1
|
Eblé P, Dekker A, van den End S, Visser V, Engelsma M, Harders F, van Keulen L, van Weezep E, Holwerda M. A case report of a cat infected with European bat lyssavirus type 1, the Netherlands, October 2024. Euro Surveill 2025; 30:2500154. [PMID: 40084421 PMCID: PMC11912140 DOI: 10.2807/1560-7917.es.2025.30.10.2500154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2025] [Accepted: 03/12/2025] [Indexed: 03/16/2025] Open
Abstract
In October 2024, an infection of European bat lyssavirus type 1 was confirmed in a domestic cat in the Netherlands. Several weeks before, the owners had found a dead bat considered to be caught by the cat. Nine persons exposed to the cat received post-exposure prophylaxis and four domestic animals from the same household were quarantined. This report stresses the need for vigilance for rabies in domestic animals in countries where lyssavirus infections in bats are endemic.
Collapse
Affiliation(s)
- Phaedra Eblé
- Wageningen Bioveterinary Research (WBVR), Lelystad, the Netherlands
| | - Aldo Dekker
- Wageningen Bioveterinary Research (WBVR), Lelystad, the Netherlands
| | - Sanne van den End
- The Netherlands Food and Consumer Product Safety Authority (NVWA), Utrecht, the Netherlands
| | - Vanessa Visser
- The Netherlands Food and Consumer Product Safety Authority (NVWA), Utrecht, the Netherlands
| | - Marc Engelsma
- Wageningen Bioveterinary Research (WBVR), Lelystad, the Netherlands
| | - Frank Harders
- Wageningen Bioveterinary Research (WBVR), Lelystad, the Netherlands
| | | | - Erik van Weezep
- Wageningen Bioveterinary Research (WBVR), Lelystad, the Netherlands
| | - Melle Holwerda
- Wageningen Bioveterinary Research (WBVR), Lelystad, the Netherlands
| |
Collapse
|
2
|
Ohlopkova OV, Kononova YV, Tyumentseva MA, Tyumentsev AI, Shestopalov AM, Akimkin VG. Plain-nosed bats (family Vespertilionidae) as a possible reservoir of lyssaviruses and coronaviruses in Western Siberia and the south of European Russia. Vopr Virusol 2024; 69:415-428. [PMID: 39527764 DOI: 10.36233/0507-4088-267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Indexed: 11/16/2024]
Abstract
The review presents current data on the chiropterofauna inhabiting Western Siberia and the south of the European part of Russia. A general description of the genus of lyssaviruses and the family of coronaviruses is given. The potential for virus carriage in relation to lyssaviruses and coronaviruses in bat populations of two geographically distant regions is considered.
Collapse
Affiliation(s)
- O V Ohlopkova
- Central Research Institute of Epidemiology, Rospotrebnadzor
- Virology Research Institute of the Federal Research Center for Fundamental and Translational Medicine
| | - Y V Kononova
- Virology Research Institute of the Federal Research Center for Fundamental and Translational Medicine
| | | | - A I Tyumentsev
- Central Research Institute of Epidemiology, Rospotrebnadzor
| | - A M Shestopalov
- Virology Research Institute of the Federal Research Center for Fundamental and Translational Medicine
| | - V G Akimkin
- Central Research Institute of Epidemiology, Rospotrebnadzor
| |
Collapse
|
3
|
Fehlner-Gardiner C, Gongal G, Tenzin T, Sabeta C, De Benedictis P, Rocha SM, Vargas A, Cediel-Becerra N, Gomez LC, Maki J, Rupprecht CE. Rabies in Cats-An Emerging Public Health Issue. Viruses 2024; 16:1635. [PMID: 39459967 PMCID: PMC11512395 DOI: 10.3390/v16101635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 10/04/2024] [Accepted: 10/08/2024] [Indexed: 10/28/2024] Open
Abstract
Human rabies cases today are predominantly associated with infection from rabid domestic dogs. Unlike dogs, a common global reservoir species that perpetuates rabies viruses (RABV) within their populations, domestic cats are much less frequently reported or vaccinated. Epidemiologically, cats are important vectors of lyssaviruses but are not viral reservoirs. Typically, cats are incidental hosts only, infected with the predominant lyssavirus in their geographic locale. Human cases associated with rabid cats have occurred in Africa, Asia, Europe and throughout the Americas. As adept, solitary hunters, wild and domestic felids are at risk of lyssavirus infection based upon interactions with infected prey, such as bats, or from transmission by other mesocarnivores, such as rabid dogs, foxes, jackals, raccoons, and skunks. Current veterinary vaccines provide safe and effective immunity in cats against phylogroup I lyssaviruses, such as RABV, but not against divergent lyssaviruses in phylogroups II-IV. With the focus upon the global elimination of canine rabies, the emergence of rabies in cats represents a concerning trend. Clearly, education about the occurrence of rabies in cats needs to be improved, as well as the routine vaccination of cats to reduce the associated risks to public health, agriculture, and conservation biology from a One Health perspective.
Collapse
Affiliation(s)
| | - Gyanendra Gongal
- World Health Organization Regional Office for South-East Asia, New Delhi 110 002, India;
| | - Tenzin Tenzin
- World Organisation for Animal Health, Sub-Regional Representation for Southern Africa, Gaborone P.O. Box 25662, Botswana;
| | - Claude Sabeta
- Department of Veterinary Tropical Diseases, University of Pretoria, Pretoria 0110, South Africa;
| | | | - Silene Manrique Rocha
- Department of Health and Environment Surveillance, Ministry of Health of Brazil, Brasilia 70.719-040, Brazil; (S.M.R.); (A.V.)
| | - Alexander Vargas
- Department of Health and Environment Surveillance, Ministry of Health of Brazil, Brasilia 70.719-040, Brazil; (S.M.R.); (A.V.)
| | | | | | - Joanne Maki
- Boehringer Ingelheim Animal Health USA Inc., Athens, GA 30601, USA;
| | - Charles E. Rupprecht
- College of Forestry, Wildlife and Environment, Auburn University, Auburn, AL 36849, USA;
- College of Veterinary Medicine, Auburn University, Auburn, AL 36849, USA
| |
Collapse
|
4
|
Golding ME, Wu G, Wilkie R, Picard-Meyer E, Servat A, Marston DA, Aegerter JN, Horton DL, McElhinney LM. Investigating the emergence of a zoonotic virus: phylogenetic analysis of European bat lyssavirus 1 in the UK. Virus Evol 2024; 10:veae060. [PMID: 39193178 PMCID: PMC11345707 DOI: 10.1093/ve/veae060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 06/27/2024] [Accepted: 07/25/2024] [Indexed: 08/29/2024] Open
Abstract
European bat lyssavirus 1 (EBLV-1, Lyssavirus hamburg) is predominantly detected in serotine bats (Eptesicus serotinus) and is responsible for the majority of bat rabies cases in mainland Europe. A passive bat rabies surveillance scheme detected the virus in a serotine bat in the UK for the first time in October 2018. As of May 2024, 34 cases have been reported, 20 of which involved contact with an animal and 5 reported human contact. We investigated the emergence of EBLV-1 by undertaking comprehensive sequence analysis and Bayesian phylogenetics, based on complete virus genomes of 33 UK sequences and 108 sequences covering six countries in mainland Europe (1968-2023), including 21 French EBLV-1-positive RNA samples sequenced for this study. Sequence analysis revealed extreme similarity among UK EBLV-1 sequences (99.9%-100%), implying a single source of introduction rather than multiple independent introductions. Bayesian analysis revealed that the UK EBLV-1 sequences shared their most recent common ancestor with an EBLV-1 sequence from a serotine bat detected in Brittany, France, in 2001, with an estimated date of divergence of 1997. Within the UK sequences, the earliest divergence was estimated to occur in 2007. This study provides valuable insights into the molecular epidemiology of an emerging zoonotic pathogen and improved understanding of the risks posed to public and animal health.
Collapse
Affiliation(s)
- Megan E Golding
- Department of Virology, Animal and Plant Health Agency, Woodham Lane, Addlestone KT15 3NB, United Kingdom
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Surrey, Guildford, Surrey GU2 7XH, United Kingdom
| | - Guanghui Wu
- Department of Virology, Animal and Plant Health Agency, Woodham Lane, Addlestone KT15 3NB, United Kingdom
| | - Rebekah Wilkie
- Department of Virology, Animal and Plant Health Agency, Woodham Lane, Addlestone KT15 3NB, United Kingdom
| | | | - Alexandre Servat
- Nancy Laboratory for Rabies and Wildlife, ANSES, Malzéville 51220, France
| | - Denise A Marston
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Surrey, Guildford, Surrey GU2 7XH, United Kingdom
- Department of Science, Strategy and Planning, Animal and Plant Health Agency, Woodham Lane, Addlestone KT15 3NB, United Kingdom
| | - James N Aegerter
- National Wildlife Management Centre, Wildlife Epidemiology and Modelling, Animal and Plant Health Agency, Sand Hutton, York YO41 1LZ, United Kingdom
| | - Daniel L Horton
- Department of Virology, Animal and Plant Health Agency, Woodham Lane, Addlestone KT15 3NB, United Kingdom
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Surrey, Guildford, Surrey GU2 7XH, United Kingdom
| | - Lorraine M McElhinney
- Department of Virology, Animal and Plant Health Agency, Woodham Lane, Addlestone KT15 3NB, United Kingdom
| |
Collapse
|
5
|
Vodopija R, Lojkić I, Hamidović D, Boneta J, Primorac D. Bat Bites and Rabies PEP in the Croatian Reference Centre for Rabies 1995-2020. Viruses 2024; 16:876. [PMID: 38932168 PMCID: PMC11209127 DOI: 10.3390/v16060876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/27/2024] [Accepted: 05/28/2024] [Indexed: 06/28/2024] Open
Abstract
Seroprevalence of lyssaviruses in certain bat species has been proven in the Republic of Croatia, but there have been no confirmed positive bat brain isolates or human fatalities associated with bat injuries/bites. The study included a retrospective analysis of bat injuries/bites, post-exposure prophylaxis (PEP) and geographic distribution of bat injuries in persons examined at the Zagreb Antirabies Clinic, the Croatian Reference Centre for Rabies. In the period 1995-2020, we examined a total of 21,910 patients due to animal injuries, of which 71 cases were bat-related (0.32%). Of the above number of patients, 4574 received rabies PEP (20.87%). However, for bat injuries, the proportion of patients receiving PEP was significantly higher: 66 out of 71 patients (92.95%). Of these, 33 received only the rabies vaccine, while the other 33 patients received the vaccine with human rabies immunoglobulin (HRIG). In five cases, PEP was not administered, as there was no indication for treatment. Thirty-five of the injured patients were biologists or biology students (49.29%). The bat species was confirmed in only one of the exposure cases. This was a serotine bat (Eptesicus serotinus), a known carrier of Lyssavirus hamburg. The results showed that the bat bites were rather sporadic compared to other human injuries caused by animal bites. All bat injuries should be treated as if they were caused by a rabid animal, and according to WHO recommendations. People who come into contact with bats should be strongly advised to be vaccinated against rabies. Entering bat habitats should be done with caution and in accordance with current recommendations, and nationwide surveillance should be carried out by competent institutions and in close collaboration between bat experts, epidemiologists and rabies experts.
Collapse
Affiliation(s)
- Radovan Vodopija
- Department of Epidemiology, Andrija Štampar Teaching Institute of Public Health, 10000 Zagreb, Croatia; (R.V.); (D.P.)
| | - Ivana Lojkić
- Laboratory for Rabies and General Virology, Croatian Veterinary Institute, 10000 Zagreb, Croatia
| | - Daniela Hamidović
- Ministry of Environment and Green Transition, 10000 Zagreb, Croatia;
| | - Jelena Boneta
- Institute of Public Health of Zagreb County, 10290 Zaprešić, Croatia;
| | - Dora Primorac
- Department of Epidemiology, Andrija Štampar Teaching Institute of Public Health, 10000 Zagreb, Croatia; (R.V.); (D.P.)
| |
Collapse
|
6
|
Dundarova H, Ivanova-Aleksandrova N, Bednarikova S, Georgieva I, Kirov K, Miteva K, Neov B, Ostoich P, Pikula J, Zukal J, Hristov P. Phylogeographic Aspects of Bat Lyssaviruses in Europe: A Review. Pathogens 2023; 12:1089. [PMID: 37764897 PMCID: PMC10534866 DOI: 10.3390/pathogens12091089] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/08/2023] [Accepted: 08/22/2023] [Indexed: 09/29/2023] Open
Abstract
During the last few decades, bat lyssaviruses have become the topic of intensive molecular and epidemiological investigations. Since ancient times, rhabdoviruses have caused fatal encephalitis in humans which has led to research into effective strategies for their eradication. Modelling of potential future cross-species virus transmissions forms a substantial component of the recent infection biology of rabies. In this article, we summarise the available data on the phylogeography of both bats and lyssaviruses in Europe and the adjacent reg ions, especially in the contact zone between the Palearctic and Ethiopian realms. Within these zones, three bat families are present with high potential for cross-species transmission and the spread of lyssaviruses in Phylogroup II to Europe (part of the western Palearctic). The lack of effective therapies for rabies viruses in Phylogroup II and the most divergent lyssaviruses generates impetus for additional phylogenetic and virological research within this geographical region.
Collapse
Affiliation(s)
- Heliana Dundarova
- Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, 1 Tsar Osvoboditel Blvd., 1000 Sofia, Bulgaria
| | | | - Sarka Bednarikova
- Department of Ecology and Diseases of Zoo Animals, Game, Fish and Bees, University of Veterinary Sciences Brno, Palackého tř. 1946/1, 612 42 Brno, Czech Republic
| | - Irina Georgieva
- National Centre of Infectious and Parasitic Diseases, 26 Yanko Sakazov Blvd., 1504 Sofia, Bulgaria
| | - Krasimir Kirov
- Faculty of Biology, University of Plovdiv “Paisii Hilendarski”, 24 Tzar Assen Str., 4000 Plovdiv, Bulgaria
| | - Kalina Miteva
- Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, 1 Tsar Osvoboditel Blvd., 1000 Sofia, Bulgaria
| | - Boyko Neov
- Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, 1 Tsar Osvoboditel Blvd., 1000 Sofia, Bulgaria
| | - Peter Ostoich
- Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, 1 Tsar Osvoboditel Blvd., 1000 Sofia, Bulgaria
| | - Jiri Pikula
- Department of Ecology and Diseases of Zoo Animals, Game, Fish and Bees, University of Veterinary Sciences Brno, Palackého tř. 1946/1, 612 42 Brno, Czech Republic
| | - Jan Zukal
- Institute of Vertebrate Biology, Czech Academy of Sciences, Květná 8, 603 65 Brno, Czech Republic
| | - Peter Hristov
- Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, 1 Tsar Osvoboditel Blvd., 1000 Sofia, Bulgaria
| |
Collapse
|
7
|
Coertse J, Viljoen N, Weyer J, Markotter W. Comparative Neutralization Activity of Commercial Rabies Immunoglobulin against Diverse Lyssaviruses. Vaccines (Basel) 2023; 11:1255. [PMID: 37515070 PMCID: PMC10383743 DOI: 10.3390/vaccines11071255] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/15/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023] Open
Abstract
Novel lyssaviruses, the causative agents of rabies, continue to be described mostly due to increased surveillance in bat hosts. Biologicals for the prevention of rabies in humans have, however, remained largely unchanged for decades. This study aimed to determine if commercial rabies immunoglobulin (RIG) could neutralize diverse lyssaviruses. Two commercial preparations, of human or equine origin, were evaluated against a panel consisting of 13 lyssavirus species. Reduced neutralization was observed for the majority of lyssaviruses compared to rabies virus and was more evident for lyssaviruses outside of phylogroup I. Neutralization of more diverse lyssaviruses only occurred at very high doses, except for Ikoma lyssavirus, which could not be neutralized by the RIG evaluated in this study. The use of RIG is a crucial component of rabies post-exposure prophylaxis and the data generated here indicate that RIG, in its current form, will not protect against all lyssaviruses. In addition, higher doses of RIG may be required for neutralization as the genetic distance from vaccine strains increases. Given the limitations of current RIG preparations, alternative passive immunization options should be investigated.
