1
|
Fazeli MM, Heydari Sirat S, Shatizadeh Malekshahi S. Novel Human Polyomaviruses Discovered From 2007 to the Present: An Update of Current Knowledge. Rev Med Virol 2025; 35:e70017. [PMID: 40000590 DOI: 10.1002/rmv.70017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 12/26/2024] [Accepted: 01/21/2025] [Indexed: 02/27/2025]
Abstract
Human polyomaviruses (HPyVs) are a diverse group of viruses that typically establish asymptomatic persistent infections in healthy individuals. However, they can lead to severe diseases in immunocompromised patients. The past 15 years have witnessed significant advancements in understanding HPyVs, leading to the discovery of several novel and highly divergent strains. This surge in knowledge raises critical questions about their evolution, tropism, and potential contributions to various diseases. Although HPyVs are generally benign, certain strains can lead to significant health issues under immunocompromised conditions. Since 2007, several novel PyVs have been isolated from humans: Karolinska Institute Polyomavirus (KIPyV), Washington University Polyomavirus (WUPyV), Merkel cell Polyomavirus (MCPyV), HPyV6, HPyV7, Trichodisplasia spinulosa polyomavirus (TSPyV), HPyV9, HPyV10, Saint Louis polyomavirus (STLPyV), HPyV12, New Jersey Polyomavirus (NJPyV), Lyon IARC polyomavirus (LIPyV), HPyV16 and Quebec polyomavirus (QPyV). This review summarises the available data regarding the biology, tissue tropism, epidemiology, and associated diseases of novel HPyVs discovered from 2007 to the present. While some HPyVs are well-characterised with clear associations to specific diseases, others remain enigmatic, warranting additional investigation into their biology and clinical implications.
Collapse
Affiliation(s)
- Mohammad Mehdi Fazeli
- Department of Virology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Sara Heydari Sirat
- Department of Virology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | | |
Collapse
|
2
|
Abedi Kiasari B, Gholamnezhad M, Alipour AH, Hoda Fallah F. Development of a Recombinant Protein-Based Immunoassay for Detection of Antibodies Against Karolinska Institute and Washington University Polyomaviruses. Viral Immunol 2024; 37:308-316. [PMID: 39092481 DOI: 10.1089/vim.2024.0042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2024] Open
Abstract
To develop polyomavirus VP1 recombinant protein-based immunoassay, the expression of two polyomavirus (Karolinska Institute Polyomavirus; KIPyV, and Washington University Polyomavirus; WUPyV) VP1s in insect cells was investigated using an improved baculovirus system (BacMagic). The reliability of the purified VP1 to serve as antigens in serological tests was confirmed by the establishment of an enzyme-linked immunosorbent assay (ELISA). Two panels of serum samples were used, with Panel I comprising 60 sera (20 KIPyV-positive, 20 WUPyV-positive, and 20 negative) and Panel II consisting of 134 sera with unknown status. The seroprevalence of KIPyV and WUPyV in the study population was determined to be 62% and 50%, respectively. Antibody-negative sera exhibited low reactivities in both ELISAs, whereas antibody-positive sera displayed high reactivity with median optical density values of 1.37 and 1.47 in the KIPyV and WUPyV ELISAs, respectively. The differences in seroreactivities between antibody positive and negative for each virus were statistically significant (p < 0.0001; with 95% confidence interval). The study suggests that seroconversion for KIPyV and WUPyV occurs in childhood, with KIPyV seropositivity reaching 70% and WUPyV seropositivity reaching 60% after the age of 5 years. Adult seroprevalence for polyomaviruses was high, with more than 64% and 51% of the adult population being seropositive for KIPyV and WUPyV, respectively. The constant prevalence of KIPyV and WUPyV antibody in the age groups suggested that this antibody persists for life. The fact that antibody titers were generally stable over time revealed a persistent infection of polyomaviruses in the human population. The insect cell-derived recombinant VP1-based ELISA has been demonstrated to be valuable as a serological assay, offering a valid, reliable, fast, nonlaborious, and economical procedure.
Collapse
Affiliation(s)
- Bahman Abedi Kiasari
- Microbiology and Immunology Group, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Mohammad Gholamnezhad
- Clinical Research Development Unit, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Amir Hossein Alipour
- Microbiology and Immunology Group, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
- Gene Therapy Research Center, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Hoda Fallah
- Allergy and Clinical Immunology Department, Children's Medical Centre, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
3
|
Dunowska M, Perrott M, Biggs P. Identification of a novel polyomavirus from a marsupial host. Virus Evol 2022; 8:veac096. [PMID: 36381233 PMCID: PMC9662318 DOI: 10.1093/ve/veac096] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 09/09/2022] [Accepted: 10/05/2022] [Indexed: 08/26/2023] Open
Abstract
We report the identification and analysis of a full sequence of a novel polyomavirus from a brushtail possum (Trichosurus vulpecula ) termed possum polyomavirus (PPyV). The sequence was obtained from the next-generation sequencing assembly during an investigation into the aetiological agent for a neurological disease of possums termed wobbly possum disease (WPD), but the virus was not aetiologically involved in WPD. The PPyV genome was 5,224 nt long with the organisation typical for polyomaviruses, including early (large and small T antigens) and late (Viral Protein 1 (VP1), VP2, and VP3) coding regions separated by the non-coding control region of 465 nt. PPyV clustered with betapolyomaviruses in the WUKI clade but showed less than 60 per cent identity to any of the members of this clade. We propose that PPyV is classified within a new species in the genus Betapolyomavirus . These data add to our limited knowledge of marsupial viruses and their evolution.
Collapse
Affiliation(s)
- Magdalena Dunowska
- School of Veterinary Science, Massey University, Palmerston North 4410, New Zealand
| | - Matthew Perrott
- School of Veterinary Science, Massey University, Palmerston North 4410, New Zealand
| | - Patrick Biggs
- School of Veterinary Science, Massey University, Palmerston North 4410, New Zealand
- School of Natural Sciences, Massey University, Palmerston North 4410, New Zealand
| |
Collapse
|
4
|
Hussein Lazim H, Hussain Ali S, Abdul-Amir AS, Salim AB. A STUDY OF THE NOVEL WU AND KI POLYOMAVIRUSES, BOCAVIRUS ADENOVIRUS IN CHILDREN WITH UPPER RESPIRATORY TRACT INFECTIONS. WIADOMOSCI LEKARSKIE (WARSAW, POLAND : 1960) 2022; 75:1678-1682. [PMID: 35962680 DOI: 10.36740/wlek202207112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
OBJECTIVE The aim: To find out the frequency of WU and KI polyomaviruses, and Human Boca and Adenoviruses infections among children with different types of acute upper respiratory tract infections and to compare the frequency of these viruses among immune-competent and immune compromised patients. PATIENTS AND METHODS Materials and methods: A case-control study conducted in children aged 3-18 years with acute upper respiratory tract infections. The samples were taken from: Group 1: 100 immuno competent children with acute upper respiratory tract infections. Group 2: 100 immuno compromised children (Leukemic, cancer, Nephrotic syndrome, chronic renal failure and children with renal transplant) with acute upper respiratory tract infections. Group 3: 100 apparently healthy children without respiratory infections as control group. Nasal swap samples were collected from children and then viral DNA extracted from these samples. Then detection of WU, KI polyomaviruses HBoV and HAdv was done by using real time PCR. RESULTS Results: All of 300 samples were negative for WU and KI polyomaviruses. However, human Bocavirus was detected in the three groups (immunocompromised, immunocompetent and control group) and the positivity rates were 61.61%, 37.37% and 18.18%, respectively. While human adenovirus was found only in 2% of immunocompromised patients and 1.1% of immunocompetent patients also there were cases positive for both HBoV and HAdv in 5.5% of immunocompromised patients, and 8.8% of immunocompetent patients. CONCLUSION Conclusions: High frequency of HBoV especially in immunocompromised patients while low number of positive cases for HAdv by using nasal swab samples, WU and KI polyomaviruses could not be detected in samples.
Collapse
|
5
|
KI and WU Polyomaviruses: Seroprevalence Study and DNA Prevalence in SARS-CoV-2 RNA Positive and Negative Respiratory Samples. Microorganisms 2022; 10:microorganisms10040752. [PMID: 35456801 PMCID: PMC9031565 DOI: 10.3390/microorganisms10040752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 03/25/2022] [Accepted: 03/29/2022] [Indexed: 11/17/2022] Open
Abstract
The aim of this work was to study the possible co-infection of KI and WU polyomavirus (KIPyV and WUPyV, respectively) and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in respiratory samples and to detect the seroprevalence of KIPyV and WUPyV. A total of 1030 nasopharyngeal samples were analyzed from SARS-CoV-2 RNA positive (n = 680) and negative (n = 350) adults and children (age: 1 day to 94.2 years) collected from August 2020 to October 2021. KIPyV DNA was detected in two SARS-CoV-2-positive samples (2/680, 0.29%) and in three SARS-CoV-2-negative samples (3/350, 0.86%). WUPyV DNA was observed in one-one samples from both groups (1/680, 0.15% vs. 1/350, 0.29%). We did not find an association between SARS-CoV-2 and KIPyV or WUPyV infection, and we found low DNA prevalence of polyomaviruses studied after a long-term lockdown in Hungary. To exclude a geographically different distribution of these polyomaviruses, we studied the seroprevalence of KIPyV and WUPyV by enzyme-linked immunosorbent assay among children and adults (n = 692 for KIPyV and n = 705 for WUPyV). Our data confirmed that primary infections by KIPyV and WUPyV occur mainly during childhood; the overall seropositivity of adults was 93.7% and 89.2% for KIPyV and WUPyV, respectively. Based on our data, we suggest that the spread of KIPyV and WUPyV might have been restricted in Hungary by the lockdown.
Collapse
|
6
|
Zhao H, Xu W, Wang L, Zhu Y, Wang X, Liu Y, Ai J, Feng Q, Deng L, Sun Y, Li C, Jin R, Shang Y, Gao H, Qian S, Xu L, Xie Z. WU Polyomavirus Infection in Children With Acute Lower Respiratory Tract Infections in China, 2017 to 2019: Case Reports and Multicentre Epidemiological Survey. Front Cell Infect Microbiol 2022; 11:835946. [PMID: 35360221 PMCID: PMC8963484 DOI: 10.3389/fcimb.2021.835946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 12/24/2021] [Indexed: 11/13/2022] Open
Abstract
WU polyomavirus (WUPyV) is a novel member of the family Polyomaviridae recently detected in respiratory tract specimens. So far, it has not been proven whether WUPyV is a real causative agent for respiratory diseases. In this study, we described two patients with fatal infection who had WUPyV detected in their nasopharyngeal swabs. Furthermore, we conducted a multicentre study in six hospitals from different districts of China. WUPyV was detected by real-time polymerase chain reaction assays, and the clinical and molecular epidemiological characteristics of WUPyV strains among hospitalized children with acute lower respiratory tract infections all around China from 2017 to 2019 were analysed. Two complete WUPyV genome sequences were assembled from fatal patients’ airway specimens. Phylogenetic tree analysis revealed that they were most closely related to strains derived from Fujian and Chongqing, China, in 2008 and 2013, respectively. In 2017–2019, a total of 1,812 samples from children with acute lower respiratory tract infections were detected for WUPyV, of which 11 (0.6%) were positive. Children aged ≤5 were more susceptible to WUPyV infection. A total of 81.8% of WUPyV-positive patients were coinfected with other viruses, of which rhinovirus enjoyed the highest frequency. The main clinical symptoms of infected patients include fever, coughing and sputum expectoration. Most patients were diagnosed with pneumonia, followed by bronchial surgery. Three patients manifested severe infection, and all patients improved and were discharged. Our results show that WUPyV persistently circulates in China. Further investigations on the clinical role and pathogenicity of WUPyV are necessary.
