1
|
Huhndorf M, Juhasz J, Wattjes MP, Schilling A, Schob S, Kaden I, Klaß G, Tappe D. Magnetic resonance imaging of human variegated squirrel bornavirus 1 (VSBV-1) encephalitis reveals diagnostic pattern indistinguishable from Borna disease virus 1 (BoDV-1) encephalitis but typical for bornaviruses. Emerg Microbes Infect 2023; 12:2179348. [PMID: 36757188 PMCID: PMC9980399 DOI: 10.1080/22221751.2023.2179348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
Human bornavirus encephalitis is an emerging disease caused by the variegated squirrel bornavirus 1 (VSBV-1) and the Borna disease virus 1 (BoDV-1). While characteristic brain magnetic resonance imaging (MRI) changes have been described for BoDV-1 encephalitis, only scarce diagnostic data in VSBV-1 encephalitis exist. We systematically analysed brain MRI scans from all known VSBV-1 encephalitis patients. Initial and follow-up scans demonstrated characteristic T2 hyperintense lesions in the limbic system and the basal ganglia, followed by the brainstem. No involvement of the cerebellar cortex was seen. Deep white matter affection occurred in a later stage of the disease. Strict symmetry of pathologic changes was seen in 62%. T2 hyperintense areas were often associated with low T1 signal intensity and with mass effect. Sinusitis in three patients on the first MRI and an early involvement of the limbic system suggest an olfactory route of VSBV-1 entry. The viral spread could occur per continuitatem to adjacent anatomical brain regions or along specific neural tracts to more distant brain regions. The number and extent of lesions did not correlate with the length of patients' survivals. The overall pattern closely resembles that described for BoDV-1 encephalitis. The exact bornavirus species can thus not be deduced from imaging results alone, and molecular testing and serology should be performed to confirm the causative bornavirus. As VSBV-1 is likely of tropical origin, and MRI investigations are increasingly available globally, imaging techniques might be helpful to facilitate an early presumptive diagnosis of VSBV-1 encephalitis when molecular and/or serological testing is not available.
Collapse
Affiliation(s)
- Monika Huhndorf
- Clinic of Radiology and Neuroradiology, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Julia Juhasz
- Department of Neuroradiology, University Medical Center Göttingen, Göttingen, Germany
| | - Mike P. Wattjes
- Institut für diagnostische und interventionelle Neuroradiologie, Medizinische Hochschule Hannover, Hannover, Germany
| | | | - Stefan Schob
- Universitätsklinik und Poliklinik für Radiologie Halle, Halle (Saale), Germany
| | - Ingmar Kaden
- BG Klinikum Bergmannstrost, Halle (Saale), Germany
| | | | - Dennis Tappe
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany, Dennis Tappe Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| |
Collapse
|
2
|
Ulrich R. [Zoonoses in endemic, free-ranging mammals]. PATHOLOGIE (HEIDELBERG, GERMANY) 2023; 44:208-214. [PMID: 37987818 DOI: 10.1007/s00292-023-01270-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 10/19/2023] [Indexed: 11/22/2023]
Abstract
BACKGROUND Zoonoses are diseases and infections that can be transmitted naturally between animals and humans. Direct and indirect contact of humans with wildlife occur during hunting activities, when diseased wildlife is found and treated, and in shared fields, forests, parks, gardens, and homes. Zoonoses can only be understood and controlled when ecosystems, animals, and humans are considered holistically. OBJECTIVE This paper presents important zoonotic pathogens that are currently present in wild mammals as reservoirs in Germany. MATERIAL AND METHODS The literature was searched to determine the prevalence of zoonotic pathogens currently occurring in wild mammals. RESULTS Viral zoonotic agents currently present in free-ranging, mammalian animals in Germany as reservoirs of natural origin are bornaviruses, lyssaviruses, hepatitis E virus genotype 3, and Puumala orthohantavirus. Bacterial zoonotic agents beyond typical wound and foodborne pathogens include Brucella suis Biovar 2, Francisella tularensis ssp. holarctica, Leptospira interrogans sensu latu, Mycobacterium caprae, and Yersinia pseudotuberculosis. In particular, parasitic zoonotic agents common in wildlife are Alaria alata, Baylisascaris procyonis, Echinococcus multilocularis, Sacoptes scabei, and Trichinella spp. CONCLUSION The presence of zoonotic infectious agents of risk groups 2 and 3 has to be regularly expected in numerous endemic wildlife species, especially canines, small bears, rodents, insectivores, and bats. Animal caretakers, hunters, veterinarians, and human health professionals should be aware of this risk and take protective measures appropriate to the situation.
Collapse
Affiliation(s)
- Reiner Ulrich
- Institut für Veterinär-Pathologie, Veterinärmedizinische Fakultät, Universität Leipzig, An den Tierkliniken 33, 04103, Leipzig, Deutschland.
| |
Collapse
|
3
|
Fomsgaard AS, Tahas SA, Spiess K, Polacek C, Fonager J, Belsham GJ. Unbiased Virus Detection in a Danish Zoo Using a Portable Metagenomic Sequencing System. Viruses 2023; 15:1399. [PMID: 37376698 DOI: 10.3390/v15061399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/16/2023] [Accepted: 06/16/2023] [Indexed: 06/29/2023] Open
Abstract
Metagenomic next-generation sequencing (mNGS) is receiving increased attention for the detection of new viruses and infections occurring at the human-animal interface. The ability to actively transport and relocate this technology enables in situ virus identification, which could reduce response time and enhance disease management. In a previous study, we developed a straightforward mNGS procedure that greatly enhances the detection of RNA and DNA viruses in human clinical samples. In this study, we improved the mNGS protocol with transportable battery-driven equipment for the portable, non-targeted detection of RNA and DNA viruses in animals from a large zoological facility, to simulate a field setting for point-of-incidence virus detection. From the resulting metagenomic data, we detected 13 vertebrate viruses from four major virus groups: (+)ssRNA, (+)ssRNA-RT, dsDNA and (+)ssDNA, including avian leukosis virus in domestic chickens (Gallus gallus), enzootic nasal tumour virus in goats (Capra hircus) and several small, circular, Rep-encoding, ssDNA (CRESS DNA) viruses in several mammal species. More significantly, we demonstrate that the mNGS method is able to detect potentially lethal animal viruses, such as elephant endotheliotropic herpesvirus in Asian elephants (Elephas maximus) and the newly described human-associated gemykibivirus 2, a human-to-animal cross-species virus, in a Linnaeus two-toed sloth (Choloepus didactylus) and its enclosure, for the first time.
Collapse
Affiliation(s)
- Anna S Fomsgaard
- Department of Virus & Microbiological Special Diagnostics, Statens Serum Institut, 5 Artillerivej, 2300 Copenhagen, Denmark
- Department of Veterinary and Animal Sciences, University of Copenhagen, 4 Stigboejlen, 1870 Frederiksberg, Denmark
| | | | - Katja Spiess
- Department of Virus & Microbiological Special Diagnostics, Statens Serum Institut, 5 Artillerivej, 2300 Copenhagen, Denmark
| | - Charlotta Polacek
- Department of Virus & Microbiological Special Diagnostics, Statens Serum Institut, 5 Artillerivej, 2300 Copenhagen, Denmark
| | - Jannik Fonager
- Department of Virus & Microbiological Special Diagnostics, Statens Serum Institut, 5 Artillerivej, 2300 Copenhagen, Denmark
| | - Graham J Belsham
- Department of Veterinary and Animal Sciences, University of Copenhagen, 4 Stigboejlen, 1870 Frederiksberg, Denmark
| |
Collapse
|
4
|
Ulrich RG, Drewes S, Haring V, Panajotov J, Pfeffer M, Rubbenstroth D, Dreesman J, Beer M, Dobler G, Knauf S, Johne R, Böhmer MM. [Viral zoonoses in Germany: a One Health perspective]. Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz 2023; 66:599-616. [PMID: 37261460 PMCID: PMC10233563 DOI: 10.1007/s00103-023-03709-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 04/26/2023] [Indexed: 06/02/2023]
Abstract
The COVID-19 pandemic and the increasing occurrence of monkeypox (mpox) diseases outside Africa have illustrated the vulnerability of populations to zoonotic pathogens. In addition, other viral zoonotic pathogens have gained importance in recent years.This review article addresses six notifiable viral zoonotic pathogens as examples to highlight the need for the One Health approach in order to understand the epidemiology of the diseases and to derive recommendations for action by the public health service. The importance of environmental factors, reservoirs, and vectors is emphasized, the diseases in livestock and wildlife are analyzed, and the occurrence and frequency of diseases in the population are described. The pathogens selected here differ in their reservoirs and the role of vectors for transmission, the impact of infections on farm animals, and the disease patterns observed in humans. In addition to zoonotic pathogens that have been known in Germany for a long time or were introduced recently, pathogens whose zoonotic potential has only lately been shown are also considered.For the pathogens discussed here, there are still large knowledge gaps regarding the transmission routes. Future One Health-based studies must contribute to the further elucidation of their transmission routes and the development of prevention measures. The holistic approach does not necessarily include a focus on viral pathogens/diseases, but also includes the question of the interaction of viral, bacterial, and other pathogens, including antibiotic resistance and host microbiomes.