Collapse
Affiliation(s)
- Jessica Coertse
- Centre for Emerging Zoonotic and Parasitic Diseases, National Institute for Communicable Diseases, A Division of the National Health Laboratory Service, Johannesburg 2131, South Africa
- Centre for Viral Zoonoses, Department of Medical Virology, Faculty of Health Sciences, University of Pretoria, Pretoria 0001, South Africa
| | - Natalie Viljoen
- Centre for Emerging Zoonotic and Parasitic Diseases, National Institute for Communicable Diseases, A Division of the National Health Laboratory Service, Johannesburg 2131, South Africa
- Centre for Viral Zoonoses, Department of Medical Virology, Faculty of Health Sciences, University of Pretoria, Pretoria 0001, South Africa
| | - Jacqueline Weyer
- Centre for Emerging Zoonotic and Parasitic Diseases, National Institute for Communicable Diseases, A Division of the National Health Laboratory Service, Johannesburg 2131, South Africa
- Centre for Viral Zoonoses, Department of Medical Virology, Faculty of Health Sciences, University of Pretoria, Pretoria 0001, South Africa
- Department of Microbiology and Infectious Diseases, School of Pathology, University of Witwatersrand, Johannesburg 2131, South Africa
| | - Wanda Markotter
- Centre for Viral Zoonoses, Department of Medical Virology, Faculty of Health Sciences, University of Pretoria, Pretoria 0001, South Africa
| |
Collapse
|
8
|
Černe D, Hostnik P, Toplak I, Presetnik P, Maurer-Wernig J, Kuhar U. Discovery of a novel bat lyssavirus in a Long-fingered bat (Myotis capaccinii) from Slovenia. PLoS Negl Trop Dis 2023; 17:e0011420. [PMID: 37384601 DOI: 10.1371/journal.pntd.0011420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 05/25/2023] [Indexed: 07/01/2023] Open
Abstract
Lyssaviruses are the causative agents of rabies, a zoonotic, fatal disease that is thought to be ancestral to bats. In the last decade, the detection of bat associated lyssaviruses is increasing also in Europe. Within a retrospective bat associated lyssavirus surveillance study a total of 225 dead bats of 21 bat species were collected in Slovenia between 2012 and 2019 and tested by specific real-time RT-PCR method. The first lyssavirus positive sample in bats in Slovenia was detected using the real-time RT-PCR, the fluorescent antibody test, and next generation sequencing, while the rabies tissue culture inoculation test was unsuccessful due to sample degradation and storage conditions. The nearly complete genome of Divača bat lyssavirus from Slovenia consists of 11,871 nucleotides and reflects the characteristic gene organization known for lyssaviruses, encoding the five viral proteins. Phylogenetic analysis of Divača bat lyssavirus revealed that it belongs to phylogroup I lyssaviruses and is most closely related to Kotalahti bat lyssavirus (KBLV) with 87.20% nucleotide and 99.22% amino acid identity. Together with KBLV, Khujand virus, European bat lyssavirus 2, Bakeloh bat lyssavirus, and Aravan virus, Divača bat lyssavirus was detected in the genus Myotis suggesting its key role in the transmission and maintenance of certain lyssaviruses.
Collapse
Affiliation(s)
- Danijela Černe
- Institute of Microbiology and Parasitology, Virology Unit, Veterinary Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Peter Hostnik
- Institute of Microbiology and Parasitology, Virology Unit, Veterinary Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Ivan Toplak
- Institute of Microbiology and Parasitology, Virology Unit, Veterinary Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Primož Presetnik
- Centre for Cartography of Fauna and Flora, Ljubljana office, Ljubljana, Slovenia
| | - Jedrt Maurer-Wernig
- Administration of the Republic of Slovenia for food safety, veterinary sector, and plant protection, Ljubljana, Slovenia
| | - Urška Kuhar
- Institute of Microbiology and Parasitology, Virology Unit, Veterinary Faculty, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
9
|
Kim Y, Leopardi S, Scaravelli D, Zecchin B, Priori P, Festa F, Drzewnioková P, De Benedictis P, Nouvellet P. Transmission dynamics of lyssavirus in Myotis myotis: mechanistic modelling study based on longitudinal seroprevalence data. Proc Biol Sci 2023; 290:20230183. [PMID: 37072038 PMCID: PMC10113028 DOI: 10.1098/rspb.2023.0183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 03/13/2023] [Indexed: 04/20/2023] Open
Abstract
We investigated the transmission dynamics of lyssavirus in Myotis myotis and Myotis blythii, using serological, virological, demographic and ecological data collected between 2015 and 2022 from two maternity colonies in northern Italian churches. Despite no lyssavirus detection in 556 bats sampled over 11 events by reverse transcription-polymerase chain reaction (RT-PCR), 36.3% of 837 bats sampled over 27 events showed neutralizing antibodies to European bat lyssavirus 1, with a significant increase in summers. By fitting sets of mechanistic models to seroprevalence data, we investigated factors that influenced lyssavirus transmission within and between years. Five models were selected as a group of final models: in one model, a proportion of exposed bats (median model estimate: 5.8%) became infectious and died while the other exposed bats recovered with immunity without becoming infectious; in the other four models, all exposed bats became infectious and recovered with immunity. The final models supported that the two colonies experienced seasonal outbreaks driven by: (i) immunity loss particularly during hibernation, (ii) density-dependent transmission, and (iii) a high transmission rate after synchronous birthing. These findings highlight the importance of understanding ecological factors, including colony size and synchronous birthing timing, and potential infection heterogeneities to enable more robust assessments of lyssavirus spillover risk.
Collapse
Affiliation(s)
- Younjung Kim
- Department of Evolution, Behaviour, and Environment, School of Life Sciences, University of Sussex, BN1 9RH Brighton, UK
| | - Stefania Leopardi
- FAO and National Reference Centre for Rabies, Istituto Zooprofilattico Sperimentale delle Venezie, Viale dell'Università 10, Legnaro, 35020 Padua, Italy
| | - Dino Scaravelli
- S.T.E.R.N.A. and Museo Ornitologico ‘F. Foschi’, via Pedrali 12, 47121 Forlì, Italy
- Department of Biological, Geological and Environmental Sciences, University of Bologna, via Selmi 3, 40126 Bologna, Italy
| | - Barbara Zecchin
- FAO and National Reference Centre for Rabies, Istituto Zooprofilattico Sperimentale delle Venezie, Viale dell'Università 10, Legnaro, 35020 Padua, Italy
| | - Pamela Priori
- S.T.E.R.N.A. and Museo Ornitologico ‘F. Foschi’, via Pedrali 12, 47121 Forlì, Italy
| | - Francesca Festa
- FAO and National Reference Centre for Rabies, Istituto Zooprofilattico Sperimentale delle Venezie, Viale dell'Università 10, Legnaro, 35020 Padua, Italy
| | - Petra Drzewnioková
- FAO and National Reference Centre for Rabies, Istituto Zooprofilattico Sperimentale delle Venezie, Viale dell'Università 10, Legnaro, 35020 Padua, Italy
| | - Paola De Benedictis
- FAO and National Reference Centre for Rabies, Istituto Zooprofilattico Sperimentale delle Venezie, Viale dell'Università 10, Legnaro, 35020 Padua, Italy
| | - Pierre Nouvellet
- Department of Evolution, Behaviour, and Environment, School of Life Sciences, University of Sussex, BN1 9RH Brighton, UK
- Department of Infectious Disease Epidemiology, School of Public Health, Imperial College London, SW7 2AZ London, UK
| |
Collapse
|
10
|
Harazim M, Perrot J, Varet H, Bourhy H, Lannoy J, Pikula J, Seidlová V, Dacheux L, Martínková N. Transcriptomic responses of bat cells to European bat lyssavirus 1 infection under conditions simulating euthermia and hibernation. BMC Immunol 2023; 24:7. [PMID: 37085747 PMCID: PMC10120247 DOI: 10.1186/s12865-023-00542-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 03/31/2023] [Indexed: 04/23/2023] Open
Abstract
BACKGROUND Coevolution between pathogens and their hosts decreases host morbidity and mortality. Bats host and can tolerate viruses which can be lethal to other vertebrate orders, including humans. Bat adaptations to infection include localized immune response, early pathogen sensing, high interferon expression without pathogen stimulation, and regulated inflammatory response. The immune reaction is costly, and bats suppress high-cost metabolism during torpor. In the temperate zone, bats hibernate in winter, utilizing a specific behavioural adaptation to survive detrimental environmental conditions and lack of energy resources. Hibernation torpor involves major physiological changes that pose an additional challenge to bat-pathogen coexistence. Here, we compared bat cellular reaction to viral challenge under conditions simulating hibernation, evaluating the changes between torpor and euthermia. RESULTS We infected the olfactory nerve-derived cell culture of Myotis myotis with an endemic bat pathogen, European bat lyssavirus 1 (EBLV-1). After infection, the bat cells were cultivated at two different temperatures, 37 °C and 5 °C, to examine the cell response during conditions simulating euthermia and torpor, respectively. The mRNA isolated from the cells was sequenced and analysed for differential gene expression attributable to the temperature and/or infection treatment. In conditions simulating euthermia, infected bat cells produce an excess signalling by multitude of pathways involved in apoptosis and immune regulation influencing proliferation of regulatory cell types which can, in synergy with other produced cytokines, contribute to viral tolerance. We found no up- or down-regulated genes expressed in infected cells cultivated at conditions simulating torpor compared to non-infected cells cultivated under the same conditions. When studying the reaction of uninfected cells to the temperature treatment, bat cells show an increased production of heat shock proteins (HSPs) with chaperone activity, improving the bat's ability to repair molecular structures damaged due to the stress related to the temperature change. CONCLUSIONS The lack of bat cell reaction to infection in conditions simulating hibernation may contribute to the virus tolerance or persistence in bats. Together with the cell damage repair mechanisms induced in response to hibernation, the immune regulation may promote bats' ability to act as reservoirs of zoonotic viruses such as lyssaviruses.
Collapse
Affiliation(s)
- Markéta Harazim
- Institute of Vertebrate Biology, Czech Academy of Sciences, Květná 8, 60300, Brno, Czechia.
- Department of Botany and Zoology, Masaryk University, Kotlářská 2, 61137, Brno, Czechia.
| | - Juliette Perrot
- Institut Pasteur, Université Paris Cité Lyssavirus, Epidemiology and Neuropathology Unit, 28 rue du Docteur Roux, 75724, Paris Cedex 15, France
| | - Hugo Varet
- Institut Pasteur, Université Paris Cité Bioinformatics and Biostatistics Hub, 28 rue du Docteur Roux, 75724, Paris Cedex 15, France
| | - Hervé Bourhy
- Institut Pasteur, Université Paris Cité Lyssavirus, Epidemiology and Neuropathology Unit, 28 rue du Docteur Roux, 75724, Paris Cedex 15, France
| | - Julien Lannoy
- Institut Pasteur, Université Paris Cité Lyssavirus, Epidemiology and Neuropathology Unit, 28 rue du Docteur Roux, 75724, Paris Cedex 15, France
| | - Jiri Pikula
- Department of Ecology and Diseases of Zoo Animals, Game, Fish and Bees, University of Veterinary Sciences Brno, Palackého třída 1946/1, 61242, Brno, Czechia
| | - Veronika Seidlová
- Department of Ecology and Diseases of Zoo Animals, Game, Fish and Bees, University of Veterinary Sciences Brno, Palackého třída 1946/1, 61242, Brno, Czechia
| | - Laurent Dacheux
- Institut Pasteur, Université Paris Cité Lyssavirus, Epidemiology and Neuropathology Unit, 28 rue du Docteur Roux, 75724, Paris Cedex 15, France
| | - Natália Martínková
- Institute of Vertebrate Biology, Czech Academy of Sciences, Květná 8, 60300, Brno, Czechia
- RECETOX, Masaryk University, Kotlářská 2, 61137, Brno, Czechia
| |
Collapse
|
11
|
Drzewnioková P, Marciano S, Leopardi S, Panzarin V, De Benedictis P. Comparison of Pan-Lyssavirus RT-PCRs and Development of an Improved Protocol for Surveillance of Non-RABV Lyssaviruses. Viruses 2023; 15:v15030680. [PMID: 36992389 PMCID: PMC10052027 DOI: 10.3390/v15030680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 02/28/2023] [Accepted: 03/02/2023] [Indexed: 03/08/2023] Open
Abstract
Rabies is a zoonotic and fatal encephalitis caused by members of the Lyssavirus genus. Among them, the most relevant species is Lyssavirus rabies, which is estimated to cause 60,000 human and most mammal rabies deaths annually worldwide. Nevertheless, all lyssaviruses can invariably cause rabies, and therefore their impact on animal and public health should not be neglected. For accurate and reliable surveillance, diagnosis should rely on broad-spectrum tests able to detect all known lyssaviruses, including the most divergent ones. In the present study, we evaluated four different pan-lyssavirus protocols widely used at an international level, including two real-time RT-PCR assays (namely LN34 and JW12/N165-146), a hemi-nested RT-PCR and a one-step RT-PCR. Additionally, an improved version of the LN34 assay ((n) LN34) was developed to increase primer–template complementarity with respect to all lyssavirus species. All protocols were evaluated in silico, and their performance was compared in vitro employing 18 lyssavirus RNAs (encompassing 15 species). The (n) LN34 assay showed enhanced sensitivity in detecting most lyssavirus species, with limits of detection ranging from 10 to 100 RNA copies/µL depending on the strain, while retaining high sensitivity against Lyssavirus rabies. The development of this protocol represents a step forward towards improved surveillance of the entire Lyssavirus genus.
Collapse
Affiliation(s)
- Petra Drzewnioková
- FAO Reference Center for Rabies, Istituto Zooprofilattico Sperimentale delle Venezie, 35020 Legnaro, PD, Italy
- Correspondence: (P.D.); (P.D.B.)
| | - Sabrina Marciano
- Innovative Virology Laboratory, Research and Innovation Department, Istituto Zooprofilattico Sperimentale delle Venezie, 35020 Legnaro, PD, Italy
| | - Stefania Leopardi
- FAO Reference Center for Rabies, Istituto Zooprofilattico Sperimentale delle Venezie, 35020 Legnaro, PD, Italy
| | - Valentina Panzarin
- Innovative Virology Laboratory, Research and Innovation Department, Istituto Zooprofilattico Sperimentale delle Venezie, 35020 Legnaro, PD, Italy
| | - Paola De Benedictis
- FAO Reference Center for Rabies, Istituto Zooprofilattico Sperimentale delle Venezie, 35020 Legnaro, PD, Italy
- Correspondence: (P.D.); (P.D.B.)
| |
Collapse
|
12
|
Elakov AL. [Anti-rabies vaccines applied in the Russian Federation and perspectives for their improvement]. Vopr Virusol 2022; 67:107-114. [PMID: 35521983 DOI: 10.36233/0507-4088-102] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 05/05/2022] [Indexed: 12/25/2022]
Abstract
Rabies is almost ubiquitous (except in certain areas) and poses a significant danger to both animals and humans. Every year around 55,000 people die from this disease worldwide. In the Russian Federation alone 400,000- 450,000 patients annually apply for anti-rabies treatment. In the absolute majority of cases human infection is caused by contact with infected animals. In RF, a number of cultured inactivated anti-rabies vaccines for medical and veterinary purposes have been developed, registered and used for specific prevention of rabies. These vaccine preparations have shown high effectiveness in preventing infection in domestic and farm animals. At the same time, the main reservoir of the rabies virus (Mononegavirales: Rhabdoviridae: Lyssavirus) (RV) are wild carnivores (Mammalia: Carnivora). For the purpose of their oral immunization, live virus vaccines from attenuated (fixed) strains of RV that are little resistant in the external environment are used. In Western Europe and North America there is successful experience with recombinant anti-rabies vaccine preparations containing a viral glycoprotein gene (G-protein). Such vaccines are safe for humans and animals. In Russia also had been developed a vector anti-rabies vaccine based on adenovirus (Adenoviridae), which can be used to combat this infection. Currently, in addition to classical rabies, diseases caused by new, previously unknown lyssaviruses (Lyssavirus) are becoming increasingly important. Bats (Mammalia: Microchiroptera) are their vectors. Cases of illness and death after contact with these animals have been described. In the near future, we should expect the development of new vaccines that will provide protection not only against RV, but also against other lyssaviruses.