Collapse
Affiliation(s)
- Hongwei Zhao
- Beijing Key Laboratory of Paediatric Respiratory Infection Diseases, Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, National Key Discipline of Paediatrics (Capital Medical University), Beijing Paediatric Research Institute, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, China
- Research Unit of Critical Infection in Children, Chinese Academy of Medical Sciences, 2019RU016, Beijing, China
| | - Wenmiao Xu
- Research Unit of Critical Infection in Children, Chinese Academy of Medical Sciences, 2019RU016, Beijing, China
- Department of Paediatric Critical Care Medicine, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, China
| | - Lijuan Wang
- Research Unit of Critical Infection in Children, Chinese Academy of Medical Sciences, 2019RU016, Beijing, China
- Department of Paediatric Critical Care Medicine, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, China
| | - Yun Zhu
- Beijing Key Laboratory of Paediatric Respiratory Infection Diseases, Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, National Key Discipline of Paediatrics (Capital Medical University), Beijing Paediatric Research Institute, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, China
- Research Unit of Critical Infection in Children, Chinese Academy of Medical Sciences, 2019RU016, Beijing, China
| | - Xiaohui Wang
- Research Unit of Critical Infection in Children, Chinese Academy of Medical Sciences, 2019RU016, Beijing, China
- Department of Paediatric Critical Care Medicine, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, China
| | - Yingchao Liu
- Research Unit of Critical Infection in Children, Chinese Academy of Medical Sciences, 2019RU016, Beijing, China
- Department of Paediatric Critical Care Medicine, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, China
| | - Junhong Ai
- Beijing Key Laboratory of Paediatric Respiratory Infection Diseases, Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, National Key Discipline of Paediatrics (Capital Medical University), Beijing Paediatric Research Institute, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, China
- Research Unit of Critical Infection in Children, Chinese Academy of Medical Sciences, 2019RU016, Beijing, China
| | - Qianyu Feng
- Beijing Key Laboratory of Paediatric Respiratory Infection Diseases, Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, National Key Discipline of Paediatrics (Capital Medical University), Beijing Paediatric Research Institute, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, China
- Research Unit of Critical Infection in Children, Chinese Academy of Medical Sciences, 2019RU016, Beijing, China
| | - Li Deng
- Department of Respiration, Guangzhou Women and Children’s Medical Center, Guangzhou, China
| | - Yun Sun
- Department of Pediatrics, Yinchuan Women and Children Healthcare Hospital, Yinchuan, China
| | - Changchong Li
- Department of Pediatric Respiratory Medicine and Sleep Medicine, The Second Afliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Rong Jin
- Department of Pediatrics, Guiyang Maternal and Child Health Hospital, Guiyang, China
| | - Yunxiao Shang
- Department of Pediatric Respiratory, Shengjing Hospital of China Medical University, Shenyang, China
| | - Hengmiao Gao
- Research Unit of Critical Infection in Children, Chinese Academy of Medical Sciences, 2019RU016, Beijing, China
- Department of Paediatric Critical Care Medicine, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, China
| | - Suyun Qian
- Research Unit of Critical Infection in Children, Chinese Academy of Medical Sciences, 2019RU016, Beijing, China
- Department of Paediatric Critical Care Medicine, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, China
| | - Lili Xu
- Beijing Key Laboratory of Paediatric Respiratory Infection Diseases, Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, National Key Discipline of Paediatrics (Capital Medical University), Beijing Paediatric Research Institute, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, China
- Research Unit of Critical Infection in Children, Chinese Academy of Medical Sciences, 2019RU016, Beijing, China
- *Correspondence: Lili Xu,
| | - Zhengde Xie
- Beijing Key Laboratory of Paediatric Respiratory Infection Diseases, Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, National Key Discipline of Paediatrics (Capital Medical University), Beijing Paediatric Research Institute, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, China
- Research Unit of Critical Infection in Children, Chinese Academy of Medical Sciences, 2019RU016, Beijing, China
| |
Collapse
|
7
|
Janowski AB, Owen MC, Dudley H, López T, Espinosa R, Elvin-Lewis M, Colichon A, Arias CF, Burbelo PD, Wang D. High Seropositivity Rate of Neutralizing Antibodies to Astrovirus VA1 in Human Populations. mSphere 2021; 6:e0048421. [PMID: 34468168 PMCID: PMC8550256 DOI: 10.1128/msphere.00484-21] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 08/17/2021] [Indexed: 02/04/2023] Open
Abstract
Astroviruses are common pathogens of the human gastrointestinal tract, but they have been recently identified from cases of fatal meningoencephalitis. Astrovirus VA1 is the most frequently detected astrovirus genotype from cases of human encephalitis, but the prevalence of neutralizing antibodies to VA1 in human sera is unknown. We developed a focus reduction neutralization assay (FRNT) for VA1 and measured the seroprevalence of neutralizing antibodies from two cohorts of adult and pediatric serum samples: (i) an age-stratified cohort from St. Louis, MO, collected from 2007 to 2008 and (ii) a cohort from the Peruvian Amazonian River Basin collected in the late 1990s. In the St. Louis cohort, the lowest seropositivity rate was in children 1 year of age (6.9%), rising to 63.3% by ages 9 to 12, and 76.3% of adults ≥20 years were positive. The Peruvian Amazon cohort showed similar seropositivity rates across all ages, with individuals under age 20 having a rate of 75%, while 78.2% of adults ≥20 years were seropositive. In addition, we also identified the presence neutralizing antibodies to VA1 from commercial lots of intravenous immunoglobulin (IVIG). Our results demonstrate that a majority of humans are exposed to VA1 by adulthood, with the majority of infections occurring between 2 and 9 years of age. In addition, our results indicate that VA1 has been circulating in two geographically and socioeconomically divergent study cohorts over the past 20 years. Nonetheless, a significant proportion of the human population lacks neutralizing immunity and remains at risk for acute infection. IMPORTANCE Astroviruses are human pathogens with emerging disease associations, including the recent recognition of their capacity to cause meningoencephalitis. Astrovirus VA1 is the most commonly identified astrovirus genotype from cases of human encephalitis, but it is unknown what percentage of the human population has neutralizing antibodies to VA1. We found that 76.3 to 78.2% of adult humans ≥20 years of age in two geographically and socioeconomically distinct cohorts are seropositive for VA1, with the majority of infections occurring between 2 and 9 years of age. These results demonstrate that VA1 has been circulating in human populations over the past 2 decades and that most humans develop neutralizing antibodies against this virus by adulthood. However, a subset of humans lack evidence of neutralizing antibodies and are at risk for diseases caused by VA1, including encephalitis.
Collapse
Affiliation(s)
- Andrew B. Janowski
- Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Macee C. Owen
- Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Holly Dudley
- Department of Molecular Biology and Microbiology, Case Western Reserve University, Cleveland, Ohio, USA
| | - Tomás López
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
| | - Rafaela Espinosa
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
| | | | - Alejandro Colichon
- Department of Immunology, Peruvian University Cayetano Heredia, Lima, Peru
| | - Carlos F. Arias
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
| | - Peter D. Burbelo
- National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland, USA
| | - David Wang
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
8
|
Complete Genome Sequences of Two WU Polyomaviruses Detected in Pediatric Patients with Fatal Respiratory Infection. Microbiol Resour Announc 2021; 10:e0005221. [PMID: 34498922 PMCID: PMC8428254 DOI: 10.1128/mra.00052-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Here, we report the complete genome sequences of two WU polyomavirus (WUPyV) strains, both obtained in 2020 from pediatric patients with fatal respiratory infection in Beijing, China. The double-stranded DNA (dsDNA) genome sequences of BCH2008-1 and BCH2020_1 are 5,229 bp and 5,228 bp long, respectively.
Collapse
|
9
|
Abstract
Polyomaviruses are a family of non-enveloped DNA viruses with wide host ranges. Human polyomaviruses typically cause asymptomatic infection and establish persistence but can be reactivated under certain conditions and cause severe diseases. Most well studied polyomaviruses encode a viral miRNA that regulates viral replication and pathogenesis by targeting both viral early genes and host genes. In this review, we summarize the current knowledge of polyomavirus miRNAs involved in virus infection. We review in detail the regulation of polyomavirus miRNA expression, as well as the role polyomavirus miRNAs play in viral pathogenesis by controlling both host and viral gene expression. An overview of the potential application of polyomavirus miRNA as a marker for the progression of polyomaviruses associated diseases and polyomaviruses reactivation is also included.
Collapse
Affiliation(s)
- Wei Zou
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI, United States
| | - Michael J Imperiale
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
10
|
Wu Z, Graf FE, Hirsch HH. Antivirals against human polyomaviruses: Leaving no stone unturned. Rev Med Virol 2021; 31:e2220. [PMID: 33729628 DOI: 10.1002/rmv.2220] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/11/2021] [Accepted: 01/12/2021] [Indexed: 12/20/2022]
Abstract
Human polyomaviruses (HPyVs) encompass more than 10 species infecting 30%-90% of the human population without significant illness. Proven HPyV diseases with documented histopathology affect primarily immunocompromised hosts with manifestations in brain, skin and renourinary tract such as polyomavirus-associated nephropathy (PyVAN), polyomavirus-associated haemorrhagic cystitis (PyVHC), polyomavirus-associated urothelial cancer (PyVUC), progressive multifocal leukoencephalopathy (PML), Merkel cell carcinoma (MCC), Trichodysplasia spinulosa (TS) and pruritic hyperproliferative keratinopathy. Although virus-specific immune control is the eventual goal of therapy and lasting cure, antiviral treatments are urgently needed in order to reduce or prevent HPyV diseases and thereby bridging the time needed to establish virus-specific immunity. However, the small dsDNA genome of only 5 kb of the non-enveloped HPyVs only encodes 5-7 viral proteins. Thus, HPyV replication relies heavily on host cell factors, thereby limiting both, number and type of specific virus-encoded antiviral targets. Lack of cost-effective high-throughput screening systems and relevant small animal models complicates the preclinical development. Current clinical studies are limited by small case numbers, poorly efficacious compounds and absence of proper randomized trial design. Here, we review preclinical and clinical studies that evaluated small molecules with presumed antiviral activity against HPyVs and provide an outlook regarding potential new antiviral strategies.
