1
|
Csernus B, Pesti‐Asbóth G, Remenyik J, Biró S, Babinszky L, Stündl L, Oláh J, Vass N, Czeglédi L. Impact of Selected Natural Bioactive Substances on Immune Response and Tight Junction Proteins in Broiler Chickens. Vet Med Sci 2025; 11:e70175. [PMID: 40019349 PMCID: PMC11869566 DOI: 10.1002/vms3.70175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 11/05/2024] [Accepted: 11/29/2024] [Indexed: 03/01/2025] Open
Abstract
This study was conducted to examine the effect of dietary natural compounds, such as β-glucan, carotenoids, oligosaccharides and anthocyanins, on immune response and tight junction proteins in broiler chickens. A total of 900 one-day-old chickens were allocated to five treatments in three floor pens (replicates) of 60 broilers per pen. Chickens were fed five diets: a control (basal) diet, a diet supplemented with β-glucan at 0.05%, or diets supplemented with carotenoids, oligosaccharides or anthocyanins at 0.5% of each compound. Male broilers were randomly selected for sample collections. On Day 25, plasma samples were collected from the brachial vein. On Day 26, six broilers were intraperitoneally injected with 2 mg of lipopolysaccharide per kg of body weight. Twelve hours later (Day 27), blood and ileum samples were collected to determine immune parameters and tight junction proteins using ELISA assays. The results showed that anthocyanin supplementation reduced the level of interleukin-1β compared to the lipopolysaccharide-injected control group (p = 0.047), which suggests that anthocyanin could partly alleviate the inflammation. Carotenoids reached a lower level of interleukin-6 compared to the β-glucan treatment (p = 0.0466). β-Glucan (p = 0.0382) and oligosaccharides (p = 0.0449) increased the level of plasma immunoglobulin G compared to the challenged control group, which may indicate an enhanced humoral immunity. Furthermore, β-glucan (except for occludin 2), carotenoids, oligosaccharides and anthocyanins increased (p < 0.05) the levels of ileal zonula occludens-1, occludin 1 and occludin 2 compared to the lipopolysaccharide-challenged control chickens. This may suggest that all the bioactive substances improved the gut barrier function. The plasma levels of tight junction proteins show higher concentrations in lipopolysaccharide-challenged groups compared to the non-challenged groups (p < 0.05). This may refer to the tight junction disruption and appearance in circulation as a reflection of lipopolysaccharide exposure.
Collapse
Affiliation(s)
- Brigitta Csernus
- Department of Evolutionary Zoology and Human BiologyUniversity of DebrecenDebrecenHungary
| | - Georgina Pesti‐Asbóth
- Doctoral School of Animal ScienceUniversity of DebrecenDebrecenHungary
- Center for Complex Systems and Microbiome Innovations, Faculty of Agricultural and Food Sciences and Environmental ManagementUniversity of DebrecenDebrecenHungary
| | - Judit Remenyik
- Center for Complex Systems and Microbiome Innovations, Faculty of Agricultural and Food Sciences and Environmental ManagementUniversity of DebrecenDebrecenHungary
| | - Sándor Biró
- Department of Human Genetics, Faculty of MedicineUniversity of DebrecenDebrecenHungary
| | - László Babinszky
- Department of Animal Nutrition Physiology, Institute of Animal Science, Biotechnology and Nature Conservation, Faculty of Agricultural and Food Sciences and Environmental ManagementUniversity of DebrecenDebrecenHungary
| | - László Stündl
- Institute of Food Technology, Faculty of Agricultural and Food Sciences and Environmental ManagementUniversity of DebrecenDebrecenHungary
| | - János Oláh
- Farm and Regional Research Institute of DebrecenUniversity of DebrecenDebrecenHungary
| | - Nóra Vass
- Department of Animal Science, Institute of Animal Science, Biotechnology and Nature Conservation, Faculty of Agricultural and Food Sciences and Environmental ManagementUniversity of DebrecenDebrecenHungary
| | - Levente Czeglédi
- Department of Animal Science, Institute of Animal Science, Biotechnology and Nature Conservation, Faculty of Agricultural and Food Sciences and Environmental ManagementUniversity of DebrecenDebrecenHungary
| |
Collapse
|
2
|
Barekatain R, Inhuber V, Sharma N, Nowland T, Van TTH, Moore RJ, Cadogan D. Intestinal barrier function, caecal microbiota and growth performance of thermoneutral or heat stressed broiler chickens fed reduced crude protein diets supplemented with guanidinoacetic acid. Poult Sci 2025; 104:104792. [PMID: 39805251 PMCID: PMC11770507 DOI: 10.1016/j.psj.2025.104792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 01/04/2025] [Accepted: 01/07/2025] [Indexed: 01/16/2025] Open
Abstract
The effectiveness of guanidinoacetic acid (GAA) in reduced protein (RP) diets on performance and gut health of broilers under heat stress is largely unknown. A 35-d experiment was conducted using four dietary treatments: a standard protein diet (SP, 22.1 and 20.7% CP in grower and finisher), a RP diet (20.1 and 18.7% in grower and finisher), a RP diet with 0.092% GAA per kg diet substituting 50% of supplemented arginine (GAA50) at one-to-one ratio and a RP diet with the same amount of GAA added on top (GAAtop). Day-old male Ross 308 chicks were assigned to 64 pens (10 birds each) in two rooms. In each room, each diet was replicated 8 times. From d 25 to 35, birds in one room were subjected to a cyclic heat stress (32±1 °C for 8 h). There was no interaction between diets and heat stress for any of the studied parameters. GAA50 followed by GAAtop significantly decreased the feed intake during the finisher phase (P<0.01) and from d 10 to 35 (P<0.001), compared with SP diet. Heat stress reduced (P<0.0001) feed intake and body weight gain at all stages of the study but did not impact FCR. The GAA50 tended to reduce FCR from d 24 to 35 (P=0.086) and d 10 to 35 (P=0.082) compared with SP and RP. Heat stress increased (P<0.05) intestinal permeability whereas diets had no effect. The gene expression of IL1β was downregulated (P<0.01) by GAA50 but diet had no effect on other selected genes. Heat stress upregulated the expression of several genes including Claudin 2, Claudin 3, GPX-1, HSP70, IL1β, SOD-1 and AMPK-α1. Caecal microbiota composition remained unaffected. The results indicate that replacing 50% of supplemented arginine with GAA tends to improve FCR by reducing the feed intake under both thermoneutral and heat stress conditions without any interaction. Supplementation of GAA or two percentage points reduction of dietary protein had no demonstrable effects on parameters of intestinal health.
Collapse
Affiliation(s)
- Reza Barekatain
- South Australian Research and Development Institute, Roseworthy Campus, Roseworthy, SA, Australia; School of Animal and Veterinary Sciences, Roseworthy Campus, University of Adelaide, Roseworthy, SA, Australia.
| | | | - Nishchal Sharma
- School of Environmental and Rural Science, University of New England, Armidale, NSW, Australia
| | - Tanya Nowland
- South Australian Research and Development Institute, Roseworthy Campus, Roseworthy, SA, Australia; School of Animal and Veterinary Sciences, Roseworthy Campus, University of Adelaide, Roseworthy, SA, Australia
| | - Thi Thu Hao Van
- School of Science, RMIT University, Bundoora West Campus, Bundoora, VIC, Australia
| | - Robert J Moore
- School of Science, RMIT University, Bundoora West Campus, Bundoora, VIC, Australia
| | | |
Collapse
|
3
|
Khaskheli AA, Niknafs S, Meijer MMY, Tan X, Ferket PR, Roura E. The in ovo screening of 27 single essential oils showed selective effects on hatchability, performance and gene expression relevant to gut functions in broilers at hatch. Poult Sci 2025; 104:104670. [PMID: 39693964 PMCID: PMC11720607 DOI: 10.1016/j.psj.2024.104670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 12/09/2024] [Accepted: 12/12/2024] [Indexed: 12/20/2024] Open
Abstract
The early post-hatching phase remains to be one of the most vulnerable phases in broiler production. Some essential oils have been reported to improve gut health and growth in broiler chickens when applied to post-hatching diets. However, in-feed applications are unable to prevent the health challenges observed immediately after hatching. Thus, pre-hatch interventions need to be considered. A research project was developed with the aim of investigating the impact of in ovo application of 27 selected essential oils (EOs) on foetal development with emphasis on gut integrity in broiler hatchlings. The eggs were incubated under standard conditions until day 17.5, when 1 mL of each EO preparation (5 µL EO + 5 µL polysorbate-80 + 990 µL saline) was injected into the amnion. Hatchability, body weight and organ weights (residual yolk, gizzard-proventriculus, intestines, liver, and heart) were measured at hatch. Five essential oils eugenol, clove, tea tree, lemongrass, and thyme, significantly (P < 0.05) reduced hatchability (66.67 %, 58.33, 83.30 and 83.30 %) compared to the saline (96.80 %), were discarded from the rest of the study. The other 22 essential oils were investigated in a second phase to assess their impact on expression of gut biomarkers including: a) jejunum integrity; b) digestive enzymes and nutrient transporters; and c) immune system. The results indicated that lemon myrtle significantly increased and oregano EO decreased body weight at hatch (BW0) compared to the saline (P < 0.05). Ylang ylang, clary sage, bergamot, lemon myrtle, and black pepper upregulated the expressions of biomarkers regulating gut integrity and barrier functions (ZO-1, ZO-2, CLDN1, MARVELD2, EGFR and EGF), nutrients transporters (EAAT3, PEPT1, I-FABP1, SGLT1), and digestive enzymes (APN, SI). Ylang ylang, turmeric acid, star anise, clary sage, and black pepper upregulated the expression of gut immunity biomarkers IL1B, IL10, IGMH, CD3D, and BU1 compared to the saline. In conclusion, in ovo delivery of selected EOs has the potential to improve embryonic development relevant to nutrient digestion and absorption, gut integrity and immunity in broilers.
Collapse
Affiliation(s)
- Asad A Khaskheli
- Queensland Alliance for Agriculture and Food Innovation (QAAFI), The University of Queensland, Australia
| | - Shahram Niknafs
- Queensland Alliance for Agriculture and Food Innovation (QAAFI), The University of Queensland, Australia
| | - Mila M Y Meijer
- Queensland Alliance for Agriculture and Food Innovation (QAAFI), The University of Queensland, Australia
| | - Xinle Tan
- Queensland Alliance for Agriculture and Food Innovation (QAAFI), The University of Queensland, Australia
| | - Peter R Ferket
- Prestage Department of Poultry Science, North Carolina State University, Raleigh, USA
| | - Eugeni Roura
- Queensland Alliance for Agriculture and Food Innovation (QAAFI), The University of Queensland, Australia.
| |
Collapse
|
4
|
Santana T, da Silva A, Bastos M, dos Santos Conceição J, de Souza Khatlab A, Gasparino E, Barbosa L, Brito C, Del Vesco A. Methionine Supplementation of Maternal Diet Improves Hatching Traits, Initial Development, and Performance in Japanese Quail Fed Different Levels of Methionine During Growth. Anim Sci J 2025; 96:e70044. [PMID: 40051288 PMCID: PMC11886033 DOI: 10.1111/asj.70044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 01/20/2025] [Accepted: 01/23/2025] [Indexed: 03/10/2025]
Abstract
This study examined the effects of dietary levels of methionine on lipid and intestinal metabolism in Japanese quail hens and their progeny. The experiment was conducted according to a 3 × 3 factorial design, with three maternal and three progeny diets, as follows: low-methionine (LMET), recommended methionine (MET), and high-methionine (HMET). Methionine supplementation improved reproductive performance during laying (p < 0.05). Intestinal morphometry revealed that MET and HMET diets increased duodenal villus width and crypt depth in hens (p < 0.05). Hens fed the HMET diet showed higher expression of amino acid transport and barrier function genes. Hens fed LMET produced offspring with lower body weight at 15 days of age and lower weight gain (1-15 days of age) than hens fed MET and HMET (p = 0.0002). During the grower phase, chicks fed LMET diet had lower body weight at 15 (p < 0.0001) and 35 (p < 0.0001) days and worse feed conversion ratio (p = 0.0006) than chicks fed MET and HMET. Progeny from MET or HMET hens had improved intestinal histomorphometry. Overall, methionine supplementation of quail diets enhances intestinal function and reproductive performance in hens, improving chick performance in the starter and grower phases.
Collapse
Affiliation(s)
- Thaís Pacheco Santana
- Integrated Graduate Program in Animal ScienceFederal University of SergipeSão CristóvãoSergipeBrazil
| | | | - Marisa Silva Bastos
- Integrated Graduate Program in Animal ScienceFederal University of SergipeSão CristóvãoSergipeBrazil
| | | | | | - Eliane Gasparino
- Department of Animal ScienceState University of MaringáMaringáParanáBrazil
| | | | - Claudson Oliveira Brito
- Integrated Graduate Program in Animal ScienceFederal University of SergipeSão CristóvãoSergipeBrazil
- Department of Animal ScienceFederal University of SergipeSão CristóvãoSergipeBrazil
| | - Ana Paula Del Vesco
- Integrated Graduate Program in Animal ScienceFederal University of SergipeSão CristóvãoSergipeBrazil
- Department of Animal ScienceFederal University of SergipeSão CristóvãoSergipeBrazil
| |
Collapse
|
5
|
Barekatain R, Hall L, Chrystal PV, Fickler A. Nutrient utilisation and growth performance of broiler chickens fed standard or moderately reduced dietary protein diets with and without β-mannanase supplementation. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2024; 19:131-138. [PMID: 39635419 PMCID: PMC11615931 DOI: 10.1016/j.aninu.2024.05.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 05/06/2024] [Accepted: 05/09/2024] [Indexed: 12/07/2024]
Abstract
The use of reduced protein diets in broiler chicken production provides potential benefits for performance and environmental footprint of production. The effectiveness of β-Mannanase supplementation in wheat and soy based standard protein (SP) and reduced protein (RP) diets was tested for growth performance, nutrient utilisation and selected intestinal gene expression of broiler chickens. In a 2 × 2 factorial arrangement of treatments, two main factors included dietary protein (standard and reduced protein) and β-Mannanase supplementation (with or without). All diets contained phytase and carbohydrases (xylanase and glucanase). A total of 480 Ross 308 male off-sex day-old chickens were assigned to the four experimental diets in a 35-d study. Each diet was replicated 12 times with 10 birds per replicate. Using an additional 160 birds, separate apparent metabolizable energy (AME) and nutrient digestibility assays were undertaken for the 4 experimental diets from d 21 to 24 of age. Selected genes involved in gut integrity, inflammation and immune response were quantified using quantitative PCR assays. There was no interaction between β-Mannanase and dietary protein for any of the studied parameters except ileal viscosity. Enzyme had no effect on feed intake but tended to increase body weight gain (BWG) from d 0 to 35 of age (P = 0.079). Birds fed RP diet consumed more feed when assessed from d 0 to 35 of age (P = 0.029). At the same time, β-Mannanase tended to reduce feed conversion ratio independent of dietary protein (P = 0.069). β-Mannanase reduced ileal viscosity of the birds fed RP diet (P < 0.001). Reducing dietary protein increased nitrogen retention, nitrogen digestibility coefficient and digestibility coefficients of 11 amino acids (P < 0.001). β-Mannanase significantly improved digestibility coefficients of nitrogen and Arg, Gly, Thr, Lys, and Ile (P < 0.05). Dietary treatments had no effect on AME or gene expression of selected tight junction proteins, interleukin-10, interleukin-1β, mucin-2 and nuclear factor-kappa B. In conclusion, supplementation of β-Mannanase tended to improve feed efficiency and increased nutrient digestibility of broilers fed wheat-based diets independent of a moderate reduction in dietary protein. Complementary mode of actions of β-Mannanase for intestinal health requires further investigation.
