pathogen prevalence of field-collected ticks from south-western Korea: a study from 2019 to 2022. Sci Rep 2024; 14:12336. [PMID: 38811622 PMCID: PMC11136998 DOI: 10.1038/s41598-024-61126-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 05/02/2024] [Indexed: 05/31/2024] Open
Abstract
Hard ticks are known vectors of various pathogens, including the severe fever with thrombocytopenia syndrome virus, Rickettsia spp., Coxiella burnetii, Borrelia spp., Anaplasma phagocytophilum, and Ehrlichia spp. This study aims to investigate the distribution and prevalence of tick-borne pathogens in southwestern Korea from 2019 to 2022. A total of 13,280 ticks were collected during the study period, with H. longicornis accounting for 86.1% of the collected ticks. H. flava, I. nipponensis and A. testudinarium comprised 9.4%, 3.6%, and 0.8% of the ticks, respectively. Among 983 pools tested, Rickettsia spp. (216 pools, 1.6% MIR) were the most prevalent pathogens across all tick species, with R. japonica and R. monacensis frequently detected in I. nipponensis and Haemaphysalis spp., respectively. Borrelia spp. (28 pools, 0.2% MIR) were predominantly detected in I. nipponensis (27 pools, 13.8% MIR, P < 0.001). Co-infections, mainly involving Rickettsia monacensis and Borrelia afzelii, were detected in I. nipponensis. Notably, this study identified R. monacensis for the first time in A. testudinarium in South Korea. These findings offer valuable insights into the tick population and associated pathogens in the region, underscoring the importance of tick-borne disease surveillance and prevention measures.
Collapse
Affiliation(s)
- Kwang Gon Kim
- Division of Infectious Disease Investigation, Health and Environment Research Institute of Gwangju, 584 Mugindae-ro, Seo-gu, Gwangju, 61954, Republic of Korea.
| | - Da Jeong Hwang
- Division of Infectious Disease Investigation, Health and Environment Research Institute of Gwangju, 584 Mugindae-ro, Seo-gu, Gwangju, 61954, Republic of Korea
| | - Jung Wook Park
- Division of Infectious Disease Investigation, Health and Environment Research Institute of Gwangju, 584 Mugindae-ro, Seo-gu, Gwangju, 61954, Republic of Korea
| | - Mi Geum Ryu
- Division of Infectious Disease Investigation, Health and Environment Research Institute of Gwangju, 584 Mugindae-ro, Seo-gu, Gwangju, 61954, Republic of Korea
| | - Yujin Kim
- Division of Infectious Disease Investigation, Health and Environment Research Institute of Gwangju, 584 Mugindae-ro, Seo-gu, Gwangju, 61954, Republic of Korea
| | - So-Jin Yang
- Division of Infectious Disease Investigation, Health and Environment Research Institute of Gwangju, 584 Mugindae-ro, Seo-gu, Gwangju, 61954, Republic of Korea
| | - Ji-Eun Lee
- Division of Infectious Disease Investigation, Health and Environment Research Institute of Gwangju, 584 Mugindae-ro, Seo-gu, Gwangju, 61954, Republic of Korea
| | - Gi Seong Lee
- Division of Infectious Disease Investigation, Health and Environment Research Institute of Gwangju, 584 Mugindae-ro, Seo-gu, Gwangju, 61954, Republic of Korea
| | - Ju Hye Lee
- Division of Infectious Disease Investigation, Health and Environment Research Institute of Gwangju, 584 Mugindae-ro, Seo-gu, Gwangju, 61954, Republic of Korea
| | - Ji Sun Park
- Division of Infectious Disease Investigation, Health and Environment Research Institute of Gwangju, 584 Mugindae-ro, Seo-gu, Gwangju, 61954, Republic of Korea
| | - Jung Mi Seo
- Division of Infectious Disease Investigation, Health and Environment Research Institute of Gwangju, 584 Mugindae-ro, Seo-gu, Gwangju, 61954, Republic of Korea
| | - Sun-Hee Kim
- Division of Infectious Disease Investigation, Health and Environment Research Institute of Gwangju, 584 Mugindae-ro, Seo-gu, Gwangju, 61954, Republic of Korea.
| |
Collapse
|
18
|
Buysse M, Koual R, Binetruy F, de Thoisy B, Baudrimont X, Garnier S, Douine M, Chevillon C, Delsuc F, Catzeflis F, Bouchon D, Duron O. Detection of Anaplasma and Ehrlichia bacteria in humans, wildlife, and ticks in the Amazon rainforest. Nat Commun 2024; 15:3988. [PMID: 38734682 PMCID: PMC11088697 DOI: 10.1038/s41467-024-48459-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 04/29/2024] [Indexed: 05/13/2024] Open
Abstract
Tick-borne bacteria of the genera Ehrlichia and Anaplasma cause several emerging human infectious diseases worldwide. In this study, we conduct an extensive survey for Ehrlichia and Anaplasma infections in the rainforests of the Amazon biome of French Guiana. Through molecular genetics and metagenomics reconstruction, we observe a high indigenous biodiversity of infections circulating among humans, wildlife, and ticks inhabiting these ecosystems. Molecular typing identifies these infections as highly endemic, with a majority of new strains and putative species specific to French Guiana. They are detected in unusual rainforest wild animals, suggesting they have distinctive sylvatic transmission cycles. They also present potential health hazards, as revealed by the detection of Candidatus Anaplasma sparouinense in human red blood cells and that of a new close relative of the human pathogen Ehrlichia ewingii, Candidatus Ehrlichia cajennense, in the tick species that most frequently bite humans in South America. The genome assembly of three new putative species obtained from human, sloth, and tick metagenomes further reveals the presence of major homologs of Ehrlichia and Anaplasma virulence factors. These observations converge to classify health hazards associated with Ehrlichia and Anaplasma infections in the Amazon biome as distinct from those in the Northern Hemisphere.
Collapse
Affiliation(s)
- Marie Buysse
- MIVEGEC, University of Montpellier, CNRS, IRD, Montpellier, France
| | - Rachid Koual
- MIVEGEC, University of Montpellier, CNRS, IRD, Montpellier, France
| | - Florian Binetruy
- MIVEGEC, University of Montpellier, CNRS, IRD, Montpellier, France
| | - Benoit de Thoisy
- Laboratoire des Interactions Virus-Hôtes, Institut Pasteur de Guyane, Cayenne, France
- Association Kwata 'Study and Conservation of Guianan Wildlife', Cayenne, France
| | - Xavier Baudrimont
- Direction Générale des Territoires et de la Mer (DGTM) - Direction de l'environnement, de l'agriculture, de l'alimentation et de la forêt (DEAAF), Cayenne, France
| | - Stéphane Garnier
- Biogéosciences, UMR 6282 uB/CNRS/EPHE, Université Bourgogne Franche-Comté, Dijon, France
| | - Maylis Douine
- Centre d'Investigation Clinique Antilles-Guyane, INSERM 1424, Centre Hospitalier de Cayenne, Cayenne, France
| | | | - Frédéric Delsuc
- Institut des Sciences de l'Evolution de Montpellier (ISEM), CNRS, IRD, EPHE, Université de Montpellier, Montpellier, France
| | - François Catzeflis
- Institut des Sciences de l'Evolution de Montpellier (ISEM), CNRS, IRD, EPHE, Université de Montpellier, Montpellier, France
| | - Didier Bouchon
- EBI, University of Poitiers, UMR CNRS 7267, Poitiers, France
| | - Olivier Duron
- MIVEGEC, University of Montpellier, CNRS, IRD, Montpellier, France.
| |
Collapse
|
19
|
Alabí Córdova AS, Fecchio A, Calchi AC, Dias CM, Mongruel ACB, das Neves LF, Lee DAB, Machado RZ, André MR. Novel Tick-Borne Anaplasmataceae Genotypes in Tropical Birds from the Brazilian Pantanal Wetland. Microorganisms 2024; 12:962. [PMID: 38792791 PMCID: PMC11124045 DOI: 10.3390/microorganisms12050962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/01/2024] [Accepted: 05/04/2024] [Indexed: 05/26/2024] Open
Abstract
Despite numerous reports of Anaplasmataceae agents in mammals worldwide, few studies have investigated their occurrence in birds. The present study aimed to investigate the occurrence and molecular identity of Anaplasmataceae agents in birds from the Pantanal wetland, Brazil. Blood samples were collected from 93 different species. After DNA extraction, samples positive for the avian β-actin gene were subjected to both a multiplex quantitative real-time (q)PCR for Anaplasma and Ehrlichia targeting the groEL gene and to a conventional PCR for Anaplasmataceae agents targeting the 16S rRNA gene. As a result, 37 (7.4%) birds were positive for Anaplasma spp. and 4 (0.8%) for Ehrlichia spp. in the qPCR assay; additionally, 13 (2.6%) were positive for Anaplasmataceae agents in the PCR targeting the 16S rRNA gene. The Ehrlichia 16S rRNA sequences detected in Arundinicola leucocephala, Ramphocelus carbo, and Elaenia albiceps were positioned closely to Ehrlichia sp. Magellanica. Ehrlichia dsb sequences detected in Agelasticus cyanopus and Basileuterus flaveolus grouped with Ehrlichia minasensis. The 16S rRNA genotypes detected in Crax fasciolata, Pitangus sulphuratus and Furnarius leucopus grouped with Candidatus Allocryptoplasma. The 23S-5S genotypes detected in C. fasciolata, Basileuterus flaveolus, and Saltator coerulescens were related to Anaplasma phagocytophilum. In conclusion, novel genotypes of Anaplasma, Ehrlichia, and Candidatus Allocryptoplasma were detected in birds from the Pantanal wetland.