Collapse
Affiliation(s)
- Zongsong Wu
- Transplantation & Clinical Virology, Department Biomedicine, University of Basel, Basel, Switzerland
| | - Fabrice E Graf
- Transplantation & Clinical Virology, Department Biomedicine, University of Basel, Basel, Switzerland
| | - Hans H Hirsch
- Transplantation & Clinical Virology, Department Biomedicine, University of Basel, Basel, Switzerland.,Clinical Virology, Laboratory Medicine, University Hospital Basel, Basel, Switzerland.,Infectious Diseases & Hospital Epidemiology, University Hospital Basel, Basel, Switzerland
| |
Collapse
|
11
|
Smith BK, Janowski AB, Danis JE, Harvey IB, Zhao H, Dai YN, Farnsworth CW, Gronowski AM, Roper S, Fremont DH, Wang D. Seroprevalence of SARS-CoV-2 Antibodies in Children and Adults in St. Louis, Missouri, USA. mSphere 2021; 6:e01207-20. [PMID: 33536325 PMCID: PMC7860990 DOI: 10.1128/msphere.01207-20] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 01/14/2021] [Indexed: 01/08/2023] Open
Abstract
Reported coronavirus disease 2019 (COVID-19) case counts likely underestimate the true prevalence because mild or asymptomatic cases often go untested. Here, we use a sero-survey to estimate the seroprevalence of IgG antibodies against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in the St. Louis, MO, metropolitan area in a symptom-independent manner. Five hundred three adult and 555 pediatric serum/plasma samples were collected from patients presenting to Barnes-Jewish Hospital or St. Louis Children's Hospital between 14 April 2020 and 12 May 2020. We developed protocols for in-house enzyme-linked immunosorbent assays (ELISAs) using spike and nucleoprotein and used the assays to estimate a seroprevalence rate based on our samples. Overall IgG seropositivity was estimated to be 1.71% (95% credible interval [CI], 0.04% to 3.38%) in pediatric samples and 3.11% (95% CI, 0.92% to 5.32%) in adult samples. Seropositivity was significantly lower in children under 5 years of age than in adults, but rates between adults and children aged 5 or older were similar. Of the 176 samples tested from children under 4 years of age, none were positive.IMPORTANCE This study determined the percentages of both children and adult samples from the greater St. Louis metropolitan area who had antibodies to SARS-CoV-2 in late April to early May 2020. Approximately 1.7 to 3.1% of the tested individuals had antibodies, indicating that they had previously been infected by SARS-CoV-2. These results demonstrate that the extent of infection was about 10 times greater than the number of confirmed cases at that time. Furthermore, it demonstrated that by 5 years of age, children were infected to an extent similar to that of adults.
Collapse
Affiliation(s)
- Brittany K Smith
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Andrew B Janowski
- Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Jonathan E Danis
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Ian B Harvey
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Haiyan Zhao
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Ya-Nan Dai
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Christopher W Farnsworth
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Ann M Gronowski
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Stephen Roper
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Daved H Fremont
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Biochemistry & Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - David Wang
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
12
|
WU polyomavirus detection in a pediatric liver transplant recipient with interstitial pneumonitis. J Infect Chemother 2020; 27:530-532. [PMID: 33121863 DOI: 10.1016/j.jiac.2020.10.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 10/02/2020] [Accepted: 10/13/2020] [Indexed: 11/23/2022]
Abstract
The WU polyomavirus (WUPyV) was detected by real-time PCR in the sputum of a pediatric liver transplant recipient with interstitial pneumonitis. A lower viral load was observed seven months after the initial detection. The case provides circumstantial evidence suggesting a potential role for WUPyV as a respiratory pathogen in immunocompromised children.
Collapse
|
13
|
Beyond Cytomegalovirus and Epstein-Barr Virus: a Review of Viruses Composing the Blood Virome of Solid Organ Transplant and Hematopoietic Stem Cell Transplant Recipients. Clin Microbiol Rev 2020; 33:33/4/e00027-20. [PMID: 32847820 DOI: 10.1128/cmr.00027-20] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Viral primary infections and reactivations are common complications in patients after solid organ transplantation (SOT) and hematopoietic stem cell transplantation (HSCT) and are associated with high morbidity and mortality. Among these patients, viral infections are frequently associated with viremia. Beyond the usual well-known viruses that are part of the routine clinical management of transplant recipients, numerous other viral signatures or genomes can be identified in the blood of these patients. The identification of novel viral species and variants by metagenomic next-generation sequencing has opened up a new field of investigation and new paradigms. Thus, there is a need to thoroughly describe the state of knowledge in this field with a review of all viral infections that should be scrutinized in high-risk populations. Here, we review the eukaryotic DNA and RNA viruses identified in blood, plasma, or serum samples of pediatric and adult SOT/HSCT recipients and the prevalence of their detection, with a particular focus on recently identified viruses and those for which their potential association with disease remains to be investigated, such as members of the Polyomaviridae, Anelloviridae, Flaviviridae, and Astroviridae families. Current knowledge of the clinical significance of these viral infections with associated viremia among transplant recipients is also discussed. To ensure a comprehensive description in these two populations, individuals described as healthy (mostly blood donors) are considered for comparative purposes. The list of viruses that should be on the clinicians' radar is certainly incomplete and will expand, but the challenge is to identify those of possible clinical significance.
Collapse
|
14
|
Wang C, Wei T, Huang Y, Guo Q, Xie Z, Song J, Chen A, Zheng L. Isolation and characterization of WUPyV in polarized human airway epithelial cells. BMC Infect Dis 2020; 20:488. [PMID: 32646445 PMCID: PMC7344044 DOI: 10.1186/s12879-020-05224-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 07/02/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Washington University polyomavirus (WUPyV) is a novel human polyomavirus detected in childwith acute respiratory infection in 2007. However, the relationship between WUPyV and respiratory diseases has yet to be established for lacking of a suitable in vitro culture system. METHODS To isolate WUPyV with human airway epithelial (HAE) cells, the positive samples were incubated in HAE, and then the nucleic acid, VP1 protein and virions were detected using real-time PCR, immunofluorescence and electron microscopy respectively. RESULTS The result showed that WUPyV could replicate effectively in HAE cells and virions with typical polyomavirus characteristics could be observed. Additionally, the entire genome sequence of the isolated strain (BJ0771) was obtained and phylogenetic analysis indicated that BJ0771 belongs to gene cluster I. CONCLUSIONS Our findings demonstrated clinical WUPyV strain was successfully isolated for the first time in the world and this will help unravel the etiology and pathogenic mechanisms of WUPyV in respiratory infection diseases.
Collapse
Affiliation(s)
- Chao Wang
- NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, China CDC, 100 Ying-Xin St., Xi-Cheng District, Beijing, 100052, China
| | - Tianli Wei
- Department of Pediatrics, Beijing Friendship Hospital, Capital Medical University, 95 Yong-An St., Xi-Cheng District, Beijing, 100050, China
| | - Yiman Huang
- NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, China CDC, 100 Ying-Xin St., Xi-Cheng District, Beijing, 100052, China
| | - Qiong Guo
- NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, China CDC, 100 Ying-Xin St., Xi-Cheng District, Beijing, 100052, China
| | - Zhiping Xie
- NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, China CDC, 100 Ying-Xin St., Xi-Cheng District, Beijing, 100052, China
| | - Jingdong Song
- NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, China CDC, 100 Ying-Xin St., Xi-Cheng District, Beijing, 100052, China
| | - Aijun Chen
- NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, China CDC, 100 Ying-Xin St., Xi-Cheng District, Beijing, 100052, China.
| | - Lishu Zheng
- NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, China CDC, 100 Ying-Xin St., Xi-Cheng District, Beijing, 100052, China.
| |
Collapse
|
15
|
Ciotti M, Prezioso C, Pietropaolo V. An Overview On Human Polyomaviruses Biology and Related Diseases. Future Virol 2019; 14:487-501. [DOI: 10.2217/fvl-2019-0050] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 06/17/2019] [Indexed: 12/19/2022]
Affiliation(s)
- Marco Ciotti
- Laboratory of Virology Polyclinic Tor Vergata Foundation Viale Oxford 81
Rome
00133
Italy
| | - Carla Prezioso
- Department of Public Health & Infectious Diseases ‘Sapienza’ University
Rome
00185
Italy
| | - Valeria Pietropaolo
- Department of Public Health & Infectious Diseases ‘Sapienza’ University
Rome
00185
Italy
| |
Collapse
|
16
|
Kourieh A, Combes JD, Tommasino M, Dalstein V, Clifford GM, Lacau St Guily J, Clavel C, Franceschi S, Gheit T, For The Split Study Group. Prevalence and risk factors of human polyomavirus infections in non-malignant tonsils and gargles: the SPLIT study. J Gen Virol 2018; 99:1686-1698. [PMID: 30407150 DOI: 10.1099/jgv.0.001156] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The prevalence of 13 polyomaviruses (PyVs) in the tonsil brushings and gargles of immunocompetent children and adults was assessed. Patients undergoing tonsillectomy for benign indications were recruited in 19 centres in France. After resection, the entire outer surface of the right and left halves of the tonsils was brushed extensively. Gargles were also collected prior to surgery in selected adults. A species-specific multiplex assay was used to detect the DNA of 13 PyVs. In tonsil brushings (n=689), human PyV 6 (HPyV6) and Merkel cell PyV (MCPyV) were the most prevalent (≈15 %), followed by trichodysplasia spinulosa-associated PyV (TSPyV), BKPyV, Washington University PyV (WUPyV) and human PyV 9 (HPyV9) (1 to 5 %), and human PyV 7 (HPyV7), John Cunningham PyV (JCPyV) and Simian virus 40 (SV40) (<1 %), while no Karolinska Institute PyV (KIPyV), Malawi PyV (MWPyV), human PyV 12 (HPyV12) or Lyon IARC PyV (LIPyV) were detected. The prevalence of TSPyV and BKPyV was significantly higher in children versus adults, whereas for HPyV6 the opposite was found. HPyV6 and WUPyV were significantly more prevalent in men versus women. In gargles (n=139), MCPyV was the most prevalent (≈40 %), followed by HPyV6, HPyV9 and LIPyV (2 to 4 %), and then BKPyV (≈1 %), while other PyVs were not detected. MCPyV and LIPyV were significantly more prevalent in gargles compared to tonsil brushings, in contrast to HPyV6. We described differing patterns of individual PyV infections in tonsils and gargles in a large age-stratified population. Comparison of the spectrum of PyVs in paired tonsil samples and gargles adds to the current knowledge on PyV epidemiology, contributing towards a better understanding of PyV acquisition and transmission and its potential role in head and neck diseases.