Collapse
Affiliation(s)
- Reza Barekatain
- South Australian Research and Development Institute, Roseworthy Campus, Roseworthy, 5371 SA, Australia
- School of Animal and Veterinary Sciences, Roseworthy Campus, University of Adelaide, Roseworthy, 5371 SA, Australia
| | - Leon Hall
- BASF Australia Ltd, Melbourne, 3006 VIC, Australia
| | | | | |
Collapse
|
6
|
Shanmugasundaram R, Ajao AM, Fathima S, Oladeinde A, Selvaraj RK, Applegate TJ, Olukosi OA. Growth performance and immune response of broilers during active Eimeria infection are modified by dietary inclusion of canola meal or corn-DDGS in reduced-protein corn-soybean meal diets. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2024; 19:442-452. [PMID: 39650693 PMCID: PMC11621932 DOI: 10.1016/j.aninu.2024.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 04/23/2024] [Accepted: 05/05/2024] [Indexed: 12/11/2024]
Abstract
The objective of this experiment was to study the effects of partial replacement of soybean meal (SBM) with canola meal (CM) or corn-distillers' dried grains with solubles (cDDGS) in reduced-protein (RP) diets for Eimeria-infected broilers. A total of 1120 broiler chicks were distributed in a 4 × 2 (4 diets × with or without infection) factorial arrangement with 7 replicates per treatment and 20 birds per replicate. The 4 diets, fed between d 7 and 42, were (i) a standard diet with crude protein at 200 g/kg (SP); (ii) a RP (crude protein at 160 g/kg) corn-SBM diet (RP-SBM); (iii) a RP diet in which 80 g/kg CM replaced 60 g/kg SBM (RP-CM); and (iv) a RP diet in which 100 g/kg cDDGS replaced 50 g/kg SBM (RP-cDDGS). On d 15, birds were infected with mixed Eimeria (+E) oocysts. Birds and feed were weighed at intervals for growth performance, and samples for immunology responses were collected on d 21. The results showed as follows: 1) during the acute infection phase, diet × Eimeria infection was shown by the diets having no effect in the uninfected group. In contrast, the RP-SBM diet tended to produce higher (P < 0.10) weight gain among the infected birds. The d 42 body weight was greater (P = 0.001) for the uninfected birds. 2) There was a significant diet × Eimeria infection on bile anti-Eimeria immunoglobulin A (IgA) concentrations (P = 0.015), splenocyte proliferation, macrophage nitric oxide (NO) production (P < 0.001), and cecal tonsil interleukin (IL)-17 mRNA amounts (P < 0.001). Most of these responses were not influenced by the diets in the uninfected birds. However, among the infected birds, birds fed RP-SBM had higher (P < 0.05) bile IgA than those fed SP or RP-cDDGS. For the spleen, the interaction was that birds fed RP-SBM or RP-cDDGS diets had the highest or lowest NO production, respectively, and birds that received RP-SBM had greater (P < 0.05) splenic CD8+:CD4+ cell ratio than other diets. In conclusion, partial replacement of SBM with CM or cDDGS had only a marginal effect on d 42 body weight and FCR of the broiler chickens receiving the RP diets. In contrast, these had a negative impact on the immune responses of the broiler chickens.
Collapse
Affiliation(s)
| | - Adeleye M. Ajao
- Department of Poultry Science, University of Georgia, Athens, GA, USA
| | - Shahna Fathima
- Department of Poultry Science, University of Georgia, Athens, GA, USA
| | | | | | - Todd J. Applegate
- Department of Poultry Science, University of Georgia, Athens, GA, USA
| | | |
Collapse
|
7
|
Selle PH, Macelline SP, Toghyani M, Liu SY. The potential of glutamine supplementation in reduced-crude protein diets for chicken-meat production. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2024; 18:49-56. [PMID: 39022775 PMCID: PMC466976 DOI: 10.1016/j.aninu.2024.03.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 03/04/2024] [Accepted: 03/25/2024] [Indexed: 07/20/2024]
Abstract
This review explores the potential of including glutamine, a so-called non-essential amino acid, in the formulation of reduced-crude protein (CP) diets for broiler chickens. There is a precedent for benefits when including glycine and serine in reduced-CP diets. Fundamentally this is due to decreases in non-essential amino acid concentrations in reduced-CP diets - an unavoidable consequence of reducing CP without amino acid supplementation. The situation for glutamine is complicated because analysed dietary concentrations are very rarely provided as standard assays do not differentiate between glutamine and glutamate and are reported on a combined basis as glutamic acid. The dietary requirement for glutamic acid is approximately 36.3 g/kg but it is increasingly unlikely that this requirement will be met as dietary CP levels are progressively reduced. Glutamine is an abundant and versatile amino acid and constitutes 50.5 mg/g of whole-body chicken protein and is the dominant free amino acid in systemic plasma where it has been shown to provide 22.6% (139.9 of 620.3 μg/mL) of the total in birds offered 215 g/kg CP, wheat-based diets. In addition to dietary intakes, glutamine biosynthesis is derived mainly from the condensation of glutamate and ammonia (NH3) catalysed by glutamine synthetase, a reaction that is pivotal to NH3 detoxification. Glutamate and NH3 are converted to glutamine by phosphate-dependent glutaminase in the reciprocal reaction; thus, glutamine and glutamate are interchangeable amino acids. However, the rate of glutamine biosynthesis may not be adequate in rapidly growing broiler chickens and exogenous and endogenous glutamine levels are probably insufficient in birds offered reduced-CP diets. The many functional roles of glutamine, including NH3 detoxification and maintenance of acid-base homeostasis, then become relevant. Twenty feeding studies were identified where dietary glutamine supplementation, usually 10 g/kg, was evaluated in birds kept under thermoneutral conditions. On balance, the outcomes were positive, but the average dietary CP was 213 g/kg across the twenty feeding studies, which indicates that CP and, in turn, glutamine concentrations would have been adequate. This suggests that glutamine inclusions in reduced-CP diets hold potential and consideration is given to how this may be best confirmed.
Collapse
Affiliation(s)
- Peter H. Selle
- Poultry Research Foundation within the University of Sydney, Camden, NSW 2570, Australia
- Sydney School of Veterinary Science, The University of Sydney, Camden, NSW 2570, Australia
| | - Shemil P. Macelline
- Poultry Research Foundation within the University of Sydney, Camden, NSW 2570, Australia
- School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Camden, NSW 2570, Australia
| | - Mehdi Toghyani
- Poultry Research Foundation within the University of Sydney, Camden, NSW 2570, Australia
- School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Camden, NSW 2570, Australia
| | - Sonia Yun Liu
- Poultry Research Foundation within the University of Sydney, Camden, NSW 2570, Australia
- School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Camden, NSW 2570, Australia
| |
Collapse
|
8
|
Fathima S, Al Hakeem WG, Shanmugasundaram R, Periyannan V, Varadhan R, Selvaraj RK. Effect of 125% and 135% arginine on the growth performance, intestinal health, and immune responses of broilers during necrotic enteritis challenge. Poult Sci 2024; 103:103826. [PMID: 38761462 PMCID: PMC11133980 DOI: 10.1016/j.psj.2024.103826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 04/20/2024] [Accepted: 05/02/2024] [Indexed: 05/20/2024] Open
Abstract
The objective of this study was to evaluate the effects of 25% and 35% arginine supplementation in partially alleviating the effects of necrotic enteritis (NE) challenge on the production performance, intestinal integrity, and relative gene expression of tight junction proteins and inflammatory cytokines in broilers. Four hundred and eighty 1-day-old chicks were randomly allocated to the 4 treatments- Uninfected + Basal, NE + Basal, NE + Arg 125%, and NE + Arg 135%. NE was induced by inoculating 1 × 104Eimeria maxima sporulated oocysts on d 14 and 1 × 108 CFU/bird C. perfringens on d 19, 20, and 21 of age by oral gavage. The NE challenge significantly decreased body weight gain (BWG) (p < 0.05) and increased the feed conversion ratio (FCR) (p < 0.05). On d 21, the NE challenge also increased the jejunal lesion score (p < 0.05) and relative gene expression of IL-10 and decreased the expression of the tight junction proteins occludin (p < 0.05) and claudin-4 (p < 0.05). The 125% arginine diet significantly increased intestinal permeability (p < 0.05) and the relative gene expression of iNOS (p < 0.05) and IFN-γ (p < 0.05) on d 21 and the bile anti-C. perfringens IgA concentration by 39.74% (p < 0.05) on d 28. The 135% arginine diet significantly increased the feed intake during d 0 - 28 (p < 0.05) and 0 to 35 (p < 0.05) and increased the FCR on d 0 to 35 (p < 0.05). The 135% and 125% arginine diet increased the spleen CD8+: CD4+ T-cell ratio on d 28 (p < 0.05) and 35 (p < 0.05), respectively. The 135% arginine diet increased the CT CD8+:CD4+ T-cell ratio on d 35 (p < 0.05). In conclusion, the 125% and 135% arginine diets did not reverse the effect of the NE challenge on the growth performance. However, the 125% arginine diet significantly increased the cellular and humoral immune response to the challenge. Hence, the 125% arginine diet could be used with other feed additives to improve the immune response of the broilers during the NE challenge.
Collapse
Affiliation(s)
- Shahna Fathima
- Department of Poultry Science, University of Georgia, Athens, GA USA
| | - Walid G Al Hakeem
- Department of Poultry Science, University of Georgia, Athens, GA USA
| | - Revathi Shanmugasundaram
- Toxicology and Mycotoxin Research Unit, U.S. National Poultry Research Center, United States Department of Agriculture, Athens, GA 30605, USA
| | - Vasanthakumar Periyannan
- Department of Animal Nutrition, Tamil Nadu Veterinary and Animal Sciences University, Chennai, India
| | - Ranganathan Varadhan
- Department of Veterinary Pharmacology, Tamil Nadu Veterinary and Animal Sciences University, Chennai, India
| | - Ramesh K Selvaraj
- Department of Poultry Science, University of Georgia, Athens, GA USA.
| |
Collapse
|
9
|
Fathima S, Hakeem WGA, Shanmugasundaram R, Selvaraj RK. Effect of arginine supplementation on the growth performance, intestinal health, and immune responses of broilers during necrotic enteritis challenge. Poult Sci 2024; 103:103815. [PMID: 38713988 PMCID: PMC11091696 DOI: 10.1016/j.psj.2024.103815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 04/07/2024] [Accepted: 04/24/2024] [Indexed: 05/09/2024] Open
Abstract
The objective of this study was to evaluate the effect of 25% arginine supplementation as a functional amino acid in partially alleviating the detrimental effects of necrotic enteritis (NE) on the growth performance, serum biochemistry, gut integrity, and the relative gene expression of tight junction proteins and inflammatory cytokines in broilers during NE. Three hundred and sixty 1-day-old chicks were randomly allocated to 4 treatments in a 2 × 2 factorial arrangement -basal diet and 125% arginine diet, with or without NE challenge. NE was induced by inoculating 1 × 104Eimeria maxima sporulated oocysts on d 14 and 1 × 108 CFU/bird C. perfringens on d 19, 20, and 21. The NE challenge had a significant effect on the BWG (p < 0.05), FCR (p < 0.05), serum AST (p < 0.05), GLU (p < 0.05), and K+ (p < 0.05) levels, and intestinal permeability (p < 0.05) and jejunal lesion score (p < 0.05). A significant challenge × diet interaction effect was observed in the cecal tonsil CD8+: CD4+ T-cell ratio on d 21 (p < 0.05) and 28 (p < 0.05) and spleen CD8+: CD4+ T-cell ratio on d 21 (p < 0.05) and 35 (p < 0.05). Arginine supplementation significantly increased the CD8+: CD4+ T-cell ratio in uninfected birds but decreased the CD8+: CD4+ T-cell ratio in infected birds. On d 21, a significant interaction effect was observed on the relative expression of the iNOS gene (p < 0.05). Arginine supplementation significantly downregulated the expression of the iNOS gene in infected birds. A significant effect of the challenge (p < 0.05) was observed on the relative gene expression of the ZO-1 gene in the jejunum. NE challenge significantly downregulated the expression of the ZO-1 gene on d 21. In conclusion, arginine supplementation did not alleviate the depression in growth performance and disease severity during the NE challenge. However, arginine downregulated the expression of inflammatory cytokines and enzymes, preventing inflammatory injury to the tissues during NE. Hence, arginine might be supplemented with other alternatives to downregulate inflammatory response during NE in poultry.