Collapse
Affiliation(s)
- Amir Salvador Alabí Córdova
- Vector-Borne Bioagents Laboratory (VBBL), Department of Pathology, Reproduction and One Health, School of Agricultural and Veterinarian Sciences, Sao Paulo State University “Júlio de Mesquita Filho” (FCAV/UNESP), Jaboticabal 14884-900, Brazil; (A.S.A.C.); (A.C.C.); (C.M.D.); (A.C.B.M.); (L.F.d.N.); (D.A.B.L.); (R.Z.M.)
| | - Alan Fecchio
- Department of Ornithology, Academy of Natural Sciences of Drexel University, Philadelphia, PA 19103, USA;
| | - Ana Cláudia Calchi
- Vector-Borne Bioagents Laboratory (VBBL), Department of Pathology, Reproduction and One Health, School of Agricultural and Veterinarian Sciences, Sao Paulo State University “Júlio de Mesquita Filho” (FCAV/UNESP), Jaboticabal 14884-900, Brazil; (A.S.A.C.); (A.C.C.); (C.M.D.); (A.C.B.M.); (L.F.d.N.); (D.A.B.L.); (R.Z.M.)
| | - Clara Morato Dias
- Vector-Borne Bioagents Laboratory (VBBL), Department of Pathology, Reproduction and One Health, School of Agricultural and Veterinarian Sciences, Sao Paulo State University “Júlio de Mesquita Filho” (FCAV/UNESP), Jaboticabal 14884-900, Brazil; (A.S.A.C.); (A.C.C.); (C.M.D.); (A.C.B.M.); (L.F.d.N.); (D.A.B.L.); (R.Z.M.)
| | - Anna Claudia Baumel Mongruel
- Vector-Borne Bioagents Laboratory (VBBL), Department of Pathology, Reproduction and One Health, School of Agricultural and Veterinarian Sciences, Sao Paulo State University “Júlio de Mesquita Filho” (FCAV/UNESP), Jaboticabal 14884-900, Brazil; (A.S.A.C.); (A.C.C.); (C.M.D.); (A.C.B.M.); (L.F.d.N.); (D.A.B.L.); (R.Z.M.)
| | - Lorena Freitas das Neves
- Vector-Borne Bioagents Laboratory (VBBL), Department of Pathology, Reproduction and One Health, School of Agricultural and Veterinarian Sciences, Sao Paulo State University “Júlio de Mesquita Filho” (FCAV/UNESP), Jaboticabal 14884-900, Brazil; (A.S.A.C.); (A.C.C.); (C.M.D.); (A.C.B.M.); (L.F.d.N.); (D.A.B.L.); (R.Z.M.)
| | - Daniel Antonio Braga Lee
- Vector-Borne Bioagents Laboratory (VBBL), Department of Pathology, Reproduction and One Health, School of Agricultural and Veterinarian Sciences, Sao Paulo State University “Júlio de Mesquita Filho” (FCAV/UNESP), Jaboticabal 14884-900, Brazil; (A.S.A.C.); (A.C.C.); (C.M.D.); (A.C.B.M.); (L.F.d.N.); (D.A.B.L.); (R.Z.M.)
| | - Rosangela Zacarias Machado
- Vector-Borne Bioagents Laboratory (VBBL), Department of Pathology, Reproduction and One Health, School of Agricultural and Veterinarian Sciences, Sao Paulo State University “Júlio de Mesquita Filho” (FCAV/UNESP), Jaboticabal 14884-900, Brazil; (A.S.A.C.); (A.C.C.); (C.M.D.); (A.C.B.M.); (L.F.d.N.); (D.A.B.L.); (R.Z.M.)
| | - Marcos Rogério André
- Vector-Borne Bioagents Laboratory (VBBL), Department of Pathology, Reproduction and One Health, School of Agricultural and Veterinarian Sciences, Sao Paulo State University “Júlio de Mesquita Filho” (FCAV/UNESP), Jaboticabal 14884-900, Brazil; (A.S.A.C.); (A.C.C.); (C.M.D.); (A.C.B.M.); (L.F.d.N.); (D.A.B.L.); (R.Z.M.)
| |
Collapse
|
20
|
Namjoshi P, Lubembe DM, Sultana H, Neelakanta G. Antibody-blocking of a tick transporter impairs Anaplasma phagocytophilum colonization in Haemaphysalis longicornis ticks. Sci Rep 2024; 14:9003. [PMID: 38637614 PMCID: PMC11026487 DOI: 10.1038/s41598-024-59315-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 04/09/2024] [Indexed: 04/20/2024] Open
Abstract
The invasive Asian longhorned tick Haemaphysalis longicornis that vectors and transmits several animal pathogens is significantly expanding in the United States. Recent studies report that these ticks also harbor human pathogens including Borrelia burgdorferi sensu lato, Babesia microti, and Anaplasma phagocytophilum. Therefore, studies that address the interactions of these ticks with human pathogens are important. In this study, we report the characterization of H. longicornis organic anion-transporting polypeptides (OATPs) in interactions of these ticks with A. phagocytophilum. Using OATP-signature sequence, we identified six OATPs in the H. longicornis genome. Bioinformatic analysis revealed that H. longicornis OATPs are closer to other tick orthologs rather than to mammalian counterparts. Quantitative real-time PCR analysis revealed that OATPs are highly expressed in immature stages when compared to mature stages of these ticks. In addition, we noted that the presence of A. phagocytophilum upregulates a specific OATP in these ticks. We also noted that exogenous treatment of H. longicornis with xanthurenic acid, a tryptophan metabolite, influenced OATP expression in these ticks. Immunoblotting analysis revealed that antibody generated against Ixodes scapularis OATP cross-reacted with H. longicornis OATP. Furthermore, treatment of H. longicornis with OATP antibody impaired colonization of A. phagocytophilum in these ticks. These results not only provide evidence that the OATP-tryptophan pathway is important for A. phagocytophilum survival in H. longicornis ticks but also indicate OATP as a promising candidate for the development of a universal anti-tick vaccine to target this bacterium and perhaps other rickettsial pathogens of medical importance.
Collapse
Affiliation(s)
- Prachi Namjoshi
- Department of Biomedical and Diagnostic Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, TN, 37996, USA
| | - Donald M Lubembe
- Department of Veterinary Pathology, Microbiology and Parasitology, Faculty of Veterinary Medicine and Surgery, Egerton University, Egerton, Kenya
| | - Hameeda Sultana
- Department of Biomedical and Diagnostic Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, TN, 37996, USA
| | - Girish Neelakanta
- Department of Biomedical and Diagnostic Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, TN, 37996, USA.
| |
Collapse
|
21
|
Abraham JD, Wenning HS, Saeed DA, Derbarsegian A, Brook BA, He P. Becoming Endemic: Anaplasmosis Imported Across State Borders. Cureus 2024; 16:e57902. [PMID: 38725788 PMCID: PMC11079709 DOI: 10.7759/cureus.57902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/08/2024] [Indexed: 05/12/2024] Open
Abstract
Anaplasma phagocytophilum is the causative agent of human granulocytic anaplasmosis (HGA), a tick-borne illness with increasing incidence since being described in the 1990s. Importantly, the presentation can be vague, yet prompt treatment is paramount. An 81-year-old Caucasian female was hospitalized in Cincinnati, Ohio, for fever and confusion following prolonged outdoor exposure in Emlenton, Pennsylvania. She initially was treated for sepsis from presumed community-acquired pneumonia; however, the combination of leukopenia, thrombocytopenia, and elevated liver enzymes prompted empiric tick-borne illness consideration and treatment with rapid resolution in symptoms. Early recognition of HGA can reduce unnecessary treatments and improve patient outcomes.
Collapse
Affiliation(s)
- Joseph D Abraham
- Internal Medicine, The Jewish Hospital - Mercy Health, Cincinnati, USA
| | - Heather S Wenning
- Internal Medicine, The Jewish Hospital - Mercy Health, Cincinnati, USA
| | - Daniyal A Saeed
- Internal Medicine, The Jewish Hospital - Mercy Health, Cincinnati, USA
| | - Armo Derbarsegian
- Medicine, University of Cincinnati College of Medicine, Cincinnati, USA
| | - Barry A Brook
- Internal Medicine, The Jewish Hospital - Mercy Health, Cincinnati, USA
- Medicine, University of Cincinnati College of Medicine, Cincinnati, USA
| | - Peimei He
- Infectious Diseases, The Jewish Hospital - Mercy Health, Cincinnati, USA
| |
Collapse
|
22
|
Tonnetti L, Marcos LA, Mamone L, Spitzer ED, Jacob M, Townsend RL, Stramer SL, West FB. A case of transfusion-transmission Anaplasma phagocytophilum from leukoreduced red blood cells. Transfusion 2024; 64:751-754. [PMID: 38491925 DOI: 10.1111/trf.17783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 02/29/2024] [Accepted: 02/29/2024] [Indexed: 03/18/2024]
Abstract
BACKGROUND Anaplasma phagocytophilum is a tick-borne bacterium and the cause of human granulocytic anaplasmosis (HGA). Here, we report a case of transfusion-transmitted (TT)-HGA involving a leukoreduced (LR) red blood cell (RBC) unit. CASE REPORT A 64-year-old woman with gastric adenocarcinoma and multiple myeloma who received weekly blood transfusions developed persistent fevers, hypotension, and shortness of breath 1 week after receiving an RBC transfusion. Persistent fevers, new thrombocytopenia, and transaminitis suggested a tick-borne infection. RESULTS The absence of blood parasites on thick and thin blood smears suggested that malaria and Babesia infection were not present, and the recipient tested negative for antibodies to Borrelia burgdorferi. Blood testing by polymerase chain reaction (PCR) for Ehrlichia and Anaplasma species identified A. phagocytophilum. Treatment with doxycycline resolved the infection; however, the recipient expired due to complications of her known malignancies. The recipient lived in a nursing home and did not have pets or spend time outdoors. The donor was a female in her 70s from Maine who was diagnosed with HGA 3 weeks after donating blood and whose LR-RBCs from the donation were transfused to the recipient 9 days following collection. CONCLUSION This is a confirmed case of TT-HGA. Although rare, TT-HGA has been reported with LR-RBCs and platelets. In endemic areas, testing for tick-borne associated infections should be considered when investigating post-transfusion complications.
Collapse
Affiliation(s)
- Laura Tonnetti
- Scientific Affairs, American Red Cross, Rockville, Maryland, USA
| | - Luis A Marcos
- Division of Infectious Diseases, Stony Brook University Hospital, Stony Brook, New York, USA
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, New York, USA
| | - Linda Mamone
- Department of Pathology, Stony Brook University, Stony Brook, New York, USA
| | - Eric D Spitzer
- Department of Pathology, Stony Brook University, Stony Brook, New York, USA
| | - Matthew Jacob
- Division of Infectious Diseases, Stony Brook University Hospital, Stony Brook, New York, USA
| | | | | | - Fay B West
- American Red Cross, Biomedical Services, Farmington, Connecticut, USA
| |
Collapse
|
23
|
Obaid MK, Shehla S, Guan G, Rashid M, Shams S. Genotyping of ticks: first molecular report of Hyalomma asiaticum and molecular detection of tick-borne bacteria in ticks and blood from Khyber Pakhtunkhwa, Pakistan. Front Cell Infect Microbiol 2024; 14:1346595. [PMID: 38533383 PMCID: PMC10963394 DOI: 10.3389/fcimb.2024.1346595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 01/22/2024] [Indexed: 03/28/2024] Open
Abstract
Multiple ticks (Acari: Ixodoidea) carrying Rickettsiales bacteria have significant importance for both human and animal health. Thus, the purpose of this work was to genetically analyze tick species and their associated Rickettsiales bacteria in animal hosts. In order to achieve these objectives, various animals (including camels, cattle, goats, sheep, dogs, and mice) were inspected in four districts (Mardan, Peshawar, Kohat, and Karak) of Khyber Pakhtunkhwa to collect ticks, while blood samples were collected from all the symptomatic and asymptomatic cattle in all four districts. A total of 234 ticks were obtained from 86 out of 143 (60.14%) host animals, which were morphologically identified as Rhipicephalus turanicus, Rhipicephalus microplus, Haemaphysalis cornupunctata, and Hyalomma asiaticum. Among these, their representative ticks (126/234, 53.85%) were processed for molecular confirmation using cytochrome c oxidase (cox1) gene. Obtained cox1 sequences of four different tick species showed 99.72%-100% maximum identity with their corresponding species reported from Pakistan, China, India, and Kazakhstan and clustered phylogenetically. This study presented the first genetic report of Hy. asiaticum ticks in Pakistan. Moreover, genetically confirmed tick species were molecularly analyzed by PCR for detection of Rickettsiales DNA using partial fragments of 16S rDNA, 190-kDa outer membrane protein A (ompA), and 120-kDa outer membrane protein B (ompB) genes. In addition, blood samples were analyzed to identify Rickettsiales bacteria using the aforementioned genes. Rickettsiales bacteria were found in 24/126 (19.05%) ticks and 4/16 (25.00%) in symptomatic cattle's blood. The obtained ompA and ompB sequences from Hy. asiaticum ticks showed 99.73%-99.87% with Candidatus Rickettsia shennongii and unidentified Rickettsia sp., whereas the obtained 16S rDNA sequences from cattle's blood and ticks (Hae. cornupunctata) showed 99.67% highest identity with Anaplasma phagocytophilum. The 16S rDNA sequence of Rickettsiales DNA from Rh. turanicus ticks showed 100% identity with Ehrlichia canis and unidentified Ehrlichia sp. Obtained sequences of Rickettsiales bacteria were grouped along with their respective species in phylogenetic trees, which were previously reported in Greece, Cuba, Iraq, Turkey, Pakistan, South Korea, and China (mainland and Taiwan). This extensive study explores the wide range of damaging ticks and their corresponding tick-borne bacteria in the area, suggesting a possible danger to both livestock and human communities.