Collapse
Affiliation(s)
- Aboud Kourieh
- 1International Agency for Research on Cancer, 69372 Lyon Cedex 08, France
| | - Jean-Damien Combes
- 1International Agency for Research on Cancer, 69372 Lyon Cedex 08, France
| | - Massimo Tommasino
- 1International Agency for Research on Cancer, 69372 Lyon Cedex 08, France
| | - Véronique Dalstein
- 2CHU Reims, Hôpital Maison Blanche, Laboratoire Biopathologie, 51092 Reims, France
- 3INSERM, UMR-S 1250, 51092 Reims, France
- 4Faculté de Médecine, Université de Reims Champagne-Ardenne, 51095 Reims, France
| | - Gary M Clifford
- 1International Agency for Research on Cancer, 69372 Lyon Cedex 08, France
| | - Jean Lacau St Guily
- 5Department of Otorhinolaryngology and Head and Neck Surgery, Faculty of Medicine, Sorbonne University, Paris, France
- 6Tenon Hospital, Assistance Publique Hôpitaux de Paris, Paris, France
| | - Christine Clavel
- 2CHU Reims, Hôpital Maison Blanche, Laboratoire Biopathologie, 51092 Reims, France
- 3INSERM, UMR-S 1250, 51092 Reims, France
- 4Faculté de Médecine, Université de Reims Champagne-Ardenne, 51095 Reims, France
| | - Silvia Franceschi
- 7Aviano Cancer Centre, Via Franco Gallini 2, 33081 Aviano (PN), Italy
| | - Tarik Gheit
- 1International Agency for Research on Cancer, 69372 Lyon Cedex 08, France
| | | |
Collapse
|
17
|
Ligozzi M, Galia L, Carelli M, Piccaluga PP, Diani E, Gibellini D. Duplex real-time polymerase chain reaction assay for the detection of human KIPyV and WUPyV in nasopharyngeal aspirate pediatric samples. Mol Cell Probes 2018; 40:13-18. [PMID: 29883628 PMCID: PMC7172048 DOI: 10.1016/j.mcp.2018.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 05/25/2018] [Accepted: 06/04/2018] [Indexed: 12/09/2022]
Abstract
In this study, we describe a duplex real-time PCR assay for the simultaneous detection of KIPyV and WUPyV polyomaviruses based on TaqMan probes. This assay detected 500 copies/mL both for KIPyV and WUPyV in 100% of tested positive samples. We assessed this technique on 482 nasopharyngeal aspirate specimens from hospitalized pediatric patients with respiratory symptoms, previously analyzed with commercial multiplex assay for 16 major respiratory viruses. Our assay detected KIPyV genome in 15 out of 482 samples (3.1%) and WUPyV genome in 24 out of 482 samples (4.9%), respectively, and in three samples the coinfection of the two viruses was found. Interestingly, 29 out of 36 of samples with KIPyV and/or WUPyV infection exhibited a co-infection with one or more respiratory viruses confirming that KIPyV and WUPyV were often detected in association to other viral infections. Of note, KIPyV and WUPyV were detected singularly in 4 out of 15 cases and 3 out of 24 cases, respectively, suggesting a possible direct role of these viruses in the respiratory diseases. In conclusion, this method could be taken into account as an alternative technical approach to detect KIPyV and/or WUPyV in respiratory samples for epidemiological and diagnostic analyses.
Collapse
Affiliation(s)
- Marco Ligozzi
- Microbiology and Virology Unit, Department of Diagnostics and Public Health, University of Verona, Strada delle Grazie 8, 37134 Verona, Italy.
| | - Liliana Galia
- Microbiology and Virology Unit, Department of Diagnostics and Public Health, University of Verona, Strada delle Grazie 8, 37134 Verona, Italy
| | - Maria Carelli
- Microbiology and Virology Unit, Department of Diagnostics and Public Health, University of Verona, Strada delle Grazie 8, 37134 Verona, Italy
| | - Pier Paolo Piccaluga
- Department of Experimental, Diagnostic, and Specialty Medicine, University of Bologna, Bologna, Italy; Euro-Mediterranean Institute of Science and Technology (IEMEST), Palermo, Italy; Jomo Kenyatta University of Agriculture and Technology, Nairobi, Kenya
| | - Erica Diani
- Microbiology and Virology Unit, Department of Diagnostics and Public Health, University of Verona, Strada delle Grazie 8, 37134 Verona, Italy
| | - Davide Gibellini
- Microbiology and Virology Unit, Department of Diagnostics and Public Health, University of Verona, Strada delle Grazie 8, 37134 Verona, Italy
| |
Collapse
|
18
|
Biology, evolution, and medical importance of polyomaviruses: An update. INFECTION GENETICS AND EVOLUTION 2017. [DOI: 10.1016/j.meegid.2017.06.011] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
19
|
Csoma E, Bidiga L, Méhes G, Katona M, Gergely L. Survey of KI, WU, MW, and STL Polyomavirus in Cancerous and Non-Cancerous Lung Tissues. Pathobiology 2017; 85:179-185. [PMID: 28965121 DOI: 10.1159/000481174] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 09/01/2017] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND/AIMS The pathogenesis of the human polyomavirus (PyV) KI, WU, MW, and STL has not been elucidated yet. Respiratory transmission is suggested, but the site of the replication, tissue, and cell tropism is not clarified. KIPyV and WUPyV DNA and/or antigen were detected in normal lung tissues previously by others. In fact, a KIPyV DNA sequence was found in lung cancer samples. Up to date, there is no publication about the DNA prevalence of MWPyV and STLPyV neither in normal nor in cancerous lung tissues. The aim of the present study was to examine the DNA prevalence of these polyomaviruses in cancerous and non-cancerous lung tissue samples, in order to study the possible site for viral replication and/or persistence, and the potential association of these viruses with lung carcinogenesis as well. METHODS 100 cancerous and 47 non-cancerous, formalin-fixed paraffin-embedded lung tissue samples were studied for KIPyV, WUPyV, MWPyV, and STLPyV by real-time PCR. RESULTS AND CONCLUSION Neither of the viruses was found in samples from small-cell, non-small-cell (adenocarcinoma, squamous-cell carcinoma and large-cell neuroendocrine lung cancer), mixed-type and non-differentiated lung carcinoma, and non-cancerous lung tissues (from patients with pneumonia, emphysema and fibrosis).
Collapse
Affiliation(s)
- Eszter Csoma
- Department of Medical Microbiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - László Bidiga
- Department of Pathology, University of Debrecen, Debrecen, Hungary
| | - Gábor Méhes
- Department of Pathology, University of Debrecen, Debrecen, Hungary
| | - Melinda Katona
- Department of Medical Microbiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Lajos Gergely
- Department of Medical Microbiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
20
|
Sadeghi M, Wang Y, Ramqvist T, Aaltonen LM, Pyöriä L, Toppinen M, Söderlund-Venermo M, Hedman K. Multiplex detection in tonsillar tissue of all known human polyomaviruses. BMC Infect Dis 2017; 17:409. [PMID: 28595595 PMCID: PMC5465560 DOI: 10.1186/s12879-017-2479-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 05/22/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND In the past few years, eleven new human viruses have joined the two previously known members JCPyV and BKPyV of the Polyomaviridae family, by virtue of molecular methods. Serology data suggest that infections with human polyomaviruses (HPyVs) occur since childhood and the viruses are widespread in the general population. However, the viral persistence sites and transmission routes are by and large unknown. Our previous studies demonstrated that the four new HPyVs - KIPyV, WUPyV, MCPyV and TSPyV - were present in the tonsils, and suggested lymphoid tissue as a persistent site of these emerging human viruses. We developed a Luminex-based multiplex assay for simultaneous detection of all 13 HPyVs known, and explored their occurrence in tonsillar tissues of children and adults mostly with tonsillitis or tonsillar hypertrophy. METHODS We set up and validated a new Luminex-based multiplex assay by using primer pairs and probes targeting the respective HPyV viral protein 1 (VP1) genes. With this assay we tested 78 tonsillar tissues for DNAs of 13 HPyVs. RESULTS The multiplex assay allowed for simultaneous detection of 13 HPyVs with high analytical sensitivity and specificity, with detection limits of 100-102 copies per microliter, and identified correctly all 13 target sequences with no cross reactions. HPyV DNA altogether was found in 14 (17.9%) of 78 tonsils. The most prevalent HPyVs were HPyV6 (7.7%), TSPyV (3.8%) and WUPyV (3.8%). Mixed infection of two HPyVs occurred in one sample. CONCLUSIONS The Luminex-based HPyV multiplex assay appears highly suitable for clinical diagnostic purposes and large-scale epidemiological studies. Additional evidence was acquired that the lymphoid system plays a role in HPyV infection and persistence. Thereby, shedding from this site during reactivation might take part in transmission of the newly found HPyVs.
Collapse
Affiliation(s)
| | - Yilin Wang
- Virology, University of Helsinki, Helsinki, Finland
| | - Torbjörn Ramqvist
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Leena-Maija Aaltonen
- Department of Otorhinolaryngology-Head and Neck Surgery, Helsinki University Hospital, Helsinki, Finland
- University of Helsinki, Helsinki, Finland
| | - Lari Pyöriä
- Virology, University of Helsinki, Helsinki, Finland
| | | | | | - Klaus Hedman
- Virology, University of Helsinki, Helsinki, Finland
- Helsinki University Hospital, HUSLAB, Helsinki, Finland
| |
Collapse
|
21
|
Dehority WN, Eickman MM, Schwalm KC, Gross SM, Schroth GP, Young SA, Dinwiddie DL. Complete genome sequence of a KI polyomavirus isolated from an otherwise healthy child with severe lower respiratory tract infection. J Med Virol 2016; 89:926-930. [PMID: 27704585 DOI: 10.1002/jmv.24706] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/04/2016] [Indexed: 11/11/2022]
Abstract
Unbiased, deep sequencing of a nasal specimen from an otherwise healthy 13-month-old boy hospitalized in intensive care revealed high gene expression and the complete genome of a novel isolate of KI polyomavirus (KIPyV). Further investigation detected minimal gene expression of additional viruses, suggesting that KIPyV was potentially the causal agent. Analysis of the complete genome of isolate NMKI001 revealed it is different from all previously reported genomes and contains two amino acid differences as compared to the closest virus isolate, Stockholm 380 (EF127908). J. Med. Virol. 89:926-930, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Walter N Dehority
- Department of Pediatrics, University of New Mexico Health Sciences Center, Albuquerque, New Mexico
| | - Megan M Eickman
- Department of Pediatrics, University of New Mexico Health Sciences Center, Albuquerque, New Mexico
| | - Kurt C Schwalm
- Department of Pediatrics, University of New Mexico Health Sciences Center, Albuquerque, New Mexico
| | | | | | | | - Darrell L Dinwiddie
- Department of Pediatrics, University of New Mexico Health Sciences Center, Albuquerque, New Mexico.,Clinical Translational Science Center, University of New Mexico Health Sciences Center, Albuquerque, New Mexico
| |
Collapse
|
22
|
Siebrasse EA, Nguyen NL, Willby MJ, Erdman DD, Menegus MA, Wang D. Multiorgan WU Polyomavirus Infection in Bone Marrow Transplant Recipient. Emerg Infect Dis 2016; 22:24-31. [PMID: 26691850 PMCID: PMC4696717 DOI: 10.3201/eid2201.151384] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Virus was detected in the lung and trachea of a deceased patient. WU polyomavirus (WUPyV) was detected in a bone marrow transplant recipient with severe acute respiratory distress syndrome who died in 2001. Crystalline lattices of polyomavirus-like particles were observed in the patient’s lung by electron microscopy. WUPyV was detected in the lung and other tissues by real-time quantitative PCR and identified in the lung and trachea by immunohistochemistry. A subset of WUPyV-positive cells in the lung had morphologic features of macrophages. Although the role of WUPyV as a human pathogen remains unclear, these results clearly demonstrate evidence for infection of respiratory tract tissues in this patient.