Collapse
Affiliation(s)
- A L Elakov
- FSBSI «Federal Scientific Center - All-Russian Scientific Research Institute of Experimental Veterinary Medicine named after K.I. Skryabin and Ya.R. Kovalenko of the Russian Academy of Sciences»
| |
Collapse
|
13
|
Wilson AG, Fehlner-Gardiner C, Wilson S, Pierce KN, McGregor GF, González C, Luszcz TMJ. Assessing the extent and public health impact of bat predation by domestic animals using data from a rabies passive surveillance program. PLOS GLOBAL PUBLIC HEALTH 2022; 2:e0000357. [PMID: 36962180 PMCID: PMC10021327 DOI: 10.1371/journal.pgph.0000357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 04/07/2022] [Indexed: 11/18/2022]
Abstract
Domestic animals can serve as consequential conveyors of zoonotic pathogens across wildlife-human interfaces. Still, there has been little study on how different domestic species and their behaviors influence the zoonotic risk to humans. In this study, we examined patterns of bat encounters with domestic animals that resulted in submission for testing at the rabies laboratories of the Canadian Food Inspection Agency (CFIA) during 2014-2020. Our goals were specifically to examine how the number of bats submitted and the number of rabies positive bats varied by the type of domestic animal exposure and whether domestic cats were indoor or free-roaming. The CFIA reported 6258 bat submissions for rabies testing, of which 41.5% and 8.7% had encounter histories with cats and dogs, respectively. A much smaller fraction of bat submissions (0.3%) had exposure to other domestic animals, and 49.5% had no domestic animal exposure. For the bat submissions related to cats, and where lifestyle was noted, 91.1% were associated with free-roaming cats and 8.9% with indoor cats. Model results indicated the probability of a rabies-positive bat was the highest with a history of dog association (20.2%), followed by bats with no animal exposure (16.7%), free-roaming cats (6.9%), cats with unspecified histories (6.0%) and the lowest probability associated with non-free-roaming (indoor) cats (3.8%). Although there was lower rabies prevalence in bats associated with cats compared to dogs, the 4.8 fold higher number of cat-bat interactions cumulatively leads to a greater overall rabies exposure risk to humans from any free-roaming outdoor cats. This study suggests that free-roaming owned cats may have an underappreciated role in cryptic rabies exposures in humans and as a significant predator of bats. Preventing free-roaming in cats is a cost-effective and underutilized public health recommendation for rabies prevention that also synergistically reduces the health burden of other feline-associated zoonotic diseases and promotes feline welfare and wildlife conservation.
Collapse
Affiliation(s)
- Amy G Wilson
- Department of Forest and Conservation Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Christine Fehlner-Gardiner
- Centre of Expertise for Rabies, Ottawa Laboratory Fallowfield, Canadian Food Inspection Agency, Ottawa, Ontario, Canada
| | - Scott Wilson
- Department of Forest and Conservation Sciences, University of British Columbia, Vancouver, British Columbia, Canada
- Wildlife Research Division, Science and Technology Branch, Environment and Climate Change Canada, Delta, British Columbia, Canada
| | - Karra N Pierce
- Wildlife Center of Virginia, Waynesboro, Virginia, United States of America
| | - Glenna F McGregor
- Animal Health Centre, British Columbia Ministry of Agriculture, Abbotsford, British Columbia, Canada
| | - Catalina González
- Department of Forest and Conservation Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Tanya M J Luszcz
- Canadian Wildlife Service, Environment and Climate Change Canada, Penticton, British Columbia, Canada
| |
Collapse
|
14
|
Spillover of West Caucasian Bat Lyssavirus (WCBV) in a Domestic Cat and Westward Expansion in the Palearctic Region. Viruses 2021; 13:v13102064. [PMID: 34696493 PMCID: PMC8540014 DOI: 10.3390/v13102064] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 10/04/2021] [Accepted: 10/11/2021] [Indexed: 12/15/2022] Open
Abstract
In June 2020, a cat from Arezzo (Italy) that died from a neurological disease was diagnosed with West Caucasian Bat Lyssavirus (WCBV). The virus retained high identity across the whole-genome with the reference isolate found in 2002 from a Russian bent-winged bat. We applied control measures recommended by national regulations, investigated a possible interface between cats and bats using visual inspections, bioacoustics analyses and camera trapping and performed active and passive surveillance in bats to trace the source of infection. People that were exposed to the cat received full post-exposure prophylaxis while animals underwent six months of quarantine. One year later, they are all healthy. In a tunnel located near the cat’s house, we identified a group of bent-winged bats that showed virus-neutralizing antibodies to WCBV across four sampling occasions, but no virus in salivary swabs. Carcasses from other bat species were all negative. This description of WCBV in a non-flying mammal confirms that this virus can cause clinical rabies in the absence of preventive and therapeutic measures, and highlights the lack of international guidelines against divergent lyssaviruses. We detected bent-winged bats as the most probable source of infection, testifying the encroachment between these bats and pets/human in urban areas and confirming free-ranging cats as potential hazard for public health and conservation.
Collapse
|
15
|
Folly AJ, Marston DA, Golding M, Shukla S, Wilkie R, Lean FZX, Núñez A, Worledge L, Aegerter J, Banyard AC, Fooks AR, Johnson N, McElhinney LM. Incursion of European Bat Lyssavirus 1 (EBLV-1) in Serotine Bats in the United Kingdom. Viruses 2021; 13:v13101979. [PMID: 34696409 PMCID: PMC8536961 DOI: 10.3390/v13101979] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 09/29/2021] [Accepted: 09/29/2021] [Indexed: 11/16/2022] Open
Abstract
Lyssaviruses are an important genus of zoonotic viruses which cause the disease rabies. The United Kingdom is free of classical rabies (RABV). However, bat rabies due to European bat lyssavirus 2 (EBLV-2), has been detected in Daubenton’s bats (Myotis daubentonii) in Great Britain since 1996, including a fatal human case in Scotland in 2002. Across Europe, European bat lyssavirus 1 (EBLV-1) is commonly associated with serotine bats (Eptesicus serotinus). Despite the presence of serotine bats across large parts of southern England, EBLV-1 had not previously been detected in this population. However, in 2018, EBLV-1 was detected through passive surveillance in a serotine bat from Dorset, England, using a combination of fluorescent antibody test, reverse transcription-PCR, Sanger sequencing and immunohistochemical analysis. Subsequent EBLV-1 positive serotine bats have been identified in South West England, again through passive surveillance, during 2018, 2019 and 2020. Here, we confirm details of seven cases of EBLV-1 and present similarities in genetic sequence indicating that emergence of EBLV-1 is likely to be recent, potentially associated with the natural movement of bats from the near continent
Collapse
Affiliation(s)
- Arran J. Folly
- Virology Department, Animal and Plant Health Agency, Woodham Lane, Addlestone KT15 3NB, UK; (D.A.M.); (M.G.); (S.S.); (R.W.); (A.C.B.); (A.R.F.); (N.J.); (L.M.M.)
- Correspondence:
| | - Denise A. Marston
- Virology Department, Animal and Plant Health Agency, Woodham Lane, Addlestone KT15 3NB, UK; (D.A.M.); (M.G.); (S.S.); (R.W.); (A.C.B.); (A.R.F.); (N.J.); (L.M.M.)
| | - Megan Golding
- Virology Department, Animal and Plant Health Agency, Woodham Lane, Addlestone KT15 3NB, UK; (D.A.M.); (M.G.); (S.S.); (R.W.); (A.C.B.); (A.R.F.); (N.J.); (L.M.M.)
| | - Shweta Shukla
- Virology Department, Animal and Plant Health Agency, Woodham Lane, Addlestone KT15 3NB, UK; (D.A.M.); (M.G.); (S.S.); (R.W.); (A.C.B.); (A.R.F.); (N.J.); (L.M.M.)
| | - Rebekah Wilkie
- Virology Department, Animal and Plant Health Agency, Woodham Lane, Addlestone KT15 3NB, UK; (D.A.M.); (M.G.); (S.S.); (R.W.); (A.C.B.); (A.R.F.); (N.J.); (L.M.M.)
| | - Fabian Z. X. Lean
- Pathology and Animal Sciences Department, Animal and Plant Health Agency, Addlestone KT15 3NB, UK; (F.Z.X.L.); (A.N.)
| | - Alejandro Núñez
- Pathology and Animal Sciences Department, Animal and Plant Health Agency, Addlestone KT15 3NB, UK; (F.Z.X.L.); (A.N.)
| | - Lisa Worledge
- Bat Conservation Trust, Studio 15 Cloisters House, Cloisters Business Centre, 8 Battersea Park Road, London SW8 4BG, UK;
| | - James Aegerter
- National Wildlife Management Centre, Animal and Plant Health Agency, Sand Hutton, York YO41 1LZ, UK;
| | - Ashley C. Banyard
- Virology Department, Animal and Plant Health Agency, Woodham Lane, Addlestone KT15 3NB, UK; (D.A.M.); (M.G.); (S.S.); (R.W.); (A.C.B.); (A.R.F.); (N.J.); (L.M.M.)
| | - Anthony R. Fooks
- Virology Department, Animal and Plant Health Agency, Woodham Lane, Addlestone KT15 3NB, UK; (D.A.M.); (M.G.); (S.S.); (R.W.); (A.C.B.); (A.R.F.); (N.J.); (L.M.M.)
| | - Nicholas Johnson
- Virology Department, Animal and Plant Health Agency, Woodham Lane, Addlestone KT15 3NB, UK; (D.A.M.); (M.G.); (S.S.); (R.W.); (A.C.B.); (A.R.F.); (N.J.); (L.M.M.)
| | - Lorraine M. McElhinney
- Virology Department, Animal and Plant Health Agency, Woodham Lane, Addlestone KT15 3NB, UK; (D.A.M.); (M.G.); (S.S.); (R.W.); (A.C.B.); (A.R.F.); (N.J.); (L.M.M.)
| |
Collapse
|
16
|
Glycoproteins of Predicted Amphibian and Reptile Lyssaviruses Can Mediate Infection of Mammalian and Reptile Cells. Viruses 2021; 13:v13091726. [PMID: 34578307 PMCID: PMC8473393 DOI: 10.3390/v13091726] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/24/2021] [Accepted: 08/27/2021] [Indexed: 01/04/2023] Open
Abstract
Lyssaviruses are neurotropic rhabdoviruses thought to be restricted to mammalian hosts, and to originate from bats. The identification of lyssavirus sequences from amphibians and reptiles by metatranscriptomics thus comes as a surprise and challenges the mammalian origin of lyssaviruses. The novel sequences of the proposed American tree frog lyssavirus (ATFLV) and anole lizard lyssavirus (ALLV) reveal substantial phylogenetic distances from each other and from bat lyssaviruses, with ATFLV being the most distant. As virus isolation has not been successful yet, we have here studied the functionality of the authentic ATFLV- and ALLV-encoded glycoproteins in the context of rabies virus pseudotype particles. Cryogenic electron microscopy uncovered the incorporation of the plasmid-encoded G proteins in viral envelopes. Infection experiments revealed the infectivity of ATFLV and ALLV G-coated RABV pp for a broad spectrum of cell lines from humans, bats, and reptiles, demonstrating membrane fusion activities. As presumed, ATFLV and ALLV G RABV pp escaped neutralization by human rabies immune sera. The present findings support the existence of contagious lyssaviruses in poikilothermic animals, and reveal a broad cell tropism in vitro, similar to that of the rabies virus.
Collapse
|
17
|
Retrospective Enhanced Bat Lyssavirus Surveillance in Germany between 2018-2020. Viruses 2021; 13:v13081538. [PMID: 34452403 PMCID: PMC8402685 DOI: 10.3390/v13081538] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 07/27/2021] [Accepted: 07/29/2021] [Indexed: 12/12/2022] Open
Abstract
Lyssaviruses are the causative agents for rabies, a zoonotic and fatal disease. Bats are the ancestral reservoir host for lyssaviruses, and at least three different lyssaviruses have been found in bats from Germany. Across Europe, novel lyssaviruses were identified in bats recently and occasional spillover infections in other mammals and human cases highlight their public health relevance. Here, we report the results from an enhanced passive bat rabies surveillance that encompasses samples without human contact that would not be tested under routine conditions. To this end, 1236 bat brain samples obtained between 2018 and 2020 were screened for lyssaviruses via several RT-qPCR assays. European bat lyssavirus type 1 (EBLV-1) was dominant, with 15 positives exclusively found in serotine bats (Eptesicus serotinus) from northern Germany. Additionally, when an archived set of bat samples that had tested negative for rabies by the FAT were screened in the process of assay validation, four samples tested EBLV-1 positive, including two detected in Pipistrellus pipistrellus. Subsequent phylogenetic analysis of 17 full genomes assigned all except one of these viruses to the A1 cluster of the EBLV-1a sub-lineage. Furthermore, we report here another Bokeloh bat lyssavirus (BBLV) infection in a Natterer's bat (Myotis nattereri) found in Lower Saxony, the tenth reported case of this novel bat lyssavirus.
Collapse
|
18
|
Regnault B, Evrard B, Plu I, Dacheux L, Troadec E, Cozette P, Chrétien D, Duchesne M, Jean-Michel V, Jamet A, Leruez M, Pérot P, Bourhy H, Eloit M, Seilhean D. First case of lethal encephalitis in Western Europe due to European bat lyssavirus type 1. Clin Infect Dis 2021; 74:461-466. [PMID: 33991184 DOI: 10.1093/cid/ciab443] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND Inaccurate diagnosis of encephalitis is a major issue as immunosuppressive treatments can be deleterious in case of viral infection. The European bat lyssavirus type 1, a virus related to rabies virus, is endemic in European bats. No human case has yet been reported in Western Europe. A 59 year-old patient without specific past medical history died from encephalitis. A colony of bats lived in an outbuilding of his house. No diagnosis was made using standard procedures. METHODS We used a Next Generation Sequencing (NGS) based transcriptomic protocol to search for pathogens in autopsy samples (meninges and brain frontal lobe). Results were confirmed by PCR and by antibody testing in serum. Immunochemistry was used to characterize inflammatory cells and viral antigens in brain lesions. Cells and mice were inoculated with brain extracts for virus isolation. RESULTS The patient's brain lesions were severe and diffuse in white and gray matter. Perivascular inflammatory infiltrates were abundant and rich in plasma cells. NGS identified European bat lyssavirus type 1a in brain, which was confirmed by PCR. A high titer of neutralizing antibodies was found in serum. No viral antigen was detected and the virus could not be isolated by cell culture or by mouse inoculation. CONCLUSIONS The patient died from European bat lyssavirus type 1a infection. NGS was key to identifying this unexpected viral etiology in an epidemiological context that did not suggest rabies. People exposed to bats should be strongly advised to be vaccinated with rabies vaccines, which are effective against EBLV-1.