Collapse
Affiliation(s)
- Shahna Fathima
- Department of Poultry Science, University of Georgia, Athens, GA, USA
| | - Walid G Al Hakeem
- Department of Poultry Science, University of Georgia, Athens, GA, USA
| | - Revathi Shanmugasundaram
- Toxicology and Mycotoxin Research Unit, U.S. National Poultry Research Center, United States Department of Agriculture, Athens, GA 30605, USA
| | - Ramesh K Selvaraj
- Department of Poultry Science, University of Georgia, Athens, GA, USA.
| |
Collapse
|
10
|
Mantzios T, Kiousi DE, Brellou GD, Papadopoulos GA, Economou V, Vasilogianni M, Kanari E, Petridou E, Giannenas I, Tellez-Isaias G, Pappa A, Galanis A, Tsiouris V. Investigation of Potential Gut Health Biomarkers in Broiler Chicks Challenged by Campylobacter jejuni and Submitted to a Continuous Water Disinfection Program. Pathogens 2024; 13:356. [PMID: 38787208 PMCID: PMC11124259 DOI: 10.3390/pathogens13050356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/16/2024] [Accepted: 04/24/2024] [Indexed: 05/25/2024] Open
Abstract
The exploration of novel biomarkers to assess poultry health is of paramount importance, not only to enhance our understanding of the pathogenicity of zoonotic agents but also to evaluate the efficacy of novel treatments as alternatives to antibiotics. The present study aimed to investigate potential gut health biomarkers in broiler chicks challenged by Campylobacter jejuni and subjected to a continuous water disinfection program. A total of 144 one-day-old hatched broiler chicks were randomly allocated to four treatment groups with four replicates each, according to the following experimental design: Group A received untreated drinking water; Group B received drinking water treated with 0.01-0.05% v/v Cid 2000™ (hydrogen peroxide, acetic acid and paracetic acid); Group C was challenged by C. jejuni and received untreated drinking water; and Group D was challenged by C. jejuni and received drinking water treated with 0.01-0.05% v/v Cid 2000™. The use of Cid 2000™ started on day 1 and was applied in intervals until the end of the experiment at 36 days, while the C. jejuni challenge was applied on day 18. Potential biomarkers were investigated in serum, feces, intestinal tissue, intestinal content, and liver samples of broilers. Statistical analysis revealed significant increases (p < 0.001) in serum cortisol levels in C. jejuni-challenged broilers. Serum fluorescein isothiocyanate dextran (FITC-d) increased significantly (p = 0.004) in broilers challenged by C. jejuni and treated with drinking water disinfectant, while fecal ovotransferrin concentration also increased significantly (p < 0.001) in broilers that received the drinking water disinfectant alone. The gene expression levels of occludin (p = 0.003) and mucin-2 (p < 0.001) were significantly upregulated in broilers challenged by C. jejuni, while mucin-2 significantly increased in birds that were challenged and received the drinking water disinfectant (p < 0.001). TLR-4 expression levels were significantly (p = 0.013) decreased in both groups that received the drinking water disinfectant, compared to the negative control group. Finally, the C. jejuni challenge significantly increased (p = 0.032) the crypt depth and decreased (p = 0.021) the villus height-to-crypt-depth ratio in the ileum of birds, while the tested disinfectant product increased (p = 0.033) the villus height in the jejunum of birds. Furthermore, the counts of C. jejuni in the ceca of birds (p = 0.01), as well as its translocation rate to the liver of broilers (p = 0.001), were significantly reduced by the addition of the water disinfectant. This research contributes to novel insights into the intricate interplay of water disinfection and/or C. jejuni challenge with potential intestinal biomarkers. In addition, it emphasizes the need for continued research to unveil the underlying mechanisms, expands our understanding of broiler responses to these challenges and identifies breakpoints for further investigations.
Collapse
Affiliation(s)
- Tilemachos Mantzios
- Unit of Avian Medicine, Clinic of Farm Animals, School of Veterinary Medicine, Aristotle University of Thessaloniki, 546 27 Thessaloniki, Greece;
- Department of Molecular Biology and Genetics, Faculty of Health Sciences, Democritus University of Thrace, 68 100 Alexandroupolis, Greece; (D.E.K.); (E.K.); (A.P.); (A.G.)
| | - Despoina E. Kiousi
- Department of Molecular Biology and Genetics, Faculty of Health Sciences, Democritus University of Thrace, 68 100 Alexandroupolis, Greece; (D.E.K.); (E.K.); (A.P.); (A.G.)
| | - Georgia D. Brellou
- Laboratory of Pathology, School of Veterinary Medicine, Aristotle University of Thessaloniki, 546 27 Thessaloniki, Greece
| | - Georgios A. Papadopoulos
- Laboratory of Animal Husbandry, School of Veterinary Medicine, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece;
| | - Vangelis Economou
- Laboratory of Hygiene of Animal Food Products—Veterinary Public Health, School of Veterinary Medicine, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece;
| | - Marili Vasilogianni
- Pathobiology and Population Sciences, Royal Veterinary College, London NW1 0TU, UK;
| | - Elisavet Kanari
- Department of Molecular Biology and Genetics, Faculty of Health Sciences, Democritus University of Thrace, 68 100 Alexandroupolis, Greece; (D.E.K.); (E.K.); (A.P.); (A.G.)
| | - Evanthia Petridou
- Laboratory of Microbiology and Infectious Diseases, School of Veterinary Medicine, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece;
| | - Ilias Giannenas
- Laboratory of Nutrition, School of Veterinary Medicine, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece;
| | | | - Aglaia Pappa
- Department of Molecular Biology and Genetics, Faculty of Health Sciences, Democritus University of Thrace, 68 100 Alexandroupolis, Greece; (D.E.K.); (E.K.); (A.P.); (A.G.)
| | - Alex Galanis
- Department of Molecular Biology and Genetics, Faculty of Health Sciences, Democritus University of Thrace, 68 100 Alexandroupolis, Greece; (D.E.K.); (E.K.); (A.P.); (A.G.)
| | - Vasilios Tsiouris
- Unit of Avian Medicine, Clinic of Farm Animals, School of Veterinary Medicine, Aristotle University of Thessaloniki, 546 27 Thessaloniki, Greece;
| |
Collapse
|
11
|
Fathi MA, Shen D, Luo L, Li Y, Elnesr SS, Li C. The exposure in ovo to glyphosate on the integrity of intestinal epithelial tight junctions of chicks. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2024; 59:183-191. [PMID: 38400726 DOI: 10.1080/03601234.2024.2319006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/26/2024]
Abstract
Glyphosate is an ingredient widely used in various commercial formulations, including Roundup®. This study focused on tight junctions and the expression of inflammatory genes in the small intestine of chicks. On the sixth day of embryonic development, the eggs were randomly assigned to three groups: the control group (CON, n = 60), the glyphosate group (GLYP, n = 60), which received 10 mg of active glyphosate/kg egg mass, and the Roundup®-based glyphosate group also received 10 mg of glyphosate. The results indicated that the chicks exposed to glyphosate or Roundup® exhibited signs of oxidative stress. Additionally, histopathological alterations in the small intestine tissues included villi fusion, complete fusion of some intestinal villi, a reduced number of goblet cells, and necrosis of some submucosal epithelial cells in chicks. Genes related to the small intestine (ZO-1, ZO-2, Claudin-1, Claudin-3, JAM2, and Occludin), as well as the levels of pro-inflammatory cytokines (IFNγ, IL-1β, and IL-6), exhibited significant changes in the groups exposed to glyphosate or Roundup® compared to the control group. In conclusion, the toxicity of pure glyphosate or Roundup® likely disrupts the small intestine of chicks by modulating the expression of genes associated with tight junctions in the small intestine.
Collapse
Affiliation(s)
- Mohamed A Fathi
- Jiangsu Joint International Research Laboratory of Animal Gastrointestinal Genomes Research Center for Livestock Environmental Control and Smart Production, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, P.R. China
- Animal Production Research Institute, Agricultural Research Centre, Dokki, Giza, Egypt
| | - Dan Shen
- Jiangsu Joint International Research Laboratory of Animal Gastrointestinal Genomes Research Center for Livestock Environmental Control and Smart Production, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, P.R. China
| | - Lu Luo
- Jiangsu Joint International Research Laboratory of Animal Gastrointestinal Genomes Research Center for Livestock Environmental Control and Smart Production, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, P.R. China
| | - Yansen Li
- Jiangsu Joint International Research Laboratory of Animal Gastrointestinal Genomes Research Center for Livestock Environmental Control and Smart Production, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, P.R. China
| | - Shaaban S Elnesr
- Department of Poultry Production, Faculty of Agriculture, Fayoum University, Fayoum, Egypt
| | - Chunmei Li
- Jiangsu Joint International Research Laboratory of Animal Gastrointestinal Genomes Research Center for Livestock Environmental Control and Smart Production, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, P.R. China
| |
Collapse
|
12
|
Horyanto D, Bajagai YS, Kayal A, von Hellens J, Chen X, Van TTH, Radovanović A, Stanley D. Bacillus amyloliquefaciens Probiotics Mix Supplementation in a Broiler Leaky Gut Model. Microorganisms 2024; 12:419. [PMID: 38399823 PMCID: PMC10892336 DOI: 10.3390/microorganisms12020419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 02/13/2024] [Accepted: 02/14/2024] [Indexed: 02/25/2024] Open
Abstract
The supplementation of antimicrobial growth promoters (AGPs) has been banned in many countries because of the emergence of antimicrobial-resistant pathogens in poultry products and the environment. Probiotics have been broadly studied and demonstrated as a promising AGP substitute. Our study is centred on the effects of a multi-strain Bacillus-based probiotic product on broiler production performance and gut microbial profile in a dexamethasone-induced leaky gut challenge. Two hundred and fifty-six broiler chicks were hatched and randomly assigned into four groups (wheat-soybean meal basal diet (BD) = non-supplemented control (C), BD supplemented with dexamethasone in week 4 (CD), BD containing a probiotic from day one (P), and BD containing a probiotic from day one and supplemented with dexamethasone during challenge week 4 (PD)). The production performance and caecal, gizzard, jejunal lumen and jejunal mucosa swab microbiota were studied by 16S rRNA gene sequencing. The Bacillus probiotic product significantly improved production performance and altered caecal gut microbiota (p ≤ 0.05), but no significant impact on microbiota was observed in other gut sections.
Collapse
Affiliation(s)
- Darwin Horyanto
- Institute for Future Farming Systems, Central Queensland University, Rockhampton, QLD 4702, Australia (A.K.)
- Bioproton Pty Ltd., Acacia Ridge, QLD 4110, Australia (X.C.)
| | - Yadav S. Bajagai
- Institute for Future Farming Systems, Central Queensland University, Rockhampton, QLD 4702, Australia (A.K.)
| | - Advait Kayal
- Institute for Future Farming Systems, Central Queensland University, Rockhampton, QLD 4702, Australia (A.K.)
| | | | - Xiaojing Chen
- Bioproton Pty Ltd., Acacia Ridge, QLD 4110, Australia (X.C.)
| | - Thi Thu Hao Van
- School of Science, RMIT University, Bundoora, VIC 3083, Australia
| | - Anita Radovanović
- Faculty of Veterinary Medicine, University of Belgrade, 11000 Belgrade, Serbia;
| | - Dragana Stanley
- Institute for Future Farming Systems, Central Queensland University, Rockhampton, QLD 4702, Australia (A.K.)
| |
Collapse
|
13
|
Olukosi OA, Lin Y. Growth, not digestibility, in chickens receiving reduced-protein diets is independent of non-specific amino-nitrogen sources when the essential-to-total-nitrogen ratio is constant and lower than 50. Br Poult Sci 2024; 65:62-70. [PMID: 37861269 DOI: 10.1080/00071668.2023.2272973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 09/28/2023] [Indexed: 10/21/2023]
Abstract
1. A 21 d experiment was conducted to investigate whether growth performance and coefficients of amino acids digestibility (cAID) in broilers receiving reduced-protein diets supplemented with different non-essential amino acids (NEAA) were dependent on supplemented NEAA in diets with the same essential-to-total N (eN-to-tN) ratio kept at <50%.2. The experiment used 240 male broiler chicks, allocated to eight treatments with six replicate pens per treatment, and five chicks per replicate. The diets were either adequate in protein diet (PC), reduced protein (NC) diet or the NC diet supplemented with Gly, Gln, Ser, Ala, Gly + Ser or Ala + Ser. Digesta from the distal half of the ileum were collected on d 21. Tissue samples were collected for analysis for gene expression of protein synthesis and degradation (pectoralis major and liver) and peptide and AA transporters (jejunum).3. The treatments had no effects on growth performance. Generally, cAID was greater (P < 0.05) in NC compared to the PC diet. Individual supplementation of the NC diet with Gly, Gln, Ser, Ala or Ala+Ser increased (P < 0.01) cAID of Cys compared to the PC diet. There were no treatment effects on mRNA levels for the AA or peptide transporters in the jejunum. Supplementation of the NC diet with Gln, Ser, Ala, or Gly + Ser produced an upward expression (P < 0.05) of S6 kinase in the liver compared to PC and NC. In addition, there was greater (P < 0.05) expression of TRIM36 in the pectoralis major of broiler chickens receiving the NC diet supplemented with Gly.4. When reduced-protein diets have an eN-to-tN ratio of <50% and the ratio is kept constant in all the diets, growth performance response was independent of the source of non-specific amino-N, but the treatments may influence ileal digestibility of individual AA.
Collapse
Affiliation(s)
- O A Olukosi
- Department of Poultry Science, University of Georgia, Athens, GA, USA
| | - Y Lin
- Department of Poultry Science, University of Georgia, Athens, GA, USA
| |
Collapse
|
14
|
Chen P, Lv H, Liu W, Wang Y, Zhang K, Che C, Zhao J, Liu H. Effects of Lactobacillus plantarum HW1 on Growth Performance, Intestinal Immune Response, Barrier Function, and Cecal Microflora of Broilers with Necrotic Enteritis. Animals (Basel) 2023; 13:3810. [PMID: 38136847 PMCID: PMC10740588 DOI: 10.3390/ani13243810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/07/2023] [Accepted: 12/08/2023] [Indexed: 12/24/2023] Open
Abstract
The purpose of the study was to investigate the effects of Lactobacillus plantarum HW1 on growth performance, intestinal immune response, barrier function, and cecal microflora of broilers with necrotic enteritis. In total, 180 one-day-old male Cobb 500 broilers were randomly allocated into three groups comprising a non-infected control (NC) group, basal diet + necrotic enteritis challenge (NE) group, and basal diet + 4 × 106 CFU/g Lactobacillus plantarum HW1 + necrotic enteritis challenge (HW1) group. Broilers in the NE and HW1 groups were orally given sporulated coccidian oocysts at day 14 and Clostridium perfringens from days 19 to 21. The results showed that the HW1 treatment increased (p < 0.05) the average daily gain of broilers from days 15 to 28 and from days 0 to 28 compared with the NE group. Moreover, the HW1 treatment decreased (p < 0.05) the oocysts per gram of excreta, intestinal lesion scores, ileal interleukin (IL) 1β and tumor necrosis factor α levels, and serum D-lactic acid and diamine oxidase levels, while increasing (p < 0.05) the ileal IL-10 level, thymus index, and protein expressions of ileal occludin and ZO-1. Additionally, the HW1 treatment decreased (p < 0.05) the jejunal and ileal villus height, jejunal villus height/crypt depth value, and cecal harmful bacterial counts (Clostridium perfringens, Salmonella, Escherichia coli, and Staphylococcus aureus), and increased (p < 0.05) the cecal Lactobacillus count. In conclusion, dietary supplementation with 4 × 106 CFU/g Lactobacillus plantarum HW1 could relieve necrotic enteritis infection-induced intestinal injury and improve growth performance in broilers by improving intestinal barrier function and regulating intestinal microbiology.