Collapse
|
23
|
Csoma E, Bidiga L, Méhes G, Gergely L. No Evidence of Human Polyomavirus 9, WU and KI DNA in Kidney and Urinary Bladder Tumour Tissue Samples. Pathobiology 2016; 83:252-7. [PMID: 27198658 DOI: 10.1159/000445120] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Accepted: 03/01/2016] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND/AIMS The oncogenic potential of human polyomaviruses (HPyVs) has been proposed, but so far only Merkel cell carcinoma polyomavirus seems to be associated with a human tumour. The role of BK polyomavirus (BKPyV) in human tumourigenesis remains controversial. BKPyV establishes persistent infection in the urinary tract, and renal and bladder neoplasms have been studied extensively, but conflicting prevalence data are reported. KI, WU and HPyV9 were detected in urine samples suggesting that these viruses may also infect the urinary tract, but their presence in urinary tract tumours has not been studied. The aim of this work was to examine the prevalence of KIPyV, WUPyV, HPyV9 and BKPyV by PCR in renal and bladder neoplasms. METHODS A total of 190 formalin-fixed paraffin-embedded renal neoplasms, bladder cancer and kidney biopsy samples were analysed for the presence of BKPyV, KIPyV, WUPyV and HPyV9 DNA by real-time and nested PCR. RESULTS Amplifiable DNA was extracted from all the samples, but none of the studied viruses were detected in benign renal neoplasia (0/23), malignant renal tumours (0/89) or bladder cancer (0/76). CONCLUSION Our study did not find any evidence that BKPyV, KIPyV, WUPyV or HPyV9 are associated with bladder and renal tumours.
Collapse
Affiliation(s)
- Eszter Csoma
- Department of Medical Microbiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | | | | | | |
Collapse
|
24
|
Complete Genome Sequence of a Novel Human WU Polyomavirus Isolate Associated with Acute Respiratory Infection. GENOME ANNOUNCEMENTS 2016; 4:4/3/e00177-16. [PMID: 27151782 PMCID: PMC4859164 DOI: 10.1128/genomea.00177-16] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We report here the complete genome sequence of a WU polyomavirus (WUPyV) isolate, NM040708, collected from a patient with an acute respiratory infection in New Mexico. The double-stranded DNA (dsDNA) genome of NM040708 is 5,229 bp in length and differs from the WUPyV reference with accession no. NC_009539 by 6 nucleotides and 2 amino acids.
Collapse
|
25
|
Song X, Van Ghelue M, Ludvigsen M, Nordbø SA, Ehlers B, Moens U. Characterization of the non-coding control region of polyomavirus KI isolated from nasopharyngeal samples from patients with respiratory symptoms or infection and from blood from healthy blood donors in Norway. J Gen Virol 2016; 97:1647-1657. [PMID: 27031170 DOI: 10.1099/jgv.0.000473] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Seroepidemiological studies showed that the human polyomavirus KI (KIPyV) is common in the human population, with age-specific seroprevalence ranging from 40-90 %. Genome epidemiological analyses demonstrated that KIPyV DNA is predominantly found in respiratory tract samples of immunocompromised individuals and children suffering from respiratory diseases, but viral sequences have also been detected in brain, tonsil, lymphoid tissue studies, plasma, blood and faeces. Little is known about the sequence variation in the non-coding control region of KIPyV variants residing in different sites of the human body and whether specific strains dominate in certain parts of the world. In this study, we sequenced the non-coding control region (NCCR) of naturally occurring KIPyV variants in nasopharyngeal samples from patients with respiratory symptoms or infection and in blood from healthy donors in Norway. In total 86 sequences were obtained, 44 of which were identical to the original isolated Stockholm 60 variant. The remaining NCCRs contained one or several mutations, none of them previously reported. The same mutations were detected in NCCRs amplified from blood and nasopharyngeal samples. Some patients had different variants in their specimens. Transient transfection studies in HEK293 cells with a luciferase reporter plasmid demonstrated that some single mutations had a significant effect on the relative early and late promoter strength compared with the Stockholm 60 promoter. The effect of the NCCR mutations on viral replication and possible virulence properties remains to be established.
Collapse
Affiliation(s)
- Xiaobo Song
- University of Tromsø, Faculty of Health Sciences, Institute of Medical Biology, NO-9037 Tromsø, Norway
| | - Marijke Van Ghelue
- Department of Medical Genetics, University Hospital of North Norway, NO-9038 Tromsø, Norway.,University of Tromsø, Faculty of Health Sciences, Institute of Clinical Biology, NO-9037 Tromsø, Norway
| | - Maria Ludvigsen
- University of Tromsø, Faculty of Health Sciences, Institute of Medical Biology, NO-9037 Tromsø, Norway
| | - Svein Arne Nordbø
- Department of Medical Microbiology, Trondheim University Hospital, NO-7489 Trondheim, Norway.,Institute of Laboratory Medicine, Children's and Women's Health, Norwegian University of Science and Technology, Trondheim, Norway
| | - Bernhard Ehlers
- Division 12 Measles, Mumps, Rubella and Viruses Affecting Immunocompromised Patients, Robert Koch Institute, Berlin, Germany
| | - Ugo Moens
- University of Tromsø, Faculty of Health Sciences, Institute of Medical Biology, NO-9037 Tromsø, Norway
| |
Collapse
|
26
|
Church ME, Dela Cruz FN, Estrada M, Leutenegger CM, Pesavento PA, Woolard KD. Exposure to raccoon polyomavirus (RacPyV) in free-ranging North American raccoons (Procyon lotor). Virology 2016; 489:292-9. [PMID: 26802526 DOI: 10.1016/j.virol.2015.11.033] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Revised: 11/16/2015] [Accepted: 11/30/2015] [Indexed: 11/26/2022]
Abstract
There is evidence that raccoon polyomavirus is causative for neuroglial brain tumors in the western United States. It is unknown if infection is limited to geographic locales where tumors have been reported or is widespread, like human polyomaviruses. We demonstrate raccoons in western, eastern and midwestern states have been exposed to RacPyV by detection of antibodies to capsid protein, VP1. While raccoons in eastern and midwestern states are seropositive, exposure is lower than in the western states. Additionally, across geographic areas seropositivity is higher in older as compared to younger raccoons, similar to polyomavirus exposure in humans. Serum titers are significantly higher in raccoons with tumors compared to raccoons without. Unlike polyomavirus-associated diseases in humans, we did not detect significant sequence variation between tumor and non-tumor tissue in raccoons with tumors compared to those without tumors. This warrants further investigation into co-morbid diseases or genetic susceptibility studies of the host.
Collapse
Affiliation(s)
- M E Church
- UC Davis, School of Veterinary Medicine, Department of Pathology, Microbiology, and Immunology, Davis, CA, United States
| | - F N Dela Cruz
- UC Davis, School of Veterinary Medicine, Department of Pathology, Microbiology, and Immunology, Davis, CA, United States
| | - M Estrada
- IDEXX Laboratories, Inc., West Sacramento, CA, United States
| | - C M Leutenegger
- IDEXX Laboratories, Inc., West Sacramento, CA, United States
| | - P A Pesavento
- UC Davis, School of Veterinary Medicine, Department of Pathology, Microbiology, and Immunology, Davis, CA, United States
| | - K D Woolard
- UC Davis, School of Veterinary Medicine, Department of Pathology, Microbiology, and Immunology, Davis, CA, United States
| |
Collapse
|
27
|
Gossai A, Waterboer T, Nelson HH, Michel A, Willhauck-Fleckenstein M, Farzan SF, Hoen AG, Christensen BC, Kelsey KT, Marsit CJ, Pawlita M, Karagas MR. Seroepidemiology of Human Polyomaviruses in a US Population. Am J Epidemiol 2016; 183:61-9. [PMID: 26667254 PMCID: PMC5006224 DOI: 10.1093/aje/kwv155] [Citation(s) in RCA: 107] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2015] [Accepted: 06/09/2015] [Indexed: 12/13/2022] Open
Abstract
Polyomaviruses (PyV) are potentially tumorigenic in humans. However, limited data exist on the population seroprevalence of PyVs and individual characteristics that relate to seropositivity. Using multiplex serology, we determined the seroprevalence of 10 human PyVs (BK, JC, KI, WU, MCV, HPyV6, HPyV7, TSV, HPyV9, and HPyV10) among controls from a population-based skin cancer case-control study (n = 460) conducted in New Hampshire between 1993 and 1995. On a subset of participants (n = 194), methylation at CpG dinucleotides across the genome was measured in peripheral blood using the Illumina Infinium HumanMethylation27 BeadChip array (Illumina Inc., San Diego, California), from which lymphocyte subtype proportions were inferred. All participants were seropositive for at least 1 PyV, with seroprevalences ranging from 17.6% (HPyV9) to 99.1% (HPyV10). Seropositivity to JC, MCV, and HPyV7 increased with age. JC and TSV seropositivity were more common among men than among women. Smokers were more likely to be HPyV9-seropositive but MCV-seronegative, and HPyV7 seropositivity was associated with prolonged glucocorticoid use. Based on DNA methylation profiles, differences were observed in CD8-positive T- and B-cell proportions by BK, JC, and HPyV9 seropositivity. Our findings suggest that PyV seropositivity is common in the United States and varies by sociodemographic and biological characteristics, including those related to immune function.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Margaret R. Karagas
- Correspondence to Dr. Margaret R. Karagas, Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756 (e-mail: )
| |
Collapse
|
28
|
Šroller V, Hamšíková E, Ludvíková V, Musil J, Němečková Š, Saláková M. Seroprevalence rates of HPyV6, HPyV7, TSPyV, HPyV9, MWPyV and KIPyV polyomaviruses among the healthy blood donors. J Med Virol 2015; 88:1254-61. [PMID: 26630080 DOI: 10.1002/jmv.24440] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/30/2015] [Indexed: 11/10/2022]
Abstract
Human polyomaviruses HPyV6, HPyV7, TSPyV, HPyV9, MWPyV, and KIPyV have been discovered between 2007 and 2012. TSPyV causes a rare skin disease trichodysplasia spinulosa in immunocompromised patients, the role of remaining polyomaviruses in human pathology is not clear. In this study, we assessed the occurrence of serum antibodies against above polyomaviruses in healthy blood donors. Serum samples were examined by enzyme-linked immunoassay (ELISA), using virus-like particles (VLPs) based on the major VP1 capsid proteins of these viruses. Overall, serum antibodies against HPyV6, HPyV7, TSPyV, HPyV9, MWPyV, and KIPyV were found in 88.2%, 65.7%, 63.2%, 31.6%, 84.4%, and 58%, respectively, of this population. The seroprevalence generally increased with age, the highest rise we observed for HPyV9 and KIPyV specific antibodies. The levels of anti-HPyV antibodies remained stable across the age-groups, except for TSPyV and HPyV9, where we saw change with age. ELISAs based on VLP and GST-VP1 gave comparable seroprevalence for HPyV6 antibodies (88.2% vs.85.3%) but not for HPyV7 antibodies (65.7% vs. 77.2%), suggesting some degree of crossreactivity between HPyV6 and HPyV7 VP1 proteins. In conclusion, these results provide evidence that human polyomaviruses HPyV6, HPyV7, TSPyV, HPyV9, MwPyV, and KIPyV circulate widely in the Czech population and their seroprevalence is comparable to other countries.