Collapse
Affiliation(s)
- Béatrice Regnault
- Pathogen Discovery Laboratory, Institut Pasteur, Paris, France.,The OIE Collaborating Center for the detection and identification in humans of emerging animal pathogens, Institut Pasteur, Paris, France)
| | - Bruno Evrard
- Medical-Surgical Intensive Care Unit, Dupuytren University Hospital, Limoges, France.,Inserm CIC 1435 and UMR 1092, Dupuytren Teaching Hospital, Limoges, France
| | - Isabelle Plu
- Sorbonne Université, Brain Institute (ICM; INSERM, UMRS 1127; CNRS, UMR 7225), Paris, France.,Département de Neuropathologie Raymond Escourolle, AP-HP-Sorbonne, Groupe Hospitalier Pitié-Salpêtrière, Paris, France
| | - Laurent Dacheux
- Lyssavirus Epidemiology and Neuropathology Unit, National Reference Centre for Rabies, WHO Collaborative Centre for Reference and Research on Rabies, Institut Pasteur, Paris, France
| | - Eric Troadec
- Pathogen Discovery Laboratory, Institut Pasteur, Paris, France.,The OIE Collaborating Center for the detection and identification in humans of emerging animal pathogens, Institut Pasteur, Paris, France)
| | - Pascal Cozette
- Lyssavirus Epidemiology and Neuropathology Unit, National Reference Centre for Rabies, WHO Collaborative Centre for Reference and Research on Rabies, Institut Pasteur, Paris, France
| | - Delphine Chrétien
- Pathogen Discovery Laboratory, Institut Pasteur, Paris, France.,The OIE Collaborating Center for the detection and identification in humans of emerging animal pathogens, Institut Pasteur, Paris, France)
| | - Mathilde Duchesne
- Pathology Department, Dupuytren University Hospital, Limoges, France
| | | | - Anne Jamet
- Department of Clinical Microbiology, Necker Enfants-Malades Hospital, AP-HP, Centre Université de Paris, Paris, France
| | - Marianne Leruez
- Department of Clinical Microbiology, Necker Enfants-Malades Hospital, AP-HP, Centre Université de Paris, Paris, France
| | - Philippe Pérot
- Pathogen Discovery Laboratory, Institut Pasteur, Paris, France.,The OIE Collaborating Center for the detection and identification in humans of emerging animal pathogens, Institut Pasteur, Paris, France)
| | - Hervé Bourhy
- Lyssavirus Epidemiology and Neuropathology Unit, National Reference Centre for Rabies, WHO Collaborative Centre for Reference and Research on Rabies, Institut Pasteur, Paris, France
| | - Marc Eloit
- Pathogen Discovery Laboratory, Institut Pasteur, Paris, France.,The OIE Collaborating Center for the detection and identification in humans of emerging animal pathogens, Institut Pasteur, Paris, France).,Ecole Nationale Vétérinaire d'Alfort, Maisons-Alfort, France
| | - Danielle Seilhean
- Sorbonne Université, Brain Institute (ICM; INSERM, UMRS 1127; CNRS, UMR 7225), Paris, France.,Lyssavirus Epidemiology and Neuropathology Unit, National Reference Centre for Rabies, WHO Collaborative Centre for Reference and Research on Rabies, Institut Pasteur, Paris, France
| |
Collapse
|
19
|
Full-Genome Sequences and Phylogenetic Analysis of Archived Danish European Bat Lyssavirus 1 (EBLV-1) Emphasize a Higher Genetic Resolution and Spatial Segregation for Sublineage 1a. Viruses 2021; 13:v13040634. [PMID: 33917139 PMCID: PMC8067844 DOI: 10.3390/v13040634] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 03/25/2021] [Accepted: 04/01/2021] [Indexed: 11/16/2022] Open
Abstract
European bat lyssavirus type 1 (EBLV-1) is the causative agent for almost all reported rabies cases found in European bats. In recent years, increasing numbers of available EBLV-1 full genomes and their phylogenetic analyses helped to further elucidate the distribution and genetic characteristics of EBLV-1 and its two subtypes, namely EBLV-1a and EBLV-1b. Nonetheless, the absence of full-genome sequences from regions with known detections of EBLV-1 still limit the understanding of the phylogeographic relations between viruses from different European regions. In this study, a set of 21 archived Danish EBLV-1 samples from the years 1985 to 2009 was processed for the acquisition of full-genome sequences using a high-throughput sequencing approach. Subsequent phylogenetic analysis encompassing all available EBLV-1 full genomes from databases revealed the Danish sequences belong to the EBLV-1a subtype and further highlighted the distinct, close phylogenetic relationship of Danish, Dutch and German isolates in this region. In addition, the formation of five putative groups nearly exclusively formed by Danish isolates and the overall increased resolution of the EBLV-1a branch indicate a higher genetic diversity and spatial segregation for this sublineage than was previously known. These results emphasize the importance of phylogenetic analyses of full-genome sequences of lyssaviruses for genetic geography.
Collapse
|
20
|
Salinas-Ramos VB, Mori E, Bosso L, Ancillotto L, Russo D. Zoonotic Risk: One More Good Reason Why Cats Should Be Kept Away from Bats. Pathogens 2021; 10:304. [PMID: 33807760 PMCID: PMC8002059 DOI: 10.3390/pathogens10030304] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 02/25/2021] [Accepted: 03/01/2021] [Indexed: 12/15/2022] Open
Abstract
Bats are often unfairly depicted as the direct culprit in the current COVID-19 pandemic, yet the real causes of this and other zoonotic spillover events should be sought in the human impact on the environment, including the spread of domestic animals. Here, we discuss bat predation by cats as a phenomenon bringing about zoonotic risks and illustrate cases of observed, suspected or hypothesized pathogen transmission from bats to cats, certainly or likely following predation episodes. In addition to well-known cases of bat rabies, we review other diseases that affect humans and might eventually reach them through cats that prey on bats. We also examine the potential transmission of SARS-CoV-2, the causal agent of COVID-19, from domestic cats to bats, which, although unlikely, might generate a novel wildlife reservoir in these mammals, and identify research and management directions to achieve more effective risk assessment, mitigation or prevention. Overall, not only does bat killing by cats represent a potentially serious threat to biodiversity conservation, but it also bears zoonotic implications that can no longer be neglected.
Collapse
Affiliation(s)
- Valeria B. Salinas-Ramos
- Wildlife Research Unit, Dipartimento di Agraria, Università degli Studi di Napoli Federico II, Via Università 100, 80055 Portici, Italy; (V.B.S.-R.); (L.A.)
| | - Emiliano Mori
- Consiglio Nazionale delle Ricerche, Istituto di Ricerca sugli Ecosistemi Terrestri, Via Madonna del Piano 10, 50019 Sesto Fiorentino, Italy;
| | - Luciano Bosso
- Wildlife Research Unit, Dipartimento di Agraria, Università degli Studi di Napoli Federico II, Via Università 100, 80055 Portici, Italy; (V.B.S.-R.); (L.A.)
| | - Leonardo Ancillotto
- Wildlife Research Unit, Dipartimento di Agraria, Università degli Studi di Napoli Federico II, Via Università 100, 80055 Portici, Italy; (V.B.S.-R.); (L.A.)
| | - Danilo Russo
- Wildlife Research Unit, Dipartimento di Agraria, Università degli Studi di Napoli Federico II, Via Università 100, 80055 Portici, Italy; (V.B.S.-R.); (L.A.)
| |
Collapse
|
21
|
Calvelage S, Tammiranta N, Nokireki T, Gadd T, Eggerbauer E, Zaeck LM, Potratz M, Wylezich C, Höper D, Müller T, Finke S, Freuling CM. Genetic and Antigenetic Characterization of the Novel Kotalahti Bat Lyssavirus (KBLV). Viruses 2021; 13:69. [PMID: 33419096 PMCID: PMC7825429 DOI: 10.3390/v13010069] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 12/14/2020] [Accepted: 12/17/2020] [Indexed: 02/07/2023] Open
Abstract
There is a growing diversity of bat-associated lyssaviruses in the Old World. In August 2017, a dead Brandt's bat (Myotis brandtii) tested positive for rabies and based on partial sequence analysis, the novel Kotalahti bat lyssavirus (KBLV) was identified. Because the bat was in an autolyzed state, isolation of KBLV was neither successful after three consecutive cell passages on cells nor in mice. Next generation sequencing (NGS) was applied using Ion Torrent ™ S5 technology coupled with target enrichment via hybridization-based capture (myBaits®) was used to sequence 99% of the genome, comprising of 11,878 nucleotides (nt). KBLV is most closely related to EBLV-2 (78.7% identity), followed by KHUV (79.0%) and BBLV (77.6%), supporting the assignment as phylogroup I lyssavirus. Interestingly, all of these lyssaviruses were also isolated from bat species of the genus Myotis, thus supporting that M. brandtii is likely the reservoir host. All information on antigenic and genetic divergence fulfil the species demarcation criteria by ICTV, so that we recommend KBLV as a novel species within the Lyssavirus genus. Next to sequence analyses, assignment to phylogroup I was functionally corroborated by cross-neutralization of G-deleted RABV, pseudotyped with KBLV-G by sera from RABV vaccinated humans. This suggests that conventional RABV vaccines also confer protection against the novel KBLV.
Collapse
Affiliation(s)
- Sten Calvelage
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut (FLI), 17493 Greifswald-Insel Riems, Germany; (S.C.); (C.W.); (D.H.)
| | - Niina Tammiranta
- Finnish Food Authority, Research Department, Virology Unit, Mustialankatu 3, FI-00790 Helsinki, Finland; (N.T.); (T.N.); (T.G.)
| | - Tiina Nokireki
- Finnish Food Authority, Research Department, Virology Unit, Mustialankatu 3, FI-00790 Helsinki, Finland; (N.T.); (T.N.); (T.G.)
| | - Tuija Gadd
- Finnish Food Authority, Research Department, Virology Unit, Mustialankatu 3, FI-00790 Helsinki, Finland; (N.T.); (T.N.); (T.G.)
| | - Elisa Eggerbauer
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut (FLI), WHO Collaborating Centre for Rabies Surveillance and Research, OIE Reference Laboratory for Rabies, 17493 Greifswald-Insel Riems, Germany; (E.E.); (L.M.Z.); (M.P.); (T.M.); (S.F.)
| | - Luca M. Zaeck
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut (FLI), WHO Collaborating Centre for Rabies Surveillance and Research, OIE Reference Laboratory for Rabies, 17493 Greifswald-Insel Riems, Germany; (E.E.); (L.M.Z.); (M.P.); (T.M.); (S.F.)
| | - Madlin Potratz
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut (FLI), WHO Collaborating Centre for Rabies Surveillance and Research, OIE Reference Laboratory for Rabies, 17493 Greifswald-Insel Riems, Germany; (E.E.); (L.M.Z.); (M.P.); (T.M.); (S.F.)
| | - Claudia Wylezich
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut (FLI), 17493 Greifswald-Insel Riems, Germany; (S.C.); (C.W.); (D.H.)
| | - Dirk Höper
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut (FLI), 17493 Greifswald-Insel Riems, Germany; (S.C.); (C.W.); (D.H.)
| | - Thomas Müller
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut (FLI), WHO Collaborating Centre for Rabies Surveillance and Research, OIE Reference Laboratory for Rabies, 17493 Greifswald-Insel Riems, Germany; (E.E.); (L.M.Z.); (M.P.); (T.M.); (S.F.)
| | - Stefan Finke
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut (FLI), WHO Collaborating Centre for Rabies Surveillance and Research, OIE Reference Laboratory for Rabies, 17493 Greifswald-Insel Riems, Germany; (E.E.); (L.M.Z.); (M.P.); (T.M.); (S.F.)
| | - Conrad M. Freuling
- Central Duties, Friedrich-Loeffler-Institut (FLI), 17493 Greifswald-Insel Riems, Germany
| |
Collapse
|
22
|
Begeman L, Suu-Ire R, Banyard AC, Drosten C, Eggerbauer E, Freuling CM, Gibson L, Goharriz H, Horton DL, Jennings D, Marston DA, Ntiamoa-Baidu Y, Riesle Sbarbaro S, Selden D, Wise EL, Kuiken T, Fooks AR, Müller T, Wood JLN, Cunningham AA. Experimental Lagos bat virus infection in straw-colored fruit bats: A suitable model for bat rabies in a natural reservoir species. PLoS Negl Trop Dis 2020; 14:e0008898. [PMID: 33320860 PMCID: PMC7771871 DOI: 10.1371/journal.pntd.0008898] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 12/29/2020] [Accepted: 10/19/2020] [Indexed: 12/12/2022] Open
Abstract
Rabies is a fatal neurologic disease caused by lyssavirus infection. Bats are important natural reservoir hosts of various lyssaviruses that can be transmitted to people. The epidemiology and pathogenesis of rabies in bats are poorly understood, making it difficult to prevent zoonotic transmission. To further our understanding of lyssavirus pathogenesis in a natural bat host, an experimental model using straw-colored fruit bats (Eidolon helvum) and Lagos bat virus, an endemic lyssavirus in this species, was developed. To determine the lowest viral dose resulting in 100% productive infection, bats in five groups (four bats per group) were inoculated intramuscularly with one of five doses, ranging from 100.1 to 104.1 median tissue culture infectious dose (TCID50). More bats died due to the development of rabies after the middle dose (102.1 TCID50, 4/4 bats) than after lower (101.1, 2/4; 101.1, 2/4) or higher (103.1, 2/4; 104.1, 2/4) doses of virus. In the two highest dose groups, 4/8 bats developed rabies. Of those bats that remained healthy 3/4 bats seroconverted, suggesting that high antigen loads can trigger a strong immune response that abrogates a productive infection. In contrast, in the two lowest dose groups, 3/8 bats developed rabies, 1/8 remained healthy and seroconverted and 4/8 bats remained healthy and did not seroconvert, suggesting these doses are too low to reliably induce infection. The main lesion in all clinically affected bats was meningoencephalitis associated with lyssavirus-positive neurons. Lyssavirus antigen was detected in tongue epithelium (5/11 infected bats) rather than in salivary gland epithelium (0/11), suggesting viral excretion via the tongue. Thus, intramuscular inoculation of 102.1 TCID50 of Lagos bat virus into straw-colored fruit bats is a suitable model for lyssavirus associated bat rabies in a natural reservoir host, and can help with the investigation of lyssavirus infection dynamics in bats.
Collapse
Affiliation(s)
- Lineke Begeman
- Department of Viroscience, Erasmus University Medical Centre, Rotterdam, The Netherlands
- * E-mail: (LB); (AAC)
| | - Richard Suu-Ire
- School of Veterinary Medicine, College of Basic and Applied Sciences, University of Ghana, Accra, Ghana
- Institute of Zoology, Zoological Society of London, Regent’s Park, London, United Kingdom
| | - Ashley C. Banyard
- Wildlife Zoonoses and Vector Borne Disease Research Group, Animal and Plant Health Agency, Addlestone, United Kingdom
| | - Christian Drosten
- Institute of Virology, Medical University of Berlin, Berlin, Germany
| | - Elisa Eggerbauer
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald, Island of Riems, Germany
- Thüringer Landesamt für Verbraucherschutz, Bad Langensalza, Thüringen, Germany
| | - Conrad M. Freuling
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald, Island of Riems, Germany
| | - Louise Gibson
- Institute of Zoology, Zoological Society of London, Regent’s Park, London, United Kingdom
| | - Hooman Goharriz
- Wildlife Zoonoses and Vector Borne Disease Research Group, Animal and Plant Health Agency, Addlestone, United Kingdom
| | - Daniel L. Horton
- School of Veterinary Medicine, University of Surrey, Guildford, United Kingdom
| | - Daisy Jennings
- Wildlife Zoonoses and Vector Borne Disease Research Group, Animal and Plant Health Agency, Addlestone, United Kingdom
| | - Denise A. Marston
- Wildlife Zoonoses and Vector Borne Disease Research Group, Animal and Plant Health Agency, Addlestone, United Kingdom
| | - Yaa Ntiamoa-Baidu
- Centre for African Wetlands / Department of Animal Biology and Conservation Science, University of Ghana, Accra, Ghana
| | - Silke Riesle Sbarbaro
- Institute of Zoology, Zoological Society of London, Regent’s Park, London, United Kingdom
- University of Cambridge, Cambridge, United Kingdom
| | - David Selden
- Wildlife Zoonoses and Vector Borne Disease Research Group, Animal and Plant Health Agency, Addlestone, United Kingdom
| | - Emma L. Wise
- Wildlife Zoonoses and Vector Borne Disease Research Group, Animal and Plant Health Agency, Addlestone, United Kingdom
| | - Thijs Kuiken
- Department of Viroscience, Erasmus University Medical Centre, Rotterdam, The Netherlands
| | - Anthony R. Fooks
- Wildlife Zoonoses and Vector Borne Disease Research Group, Animal and Plant Health Agency, Addlestone, United Kingdom
| | - Thomas Müller
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald, Island of Riems, Germany
| | | | - Andrew A. Cunningham
- Institute of Zoology, Zoological Society of London, Regent’s Park, London, United Kingdom
- * E-mail: (LB); (AAC)
| |
Collapse
|
23
|
Gossner CM, Mailles A, Aznar I, Dimina E, Echevarría JE, Feruglio SL, Lange H, Maraglino FP, Parodi P, Perevoscikovs J, Van der Stede Y, Bakonyi T. Prevention of human rabies: a challenge for the European Union and the European Economic Area. Euro Surveill 2020; 25:2000158. [PMID: 32975184 PMCID: PMC7533618 DOI: 10.2807/1560-7917.es.2020.25.38.2000158] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 07/13/2020] [Indexed: 12/25/2022] Open
Abstract
Rabies is enzootic in over one hundred countries worldwide. In the European Union/European Economic Area (EU/EEA), the vast majority of human rabies cases are travellers bitten by dogs in rabies-enzootic countries, mostly in Asia and Africa. Thus, EU/EEA travellers visiting rabies enzootic countries should be aware of the risk of being infected with the rabies virus when having physical contact with mammals. They should consider pre-exposure vaccination following criteria recommended by the World Health Organization and if unvaccinated, immediately seek medical attention in case of bites or scratches from mammals. As the majority of the EU/EEA countries are free from rabies in mammals, elimination of the disease (no enzootic circulation of the virus and low number of imported cases) has been achieved by 2020. However, illegal import of potentially infected animals, mainly dogs, poses a risk to public health and might threaten the elimination goal. Additionally, newly recognised bat lyssaviruses represent a potential emerging threat as the rabies vaccine may not confer protective immunity. To support preparedness activities in EU/EEA countries, guidance for the assessment and the management of the public health risk related to rabies but also other lyssaviruses, should be developed.