Collapse
Affiliation(s)
- Muhammad Kashif Obaid
- State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
| | - Shehla Shehla
- Department of Zoology, Abdul Wali Khan University Mardan, Khyber Pakhtunkhwa, Pakistan
| | - Guiquan Guan
- State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
| | - Muhammad Rashid
- Department of Parasitology, Faculty of Veterinary and Animal Sciences, The Islamia University of Bahawalpur, Bahawalpur, Punjab, Pakistan
| | - Sumaira Shams
- Department of Zoology, Abdul Wali Khan University Mardan, Khyber Pakhtunkhwa, Pakistan
| |
Collapse
|
24
|
Soni J, Sinha S, Pandey R. Understanding bacterial pathogenicity: a closer look at the journey of harmful microbes. Front Microbiol 2024; 15:1370818. [PMID: 38444801 PMCID: PMC10912505 DOI: 10.3389/fmicb.2024.1370818] [Citation(s) in RCA: 29] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 02/05/2024] [Indexed: 03/07/2024] Open
Abstract
Bacteria are the most prevalent form of microorganisms and are classified into two categories based on their mode of existence: intracellular and extracellular. While most bacteria are beneficial to human health, others are pathogenic and can cause mild to severe infections. These bacteria use various mechanisms to evade host immunity and cause diseases in humans. The susceptibility of a host to bacterial infection depends on the effectiveness of the immune system, overall health, and genetic factors. Malnutrition, chronic illnesses, and age-related vulnerabilities are the additional confounders to disease severity phenotypes. The impact of bacterial pathogens on public health includes the transmission of these pathogens from healthcare facilities, which contributes to increased morbidity and mortality. To identify the most significant threats to public health, it is crucial to understand the global burden of common bacterial pathogens and their pathogenicity. This knowledge is required to improve immunization rates, improve the effectiveness of vaccines, and consider the impact of antimicrobial resistance when assessing the situation. Many bacteria have developed antimicrobial resistance, which has significant implications for infectious diseases and favors the survival of resilient microorganisms. This review emphasizes the significance of understanding the bacterial pathogens that cause this health threat on a global scale.
Collapse
Affiliation(s)
- Jyoti Soni
- Division of Immunology and Infectious Disease Biology, Integrative Genomics of Host Pathogen Laboratory, Council of Scientific & Industrial Research-Institute of Genomics and Integrative Biology, New Delhi, India
- Academy of Scientific and Innovative Research, Ghaziabad, India
| | - Sristi Sinha
- Division of Immunology and Infectious Disease Biology, Integrative Genomics of Host Pathogen Laboratory, Council of Scientific & Industrial Research-Institute of Genomics and Integrative Biology, New Delhi, India
- School of Biosciences and Technology, Vellore Institute of Technology University, Vellore, India
| | - Rajesh Pandey
- Division of Immunology and Infectious Disease Biology, Integrative Genomics of Host Pathogen Laboratory, Council of Scientific & Industrial Research-Institute of Genomics and Integrative Biology, New Delhi, India
- Academy of Scientific and Innovative Research, Ghaziabad, India
| |
Collapse
|
25
|
Puri BK, Preyer R, Lee GS, Schwarzbach A. T Lymphocyte Interferon-gamma Response to Anaplasmataceae-related Major Surface Proteins and Ankyrin A in Fibromyalgia. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2024; 23:1392-1399. [PMID: 38375844 DOI: 10.2174/0118715273274091231207101522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 10/13/2023] [Accepted: 10/23/2023] [Indexed: 02/21/2024]
Abstract
BACKGROUND The aetiology of fibromyalgia is unknown; its symptoms may be related to a T-lymphocyte-mediated response to infectious organisms. OBJECTIVES First, to test the hypothesis that fibromyalgia is associated with increased interferon (IFN)-γ-secreting T-lymphocytes after stimulation with Anaplasmataceae-related major surface proteins (MSPs) and the macromolecular translocation type IV secretion system effector ankyrin repeat domain-containing protein A (AnkA). Second, to ascertain the relationship in fibromyalgia between (i) the IFN-γ-secreting T-lymphocyte response to stimulation with Anaplasmataceae-related MSPs and AnkA, and (ii) co-infection by Borrelia and Yersinia spp., and antinuclear antibodies. METHODS Using a case-control design, patients fulfilling the American College of Rheumatology revised criteria for fibromyalgia, and controls, underwent the following blinded assessments: (i) enzyme- linked immune absorbent spot (ELISpot) IFN-γ release assay of T-lymphocyte reactivity to Anaplasmataceae-related MSPs and AnkA; (ii) ELISpot IFN-γ release assays of T-lymphocyte reactivity to three Borrelia antigens, namely Borrelia burgdorferi full antigen (B31); peptide mix (from Borrelia burgdorferi sensu stricto, Borrelia afzelii, Borrelia garinii); and Borrelia burgdorferi lymphocyte function-associated antigen-1; (iii) immunoglobulin (Ig) A assay by enzyme-linked immunosorbent assay (ELISA) of antibodies to Yersinia spp.; (iv) IgG (ELISA) antibodies to Yersinia spp.; (v) serum antinuclear antibodies (immunofluorescence). RESULTS The groups were age- and sex-matched. The mean (standard error) value of IFN-γ release for the fibromyalgia group was 1.52 (0.26), compared with 1.00 (0.22) for the controls. Generalised linear modelling (p<0.001) of IFN-γ release in the fibromyalgia patients showed significant main effects of all three indices of Borrelia infection and of antinuclear antibodies. CONCLUSION Anaplasmataceae may play an aetiological role in fibromyalgia.
Collapse
Affiliation(s)
- Basant K Puri
- Faculty of Health and Wellbeing, University of Winchester, Winchester, UK
| | | | - Gary S Lee
- Department of Medicine, University of Southampton, Southampton, UK
| | | |
Collapse
|
26
|
Otrock ZK, Eby CS. Zoonotic Bacterial Infections Triggering Cytokine Storm Syndrome. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1448:285-291. [PMID: 39117822 DOI: 10.1007/978-3-031-59815-9_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
Zoonotic infections can result in life-threatening complications that can manifest with hemophagocytic lymphohistiocytosis (HLH)/cytokine storm syndrome (CSS). Bacteria constitute the largest group of zoonotic infection-related HLH cases. The growing list of zoonotic bacterial infections associated with HLH/CSS include Brucella spp., Rickettsia spp., Ehrlichia, Coxiella burnetii, Mycobacterium spp., and Bartonella spp. Patients most commonly present with fever, cytopenias, hepatosplenomegaly, myalgias, and less frequently with rash, jaundice, and lymphadenopathy.
Collapse
Affiliation(s)
- Zaher K Otrock
- Department of Pathology and Laboratory Medicine, Henry Ford Hospital, Detroit, MI, USA.
| | - Charles S Eby
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
27
|
Aleman M, Vedavally U, Pusterla N, Wensley F, Berryhill E, Madigan JE. Common and atypical presentations of Anaplasma phagocytophilum infection in equids with emphasis on neurologic and muscle disease. J Vet Intern Med 2024; 38:440-448. [PMID: 38038253 PMCID: PMC10800209 DOI: 10.1111/jvim.16964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 11/17/2023] [Indexed: 12/02/2023] Open
Abstract
BACKGROUND Comprehensive descriptions of equids with granulocytic anaplasmosis (EGA) with neurologic or muscle disease and other atypical presentations are scarce in the literature. OBJECTIVE Describe the clinical signs, laboratory findings, treatment, and outcome of equids with EGA with emphasis on neurologic and muscle disease. ANIMALS Thirty-eight horses, 1 donkey. METHODS Retrospective study. Equids with EGA were included. The electronic data base was searched from January 2000 to December 2022 using the words anaplasmosis, ehrlichiosis, granulocytic, and rickettsia. Signalment and clinical data were reviewed. Data were evaluated for normality using Shapiro-Wilk test. Parametric and nonparametric statistics were used for normally and non-normally distributed data. RESULTS Common (41%) and other (59%) presentations were seen in horses ≥ 4 years of age (median, 14 years) with an overrepresentation of males (77%). Neurologic disease was common (41%), mainly presenting as diffuse symmetrical proprioceptive ataxia. Brain disease was less common manifesting as obtundation and cranial nerve deficits. Muscle disease was less common, with QH breeds with the variant causing myosin heavy chain myopathy (MYHM) having severe disease. Cavitary effusion, cardiomyopathy and disseminated intravascular coagulation (DIC) were uncommon. Clinical laboratory results varied depending on disease stage. Muscle enzyme activities were significantly higher in horses with muscle disease. Outcome was favorable with prompt tetracycline treatment. Death and long-term sequelae were not reported. CONCLUSIONS AND CLINICAL IMPORTANCE Common and atypical presentations of EGA have a favorable outcome with prompt tetracycline treatment. Quarter horse breeds with muscle disease should be genotyped for MYHM.