Collapse
Affiliation(s)
- Rainer G Ulrich
- Institut für neue und neuartige Tierseuchenerreger, Friedrich-Loeffler-Institut, Bundesforschungsinstitut für Tiergesundheit, Südufer 10, 17493, Greifswald-Insel Riems, Deutschland.
| | - Stephan Drewes
- Institut für neue und neuartige Tierseuchenerreger, Friedrich-Loeffler-Institut, Bundesforschungsinstitut für Tiergesundheit, Südufer 10, 17493, Greifswald-Insel Riems, Deutschland
| | - Viola Haring
- Institut für neue und neuartige Tierseuchenerreger, Friedrich-Loeffler-Institut, Bundesforschungsinstitut für Tiergesundheit, Südufer 10, 17493, Greifswald-Insel Riems, Deutschland
| | - Jessica Panajotov
- Fachgruppe Viren in Lebensmitteln, Bundesinstitut für Risikobewertung, Berlin, Deutschland
| | - Martin Pfeffer
- Institut für Tierhygiene und Öffentliches Veterinärwesen, Universität Leipzig, Leipzig, Deutschland
| | - Dennis Rubbenstroth
- Institut für Virusdiagnostik, Friedrich-Loeffler-Institut, Bundesforschungsinstitut für Tiergesundheit, Greifswald-Insel Riems, Deutschland
| | | | - Martin Beer
- Institut für Virusdiagnostik, Friedrich-Loeffler-Institut, Bundesforschungsinstitut für Tiergesundheit, Greifswald-Insel Riems, Deutschland
| | - Gerhard Dobler
- Abteilung Virologie und Rickettsiologie, Institut für Mikrobiologie der Bundeswehr, München, Deutschland
| | - Sascha Knauf
- Institut für Internationale Tiergesundheit/One Health, Friedrich-Loeffler-Institut, Bundesforschungsinstitut für Tiergesundheit, Greifswald-Insel Riems, Deutschland
| | - Reimar Johne
- Fachgruppe Viren in Lebensmitteln, Bundesinstitut für Risikobewertung, Berlin, Deutschland
| | - Merle M Böhmer
- Landesinstitut Gesundheit II - Task Force Infektiologie, Bayerisches Landesamt für Gesundheit und Lebensmittelsicherheit (LGL), München, Deutschland
- Institut für Sozialmedizin und Gesundheitssystemforschung, Otto-von-Guericke Universität, Magdeburg, Deutschland
| |
Collapse
|
5
|
Tissue Distribution of Parrot Bornavirus 4 (PaBV-4) in Experimentally Infected Young and Adult Cockatiels ( Nymphicus hollandicus). Viruses 2022; 14:v14102181. [PMID: 36298736 PMCID: PMC9611548 DOI: 10.3390/v14102181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 09/25/2022] [Accepted: 09/26/2022] [Indexed: 11/06/2022] Open
Abstract
Proventricular dilatation disease (PDD) caused by parrot bornavirus (PaBV) infection is an often-fatal disease known to infect Psittaciformes. The impact of age at the time of PaBV infection on organ lesions and tissue distribution of virus antigen and RNA remains largely unclear. For this purpose, tissue sections of 11 cockatiels intravenously infected with PaBV-4 as adults or juveniles, respectively, were examined via histology, immunohistochemistry applying a phosphoprotein (P) antibody directed against the bornaviral phosphoprotein and in situ hybridisation to detect viral RNA in tissues. In both groups of adult- and juvenile-infected cockatiels, widespread tissue distribution of bornaviral antigen and RNA as well as histologic inflammatory lesions were demonstrated. The latter appeared more severe in the central nervous system in adults and in the proventriculus of juveniles, respectively. During the study, central nervous symptoms and signs of gastrointestinal affection were only demonstrated in adult birds. Our findings indicate a great role of the age at the time of infection in the development of histopathological lesions and clinical signs, and thus provide a better understanding of the pathogenesis, possible virus transmission routes, and the development of carrier birds posing a risk to psittacine collections.
Collapse
|
6
|
Rubbenstroth D. Avian Bornavirus Research—A Comprehensive Review. Viruses 2022; 14:v14071513. [PMID: 35891493 PMCID: PMC9321243 DOI: 10.3390/v14071513] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 06/30/2022] [Accepted: 07/05/2022] [Indexed: 02/01/2023] Open
Abstract
Avian bornaviruses constitute a genetically diverse group of at least 15 viruses belonging to the genus Orthobornavirus within the family Bornaviridae. After the discovery of the first avian bornaviruses in diseased psittacines in 2008, further viruses have been detected in passerines and aquatic birds. Parrot bornaviruses (PaBVs) possess the highest veterinary relevance amongst the avian bornaviruses as the causative agents of proventricular dilatation disease (PDD). PDD is a chronic and often fatal disease that may engulf a broad range of clinical presentations, typically including neurologic signs as well as impaired gastrointestinal motility, leading to proventricular dilatation. It occurs worldwide in captive psittacine populations and threatens private bird collections, zoological gardens and rehabilitation projects of endangered species. In contrast, only little is known about the pathogenic roles of passerine and waterbird bornaviruses. This comprehensive review summarizes the current knowledge on avian bornavirus infections, including their taxonomy, pathogenesis of associated diseases, epidemiology, diagnostic strategies and recent developments on prophylactic and therapeutic countermeasures.
Collapse
Affiliation(s)
- Dennis Rubbenstroth
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, 17493 Greifswald, Insel Riems, Germany
| |
Collapse
|
7
|
Schlottau K, Feldmann F, Hanley PW, Lovaglio J, Tang-Huau TL, Meade-White K, Callison J, Williamson BN, Rosenke R, Long D, Wylezich C, Höper D, Herden C, Scott D, Hoffmann D, Saturday G, Beer M, Feldmann H. Development of a nonhuman primate model for mammalian bornavirus infection. PNAS NEXUS 2022; 1:pgac073. [PMID: 35860599 PMCID: PMC9291224 DOI: 10.1093/pnasnexus/pgac073] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 05/30/2022] [Indexed: 02/05/2023]
Abstract
Until recently, it was assumed that members of the family Bornaviridae could not induce severe disease in humans. Today, however, Borna disease virus 1 (BoDV-1), as well as the more recently emerged variegated squirrel bornavirus 1 (VSBV-1), are known as causative agents of lethal encephalitis in humans. In order to establish animal models reflecting the pathogenesis in humans and for countermeasure efficacy testing, we infected twelve rhesus macaques (Macaca mulatta) either with VSBV-1 or with BoDV-1. For each virus, three monkeys each were inoculated with 2 × 104 focus forming units by the intracerebral route or by multiple peripheral routes (intranasal, conjunctival, intramuscular, and subcutaneous; same dose in total). All BoDV-1 and VSBV-1 intracerebrally infected monkeys developed severe neurological signs around 5 to 6 or 8 to 12 weeks postinfection, respectively. Focal myoclonus and tremors were the most prominent observations in BoDV-1 and VSBV-1-infected animals. VSBV-1-infected animals also showed behavioral changes. Only one BoDV-1 peripherally infected animal developed similar disease manifestations. All animals with severe clinical disease showed high viral loads in brain tissues and displayed perivascular mononuclear cuffs with a predominance of lymphocytes and similar meningeal inflammatory infiltrates. In summary, rhesus macaques intracerebrally infected with mammalian bornaviruses develop a human-like disease and may serve as surrogate models for human bornavirus infection.
Collapse
Affiliation(s)
| | - Friederike Feldmann
- Rocky Mountain Veterinary Branch, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA
| | - Patrick W Hanley
- Rocky Mountain Veterinary Branch, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA
| | - Jamie Lovaglio
- Rocky Mountain Veterinary Branch, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA
| | - Tsing-Lee Tang-Huau
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA
| | - Kimberly Meade-White
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA
| | - Julie Callison
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA
| | - Brandi N Williamson
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA
| | - Rebecca Rosenke
- Rocky Mountain Veterinary Branch, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA
| | - Dan Long
- Rocky Mountain Veterinary Branch, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA
| | - Claudia Wylezich
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Südufer 10, 17493 Greifswald-Insel Riems, Germany
| | - Dirk Höper
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Südufer 10, 17493 Greifswald-Insel Riems, Germany
| | - Christiane Herden
- Justus-Liebig-Universität, Institute of Veterinary Pathology, 35390 Gießen, Germany
| | - Dana Scott
- Rocky Mountain Veterinary Branch, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA
| | - Donata Hoffmann
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Südufer 10, 17493 Greifswald-Insel Riems, Germany
| | - Greg Saturday
- Rocky Mountain Veterinary Branch, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA
| | - Martin Beer
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Südufer 10, 17493 Greifswald-Insel Riems, Germany
| | - Heinz Feldmann
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA
| |
Collapse
|
8
|
Frank C, Wickel J, Brämer D, Matschke J, Ibe R, Gazivoda C, Günther A, Hartmann C, Rehn K, Cadar D, Mayer TE, Pörtner K, Wilking H, Schmidt-Chanasit J, Tappe D. Emerging Microbes & Infections - Original Article: Human Borna disease virus 1 (BoDV-1) encephalitis cases in the north and east of Germany. Emerg Microbes Infect 2021; 11:6-13. [PMID: 34783638 PMCID: PMC8725967 DOI: 10.1080/22221751.2021.2007737] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
In 2021, three encephalitis cases due to the Borna disease virus 1 (BoDV-1) were diagnosed in the north and east of Germany. The patients were from the states of Thuringia, Saxony-Anhalt, and Lower Saxony. All were residents of known endemic areas for animal Borna disease but without prior diagnosed human cases. Except for one recently detected case in the state of Brandenburg, all >30 notified cases had occurred in, or were linked to, the southern state of Bavaria. Of the three detected cases described here, two infections were acute, while one infection was diagnosed retrospectively from archived brain autopsy tissue samples. One of the acute cases survived, but is permanently disabled. The cases were diagnosed by various techniques (serology, molecular assays, and immunohistology) following a validated testing scheme and adhering to a proposed case definition. Two cases were classified as confirmed BoDV-1 encephalitis, while one case was a probable infection with positive serology and typical brain magnetic resonance imaging, but without molecular confirmation. Of the three cases, one full virus genome sequence could be recovered. Our report highlights the need for awareness of a BoDV-1 etiology in cryptic encephalitis cases in all areas with known animal Borna disease endemicity in Europe, including virus-endemic regions in Austria, Liechtenstein, and Switzerland. BoDV-1 should be actively tested for in acute encephalitis cases with residence or rural exposure history in known Borna disease-endemic areas.