Collapse
Affiliation(s)
- Céline M Gossner
- European Centre for Disease Prevention and Control (ECDC), Stockholm, Sweden
| | | | - Inma Aznar
- European Food Safety Authority (EFSA), Parma, Italy
| | - Elina Dimina
- Centre for Disease Prevention and Control of Latvia, Riga, Latvia
| | - Juan E Echevarría
- Centro Nacional de Microbiología, Instituto de Salud Carlos III, Madrid, Spain
- Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | | | - Heidi Lange
- Norwegian Institute of Public Health, Oslo, Norway
| | | | | | | | | | - Tamás Bakonyi
- European Centre for Disease Prevention and Control (ECDC), Stockholm, Sweden
| |
Collapse
|
24
|
Parize P, Travecedo Robledo IC, Cervantes‐Gonzalez M, Kergoat L, Larrous F, Serra‐Cobo J, Dacheux L, Bourhy H. Circumstances of Human–Bat interactions and risk of lyssavirus transmission in metropolitan France. Zoonoses Public Health 2020; 67:774-784. [DOI: 10.1111/zph.12747] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 05/18/2020] [Accepted: 05/19/2020] [Indexed: 11/28/2022]
Affiliation(s)
- Perrine Parize
- Unit Lyssavirus Dynamics and Host Adaptation Institut Pasteur National Reference Center for Rabies and WHO Collaborating Centre for Reference and Research on Rabies Paris France
| | - Isabel Cristina Travecedo Robledo
- Unit Lyssavirus Dynamics and Host Adaptation Institut Pasteur National Reference Center for Rabies and WHO Collaborating Centre for Reference and Research on Rabies Paris France
| | - Minerva Cervantes‐Gonzalez
- Unit Lyssavirus Dynamics and Host Adaptation Institut Pasteur National Reference Center for Rabies and WHO Collaborating Centre for Reference and Research on Rabies Paris France
| | - Lauriane Kergoat
- Unit Lyssavirus Dynamics and Host Adaptation Institut Pasteur National Reference Center for Rabies and WHO Collaborating Centre for Reference and Research on Rabies Paris France
| | - Florence Larrous
- Unit Lyssavirus Dynamics and Host Adaptation Institut Pasteur National Reference Center for Rabies and WHO Collaborating Centre for Reference and Research on Rabies Paris France
| | - Jordi Serra‐Cobo
- Department of Evolutionary Biology, Ecology and Environmental Sciences Biodiversity Research Institute (IRBIO) University of Barcelona Barcelona Spain
| | - Laurent Dacheux
- Unit Lyssavirus Dynamics and Host Adaptation Institut Pasteur National Reference Center for Rabies and WHO Collaborating Centre for Reference and Research on Rabies Paris France
| | - Hervé Bourhy
- Unit Lyssavirus Dynamics and Host Adaptation Institut Pasteur National Reference Center for Rabies and WHO Collaborating Centre for Reference and Research on Rabies Paris France
| |
Collapse
|
25
|
Khayat ROS, Grant RA, Ryan H, Melling LM, Dougill G, Killick DR, Shaw KJ. Investigating cat predation as the cause of bat wing tears using forensic DNA analysis. Ecol Evol 2020; 10:8368-8378. [PMID: 32788986 PMCID: PMC7417221 DOI: 10.1002/ece3.6544] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 06/09/2020] [Accepted: 06/12/2020] [Indexed: 11/05/2022] Open
Abstract
Cat predation upon bat species has been reported to have significant effects on bat populations in both rural and urban areas. The majority of research in this area has focussed on observational data from bat rehabilitators documenting injuries, and cat owners, when domestic cats present prey. However, this has the potential to underestimate the number of bats killed or injured by cats. Here, we use forensic DNA analysis techniques to analyze swabs taken from injured bats in the United Kingdom, mainly including Pipistrellus pipistrellus (40 out of 72 specimens). Using quantitative PCR, cat DNA was found in two-thirds of samples submitted by bat rehabilitators. Of these samples, short tandem repeat analysis produced partial DNA profiles for approximately one-third of samples, which could be used to link predation events to individual cats. The use of genetic analysis can complement observational data and potentially provide additional information to give a more accurate estimation of cat predation.
Collapse
Affiliation(s)
- Rana O. S. Khayat
- Faculty of Science and EngineeringManchester Metropolitan UniversityManchesterUK
- Department of BiologyUmm Al‐Qura UniversityMakkahSaudi Arabia
| | - Robyn A. Grant
- Faculty of Science and EngineeringManchester Metropolitan UniversityManchesterUK
| | | | - Louise M. Melling
- Faculty of Science and EngineeringManchester Metropolitan UniversityManchesterUK
| | - Gary Dougill
- Faculty of Science and EngineeringManchester Metropolitan UniversityManchesterUK
| | - David R. Killick
- Institute of Infection, Veterinary and Ecological SciencesUniversity of Liverpool, LeahurstLiverpoolUK
| | - Kirsty J. Shaw
- Faculty of Science and EngineeringManchester Metropolitan UniversityManchesterUK
| |
Collapse
|
26
|
Grobbelaar AA, Blumberg LH, Dermaux-Msimang V, Le Roux CA, Moolla N, Paweska JT, Weyer J. Human rabies associated with domestic cat exposures in South Africa, 1983-2018. J S Afr Vet Assoc 2020; 91:e1-e4. [PMID: 32633988 PMCID: PMC7433215 DOI: 10.4102/jsava.v91i0.2036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 02/14/2020] [Accepted: 03/16/2020] [Indexed: 11/11/2022] Open
Abstract
No abstract available.
Collapse
Affiliation(s)
- Antoinette A Grobbelaar
- Center for Emerging Zoonotic and Parasitic Diseases, National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg.
| | | | | | | | | | | | | |
Collapse
|
27
|
Beena V, Saikumar G. Emerging horizon for bat borne viral zoonoses. Virusdisease 2019; 30:321-328. [PMID: 31803797 PMCID: PMC6864002 DOI: 10.1007/s13337-019-00548-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 07/15/2019] [Indexed: 01/20/2023] Open
Abstract
Bats are the only flying placental mammals that constitute the second largest order of mammals and present all around the world except in Arctic, Antarctica and a few oceanic islands. Sixty percent of emerging infectious diseases originating from animals are zoonotic and more than two-thirds of them originate in wildlife. Bats were evolved as a super-mammal for harboring many of the newly identified deadly diseases without any signs and lesions. Their unique ability to fly, particular diet, roosting behavior, long life span, ability to echolocate and critical susceptibility to pathogens make them suitable host to harbor numerous zoonotic pathogens like virus, bacteria and parasite. Many factors are responsible for the emergence of bat borne zoonoses but the most precipitating factor is human intrusions. Deforestation declined the natural habitat and forced the bats and other wild life to move out of their niche. These stressed bats, having lost foraging and behavioral pattern invade in proximity of human habitation. Either directly or indirectly they transmit the viruses to humans and animals. Development of fast detection modern techniques for viruses from the diseased and environmental samples and the lessons learned in the past helped in preventing the severity during the latest outbreaks.
Collapse
Affiliation(s)
- V Beena
- 1Present Address: CSIR-Indian Institute of Toxicology Research, Lucknow, UP 226001 India.,2ICAR-Indian Veterinary Research Institute, Bareilly, UP 243122 India
| | - G Saikumar
- 2ICAR-Indian Veterinary Research Institute, Bareilly, UP 243122 India
| |
Collapse
|
28
|
Servat A, Wasniewski M, Cliquet F. Cross-Protection of Inactivated Rabies Vaccines for Veterinary Use against Bat Lyssaviruses Occurring in Europe. Viruses 2019; 11:v11100936. [PMID: 31614675 PMCID: PMC6832384 DOI: 10.3390/v11100936] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 10/09/2019] [Accepted: 10/09/2019] [Indexed: 12/28/2022] Open
Abstract
Human rabies vaccines have been shown to induce partial protection against members of phylogroup I bat lyssaviruses. Here, we investigated the capacity of a widely used rabies inactivated vaccine (Rabisin, Boehringer-Ingelheim) for veterinary use to cross-protect mice experimentally infected with European bat lyssavirus 1 (EBLV-1b), European bat lyssavirus 2 (EBLV-2), and Bokeloh bat lyssavirus (BBLV) occurring in Europe. For each lyssavirus, we investigated the efficacy of two different doses of vaccine against two viral doses administrated by either central or peripheral routes. In parallel, seroconversion following pre-exposure vaccination was investigated. In this study, we demonstrated that the three investigated bat isolates were pathogenic, even at low dose, when inoculated by the central route but were not/less pathogenic when administrated peripherally. The Rabisin vaccine was capable of significantly cross-protecting mice inoculated intramuscularly with EBLV-1b and EBLV-2 and intracerebrally with BBLV. The level of rabies neutralizing antibodies induced by the Rabisin was quite high against the bat lyssaviruses, but with no significant differences between immunization with 1 and 5 IU/dose. The study emphasizes that the quality of rabies-inactivated vaccines for veterinary use is of utmost importance to optimize the cross-protection of pets against phylogroup I bat lyssaviruses occurring in Europe.
Collapse
Affiliation(s)
- Alexandre Servat
- French Agency for Food, Environmental and Occupational Health & Safety (ANSES), Nancy Laboratory for Rabies and Wildlife, OIE Reference Laboratory for Rabies, European Union Reference Laboratory for Rabies, European Union Reference Laboratory for Rabies Serology, Technopôle Agricole et Vétérinaire, Domaine de Pixérécourt, CS 40009, 54220 Malzéville, France.
| | - Marine Wasniewski
- French Agency for Food, Environmental and Occupational Health & Safety (ANSES), Nancy Laboratory for Rabies and Wildlife, OIE Reference Laboratory for Rabies, European Union Reference Laboratory for Rabies, European Union Reference Laboratory for Rabies Serology, Technopôle Agricole et Vétérinaire, Domaine de Pixérécourt, CS 40009, 54220 Malzéville, France.
| | - Florence Cliquet
- French Agency for Food, Environmental and Occupational Health & Safety (ANSES), Nancy Laboratory for Rabies and Wildlife, OIE Reference Laboratory for Rabies, European Union Reference Laboratory for Rabies, European Union Reference Laboratory for Rabies Serology, Technopôle Agricole et Vétérinaire, Domaine de Pixérécourt, CS 40009, 54220 Malzéville, France.
| |
Collapse
|
29
|
Shipley R, Wright E, Selden D, Wu G, Aegerter J, Fooks AR, Banyard AC. Bats and Viruses: Emergence of Novel Lyssaviruses and Association of Bats with Viral Zoonoses in the EU. Trop Med Infect Dis 2019; 4:tropicalmed4010031. [PMID: 30736432 PMCID: PMC6473451 DOI: 10.3390/tropicalmed4010031] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 01/31/2019] [Accepted: 02/01/2019] [Indexed: 12/25/2022] Open
Abstract
Bats in the EU have been associated with several zoonotic viral pathogens of significance to both human and animal health. Virus discovery continues to expand the existing understating of virus classification, and the increased interest in bats globally as reservoirs or carriers of zoonotic agents has fuelled the continued detection and characterisation of new lyssaviruses and other viral zoonoses. Although the transmission of lyssaviruses from bat species to humans or terrestrial species appears rare, interest in these viruses remains, through their ability to cause the invariably fatal encephalitis—rabies. The association of bats with other viral zoonoses is also of great interest. Much of the EU is free of terrestrial rabies, but several bat species harbor lyssaviruses that remain a risk to human and animal health. Whilst the rabies virus is the main cause of rabies globally, novel related viruses continue to be discovered, predominantly in bat populations, that are of interest purely through their classification within the lyssavirus genus alongside the rabies virus. Although the rabies virus is principally transmitted from the bite of infected dogs, these related lyssaviruses are primarily transmitted to humans and terrestrial carnivores by bats. Even though reports of zoonotic viruses from bats within the EU are rare, to protect human and animal health, it is important characterise novel bat viruses for several reasons, namely: (i) to investigate the mechanisms for the maintenance, potential routes of transmission, and resulting clinical signs, if any, in their natural hosts; (ii) to investigate the ability of existing vaccines, where available, to protect against these viruses; (iii) to evaluate the potential for spill over and onward transmission of viral pathogens in novel terrestrial hosts. This review is an update on the current situation regarding zoonotic virus discovery within bats in the EU, and provides details of potential future mechanisms to control the threat from these deadly pathogens.
Collapse
Affiliation(s)
- Rebecca Shipley
- Wildlife Zoonoses and Vector-borne Diseases Research Group, Animal and Plant Health Agency (APHA), KT15 3NB Weybridge-London, UK.
- School of Life Sciences, University of Sussex, Falmer, BN1 9QG Brighton, UK.
| | - Edward Wright
- School of Life Sciences, University of Sussex, Falmer, BN1 9QG Brighton, UK.
| | - David Selden
- Wildlife Zoonoses and Vector-borne Diseases Research Group, Animal and Plant Health Agency (APHA), KT15 3NB Weybridge-London, UK.
| | - Guanghui Wu
- Wildlife Zoonoses and Vector-borne Diseases Research Group, Animal and Plant Health Agency (APHA), KT15 3NB Weybridge-London, UK.
| | - James Aegerter
- APHA - National Wildlife Management Centre, Wildlife Epidemiology and Modelling, Sand Hutton, YO41 1LZ York, UK.
| | - Anthony R Fooks
- Institute for Infection and Immunity, St. George's Hospital Medical School, University of London, London, SW17 0RE, UK.
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection and Global Health, University of Liverpool, Liverpool, L69 7BE, UK.
| | - Ashley C Banyard
- Wildlife Zoonoses and Vector-borne Diseases Research Group, Animal and Plant Health Agency (APHA), KT15 3NB Weybridge-London, UK.
- School of Life Sciences, University of Sussex, Falmer, BN1 9QG Brighton, UK.