Collapse
Affiliation(s)
- Monica Aleman
- Department of Medicine and EpidemiologySchool of Veterinary Medicine, University of CaliforniaDavisCaliforniaUSA
| | - Ujwala Vedavally
- Department of Medicine and EpidemiologySchool of Veterinary Medicine, University of CaliforniaDavisCaliforniaUSA
| | - Nicola Pusterla
- Department of Medicine and EpidemiologySchool of Veterinary Medicine, University of CaliforniaDavisCaliforniaUSA
| | - Fiona Wensley
- William R. Pritchard Veterinary Medical Teaching HospitalSchool of Veterinary Medicine, University of CaliforniaDavisCaliforniaUSA
| | - Emily Berryhill
- Department of Medicine and EpidemiologySchool of Veterinary Medicine, University of CaliforniaDavisCaliforniaUSA
| | - John E. Madigan
- Department of Medicine and EpidemiologySchool of Veterinary Medicine, University of CaliforniaDavisCaliforniaUSA
| |
Collapse
|
28
|
Li R, Ma Z, Zheng W, Xiao Y, Wang Z, Yi J, Wang Y, Chen C. Anaplasma phagocytophilum Ats-1 enhances exosome secretion through Syntenin-1. BMC Microbiol 2023; 23:271. [PMID: 37759206 PMCID: PMC10523776 DOI: 10.1186/s12866-023-03023-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 09/15/2023] [Indexed: 09/29/2023] Open
Abstract
Anaplasma phagocytophilum is an intracellular obligate parasite that causes granulocytic anaplasmosis. Effector Ats-1 is an important virulence factor of A. phagocytophilum. Multiomics screening and validation has been used to determine that Ats-1 regulates host cell apoptosis and energy metabolism through the respiratory chain mPTP axis. In this study, a total of 19 potential binding proteins of Ats-1 in host cells were preliminarily screened using a yeast two-hybrid assay, and the interaction between syntenin-1 (SDCBP) and Ats-1 was identified through immunoprecipitation. Bioinformatics analysis showed that SDCBP interacted with SDC1, SDC2, and SDC4 and participated in the host exosome secretion pathway. Further studies confirmed that Ats-1 induced the expression of SDC1, SDC2, and SDC4 in HEK293T cells through SDCBP and increased the exosome secretion of these cells. This indicated that SDCBP played an important role in Ats-1 regulating the exosome secretion of the host cells. These findings expand our understanding of the intracellular regulatory mechanism of A. phagocytophilum, which may enhance its own infection and proliferation by regulating host exosome pathways.
Collapse
Affiliation(s)
- Ruirui Li
- International Research Center for Animal Health Breeding, College of Animal Science and Technology, Shihezi University, Shihezi, China
- Collaborative Innovation Center for Prevention and Control of High Incidence Zoonotic Infectious Diseases in Western China, College of Animal Science and Technology, Shihezi University, Shihezi, China
- Shihezi University, Shihezi City, Xinjiang Uygur Autonomous Region, China
| | - Zhongchen Ma
- International Research Center for Animal Health Breeding, College of Animal Science and Technology, Shihezi University, Shihezi, China
- Collaborative Innovation Center for Prevention and Control of High Incidence Zoonotic Infectious Diseases in Western China, College of Animal Science and Technology, Shihezi University, Shihezi, China
| | - Wei Zheng
- International Research Center for Animal Health Breeding, College of Animal Science and Technology, Shihezi University, Shihezi, China
| | - Yangyang Xiao
- International Research Center for Animal Health Breeding, College of Animal Science and Technology, Shihezi University, Shihezi, China
- Collaborative Innovation Center for Prevention and Control of High Incidence Zoonotic Infectious Diseases in Western China, College of Animal Science and Technology, Shihezi University, Shihezi, China
| | - Zhen Wang
- International Research Center for Animal Health Breeding, College of Animal Science and Technology, Shihezi University, Shihezi, China
- Collaborative Innovation Center for Prevention and Control of High Incidence Zoonotic Infectious Diseases in Western China, College of Animal Science and Technology, Shihezi University, Shihezi, China
| | - Jihai Yi
- International Research Center for Animal Health Breeding, College of Animal Science and Technology, Shihezi University, Shihezi, China
- Collaborative Innovation Center for Prevention and Control of High Incidence Zoonotic Infectious Diseases in Western China, College of Animal Science and Technology, Shihezi University, Shihezi, China
| | - Yong Wang
- International Research Center for Animal Health Breeding, College of Animal Science and Technology, Shihezi University, Shihezi, China.
- Collaborative Innovation Center for Prevention and Control of High Incidence Zoonotic Infectious Diseases in Western China, College of Animal Science and Technology, Shihezi University, Shihezi, China.
| | - Chuangfu Chen
- International Research Center for Animal Health Breeding, College of Animal Science and Technology, Shihezi University, Shihezi, China.
- Collaborative Innovation Center for Prevention and Control of High Incidence Zoonotic Infectious Diseases in Western China, College of Animal Science and Technology, Shihezi University, Shihezi, China.
| |
Collapse
|
29
|
Lionello FCP, Rotundo S, Bruno G, Marino G, Morrone HL, Fusco P, Costa C, Russo A, Trecarichi EM, Beltrame A, Torti C. Touching Base with Some Mediterranean Diseases of Interest from Paradigmatic Cases at the "Magna Graecia" University Unit of Infectious Diseases: A Didascalic Review. Diagnostics (Basel) 2023; 13:2832. [PMID: 37685370 PMCID: PMC10486464 DOI: 10.3390/diagnostics13172832] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/25/2023] [Accepted: 08/29/2023] [Indexed: 09/10/2023] Open
Abstract
Among infectious diseases, zoonoses are increasing in importance worldwide, especially in the Mediterranean region. We report herein some clinical cases from a third-level hospital in Calabria region (Southern Italy) and provide a narrative review of the most relevant features of these diseases from epidemiological and clinical perspectives. Further, the pathogenic mechanisms involved in zoonotic diseases are reviewed, focusing on the mechanisms used by pathogens to elude the immune system of the host. These topics are of particular concern for individuals with primary or acquired immunodeficiency (e.g., people living with HIV, transplant recipients, patients taking immunosuppressive drugs). From the present review, it appears that diagnostic innovations and the availability of more accurate methods, together with better monitoring of the incidence and prevalence of these infections, are urgently needed to improve interventions for better preparedness and response.
Collapse
Affiliation(s)
- Ferdinando Carmelo Pio Lionello
- Department of Medical and Surgical Sciences, University “Magna Graecia”, 88100 Catanzaro, Italy; (F.C.P.L.); (S.R.); (G.B.); (G.M.); (H.L.M.); (A.R.); (E.M.T.); (C.T.)
| | - Salvatore Rotundo
- Department of Medical and Surgical Sciences, University “Magna Graecia”, 88100 Catanzaro, Italy; (F.C.P.L.); (S.R.); (G.B.); (G.M.); (H.L.M.); (A.R.); (E.M.T.); (C.T.)
| | - Gabriele Bruno
- Department of Medical and Surgical Sciences, University “Magna Graecia”, 88100 Catanzaro, Italy; (F.C.P.L.); (S.R.); (G.B.); (G.M.); (H.L.M.); (A.R.); (E.M.T.); (C.T.)
| | - Gabriella Marino
- Department of Medical and Surgical Sciences, University “Magna Graecia”, 88100 Catanzaro, Italy; (F.C.P.L.); (S.R.); (G.B.); (G.M.); (H.L.M.); (A.R.); (E.M.T.); (C.T.)
| | - Helen Linda Morrone
- Department of Medical and Surgical Sciences, University “Magna Graecia”, 88100 Catanzaro, Italy; (F.C.P.L.); (S.R.); (G.B.); (G.M.); (H.L.M.); (A.R.); (E.M.T.); (C.T.)
| | - Paolo Fusco
- Department of Medical and Surgical Sciences, University “Magna Graecia”, 88100 Catanzaro, Italy; (F.C.P.L.); (S.R.); (G.B.); (G.M.); (H.L.M.); (A.R.); (E.M.T.); (C.T.)
- Unit of Infectious and Tropical Diseases, “Mater Domini” Teaching Hospital, 88100 Catanzaro, Italy;
| | - Chiara Costa
- Unit of Infectious and Tropical Diseases, “Mater Domini” Teaching Hospital, 88100 Catanzaro, Italy;
| | - Alessandro Russo
- Department of Medical and Surgical Sciences, University “Magna Graecia”, 88100 Catanzaro, Italy; (F.C.P.L.); (S.R.); (G.B.); (G.M.); (H.L.M.); (A.R.); (E.M.T.); (C.T.)
- Unit of Infectious and Tropical Diseases, “Mater Domini” Teaching Hospital, 88100 Catanzaro, Italy;
| | - Enrico Maria Trecarichi
- Department of Medical and Surgical Sciences, University “Magna Graecia”, 88100 Catanzaro, Italy; (F.C.P.L.); (S.R.); (G.B.); (G.M.); (H.L.M.); (A.R.); (E.M.T.); (C.T.)
- Unit of Infectious and Tropical Diseases, “Mater Domini” Teaching Hospital, 88100 Catanzaro, Italy;
| | - Anna Beltrame
- College of Public Health, University of South Florida, Gainesville, FL 33620, USA;
| | - Carlo Torti
- Department of Medical and Surgical Sciences, University “Magna Graecia”, 88100 Catanzaro, Italy; (F.C.P.L.); (S.R.); (G.B.); (G.M.); (H.L.M.); (A.R.); (E.M.T.); (C.T.)
- Unit of Infectious and Tropical Diseases, “Mater Domini” Teaching Hospital, 88100 Catanzaro, Italy;
| |
Collapse
|
30
|
Memon A, Abdelghany A, Abusuliman M, Eldesouki M, Fatima M, Abdelhalim O, Abosheaishaa H. Altered Mental Status on Top of Anaplasmosis-Induced Severe Rhabdomyolysis: A Rare Clinical Presentation. Cureus 2023; 15:e45020. [PMID: 37829994 PMCID: PMC10565524 DOI: 10.7759/cureus.45020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/11/2023] [Indexed: 10/14/2023] Open
Abstract
Human granulocytic anaplasmosis (HGA) is a disease caused by tick-borne infection of Anaplasma phagocytophilum. The typical symptoms are fever, malaise, and body aches accompanied by abnormal blood tests such as leukopenia, thrombocytopenia, and transaminitis. Some rare complications may occur, especially in patients living in heavily wooded areas, with a mean age of 70 years. We present a case of a 67-year-old male who was admitted for lower abdominal pain, fever, and diarrhea with derangement of his blood tests. Despite treatment, his condition deteriorated and complicated rhabdomyolysis and acute kidney dysfunction. Empiric treatment including doxycycline was initiated while waiting for the infection blood work results. PCR came back positive for HGA. Empiric therapy was narrowed down to doxycycline for 14 days, and the patient's condition began to improve gradually and steadily. Aggressive hydration markedly improved rhabdomyolysis and, in turn, kidney function. Our case underscores the importance of considering HGA in ambiguous clinical scenarios and highlights the value of early diagnosis, empiric treatment, and intravenous hydration, especially in the presence of rhabdomyolysis.