Collapse
Affiliation(s)
- Christina Frank
- Robert Koch Institute, Department for Infectious Disease Epidemiology, Berlin, Germany
| | - Jonathan Wickel
- Section of Translational Neuroimmunology, Department of Neurology, Jena University Hospital, Jena, Germany
| | - Dirk Brämer
- University Hospital Jena, Hans Berger Department of Neurology, Jena, Germany
| | - Jakob Matschke
- Institute for Neuropathology, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | - Richard Ibe
- University Hospital Halle/Saale, Department of Neurology, Halle/Saale, Germany
| | - Caroline Gazivoda
- University Hospital Halle/Saale, Department of Neurology, Halle/Saale, Germany
| | - Albrecht Günther
- University Hospital Jena, Hans Berger Department of Neurology, Jena, Germany
| | - Christian Hartmann
- Department of Neuropathology, Institute of Pathology, Hannover Medical School (MHH), Hannover, Germany
| | | | - Daniel Cadar
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Thomas E Mayer
- University Hospital Jena, Department of Neuroradiology, Jena, Germany
| | - Kirsten Pörtner
- Robert Koch Institute, Department for Infectious Disease Epidemiology, Berlin, Germany
| | - Hendrik Wilking
- Robert Koch Institute, Department for Infectious Disease Epidemiology, Berlin, Germany
| | | | - Dennis Tappe
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| |
Collapse
|
9
|
Eisermann P, Rubbenstroth D, Cadar D, Thomé-Bolduan C, Eggert P, Schlaphof A, Leypoldt F, Stangel M, Fortwängler T, Hoffmann F, Osterman A, Zange S, Niller HH, Angstwurm K, Pörtner K, Frank C, Wilking H, Beer M, Schmidt-Chanasit J, Tappe D. Active Case Finding of Current Bornavirus Infections in Human Encephalitis Cases of Unknown Etiology, Germany, 2018-2020. Emerg Infect Dis 2021; 27:1371-1379. [PMID: 33900167 PMCID: PMC8084505 DOI: 10.3201/eid2705.204490] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Human bornavirus encephalitis is a severe and often fatal infection caused by variegated squirrel bornavirus 1 (VSBV-1) and Borna disease virus 1 (BoDV-1). We conducted a prospective study of bornavirus etiology of encephalitis cases in Germany during 2018-2020 by using a serologic testing scheme applied along proposed graded case definitions for VSBV-1, BoDV-1, and unspecified bornavirus encephalitis. Of 103 encephalitis cases of unknown etiology, 4 bornavirus infections were detected serologically. One chronic case was caused by VSBV-1 after occupational-related contact of a person with exotic squirrels, and 3 acute cases were caused by BoDV-1 in virus-endemic areas. All 4 case-patients died. Bornavirus etiology could be confirmed by molecular methods. Serologic testing for these cases was virus specific, discriminatory, and a practical diagnostic option for living patients if no brain tissue samples are available. This testing should be guided by clinical and epidemiologic suspicions, such as residence in virus-endemic areas and animal exposure.
Collapse
|
10
|
Schlottau K, Nobach D, Herden C, Finke S, Beer M, Hoffmann D. First isolation, in-vivo and genomic characterization of zoonotic variegated squirrel Bornavirus 1 (VSBV-1) isolates. Emerg Microbes Infect 2021; 9:2474-2484. [PMID: 33151793 PMCID: PMC7717607 DOI: 10.1080/22221751.2020.1847604] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The variegated squirrel bornavirus 1 (VSBV-1), a member of the family Bornaviridae, was discovered in 2015 in a series of lethal human infections. Screening approaches revealed kept exotic squirrels as the putative source of infection. Infectious virus was successfully isolated by co-cultivation of infected primary squirrel cells with permanent cell lines. For in vivo characterization, neonatal and adult Lewis rats were inoculated either intracranially, intranasally or subcutaneously. After 4.5 months, three out of fifteen neonatal intracranially inoculated rats were VSBV-1 genome positive in the central nervous system without showing clinical signs. Pathohistological examination revealed a non-purulent encephalitis. While infection of immune incompetent rats (neonatal) using the type species of mammalian bornaviruses, the Borna disease virus 1, proceed to an immune tolerant status, VSBV-1 infection could result in inflammation of neuronal tissue. Sequencing showed minor adaptations within the VSBV-1 genome comparing to the viral genomes from infected squirrels, cell cultures or rat tissues. In conclusion, we were able to generate the first VSBV-1 isolates and provide in vivo animal model data in Lewis rats revealing substantial differences between VSBV-1 and BoDV-1. Furthermore, the presented data are a precondition for insights into the transmission and pathogenesis of this novel zoonotic pathogen.
Collapse
Affiliation(s)
- Kore Schlottau
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Daniel Nobach
- Justus-Liebig-Universität, Institut für Veterinär-Pathologie, Gießen, Germany
| | - Christiane Herden
- Justus-Liebig-Universität, Institut für Veterinär-Pathologie, Gießen, Germany.,Center of Mind, Brain and Behavior, Justus-Liebig-University Gießen, Gießen, Germany
| | - Stefan Finke
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Martin Beer
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Donata Hoffmann
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| |
Collapse
|
11
|
Cadar D, Schmidt-Chanasit J, Tappe D. Genomic and Micro-Evolutionary Features of Mammalian 2 orthobornavirus (Variegated Squirrel Bornavirus 1, VSBV-1). Microorganisms 2021; 9:microorganisms9061141. [PMID: 34070673 PMCID: PMC8227138 DOI: 10.3390/microorganisms9061141] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 05/23/2021] [Accepted: 05/24/2021] [Indexed: 11/30/2022] Open
Abstract
Mammalian 2 orthobornavirus (VSBV-1) is an emerging zoonotic pathogen discovered in several exotic squirrel species and associated with fatal human encephalitis. The dynamics of VSBV-1 spread and evolution in its presumed natural hosts are unknown. Here, we present the phylogeny, micro-evolution, cross-species transmission and spread of VSBV-1 at a temporal and spatial resolution within the limits of animal husbandry. The results showed that VSBV-1 can be classified into six distinct groups and that the most recent common ancestor of the known German strains emerged at least 20 years ago. We here demonstrate that the genetic diversity of the VSBV-1 groups is shaped primarily by in situ evolution and most of the amino acid changes are deleterious polymorphisms removed by purifying selection. Evidence of adaptive evolution has been found in the G and L genes which might have an influence on transmission fitness. Furthermore, there was also evidence for some form of adaptive changes in the glycoprotein which suggests that many sites might be subjected to positive pressure evolving under episodic directional selection, indicating past occurrence of positive selection. Host switching events were detected as dominant evolutionary mechanisms driving the virus-host associations. Virus spread by animal trade followed by subsequent local micro-evolution in zoos and holdings is responsible for diversifying strains. Time-resolved phylogeny indicated that Prevost’s squirrels might be the original squirrel species carrying and seeding the virus in Germany. This study provides the first insight into the ecology and micro-evolutionary dynamics of this novel viral pathogen in the captive exotic squirrel population under artificial ecological conditions (zoos and animal husbandry) and co-housing of different squirrel species.
Collapse
Affiliation(s)
- Dániel Cadar
- WHO Collaborating Centre for Arbovirus and Haemorrhagic Fever Reference and Research, Bernhard Nocht Institute for Tropical Medicine, 20359 Hamburg, Germany; (J.S.-C.); (D.T.)
- Correspondence:
| | - Jonas Schmidt-Chanasit
- WHO Collaborating Centre for Arbovirus and Haemorrhagic Fever Reference and Research, Bernhard Nocht Institute for Tropical Medicine, 20359 Hamburg, Germany; (J.S.-C.); (D.T.)