- Institute for Infection and Immunity, St. George's Hospital Medical School, University of London, London, SW17 0RE, UK.
| |
Collapse
|
30
|
Vlaschenko A, Kovalov V, Hukov V, Kravchenko K, Rodenko O. An example of ecological traps for bats in the urban environment. EUR J WILDLIFE RES 2019. [DOI: 10.1007/s10344-019-1252-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
31
|
Mechanisms for lyssavirus persistence in non-synanthropic bats in Europe: insights from a modeling study. Sci Rep 2019; 9:537. [PMID: 30679459 PMCID: PMC6345892 DOI: 10.1038/s41598-018-36485-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 11/16/2018] [Indexed: 12/25/2022] Open
Abstract
Bats are natural reservoirs of the largest proportion of viral zoonoses among mammals, thus understanding the conditions for pathogen persistence in bats is essential to reduce human risk. Focusing on the European Bat Lyssavirus subtype 1 (EBLV-1), causing rabies disease, we develop a data-driven spatially explicit metapopulation model to investigate EBLV-1 persistence in Myotis myotis and Miniopterus schreibersii bat species in Catalonia. We find that persistence relies on host spatial structure through the migratory nature of M. schreibersii, on cross-species mixing with M. myotis, and on survival of infected animals followed by temporary immunity. The virus would not persist in the single colony of M. myotis. Our study provides for the first time epidemiological estimates for EBLV-1 progression in M. schreibersii. Our approach can be readily adapted to other zoonoses of public health concern where long-range migration and habitat sharing may play an important role.
Collapse
|
32
|
Ribeiro J, Staudacher C, Martins CM, Ullmann LS, Ferreira F, Araujo JP, Biondo AW. Bat rabies surveillance and risk factors for rabies spillover in an urban area of Southern Brazil. BMC Vet Res 2018; 14:173. [PMID: 29859078 PMCID: PMC5984753 DOI: 10.1186/s12917-018-1485-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 05/03/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Bat rabies surveillance data and risk factors for rabies spillover without human cases have been evaluated in Curitiba, the ninth biggest city in Brazil, during a 6-year period (2010-2015). A retrospective analysis of bat complaints, bat species identification and rabies testing of bats, dogs and cats has been performed using methodologies of seasonal decomposition, spatial distribution and kernel density analysis. RESULTS Overall, a total of 1003 requests for bat removal have been attended to, and 806 bats were collected in 606 city locations. Bat species were identified among 13 genera of three families, with a higher frequency of Nyctinomops in the central-northern region and Molossidae scattered throughout city limits. Out of the bats captured alive, 419/806 (52.0%) healthy bats were released due to absence of human or animal contacts. The remaining 387/806 (48.0%) bats were sent for euthanasia and rabies testing, which resulted in 9/387 (2.32%) positives. Linear regression has shown an increase on sample numbers tested over time (regression: y = 2.02 + 0.17×; p < 0.001 and r2 = 0.29), as well as significant seasonal variation, which increases in January and decreases in May, June and July. The Kernel density analysis showed the center-northern city area to be statistically important, and the southern region had no tested samples within the period. In addition, a total of 4769 random and suspicious samples were sent for rabies diagnosis including those from dogs, cats, bats and others from 2007 to 2015. While all 2676 dog brains tested negative, only 1/1136 (0.088%) cat brains tested positive for rabies. CONCLUSION Only non-hematophagous bats were collected during the study, and the highest frequency of collections occurred in the center-northern region of the city. Rabies spillover from bats to cats may be more likely due to the registered exposure associated with cats' innate hunting habits, predisposing them to even closer contact with potentially infected bats. Although associated with a very low frequency of rabies, cats should always be included in rabies surveillance and vaccination programs.
Collapse
Affiliation(s)
- Juliano Ribeiro
- Graduate Program in Cellular and Molecular Biology, Federal University of Parana, Curitiba, Paraná 81531-990 Brazil
| | - Claudia Staudacher
- Zoonoses Control Center, City Secretary of Health, Curitiba, Paraná 80060-130 Brazil
| | - Camila Marinelli Martins
- Department of Preventive Veterinary Medicine and Animal Health, University of São Paulo, São Paulo, 05508-270 Brazil
| | - Leila Sabrina Ullmann
- UNESP – Univ. Estadual Paulista, Campus de Botucatu, Institute of Biotechnology, Botucatu, São Paulo, Botucatu, São Paulo 18607-440 Brazil
| | - Fernando Ferreira
- Department of Preventive Veterinary Medicine and Animal Health, University of São Paulo, São Paulo, 05508-270 Brazil
| | - João Pessoa Araujo
- UNESP – Univ. Estadual Paulista, Campus de Botucatu, Institute of Biotechnology, Botucatu, São Paulo, Botucatu, São Paulo 18607-440 Brazil
| | - Alexander Welker Biondo
- Department of Veterinary Medicine, Federal University of Paraná, Rua dos Funcionários, 1540, Curitiba, Paraná 80035-050 Brazil
| |
Collapse
|
33
|
Suu-Ire R, Begeman L, Banyard AC, Breed AC, Drosten C, Eggerbauer E, Freuling CM, Gibson L, Goharriz H, Horton DL, Jennings D, Kuzmin IV, Marston D, Ntiamoa-Baidu Y, Riesle Sbarbaro S, Selden D, Wise EL, Kuiken T, Fooks AR, Müller T, Wood JLN, Cunningham AA. Pathogenesis of bat rabies in a natural reservoir: Comparative susceptibility of the straw-colored fruit bat (Eidolon helvum) to three strains of Lagos bat virus. PLoS Negl Trop Dis 2018; 12:e0006311. [PMID: 29505617 PMCID: PMC5854431 DOI: 10.1371/journal.pntd.0006311] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 03/15/2018] [Accepted: 02/10/2018] [Indexed: 12/25/2022] Open
Abstract
Rabies is a fatal neurologic disease caused by lyssavirus infection. People are infected through contact with infected animals. The relative increase of human rabies acquired from bats calls for a better understanding of lyssavirus infections in their natural hosts. So far, there is no experimental model that mimics natural lyssavirus infection in the reservoir bat species. Lagos bat virus is a lyssavirus that is endemic in straw-colored fruit bats (Eidolon helvum) in Africa. Here we compared the susceptibility of these bats to three strains of Lagos bat virus (from Senegal, Nigeria, and Ghana) by intracranial inoculation. To allow comparison between strains, we ensured the same titer of virus was inoculated in the same location of the brain of each bat. All bats (n = 3 per strain) were infected, and developed neurological signs, and fatal meningoencephalitis with lyssavirus antigen expression in neurons. There were three main differences among the groups. First, time to death was substantially shorter in the Senegal and Ghana groups (4 to 6 days) than in the Nigeria group (8 days). Second, each virus strain produced a distinct clinical syndrome. Third, the spread of virus to peripheral tissues, tested by hemi-nested reverse transcriptase PCR, was frequent (3 of 3 bats) and widespread (8 to 10 tissues positive of 11 tissues examined) in the Ghana group, was frequent and less widespread in the Senegal group (3/3 bats, 3 to 6 tissues positive), and was rare and restricted in the Nigeria group (1/3 bats, 2 tissues positive). Centrifugal spread of virus from brain to tissue of excretion in the oral cavity is required to enable lyssavirus transmission. Therefore, the Senegal and Ghana strains seem most suitable for further pathogenesis, and for transmission, studies in the straw-colored fruit bat. Rabies is a neurologic disease that causes severe suffering and is almost always fatal. The disease is caused by infection with a virus of the genus Lyssavirus, of which 16 species are known. These viruses replicate in neurons, are excreted in the mouth, and are transmitted by bites. Dogs are the most important source of rabies for humans, but recently there is a relative increase in people contracting the disease from bats. To better understand the development of human rabies caused by these bat-acquired viruses, we need to study this disease in its bat host under controlled circumstances. To do so, we chose a naturally occurring lyssavirus–host combination: Lagos bat virus in straw-colored fruit bats. We compared three available strains of Lagos bat virus (all isolated from brains of this bat species) for their ability to mimic a natural infection. We used intracranial inoculation to ensure infection of the brain. All three strains infected brain neurons, resulting in fatal neurologic disease, however only two of the strains showed the ability to reach the site of excretion—the mouth—and were considered a suitable virus to use for further studies of this disease in bats.
Collapse
Affiliation(s)
- Richard Suu-Ire
- Institute of Zoology, Zoological Society of London, London, United Kingdom
- Department of Animal Biology and Conservation Science, University of Ghana, Accra, Ghana
- Veterinary Services Department, Ministry of Food and Agriculture, Accra, Ghana
- Wildlife Division of the Forestry Commission, Accra, Ghana
| | - Lineke Begeman
- Department of Viroscience, Erasmus University Medical Centre, Rotterdam, The Netherlands
| | - Ashley C. Banyard
- Wildlife Zoonoses and Vector Borne Disease Research Group, Animal and Plant Health Agency, Addlestone, United Kingdom
| | - Andrew C. Breed
- Wildlife Zoonoses and Vector Borne Disease Research Group, Animal and Plant Health Agency, Addlestone, United Kingdom
| | - Christian Drosten
- Institute of Virology, Medical University of Berlin, Berlin, Germany
| | - Elisa Eggerbauer
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald, Island of Riems, Germany
| | - Conrad M. Freuling
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald, Island of Riems, Germany
| | - Louise Gibson
- Institute of Zoology, Zoological Society of London, London, United Kingdom
| | - Hooman Goharriz
- Wildlife Zoonoses and Vector Borne Disease Research Group, Animal and Plant Health Agency, Addlestone, United Kingdom
| | - Daniel L. Horton
- School of Veterinary Medicine, University of Surrey, Guildford, United Kingdom
| | - Daisy Jennings
- Wildlife Zoonoses and Vector Borne Disease Research Group, Animal and Plant Health Agency, Addlestone, United Kingdom
| | - Ivan V. Kuzmin
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Denise Marston
- Wildlife Zoonoses and Vector Borne Disease Research Group, Animal and Plant Health Agency, Addlestone, United Kingdom
| | - Yaa Ntiamoa-Baidu
- Department of Animal Biology and Conservation Science, University of Ghana, Accra, Ghana
| | - Silke Riesle Sbarbaro
- Institute of Zoology, Zoological Society of London, London, United Kingdom
- Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| | - David Selden
- Wildlife Zoonoses and Vector Borne Disease Research Group, Animal and Plant Health Agency, Addlestone, United Kingdom
| | - Emma L. Wise
- Wildlife Zoonoses and Vector Borne Disease Research Group, Animal and Plant Health Agency, Addlestone, United Kingdom
| | - Thijs Kuiken
- Department of Viroscience, Erasmus University Medical Centre, Rotterdam, The Netherlands
| | - Anthony R. Fooks
- Wildlife Zoonoses and Vector Borne Disease Research Group, Animal and Plant Health Agency, Addlestone, United Kingdom
| | - Thomas Müller
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald, Island of Riems, Germany
| | - James L. N. Wood
- Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Andrew A. Cunningham
- Institute of Zoology, Zoological Society of London, London, United Kingdom
- * E-mail:
| |
Collapse
|
34
|
Deviatkin AA, Lukashev AN. Recombination in the rabies virus and other lyssaviruses. INFECTION GENETICS AND EVOLUTION 2018; 60:97-102. [PMID: 29477551 DOI: 10.1016/j.meegid.2018.02.026] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 01/06/2018] [Accepted: 02/18/2018] [Indexed: 12/15/2022]
Abstract
Recombination is a common event in RNA viruses; however, in the rabies virus there have been only a few reports of isolated recombination events. Comprehensive analysis found traces of recent recombination events within Arctic, Arctic-like and Africa 1b rabies virus groups, as well as recombination between distinct lyssaviruses. Recombination breakpoints were not linked to gene boundaries and could be detected all over the genome. However, there was no evidence that recombination is an important factor in the genetic variability of the rabies virus. It is therefore likely that recombination in the rabies virus is limited by ecological factors (e.g., rare co-circulation of distinguishable lineages and a narrow window for productive coinfection in most carnivore hosts), rather than molecular barriers (e.g., incompatibility of genome fragments).
Collapse
Affiliation(s)
- Andrei A Deviatkin
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Moscow, Russia; Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Preparations of Russian Academy of Sciences, Moscow, Russia.
| | - Alexander N Lukashev
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Moscow, Russia; Martsinovsky Institute of Medical Parasitology, Tropical and Vector Borne Diseases, Sechenov First Moscow State Medical University, Moscow, Russia; Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Preparations of Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
35
|
Nokireki T, Tammiranta N, Kokkonen UM, Kantala T, Gadd T. Tentative novel lyssavirus in a bat in Finland. Transbound Emerg Dis 2018; 65:593-596. [DOI: 10.1111/tbed.12833] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Indexed: 11/29/2022]
Affiliation(s)
- T. Nokireki
- Finnish Food Safety Authority Evira; Virology Research Unit; Helsinki Finland
| | - N. Tammiranta
- Finnish Food Safety Authority Evira; Virology Research Unit; Helsinki Finland
| | - U.-M. Kokkonen
- Finnish Food Safety Authority Evira; Virology Research Unit; Helsinki Finland
| | - T. Kantala
- Finnish Food Safety Authority Evira; Virology Research Unit; Helsinki Finland
| | - T. Gadd
- Finnish Food Safety Authority Evira; Virology Research Unit; Helsinki Finland
| |
Collapse
|
36
|
Abstract
With over 1200 species identified, bats represent almost one quarter of the world’s mammals. Bats provide crucial environmental services, such as insect control and pollination, and inhabit a wide variety of ecological niches on all continents except Antarctica. Despite their ubiquity and ecological importance, relatively little has been published on diseases of bats, while much has been written on bats’ role as reservoirs in disease transmission. This chapter will focus on diseases and pathologic processes most commonly reported in captive and free-ranging bats. Unique anatomical and histological features and common infectious and non-infectious diseases will be discussed. As recognition of both the importance and vulnerability of bats grows, particularly following population declines in North America due to the introduction of the fungal disease white-nose syndrome, efforts should be made to better understand threats to the health of this unique group of mammals.
Collapse
|
37
|
Troupin C, Picard-Meyer E, Dellicour S, Casademont I, Kergoat L, Lepelletier A, Dacheux L, Baele G, Monchâtre-Leroy E, Cliquet F, Lemey P, Bourhy H. Host Genetic Variation Does Not Determine Spatio-Temporal Patterns of European Bat 1 Lyssavirus. Genome Biol Evol 2017; 9:3202-3213. [PMID: 29165566 PMCID: PMC5721339 DOI: 10.1093/gbe/evx236] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/17/2017] [Indexed: 12/22/2022] Open
Abstract
The majority of bat rabies cases in Europe are attributed to European bat 1 lyssavirus (EBLV-1), circulating mainly in serotine bats (Eptesicus serotinus). Two subtypes have been defined (EBLV-1a and EBLV-1b), each associated with a different geographical distribution. In this study, we undertake a comprehensive sequence analysis based on 80 newly obtained EBLV-1 nearly complete genome sequences from nine European countries over a 45-year period to infer selection pressures, rates of nucleotide substitution, and evolutionary time scale of these two subtypes in Europe. Our results suggest that the current lineage of EBLV-1 arose in Europe ∼600 years ago and the virus has evolved at an estimated average substitution rate of ∼4.19×10-5 subs/site/year, which is among the lowest recorded for RNA viruses. In parallel, we investigate the genetic structure of French serotine bats at both the nuclear and mitochondrial level and find that they constitute a single genetic cluster. Furthermore, Mantel tests based on interindividual distances reveal the absence of correlation between genetic distances estimated between viruses and between host individuals. Taken together, this indicates that the genetic diversity observed in our E. serotinus samples does not account for EBLV-1a and -1b segregation and dispersal in Europe.