Collapse
Affiliation(s)
- Peng Chen
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, China
| | - Huimin Lv
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, China
| | - Weiyong Liu
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, China
| | - Yang Wang
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, China
| | - Kai Zhang
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, China
| | - Chuanyan Che
- College of Animal Science, Anhui Science and Technology University, Fengyang 233100, China
| | - Jinshan Zhao
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, China
| | - Huawei Liu
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, China
| |
Collapse
|
15
|
Hussein MA, Khattak F, Vervelde L, Athanasiadou S, Houdijk JGM. Sensitivity of broiler performance, organ weights and plasma constituents to amino acid supplementation and reused litter exposure using ideal protein-formulated rations. Animal 2023; 17:100985. [PMID: 37820405 DOI: 10.1016/j.animal.2023.100985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 08/31/2023] [Accepted: 09/07/2023] [Indexed: 10/13/2023] Open
Abstract
Effects of amino acid supplementation to ideal protein (IP) formulated rations were investigated on growth performance, plasma metabolites and organ weights of broilers placed on 100% recycled (reused) litter. Day-old Ross308 male broilers were raised on either clean or reused litter and fed for three weeks on one of five isoenergetic diets, where an IP-based control diet (C) was compared with diets containing threonine (T) or arginine (A) at 25% above requirements, or with 1% supplemented glutamine (G), or with each amino acid added (TAG). Litter and diet treatments did not strongly interact on outcomes. Reused litter placement resulted in greater weight gain, smaller feed conversion ratio and heavier bursal weights (P < 0.05) compared to clean litter placement. Relative to C and T birds, TAG birds reduced weight gain and feed intake (P < 0.05). Plasma uric acid levels in G birds were greater than in C, T and A birds (P < 0.001). Collectively, since the outcomes of placement on reused litter increased performance and the control diet was IP formulated, the absence of increased growth performance in response to amino acid supplementation would be consistent with amino acids tested being excess to requirements.
Collapse
Affiliation(s)
- M A Hussein
- Monogastric Science Research Centre, Scotland's Rural College (SRUC), Edinburgh EH9 3JG, UK; The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh EH25 9RG, UK; Nutrition and Nutritional Deficiency Diseases Department, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt.
| | - F Khattak
- Monogastric Science Research Centre, Scotland's Rural College (SRUC), Edinburgh EH9 3JG, UK
| | - L Vervelde
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh EH25 9RG, UK
| | - S Athanasiadou
- Animal and Veterinary Sciences, Scotland's Rural College (SRUC), Edinburgh EH9 3JG, UK
| | - J G M Houdijk
- Monogastric Science Research Centre, Scotland's Rural College (SRUC), Edinburgh EH9 3JG, UK
| |
Collapse
|
16
|
Daneshmand A, Kumar A, Kheravii SK, Pasquali GAM, Wu SB. Xylanase and beta-glucanase improve performance parameters and footpad dermatitis and modulate intestinal microbiota in broilers under an Eimeria challenge. Poult Sci 2023; 102:103055. [PMID: 37734358 PMCID: PMC10514458 DOI: 10.1016/j.psj.2023.103055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 08/12/2023] [Accepted: 08/17/2023] [Indexed: 09/23/2023] Open
Abstract
Coccidiosis is an enteric disease of poultry worldwide that compromises gut health and growth performance. The current research investigated the effects of 2 doses of a multienzyme preparation on broilers' performance, gut health, and footpad dermatitis (FPD) under an Eimeria challenge. A total of 512 mixed-sex day-old chicks (Cobb 500) were randomly allocated to 4 treatments of 8 replicates. Treatments were: 1) nonchallenged control (NC); 2) NC + Eimeria challenge (CC); 3) CC + recommended level of xylanase and glucanase (XG, 100 g/t feed [on top]); 4) CC + double XG (2XG, 200 g/t feed). Eimeria spp. vaccine strains were gavaged on d 9 to induce coccidiosis in chickens. Performance parameters were evaluated during starter, grower, and finisher phases, and 4 birds per pen were euthanized on d 16 for sampling, FPD was scored on d 35, and litter moisture was analyzed on d 17 and 35. The data were analyzed using 1-way ANOVA with Tukey's test to separate means, and Kruskal-Wallis test was used for non-normally distributed parameters. The results showed that the Eimeria challenge was successful based on reduced weight gain and feed intake during grower phase, and higher FITC-d concentration, lesion score (female), and oocyst counts (d 14) in CC group compared to N.C. group, while XG and 2XG increased (P < 0.001) weight gain and improved FCR compared to CC and NC groups during finisher phase. The addition of X.G. and 2XG decreased litter moisture (P = 0.003) and FPD (P < 0.001) in challenged broilers compared to the N.C. group (d 35). Supplementing XG and 2XG reestablished the population of Lactobacillus in the cecum of challenged birds to an intermediate level between the NC and CC groups (P > 0.05). The inclusion of XG tended to increase the expression of Junctional adhesion molecule 2 (JAM2), which was not different from CC and NC groups (P > 0.05). In conclusion, the combination of xylanase and glucanase (Natugrain TS) improved the performance and modulated jejunal microbiota of broilers under mild Eimeria challenge.
Collapse
Affiliation(s)
- Ali Daneshmand
- School of Environmental and Rural Science, University of New England, Armidale, NSW 2351, Australia
| | - Alip Kumar
- School of Environmental and Rural Science, University of New England, Armidale, NSW 2351, Australia
| | - Sarbast K Kheravii
- School of Environmental and Rural Science, University of New England, Armidale, NSW 2351, Australia
| | | | - Shu-Biao Wu
- School of Environmental and Rural Science, University of New England, Armidale, NSW 2351, Australia.
| |
Collapse
|
17
|
Heo YJ, Park J, Kim YB, Kwon BY, Kim DH, Song JY, Lee KW. Effects of dietary protein levels on performance, nitrogen excretion, and odor emission of growing pullets and laying hens. Poult Sci 2023; 102:102798. [PMID: 37354615 PMCID: PMC10404757 DOI: 10.1016/j.psj.2023.102798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 05/09/2023] [Accepted: 05/17/2023] [Indexed: 06/26/2023] Open
Abstract
The objective of this study was to determine the effects of dietary crude protein (CP) levels on production performance, nitrogen balance, and odor emission of excreta in growing pullets and laying hens from 13 to 32 wk of age. Two hundred and forty pullets (Hy-Line Brown) were randomly assigned to 1 of 4 dietary groups with 10 replicates per group, and 6 birds per replicate. Experimental diets were formulated to contain 4 graded CP levels in the diets of pullets ranging from 180, 160, 140, and 120 g/kg of diet during 13 to 18 wk (phase 1) and in the diets of laying hens from 190, 170, 150, and 130 g/kg of diet during 19 to 32 wk (phase 2). The limiting amino acids including lysine, methionine, and threonine were supplemented to maintain constant equal amino acid concentrations in all experiment diets. In phase 1, decreasing dietary CP levels did not affect growth performance but increased (linear and quadratic effect, P < 0.05) the relative abdominal fat contents and triglyceride concentration in serum samples. High-density lipoprotein cholesterol in serum samples decreased as the CP levels decreased in the diets of pullets. Dietary CP levels quadratically increased (P < 0.05) the villus height and the villus height to crypt depth ratio but did not affect tibia traits and relative organ weights in pullets at 18 wk. Apparent digestibility of dry matter and ether extract increased with decreasing dietary CP levels in pullets. Graded CP levels linearly increased the digestibility of dry matter, CP, and ether extracts but lowered that of crude ash in laying hens. Nitrogen excretion was linearly decreased (P < 0.05) as the dietary CP levels decreased in both pullets and laying hens. Dietary CP levels only affected carbon dioxide emission in pullets. In phase 2, dietary CP levels did not affect growth performance and the ages at first egg laying and to reach 50% egg production in laying hens. However, egg weights were decreased (linear and quadratic effect, P < 0.05) as the dietary CP level decreased in laying hens. Increasing dietary CP levels increased Haugh unit at 26 wk but lowered corticosterone concentrations in yolk samples at 22 wk. Collectively, this study shows that dietary CP levels could be decreased to reduce nitrogen excretion without adverse effects on performance and egg quality of growing pullets and laying hens.
Collapse
Affiliation(s)
- Yun-Ji Heo
- Department of Animal Science and Technology, Sanghuh College of Life Sciences, Konkuk University, Gwangjin-gu, Seoul 05029, South Korea
| | - Jina Park
- Department of Animal Science and Technology, Sanghuh College of Life Sciences, Konkuk University, Gwangjin-gu, Seoul 05029, South Korea
| | - Yoo-Bhin Kim
- Department of Animal Science and Technology, Sanghuh College of Life Sciences, Konkuk University, Gwangjin-gu, Seoul 05029, South Korea
| | - Byung-Yeon Kwon
- Department of Animal Science and Technology, Sanghuh College of Life Sciences, Konkuk University, Gwangjin-gu, Seoul 05029, South Korea
| | - Da-Hye Kim
- Department of Animal Science and Technology, Sanghuh College of Life Sciences, Konkuk University, Gwangjin-gu, Seoul 05029, South Korea
| | - Ju-Yong Song
- Department of Animal Science and Technology, Sanghuh College of Life Sciences, Konkuk University, Gwangjin-gu, Seoul 05029, South Korea
| | - Kyung-Woo Lee
- Department of Animal Science and Technology, Sanghuh College of Life Sciences, Konkuk University, Gwangjin-gu, Seoul 05029, South Korea.
| |
Collapse
|
18
|
Barekatain R, Chrystal PV, Nowland T, Moss AF, Howarth GS, Hao Van TT, Moore RJ. Negative consequences of reduced protein diets supplemented with synthetic amino acids for performance, intestinal barrier function, and caecal microbiota composition of broiler chickens. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2023; 13:216-228. [PMID: 37388459 PMCID: PMC10300400 DOI: 10.1016/j.aninu.2023.01.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 01/18/2023] [Accepted: 01/18/2023] [Indexed: 02/22/2023]
Abstract
The consequences of feeding broiler chickens with reduced protein (RP) diets for gut health and barrier function are not well understood. This study was performed to elucidate the effect of reducing dietary protein and source of protein on gut health and performance parameters. Four experimental diets included 2 control diets with standard protein levels either containing meat and bone meal (CMBM) or an all-vegetable diet (CVEG), a medium RP diet (17.5% in growers and 16.5% in finisher), and a severe RP diet (15.6% in grower and 14.6% in finisher). Off-sex Ross 308 birds were assigned to each of the 4 diets and performance measurements were taken from d 7 to 42 post-hatch. Each diet was replicated 8 times (10 birds per replicate). A challenge study was conducted on additional 96 broilers (24 birds per diet) from d 13 to 21. Half of the birds in each dietary treatment were challenged by dexamethasone (DEX) to induce a leaky gut. Feeding birds with RP diets decreased weight gain (P < 0.0001) and increased feed conversion ratio (P < 0.0001) from d 7 to 42 compared with control diets. There was no difference between CVEG and CMBM control diets for any parameter. The diet containing 15.6% protein increased (P < 0.05) intestinal permeability independent of the DEX challenge. Gene expression of claudin-3 was downregulated (P < 0.05) in birds fed 15.6% protein. There was a significant interaction between diet and DEX (P < 0.05) and both RP diets (17.5% and 15.6%) downregulated claudin-2 expression in DEX-challenged birds. The overall composition of the caecal microbiota was affected in birds fed 15.6% protein having a significantly lower richness of microbiota in both sham and DEX-injected birds. Proteobacteria was the main phylum driving the differences in birds fed 15.6% protein. At the family level, Bifidobacteriaceae, Unclassified Bifidobacteriales, Enterococcaceae, Enterobacteriaceae, and Lachnospiraceae were the main taxa in birds fed 15.6% protein. Despite supplementation of synthetic amino acids, severe reduction of dietary protein compromised performance and intestinal health parameters in broilers, evidenced by differential mRNA expression of tight junction proteins, higher permeability, and changes in caecal microbiota composition.
Collapse
Affiliation(s)
- Reza Barekatain
- South Australian Research and Development Institute, Roseworthy Campus, Roseworthy, SA, Australia
- School of Animal and Veterinary Sciences, Roseworthy Campus, University of Adelaide, Roseworthy, SA, Australia
| | - Peter V. Chrystal
- Complete Feed Solutions, Hornsby, NSW, Australia; Howick, New Zealand
| | - Tanya Nowland
- South Australian Research and Development Institute, Roseworthy Campus, Roseworthy, SA, Australia
- School of Animal and Veterinary Sciences, Roseworthy Campus, University of Adelaide, Roseworthy, SA, Australia
| | - Amy F. Moss
- School of Environmental and Rural Science, University of New England, Armidale, NSW, Australia
| | - Gordon S. Howarth
- School of Animal and Veterinary Sciences, Roseworthy Campus, University of Adelaide, Roseworthy, SA, Australia
| | - Thi Thu Hao Van
- School of Science, RMIT University, Bundoora West Campus, Bundoora, VIC, Australia
| | - Robert J. Moore
- School of Science, RMIT University, Bundoora West Campus, Bundoora, VIC, Australia
| |
Collapse
|
19
|
Liu G, Ajao AM, Shanmugasundaram R, Taylor J, Ball E, Applegate TJ, Selvaraj R, Kyriazakis I, Olukosi OA, Kim WK. The effects of arginine and branched-chain amino acid supplementation to reduced-protein diet on intestinal health, cecal short-chain fatty acid profiles, and immune response in broiler chickens challenged with Eimeria spp. Poult Sci 2023; 102:102773. [PMID: 37236037 DOI: 10.1016/j.psj.2023.102773] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/30/2023] [Accepted: 05/04/2023] [Indexed: 05/28/2023] Open
Abstract
We investigated the effects of supplementing arginine (Arg) and branched-chain amino acids (BCAA) in broilers fed reduced-protein diets and challenged with Eimeria spp. All birds were fed the same starter diet meeting Cobb 500 nutrient specifications from d 1 to 9. Four grower diets: positive control (PC) with 20.0% crude protein (CP); reduced-protein negative control (NC) with 17.5% CP; or NC supplemented with Arg or BCAA at 50% above recommendations (ARG or BCAA) were fed to the birds from d 9 to 28. Birds were allocated in a 2 × 4 factorial arrangement (4 diets, each with or without challenge), with 8 replicates per treatment. On d 14, the challenge groups were orally gavaged with mixed Eimeria spp. Intestinal permeability was higher (P < 0.05) in NC than PC, whereas the permeability of ARG and BCAA groups did not differ significantly from PC. On d 28, a significant interaction (P < 0.01) was observed in CD8+: CD4+ ratios in cecal tonsils (CT), Eimeria challenge increased the ratios in all groups except for the ARG group. On d 21, a significant interaction was found for CD4+CD25+ percentages in CT (P < 0.01) that Eimeria challenge increased the percentages only in PC and NC groups. On d 21 and 28, significant interactions (P < 0.01) were found for macrophage nitric oxide (NO) production. In nonchallenged birds, NO was higher in the ARG group than other groups, but in challenged birds, NO was higher in both ARG and BCAA groups. On d 21, a significant interaction was found for bile anticoccidial IgA concentrations (P < 0.05) that Eimeria challenge increased IgA only in NC and ARG groups. The results suggest that a reduced-protein diet exacerbates the impact of the Eimeria challenge on intestinal integrity, but this could be mitigated by Arg and BCAA supplementations. Arginine and BCAA supplementations in reduced-protein diets could be beneficial for broilers against Eimeria infection by enhancing the immune responses. The beneficial effects of Arg supplementation tended to be more pronounced compared to BCAA supplementation.