- Faculty of Mathematics, Informatics and Natural Sciences, Universität Hamburg, 20148 Hamburg, Germany
| | - Dennis Tappe
- WHO Collaborating Centre for Arbovirus and Haemorrhagic Fever Reference and Research, Bernhard Nocht Institute for Tropical Medicine, 20359 Hamburg, Germany; (J.S.-C.); (D.T.)
| |
Collapse
|
12
|
Cadar D, Allendorf V, Schulze V, Ulrich RG, Schlottau K, Ebinger A, Hoffmann B, Hoffmann D, Rubbenstroth D, Ismer G, Kibbey C, Marthaler A, Rissland J, Leypoldt F, Stangel M, Schmidt-Chanasit J, Conraths FJ, Beer M, Homeier-Bachmann T, Tappe D. Introduction and spread of variegated squirrel bornavirus 1 (VSBV-1) between exotic squirrels and spill-over infections to humans in Germany. Emerg Microbes Infect 2021; 10:602-611. [PMID: 33706665 PMCID: PMC8018504 DOI: 10.1080/22221751.2021.1902752] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The variegated squirrel bornavirus 1 (VSBV-1) is a recently discovered emerging viral pathogen which causes severe and eventually fatal encephalitis in humans after contact to exotic squirrels in private holdings and zoological gardens. Understanding the VSBV-1 epidemiology is crucial to develop, implement, and maintain surveillance strategies for the detection and control of animal and human infections. Based on a newly detected human encephalitis case in a zoological garden, epidemiological squirrel trade investigations and molecular phylogeny analyses of VSBV-1 with temporal and spatial resolution were conducted. Phylogenetic analyses indicated a recent emergence of VSBV-1 in European squirrel holdings and several animal–animal and animal–human spill-over infections. Virus phylogeny linked to squirrel trade analysis showed the introduction of a common ancestor of the known current VSBV-1 isolates into captive exotic squirrels in Germany, most likely by Prevost’s squirrels (Callosciurus prevostii). The links of the animal trade between private breeders and zoos, the likely introduction pathway of VSBV-1 into Germany, and the role of a primary animal distributor were elucidated. In addition, a seroprevalence study was performed among zoo animal caretakers from VSBV-1 affected zoos. No seropositive healthy zoo animal caretakers were found, underlining a probable high-case fatality rate of human VSBV-1 infections. This study illustrates the network and health consequences of uncontrolled wild pet trading as well as the benefits of molecular epidemiology for elucidation and future prevention of infection chains by zoonotic viruses. To respond to emerging zoonotic diseases rapidly, improved regulation and control strategies are urgently needed.
Collapse
Affiliation(s)
- Daniel Cadar
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Valerie Allendorf
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Institute of Epidemiology, Greifswald-Insel Riems, Germany
| | - Vanessa Schulze
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Institute of Novel and Emerging Infectious Diseases, Greifswald-Insel Riems, Germany
| | - Rainer G Ulrich
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Institute of Novel and Emerging Infectious Diseases, Greifswald-Insel Riems, Germany
| | - Kore Schlottau
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Institute of Diagnostic Virology, Greifswald-Insel Riems, Germany
| | - Arnt Ebinger
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Institute of Diagnostic Virology, Greifswald-Insel Riems, Germany
| | - Bernd Hoffmann
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Institute of Diagnostic Virology, Greifswald-Insel Riems, Germany
| | - Donata Hoffmann
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Institute of Diagnostic Virology, Greifswald-Insel Riems, Germany
| | - Dennis Rubbenstroth
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Institute of Diagnostic Virology, Greifswald-Insel Riems, Germany
| | | | - Chris Kibbey
- Cotswold Wildlife Park and Gardens, Burford, Oxfordshire, UK
| | - Anna Marthaler
- Institute for Virology, Universität des Saarlandes, Homburg/Saar, Germany
| | - Jürgen Rissland
- Institute for Virology, Universität des Saarlandes, Homburg/Saar, Germany
| | - Frank Leypoldt
- Division of Neuroimmunology, Institute of Clinical Chemistry, Universitätsklinikum Schleswig-Holstein, Kiel, Germany
| | - Martin Stangel
- Department of Clinical Neuroimmunology and Neurochemistry, and Department of Neurology, Medizinische Hochschule Hannover, Hannover, Germany
| | | | - Franz J Conraths
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Institute of Epidemiology, Greifswald-Insel Riems, Germany
| | - Martin Beer
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Institute of Diagnostic Virology, Greifswald-Insel Riems, Germany
| | - Timo Homeier-Bachmann
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Institute of Epidemiology, Greifswald-Insel Riems, Germany
| | - Dennis Tappe
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| |
Collapse
|
13
|
Allendorf V, Rubbenstroth D, Schlottau K, Hoffmann D, Frank C, Amler S, Beer M, Conraths FJ, Homeier-Bachmann T. Assessing the occurrence of the novel zoonotic variegated squirrel bornavirus 1 in captive squirrels in Germany -A prevalence study. Zoonoses Public Health 2021; 68:110-120. [PMID: 33428333 DOI: 10.1111/zph.12801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 08/28/2020] [Accepted: 11/02/2020] [Indexed: 11/29/2022]
Abstract
The newly described zoonotic variegated squirrel bornavirus 1 (VSBV-1) in German squirrel holdings has been associated with the death of three private owners and one zoo animal caretaker (confirmed cases). Epidemiological investigations were severely impeded by the general lack of data on holdings of the putative reservoir hosts, the family Sciuridae. To fill this lack of data for detailed epidemiological investigations of the captive squirrel population, a register of private and zoological squirrel holdings was established. The findings show a broad variety of kept species and their frequency distribution. By contacting the different stakeholders via Web-based social groups and societies, information passed in both directions so that disease awareness could be raised and participants could be recruited for further studies. Cross-sectional studies revealed a prevalence of VSBV-1-positive subpopulations of 0% (95% CI 0%-6.2%) among private squirrel collections and 1.9% (95% CI: 0%-9.9%) among zoos in Germany. The approach presented here can be transferred to other populations of non-traditional pets, which may be equally difficult to monitor, in the case of an emerging zoonotic infectious disease.
Collapse
Affiliation(s)
- Valerie Allendorf
- Friedrich-Loeffler-Institut, Institute of Epidemiology, Greifswald-Insel Riems, Germany
| | - Dennis Rubbenstroth
- Friedrich-Loeffler-Institut, Institute of Diagnostic Virology, Greifswald-Insel Riems, Germany
| | - Kore Schlottau
- Friedrich-Loeffler-Institut, Institute of Diagnostic Virology, Greifswald-Insel Riems, Germany
| | - Donata Hoffmann
- Friedrich-Loeffler-Institut, Institute of Diagnostic Virology, Greifswald-Insel Riems, Germany
| | - Christina Frank
- Department for Infectious Disease Epidemiology, Robert Koch Institute, Berlin, Germany
| | - Susanne Amler
- Friedrich-Loeffler-Institut, Institute of Epidemiology, Greifswald-Insel Riems, Germany
| | - Martin Beer
- Friedrich-Loeffler-Institut, Institute of Diagnostic Virology, Greifswald-Insel Riems, Germany
| | - Franz Josef Conraths
- Friedrich-Loeffler-Institut, Institute of Epidemiology, Greifswald-Insel Riems, Germany
| | - Timo Homeier-Bachmann
- Friedrich-Loeffler-Institut, Institute of Epidemiology, Greifswald-Insel Riems, Germany
| |
Collapse
|
14
|
Modeling Borna Disease Virus In Vitro Spread Reveals the Mode of Antiviral Effect Conferred by an Endogenous Bornavirus-Like Element. J Virol 2020; 94:JVI.01204-20. [PMID: 32817215 DOI: 10.1128/jvi.01204-20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 08/12/2020] [Indexed: 02/07/2023] Open
Abstract
Endogenous retroviruses have demonstrated exaptation during long-term evolution with hosts, e.g., resulting in acquisition of antiviral effect on related extant viral infections. While empirical studies have found that an endogenous bornavirus-like element derived from viral nucleoprotein (itEBLN) in the ground squirrel genome shows antiviral effect on virus replication and de novo infection, the antiviral mechanism, dynamics, and quantitative effect of itEBLN remain unknown. In this study, we experimentally and theoretically investigated the dynamics of how an extant bornavirus, Borna disease virus 1 (BoDV-1), spreads and replicates in uninfected, BoDV-1-infected, and itEBLN-expressing cultured cells. Quantifying antiviral effect based on time course data sets, we found that the antiviral effects of itEBLN are estimated to be 75% and 34% on intercellular virus spread and intracellular virus replication, respectively. This discrepancy between intercellular virus spread and intracellular viral replication suggests that viral processes other than the replication of viral ribonucleoprotein complex (RNP) contributed to the suppression of virus spread in itEBLN-expressing cells. Because itEBLN binds to the BoDV-1 RNP, the suppression of viral RNP trafficking can be an attractive candidate explaining this discrepancy.IMPORTANCE Accumulating evidence suggests that some endogenous viral elements (EVEs), including endogenous retroviruses and endogenous nonretroviral virus elements, have acquired functions in the host as a result of long-term coevolution. Recently, an endogenous bornavirus-like element (itEBLN) found in the ground squirrel genome has been shown to have antiviral activity against exogenous bornavirus infection. In this study, we first quantified bornavirus spread in cultured cells and then calculated the antiviral activity of itEBLN on bornavirus infection. The calculated antiviral activity of itEBLN suggests its suppression of multiple processes in the viral life cycle. To our knowledge, this is the first study quantifying the antiviral activity of EVEs and speculating on a model of how some EVEs have acquired antiviral activity during host-virus arms races.