Collapse
Affiliation(s)
- Cécile Troupin
- Institut Pasteur, Unit Lyssavirus Dynamics and Host Adaptation, WHO Collaborating Centre for Reference and Research on Rabies, Paris, France
| | - Evelyne Picard-Meyer
- Laboratory for Rabies and Wildlife ANSES, Nancy, OIE Reference Laboratory for Rabies, European Union Reference Laboratory for Rabies, European Union Reference Laboratory for Rabies Serology, WHO Collaborating Centre for Research and Management on Zoonoses, Malzeville, France
| | - Simon Dellicour
- Institut Pasteur, Laboratory for Clinical and Epidemiological Virology, Department of Microbiology and Immunology, Rega Institute, KU Leuven – University of Leuven, Belgium
| | - Isabelle Casademont
- Unité de la Génétique Fonctionnelle des Maladies Infectieuses, Paris, France
| | - Lauriane Kergoat
- Institut Pasteur, Unit Lyssavirus Dynamics and Host Adaptation, WHO Collaborating Centre for Reference and Research on Rabies, Paris, France
| | - Anthony Lepelletier
- Institut Pasteur, Unit Lyssavirus Dynamics and Host Adaptation, WHO Collaborating Centre for Reference and Research on Rabies, Paris, France
| | - Laurent Dacheux
- Institut Pasteur, Unit Lyssavirus Dynamics and Host Adaptation, WHO Collaborating Centre for Reference and Research on Rabies, Paris, France
| | - Guy Baele
- Institut Pasteur, Laboratory for Clinical and Epidemiological Virology, Department of Microbiology and Immunology, Rega Institute, KU Leuven – University of Leuven, Belgium
| | - Elodie Monchâtre-Leroy
- Laboratory for Rabies and Wildlife ANSES, Nancy, OIE Reference Laboratory for Rabies, European Union Reference Laboratory for Rabies, European Union Reference Laboratory for Rabies Serology, WHO Collaborating Centre for Research and Management on Zoonoses, Malzeville, France
| | - Florence Cliquet
- Laboratory for Rabies and Wildlife ANSES, Nancy, OIE Reference Laboratory for Rabies, European Union Reference Laboratory for Rabies, European Union Reference Laboratory for Rabies Serology, WHO Collaborating Centre for Research and Management on Zoonoses, Malzeville, France
| | - Philippe Lemey
- Institut Pasteur, Laboratory for Clinical and Epidemiological Virology, Department of Microbiology and Immunology, Rega Institute, KU Leuven – University of Leuven, Belgium
| | - Hervé Bourhy
- Institut Pasteur, Unit Lyssavirus Dynamics and Host Adaptation, WHO Collaborating Centre for Reference and Research on Rabies, Paris, France
| |
Collapse
|
38
|
Robardet E, Borel C, Moinet M, Jouan D, Wasniewski M, Barrat J, Boué F, Montchâtre-Leroy E, Servat A, Gimenez O, Cliquet F, Picard-Meyer E. Longitudinal survey of two serotine bat (Eptesicus serotinus) maternity colonies exposed to EBLV-1 (European Bat Lyssavirus type 1): Assessment of survival and serological status variations using capture-recapture models. PLoS Negl Trop Dis 2017; 11:e0006048. [PMID: 29149215 PMCID: PMC5693283 DOI: 10.1371/journal.pntd.0006048] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 10/17/2017] [Indexed: 12/25/2022] Open
Abstract
This study describes two longitudinal serological surveys of European Bat Lyssavirus type 1 (EBLV-1) antibodies in serotine bat (Eptesicus serotinus) maternity colonies located in the North-East of France. This species is currently considered as the main EBLV-1 reservoir. Multievent capture-recapture models were used to determine the factors influencing bat rabies transmission as this method accounts for imperfect detection and uncertainty in disease states. Considering the period of study, analyses revealed that survival and recapture probabilities were not affected by the serological status of individuals, confirming the capacity of bats to be exposed to lyssaviruses without dying. Five bats have been found with EBLV-1 RNA in the saliva at the start of the study, suggesting they were caught during virus excretion period. Among these bats, one was interestingly recaptured one year later and harbored a seropositive status. Along the survey, some others bats have been observed to both seroconvert (i.e. move from a negative to a positive serological status) and serorevert (i.e. move from a positive to a negative serological status). Peak of seroprevalence reached 34% and 70% in site A and B respectively. On one of the 2 sites, global decrease of seroprevalence was observed all along the study period nuanced by oscillation intervals of approximately 2-3 years supporting the oscillation infection dynamics hypothesized during a previous EBLV-1 study in a Myotis myotis colony. Seroprevalence were affected by significantly higher seroprevalence in summer than in spring. The maximum time observed between successive positive serological statuses of a bat demonstrated the potential persistence of neutralizing antibodies for at least 4 years. At last, EBLV-1 serological status transitions have been shown driven by age category with higher seroreversion frequencies in adults than in juvenile. Juveniles and female adults seemed indeed acting as distinct drivers of the rabies virus dynamics, hypothesis have been addressed but their exact role in the EBLV-1 transmission still need to be specified.
Collapse
Affiliation(s)
- Emmanuelle Robardet
- ANSES, Nancy Laboratory for Rabies and Wildlife–WHO Collaborating Centre for Research and Management in Zoonoses Control, OIE Reference Laboratory for Rabies, European Union Reference Laboratory for Rabies, European Union Reference Laboratory for Rabies Serology—Bâtiment H, Technopôle Agricole et Vétérinaire, CS, France
| | | | - Marie Moinet
- ANSES, Nancy Laboratory for Rabies and Wildlife–WHO Collaborating Centre for Research and Management in Zoonoses Control, OIE Reference Laboratory for Rabies, European Union Reference Laboratory for Rabies, European Union Reference Laboratory for Rabies Serology—Bâtiment H, Technopôle Agricole et Vétérinaire, CS, France
| | | | - Marine Wasniewski
- ANSES, Nancy Laboratory for Rabies and Wildlife–WHO Collaborating Centre for Research and Management in Zoonoses Control, OIE Reference Laboratory for Rabies, European Union Reference Laboratory for Rabies, European Union Reference Laboratory for Rabies Serology—Bâtiment H, Technopôle Agricole et Vétérinaire, CS, France
| | - Jacques Barrat
- ANSES, Nancy Laboratory for Rabies and Wildlife–WHO Collaborating Centre for Research and Management in Zoonoses Control, OIE Reference Laboratory for Rabies, European Union Reference Laboratory for Rabies, European Union Reference Laboratory for Rabies Serology—Bâtiment H, Technopôle Agricole et Vétérinaire, CS, France
| | - Franck Boué
- ANSES, Nancy Laboratory for Rabies and Wildlife–WHO Collaborating Centre for Research and Management in Zoonoses Control, OIE Reference Laboratory for Rabies, European Union Reference Laboratory for Rabies, European Union Reference Laboratory for Rabies Serology—Bâtiment H, Technopôle Agricole et Vétérinaire, CS, France
| | - Elodie Montchâtre-Leroy
- ANSES, Nancy Laboratory for Rabies and Wildlife–WHO Collaborating Centre for Research and Management in Zoonoses Control, OIE Reference Laboratory for Rabies, European Union Reference Laboratory for Rabies, European Union Reference Laboratory for Rabies Serology—Bâtiment H, Technopôle Agricole et Vétérinaire, CS, France
| | - Alexandre Servat
- ANSES, Nancy Laboratory for Rabies and Wildlife–WHO Collaborating Centre for Research and Management in Zoonoses Control, OIE Reference Laboratory for Rabies, European Union Reference Laboratory for Rabies, European Union Reference Laboratory for Rabies Serology—Bâtiment H, Technopôle Agricole et Vétérinaire, CS, France
| | - Olivier Gimenez
- CEFE UMR 5175, CNRS, Université de Montpellier, Université Paul-Valéry Montpellier, EPHE, France
| | - Florence Cliquet
- ANSES, Nancy Laboratory for Rabies and Wildlife–WHO Collaborating Centre for Research and Management in Zoonoses Control, OIE Reference Laboratory for Rabies, European Union Reference Laboratory for Rabies, European Union Reference Laboratory for Rabies Serology—Bâtiment H, Technopôle Agricole et Vétérinaire, CS, France
| | - Evelyne Picard-Meyer
- ANSES, Nancy Laboratory for Rabies and Wildlife–WHO Collaborating Centre for Research and Management in Zoonoses Control, OIE Reference Laboratory for Rabies, European Union Reference Laboratory for Rabies, European Union Reference Laboratory for Rabies Serology—Bâtiment H, Technopôle Agricole et Vétérinaire, CS, France
| |
Collapse
|
39
|
Eggerbauer E, Pfaff F, Finke S, Höper D, Beer M, Mettenleiter TC, Nolden T, Teifke JP, Müller T, Freuling CM. Comparative analysis of European bat lyssavirus 1 pathogenicity in the mouse model. PLoS Negl Trop Dis 2017; 11:e0005668. [PMID: 28628617 PMCID: PMC5491315 DOI: 10.1371/journal.pntd.0005668] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 06/29/2017] [Accepted: 05/26/2017] [Indexed: 12/24/2022] Open
Abstract
European bat lyssavirus 1 is responsible for most bat rabies cases in Europe. Although EBLV-1 isolates display a high degree of sequence identity, different sublineages exist. In individual isolates various insertions and deletions have been identified, with unknown impact on viral replication and pathogenicity. In order to assess whether different genetic features of EBLV-1 isolates correlate with phenotypic changes, different EBLV-1 variants were compared for pathogenicity in the mouse model. Groups of three mice were infected intracranially (i.c.) with 102 TCID50/ml and groups of six mice were infected intramuscularly (i.m.) with 105 TCID50/ml and 102 TCID50/ml as well as intranasally (i.n.) with 102 TCID50/ml. Significant differences in survival following i.m. inoculation with low doses as well as i.n. inoculation were observed. Also, striking variations in incubation periods following i.c. inoculation and i.m. inoculation with high doses were seen. Hereby, the clinical picture differed between general symptoms, spasms and aggressiveness depending on the inoculation route. Immunohistochemistry of mouse brains showed that the virus distribution in the brain depended on the inoculation route. In conclusion, different EBLV-1 isolates differ in pathogenicity indicating variation which is not reflected in studies of single isolates.
Collapse
Affiliation(s)
- Elisa Eggerbauer
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Florian Pfaff
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Stefan Finke
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Dirk Höper
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Martin Beer
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Thomas C. Mettenleiter
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Tobias Nolden
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Jens-Peter Teifke
- Department of Experimental Animal Facilities and Biorisk Management, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Thomas Müller
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Conrad M. Freuling
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| |
Collapse
|
40
|
Eggerbauer E, Troupin C, Passior K, Pfaff F, Höper D, Neubauer-Juric A, Haberl S, Bouchier C, Mettenleiter TC, Bourhy H, Müller T, Dacheux L, Freuling CM. The Recently Discovered Bokeloh Bat Lyssavirus: Insights Into Its Genetic Heterogeneity and Spatial Distribution in Europe and the Population Genetics of Its Primary Host. Adv Virus Res 2017; 99:199-232. [PMID: 29029727 DOI: 10.1016/bs.aivir.2017.07.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
In 2010, a novel lyssavirus named Bokeloh bat lyssavirus (BBLV) was isolated from a Natterer's bat (Myotis nattereri) in Germany. Two further viruses were isolated in the same country and in France in recent years, all from the same bat species and all found in moribund or dead bats. Here we report the description and the full-length genome sequence of five additional BBLV isolates from Germany (n=4) and France (n=1). Interestingly, all of them were isolated from the Natterer's bat, except one from Germany, which was found in a common Pipistrelle bat (Pipistrellus pipistrellus), a widespread and abundant bat species in Europe. The latter represents the first case of transmission of BBLV to another bat species. Phylogenetic analysis clearly demonstrated the presence of two different lineages among this lyssavirus species: lineages A and B. The spatial distribution of these two lineages remains puzzling, as both of them comprised isolates from France and Germany; although clustering of isolates was observed on a regional scale, especially in Germany. Phylogenetic analysis based on the mitochondrial cytochrome b (CYTB) gene from positive Natterer's bat did not suggest a circulation of the respective BBLV sublineages in specific Natterer's bat subspecies, as all of them were shown to belong to the M. nattereri sensu stricto clade/subspecies and were closely related (German and French positive bats). At the bat host level, we demonstrated that the distribution of BBLV at the late stage of the disease seems large and massive, as viral RNA was detected in many different organs.
Collapse
|
41
|
Reperant LA, Brown IH, Haenen OL, de Jong MD, Osterhaus ADME, Papa A, Rimstad E, Valarcher JF, Kuiken T. Companion Animals as a Source of Viruses for Human Beings and Food Production Animals. J Comp Pathol 2016; 155:S41-53. [PMID: 27522300 DOI: 10.1016/j.jcpa.2016.07.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 07/04/2016] [Accepted: 07/07/2016] [Indexed: 01/12/2023]
Abstract
Companion animals comprise a wide variety of species, including dogs, cats, horses, ferrets, guinea pigs, reptiles, birds and ornamental fish, as well as food production animal species, such as domestic pigs, kept as companion animals. Despite their prominent place in human society, little is known about the role of companion animals as sources of viruses for people and food production animals. Therefore, we reviewed the literature for accounts of infections of companion animals by zoonotic viruses and viruses of food production animals, and prioritized these viruses in terms of human health and economic importance. In total, 138 virus species reportedly capable of infecting companion animals were of concern for human and food production animal health: 59 of these viruses were infectious for human beings, 135 were infectious for food production mammals and birds, and 22 were infectious for food production fishes. Viruses of highest concern for human health included hantaviruses, Tahyna virus, rabies virus, West Nile virus, tick-borne encephalitis virus, Crimean-Congo haemorrhagic fever virus, Aichi virus, European bat lyssavirus, hepatitis E virus, cowpox virus, G5 rotavirus, influenza A virus and lymphocytic choriomeningitis virus. Viruses of highest concern for food production mammals and birds included bluetongue virus, African swine fever virus, foot-and-mouth disease virus, lumpy skin disease virus, Rift Valley fever virus, porcine circovirus, classical swine fever virus, equine herpesvirus 9, peste des petits ruminants virus and equine infectious anaemia virus. Viruses of highest concern for food production fishes included cyprinid herpesvirus 3 (koi herpesvirus), viral haemorrhagic septicaemia virus and infectious pancreatic necrosis virus. Of particular concern as sources of zoonotic or food production animal viruses were domestic carnivores, rodents and food production animals kept as companion animals. The current list of viruses provides an objective basis for more in-depth analysis of the risk of companion animals as sources of viruses for human and food production animal health.
Collapse
Affiliation(s)
- L A Reperant
- Department of Viroscience, Erasmus Medical Centre, PO Box 2040, 3000 CA Rotterdam, The Netherlands
| | - I H Brown
- Animal and Plant Health Agency Weybridge, New Haw, Addlestone, Surrey, UK
| | - O L Haenen
- National Reference Laboratory for Fish, Shellfish and Crustacean Diseases, Central Veterinary Institute of Wageningen UR, PO Box 65, 8200 AB Lelystad, The Netherlands
| | - M D de Jong
- Department of Medical Microbiology, Academic Medical Centre, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - A D M E Osterhaus
- Department of Viroscience, Erasmus Medical Centre, PO Box 2040, 3000 CA Rotterdam, The Netherlands
| | - A Papa
- Department of Microbiology, Medical School Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - E Rimstad
- Department of Food Safety and Infection Biology, University of Life Sciences, Oslo, Norway
| | - J-F Valarcher
- Department of Virology, Immunology, and Parasitology, National Veterinary Institute, Uppsala, Sweden
| | - T Kuiken
- Department of Viroscience, Erasmus Medical Centre, PO Box 2040, 3000 CA Rotterdam, The Netherlands.
| |
Collapse
|
42
|
Zhuo X, Feschotte C. Cross-Species Transmission and Differential Fate of an Endogenous Retrovirus in Three Mammal Lineages. PLoS Pathog 2015; 11:e1005279. [PMID: 26562410 PMCID: PMC4643047 DOI: 10.1371/journal.ppat.1005279] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2015] [Accepted: 10/23/2015] [Indexed: 11/18/2022] Open
Abstract
Endogenous retroviruses (ERVs) arise from retroviruses chromosomally integrated in the host germline. ERVs are common in vertebrate genomes and provide a valuable fossil record of past retroviral infections to investigate the biology and evolution of retroviruses over a deep time scale, including cross-species transmission events. Here we took advantage of a catalog of ERVs we recently produced for the bat Myotis lucifugus to seek evidence for infiltration of these retroviruses in other mammalian species (>100) currently represented in the genome sequence database. We provide multiple lines of evidence for the cross-ordinal transmission of a gammaretrovirus endogenized independently in the lineages of vespertilionid bats, felid cats and pangolin ~13-25 million years ago. Following its initial introduction, the ERV amplified extensively in parallel in both bat and cat lineages, generating hundreds of species-specific insertions throughout evolution. However, despite being derived from the same viral species, phylogenetic and selection analyses suggest that the ERV experienced different amplification dynamics in the two mammalian lineages. In the cat lineage, the ERV appears to have expanded primarily by retrotransposition of a single proviral progenitor that lost infectious capacity shortly after endogenization. In the bat lineage, the ERV followed a more complex path of germline invasion characterized by both retrotransposition and multiple infection events. The results also suggest that some of the bat ERVs have maintained infectious capacity for extended period of time and may be still infectious today. This study provides one of the most rigorously documented cases of cross-ordinal transmission of a mammalian retrovirus. It also illustrates how the same retrovirus species has transitioned multiple times from an infectious pathogen to a genomic parasite (i.e. retrotransposon), yet experiencing different invasion dynamics in different mammalian hosts.