Collapse
Affiliation(s)
- Guanchen Liu
- Department of Poultry Science, University of Georgia, Athens, GA 30602, USA
| | - Adeleye M Ajao
- Department of Poultry Science, University of Georgia, Athens, GA 30602, USA
| | - Revathi Shanmugasundaram
- Toxicology and Mycotoxin Research Unit, U.S. National Poultry Research Center, Agricultural Research Service, U.S. Department of Agriculture, Athens, GA 30605, USA
| | - James Taylor
- Agri-Food & Biosciences Institute (AFBI), Belfast, BT9 5PX, United Kingdom
| | - Elizabeth Ball
- Institute for Global Food Security, Queen's University, Belfast, BT9 5DL, United Kingdom
| | - Todd J Applegate
- Department of Poultry Science, University of Georgia, Athens, GA 30602, USA
| | - Ramesh Selvaraj
- Department of Poultry Science, University of Georgia, Athens, GA 30602, USA
| | - Ilias Kyriazakis
- Agri-Food & Biosciences Institute (AFBI), Belfast, BT9 5PX, United Kingdom.; Institute for Global Food Security, Queen's University, Belfast, BT9 5DL, United Kingdom
| | - Oluyinka A Olukosi
- Department of Poultry Science, University of Georgia, Athens, GA 30602, USA
| | - Woo K Kim
- Department of Poultry Science, University of Georgia, Athens, GA 30602, USA.
| |
Collapse
|
20
|
Rysman K, Eeckhaut V, Croubels S, Maertens B, Van Immerseel F. Iohexol is an intestinal permeability marker in broilers under coccidiosis challenge. Poult Sci 2023; 102:102690. [PMID: 37099878 PMCID: PMC10165152 DOI: 10.1016/j.psj.2023.102690] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 03/24/2023] [Accepted: 03/24/2023] [Indexed: 04/03/2023] Open
Abstract
Intestinal integrity losses have been identified as a main driver for poor performance in broilers. The oral administration of markers such as iohexol is a major asset for measuring intestinal permeability (IP) alterations. The aim of the current study was to evaluate oral iohexol administration and serum levels as a quantitative measure for IP in Ross 308 broilers and to identify possible associations with histologic measurements. A total of 40, day-old broiler chickens were randomly divided into 4 groups of 10 broilers and a coccidiosis model was used to induce IP. Three challenge groups received a mixture of different field strains and concentrations of Eimeria acervulina and Eimeria maxima at d 16, and 1 group operated as an uninfected control group. On d 20, 5 birds per group were orally administered the permeability marker iohexol at a dose of 64.7 mg/kg body weight and blood was taken 60 min after the oral gavage. On d 21 these 5 birds per group were euthanized. On d 21, 5 other birds per group were given iohexol where after blood was taken. These birds were euthanized on d 22. During necropsy, birds were scored for coccidiosis lesions and a duodenal segment was taken for histology. The Eimeria challenge had a significant impact on the villus length, crypt depth, villus-to-crypt ratio and CD3+ T-lymphocytes area percentage. Challenged birds had a significant higher concentration of serum iohexol on both sampling days, as compared to the uninfected controls. A significant correlation could be found between the serum iohexol concentration and the histologic parameters (villus length, crypt depth and villus-to-crypt ratio) on the first sampling day. This suggests that iohexol may be used as a gut permeability marker in broilers under Eimeria challenge.
Collapse
|
21
|
Intestinal permeability, microbiota composition and expression of genes related to intestinal barrier function of broiler chickens fed different methionine sources supplemented at varying concentrations. Poult Sci 2023; 102:102656. [PMID: 37043958 PMCID: PMC10140141 DOI: 10.1016/j.psj.2023.102656] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 03/09/2023] [Accepted: 03/10/2023] [Indexed: 03/17/2023] Open
Abstract
Intestinal health of broiler chickens is influenced by the concentration of dietary amino acids but data are limited on the role of dietary methionine (Met). Two experiments were conducted to investigate the implications of different Met sources for performance, gut barrier function, and intestinal microbiota in broilers. In the first experiment, Ross 308 off-sex birds (n = 900) were assigned to 10 dietary treatments each replicated 9 times in a 35-day study. Three sources of Met included DL-Met, L-Met, or Met hydroxy analog free acid (MHA-FA), each supplemented at suboptimal (SUB) at 80%, adequate (ADE) at 100% and over-requirement (OVR) at 120% of the specifications against a deficient (DEF) diet with no added Met. The second experiment used 96 Ross 308 broilers in a 2 × 4 factorial arrangement. Four diets included 3 sources of Met supplemented at ADE level plus the DEF treatment. On d 17, 19, and 23, half of the birds in each dietary treatment were injected with dexamethasone (DEX) to induce leaky gut. In the first experiment, without an interaction, from d 0 to 35, birds fed DL-Met and L-Met performed similarly for BWG, feed intake, and FCR but birds fed MHA-FA had less feed intake and BWG (P < 0.05). At d 23, mRNA expression of selected tight junction proteins was not affected except for claudin 2. Ileal microbiota of DEF treatment was different from DL-MET or L-MET supplemented birds (P < 0.05). However, microbiota of MHA-FA treatments was only different at OVR from the DEF group. The abundance of Peptostreptococcus increased in DEF treatment whereas Lactobacillus decreased. In the second experiment, DEX independently increased (P < 0.001) intestinal permeability assayed by fluorescein isothiocyanate dextran, but diet had no effect. DL-Met and L-Met fed birds had a higher level of claudin 3 only in DEX-injected birds (P < 0.05). In conclusion, unlike the level of supplementation, DL-Met, L-Met, and MHA-FA were largely similar in their limited impacts on intestinal barrier function and gut microbiota in broilers.
Collapse
|
22
|
Blatama D, Salsabila N, Saragih HT. Goloba kusi (Hornstedtia scottiana [F. Muell.] K. Schum.) fruit as a feed additive to improve the histological structures and growth performance of broiler. Vet World 2023; 16:329-340. [PMID: 37042000 PMCID: PMC10082708 DOI: 10.14202/vetworld.2023.329-340] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 01/24/2023] [Indexed: 02/19/2023] Open
Abstract
Background and Aim: The broiler farming industry in Indonesia has enormous potential, with chicken meat that can be optimized by providing adequate and high-quality feed. However, the main raw material for the feed still relies on imported products, which makes it necessary to produce alternative materials from native plants. Therefore, this study aimed to investigate the effect of giving Goloba kusi fruit (GF) (Hornstedtia scottiana [F. Muell.] K. Schum.) on the growth of the small intestine, pectoralis major, and gastrocnemius muscle, as well as the development of broiler chickens.
Materials and Methods: This study used a completely randomized design, in which 300 day-old Chicks were divided into five groups, consisting of 12 chickens in each group with five replications. The GF treatments, namely, 0% (control [CON]), 0.625% (GF1), 1.25% (GF2), 2.5% (GF3), and 5% (GF4) were administered through per kg basal feed. Subsequently, three chickens from each replication were taken, decapitated on the neck, subjected to surgery for histological preparations, and stained with Hematoxylin-Eosin and Periodic acid-Schiff-alcian blue. The variables observed included small intestine morphology, muscle morphology, and chicken growth performance.
Results: The results showed that the small intestine morphology, muscle morphology, and chicken growth performance of the GF4 (5%) group increased significantly compared to the CON group.
Conclusion: The administration of GF with an optimum concentration of 5% through basal feed improves small intestine morphology, muscle morphology, and chicken growth performance.
Collapse
Affiliation(s)
- D. Blatama
- Post Graduate Program of Biology, Department of Tropical Biology, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - N. Salsabila
- Graduate Program of Biology, Department of Tropical Biology, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - H. T. Saragih
- Laboratory of Animal Development Structure, Faculty of Biology, Universitas Gadjah Mada, Yogyakarta, Indonesia
| |
Collapse
|
23
|
Colombino E, Karimi M, Ton Nu MA, Tilatti AA, Bellezza Oddon S, Calini F, Bergamino C, Fiorilla E, Gariglio M, Gai F, Capucchio MT, Schiavone A, Gasco L, Biasato I. Effects of feeding a thermomechanical, enzyme-facilitated, coprocessed yeast and soybean meal on growth performance, organ weights, leg health, and gut development of broiler chickens. Poult Sci 2023; 102:102578. [PMID: 36933528 PMCID: PMC10031541 DOI: 10.1016/j.psj.2023.102578] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 02/06/2023] [Accepted: 02/06/2023] [Indexed: 02/12/2023] Open
Abstract
The development of a healthy gut during prestarter and starter phases is crucial to drive chicken's productivity. This study aimed to evaluate the effects of a thermomechanical, enzyme-facilitated, coprocessed yeast and soybean meal (pYSM) on growth performance, organ weights, leg health, and gut development in broiler chickens. A total of 576 as-hatched broiler chicks were randomly allotted to 3 dietary treatments (8 replicates/treatment, 24 chickens/replicate): a control group (C) without the pYSM, a treatment group 1 (T1), in which the pSYM was included at 20, 10, 5, 0, and 0% levels in the prestarter, starter, grower, finisher I, and finisher II feeding phases, respectively, and a treatment group 2 (T2), in which the pSYM was included at 5, 5, 5, 0, and 0% levels in each feeding phase. On d 3 and 10, 16 broilers/treatment were euthanized. The T1 broilers tended to show higher live weight (d 3 and 7) and average daily gain (prestarter and starter phases) than the other groups (P ≤ 0.10). Differently, pYSM-based diets did not influence the growth performance of the other feeding phases and the whole experimental period (P > 0.05). Relative weights of pancreas and liver were also unaffected by pYSM utilization (P > 0.05). Litter quality tended to have higher average scores in C group (P = 0.079), but no differences were observed for leg health (P > 0.05). Histomorphometry of gut, liver, and bursa of Fabricius was not affected by diet (P > 0.05). Gut immunity was driven to an anti-inflammatory pattern, with the reduction of IL-2, INF-γ, and TNF-α in the duodenum of treated birds (d 3, P < 0.05). Also, MUC-2 was greater in the duodenum of C and T2 group when compared to T1 (d 3, P = 0.016). Finally, T1-fed chickens displayed greater aminopeptidase activity in the duodenum (d 3 and 10, P < 0.05) and jejunum (d 3, P < 0.05). Feeding high levels of pYSM (10-20%) to broilers in the first 10 d tended to improve growth performance in the prestarter and starter phases. It also positively downregulated proinflammatory cytokines during the first 3 d, as well as stimulated the aminopeptidase activity in the prestarter and starter periods.
Collapse
Affiliation(s)
- Elena Colombino
- Department of Veterinary Sciences, University of Turin, Grugliasco 10095, Italy
| | | | | | | | - Sara Bellezza Oddon
- Department of Agricultural, Forestry and Food Sciences, University of Turin, Grugliasco, Italy
| | | | - Cinzia Bergamino
- Department of Veterinary Sciences, University of Turin, Grugliasco 10095, Italy
| | - Edoardo Fiorilla
- Department of Veterinary Sciences, University of Turin, Grugliasco 10095, Italy
| | - Marta Gariglio
- Department of Veterinary Sciences, University of Turin, Grugliasco 10095, Italy
| | - Francesco Gai
- Institute of Science of Food Production, National Research Council, Turin, Italy
| | - Maria Teresa Capucchio
- Department of Veterinary Sciences, University of Turin, Grugliasco 10095, Italy; Institute of Science of Food Production, National Research Council, Turin, Italy.
| | - Achille Schiavone
- Department of Veterinary Sciences, University of Turin, Grugliasco 10095, Italy
| | - Laura Gasco
- Department of Agricultural, Forestry and Food Sciences, University of Turin, Grugliasco, Italy
| | - Ilaria Biasato
- Department of Agricultural, Forestry and Food Sciences, University of Turin, Grugliasco, Italy
| |
Collapse
|
24
|
Chagneau S, Gaucher ML, Thériault WP, Fravalo P, Thibodeau A. Observations supporting hypothetical commensalism and competition between two Campylobacter jejuni strains colonizing the broiler chicken gut. Front Microbiol 2023; 13:1071175. [PMID: 36817113 PMCID: PMC9937062 DOI: 10.3389/fmicb.2022.1071175] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 12/22/2022] [Indexed: 01/27/2023] Open
Abstract
Campylobacter jejuni is the most prevalent bacterial foodborne pathogen in humans. Given the wide genetic diversity of C. jejuni strains found in poultry production, a better understanding of the relationships between these strains within chickens could lead to better control of this pathogen on farms. In this study, 14-day old broiler chickens were inoculated with two C. jejuni strains (103 or 107 CFU of D2008b and 103 CFU of G2008b, alone or together) that were previously characterized in vitro and that showed an opposite potential to compete for gut colonization in broilers. Liver samples and ileal and cecal contents were collected and used to count total C. jejuni and to quantify the presence of each strain using a strain specific qPCR or PCR approach. Ileal tissue samples were also collected to analyze the relative expression level of tight junction proteins. While a 103 CFU inoculum of D2008b alone was not sufficient to induce intestinal colonization, this strain benefited from the G2008b colonization for its establishment in the gut and its extraintestinal spread. When the inoculum of D2008b was increased to 107 CFU - leading to its intestinal and hepatic colonization - a dominance of G2008b was measured in the gut and D2008b was found earlier in the liver for birds inoculated by both strains. In addition, a transcript level decrease of JAM2, CLDN5 and CLDN10 at 7 dpi and a transcript level increase of ZO1, JAM2, OCLN, CLDN10 were observed at 21 dpi for groups of birds having livers contaminated by C. jejuni. These discoveries suggest that C. jejuni would alter the intestinal barrier function probably to facilitate the hepatic dissemination. By in vitro co-culture assay, a growth arrest of D2008b was observed in the presence of G2008b after 48 h of culture. Based on these results, commensalism and competition seem to occur between both C. jejuni strains, and the dynamics of C. jejuni intestinal colonization and liver spread in broilers appear to be strain dependent. Further in vivo experimentations should be conducted to elucidate the mechanisms of commensalism and competition between strains in order to develop adequate on-farm control strategies.