Collapse
|
15
|
Tappe D, Frank C, Homeier-Bachmann T, Wilking H, Allendorf V, Schlottau K, Muñoz-Fontela C, Rottstegge M, Port JR, Rissland J, Eisermann P, Beer M, Schmidt-Chanasit J. Analysis of exotic squirrel trade and detection of human infections with variegated squirrel bornavirus 1, Germany, 2005 to 2018. ACTA ACUST UNITED AC 2020; 24. [PMID: 30808439 PMCID: PMC6446953 DOI: 10.2807/1560-7917.es.2019.24.8.1800483] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Following the discovery in 2015 of the variegated squirrel bornavirus 1 (VSBV-1) in fatal encephalitis cases among exotic squirrel breeders and a zoo animal caretaker in Germany, a case definition was developed. It was employed during trace-back animal trade investigations and sero-epidemiological studies among breeders and zoo animal caretakers of holdings with VSBV-1 infected squirrels. During the investigation, two possible human cases who had died of encephalitis were identified retrospectively among the squirrel breeders. Moreover, one probable human case was detected among the breeders who had a positive memory T-cell response to VSBV-1 antigen and antibodies against VSBV-1. The low rate of seropositivity found among living persons in risk groups that handle exotic squirrels privately or at zoos may reflect rareness of exposure to VSBV-1 during animal contact, a high lethality of infection or a combination of these factors. As a precaution against human exposure, testing of exotic squirrels for VSBV-1 infection and/or avoiding direct contact with exotic squirrels in zoos and private holdings is strongly advised.
Collapse
Affiliation(s)
- Dennis Tappe
- Bernhard-Nocht-Institut für Tropenmedizin, Hamburg, Germany
| | | | | | | | | | - Kore Schlottau
- Friedrich-Loeffler-Institut, Greifswald/Insel Riems, Germany
| | | | | | - Julia R Port
- Bernhard-Nocht-Institut für Tropenmedizin, Hamburg, Germany
| | - Jürgen Rissland
- Institut für Virologie, Universitätsklinikum des Saarlandes, Homburg/Saar, Germany
| | | | - Martin Beer
- Friedrich-Loeffler-Institut, Greifswald/Insel Riems, Germany
| | | |
Collapse
|
16
|
Komatsu Y, Tomonaga K. Reverse genetics approaches of Borna disease virus: applications in development of viral vectors and preventive vaccines. Curr Opin Virol 2020; 44:42-48. [PMID: 32659515 DOI: 10.1016/j.coviro.2020.05.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 05/27/2020] [Accepted: 05/29/2020] [Indexed: 01/10/2023]
Abstract
The plasmid-based reverse genetics system, which involves generation of recombinant viruses from cloned cDNA, has accelerated the understanding of clinical and virological aspects of different viruses. Borna disease virus (BoDV) is a nonsegmented, negative-strand RNA virus that causes persistent intranuclear infection in various vertebrate species. Since its first report, reverse genetics approaches with modified strategies have greatly improved rescue efficiency of recombinant BoDV and enhanced the understanding of function of each viral protein and mechanism of intranuclear persistency. Here, we summarize different reverse genetics approaches of BoDV and recent developments in the use of reverse genetics for generation of viral vectors for gene therapy and virus-like particles for potential preventive vaccines.
Collapse
Affiliation(s)
- Yumiko Komatsu
- Laboratory of RNA Viruses, Department of Virus Research, Institute for Frontier Life and Medical Sciences (inFront), Kyoto University, Kyoto, Japan; Keihanshin Consortium for Fostering the Next Generation of Global Leaders in Research, Kyoto University, Kyoto, Japan
| | - Keizo Tomonaga
- Laboratory of RNA Viruses, Department of Virus Research, Institute for Frontier Life and Medical Sciences (inFront), Kyoto University, Kyoto, Japan; Department of Mammalian Regulatory Network, Graduate School of Biostudies, Kyoto University, Kyoto, Japan; Department of Molecular Virology, Graduate School of Medicine, Kyoto University, Kyoto, Japan.
| |
Collapse
|
17
|
Nobach D, Müller J, Tappe D, Herden C. Update on immunopathology of bornavirus infections in humans and animals. Adv Virus Res 2020; 107:159-222. [PMID: 32711729 DOI: 10.1016/bs.aivir.2020.06.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Knowledge on bornaviruses has expanded tremendously during the last decade through detection of novel bornaviruses and endogenous bornavirus-like elements in many eukaryote genomes, as well as by confirmation of insectivores as reservoir species for classical Borna disease virus 1 (BoDV-1). The most intriguing finding was the demonstration of the zoonotic potential of lethal human bornavirus infections caused by a novel bornavirus of different squirrel species (variegated squirrel 1 bornavirus, VSBV-1) and by BoDV-1 known as the causative agent for the classical Borna disease in horses and sheep. Whereas a T cell-mediated immunopathology has already been confirmed as key disease mechanism for infection with BoDV-1 by experimental studies in rodents, the underlying pathomechanisms remain less clear for human bornavirus infections, infection with other bornaviruses or infection of reservoir species. Thus, an overview of current knowledge on the pathogenesis of bornavirus infections focusing on immunopathology is given.
Collapse
Affiliation(s)
- Daniel Nobach
- Institute of Veterinary Pathology, Justus-Liebig-University Giessen, Giessen, Germany
| | - Jana Müller
- Institute of Veterinary Pathology, Justus-Liebig-University Giessen, Giessen, Germany
| | - Dennis Tappe
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Christiane Herden
- Institute of Veterinary Pathology, Justus-Liebig-University Giessen, Giessen, Germany; Center for Brain, Mind and Behavior, Justus-Liebig-University Giessen, Giessen, Germany.
| |
Collapse
|
18
|
Search for polyoma-, herpes-, and bornaviruses in squirrels of the family Sciuridae. Virol J 2020; 17:42. [PMID: 32220234 PMCID: PMC7099801 DOI: 10.1186/s12985-020-01310-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 02/28/2020] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Squirrels (family Sciuridae) are globally distributed members of the order Rodentia with wildlife occurrence in indigenous and non-indigenous regions (as invasive species) and frequent presence in zoological gardens and other holdings. Multiple species introductions, strong inter-species competition as well as the recent discovery of a novel zoonotic bornavirus resulted in increased research interest on squirrel pathogens. Therefore we aimed to test a variety of squirrel species for representatives of three virus families. METHODS Several species of the squirrel subfamilies Sciurinae, Callosciurinae and Xerinae were tested for the presence of polyomaviruses (PyVs; family Polyomaviridae) and herpesviruses (HVs; family Herpesviridae), using generic nested polymerase chain reaction (PCR) with specificity for the PyV VP1 gene and the HV DNA polymerase (DPOL) gene, respectively. Selected animals were tested for the presence of bornaviruses (family Bornaviridae), using both a broad-range orthobornavirus- and a variegated squirrel bornavirus 1 (VSBV-1)-specific reverse transcription-quantitative PCR (RT-qPCR). RESULTS In addition to previously detected bornavirus RNA-positive squirrels no more animals tested positive in this study, but four novel PyVs, four novel betaherpesviruses (BHVs) and six novel gammaherpesviruses (GHVs) were identified. For three PyVs, complete genomes could be amplified with long-distance PCR (LD-PCR). Splice sites of the PyV genomes were predicted in silico for large T antigen, small T antigen, and VP2 coding sequences, and experimentally confirmed in Vero and NIH/3T3 cells. Attempts to extend the HV DPOL sequences in upstream direction resulted in contiguous sequences of around 3.3 kilobase pairs for one BHV and two GHVs. Phylogenetic analysis allocated the novel squirrel PyVs to the genera Alpha- and Betapolyomavirus, the BHVs to the genus Muromegalovirus, and the GHVs to the genera Rhadinovirus and Macavirus. CONCLUSIONS This is the first report on molecular identification and sequence characterization of PyVs and HVs and the detection of bornavirus coinfections with PyVs or HVs in two squirrel species. Multiple detection of PyVs and HVs in certain squirrel species exclusively indicate their potential host association to a single squirrel species. The novel PyVs and HVs might serve for a better understanding of virus evolution in invading host species in the future.
Collapse
|
19
|
Tappe D, Schmidt-Chanasit J, Rauch J, Allartz P, Herden C. Immunopathology of Fatal Human Variegated Squirrel Bornavirus 1 Encephalitis, Germany, 2011-2013. Emerg Infect Dis 2019; 25:1058-1065. [PMID: 31107210 PMCID: PMC6537742 DOI: 10.3201/eid2506.181082] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Variegated squirrel bornavirus 1 (VSBV-1) is a zoonotic virus that causes fatal encephalitis in humans who are infected after contact with exotic squirrels. We analyzed the brain lesions and the immune responses in all 4 known human cases that showed panencephalitis. Inflammatory infiltrates in areas positive for VSBV-1 RNA and antigen consisted of CD4+ and CD8+ T cells, with perivascular B-cell accumulation. Strong microglial response and bizarre astroglial expansion were present. Areas of malacia contained neutrophils and foamy microglia and macrophages. Immunopathologic examination during infection showed cleavage of caspase 3 in brain cells adjacent to CD8+ cells and widespread p53 expression, hallmarks of apoptosis. Cerebrospinal fluid analyses over time demonstrated increasing protein concentrations and cell counts, paralleled by pathologic lactate elevations in all patients. The most severe cerebrospinal fluid and histologic changes occurred in the patient with the highest viral load, shortest duration of disease, and most medical preconditions.