Collapse
Affiliation(s)
- Aurangzeb Memon
- Internal Medicine, Icahn School of Medicine at Mount Sinai, Queens Hospital Center, New York, USA
| | | | | | | | - Minahil Fatima
- Internal Medicine, Services Hospital Lahore, Lahore, PAK
| | - Omar Abdelhalim
- Internal Medicine, Icahn School of Medicine at Mount Sinai, New York City (NYC) Health and Hospitals, Queens Hospital Center, New York, USA
| | - Hazem Abosheaishaa
- Internal Medicine, Icahn School of Medicine at Mount Sinai, New York City (NYC) Health and Hospitals, Queens Hospital Center, New York, USA
- Internal Medicine/Gastroenterology, Cairo University, Cairo, EGY
| |
Collapse
|
31
|
Aardema ML. Genomic analyses indicate the North American Ap-ha variant of the tick-vectored bacterium Anaplasma phagocytophilum was introduced from Europe. Parasit Vectors 2023; 16:301. [PMID: 37641117 PMCID: PMC10463431 DOI: 10.1186/s13071-023-05914-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 08/05/2023] [Indexed: 08/31/2023] Open
Abstract
BACKGROUND Anaplasma phagocytophilum is a tick-vectored, obligately intracellular bacterium that infects a diversity of vertebrate hosts. In North America, the Ap-ha variant of A. phagocytophilum can cause dangerous infections in humans, whereas symptomatic human infections in Europe are rare. Conversely, the European host-generalist ecotype of A. phagocytophilum frequently causes illness in domestic ruminants while no comparable infections have been recorded from North America. Despite these differences in pathogenicity, the Ap-ha variant is closely aligned phylogenetically with the European host-generalist ecotype. Furthermore, North American populations of A. phagocytophilum are less genetically diverse than those in Europe. Taken together, these observations suggest that the North American Ap-ha variant may represent an introduced population of this bacterium. METHODS Data from publicly available whole genomes of A. phagocytophilum were used to compare phylogeographic patterns and the extent of genetic divergence between the North American Ap-ha variant and the European host-generalist ecotype. RESULTS The results confirm that North American Ap-ha samples are phylogenetically nested within the diversity of the European host-generalist ecotype, and that Ap-ha likely radiated within the last 100 years. As expected, the Ap-ha variant also exhibited relatively low genetic diversity levels compared to the European host-generalist ecotype. Finally, North American Ap-ha harbored significantly more derived alleles than the European host-generalist A. phagocytophilum population. CONCLUSIONS Collectively, these results support the hypothesis that the Ap-ha variant was recently introduced to North America from Europe and underwent a strong genetic bottleneck during this process (i.e. a 'founder event'). Adaptation to novel vectors may have also played a role in shaping genetic diversity and divergence patterns in these pathogenic bacteria. These findings have implications for future studies aimed at understanding evolutionary patterns and pathogenicity variation within A. phagocytophilum.
Collapse
Affiliation(s)
- Matthew L Aardema
- Department of Biology, Montclair State University, Montclair, NJ, USA.
- Institute for Comparative Genomics, American Museum of Natural History, New York, NY, USA.
| |
Collapse
|
32
|
Sahin OF, Erol U, Duzlu O, Altay K. Molecular survey of Anaplasma phagocytophilum and related variants in water buffaloes: The first detection of Anaplasma phagocytophilum-like 1. Comp Immunol Microbiol Infect Dis 2023; 98:102004. [PMID: 37356166 DOI: 10.1016/j.cimid.2023.102004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 06/05/2023] [Accepted: 06/12/2023] [Indexed: 06/27/2023]
Abstract
Anaplasma phagocytophilum infects various hosts and lead to mild to severe infection. Currently, two A.phagocytophilum-related variants have been documented in different countries. Although limited, there are studies revealing the presence of A.phagocytophilum in water buffaloes, but no study investigating A.phagocytophilum-like 1 and -like 2. A.phagocytophilum and related variants were investigated using PCR, PCR-RFLP, and DNA sequence analysis in water buffaloes in Türkiye. 364 buffalo blood samples were examined for A.phagocytophilum and related strains. Seven buffaloes were determined to be positive with PCR and PCR-RFLP revealed that all samples were A.phagocytophilum-like 1. According to the partial sequence of 16 S rRNA gene, A.phagocytophilum like-1 may split into two different variants. This work supplies the first molecular report of A.phagocytophilum-like 1 in water buffaloes. However, a lack of information is present on the pathogen's clinical manifestations and vector species. There is still a need to investigate vectors and clinical signs of the pathogen.
Collapse
Affiliation(s)
- Omer Faruk Sahin
- Department of Parasitology, Faculty of Veterinary Medicine, University of Sivas Cumhuriyet, 58140 Sivas, Turkey
| | - Ufuk Erol
- Department of Parasitology, Faculty of Veterinary Medicine, University of Sivas Cumhuriyet, 58140 Sivas, Turkey
| | - Onder Duzlu
- Department of Parasitology, Faculty of Veterinary Medicine, Erciyes University, 38090 Kayseri, Turkey
| | - Kursat Altay
- Department of Parasitology, Faculty of Veterinary Medicine, University of Sivas Cumhuriyet, 58140 Sivas, Turkey.
| |
Collapse
|
33
|
Dumic I, Person E, Igandan O, Adetimehin O, Nordstrom CW, Williams C, Shweta F. Anaplasma phagocytophilum Community-Acquired Pneumonia: Case Report and Literature Review. Microorganisms 2023; 11:1483. [PMID: 37374985 PMCID: PMC10302541 DOI: 10.3390/microorganisms11061483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 05/21/2023] [Accepted: 05/29/2023] [Indexed: 06/29/2023] Open
Abstract
Anaplasma phagocytophilum is an emerging, Gram-negative, and obligate intracellular pathogen that is infrequently implicated as a causative agent of community-acquired pneumonia. In this paper, we report about an immunocompetent patient from the community who presented with fever, cough, and shortness of breath. Chest X-ray and CT showed bilateral lung infiltrates. Extensive workup for other common and uncommon causes of pneumonia was positive for anaplasmosis. The patient recovered completely with doxycycline therapy. In our literature review, we find that in 80% of reported cases of anaplasmosis pneumonia, empiric treatment did not contain doxycycline, which in some cases led to acute respiratory distress syndrome. Clinicians in tick-borne disease endemic regions should be aware of this unusual presentation of anaplasmosis in order to be able to select appropriate antimicrobial regimens and initiate timely management.
Collapse
Affiliation(s)
- Igor Dumic
- Mayo Clinic Alix School of Medicine, Rochester, MN 55905, USA; (O.I.); (O.A.); (C.W.N.); (C.W.); (F.S.)
- Department of Hospital Medicine, Mayo Clinic Health System, Eau Claire, WI 54703, USA
| | - Emily Person
- Department of Emergency Medicine, Mayo Clinic, Rochester, MN 55905, USA;
| | - Oladapo Igandan
- Mayo Clinic Alix School of Medicine, Rochester, MN 55905, USA; (O.I.); (O.A.); (C.W.N.); (C.W.); (F.S.)
- Department of Hospital Medicine, Mayo Clinic Health System, Eau Claire, WI 54703, USA
| | - Omobolanle Adetimehin
- Mayo Clinic Alix School of Medicine, Rochester, MN 55905, USA; (O.I.); (O.A.); (C.W.N.); (C.W.); (F.S.)
- Department of Hospital Medicine, Mayo Clinic Health System, Eau Claire, WI 54703, USA
| | - Charles W. Nordstrom
- Mayo Clinic Alix School of Medicine, Rochester, MN 55905, USA; (O.I.); (O.A.); (C.W.N.); (C.W.); (F.S.)
- Department of Hospital Medicine, Mayo Clinic Health System, Eau Claire, WI 54703, USA
| | - Christopher Williams
- Mayo Clinic Alix School of Medicine, Rochester, MN 55905, USA; (O.I.); (O.A.); (C.W.N.); (C.W.); (F.S.)
- Department of Pulmonary Medicine, Mayo Clinic Health System, Eau Claire, WI 54703, USA
| | - Fnu Shweta
- Mayo Clinic Alix School of Medicine, Rochester, MN 55905, USA; (O.I.); (O.A.); (C.W.N.); (C.W.); (F.S.)
- Department of Infectious Disease, Mayo Clinic Health System, Eau Claire, WI 54703, USA
| |
Collapse
|
34
|
Mahesh PP, Namjoshi P, Sultana H, Neelakanta G. Immunization against arthropod protein impairs transmission of rickettsial pathogen from ticks to the vertebrate host. NPJ Vaccines 2023; 8:79. [PMID: 37253745 PMCID: PMC10229574 DOI: 10.1038/s41541-023-00678-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 05/16/2023] [Indexed: 06/01/2023] Open
Abstract
Human anaplasmosis caused by Anaplasma phagocytophilum is one of the most common tick-borne diseases in the United States. The black-legged ticks, Ixodes scapularis, vector and transmit this bacterium to humans. In this study, we provide evidence that targeting I. scapularis membrane-bound organic anion transporting polypeptide 4056 (IsOATP4056) with an anti-vector vaccine affects transmission of A. phagocytophilum from ticks to the vertebrate host. Anaplasma phagocytophilum induces expression of IsOATP4056 in ticks and tick cells. Increased membrane localization of IsOATP4056 was evident in A. phagocytophilum-infected tick cells. Treatment with high dose (10 µg/ml) but not low dose (5 µg/ml) of EL-6 antibody that targets the largest extracellular loop of IsOATP4056 showed cytotoxic effects in tick cells but not in human keratinocyte cell line (HaCaT). Passive immunization, tick-mediated transmission and in vitro studies performed with mice ordered from two commercial vendors and with tick cells showed that EL-6 antibody not only impairs A. phagocytophilum transmission from ticks to the murine host but also aids in the reduction in the bacterial loads within engorged ticks and in tick cells by activation of arthropod Toll pathway. Furthermore, reduced molting efficiency was noted in ticks fed on EL-6 antibody-immunized mice. Collectively, these results provide a good candidate for the development of anti-tick vaccine to target the transmission of A. phagocytophilum and perhaps other tick-borne pathogens of medical importance.
Collapse
Affiliation(s)
- P P Mahesh
- Department of Biomedical and Diagnostic Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, TN, USA
| | - Prachi Namjoshi
- Department of Biomedical and Diagnostic Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, TN, USA
| | - Hameeda Sultana
- Department of Biomedical and Diagnostic Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, TN, USA
| | - Girish Neelakanta
- Department of Biomedical and Diagnostic Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, TN, USA.
| |
Collapse
|
35
|
Kolo A. Anaplasma Species in Africa-A Century of Discovery: A Review on Molecular Epidemiology, Genetic Diversity, and Control. Pathogens 2023; 12:pathogens12050702. [PMID: 37242372 DOI: 10.3390/pathogens12050702] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/09/2023] [Accepted: 05/10/2023] [Indexed: 05/28/2023] Open
Abstract
Anaplasma species, belonging to the family Anaplasmataceae in the order Rickettsiales, are obligate intracellular bacteria responsible for various tick-borne diseases of veterinary and human significance worldwide. With advancements in molecular techniques, seven formal species of Anaplasma and numerous unclassified species have been described. In Africa, several Anaplasma species and strains have been identified in different animals and tick species. This review aims to provide an overview of the current understanding of the molecular epidemiology and genetic diversity of classified and unclassified Anaplasma species detected in animals and ticks across Africa. The review also covers control measures that have been taken to prevent anaplasmosis transmission on the continent. This information is critical when developing anaplasmosis management and control programs in Africa.