Collapse
Affiliation(s)
- Sophie Chagneau
- Research Chair in Meat Safety, Department of Pathology and Microbiology, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, QC, Canada,Swine and Poultry Infectious Diseases Research Center (CRIPA), Department of Pathology and Microbiology, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, QC, Canada,*Correspondence: Sophie Chagneau, ✉
| | - Marie-Lou Gaucher
- Research Chair in Meat Safety, Department of Pathology and Microbiology, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, QC, Canada,Swine and Poultry Infectious Diseases Research Center (CRIPA), Department of Pathology and Microbiology, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, QC, Canada,Groupe de Recherche sur les Maladies Infectieuses en Production Animale (GREMIP), Department of Pathology and Microbiology, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, QC, Canada
| | - William P. Thériault
- Research Chair in Meat Safety, Department of Pathology and Microbiology, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, QC, Canada,Swine and Poultry Infectious Diseases Research Center (CRIPA), Department of Pathology and Microbiology, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, QC, Canada
| | - Philippe Fravalo
- Chaire Agroalimentaire du Conservatoire National des Arts et Métiers, Paris, France
| | - Alexandre Thibodeau
- Research Chair in Meat Safety, Department of Pathology and Microbiology, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, QC, Canada,Swine and Poultry Infectious Diseases Research Center (CRIPA), Department of Pathology and Microbiology, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, QC, Canada,Groupe de Recherche sur les Maladies Infectieuses en Production Animale (GREMIP), Department of Pathology and Microbiology, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, QC, Canada,Alexandre Thibodeau, ✉
| |
Collapse
|
25
|
Aleman RS, Moncada M, Aryana KJ. Leaky Gut and the Ingredients That Help Treat It: A Review. Molecules 2023; 28:619. [PMID: 36677677 PMCID: PMC9862683 DOI: 10.3390/molecules28020619] [Citation(s) in RCA: 75] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/31/2022] [Accepted: 01/01/2023] [Indexed: 01/11/2023] Open
Abstract
The human body is in daily contact with potentially toxic and infectious substances in the gastrointestinal tract (GIT). The GIT has the most significant load of antigens. The GIT can protect the intestinal integrity by allowing the passage of beneficial agents and blocking the path of harmful substances. Under normal conditions, a healthy intestinal barrier prevents toxic elements from entering the blood stream. However, factors such as stress, an unhealthy diet, excessive alcohol, antibiotics, and drug consumption can compromise the composition of the intestinal microbiota and the homeostasis of the intestinal barrier function of the intestine, leading to increased intestinal permeability. Intestinal hyperpermeability can allow the entry of harmful agents through the junctions of the intestinal epithelium, which pass into the bloodstream and affect various organs and systems. Thus, leaky gut syndrome and intestinal barrier dysfunction are associated with intestinal diseases, such as inflammatory bowel disease and irritable bowel syndrome, as well as extra-intestinal diseases, including heart diseases, obesity, type 1 diabetes mellitus, and celiac disease. Given the relationship between intestinal permeability and numerous conditions, it is convenient to seek an excellent strategy to avoid or reduce the increase in intestinal permeability. The impact of dietary nutrients on barrier function can be crucial for designing new strategies for patients with the pathogenesis of leaky gut-related diseases associated with epithelial barrier dysfunctions. In this review article, the role of functional ingredients is suggested as mediators of leaky gut-related disorders.
Collapse
Affiliation(s)
- Ricardo Santos Aleman
- School of Nutrition and Food Sciences, Louisiana State University Agricultural Center, Baton Rouge, LA 28081, USA
| | - Marvin Moncada
- Department of Food, Bioprocessing & Nutrition Sciences and the Plants for Human Health Institute, North Carolina State University, North Carolina Research Campus, Kannapolis, NC 27599, USA
| | - Kayanush J. Aryana
- School of Nutrition and Food Sciences, Louisiana State University Agricultural Center, Baton Rouge, LA 28081, USA
| |
Collapse
|
26
|
Spray-dried porcine plasma enhances feed efficiency, intestinal integrity, and immune response of broilers challenged with necrotic enteritis. Poult Sci 2022; 102:102431. [PMID: 36610106 PMCID: PMC9829710 DOI: 10.1016/j.psj.2022.102431] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 12/12/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
Re-emergence of enteric diseases in the postantibiotic era has imposed severe loss to the poultry industry leading to the urgent need for appropriate additives to maintain gut health. Recently, more attention has been paid to animal plasma due to its high concentrations of active components such as albumins and globulins. The objective of this study was to evaluate the effects of spray-dried porcine plasma (SDP) supplementation during the starter phase (d 0-10) on growth performance, intestine health, and immune response of broilers under necrotic enteritis (NE) challenge. A total of 720 day-old male broiler parental line chicks (Ross 308) were randomly assigned to a 2 (NE challenge: no, yes) × 2 (SDP: 0, 2%) factorial arrangement with 12 replications of 15 chicks each. To induce NE, birds were inoculated with live Eimeria vaccine on d 9 and Clostridium perfringens on d 14. The body weight of birds and feed consumption were measured per pen on d 8, 10, 24, and 29 to calculate performance parameters. On d 16, three birds per pen were sampled to analyse the intestinal lesion score, gut permeability, villi morphology, relative weight of organs, and immune response. Results showed that SDP improved (P < 0.001) FCR in the pre-challenge phase (d 0-8). The results indicated that supplementing SDP lowered (P < 0.01) FCR at the end of the experiment (d 29). Dietary SDP decreased (P < 0.05) the concentration of FITC-d in serum samples of challenged broilers, although it did not affect the intestinal morphology and lesion score. Birds fed with SDP had a higher (P < 0.05) relative weight of bursa (g/kg live body weight) compared to non-supplemented birds. Supplementing SDP reduced the concentration of interleukin-6 (P < 0.05) and α-1 acid glycoprotein (P = 0.051) in serum samples of broilers. In conclusion, supplementation of SDP in the starter phase enhanced feed efficiency and gut integrity in NE challenged broilers, possibly through manipulating the immune response, while further studies targeting intestinal microflora and key genes are required to explore the mode of action.
Collapse
|
27
|
Kolba N, Cheng J, Jackson CD, Tako E. Intra-Amniotic Administration-An Emerging Method to Investigate Necrotizing Enterocolitis, In Vivo ( Gallus gallus). Nutrients 2022; 14:nu14224795. [PMID: 36432481 PMCID: PMC9696943 DOI: 10.3390/nu14224795] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/04/2022] [Accepted: 11/08/2022] [Indexed: 11/16/2022] Open
Abstract
Necrotizing enterocolitis (NEC) is a severe gastrointestinal disease in premature infants and a leading cause of death in neonates (1-7% in the US). NEC is caused by opportunistic bacteria, which cause gut dysbiosis and inflammation and ultimately result in intestinal necrosis. Previous studies have utilized the rodent and pig models to mimic NEC, whereas the current study uses the in vivo (Gallus gallus) intra-amniotic administration approach to investigate NEC. On incubation day 17, broiler chicken (Gallus gallus) viable embryos were injected intra-amniotically with 1 mL dextran sodium sulfate (DSS) in H2O. Four treatment groups (0.1%, 0.25%, 0.5%, and 0.75% DSS) and two controls (H2O/non-injected controls) were administered. We observed a significant increase in intestinal permeability and negative intestinal morphological changes, specifically, decreased villus surface area and goblet cell diameter in the 0.50% and 0.75% DSS groups. Furthermore, there was a significant increase in pathogenic bacterial (E. coli spp. and Klebsiella spp.) abundances in the 0.75% DSS group compared to the control groups, demonstrating cecal microbiota dysbiosis. These results demonstrate significant physiopathology of NEC and negative bacterial-host interactions within a premature gastrointestinal system. Our present study demonstrates a novel model of NEC through intra-amniotic administration to study the effects of NEC on intestinal functionality, morphology, and gut microbiota in vivo.
Collapse
Affiliation(s)
| | | | | | - Elad Tako
- Correspondence: ; Tel.: +1-607-255-0884
| |
Collapse
|
28
|
Hosseindoust A, Kang HK, Kim JS. Quantifying heat stress; the roles on metabolic status and intestinal integrity in poultry, a review. Domest Anim Endocrinol 2022; 81:106745. [PMID: 35716584 DOI: 10.1016/j.domaniend.2022.106745] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 05/10/2022] [Accepted: 05/13/2022] [Indexed: 11/03/2022]
Abstract
Heat stress adversely affects intestinal barrier integrity ranging from minor enterocyte injury to fatal inflammatory heat shocks. The current review discusses the physiological mechanisms of the adaptive response of poultry and the nutritional interventions to improve intestinal integrity during heat stress. There are several possible metabolic mechanisms of protection including stress adaptation signaling pathways, blood flow, intestinal barrier permeability, epithelial cell proliferation, antioxidant status, microbiota composition, expression of heat shock proteins, inflammatory responses, and energy metabolism. The current review discusses the methods of intestinal permeability determination in order to estimate the extent of damage in the farm. There is a lack of knowledge about the nutritional strategies and the interaction between nutrients to reduce intestinal barrier damage and elucidate mechanisms in heat stress.
Collapse
Affiliation(s)
- A Hosseindoust
- Department of Animal Industry Convergence, Kangwon National University, Chuncheon 24341, Republic of Korea.
| | - H K Kang
- Poultry Division, National Institute of Animal Science, Rural Development Administration, 321-11, Daegwallyeongmaru-gil, Daegwallyeong-myeon, Pyeongchang-gun, Gangwon-do 25342, Korea.
| | - J S Kim
- Department of Animal Industry Convergence, Kangwon National University, Chuncheon 24341, Republic of Korea.
| |
Collapse
|
29
|
Awad WA, Ruhnau D, Gavrău A, Dublecz K, Hess M. Comparing effects of natural betaine and betaine hydrochloride on gut physiology in broiler chickens. Poult Sci 2022; 101:102173. [PMID: 36228528 PMCID: PMC9573929 DOI: 10.1016/j.psj.2022.102173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 08/23/2022] [Accepted: 08/30/2022] [Indexed: 12/02/2022] Open
Abstract
Betaine is a well-known component of poultry diets with various effects on nutritional physiology. For example, increased water retention due to the osmolytic effect of betaine increases the volume of the cell, thereby accelerating the anabolic activity, integrity of cell membrane, and overall performance of the bird. Betaine is a multifunctional component (trimethyl derivative) acting as the most efficient methyl group donor and as an organic osmolyte, which can directly influence the gastrointestinal tract integrity, functionality, and health. So far, nothing is known about the effect of betaine on the intestinal barrier in chickens. In addition, little is known about comparing natural betaine with its synthetic form. Therefore, an animal study was conducted to ascertain the effects of betaine supplementation (natural and synthetic) on performance and intestinal physiological responses of broilers. One hundred and five 1-day-old broiler chicks were randomly assigned into 3 groups with 35 birds each: control, natural betaine (1 kg active natural (n)-betaine/ton of feed) and synthetic (syn)-betaine‐HCL (1 kg active betaine /ton of feed). Histological assessment showed lower jejunal crypt depth and villi height/crypt depth ratio in syn-betaine-HCL group compared with natural n-betaine fed birds. Furthermore, it was found that syn-betaine-HCL negatively affects the integrity of the intestine by increasing the intestinal paracellular permeability in both jejunum and cecum as evidenced by a higher mannitol flux. Additionally, syn-betaine-HCl significantly upregulated the IFN-γ mRNA expression at certain time points, which could promote intestinal permeability, as it plays an important role in intestinal barrier dysfunction. Body weight (BW) and body weight gain (BWG) did not differ (P > 0.05) between the control birds and birds supplemented with syn-betaine‐HCL. However, the BW and BWG were significantly (P < 0.05) improved by the dietary inclusion of n-betaine compared with other treatments. Altogether, the dietary inclusion of n-betaine had a positive effect on performance and did not negatively affect gut paracellular permeability. Furthermore, our results show that syn-betaine-HCl induces changes in the intestine, indicating an alteration of the intestinal histology and permeability. Thus, natural or synthetic betaine has different effects, which needs to be considered when using them as a feed supplement.