Collapse
|
20
|
Liesche F, Ruf V, Zoubaa S, Kaletka G, Rosati M, Rubbenstroth D, Herden C, Goehring L, Wunderlich S, Wachter MF, Rieder G, Lichtmannegger I, Permanetter W, Heckmann JG, Angstwurm K, Neumann B, Märkl B, Haschka S, Niller HH, Schmidt B, Jantsch J, Brochhausen C, Schlottau K, Ebinger A, Hemmer B, Riemenschneider MJ, Herms J, Beer M, Matiasek K, Schlegel J. The neuropathology of fatal encephalomyelitis in human Borna virus infection. Acta Neuropathol 2019; 138:653-665. [PMID: 31346692 PMCID: PMC6778062 DOI: 10.1007/s00401-019-02047-3] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 07/18/2019] [Accepted: 07/19/2019] [Indexed: 01/22/2023]
Abstract
After many years of controversy, there is now recent and solid evidence that classical Borna disease virus 1 (BoDV-1) can infect humans. On the basis of six brain autopsies, we provide the first systematic overview on BoDV-1 tissue distribution and the lesion pattern in fatal BoDV-1-induced encephalitis. All brains revealed a non-purulent, lymphocytic sclerosing panencephalomyelitis with detection of BoDV-1-typical eosinophilic, spherical intranuclear Joest–Degen inclusion bodies. While the composition of histopathological changes was constant, the inflammatory distribution pattern varied interindividually, affecting predominantly the basal nuclei in two patients, hippocampus in one patient, whereas two patients showed a more diffuse distribution. By immunohistochemistry and RNA in situ hybridization, BoDV-1 was detected in all examined brain tissue samples. Furthermore, infection of the peripheral nervous system was observed. This study aims at raising awareness to human bornavirus encephalitis as differential diagnosis in lymphocytic sclerosing panencephalomyelitis. A higher attention to human BoDV-1 infection by health professionals may likely increase the detection of more cases and foster a clearer picture of the disease.
Collapse
Affiliation(s)
- Friederike Liesche
- Department of Neuropathology, School of Medicine, Institute of Pathology, Technical University Munich, Trogerstraße 18, 81675, Munich, Germany.
| | - Viktoria Ruf
- Center for Neuropathology and Prion Research, Ludwig-Maximilians-Universitaet München, Munich, Germany
| | - Saida Zoubaa
- Department of Neuropathology, University of Regensburg, Regensburg, Germany
| | - Gwendolyn Kaletka
- Department of Neuropathology, School of Medicine, Institute of Pathology, Technical University Munich, Trogerstraße 18, 81675, Munich, Germany
| | - Marco Rosati
- Section of Clinical and Comparative Neuropathology, Centre for Clinical Veterinary Medicine, Ludwig-Maximilians Universitaet München, Munich, Germany
| | - Dennis Rubbenstroth
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Christiane Herden
- Institute of Veterinary Pathology, Justus Liebig University, Giessen, Germany
| | - Lutz Goehring
- Division of Medicine and Reproduction, Equine Hospital, Ludwig-Maximilians Universitaet München, Munich, Germany
| | - Silke Wunderlich
- Department of Neurology, Klinikum rechts der Isar, School of Medicine, Technical University Munich, Munich, Germany
| | | | - Georg Rieder
- Department of Neurology, Klinikum Traunstein, Traunstein, Germany
| | | | | | - Josef G Heckmann
- Department of Neurology, Municipal Hospital Landshut, Landshut, Germany
| | - Klemens Angstwurm
- Department of Neurology, Regensburg University Hospital, Regensburg, Germany
| | - Bernhard Neumann
- Department of Neurology, Regensburg University Hospital, Regensburg, Germany
| | - Bruno Märkl
- Institute of Pathology, Medical Faculty, Augsburg University, Augsburg, Germany
| | - Stefan Haschka
- Department of Internal Medicine II, Municipal Hospital Landshut, Landshut, Germany
| | - Hans-Helmut Niller
- Institute of Clinical Microbiology and Hygiene, Regensburg University Hospital, Regensburg, Germany
| | - Barbara Schmidt
- Institute of Clinical Microbiology and Hygiene, Regensburg University Hospital, Regensburg, Germany
| | - Jonathan Jantsch
- Institute of Clinical Microbiology and Hygiene, Regensburg University Hospital, Regensburg, Germany
| | | | - Kore Schlottau
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Arnt Ebinger
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Bernhard Hemmer
- Department of Neurology, Klinikum rechts der Isar, School of Medicine, Technical University Munich, Munich, Germany
- Munich Cluster of Systems Neurology (SyNergy), Munich, Germany
| | | | - Jochen Herms
- Center for Neuropathology and Prion Research, Ludwig-Maximilians-Universitaet München, Munich, Germany
- Munich Cluster of Systems Neurology (SyNergy), Munich, Germany
| | - Martin Beer
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Kaspar Matiasek
- Section of Clinical and Comparative Neuropathology, Centre for Clinical Veterinary Medicine, Ludwig-Maximilians Universitaet München, Munich, Germany
| | - Jürgen Schlegel
- Department of Neuropathology, School of Medicine, Institute of Pathology, Technical University Munich, Trogerstraße 18, 81675, Munich, Germany
| |
Collapse
|
21
|
Distribution of zoonotic variegated squirrel bornavirus 1 in naturally infected variegated and Prevost's squirrels. Sci Rep 2019; 9:11402. [PMID: 31388038 PMCID: PMC6684602 DOI: 10.1038/s41598-019-47767-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 07/23/2019] [Indexed: 12/03/2022] Open
Abstract
Recently, the zoonotic capacity of the newly discovered variegated squirrel bornavirus 1 (VSBV-1) was confirmed in humans with a lethal encephalitis. Transmission to humans occurred by variegated and Prevost’s squirrels as presumed reservoir hosts but possible ways of virus shedding and the route of infection still need to be elucidated. Thus, the tissue distribution of VSBV-1 antigen and RNA was investigated in detail via immunohistochemistry (IHC) in six variegated and eight Prevost’s squirrels and by in situ hybridisation (ISH) in one Prevost’s squirrel, respectively. VSBV-1 antigen and RNA positive cells were most numerous in the nervous system and were also found in nearly all tissues and different cell types indicating a broad organ and cell tropism of VSBV-1. Presence of VSBV-1 in several organs might indicate potential virus shedding via various routes and implies the risk of intra- and interspecies transmission, respectively.
Collapse
|
22
|
Bornavirus. Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz 2019; 62:519-532. [DOI: 10.1007/s00103-019-02904-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
23
|
Tappe D, Schlottau K, Cadar D, Hoffmann B, Balke L, Bewig B, Hoffmann D, Eisermann P, Fickenscher H, Krumbholz A, Laufs H, Huhndorf M, Rosenthal M, Schulz-Schaeffer W, Ismer G, Hotop SK, Brönstrup M, Ott A, Schmidt-Chanasit J, Beer M. Occupation-Associated Fatal Limbic Encephalitis Caused by Variegated Squirrel Bornavirus 1, Germany, 2013. Emerg Infect Dis 2019; 24:978-987. [PMID: 29774846 PMCID: PMC6004865 DOI: 10.3201/eid2406.172027] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
This case underscores the risk for spillover infections to humans who work with exotic squirrels. Limbic encephalitis is commonly regarded as an autoimmune-mediated disease. However, after the recent detection of zoonotic variegated squirrel bornavirus 1 in a Prevost’s squirrel (Callosciurus prevostii) in a zoo in northern Germany, we retrospectively investigated a fatal case in an autoantibody-seronegative animal caretaker who had worked at that zoo. The virus had been discovered in 2015 as the cause of a cluster of cases of fatal encephalitis among breeders of variegated squirrels (Sciurus variegatoides) in eastern Germany. Molecular assays and immunohistochemistry detected a limbic distribution of the virus in brain tissue of the animal caretaker. Phylogenetic analyses demonstrated a spillover infection from the Prevost’s squirrel. Antibodies against bornaviruses were detected in the patient’s cerebrospinal fluid by immunofluorescence and newly developed ELISAs and immunoblot. The putative antigenic epitope was identified on the viral nucleoprotein. Other zoo workers were not infected; however, avoidance of direct contact with exotic squirrels and screening of squirrels are recommended.
Collapse
|
24
|
Intranasal Borna Disease Virus (BoDV-1) Infection: Insights into Initial Steps and Potential Contagiosity. Int J Mol Sci 2019; 20:ijms20061318. [PMID: 30875911 PMCID: PMC6470550 DOI: 10.3390/ijms20061318] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 03/10/2019] [Accepted: 03/10/2019] [Indexed: 12/11/2022] Open
Abstract
Mammalian Bornavirus (BoDV-1) typically causes a fatal neurologic disorder in horses and sheep, and was recently shown to cause fatal encephalitis in humans with and without transplant reception. It has been suggested that BoDV-1 enters the central nervous system (CNS) via the olfactory pathway. However, (I) susceptible cell types that replicate the virus for successful spread, and (II) the role of olfactory ensheathing cells (OECs), remained unclear. To address this, we studied the intranasal infection of adult rats with BoDV-1 in vivo and in vitro, using olfactory mucosal (OM) cell cultures and the cultures of purified OECs. Strikingly, in vitro and in vivo, viral antigen and mRNA were present from four days post infection (dpi) onwards in the olfactory receptor neurons (ORNs), but also in all other cell types of the OM, and constantly in the OECs. In contrast, in vivo, BoDV-1 genomic RNA was only detectable in adult and juvenile ORNs, nerve fibers, and in OECs from 7 dpi on. In vitro, the rate of infection of OECs was significantly higher than that of the OM cells, pointing to a crucial role of OECs for infection via the olfactory pathway. Thus, this study provides important insights into the transmission of neurotropic viral infections with a zoonotic potential.