Collapse
Affiliation(s)
- Vojtěch Šroller
- Department of Immunology, Institute of Hematology and Blood Transfusion (IHBT), Prague 2, Czech Republic
| | - Eva Hamšíková
- Department of Immunology, Institute of Hematology and Blood Transfusion (IHBT), Prague 2, Czech Republic
| | - Viera Ludvíková
- Department of Immunology, Institute of Hematology and Blood Transfusion (IHBT), Prague 2, Czech Republic
| | - Jan Musil
- Department of Immunology, Institute of Hematology and Blood Transfusion (IHBT), Prague 2, Czech Republic
| | - Šárka Němečková
- Department of Immunology, Institute of Hematology and Blood Transfusion (IHBT), Prague 2, Czech Republic
| | - Martina Saláková
- Department of Immunology, Institute of Hematology and Blood Transfusion (IHBT), Prague 2, Czech Republic
| |
Collapse
|
29
|
Gozalo-Margüello M, Agüero-Balbín J, Martínez-Martínez L. WU and KI polyomavirus prevalence in invasive respiratory samples from transplant recipients in Cantabria, Spain. Transplant Proc 2015; 47:67-9. [PMID: 25645772 PMCID: PMC7173059 DOI: 10.1016/j.transproceed.2014.11.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Background WU and KI polyomaviruses were discovered in 2007 in samples of respiratory secretions of children with acute respiratory symptoms. Seroepidemiologic studies have shown that these viruses are widely distributed throughout the world, but their incidence in Spain has not been determined. In transplant patients, early detection and treatment of viral infections may influence prognosis and survival, because they are associated with increased morbidity and mortality, including graft failure. Methods We aimed to determine the prevalence and clinical characteristics of WU and KI polyomaviruses among patients undergoing hematologic or solid organ transplant in the Hospital Marqués de Valdecilla (Santander, Spain). An in-house polymerase chain reaction with the use of specific primers was carried out in invasive lower respiratory samples from hospitalized patients with suspected respiratory infection and/or graft dysfunction and compared with asymptomatic transplant patients. Results Overall, we obtained 5.5% KI-positive samples and 1.4% WU-positive samples, with a higher prevalence of WU and KI polyomaviruses in the symptomatic population compared with the control group. Although the data suggest that their detection in respiratory samples is sporadic and often associated with other microorganisms, we should pay special attention to their association with cases of graft failure. Studies are needed with a larger number of samples to explore the potential clinical impact of these emerging polyomaviruses in transplant recipients.
Collapse
Affiliation(s)
- M Gozalo-Margüello
- Servicio de Microbiología, Hospital Universitario Marqués de Valdecilla-IDIVAL, Santander, Spain.
| | - J Agüero-Balbín
- Servicio de Microbiología, Hospital Universitario Marqués de Valdecilla-IDIVAL, Santander, Spain
| | - L Martínez-Martínez
- Servicio de Microbiología, Hospital Universitario Marqués de Valdecilla-IDIVAL, Santander, Spain
| |
Collapse
|
30
|
Siebrasse EA, Pastrana DV, Nguyen NL, Wang A, Roth MJ, Holland SM, Freeman AF, McDyer J, Buck CB, Wang D. WU polyomavirus in respiratory epithelial cells from lung transplant patient with Job syndrome. Emerg Infect Dis 2015; 21:103-6. [PMID: 25531075 PMCID: PMC4285236 DOI: 10.3201/eid2101.140855] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
We detected WU polyomavirus (WUPyV) in a bronchoalveolar lavage sample from lungs transplanted into a recipient with Job syndrome by using immunoassays specific for the WUPyV viral protein 1. Co-staining for an epithelial cell marker identified most WUPyV viral protein 1–positive cells as respiratory epithelial cells.
Collapse
|
31
|
Abstract
STL polyomavirus (STLPyV) was recently identified in human specimens. To determine seropositivity for STLPyV, we developed an ELISA and screened patient samples from 2 US cities (Denver, Colorado [500]; St. Louis, Missouri [419]). Overall seropositivity was 68%–70%. The age-stratified data suggest that STLPyV infection is widespread and commonly acquired during childhood.
Collapse
|
32
|
Fleury MJJ, Nicol JTJ, Samimi M, Arnold F, Cazal R, Ballaire R, Mercey O, Gonneville H, Combelas N, Vautherot JF, Moreau T, Lorette G, Coursaget P, Touzé A. Identification of the neutralizing epitopes of Merkel cell polyomavirus major capsid protein within the BC and EF surface loops. PLoS One 2015; 10:e0121751. [PMID: 25812141 PMCID: PMC4374900 DOI: 10.1371/journal.pone.0121751] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2014] [Accepted: 02/04/2015] [Indexed: 11/19/2022] Open
Abstract
Merkel cell polyomavirus (MCPyV) is the first polyomavirus clearly associated with a human cancer, i.e. the Merkel cell carcinoma (MCC). Polyomaviruses are small naked DNA viruses that induce a robust polyclonal antibody response against the major capsid protein (VP1). However, the polyomavirus VP1 capsid protein epitopes have not been identified to date. The aim of this study was to identify the neutralizing epitopes of the MCPyV capsid. For this goal, four VP1 mutants were generated by insertional mutagenesis in the BC, DE, EF and HI loops between amino acids 88-89, 150-151, 189-190, and 296-297, respectively. The reactivity of these mutants and wild-type VLPs was then investigated with anti-VP1 monoclonal antibodies and anti-MCPyV positive human sera. The findings together suggest that immunodominant conformational neutralizing epitopes are present at the surface of the MCPyV VLPs and are clustered within BC and EF loops.
Collapse
Affiliation(s)
- Maxime J J Fleury
- L'UNAM Université, Groupe d'Etude des Interactions Hôte-Pathogène, UPRES EA 3142, Université d'Angers, Angers, France
| | - Jérôme T J Nicol
- UMR INRA 1282, Virologie et Immunologie Moléculaire, Faculté des Sciences Pharmaceutiques, Université François Rabelais, PRES Centre-Val de Loire Université, Tours, France
| | - Mahtab Samimi
- UMR INRA 1282, Virologie et Immunologie Moléculaire, Faculté des Sciences Pharmaceutiques, Université François Rabelais, PRES Centre-Val de Loire Université, Tours, France; CHRU de Tours-Hôpital Trousseau, Service de Dermatologie, Tours, France
| | - Françoise Arnold
- UMR INRA 1282, Virologie et Immunologie Moléculaire, Faculté des Sciences Pharmaceutiques, Université François Rabelais, PRES Centre-Val de Loire Université, Tours, France
| | - Raphael Cazal
- UMR INRA 1282, Virologie et Immunologie Moléculaire, Faculté des Sciences Pharmaceutiques, Université François Rabelais, PRES Centre-Val de Loire Université, Tours, France
| | - Raphaelle Ballaire
- UMR INRA 1282, Virologie et Immunologie Moléculaire, Faculté des Sciences Pharmaceutiques, Université François Rabelais, PRES Centre-Val de Loire Université, Tours, France
| | - Olivier Mercey
- UMR INRA 1282, Virologie et Immunologie Moléculaire, Faculté des Sciences Pharmaceutiques, Université François Rabelais, PRES Centre-Val de Loire Université, Tours, France
| | - Hélène Gonneville
- UMR INRA 1282, Virologie et Immunologie Moléculaire, Faculté des Sciences Pharmaceutiques, Université François Rabelais, PRES Centre-Val de Loire Université, Tours, France
| | - Nicolas Combelas
- UMR INRA 1282, Virologie et Immunologie Moléculaire, Faculté des Sciences Pharmaceutiques, Université François Rabelais, PRES Centre-Val de Loire Université, Tours, France
| | | | - Thierry Moreau
- UMR INSERM 1100, Mécanismes Protéolytiques dans l'Inflammation, Faculté de Médecine, Université François Rabelais, PRES Centre-Val de Loire Université, Tours, France
| | - Gérard Lorette
- UMR INRA 1282, Virologie et Immunologie Moléculaire, Faculté des Sciences Pharmaceutiques, Université François Rabelais, PRES Centre-Val de Loire Université, Tours, France; CHRU de Tours-Hôpital Trousseau, Service de Dermatologie, Tours, France
| | - Pierre Coursaget
- Faculté des Sciences Pharmaceutiques, Université François Rabelais, PRES Centre-Val de Loire Université, Tours, France
| | - Antoine Touzé
- UMR INRA 1282, Virologie et Immunologie Moléculaire, Faculté des Sciences Pharmaceutiques, Université François Rabelais, PRES Centre-Val de Loire Université, Tours, France
| |
Collapse
|
33
|
Csoma E, Mészáros B, Asztalos L, Gergely L. WU and KI polyomaviruses in respiratory, blood and urine samples from renal transplant patients. J Clin Virol 2014; 64:28-33. [PMID: 25728075 DOI: 10.1016/j.jcv.2014.12.020] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Revised: 12/13/2014] [Accepted: 12/27/2014] [Indexed: 11/16/2022]
Abstract
BACKGROUND It is suggested that immunosuppression due to transplantation might be a risk for human polyomavirus KI (KIPyV) and WU (WUPyV) infection. Most of the publications report data about stem cell transplant patients, little is known about these virus infections in renal transplant patients. OBJECTIVES To study the presence of KIPyV and WUPyV in upper respiratory, plasma and urine samples from renal transplant patients. To analyse clinical and personal data. STUDY DESIGN 532 respiratory, 503 plasma and 464 urine samples were collected from 77 renal transplant patients. KIPyV and WUPyV were detected by nested and quantitative real-time PCR. Patient and clinical data from medical records were analyzed. RESULTS KIPyV was detected in respiratory, plasma and urine samples from 14.3%, 3.9% and 4.1% of renal transplant patients. WUPyV was found in respiratory and plasma specimens from 9.1% and 5.3% of the patients. Significant association was revealed between the detection of KIPyV and WUPyV and the time of samples collection and the age of the patients. KIPyV was presented in respiratory and plasma sample at the same time. KIPyV was detected in plasma samples from two patients and in urine samples of three other patients providing also KIPyV positive respiratory samples at the same time. No clinical consequences of KIPyV or WUPyV infection were found. CONCLUSION Although no clinical consequences of KIPyV and WUPyV infections were found in renal transplant patients, it is suggested that renal transplantation might result in higher susceptibility or reactivation of these infection.