Collapse
Affiliation(s)
- Wageha A Awad
- Clinic for Poultry and Fish Medicine, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine, Vienna, Austria.
| | - Daniel Ruhnau
- Clinic for Poultry and Fish Medicine, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine, Vienna, Austria
| | - Ana Gavrău
- Agrana Sales & Marketing GmbH, Vienna, Austria
| | - Károly Dublecz
- Institute of Physiology and Nutrition, Georgikon Campus, Hungarian University of Agriculture and Life Science, Keszthely, Hungary
| | - Michael Hess
- Clinic for Poultry and Fish Medicine, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine, Vienna, Austria
| |
Collapse
|
30
|
Abascal-Ponciano GA, Leiva SF, Flees JJ, Avila LP, Starkey JD, Starkey CW. Dietary 25-Hydroxyvitamin D3 Supplementation Modulates Intestinal Cytokines in Young Broiler Chickens. Front Vet Sci 2022; 9:947276. [PMID: 35898543 PMCID: PMC9309538 DOI: 10.3389/fvets.2022.947276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 06/13/2022] [Indexed: 12/02/2022] Open
Abstract
Vitamin D signaling is important for intestinal homeostasis. An increase in vitamin D receptors in immune cells can modulate cell phenotype and cytokine secretion. Cytokines regulate both pro- (interleukin 17; IL-17) and anti-inflammatory (IL-10) responses triggered by external stimuli. Inflammation in intestinal tissues can disrupt the structure and the remodeling of epithelial tight junction complexes, thus, compromising the protective barrier. The objective of the study was to determine the impact of dietary supplementation with 25-hydroxycholecalciferol (25OHD3), a hydroxylated metabolite of vitamin D, on intestinal cytokine abundance and epithelial barrier integrity over time in broilers. A randomized complete block design experiment was conducted to evaluate the effect of dietary 25OHD3 inclusion on relative protein expression of the cytokines, IL-17 and IL-10, and tight junction proteins, Zona Occludens 1 (ZO-1), and Claudin-1 (CLD-1), in broiler chicken duodenum and ileum from 3 to 21 days post-hatch. On day 0, male chicks (n = 168) were randomly assigned to raised floor pens. Experimental corn–soybean meal-based treatments were as follows: (1) a common starter diet containing 5,000 IU of D3 per kg of feed (VITD3) and (2) a common starter diet containing 2,240 IU of D3 + 2,760 IU of 25OHD3 per kg of feed (25OHD3) fed from days 0 to 21. On days 3, 6, 9, 12, 15, 18, and 21, 12 birds per treatment were euthanized to collect tissue samples for quantitative, multiplex, and fluorescent Western blot analysis. Target proteins were quantified using Image Quant TL 8.1 and expressed relative to total protein. Feeding 25OHD3 post-hatch decreased ileal IL-10 (anti-inflammatory) protein expression in 21-day-old broilers compared with VITD3 only (P = 0.0190). Broilers fed only VITD3 post-hatch had greater IL-17 (pro-inflammatory) protein expression in the ileum at 18 and 21 days-of-age (P = 0.0412) than those that fed 25OHD3. Dietary inclusion of 25OHD3 lowered the abundance of key inflammatory cytokines in the ileum of young broilers.
Collapse
|
31
|
Chlorogenic acid improves growth performance and intestinal health through autophagy-mediated nuclear factor erythroid 2-related factor 2 pathway in oxidatively stressed broilers induced by dexamethasone. Poult Sci 2022; 101:102036. [PMID: 35901652 PMCID: PMC9326338 DOI: 10.1016/j.psj.2022.102036] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 06/20/2022] [Accepted: 06/22/2022] [Indexed: 01/06/2023] Open
Abstract
The effects of chlorogenic acid (CGA) on growth performance, intestinal morphology, antioxidant capacity, and the autophagy-mediated nuclear factor erythroid 2-related factor 2 (Nrf2) pathway in oxidatively stressed broilers were investigated. A total of 400 one-day-old male Cobb broilers were divided randomly into 4 groups using a 2 × 2 factorial arrangement with 2 CGA supplemental levels (0 and 500 mg/kg) and 2 dexamethasone (DEX) challenge levels (0 and 3 mg/kg body weight). All the broilers were injected intraperitoneally with DEX or sterile saline beginning at the age of 15 d for 6 consecutive days. The experiment lasted for 21 d. The CGA increased average daily gain (ADG), villus height, villus height/crypt depth (V/C) value, and the protein expressions of Occludin and ZO-1 in the ileum and decreased the feed:gain (F:G) ratio, which were impaired by the DEX challenge. Superoxide dismutase (SOD), catalase (CAT), gutathione S-transferase (GST), and heme oxygenase-1 (HO-1) activities in the serum and ileum were increased by CGA, whereas protein carboxyl (PCO) level in the serum and ileum, and malondialdehyde (MDA) level in the ileum were decreased of the DEX challenged broilers. The DEX challenge decreased microtubule-associated protein 1 light chain 3 (LC3)-II, Beclin1, and autophagy-related gene (ATG) 7 mRNA expressions, and the LC3-II/LC3-I value and increased LC3-I, cysteinyl aspartate specific proteinase (Caspase)-3 and Caspase-9 mRNA expressions in the ileum, which were improved by CGA. DEX also decreased the protein expressions of Kelch-like ECH-associated protein-1 (Keap1), Nrf2, HO-1, NADPH quinone oxidoreductase-1(NQO-1) and increased sequestosome 1 (p62) in the ileum, which were improved by CGA. Interactions occurred between DEX and CGA for the ADG, F:G ratio, villus height, crypt depth, V/C value, and SOD, CAT, GST, and HO-1 activities, MDA and PCO levels, LC3-II/LC3-I value, and expressions of LC3-I, LC3-II, Beclin1, ATG7, Caspase-3, Caspase-9, Occludin, ZO-1, Keap1, Nrf2, HO-1, NQO-1, and p62. In conclusion, CGA improved the growth performance and intestinal health of oxidatively stressed broilers by activating the autophagy-mediated Nrf2 pathway.
Collapse
|
32
|
Sharma NK, Cadogan DJ, Chrystal PV, McGilchrist P, Wilkinson SJ, Inhuber V, Moss AF. Guanidinoacetic acid as a partial replacement to arginine with or without betaine in broilers offered moderately low crude protein diets. Poult Sci 2022; 101:101692. [PMID: 35124444 PMCID: PMC8819113 DOI: 10.1016/j.psj.2021.101692] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 12/20/2021] [Accepted: 12/22/2021] [Indexed: 01/10/2023] Open
Abstract
Guanidinoacetic acid (GAA) is the direct precursor of creatine and can spare arginine (Arg) for creatine synthesis in low crude protein (CP) broiler diets. This study aimed to determine the extent GAA could spare Arg in broilers offered low CP diets and if supplemental betaine provides additional benefits. Seven hundred twenty-day-old Ross 308 male broilers were assigned into 9 dietary treatments with 8 replicates of 10 birds each. The treatments were; normal CP diet, a low CP (−15 g/kg) diet deficient in Arg, a low CP diet sufficient in Arg, and low CP diets with GAA, where 0.1% added L-Arg was spared by GAA at 50, 100, and 150% with and without 0.1% betaine. The treatments were offered during grower (d 10–24) and finisher (d 25–42) phases. The birds offered a low CP Arg deficient diet had 7.8% lower weight gain, 10 points higher FCR, 8.5% lower breast meat yield, 27.2% lower breast meat creatine concentration and 30.4% more abdominal fat pad compared to those offered a normal CP diet. When Arg was added back to the Arg deficient diet, growth performance, breast meat yield and creatine concentration loss were restored. When GAA spared Arg at 150%, feed intake, weight gain, FCR, breast and abdominal fat yields, breast meat moisture, drip loss, and breast meat creatine concentration became comparable to Arg sufficient low CP and normal CP treatments. When GAA spared Arg at 100 and 50%, FCR was 3 and 5 points lower than the normal CP treatment. Breast meat creatine concentration was positively correlated to feed efficiency (r = 0.70, P < 0.001) and breast meat moisture (r = 0.33, P < 0.01), and negatively correlated to relative weight of abdominal fat (r = −0.37, P < 0.01) and breast meat pH (r = −0.49, P < 0.001). There were no benefits of adding betaine with GAA on the parameters measured but the results with GAA were consistent in the presence or absence of betaine.
Collapse
Affiliation(s)
- Nishchal K Sharma
- School of Environmental and Rural Science, University of New England, Armidale, New South Wales 2351, Australia.
| | | | - Peter V Chrystal
- Poultry Research Foundation, University of Sydney, Camden, New South Wales 2570, Australia
| | - Peter McGilchrist
- School of Environmental and Rural Science, University of New England, Armidale, New South Wales 2351, Australia
| | | | | | - Amy F Moss
- School of Environmental and Rural Science, University of New England, Armidale, New South Wales 2351, Australia
| |
Collapse
|
33
|
Protective Mechanism of Leucine and Isoleucine against H2O2-Induced Oxidative Damage in Bovine Mammary Epithelial Cells. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:4013575. [PMID: 35360198 PMCID: PMC8964234 DOI: 10.1155/2022/4013575] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 02/20/2022] [Accepted: 03/02/2022] [Indexed: 12/14/2022]
Abstract
Leucine and isoleucine possess antioxidative and anti-inflammatory properties. However, their underlying protective mechanisms against oxidative damage remain unknown. Therefore, in this study, the protective mechanism of leucine and isoleucine against H2O2-induced oxidative damage in a bovine mammary epithelial cell lines (MAC-T cells) were investigated. Briefly, MAC-T cells exposed or free to H2O2 were incubated with different combinations of leucine and isoleucine. The cellular relative proliferation rate and viability, oxidative stress indicators, and inflammatory factors were determined by specific commercial kits. The genes related to barrier functions was measured by real-time quantitative PCR. The protein expression differences were explored by 4D label-free quantitative proteomic analyses and validated by parallel reaction monitoring. The results revealed that leucine and isoleucine increased cell proliferation, total antioxidant status (TAS), and the relative mRNA expression of occludin, as well as decreased malondialdehyde (MDA), total oxidant status (TOS)/TAS, IL-6, IL-1β, and TOS. When leucine and isoleucine were combined, MDA, TOS/TAS, and the relative mRNA expression levels of claudin-1, occludin, and zonula occludens-1 increased when compared to leucine or isoleucine alone. Proteomics analyses revealed that leucine significantly upregulated the propanoate metabolism; valine, leucine, and isoleucine degradation; and thermogenesis pathways, whereas isoleucine significantly upregulated the peroxisome and propanoate metabolism pathways. In conclusion, leucine protected MAC-T cells from H2O2-induced oxidative stress by generating more ATP to supplement energy demands, and isoleucine improved the deficit in peroxisome transport and promoted acetyl-CoA production. The findings of this study enhance our understanding of the protective mechanisms of leucine and isoleucine against oxidative damage.
Collapse
|
34
|
Cui YM, Wang J, Zhang HJ, Qi GH, Qiao HZ, Gan LP, Wu SG. Effect of Changes in Photoperiods on Melatonin Expression and Gut Health Parameters in Laying Ducks. Front Microbiol 2022; 13:819427. [PMID: 35359713 PMCID: PMC8961281 DOI: 10.3389/fmicb.2022.819427] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Accepted: 01/28/2022] [Indexed: 12/03/2022] Open
Abstract
We investigated the effect of photoperiod on ileal morphology, barrier function, short-chain fatty acid (SCFA) contents, microbial flora, melatonin expression, and synthesis in laying ducks. After adaption, a total of 180 Jinding laying ducks (252 days old) were randomly divided into three treatments, receiving 12L (hours of light):12D (hours of darkness), 16L:8D, or 20L:4D. Each treatment had six replicates with 10 birds each. The formal experiment lasted 58 days. Compared with 12L:12D, the significantly higher values of villus height and goblet cell percentage (GCP) were observed in 16L:8D treatment, accompanied with the higher mRNA relative expression of zonula occludens-1, zonula occludens-2, zonula occludens-3, claudin-1, occludin, and mucin 2 (P < 0.05). Besides, significantly higher values of acetate and propionate, butyrate and total SCFA concentrations were simultaneously observed in ileal chyme of 16L:8D treatment (P < 0.05). For the ileal microbial community, the results of principal coordinate analysis (PCoA) visually presented that three photoperiod groups were mainly scattered into three clusters, indicating that the microbiota composition in different photoperiod treatments were quite dissimilar. Lower values of Shannon indicators were observed in the 20L:4D treatment (P < 0.05), meaning that the microbiota α-diversity decreased in the 20-h photoperiod. The relative abundance of Actinobacteria, Fusobacteria, and Proteobacteria at phylum level and Fusobacterium, Clostridium_sensu_stricto_1, and Pectobacterium at genus level kept an appropriate balance in the 16L:8D photoperiod. Melatonin level in serum decreased with the increasing photoperiods at 6:00 and 12:00, which was consistent with melatonin receptor expressions in the hypothalamus and ileal tissue. Meanwhile, the adenosine 3′,5′-cyclic phosphate (cAMP) contents were significantly downregulated in the pineal gland (P < 0.05), in response to the increase in photoperiod. In conclusion, an appropriate photoperiod could improve ileal morphology, barrier function, SCFA profile, and microbial flora, which may be attributed to the appropriate regulation of the circadian rhythm through melatonin as well as its receptor expression, and 16 h could be an adequate photoperiod for laying ducks.
Collapse
Affiliation(s)
- Yao-ming Cui
- Laboratory of Quality and Safety Risk Assessment for Animal Products on Feed Hazards (Beijing) of the Ministry of Agriculture and Rural Affairs, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
- College of Biological Engineering, Henan University of Technology, Zhengzhou, China
| | - Jing Wang
- Laboratory of Quality and Safety Risk Assessment for Animal Products on Feed Hazards (Beijing) of the Ministry of Agriculture and Rural Affairs, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Hai-jun Zhang
- Laboratory of Quality and Safety Risk Assessment for Animal Products on Feed Hazards (Beijing) of the Ministry of Agriculture and Rural Affairs, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Guang-hai Qi
- Laboratory of Quality and Safety Risk Assessment for Animal Products on Feed Hazards (Beijing) of the Ministry of Agriculture and Rural Affairs, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Han-zhen Qiao
- College of Biological Engineering, Henan University of Technology, Zhengzhou, China
| | - Li-ping Gan
- College of Biological Engineering, Henan University of Technology, Zhengzhou, China
| | - Shu-geng Wu
- Laboratory of Quality and Safety Risk Assessment for Animal Products on Feed Hazards (Beijing) of the Ministry of Agriculture and Rural Affairs, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
- *Correspondence: Shu-geng Wu,
| |
Collapse
|
35
|
Dao HT, Sharma NK, Kheravii SK, Bradbury EJ, Wu SB, Swick RA. Supplementation of reduced protein diets with l-arginine and l-citrulline for broilers challenged with subclinical necrotic enteritis. 3. Immunological parameters and gene expression. ANIMAL PRODUCTION SCIENCE 2022. [DOI: 10.1071/an21395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
36
|
Ding P, Tong Y, Wu S, Yin X, Liu H, He X, Song Z, Zhang H. The Sexual Effect of Chicken Embryos on the Yolk Metabolites and Liver Lipid Metabolism. Animals (Basel) 2021; 12:71. [PMID: 35011177 PMCID: PMC8749891 DOI: 10.3390/ani12010071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 11/22/2021] [Accepted: 12/28/2021] [Indexed: 11/24/2022] Open
Abstract
The metabolic processes of animals are usually affected by sex. Egg yolk is the major nutrient utilized for the growth and development of a chicken embryo. In this study, we explored the differences of yolk metabolites in male and female chicken embryos by LC-MS/MS. Furthermore, we investigated the mRNA expression of lipoprotein lipase (LPL) and fatty acid synthase (FAS) in chicken embryo liver with different sexes in different embryonic stages. The results showed that the nutrient metabolites in the yolk of female chickens were mainly related to lipid metabolism and amino acid metabolism in the early embryonic stage, and vitamin metabolism in the late embryonic stage. The male yolk metabolites were mainly associated with lipid metabolism and nucleic acid metabolism in the early developmental stage, and amino acids metabolism in the late embryonic stage. There was no significant difference in the expression of LPL or FAS in livers of male and female chicken embryos at different embryonic stages. Our results may lead to a better understanding of the sexual effect on yolk nutrient metabolism during chicken embryonic development.