Collapse
|
25
|
de Araujo JL, Rodrigues-Hoffmann A, Giaretta PR, Guo J, Heatley J, Tizard I, Rech RR. Distribution of Viral Antigen and Inflammatory Lesions in the Central Nervous System of Cockatiels ( Nymphicus hollandicus) Experimentally Infected with Parrot Bornavirus 2. Vet Pathol 2018; 56:106-117. [PMID: 30235986 DOI: 10.1177/0300985818798112] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Neurotropism is a striking characteristic of bornaviruses, including parrot bornavirus 2 (PaBV-2). Our study evaluated the distribution of inflammatory foci and viral nucleoprotein (N) antigen in the brain and spinal cord of 27 cockatiels ( Nymphicus hollandicus) following experimental infection with PaBV-2 by injection into the pectoral muscle. Tissue samples were taken at 12 timepoints between 5 and 114 days post-inoculation (dpi). Each experimental group had approximately 3 cockatiels per group and usually 1 negative control. Immunolabeling was first observed within the ventral horns of the thoracic spinal cord at 20 dpi and in the brain (thalamic nuclei and hindbrain) at 25 dpi. Both inflammation and viral antigen were restricted to the central core of the brain until 40 dpi. The virus then spread quickly at 60 dpi to both gray and white matter of all analyzed sections of the central nervous system (CNS). Encephalitis was most severe in the thalamus and hindbrain, while myelitis was most prominent in the gray matter and equally distributed in the cervical, thoracic, and lumbosacral spinal cord. Our results demonstrate a caudal to rostral spread of virus in the CNS following experimental inoculation of PABV-2 into the pectoral muscle, with the presence of viral antigen and inflammatory lesions first in the spinal cord and progressing to the brain.
Collapse
Affiliation(s)
- Jeann Leal de Araujo
- 1 Department of Veterinary Pathobiology, Texas A&M University, College Station, TX, USA
| | | | - Paula R Giaretta
- 1 Department of Veterinary Pathobiology, Texas A&M University, College Station, TX, USA
| | - Jianhua Guo
- 1 Department of Veterinary Pathobiology, Texas A&M University, College Station, TX, USA
| | - Jill Heatley
- 2 Department of Small Animal Clinical Sciences, Texas A&M University, College Station, TX, USA
| | - Ian Tizard
- 1 Department of Veterinary Pathobiology, Texas A&M University, College Station, TX, USA
| | - Raquel R Rech
- 1 Department of Veterinary Pathobiology, Texas A&M University, College Station, TX, USA
| |
Collapse
|
26
|
Forth LF, Konrath A, Klose K, Schlottau K, Hoffmann K, Ulrich RG, Höper D, Pohlmann A, Beer M. A Novel Squirrel Respirovirus with Putative Zoonotic Potential. Viruses 2018; 10:v10070373. [PMID: 30021939 PMCID: PMC6070802 DOI: 10.3390/v10070373] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 07/14/2018] [Accepted: 07/16/2018] [Indexed: 12/29/2022] Open
Abstract
In a globalized world, the threat of emerging pathogens plays an increasing role, especially if their zoonotic potential is unknown. In this study, a novel respirovirus, family Paramyxoviridae, was isolated from a Sri Lankan Giant squirrel (Ratufa macroura), which originated in Sri Lanka and deceased with severe pneumonia in a German zoo. The full-genome characterization of this novel virus, tentatively named Giant squirrel respirovirus (GSqRV), revealed similarities to murine (71%), as well as human respiroviruses (68%) with unique features, for example, a different genome length and a putative additional accessory protein. Congruently, phylogenetic analyses showed a solitary position of GSqRV between known murine and human respiroviruses, implicating a putative zoonotic potential. A tailored real-time reverse transcription-polymerase chain reaction (RT-qPCR) for specific detection of GSqRV confirmed a very high viral load in the lung, and, to a lesser extent, in the brain of the deceased animal. A pilot study on indigenous and exotic squirrels did not reveal additional cases in Germany. Therefore, further research is essential to assess the geographic distribution, host range, and zoonotic potential of this novel viral pathogen.
Collapse
Affiliation(s)
- Leonie F Forth
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Südufer 10, 17493 Greifswald-Insel Riems, Germany.
| | - Andrea Konrath
- Saxon State Laboratory of Health and Veterinary Affairs, Bahnhofstraße 58-60, 04158 Leipzig, Germany.
| | - Kristin Klose
- Institute of Pathology, Faculty of Veterinary Medicine, University of Leipzig, An den Tierkliniken 33, 04103 Leipzig, Germany.
| | - Kore Schlottau
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Südufer 10, 17493 Greifswald-Insel Riems, Germany.
| | - Kathrin Hoffmann
- Saxon State Laboratory of Health and Veterinary Affairs, Jägerstraße 8/10, 01099 Dresden, Germany.
| | - Rainer G Ulrich
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Südufer 10, 17493 Greifswald-Insel Riems, Germany.
| | - Dirk Höper
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Südufer 10, 17493 Greifswald-Insel Riems, Germany.
| | - Anne Pohlmann
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Südufer 10, 17493 Greifswald-Insel Riems, Germany.
| | - Martin Beer
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Südufer 10, 17493 Greifswald-Insel Riems, Germany.
| |
Collapse
|
27
|
From nerves to brain to gastrointestinal tract: A time-based study of parrot bornavirus 2 (PaBV-2) pathogenesis in cockatiels (Nymphicus hollandicus). PLoS One 2017; 12:e0187797. [PMID: 29121071 PMCID: PMC5679548 DOI: 10.1371/journal.pone.0187797] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 10/26/2017] [Indexed: 11/20/2022] Open
Abstract
Parrot bornaviruses (PaBVs) are the causative agents of proventricular dilatation disease, however key aspects of its pathogenesis, such as route of infection, viral spread and distribution, and target cells remain unclear. Our study aimed to track the viral spread and lesion development at 5, 10, 20, 25, 35, 40, 60, 80, 95 and 114 dpi using histopathology, immunohistochemistry, and RT-PCR. After intramuscular inoculation of parrot bornavirus 2 (PaBV-2) in the pectoral muscle of cockatiels, this virus was first detected in macrophages and lymphocytes in the inoculation site and adjacent nerves, then reached the brachial plexus, centripetally spread to the thoracic segment of the spinal cord, and subsequently invaded the other spinal segments and brain. After reaching the central nervous system (CNS), PaBV-2 centrifugally spread out the CNS to the ganglia in the gastrointestinal (GI) system, adrenal gland, heart, and kidneys. At late points of infection, PaBV-2 was not only detected in nerves and ganglia but widespread in the smooth muscle and/or scattered epithelial cells of tissues such as crop, intestines, proventriculus, kidneys, skin, and vessels. Despite the hallmark lesion of PaBVs infection being the dilation of the proventriculus, our results demonstrate PaBV-2 first targets the CNS, before migrating to peripheral tissues such as the GI system.
Collapse
|
28
|
Drewes S, Straková P, Drexler JF, Jacob J, Ulrich RG. Assessing the Diversity of Rodent-Borne Viruses: Exploring of High-Throughput Sequencing and Classical Amplification/Sequencing Approaches. Adv Virus Res 2017; 99:61-108. [PMID: 29029730 DOI: 10.1016/bs.aivir.2017.08.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Rodents are distributed throughout the world and interact with humans in many ways. They provide vital ecosystem services, some species are useful models in biomedical research and some are held as pet animals. However, many rodent species can have adverse effects such as damage to crops and stored produce, and they are of health concern because of the transmission of pathogens to humans and livestock. The first rodent viruses were discovered by isolation approaches and resulted in break-through knowledge in immunology, molecular and cell biology, and cancer research. In addition to rodent-specific viruses, rodent-borne viruses are causing a large number of zoonotic diseases. Most prominent examples are reemerging outbreaks of human hemorrhagic fever disease cases caused by arena- and hantaviruses. In addition, rodents are reservoirs for vector-borne pathogens, such as tick-borne encephalitis virus and Borrelia spp., and may carry human pathogenic agents, but likely are not involved in their transmission to human. In our days, next-generation sequencing or high-throughput sequencing (HTS) is revolutionizing the speed of the discovery of novel viruses, but other molecular approaches, such as generic RT-PCR/PCR and rolling circle amplification techniques, contribute significantly to the rapidly ongoing process. However, the current knowledge still represents only the tip of the iceberg, when comparing the known human viruses to those known for rodents, the mammalian taxon with the largest species number. The diagnostic potential of HTS-based metagenomic approaches is illustrated by their use in the discovery and complete genome determination of novel borna- and adenoviruses as causative disease agents in squirrels. In conclusion, HTS, in combination with conventional RT-PCR/PCR-based approaches, resulted in a drastically increased knowledge of the diversity of rodent viruses. Future improvements of the used workflows, including bioinformatics analysis, will further enhance our knowledge and preparedness in case of the emergence of novel viruses. Classical virological and additional molecular approaches are needed for genome annotation and functional characterization of novel viruses, discovered by these technologies, and evaluation of their zoonotic potential.