Collapse
Affiliation(s)
- Eszter Csoma
- Department of Medical Microbiology, University of Debrecen, Nagyerdei krt. 98., H-4032 Debrecen, Hungary.
| | - Beáta Mészáros
- Department of Medical Microbiology, University of Debrecen, Nagyerdei krt. 98., H-4032 Debrecen, Hungary
| | - László Asztalos
- First Department of Surgery, University of Debrecen, Nagyerdei krt. 98., H-4032 Debrecen, Hungary
| | - Lajos Gergely
- Department of Medical Microbiology, University of Debrecen, Nagyerdei krt. 98., H-4032 Debrecen, Hungary
| |
Collapse
|
34
|
Siebrasse EA, Nguyen NL, Smith C, Simmonds P, Wang D. Immunohistochemical detection of KI polyomavirus in lung and spleen. Virology 2014; 468-470:178-184. [PMID: 25189337 DOI: 10.1016/j.virol.2014.08.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Revised: 07/28/2014] [Accepted: 08/05/2014] [Indexed: 10/24/2022]
Abstract
Little is known about the tissue tropism of KI polyomavirus (KIPyV), and there are no studies to date describing any specific cell types it infects. The limited knowledge of KIPyV tropism has hindered study of this virus and understanding of its potential pathogenesis in humans. We describe tissues from two immunocompromised patients that stained positive for KIPyV antigen using a newly developed immunohistochemical assay targeting the KIPyV VP1 (KVP1) capsid protein. In the first patient, a pediatric bone marrow transplant recipient, KVP1 was detected in lung tissue. Double immunohistochemical staining demonstrated that approximately 50% of the KVP1-positive cells were CD68-positive cells of the macrophage/monocyte lineage. In the second case, an HIV-positive patient, KVP1 was detected in spleen and lung tissues. These results provide the first identification of a specific cell type in which KVP1 can be detected and expand our understanding of basic properties and in vivo tropism of KIPyV.
Collapse
Affiliation(s)
- Erica A Siebrasse
- Washington University School of Medicine, Campus Box 8230, 660 S. Euclid Ave., St. Louis, MO 63110, USA
| | - Nang L Nguyen
- Washington University School of Medicine, Campus Box 8230, 660 S. Euclid Ave., St. Louis, MO 63110, USA
| | - Colin Smith
- Department of Pathology, University of Edinburgh, Scotland, UK
| | | | - David Wang
- Washington University School of Medicine, Campus Box 8230, 660 S. Euclid Ave., St. Louis, MO 63110, USA.
| |
Collapse
|
35
|
Moens U, Van Ghelue M, Ehlers B. Are human polyomaviruses co-factors for cancers induced by other oncoviruses? Rev Med Virol 2014; 24:343-60. [PMID: 24888895 DOI: 10.1002/rmv.1798] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Revised: 04/25/2014] [Accepted: 05/07/2014] [Indexed: 12/16/2022]
Abstract
Presently, 12 human polyomaviruses are known: BK polyomavirus (BKPyV), JCPyV, KIPyV, WUPyV, Merkel cell polyomavirus (MCPyV), HPyV6, HPyV7, Trichodysplasia spinulosa-associated polyomavirus, HPyV9, HPyV10, STLPyV and HPyV12. In addition, the non-human primate polyomavirus simian virus 40 (SV40) seems to circulate in the human population. MCPyV was first described in 2008 and is now accepted to be an etiological factor in about 80% of the rare but aggressive skin cancer Merkel cell carcinoma. SV40, BKPyV and JCPyV or part of their genomes can transform cells, including human cells, and induce tumours in animal models. Moreover, DNA and RNA sequences and proteins of these three viruses have been discovered in tumour tissue. Despite these observations, their role in cancer remains controversial. So far, an association between cancer and the other human polyomaviruses is lacking. Because human polyomavirus DNA has been found in a broad spectrum of cell types, simultaneous dwelling with other oncogenic viruses is possible. Co-infecting human polyomaviruses may therefore act as a co-factor in the development of cancer, including those induced by other oncoviruses. Reviewing studies that report co-infection with human polyomaviruses and other tumour viruses in cancer tissue fail to detect a clear link between co-infection and cancer. Directions for future studies to elaborate on a possible auxiliary role of human polyomaviruses in cancer are suggested, and the mechanisms by which human polyomaviruses may synergize with other viruses in oncogenic transformation are discussed.
Collapse
Affiliation(s)
- Ugo Moens
- University of Tromsø, Faculty of Health Sciences, Institute of Medical Biology, Molecular Inflammation Research Group, Tromsø, Norway
| | | | | |
Collapse
|
36
|
Abstract
To determine the seroprevalence of astrovirus MLB1 (MLB1), an indirect enzyme-linked immunosorbent assay (ELISA) was established. MLB1 seropositivity was high in children <6 months old, decreased to a nadir at 12 to 23 months old, and increased to 100% by adulthood. MLB1 infection is common, and primary exposure occurs in childhood.
Collapse
|
37
|
Wiedinger K, Bitsaktsis C, Chang S. Reactivation of human polyomaviruses in immunocompromised states. J Neurovirol 2014; 20:1-8. [PMID: 24481784 DOI: 10.1007/s13365-014-0234-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Revised: 12/26/2013] [Accepted: 01/10/2014] [Indexed: 02/05/2023]
Abstract
Infection with various human polyomaviruses (HPyVs) is prevalent, with rates as high as 80 % within the general population. Primary infection occurs during childhood through respiratory or urino-oral transmission. While the majority of individuals exhibit asymptomatic latent infection, those immunocompromised persons are at risk for viral reactivation and disease progression resulting in conditions such as progressive multifocal leukoencephalopathy (PML), trichodysplasia spinulosa, Merkel cell carcinoma, and polyomavirus associated nephropathy. Individuals with altered immune systems due to HIV, organ transplantation, lymphoproliferative diseases, and monoclonal antibody therapy are particularly susceptible to reactivation of various HPyVs. While the specific factors that induce lytic infection have yet to be defined, it is evident that dysfunctional host cellular immune responses allow active infection to occur. Immunosuppressant conditions, such as in chronic alcohol abuse, may serve as added risk factors for reactivation of HPyVs. Since the human HPyV family is rapidly expanding, continuing studies are needed to characterize the role that known and newly discovered HPyVs play in human disease.
Collapse
Affiliation(s)
- Kari Wiedinger
- Institute of Neuroimmune Pharmacology, Seton Hall University, 400 South Orange Avenue, South Orange, NJ, 07079, USA
| | | | | |
Collapse
|
38
|
Different serologic behavior of MCPyV, TSPyV, HPyV6, HPyV7 and HPyV9 polyomaviruses found on the skin. PLoS One 2013; 8:e81078. [PMID: 24278381 PMCID: PMC3836759 DOI: 10.1371/journal.pone.0081078] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Accepted: 10/08/2013] [Indexed: 12/31/2022] Open
Abstract
The polyomavirus family is rapidly expanding with twelve new human viruses identified since 2007. A significant number of the new human polyomaviruses (HPyV) has been found on the skin. Whether these viruses share biological properties and should be grouped together is unknown. Here we investigated the serological behavior of cutaneous HPyVs in a general population. 799 sera from immunocompetent Australian individuals aged between 0-87 were analyzed with a Luminex xMAP technology-based immunoassay for the presence of VP1-directed IgG antibodies against MCPyV, HPyV6, HPyV7, TSPyV, HPyV9, and BKPyV as a control. Except for HPyV9, overall seropositivity was high for the cutanous polyomaviruses (66-81% in adults), and gradually increased with age. Children below 6 months displayed seropositivity rates comparable to the adults, indicative of maternal antibodies. TSPyV seroreactivity levels strongly increased after age 2 and waned later in life comparable to BKPyV, whereas MCPyV, HPyV6 and HPyV7 seroreactivity remained rather stable throughout. Based on the identified serologic profiles, MCPyV seems to cluster with HPyV6 and HPyV7, and TSPyV and HPyV9 by themselves. These profiles indicate heterogeneity among cutaneous polyomaviruses and probably reflect differences in exposure and pathogenic behavior of these viruses.
Collapse
|
39
|
Abstract
The seroprevalence of the recently discovered human Malawi polyomavirus (MWPyV) was determined by virus-like particle-based enzyme-linked immunosorbent assay (ELISA) in age-stratified Italian subjects. The findings indicated that MWPyV infection occurs early in life, and seroprevalence was shown to reach 42% in adulthood.
Collapse
|
40
|
Babakir-Mina M, Ciccozzi M, Perno CF, Ciotti M. The human polyomaviruses KI and WU: virological background and clinical implications. APMIS 2013; 121:746-754. [PMID: 23782405 DOI: 10.1111/apm.12091] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2012] [Accepted: 01/09/2013] [Indexed: 01/25/2023]
Abstract
In 2007, two novel polyomaviruses KI and WU were uncovered in the respiratory secretions of children with acute respiratory symptoms. Seroepidemiological studies showed that infection by these viruses is widespread in the human population. Following these findings, different biological specimens and body compartments have been screened by real-time PCR in the attempt to establish a pathogenetic role for KI polyomavirus (KIPyV) and WU polyomavirus (WUPyV) in human diseases. Although both viruses have been found mainly in respiratory tract samples of immunocompromised patients, a clear causative link with the respiratory disease has not been established. Indeed, the lack of specific clinical or radiological findings, the frequent co-detection with other respiratory pathogens, the detection in subjects without signs or symptoms of respiratory disease, and the variability of the viral loads measured did not allow drawing a definitive conclusion. Prospective studies carried out on a large sample size including both immunocompromised and immunocompetent patients with and without respiratory symptoms are needed. Standardized quantitative real-time PCR methods, definition of a clear clinical cutoff value, timing in the collection of respiratory samples, are also crucial to understand the pathogenic role, if any, of KIPyV and WUPyV in human pathology.
Collapse
|
41
|
Okada M, Hamada H, Sato-Maru H, Shirato Y, Honda T, Muto A, Hayashi K, Terai M. WU polyomavirus detected in respiratory tract specimens from young children in Japan. Pediatr Int 2013; 55:536-7. [PMID: 23724787 PMCID: PMC7167776 DOI: 10.1111/ped.12147] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2012] [Revised: 04/17/2013] [Accepted: 05/21/2013] [Indexed: 11/04/2022]
Abstract
Polyomaviruses (PyV) WU and KI are reportedly associated with respiratory tract disease (RTD) worldwide but their incidence is unclear in Japan. In a 2 year prospective study, WU/KIPyV were detected in 48 (13.9%) and in five (1.4%) of 345 children hospitalized with lower RTD, respectively. The seasonal distribution was observed in spring and early summer. Other respiratory viruses were co-detected in 51% of PyV-positive patients, but eight (2.3%) of the WUPyV-positive patients were negative for other known pathogens.