Collapse
Affiliation(s)
- Agatha Kolo
- Department of Molecular Microbiology and Immunology, The University of Texas at San Antonio, San Antonio, TX 78249, USA
| |
Collapse
|
36
|
Ali M, Al-Ahmadi BM, Ibrahim R, Alahmadi S, Gattan H, Shater AF, Elshazly H. HARD TICKS (ACARI: IXODIDAE) INFESTING ARABIAN CAMELS (CAMELUS DROMEDARIUS) IN MEDINA AND QASSIM, SAUDI ARABIA. J Parasitol 2023; 109:252-258. [PMID: 37367177 DOI: 10.1645/22-109] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2023] Open
Abstract
Ixodid ticks are hematophagous obligatory ectoparasites that occur worldwide and transmit pathogens to humans and other vertebrates, causing economic livestock losses. The Arabian camel (Camelus dromedarius Linnaeus, 1758) is an important livestock animal in Saudi Arabia that is vulnerable to parasitism by ticks. The diversity and intensity of ticks on Arabian camels in certain localities in the Medina and Qassim regions of Saudi Arabia were determined. One hundred forty camels were examined for ticks, and 106 were infested (98 females, 8 males). A total of 452 ixodid ticks (267 males, 185 females) were collected from the infested Arabian camels. The tick infestation prevalence was 83.1% and 36.4% in female and male camels, respectively (female camels harbored significantly more ticks than did male camels). The recorded tick species were Hyalomma dromedarii Koch, 1844 (84.5%); Hyalomma truncatum Koch, 1844 (11.1%); Hyalomma impeltatum Schulze and Schlottke, 1929 (4.2%); and Hyalomma scupense Schulze, 1919 (0.22%). Hyalomma dromedarii was the predominant tick species in most regions, with a mean intensity of 2.15 ± 0.29 ticks/camel (2.5 ± 0.53 male ticks/camel, 1.8 ± 0.21 female ticks/camel). The proportion of male ticks was higher than that of female ticks (59.1 vs. 40.9%). To the best of our knowledge, this is the first survey of ixodid ticks on Arabian camels in Medina and Qassim, Saudi Arabia.
Collapse
Affiliation(s)
- Medhat Ali
- Department of Biology, College of Science, Taibah University, Al-Madinah Al-Munawwarah, 344, Saudi Arabia
- Department of Zoology, Faculty of Science, Ain Shams University, Cairo, 11566, Egypt
| | - Bassam M Al-Ahmadi
- Department of Biology, College of Science, Taibah University, Al-Madinah Al-Munawwarah, 344, Saudi Arabia
| | - Reda Ibrahim
- Department of Economic Entomology, Kafrelsheikh University, Kafrelsheikh, 33516, Egypt
| | - Saeed Alahmadi
- Department of Biology, College of Science, Taibah University, Al-Madinah Al-Munawwarah, 344, Saudi Arabia
| | - Hattan Gattan
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, 21362, Saudi Arabia
- Special Infectious Agents Unit, King Fahad Medical Research Centre, Jeddah, 21362, Saudi Arabia
| | - Abdullah F Shater
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, University of Tabuk, 71491, Saudi Arabia
| | - Hayam Elshazly
- Department of Biology, Faculty of Sciences and Arts - Scientific Departments, Qassim University, Buraydah, Qassim, 52571, Saudi Arabia
- Department of Zoology, Faculty of Science, Beni-Suef University, Beni-Suef, 62521, Egypt
| |
Collapse
|
37
|
Adjadj NR, Cargnel M, Ribbens S, Quinet C, Malandrin L, Mignon B, Mori M. Prevalence of Anaplasma phagocytophilum, Borrelia burgdorferi sensu lato, Rickettsia spp. and Babesia spp. in cattle serum and questing ticks from Belgium. Ticks Tick Borne Dis 2023; 14:102146. [PMID: 37044019 DOI: 10.1016/j.ttbdis.2023.102146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 01/26/2023] [Accepted: 02/01/2023] [Indexed: 04/14/2023]
Abstract
BACKGROUND Anaplasmosis, borreliosis, rickettsiosis and babesiosis are tick-borne diseases of medical, veterinary and economic importance. In Belgium, little is known on the prevalence of these diseases in animals and previous screenings relate only to targeted geographic regions, clinical cases or a limited number of tested samples. We therefore performed the first nationwide seroprevalence study of Anaplasma spp., A. phagocytophilum, Borrelia spp., Rickettsia spp. and Babesia spp. in Belgian cattle. We also screened questing ticks for the aforementioned pathogens. METHODS ELISAs and IFATs were performed on a representative sample set of cattle sera stratified proportionally to the number of cattle herds per province. Questing ticks were collected in areas where the highest prevalence for the forenamed pathogens in cattle serum were observed. Ticks were analyzed by quantitative PCR for A. phagocytophilum (n = 783), B. burgdorferi sensu lato (n = 783) and Rickettsia spp. (n = 715) and by PCR for Babesia spp. (n = 358). RESULTS The ELISA screening for antibodies to Anaplasma spp. and Borrelia spp. in cattle sera showed an overall seroprevalence of 15.6% (53/339) and 12.9% (52/402), respectively. The IFAT screening for antibodies against A. phagocytophilum, Rickettsia spp. and Babesia spp. resulted in an overall seroprevalence of 34.2% (116/339), 31.2% (99/317) and 3.4% (14/412), respectively. At the provincial level, the provinces of Liege and Walloon Brabant harboured the highest seroprevalence of Anaplasma spp. (44.4% and 42.7% respectively) and A. phagocytophilum (55.6% and 71.4%). East Flanders and Luxembourg exhibited the highest seroprevalence of Borrelia spp. (32.4%) and Rickettsia spp. (54.8%) respectively. The province of Antwerp showed the highest seroprevalence of Babesia spp. (11%). The screening of field-collected ticks resulted in a prevalence of 13.8% for B. burgdorferi s.l., with B. afzelii and B. garinii being the most common genospecies (65.7% and 17.1%, respectively). Rickettsia spp. was detected in 7.1% of the tested ticks and the only identified species was R. helvetica. A low prevalence was found for A. phagocytophilum (0.5%) and no Babesia positive tick was detected. CONCLUSIONS The seroprevalence data in cattle indicate hot spots for tick-borne pathogens in specific provinces and highlights the importance of veterinary surveillance in anticipating the emergence of diseases among humans. The detection of all pathogens, with the exception of Babesia spp. in questing ticks, underlines the need of raising awareness among public and professionals on other tick-borne diseases along with lyme borreliosis.
Collapse
Affiliation(s)
- Nadjah Radia Adjadj
- Sciensano, Bacterial zoonoses unit, Veterinary bacteriology, Brussels, Belgium; Sciensano, Unit of exotic viruses and vector-borne diseases, Brussels, Belgium.
| | - Mickaël Cargnel
- Sciensano, Department of epidemiology and public health, service of veterinary epidemiology, Brussels, Belgium.
| | | | - Christian Quinet
- Association Regionale de Sante et d'Identification Animales (ARSIA), Ciney, Belgium.
| | | | - Bernard Mignon
- University of Liège, department of infectious and parasitic diseases, Liège, FARAH (Fundamental and Applied Research for Animals and Health) Belgium.
| | - Marcella Mori
- Sciensano, Bacterial zoonoses unit, Veterinary bacteriology, Brussels, Belgium.
| |
Collapse
|
38
|
Seroexposure to Zoonotic Anaplasma and Borrelia in Dogs and Horses That Are in Contact with Vulnerable People in Italy. Pathogens 2023; 12:pathogens12030470. [PMID: 36986392 PMCID: PMC10054474 DOI: 10.3390/pathogens12030470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 03/11/2023] [Accepted: 03/14/2023] [Indexed: 03/19/2023] Open
Abstract
Equine and canine anaplasmosis and borreliosis are major tick-borne zoonotic diseases caused by Anaplasma phagocytophilum and various species of Borrelia (the most important being Borrelia burgdorferi s.l.), respectively. This study evaluated the seroexposure to Anaplasma and Borrelia in dogs and horses used in Animal-Assisted Interventions or living in contact with children, elderly people or immunocompromised persons. A total of 150 horses and 150 dogs living in Italy were equally divided into clinically healthy animals and animals with at least one clinical sign compatible with borreliosis and/or anaplasmosis (present at clinical examination or reported in the medical history). Serum samples were tested with ELISA and immunoblot for the presence of antibodies against A. phagocytophilum and B. burgdorferi s.l., and the association between seropositivity and possible risk factors was analyzed using multivariate and univariate tests. Overall, 13 dogs (8.7%) and 19 horses (12.7%) were positive for at least one of the two pathogens. In addition, 1 dog (0.7%) and 12 horses (8%) were positive for antibodies against A. phagocytophilum, while 12 dogs (8.0%) and 10 horses (6.7%) had antibodies against B. burgdorferi s.l. Tick infestation in the medical history of the dogs was significantly associated with seropositivity to at least one pathogen (p = 0.027; OR 7.398). These results indicate that, in Italy, ticks infected with A. phagocytophilum and/or B. burgdorferi circulate in places where horses and dogs are in contact with people at risk of developing severe diseases. Awareness should be increased, and adequate control plans need to be developed to protect human and animal health, especially where vulnerable, at-risk individuals are concerned.
Collapse
|
39
|
Presence of Anaplasma spp. and Their Associated Antibodies in the Swedish Goat Population. Animals (Basel) 2023; 13:ani13030333. [PMID: 36766222 PMCID: PMC9913567 DOI: 10.3390/ani13030333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/05/2023] [Accepted: 01/13/2023] [Indexed: 01/19/2023] Open
Abstract
Anaplasmosis is a tick-borne disease that has a severe impact on livestock production and welfare. The aim of this pilot study was to investigate the presence of Anaplasma spp. and associated antibodies in a subset of the Swedish goat population. In 2020, six goat herds located in different parts of Sweden were visited and whole blood and serum samples were collected. The whole blood samples (n = 40) were analysed for the presence of Anaplasma phagocytophilum, A. ovis and A. capra using quantitative and conventional polymerase chain reaction (PCR). The serum samples (n = 59) were analysed for the presence of antibodies to Anaplasma spp. using a commercial competitive enzyme-linked immunosorbent assay, and the same analysis was carried out on additional serum samples previously collected in 2018, 2019 and 2020 (n = 166). One goat (2.5%) tested positive for the presence of A. phagocytophilum genetic material, while the seropositivity rate ranged from 20 to 71%, depending on the surveyed year and area. These results indicate widespread exposure to Anaplasma spp. in the Swedish goat population. To inform future risk assessments and control efforts, further research is warranted to determine the prevalence of anaplasmosis and its impact on goat farming in Sweden.