Collapse
Affiliation(s)
- Stephan Drewes
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Petra Straková
- Institute of Vertebrate Biology v.v.i., Academy of Sciences, Brno, Czech Republic
| | - Jan F Drexler
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Virology, Berlin, Germany; German Center for Infection Research (DZIF), Germany
| | - Jens Jacob
- Julius Kühn-Institute, Federal Research Centre for Cultivated Plants, Institute for Plant Protection in Horticulture and Forests, Vertebrate Research, Münster, Germany
| | - Rainer G Ulrich
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany; German Center for Infection Research (DZIF), Partner site Hamburg-Luebeck-Borstel-Insel Riems, Greifswald-Insel Riems, Germany.
| |
Collapse
|
29
|
More S, Bøtner A, Butterworth A, Calistri P, Depner K, Edwards S, Garin‐Bastuji B, Good M, Gortázar Schmidt C, Michel V, Miranda MA, Nielsen SS, Raj M, Sihvonen L, Spoolder H, Stegeman JA, Thulke HH, Velarde A, Willeberg P, Winckler C, Baldinelli F, Broglia A, Dhollander S, Beltrán‐Beck B, Kohnle L, Bicout D. Assessment of listing and categorisation of animal diseases within the framework of the Animal Health Law (Regulation (EU) No 2016/429): Borna disease. EFSA J 2017; 15:e04951. [PMID: 32625602 PMCID: PMC7009998 DOI: 10.2903/j.efsa.2017.4951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Borna disease has been assessed according to the criteria of the Animal Health Law (AHL), in particular criteria of Article 7 on disease profile and impacts, Article 5 on the eligibility of Borna disease to be listed, Article 9 for the categorisation of Borna disease according to disease prevention and control rules as in Annex IV and Article 8 on the list of animal species related to Borna disease. The assessment has been performed following a methodology composed of information collection and compilation, expert judgement on each criterion at individual and, if no consensus was reached before, also at collective level. The output is composed of the categorical answer, and for the questions where no consensus was reached, the different supporting views are reported. Details on the methodology used for this assessment are explained in a separate opinion. According to the assessment performed, Borna disease cannot be considered eligible to be listed for Union intervention as laid down in Article 5(3) of the AHL because there was no compliance on criterion 5 A(v). Consequently, the assessment on compliance of Borna disease with the criteria as in Annex IV of the AHL, for the application of the disease prevention and control rules referred to in Article 9(1) is not applicable, as well as which animal species can be considered to be listed for Borna disease according to Article 8(3) of the AHL.
Collapse
|
30
|
Weissenböck H, Bagó Z, Kolodziejek J, Hager B, Palmetzhofer G, Dürrwald R, Nowotny N. Infections of horses and shrews with Bornaviruses in Upper Austria: a novel endemic area of Borna disease. Emerg Microbes Infect 2017. [PMID: 28634359 PMCID: PMC5520313 DOI: 10.1038/emi.2017.36] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Borna disease, a lethal infection with Borna disease virus-1 (BoDV-1), was diagnosed in four horses from Upper Austria in 2015 and 2016. All cases occurred in winter (two cases in February 2015 and two cases in December 2016), and the maximal distance of the affected stables was 17 km. To demonstrate whether the causative agent was also harbored by its reservoir host, the bicolored white-toothed shrew (Crocidura leucodon), 28 shrews from this geographic area were collected in 2015 and investigated for the presence of BoDV-1. The shrew species were identified according to taxonomic clues and molecular barcodes. Affected horses and all shrews were investigated using histology, immunohistochemistry (IHC) and reverse transcription PCR. The horses exhibited severe nonpurulent encephalitis. Large amounts of BoDV-1 antigen were identified in their CNS. Among the 28 shrews, nine were identified as C. leucodon and 13 as Sorex araneus (Common shrew; Eurasian shrew). Six C. leucodon (66.7%) and one S. araneus (7.7%) had BoDV-1 infections. In accordance with previous findings, the IHC of C. leucodon exhibited a high amount of viral antigen in many neural and extraneural tissues. By contrast, the single positive S. araneus had an exclusively neural staining pattern. Of all positive samples, whole-genome BoDV-1 sequences were generated. The acquired sequences of the affected shrews were not identical to each other and clustered around the sequences of the diseased horses belonging, surprisingly, to the German ‘strain V’ cluster.
Collapse
Affiliation(s)
- Herbert Weissenböck
- Institute of Pathology and Forensic Veterinary Medicine, University of Veterinary Medicine Vienna, Vienna A-1210, Austria
| | - Zoltán Bagó
- Institute for Veterinary Disease Control Mödling, Austrian Agency for Health and Food Safety (AGES), Mödling A-2340, Austria
| | - Jolanta Kolodziejek
- Institute of Virology, University of Veterinary Medicine Vienna, Vienna A-1210, Austria
| | - Barbara Hager
- Veterinary Practice St. Agatha, St. Agatha A-4084, Austria
| | | | - Ralf Dürrwald
- Institute of Virology, University of Veterinary Medicine Vienna, Vienna A-1210, Austria
| | - Norbert Nowotny
- Institute of Virology, University of Veterinary Medicine Vienna, Vienna A-1210, Austria.,Department of Basic Medical Sciences, College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai Healthcare City, Dubai 505055, United Arab Emirates
| |
Collapse
|
31
|
Schlottau K, Hoffmann B, Homeier-Bachmann T, Fast C, Ulrich RG, Beer M, Hoffmann D. Multiple detection of zoonotic variegated squirrel bornavirus 1 RNA in different squirrel species suggests a possible unknown origin for the virus. Arch Virol 2017; 162:2747-2754. [PMID: 28593419 DOI: 10.1007/s00705-017-3432-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 05/02/2017] [Indexed: 11/30/2022]
Abstract
The recently discovered variegated squirrel bornavirus 1 (VSBV-1) caused the death of three squirrel breeders in Germany. Subsequent first screening of squirrels with in vivo collected swab samples and a VSBV-1-specific RT-qPCR revealed not only variegated squirrel infections (Sciurus variegatoides), but also Prevost's squirrels (Callosciurus prevostii) as positive for VSBV-1 genome. In this study, 328 squirrels were tested using the established RT-qPCR assays. In 16 individual animals VSBV-1 RNA could be detected; 15 individuals were from small breedings and zoological gardens in Germany, with the remaining individual being from a zoological garden in Croatia. Positive animals belonged to the species C. prevostii, C. finlaysonii, and Tamiops swinhoei within the subfamily Callosciurinae and Sciurus granatensis within the subfamily Sciurinae. Repeated non-invasive oral swab sampling in one holding indicated positive animals months after a first negative result. Besides the oral swabs, VSBV-1 was also detected in fecal (pool) samples allowing the future monitoring of squirrel holdings based on RT-qPCR investigation of such samples. The detection in zoological gardens emphasizes the need for further investigations into the transmission route to humans in order to develop rational public health measures for prevention of transmission. Finally, the detection of several closely related VSBV-1 sequences in squirrels from different subfamilies raises questions as to the origin of the virus.
Collapse
Affiliation(s)
- Kore Schlottau
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Südufer 10, 17493, Greifswald-Insel Riems, Germany
| | - Bernd Hoffmann
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Südufer 10, 17493, Greifswald-Insel Riems, Germany
| | - Timo Homeier-Bachmann
- Institute of Epidemiology, Friedrich-Loeffler-Institut, Südufer 10, 17493, Greifswald-Insel Riems, Germany
| | - Christine Fast
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Südufer 10, 17493, Greifswald-Insel Riems, Germany
| | - Rainer G Ulrich
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Südufer 10, 17493, Greifswald-Insel Riems, Germany
| | - Martin Beer
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Südufer 10, 17493, Greifswald-Insel Riems, Germany
| | - Donata Hoffmann
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Südufer 10, 17493, Greifswald-Insel Riems, Germany.
| |
Collapse
|
32
|
Mailles A, Stahl JP, Bloch KC. Update and new insights in encephalitis. Clin Microbiol Infect 2017; 23:607-613. [PMID: 28501667 DOI: 10.1016/j.cmi.2017.05.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 04/30/2017] [Accepted: 05/01/2017] [Indexed: 01/17/2023]
Abstract
Infectious encephalitis is a rare but severe medical condition resulting from direct invasion of the brain by viruses, bacteria, fungi or parasites, or indirect post-infectious immune or inflammatory disorders when the infectious agent does not cross the blood-brain barrier. Infectious encephalitis cases represent an interesting and accurate sentinel to follow up on trends in infectious diseases or to detect emerging infections. Using Pubmed and Embase, we searched the most relevant publications over the last years. We present here an update on the important findings and new data recently published about infectious encephalitis.
Collapse
Affiliation(s)
- A Mailles
- Santé publique France, Saint-Maurice, France; ESCMID Study Group on infections of the Brain.
| | - J-P Stahl
- ESCMID Study Group on infections of the Brain; Joseph Fourier University, University Hospital, Grenoble, France
| | - K C Bloch
- Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|