Collapse
Affiliation(s)
- Mineyuki Okada
- Division of Epidemiology, Chiba Prefectural Institute of Public Health, Chiba, Japan
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Porrovecchio R, Babakir-Mina M, Rapanotti MC, Arcese W, Perno CF, Ciotti M. Monitoring of KI and WU polyomaviruses in hematopoietic stem cell transplant patients. J Med Virol 2013; 85:1122-1124. [PMID: 23588741 DOI: 10.1002/jmv.23565] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/29/2013] [Indexed: 11/09/2022]
Abstract
Primary infection with KIPyV and WUPyV polyomaviruses occurs early in childhood followed by lifelong persistence in the body. Polyomavirus reactivation can occur in the presence of impaired immunity as in hematological malignancies or during immunosuppresssion induced by medications. In this study, reactivation of KIPyV and WUPyV was monitored by conventional PCR in plasma samples of 26 stem cell transplant patients and in 26 related bone marrow donors. Plasma samples from transplant patients were collected immediately after the end of conditioning regimen and up to 270 days after transplant. All plasma samples from transplant patients were negative for KIPyV and WUPyV DNA. Instead, KIPyV DNA was detected in two bone marrow donors. There was no evidence of KIPyV transmission from the donor to the recipient. The data suggest that detection of KIPyV in plasma is sporadic and that KPIyV and WUPyV do not affect the post-transplant clinical course. However, further studies on a larger sample size and more sensitive PCR methods are needed to confirm these observations.
Collapse
Affiliation(s)
- Rosa Porrovecchio
- Laboratory of Molecular Virology, Foundation Polyclinic Tor Vergata, Viale Oxford, Rome, Italy
| | | | | | | | | | | |
Collapse
|
43
|
Touinssi M, Galicher V, de Micco P, Biagini P. Molecular epidemiology of KI and WU polyomaviruses in healthy blood donors, south-eastern France. J Med Virol 2013; 85:1444-6. [DOI: 10.1002/jmv.23602] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/05/2013] [Indexed: 11/10/2022]
Affiliation(s)
- Mhammed Touinssi
- UMR 7268, Viral Emergence and Co-evolution Unit, French Blood Agency; Aix-Marseille University and CNRS; Marseille France
| | - Vital Galicher
- UMR 7268, Viral Emergence and Co-evolution Unit, French Blood Agency; Aix-Marseille University and CNRS; Marseille France
| | - Philippe de Micco
- UMR 7268, Viral Emergence and Co-evolution Unit, French Blood Agency; Aix-Marseille University and CNRS; Marseille France
| | - Philippe Biagini
- UMR 7268, Viral Emergence and Co-evolution Unit, French Blood Agency; Aix-Marseille University and CNRS; Marseille France
| |
Collapse
|
44
|
Ehlers B, Wieland U. The novel human polyomaviruses HPyV6, 7, 9 and beyond. APMIS 2013; 121:783-95. [DOI: 10.1111/apm.12104] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Accepted: 03/07/2013] [Indexed: 11/30/2022]
Affiliation(s)
- Bernhard Ehlers
- Division 12 ‘Measles, Mumps, Rubella, and Viruses Affecting Immunocompromised Patients’; Robert Koch-Institute; Berlin; Germany
| | - Ulrike Wieland
- National Reference Centre for Papilloma- and Polyomaviruses; Institute of Virology; University of Cologne; Koeln; Germany
| |
Collapse
|
45
|
Moens U, Van Ghelue M, Song X, Ehlers B. Serological cross-reactivity between human polyomaviruses. Rev Med Virol 2013; 23:250-64. [DOI: 10.1002/rmv.1747] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Revised: 03/26/2013] [Accepted: 03/28/2013] [Indexed: 12/21/2022]
Affiliation(s)
- Ugo Moens
- University of Tromsø, Faculty of Health Sciences; Department of Medical Biology; Tromsø Norway
| | - Marijke Van Ghelue
- University Hospital of Northern-Norway; Department of Medical Genetics; Tromsø Norway
| | - Xiaobo Song
- University of Tromsø, Faculty of Health Sciences; Department of Medical Biology; Tromsø Norway
| | - Bernhard Ehlers
- Robert Koch Institute; Department of Infectious Diseases; Berlin Germany
| |
Collapse
|
46
|
Ciotti M, Porrovecchio R, Perno CF. The Novel KI, WU and MC Polyomaviruses and Human Diseases. Future Virol 2013; 8:451-458. [DOI: 10.2217/fvl.13.23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Affiliation(s)
- Marco Ciotti
- Laboratory of Molecular Virology, Foundation Polyclinic Tor Vergata, Viale Oxford81-00133, Rome, Italy
| | - Rosa Porrovecchio
- Laboratory of Molecular Virology, Foundation Polyclinic Tor Vergata, Viale Oxford81-00133, Rome, Italy
| | - Carlo Federico Perno
- Laboratory of Molecular Virology, Foundation Polyclinic Tor Vergata, Viale Oxford81-00133, Rome, Italy
- Department of Experimental Medicine & Surgery, University of Rome Tor Vergata, Rome, Italy
| |
Collapse
|
47
|
Kazem S, van der Meijden E, Feltkamp MCW. Thetrichodysplasia spinulosa-associated polyomavirus: virological background and clinical implications. APMIS 2013; 121:770-82. [DOI: 10.1111/apm.12092] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2012] [Accepted: 01/09/2013] [Indexed: 11/28/2022]
Affiliation(s)
- Siamaque Kazem
- Department of Medical Microbiology; Leiden University Medical Center; Leiden; the Netherlands
| | - Els van der Meijden
- Department of Medical Microbiology; Leiden University Medical Center; Leiden; the Netherlands
| | - Mariet C. W. Feltkamp
- Department of Medical Microbiology; Leiden University Medical Center; Leiden; the Netherlands
| |
Collapse
|
48
|
Robaina TF, Mendes GS, Benati FJ, Pena GA, Silva RC, Montes MAR, Janini MER, Câmara FP, Santos N. Shedding of polyomavirus in the saliva of immunocompetent individuals. J Med Virol 2013; 85:144-8. [PMID: 23154878 DOI: 10.1002/jmv.23453] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The aim of this study was to investigate and compare the frequency of BKV, JCV, WUV, and KIV in the saliva of healthy individuals. Samples were analyzed for the presence of polyomaviruses (BKV, JCV, WUV, and KIV) DNA by real-time PCR. Of the 291 samples tested, 71 (24.3%) were positive for at least one of the screened polyomaviruses. Specifically, 12.7% (37/291) were positive for WUV, 7.2% (21/291) positive for BKV, 2.4% (7/291) positive for KIV, and 0.3% (1/291) positive for JCV. BKV and WUV co-infections were detected in 1.7% (5/291) of individuals. No other co-infection combinations were found. The mean number of DNA copies was high, particularly for WUV and BKV, indicating active replication of these viruses. Polyomavirus detection was higher among individuals 15-19 years of age (46.0%; 23/50) and ≥50 years of age (33.3%; 9/27). However, the detection rate in the first group was almost 1.7× greater than the latter. WUV infections were more frequent in individuals between the ages of 15 and 19 years and the incidence decreased with age. By contrast, BKV excretion peaked and persisted during the third decade of life and KIV infections were detected more commonly in subjects ≥50 years old. These findings reinforced the previous hypotheses that saliva may be a route for BKV transmission, and that the oral cavity could be a site of virus replication. These data also demonstrated that JCV, WUV, and KIV may be transmitted in a similar fashion.
Collapse
Affiliation(s)
- Tatiana F Robaina
- Microbiology Institute, Federal University of Rio of Janeiro, Rio de Janeiro, RJ, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Abstract
PURPOSE OF REVIEW The first era in the discoveries of respiratory viruses occured between 1933 and 1965 when influenza virus, enteroviruses, adenovirus, respiratory syncytial virus, rhinovirus, parainfluenza virus and coronavirus (CoV) were found by virus culture. In the 1990s, the development of high throughput viral detection and diagnostics instruments increased diagnostic sensitivity and enabled the search for new viruses. This article briefly reviews the clinical significance of newly discovered respiratory viruses. RECENT FINDINGS In 2001, the second era in the discoveries of respiratory viruses began, and several new respiratory viruses and their subgroups have been found: human metapneumovirus, CoVs NL63 and HKU1, human bocavirus and human rhinovirus C and D groups. SUMMARY Currently, a viral cause of pediatric respiratory illness is identifiable in up to 95% of cases, but the detection rates decrease steadily by age, to 30-40% in the elderly. The new viruses cause respiratory illnesses such as common cold, bronchitis, bronchiolitis, exacerbations of asthma and chronic obstructive pulmonary disease and pneumonia. Rarely, acute respiratory failure may occur. The clinical role of other new viruses, KI and WU polyomaviruses and the torque teno virus, as respiratory pathogens is not clear.
Collapse
|
50
|
Comparing effects of BK virus agnoprotein and herpes simplex-1 ICP47 on MHC-I and MHC-II expression. Clin Dev Immunol 2013; 2013:626823. [PMID: 23606871 PMCID: PMC3623393 DOI: 10.1155/2013/626823] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2012] [Accepted: 01/30/2013] [Indexed: 11/17/2022]
Abstract
Background. Among human polyomaviruses, only BK virus (BKV) and JC virus (JCV) encode an agnoprotein upstream of VP1 on the viral late transcript. BKV agnoprotein is abundantly expressed late in the viral life cycle, but specific cellular and humoral immune responses are low or absent. We hypothesized that agnoprotein might contribute to BKV immune evasion by downregulating HLA expression, similar to Herpes simplex virus-1 ICP47. Methods UTA-6 or primary human renal proximal tubular epithelial cells (RPTEC) were co-transfected with plasmids constitutively expressing agnoprotein, or ICP47, and enhanced green-fluorescent protein (EGFP). EGFP-gated cells were analyzed for HLA-ABC and HLA-DR expression by flow cytometry. HLA-ABC and HLA-DR expression was also analyzed on UTA-6 bearing tetracycline-regulated agnoprotein or ICP47. Effects of agnoprotein on viral peptide-dependent T-cell killing were investigated using 51Cr release. Results. ICP47 downregulated HLA-ABC without affecting HLA-DR, whereas agnoprotein did not affect HLA-ABC or HLA-DR expression. Interferon-γ treatment increased HLA-ABC in a dose-dependent manner, which was antagonized by ICP47, but not by agnoprotein. In UTA-6 cells, agnoprotein expression did neither impair HLA-ABC or -DR expression nor peptide-specific killing impaired by HLA-matched T-cells. Conclusion. Unlike the HSV-1 ICP47, BKV agnoprotein does not contribute to viral immune evasion by down-regulating HLA-ABC, or interfere with HLA-DR expression or peptide-dependent T-cell cytotoxicity.
Collapse
|