Collapse
Affiliation(s)
- Xiaoyu Zhuo
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
| | - Cédric Feschotte
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
- * E-mail:
| |
Collapse
|
43
|
Voigt CC, Kingston T. Zoonotic Viruses and Conservation of Bats. BATS IN THE ANTHROPOCENE: CONSERVATION OF BATS IN A CHANGING WORLD 2015. [PMCID: PMC7122997 DOI: 10.1007/978-3-319-25220-9_10] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Many of the recently emerging highly virulent zoonotic diseases have a likely bat origin, for example Hendra, Nipah, Ebola and diseases caused by coronaviruses. Presumably because of their long history of coevolution, most of these viruses remain subclinical in bats, but have the potential to cause severe illnesses in domestic and wildlife animals and also humans. Spillovers from bats to humans either happen directly (via contact with infected bats) or indirectly (via intermediate hosts such as domestic or wildlife animals, by consuming food items contaminated by saliva, faeces or urine of bats, or via other environmental sources). Increasing numbers of breakouts of zoonotic viral diseases among humans and livestock have mainly been accounted to human encroachment into natural habitat, as well as agricultural intensification, deforestation and bushmeat consumption. Persecution of bats, including the destruction of their roosts and culling of whole colonies, has led not only to declines of protected bat species, but also to an increase in virus prevalence in some of these populations. Educational efforts are needed in order to prevent future spillovers of bat-borne viruses to humans and livestock, and to further protect bats from unnecessary and counterproductive culling.
Collapse
|
44
|
|
45
|
Ribadeau Dumas F, N'Diaye DS, Paireau J, Gautret P, Bourhy H, Le Pen C, Yazdanpanah Y. Cost-effectiveness of rabies post-exposure prophylaxis in the context of very low rabies risk: A decision-tree model based on the experience of France. Vaccine 2015; 33:2367-78. [PMID: 25797366 DOI: 10.1016/j.vaccine.2015.02.075] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Revised: 02/14/2015] [Accepted: 02/28/2015] [Indexed: 12/25/2022]
Abstract
INTRODUCTION Benefit-risk of different anti-rabies post-exposure prophylaxis (PEP) strategies after scratches or bites from dogs with unknown rabies status is unknown in very low rabies risk settings. DESIGN AND SETTING A cost-effectiveness analysis in metropolitan France using a decision-tree model and input data from 2001 to 2011. POPULATION A cohort of 2807 patients, based on the mean annual number of patients exposed to category CII (minor scratches) or CIII (transdermal bite) dog attacks in metropolitan France between 2001 and 2011. INTERVENTIONS Five PEP strategies: (A) no PEP for CII and CIII; (B) vaccine only for CIII; (C) vaccine for CII and CIII; (D) vaccine+ rabies immunoglobulin (RIG) only for CIII; and (E) vaccine for CII and vaccine+ RIG for CIII. MAIN OUTCOMES MEASURES The number of deaths related to rabies and to traffic accidents on the way to anti-rabies centers (ARC), effectiveness in terms of years of life gained by reducing rabies cases and avoiding traffic accidents, costs, and incremental cost-effectiveness ratios (ICER) associated with each strategy. RESULTS Strategy E led to the fewest rabies cases (3.6 × 10(-8)) and the highest costs (€ 1,606,000) but also to 1.7 × 10(-3) lethal traffic accidents. Strategy A was associated with the most rabies cases (4.8 × 10(-6)), but the risk of traffic accidents and costs were null; therefore, strategy A was the most effective and the least costly. The sensitivity analysis showed that, when the probability that a given dog is rabid a given day (PA) was > 1.4 × 10(-6), strategy D was more effective than strategy A; strategy B became cost-effective (i.e. ICER vs strategy A < 3 × French Gross Domestic Product per capita) when PA was > 1 .4 × 10(-4). CONCLUSIONS In the metropolitan France's very low rabies prevalence context, PEP with rabies vaccine, administered alone or with RIG, is associated with significant and unnecessary costs and unfavourable benefit-risk ratios regardless to exposure category.
Collapse
Affiliation(s)
- Florence Ribadeau Dumas
- Université Paris Dauphine, LEDa/LEGOS, F-75016, Paris, France; Institut Pasteur, Unité Dynamique des lyssavirus et adaptation à l'hôte, National Reference Center for Rabies, F-75015 Paris, France; Institut Pasteur, CAR/CMIP/CINP, F-75015, Paris, France.
| | - Dieynaba S N'Diaye
- IAME, UMR 1137, INSERM, F-75018 Paris, France; UPMC Univ Paris 06, ED393, F-75005, Paris, France; Univ Paris Diderot, Sorbonne Paris Cité, F-75018 Paris, France
| | - Juliette Paireau
- Univ Pierre et Marie Curie, Cellule Pasteur UPMC, F-75015, Paris, France; Institut Pasteur, Unité d'Epidémiologie des Maladies Emergentes, F-75015, Paris, France
| | - Philippe Gautret
- Assistance Publique Hôpitaux de Marseille, CHU Nord, Pôle Infectieux, Institut Hospitalo-Universitaire Méditerranée Infection, F-13015 Marseille, France; Aix Marseille Université, Unité de Recherche en Maladies Infectieuses et Tropicales Emergentes (URMITE), UM63, CNRS 7278, IRD 198, Inserm 1095, Faculté de Médecine, F-13005 Marseille, France
| | - Hervé Bourhy
- Institut Pasteur, Unité Dynamique des lyssavirus et adaptation à l'hôte, National Reference Center for Rabies, F-75015 Paris, France
| | - Claude Le Pen
- Université Paris Dauphine, LEDa/LEGOS, F-75016, Paris, France
| | - Yazdan Yazdanpanah
- IAME, UMR 1137, INSERM, F-75018 Paris, France; AP-HP, Hôpital Bichat, Service de Maladies Infectieuses, F-75018 Paris, France; Univ Paris Diderot, Sorbonne Paris Cité, F-75018 Paris, France
| |
Collapse
|
46
|
Müller T, Freuling CM, Wysocki P, Roumiantzeff M, Freney J, Mettenleiter TC, Vos A. Terrestrial rabies control in the European Union: historical achievements and challenges ahead. Vet J 2014; 203:10-7. [PMID: 25466578 DOI: 10.1016/j.tvjl.2014.10.026] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Revised: 10/15/2014] [Accepted: 10/20/2014] [Indexed: 12/25/2022]
Abstract
Due to the implementation of oral rabies vaccination (ORV) programmes, the European Union (EU) is becoming progressively free of red fox (Vulpes vulpes)-mediated rabies. Over the past three decades, the incidence of rabies had decreased substantially and vast areas of Western and Central Europe have been freed from rabies using this method of controlling an infectious disease in wildlife. Since rabies control is a top priority in the EU, the disease is expected to be eliminated from the animal source in the near future. While responsible authorities may consider the mission of eliminating fox rabies from the EU almost accomplished, there are still issues to be dealt with and challenges to be met that have not yet been in the focus of attention, but could jeopardise the ultimate goal. Among them are increasing illegal movements of animals, maintaining funding support for vaccination campaigns, devising alternative vaccine strategies in neighbouring Eastern European countries and the expanding distribution range of several potential rabies reservoir species in Europe.
Collapse
Affiliation(s)
- Thomas Müller
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler Institut, WHO Collaborating Centre for Rabies Surveillance and Research, OIE Reference Laboratory for Rabies, 17493 Greifswald-Insel Riems, Germany.
| | - Conrad Martin Freuling
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler Institut, WHO Collaborating Centre for Rabies Surveillance and Research, OIE Reference Laboratory for Rabies, 17493 Greifswald-Insel Riems, Germany
| | - Patrick Wysocki
- Institute of Epidemiology, Friedrich-Loeffler-Institut, 17493 Greifswald-Insel Riems, Germany
| | | | - Jean Freney
- Laboratoire de Microbiologie, Centre de Biologie et Pathologie Est Groupe de Recherche, Hospices Civils de Lyon & «Bactéries pathogènes opportunistes et environnement», UMR 5557 CNRS-UCBL, ISPB, Université Claude Bernard Lyon 1, Université de Lyon, France
| | - Thomas Christoph Mettenleiter
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler Institut, WHO Collaborating Centre for Rabies Surveillance and Research, OIE Reference Laboratory for Rabies, 17493 Greifswald-Insel Riems, Germany
| | - Adriaan Vos
- IDT Biologika GmbH, 06861 Dessau-Rosslau, Germany
| |
Collapse
|
47
|
Australian bat lyssavirus infection in two horses. Vet Microbiol 2014; 173:224-31. [PMID: 25195190 DOI: 10.1016/j.vetmic.2014.07.029] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Revised: 07/11/2014] [Accepted: 07/27/2014] [Indexed: 12/25/2022]
Abstract
In May 2013, the first cases of Australian bat lyssavirus infections in domestic animals were identified in Australia. Two horses (filly-H1 and gelding-H2) were infected with the Yellow-bellied sheathtail bat (YBST) variant of Australian bat lyssavirus (ABLV). The horses presented with neurological signs, pyrexia and progressing ataxia. Intra-cytoplasmic inclusion bodies (Negri bodies) were detected in some Purkinje neurons in haematoxylin and eosin (H&E) stained sections from the brain of one of the two infected horses (H2) by histological examination. A morphological diagnosis of sub-acute moderate non-suppurative, predominantly angiocentric, meningo-encephalomyelitis of viral aetiology was made. The presumptive diagnosis of ABLV infection was confirmed by the positive testing of the affected brain tissue from (H2) in a range of laboratory tests including fluorescent antibody test (FAT) and real-time PCR targeting the nucleocapsid (N) gene. Retrospective testing of the oral swab from (H1) in the real-time PCR also returned a positive result. The FAT and immunohistochemistry (IHC) revealed an abundance of ABLV antigen throughout the examined brain sections. ABLV was isolated from the brain (H2) and oral swab/saliva (H1) in the neuroblastoma cell line (MNA). Alignment of the genome sequence revealed a 97.7% identity with the YBST ABLV strain.
Collapse
|
48
|
Kohl C, Kurth A. European bats as carriers of viruses with zoonotic potential. Viruses 2014; 6:3110-28. [PMID: 25123684 PMCID: PMC4147689 DOI: 10.3390/v6083110] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Revised: 07/29/2014] [Accepted: 07/30/2014] [Indexed: 12/23/2022] Open
Abstract
Bats are being increasingly recognized as reservoir hosts of highly pathogenic and zoonotic emerging viruses (Marburg virus, Nipah virus, Hendra virus, Rabies virus, and coronaviruses). While numerous studies have focused on the mentioned highly human-pathogenic bat viruses in tropical regions, little is known on similar human-pathogenic viruses that may be present in European bats. Although novel viruses are being detected, their zoonotic potential remains unclear unless further studies are conducted. At present, it is assumed that the risk posed by bats to the general public is rather low. In this review, selected viruses detected and isolated in Europe are discussed from our point of view in regard to their human-pathogenic potential. All European bat species and their roosts are legally protected and some European species are even endangered. Nevertheless, the increasing public fear of bats and their viruses is an obstacle to their protection. Educating the public regarding bat lyssaviruses might result in reduced threats to both the public and the bats.
Collapse
Affiliation(s)
- Claudia Kohl
- Centre for Biological Threats and Special Pathogens, Robert Koch Institute, Nordufer 20, 13353 Berlin, Germany.
| | - Andreas Kurth
- Centre for Biological Threats and Special Pathogens, Robert Koch Institute, Nordufer 20, 13353 Berlin, Germany.
| |
Collapse
|
49
|
Stahl JP, Gautret P, Ribadeau-Dumas F, Strady C, Le Moal G, Souala F, Maslin J, Fremont B, Bourhy H. Update on human rabies in a dog- and fox-rabies-free country. Med Mal Infect 2014; 44:292-301. [DOI: 10.1016/j.medmal.2014.05.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Revised: 04/29/2014] [Accepted: 05/22/2014] [Indexed: 01/11/2023]
|
50
|
Picard-Meyer E, Robardet E, Arthur L, Larcher G, Harbusch C, Servat A, Cliquet F. Bat rabies in France: a 24-year retrospective epidemiological study. PLoS One 2014; 9:e98622. [PMID: 24892287 PMCID: PMC4044004 DOI: 10.1371/journal.pone.0098622] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Accepted: 05/05/2014] [Indexed: 11/18/2022] Open
Abstract
Since bat rabies surveillance was first implemented in France in 1989, 48 autochthonous rabies cases without human contamination have been reported using routine diagnosis methods. In this retrospective study, data on bats submitted for rabies testing were analysed in order to better understand the epidemiology of EBLV-1 in bats in France and to investigate some epidemiological trends. Of the 3176 bats submitted for rabies diagnosis from 1989 to 2013, 1.96% (48/2447 analysed) were diagnosed positive. Among the twelve recognised virus species within the Lyssavirus genus, two species were isolated in France. 47 positive bats were morphologically identified as Eptesicus serotinus and were shown to be infected by both the EBLV-1a and the EBLV-1b lineages. Isolation of BBLV in Myotis nattereri was reported once in the north-east of France in 2012. The phylogenetic characterisation of all 47 French EBLV-1 isolates sampled between 1989 and 2013 and the French BBLV sample against 21 referenced partial nucleoprotein sequences confirmed the low genetic diversity of EBLV-1 despite its extensive geographical range. Statistical analysis performed on the serotine bat data collected from 1989 to 2013 showed seasonal variation of rabies occurrence with a significantly higher proportion of positive samples detected during the autumn compared to the spring and the summer period (34% of positive bats detected in autumn, 15% in summer, 13% in spring and 12% in winter). In this study, we have provided the details of the geographical distribution of EBLV-1a in the south-west of France and the north-south division of EBLV-1b with its subdivisions into three phylogenetic groups: group B1 in the north-west, group B2 in the centre and group B3 in the north-east of France.
Collapse
Affiliation(s)
- Evelyne Picard-Meyer
- French Agency for Food, Environmental and Occupational Health & Safety (ANSES), Nancy Laboratory for Rabies and Wildlife, OIE Reference Laboratory for Rabies, European Union Reference Laboratory for Rabies, European Union Reference Laboratory for Rabies Serology, Malzeville, France
- * E-mail:
| | - Emmanuelle Robardet
- French Agency for Food, Environmental and Occupational Health & Safety (ANSES), Nancy Laboratory for Rabies and Wildlife, OIE Reference Laboratory for Rabies, European Union Reference Laboratory for Rabies, European Union Reference Laboratory for Rabies Serology, Malzeville, France
| | | | - Gérald Larcher
- SFEPM Chiroptera Group, Museum d'Histoire Naturelle de Bourges, Bourges, France
| | | | - Alexandre Servat
- French Agency for Food, Environmental and Occupational Health & Safety (ANSES), Nancy Laboratory for Rabies and Wildlife, OIE Reference Laboratory for Rabies, European Union Reference Laboratory for Rabies, European Union Reference Laboratory for Rabies Serology, Malzeville, France
| | - Florence Cliquet
- French Agency for Food, Environmental and Occupational Health & Safety (ANSES), Nancy Laboratory for Rabies and Wildlife, OIE Reference Laboratory for Rabies, European Union Reference Laboratory for Rabies, European Union Reference Laboratory for Rabies Serology, Malzeville, France
| |
Collapse
|