Collapse
|
40
|
Hoffman T, Olsen B, Lundkvist Å. The Biological and Ecological Features of Northbound Migratory Birds, Ticks, and Tick-Borne Microorganisms in the African-Western Palearctic. Microorganisms 2023; 11:microorganisms11010158. [PMID: 36677450 PMCID: PMC9866947 DOI: 10.3390/microorganisms11010158] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/22/2022] [Accepted: 01/03/2023] [Indexed: 01/11/2023] Open
Abstract
Identifying the species that act as hosts, vectors, and vehicles of vector-borne pathogens is vital for revealing the transmission cycles, dispersal mechanisms, and establishment of vector-borne pathogens in nature. Ticks are common vectors for pathogens causing human and animal diseases, and they transmit a greater variety of pathogenic agents than any other arthropod vector group. Ticks depend on the movements by their vertebrate hosts for their dispersal, and tick species with long feeding periods are more likely to be transported over long distances. Wild birds are commonly parasitized by ticks, and their migration patterns enable the long-distance range expansion of ticks. The African-Palearctic migration system is one of the world's largest migrations systems. African-Western Palearctic birds create natural links between the African, European, and Asian continents when they migrate biannually between breeding grounds in the Palearctic and wintering grounds in Africa and thereby connect different biomes. Climate is an important geographical determinant of ticks, and with global warming, the distribution range and abundance of ticks in the Western Palearctic may increase. The introduction of exotic ticks and their microorganisms into the Western Palearctic via avian vehicles might therefore pose a greater risk for the public and animal health in the future.
Collapse
Affiliation(s)
- Tove Hoffman
- Zoonosis Science Center, Department of Medical Biochemistry and Microbiology, Uppsala University, 751 23 Uppsala, Sweden
| | - Björn Olsen
- Zoonosis Science Center, Department of Medical Biochemistry and Microbiology, Uppsala University, 751 23 Uppsala, Sweden
- Zoonosis Science Center, Department of Medical Sciences, Uppsala University, 751 85 Uppsala, Sweden
| | - Åke Lundkvist
- Zoonosis Science Center, Department of Medical Biochemistry and Microbiology, Uppsala University, 751 23 Uppsala, Sweden
- Correspondence:
| |
Collapse
|
41
|
Ouass S, Boulanger N, Lelouvier B, Insonere JLM, Lacroux C, Krief S, Asalu E, Rahola N, Duron O. Diversity and phylogeny of the tick-borne bacterial genus Candidatus Allocryptoplasma (Anaplasmataceae). Parasite 2023; 30:13. [PMID: 37162293 PMCID: PMC10171070 DOI: 10.1051/parasite/2023014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 04/20/2023] [Indexed: 05/11/2023] Open
Abstract
The family Anaplasmataceae includes tick-borne bacteria of major public and veterinary health interest, as best illustrated by members of the genera Anaplasma and Ehrlichia. Recent epidemiological surveys have also reported on the presence of a novel putative genus in the Anaplasmataceae, Candidatus Allocryptoplasma, previously described as Candidatus Cryptoplasma in the western black-legged tick, Ixodes pacificus. However, the genetic diversity of Ca. Allocryptoplasma and its phylogenetic relationship with other Anaplasmataceae remain unclear. In this study, we developed a multi-locus sequence typing approach, examining the DNA sequence variation at five genes of Ca. Allocryptoplasma found in ticks. Combining this multi-locus sequence typing and genetic data available on public databases, we found that substantial genetic diversity of Ca. Allocryptoplasma is present in Ixodes, Amblyomma and Haemaphysalis spp. ticks on most continents. Further analyses confirmed that the Ca. Allocryptoplasma of ticks, the Ca. Allocryptoplasma of lizards and some Anaplasma-like bacteria of wild mice cluster into a monophyletic genus, divergent from all other genera of the family Anaplasmataceae. Candidatus Allocryptoplasma appears as a sister genus of Anaplasma and, with the genera Ehrlichia and Neoehrlichia, they form a monophyletic subgroup of Anaplasmataceae associated with tick-borne diseases. The detection of genetically distinct Ca. Allocryptoplasma in ticks of significant medical or veterinary interest supports the hypothesis that it is an emergent genus of tick-borne pathogens of general concern.
Collapse
Affiliation(s)
- Sofian Ouass
- MIVEGEC, University of Montpellier (UM), Centre National de la Recherche Scientifique (CNRS), Institut pour la Recherche de la Développement (IRD), 34394 Montpellier, France
| | - Nathalie Boulanger
- University of Strasbourg, French National Reference Center for Borrelia, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | | | | | - Camille Lacroux
- UMR 7206 CNRS/MNHN/P7, Eco-anthropologie, Muséum National d'Histoire Naturelle, Musée de l'Homme, 17 place du Trocadéro, 75116, Paris, France - La Phocéenne de Cosmétique, ZA Les Roquassiers, 174 Rue de la Forge, 13300 Salon-de-Provence, France - Sebitoli Chimpanzee Project, Great Ape Conservation Project, Kibale National Park, Fort Portal, Uganda
| | - Sabrina Krief
- UMR 7206 CNRS/MNHN/P7, Eco-anthropologie, Muséum National d'Histoire Naturelle, Musée de l'Homme, 17 place du Trocadéro, 75116, Paris, France - Sebitoli Chimpanzee Project, Great Ape Conservation Project, Kibale National Park, Fort Portal, Uganda
| | - Edward Asalu
- Sebitoli Chimpanzee Project, Great Ape Conservation Project, Kibale National Park, Fort Portal, Uganda - Uganda Wildlife Authority, Kibale National Park, Uganda
| | - Nil Rahola
- MIVEGEC, University of Montpellier (UM), Centre National de la Recherche Scientifique (CNRS), Institut pour la Recherche de la Développement (IRD), 34394 Montpellier, France
| | - Olivier Duron
- MIVEGEC, University of Montpellier (UM), Centre National de la Recherche Scientifique (CNRS), Institut pour la Recherche de la Développement (IRD), 34394 Montpellier, France
| |
Collapse
|
42
|
Molecular characterization of Anaplasma capra infecting captive mouflon (Ovis gmelini) and domestic sheep (Ovis aries) of Pakistan. Small Rumin Res 2022. [DOI: 10.1016/j.smallrumres.2022.106837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
43
|
Abstract
Human granulocytic anaplasmosis (HGA) is a bacterial infection caused by Anaplasma phagocytophilum and transmitted by the bite of the black-legged (deer tick) in North America. Its incidence is increasing. HGA can be transmitted after 24 to 48 hours of tick attachment. The incubation period is 5 to 14 days after a tick bite. Symptoms include fever, chills, headache, and myalgia. Complications include shock, organ dysfunction, and death. Mortality is less than 1% with appropriate treatment. Doxycycline is first line treatment for all ages. Start it empirically if symptoms and risk factors suggest HGA. PCR is the confirmatory test of choice.
Collapse
Affiliation(s)
- Douglas MacQueen
- Cayuga Medical Center, 101 Dates Drive, Ithaca, NY 14850, USA; Weill Cornell Medicine.
| | | |
Collapse
|
44
|
Dumic I, Jevtic D, Veselinovic M, Nordstrom CW, Jovanovic M, Mogulla V, Veselinovic EM, Hudson A, Simeunovic G, Petcu E, Ramanan P. Human Granulocytic Anaplasmosis-A Systematic Review of Published Cases. Microorganisms 2022; 10:1433. [PMID: 35889152 PMCID: PMC9318722 DOI: 10.3390/microorganisms10071433] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 07/11/2022] [Accepted: 07/12/2022] [Indexed: 11/17/2022] Open
Abstract
Anaplasma phagocytophilum is an emerging, Gram-negative, obligate intracellular pathogen that is transmitted by a tick vector. Human infection ranges from asymptomatic to severe disease that can present with pancytopenia, multiorgan failure, and death. The aim of this systematic review is to analyze case reports and case series reported over the last two decades in peer-reviewed journals indexed in the Medline/PubMed database according to the PRISMA guidelines. We found 110 unique patients from 88 case reports and series. The most common mode of transmission was tick bite (60.9%), followed by blood transfusion (8.2%). Infection was acquired by blood transfusion in nearly half (42%) of the immunocompromised patients. Most patients reported fever (90%), followed by constitutional (59%) and gastrointestinal symptoms (56%). Rash was present in 17% of patients, much higher than in previous studies. Thrombocytopenia was the most common laboratory abnormality (76%) followed by elevated aspartate aminotransferase (AST) (46%). The diagnosis was most commonly established using whole-blood polymerase chain reaction (PCR) in 76% of patients. Coinfection rate was 9.1% and Borrelia burgdorferi was most commonly isolated in seven patients (6.4%). Doxycycline was used to treat 70% of patients but was only used as an empiric treatment in one-third of patients (33.6%). The overall mortality rate was 5.7%, and one patient died from trauma unrelated to HGA. The mortality rates among immunocompetent and immunocompromised patients were 4.2% (n = 4/95) and 18.2% (n = 2/11), respectively. Four of the six patients who died (66.6%) received appropriate antibiotic therapy. Among these, doxycycline was delayed by more than 48 h in two patients.
Collapse
Affiliation(s)
- Igor Dumic
- Mayo Clinic Alix School of Medicine, Rochester, MN 55905, USA; (C.W.N.); (V.M.); (A.H.); (E.P.)
- Department of Hospital Medicine, Mayo Clinic Health System, Eau Claire, WI 54703, USA
| | - Dorde Jevtic
- Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA;
- Internal Medicine Department, Elmhurst Hospital Center, New York, NY 11373, USA
| | - Mladjen Veselinovic
- Infectious Disease Department, Baptist Health Medical Center, North Little Rock, AR 72117, USA;
| | - Charles W. Nordstrom
- Mayo Clinic Alix School of Medicine, Rochester, MN 55905, USA; (C.W.N.); (V.M.); (A.H.); (E.P.)
- Department of Hospital Medicine, Mayo Clinic Health System, Eau Claire, WI 54703, USA
| | - Milan Jovanovic
- School of Medicine, University of Belgrade, 11000 Belgrade, Serbia;
| | - Vanajakshi Mogulla
- Mayo Clinic Alix School of Medicine, Rochester, MN 55905, USA; (C.W.N.); (V.M.); (A.H.); (E.P.)
- Department of Hospital Medicine, Mayo Clinic Health System, Eau Claire, WI 54703, USA
| | | | - Ann Hudson
- Mayo Clinic Alix School of Medicine, Rochester, MN 55905, USA; (C.W.N.); (V.M.); (A.H.); (E.P.)
- Department of Hospital Medicine, Mayo Clinic Health System, Eau Claire, WI 54703, USA
| | - Gordana Simeunovic
- Infectious Disease Department, Spectrum Health/Michigan State University, Grand Rapids, MI 49503, USA;
| | - Emilia Petcu
- Mayo Clinic Alix School of Medicine, Rochester, MN 55905, USA; (C.W.N.); (V.M.); (A.H.); (E.P.)
- Department of Hospital Medicine, Mayo Clinic Health System, Eau Claire, WI 54703, USA
| | - Poornima Ramanan
- Infectious Disease Department, University of Colorado, Denver, CO 80204, USA;
| |
Collapse
|
45
|
Hegab AA, Omar HM, Abuowarda M, Ghattas SG, Mahmoud NE, Fahmy MM. Screening and phylogenetic characterization of tick-borne pathogens in a population of dogs and associated ticks in Egypt. Parasit Vectors 2022; 15:222. [PMID: 35729599 PMCID: PMC9215074 DOI: 10.1186/s13071-022-05348-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 05/28/2022] [Indexed: 11/22/2022] Open
Abstract
Background The incidence or recurrence of tick-borne diseases (TBDs) in animals and humans is increasing rapidly worldwide, but there is insufficient information about TBDs infecting dogs in Egypt. Thus, the present study was conducted to screen and genetically identify tick-borne pathogens (TBPs) in dogs and associated ticks by microscopic examination and polymerase chain reaction (PCR). Methods In Cairo and Giza governorates, 208 blood samples were collected from dogs of different breeds, ages, and sex. In addition, 1266 dog-associated ticks were collected (546 ticks were used to prepare hemolymph smears, and 720 ticks were kept in 70% ethanol until PCR analysis). PCR was applied to 124 dog blood samples and 144 tick pools prepared from 720 ticks. Results All ticks collected from dogs were Rhipicephalus sanguineus (s.l.). Microscopic examination revealed that TBP prevalence among dogs was 23.56% (49/208), including Anaplasma and Ehrlichia with 11.1% (23/208) and Babesia canis with 8.2% (17/208). Hepatozoon canis was not detected in blood smears. Co-infections with two pathogens were visible in 4.33% (9/208) of examined dogs. The prevalence of TBPs in hemolymph smears was 45.97% (251/546) including 35.89% (196/546) for H. canis, 8.1% (44/546) for B. canis, and 2.01% (11/546) for Anaplasmataceae (A. phagocytophilum, A. marginale, A. platys, and E. canis). The overall molecular prevalence rate of TBPs was 25.81% and 29.17% in the blood of examined dogs and in ticks, respectively. The molecular prevalence of Anaplasmataceae family, Babesia canis, and H. canis in dog blood samples was 19.35%, 6.45%, and 0.0%, respectively, while in ticks, it was 20.83%, 5.55%, and 2.8%, respectively. A sequential analysis identified six different species of TBPs, namely B. canis vogeli, Hepatozoon canis, A. phagocytophilum, A. marginale, A. platys, and E. canis. The obtained sequences were submitted to GenBank and assigned accession numbers. Conclusions The present study detected a wide range of TBPs (B. canis, H. canis, A. platys, A. phagocytophilum, A. marginale, and E. canis) that are considered a threat to domestic animals and humans in Egypt. Hepatozoon canis and A. marginale were reported in dogs and associated ticks for the first time in Egypt. Graphical Abstract ![]()
Traditional and molecular techniques were used to screen domestic dogs and attached ticks for TBPs. A wide range of TBPs in dogs and attached ticks was detected in Egypt. Some accidental pathogens, such as A. marginale from other hosts, were identified in dogs. Some canine isolates from Anaplasmataceae family have high homology to those isolated from humans.
Collapse
Affiliation(s)
- Asmaa A Hegab
- Department of Parasitology, Animal Health Research Institute, Agriculture Research Center, Dokki, Egypt
| | - Hussein M Omar
- Department of Parasitology, Faculty of Veterinary Medicine, Cairo University, Giza square, PO Box 12211, Giza, Egypt
| | - Mai Abuowarda
- Department of Parasitology, Faculty of Veterinary Medicine, Cairo University, Giza square, PO Box 12211, Giza, Egypt.
| | - Souzan G Ghattas
- Department of Parasitology, Animal Health Research Institute, Agriculture Research Center, Dokki, Egypt
| | - Nisreen E Mahmoud
- Department of Parasitology, Faculty of Veterinary Medicine, Cairo University, Giza square, PO Box 12211, Giza, Egypt
| | - Magdy M Fahmy
- Department of Parasitology, Faculty of Veterinary Medicine, Cairo University, Giza square, PO Box 12211, Giza, Egypt
| |
Collapse
|
46
|
Rjeibi MR, Amairia S, Mhadhbi M, Rekik M, Gharbi M. Detection and molecular identification of Anaplasma phagocytophilum and Babesia spp. infections in Hyalomma aegyptium ticks in Tunisia. Arch Microbiol 2022; 204:385. [PMID: 35689686 DOI: 10.1007/s00203-022-02995-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 05/16/2022] [Accepted: 05/17/2022] [Indexed: 11/30/2022]
Abstract
Tortoises of the genus Testudo are the main hosts of Hyalomma aegyptium ticks. This species serves as a vector of several zoonotic pathogens. Therefore, the present study aimed to investigate the presence of four pathogens associated with H. aegyptium ticks obtained from tortoises from Tunisia. Conventional, multiplex and nested PCRs were used for Aanaplasma phagocytophilum, Ehrlichia canis, Coxiella burnetii and Babesia spp. screening. The molecular analyses revealed the presence of A. phagocytophilum and Babesia spp. None of the ticks, were infected by E. canis or C. burnetii species. Co-infection was detected in four ticks. As a conclusion, this is the first detection of A. phagocytophilum and Babesia spp. in H. aegyptium ticks collected from tortoises, in Tunisia. Thus, considering these results, the spur-thighed tortoise constitute a potential host of H. aegyptium which plays an important role in the transmission of pathogenic agents affecting both human and animals. In term of public health, a strict control and surveillance should be carried to reduce the circulation of such pathogens between different hosts.
Collapse
Affiliation(s)
- Mohamed Ridha Rjeibi
- Laboratoire de Parasitologie, Univ. Manouba, Institution de la Recherche et de l'Enseignement Supérieur Agricoles, École Nationale de Médecine Vétérinaire de Sidi Thabet, 2020, Sidi Thabet, Tunisia.
- Laboratoire de Parasitologie, Institut de la Recherche Vétérinaire de Tunisie, 20 Rue de Jebel Lakdhar, La Rabta, 1006, Tunis, Tunisia.
| | - Safa Amairia
- Laboratoire de Parasitologie, Univ. Manouba, Institution de la Recherche et de l'Enseignement Supérieur Agricoles, École Nationale de Médecine Vétérinaire de Sidi Thabet, 2020, Sidi Thabet, Tunisia
| | - Moez Mhadhbi
- Laboratoire de Parasitologie, Univ. Manouba, Institution de la Recherche et de l'Enseignement Supérieur Agricoles, École Nationale de Médecine Vétérinaire de Sidi Thabet, 2020, Sidi Thabet, Tunisia
| | - Mourad Rekik
- International Center for Agricultural Research in the Dry Areas (ICARDA), P.O. Box 950764, Amman, 11195, Jordan
| | - Mohamed Gharbi
- Laboratoire de Parasitologie, Univ. Manouba, Institution de la Recherche et de l'Enseignement Supérieur Agricoles, École Nationale de Médecine Vétérinaire de Sidi Thabet, 2020, Sidi Thabet, Tunisia
| |
Collapse
|
47
|
Gandy S, Hansford K, McGinley L, Cull B, Smith R, Semper A, Brooks T, Fonville M, Sprong H, Phipps P, Johnson N, Medlock JM. Prevalence of Anaplasma phagocytophilum in questing Ixodes ricinus nymphs across twenty recreational areas in England and Wales. Ticks Tick Borne Dis 2022; 13:101965. [DOI: 10.1016/j.ttbdis.2022.101965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 05/03/2022] [Accepted: 05/05/2022] [Indexed: 11/25/2022]
|
48
|
Glass A, Springer A, Strube C. A 15-year monitoring of Rickettsiales (Anaplasma phagocytophilum and Rickettsia spp.) in questing ticks in the city of Hanover, Germany. Ticks Tick Borne Dis 2022; 13:101975. [DOI: 10.1016/j.ttbdis.2022.101975] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 04/29/2022] [Accepted: 05/29/2022] [Indexed: 01/29/2023]
|
49
|
Anaplasma phagocytophilum in Marmota himalayana. BMC Genomics 2022; 23:335. [PMID: 35490230 PMCID: PMC9055747 DOI: 10.1186/s12864-022-08557-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 04/14/2022] [Indexed: 11/24/2022] Open
Abstract
Background Human granulocytic anaplasmosis is a tick-borne zoonotic disease caused by Anaplasma phagocytophilum. Coinfections with A. phagocytophilum and other tick-borne pathogens are reported frequently, whereas the relationship between A. phagocytophilum and flea-borne Yersnia pestis is rarely concerned. Results A. phagocytophilum and Yersnia pestis were discovered within a Marmota himalayana found dead in the environment, as determined by 16S ribosomal rRNA sequencing. Comparative genomic analyses of marmot-derived A. phagocytophilum isolate demonstrated its similarities and a geographic isolation from other global strains. The 16S rRNA gene and GroEL amino acid sequence identity rates between marmot-derived A. phagocytophilum (JAHLEX000000000) and reference strain HZ (CP000235.1) are 99.73% (1490/1494) and 99.82% (549/550), respectively. 16S rRNA and groESL gene screenings show that A. phagocytophilum is widely distributed in marmots; the bacterium was more common in marmots found dead (24.59%, 15/61) than in captured marmots (19.21%, 29/151). We found a higher Y. pestis isolation rate in dead marmots harboring A. phagocytophilum than in those without it (2 = 4.047, p < 0.05). Marmot-derived A. phagocytophilum was able to live in L929 cells and BALB/c mice but did not propagate well. Conclusions In this study, A. phagocytophilum was identified for the first time in Marmota himalayana, a predominant Yersinia pestis host. Our results provide initial evidence for M. himalayana being a reservoir for A. phagocytophilum; moreover, we found with the presence of A. phagocytophilum, marmots may be more vulnerable to plague. Humans are at risk for co-infection with both pathogens by exposure to such marmots. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08557-x.
Collapse
|
50
|
Kandhi S, Ghazanfar H, Qureshi ZA, Kalangi H, Jyala A, Arguello Perez ES. An Atypical Presentation of a Severe Case of Anaplasma Phagocytophilum. Cureus 2022; 14:e23224. [PMID: 35449628 PMCID: PMC9012425 DOI: 10.7759/cureus.23224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/16/2022] [Indexed: 11/05/2022] Open
|