Collapse
Affiliation(s)
- Peng Ding
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (P.D.); (Y.T.); (S.W.); (X.Y.); (H.L.); (X.H.)
| | - Yueyue Tong
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (P.D.); (Y.T.); (S.W.); (X.Y.); (H.L.); (X.H.)
| | - Shu Wu
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (P.D.); (Y.T.); (S.W.); (X.Y.); (H.L.); (X.H.)
| | - Xin Yin
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (P.D.); (Y.T.); (S.W.); (X.Y.); (H.L.); (X.H.)
| | - Huichao Liu
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (P.D.); (Y.T.); (S.W.); (X.Y.); (H.L.); (X.H.)
| | - Xi He
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (P.D.); (Y.T.); (S.W.); (X.Y.); (H.L.); (X.H.)
- Ministry of Education Engineering Research Center of Feed Safety and Efficient Use, Changsha 410128, China
- Hunan Engineering Research Center of Poultry Production Safety, Changsha 410128, China
- Hunan Co-Innovation Center of Animal Production Safety, Changsha 410128, China
| | - Zehe Song
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (P.D.); (Y.T.); (S.W.); (X.Y.); (H.L.); (X.H.)
- Ministry of Education Engineering Research Center of Feed Safety and Efficient Use, Changsha 410128, China
- Hunan Engineering Research Center of Poultry Production Safety, Changsha 410128, China
- Hunan Co-Innovation Center of Animal Production Safety, Changsha 410128, China
| | - Haihan Zhang
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (P.D.); (Y.T.); (S.W.); (X.Y.); (H.L.); (X.H.)
- Ministry of Education Engineering Research Center of Feed Safety and Efficient Use, Changsha 410128, China
- Hunan Engineering Research Center of Poultry Production Safety, Changsha 410128, China
- Hunan Co-Innovation Center of Animal Production Safety, Changsha 410128, China
| |
Collapse
|
37
|
Peng LY, Shi HT, Tan YR, Shen SY, Yi PF, Shen HQ, Fu BD. Baicalin inhibits APEC-induced lung injury by regulating gut microbiota and SCFA production. Food Funct 2021; 12:12621-12633. [PMID: 34821232 DOI: 10.1039/d1fo02407h] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Baicalin is a plant-derived flavonoid from Scutellaria baicalensis Georgi with multiple bioactivities and has a protective effect against avian pathogenic Escherichia coli (APEC) infection. However, the underlying mechanism of baicalin against APEC infection is still unknown. Therefore, we aimed to explore whether the protective effects and mechanisms of baicalin on APEC-induced lung inflammation were related to the regulation of gut microbiota. The results showed that baicalin significantly reduced APEC colonization and pro-inflammatory cytokines production, and additionally recovered air-blood barrier integrity in the lungs after APEC challenge. However, depletion of gut microbiota significantly weakened the protective effects of baicalin against APEC infection as mentioned above. Furthermore, baicalin markedly restored the dysbiosis of gut microbiota induced by APEC as well as increased the abundance of short chain fatty acid (SCFA)-producing bacteria and the production of SCFAs including acetic acid, propionic acid and butyric acid, especially acetic acid. In addition, the concentrations of acetic acid and its receptor free fatty acid receptor 2 (FFAR2) were significantly upregulated in the lung tissues after baicalin treatment. In conclusion, gut microbiota played a key role in the pharmacological action of baicalin against APEC-induced lung inflammation. Baicalin remodeled the dysbiosis of gut microbiota caused by APEC and increased the production of SCFAs, especially acetic acid in the gut, and then the increased acetate may circulate to the lungs to activate FFAR2 to defend APEC infection. Together, our study suggested that baicalin inhibited APEC infection through remodeling the gut microbiota dysbiosis and increasing the SCFA production. Furthermore, baicalin may serve as an alternative antibiotic and a novel therapeutic drug to prevent or treat APEC infection.
Collapse
Affiliation(s)
- Lu-Yuan Peng
- College of Veterinary Medicine, Jilin University, No. 5333 Xi'an Road, Changchun, Jilin 130062, China.
| | - Hai-Tao Shi
- College of Veterinary Medicine, Jilin University, No. 5333 Xi'an Road, Changchun, Jilin 130062, China.
| | - Yue-Rong Tan
- College of Veterinary Medicine, Jilin University, No. 5333 Xi'an Road, Changchun, Jilin 130062, China.
| | - Si-Yang Shen
- College of Veterinary Medicine, Jilin University, No. 5333 Xi'an Road, Changchun, Jilin 130062, China.
| | - Peng-Fei Yi
- College of Veterinary Medicine, Jilin University, No. 5333 Xi'an Road, Changchun, Jilin 130062, China.
| | - Hai-Qing Shen
- College of Veterinary Medicine, Jilin University, No. 5333 Xi'an Road, Changchun, Jilin 130062, China.
| | - Ben-Dong Fu
- College of Veterinary Medicine, Jilin University, No. 5333 Xi'an Road, Changchun, Jilin 130062, China.
| |
Collapse
|
38
|
Gilani S, Chrystal PV, Barekatain R. Current experimental models, assessment and dietary modulations of intestinal permeability in broiler chickens. ACTA ACUST UNITED AC 2021; 7:801-811. [PMID: 34466684 PMCID: PMC8384772 DOI: 10.1016/j.aninu.2021.03.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 02/26/2021] [Accepted: 03/05/2021] [Indexed: 12/12/2022]
Abstract
Maintaining and optimising the intestinal barrier (IB) function in poultry has important implications for the health and performance of the birds. As a key aspect of the IB, intestinal permeability (IP) is mainly controlled by complex junctional proteins called tight junction proteins (TJ) that link enterocytes together. The disruption of TJ is associated with increased gut leakage with possible subsequent implications for bacterial translocation, intestinal inflammation, compromised health and performance of the birds. Despite considerable data being available for other species, research on IP in broiler chickens and in general avian species is still an understudied topic. This paper reviews the available literature with a specific focus on IP in broiler chickens with consideration given to practical factors affecting the IP, current assessment methods, markers and nutritional modulation of IP. Several experimental models to induce gut leakage are discussed including pathogens, rye-based diets, feed deprivation and stress-inducing agents such as exogenous glucocorticoids and heat stress. Although various markers including fluorescein isothiocyanate dextran, expression of TJ and bacterial translocation have been widely utilized to study IP, recent studies have identified a number of excreta biomarkers to evaluate intestinal integrity, in particular non-invasive IP. Although the research on various nutrients and feed additives to potentially modulate IP is still at an early stage, the most promising outcomes are anticipated for probiotics, prebiotics, amino acids and those feed ingredients, nutrients and additives with anti-inflammatory properties. Considerable research gaps are identified for the mechanistic mode of action of various nutrients to influence IP under different experimental models. The modulation of IP through various strategies (i.e. nutritional manipulation of diet) may be regarded as a new frontier for disease prevention and improving the health and performance of poultry particularly in an antibiotic-free production system.
Collapse
Affiliation(s)
- Saad Gilani
- Danisco Animal Nutrition (IFF), Oegstgeest, the Netherlands
| | | | - Reza Barekatain
- South Australian Research and Development Institute, Roseworthy Campus, Roseworthy, SA, Australia
- School of Animal and Veterinary Sciences, Roseworthy Campus, University of Adelaide, Roseworthy, SA, Australia
- Corresponding author. South Australian Research and Development Institute, Roseworthy Campus, Roseworthy, SA, Australia.
| |
Collapse
|
39
|
Barekatain R, Chalvon-Demersay T, McLaughlan C, Lambert W. Intestinal Barrier Function and Performance of Broiler Chickens Fed Additional Arginine, Combination of Arginine and Glutamine or an Amino Acid-Based Solution. Animals (Basel) 2021; 11:2416. [PMID: 34438873 PMCID: PMC8388668 DOI: 10.3390/ani11082416] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 08/12/2021] [Accepted: 08/13/2021] [Indexed: 01/01/2023] Open
Abstract
Two experiments were conducted to investigate the effect of arginine (Arg); the combination of Arg and glutamine (Gln); as well as an amino acid-based solution (MIX) containing Arg, Gln, threonine (Thr), and grape extract, on performance, intestinal permeability, and expression of selected mechanistic genes. Using 240 male Ross 308 off-sex broiler chickens, four experimental treatments were replicated six times with 10 birds per replicate. The experimental treatments included 5 g/kg Arg, 2.5 g/kg Arg and 2.5 g/kg Gln, and 1 g/kg MIX added to a basal diet as control. In the second study, the four dietary treatments were then given to 24 birds with or without a synthetic glucocorticoid, dexamethasone (DEX), as a gut dysfunction model. Feed conversion ratio was improved by all the supplemented treatments from day 7 to 35 of age (p < 0.001). DEX injections increased (p < 0.001) the intestinal permeability in all treatments, which tended to be reversed by Arg or MIX. Additional Arg, Arg-Gln, and MIX suppressed (p < 0.05) the overexpression of IL-1β generated by DEX. Feeding birds with MIX treatment increased (p < 0.05) expression of SGLT-1 and glutathione synthetase. In conclusion, tested amino acid supplements were effective in improving feed efficiency and restraining intestinal inflammation caused by DEX through IL-1β pathway.
Collapse
Affiliation(s)
- Reza Barekatain
- South Australian Research and Development Institute, Roseworthy Campus, University of Adelaide, Roseworthy, SA 5371, Australia;
| | | | - Clive McLaughlan
- South Australian Research and Development Institute, Roseworthy Campus, University of Adelaide, Roseworthy, SA 5371, Australia;
| | - William Lambert
- METEX NOOVISTAGO, 32 Rue Guersant, 75017 Paris, France; (T.C.-D.); (W.L.)
| |
Collapse
|
40
|
Protective effects of gut microbiota and gut microbiota-derived acetate on chicken colibacillosis induced by avian pathogenic Escherichia coli. Vet Microbiol 2021; 261:109187. [PMID: 34399296 DOI: 10.1016/j.vetmic.2021.109187] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 07/20/2021] [Indexed: 02/07/2023]
Abstract
Chicken colibacillosis is caused by avian pathogenic Escherichia coli (APEC), and results in huge economic losses to the poultry industry. With the investigation of the gut-lung axis, more studies have demonstrated the important role of gut microbiota in lung inflammation. The precise role of the gut microbiota in chickens-associated colibacillosis, however, is unknown. Thus, this study assessed the function of the gut microbiota in the chicken defense against APEC infection. Chicken gut microbiota was depleted by drinking water with a mixture of antibiotics (Abx), and subsequently, a model of colibacillosis was established by the intranasal perfusion of APEC. The results showed that gut microbiota protects the chicken challenge by APEC from aggravated lung histopathologic injury, up-regulated pro-inflammatory cytokine production, and increased bacterial load in lung tissues compared with controls. In addition, the air-blood barrier permeability was significantly increased in gut microbiota-depleted chickens compared to the control chickens after challenge with APEC. Furthermore, feeding acetate significantly inhibited the lung inflammatory response and the reduced air-blood permeability induced by APEC infection. The expression of free fatty acid receptor 2 (FFAR2), a receptor for acetate, was also increased in the lung after treatment with acetate. In conclusion, depletion of the gut microbiota resulted in increased susceptibility of chickens to APEC challenge, and gut microbiota derived acetate acted as a protective mediator during the APEC challenge. Novel therapeutic targets that focus on the gut microbiota may be effective in controlling colibacillosis in poultry.
Collapse
|
41
|
Vuong CN, Mullenix GJ, Kidd MT, Bottje WG, Hargis BM, Tellez-Isaias G. Research Note: Modified serum fluorescein isothiocyanate dextran (FITC-d) assay procedure to determine intestinal permeability in poultry fed diets high in natural or synthetic pigments. Poult Sci 2021; 100:101138. [PMID: 33975047 PMCID: PMC8131737 DOI: 10.1016/j.psj.2021.101138] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 03/09/2021] [Accepted: 03/10/2021] [Indexed: 12/02/2022] Open
Abstract
Oral administration of fluorescein isothiocyanate dextran (FITC-d) has been used as an indicator for intestinal permeability in poultry research for several years. Under healthy conditions, tight junctions in the intestinal wall will not allow the 4-6kDa FITC-d to enter the bloodstream. Detection of FITC-d in serum (1-hour post-oral administration of FITC-d) has proven to be a reliable indicator of leaky gut syndrome (increased intestinal inflammation and disruption of tight junctions). Administration of supplementary phytobiotics in feed, particularly products with high beta-carotene levels or other pigments, has resulted in strong serum background fluorescence, which can render this assay unreliable. To account for this increase in background autofluorescence, the FITC-d assay procedure has been modified to accommodate these particular serum samples by including pre-administration serum collection from each treatment group to remove background fluorescence. The modified FITC-d procedure detailed will allow for analysis of intestinal permeability in pigmented serum.
Collapse
Affiliation(s)
- Christine N Vuong
- Department of Poultry Science, University of Arkansas: Division of Agriculture, Fayetteville, AR, USA.
| | - Garrett J Mullenix
- Department of Poultry Science, University of Arkansas: Division of Agriculture, Fayetteville, AR, USA
| | - Michael T Kidd
- Department of Poultry Science, University of Arkansas: Division of Agriculture, Fayetteville, AR, USA
| | - Walter G Bottje
- Department of Poultry Science, University of Arkansas: Division of Agriculture, Fayetteville, AR, USA
| | - Billy M Hargis
- Department of Poultry Science, University of Arkansas: Division of Agriculture, Fayetteville, AR, USA
| | - Guillermo Tellez-Isaias
- Department of Poultry Science, University of Arkansas: Division of Agriculture, Fayetteville, AR, USA
| |
Collapse
|
42
|
Dal Pont GC, Belote BL, Lee A, Bortoluzzi C, Eyng C, Sevastiyanova M, Khadem A, Santin E, Farnell YZ, Gougoulias C, Kogut MH. Novel Models for Chronic Intestinal Inflammation in Chickens: Intestinal Inflammation Pattern and Biomarkers. Front Immunol 2021; 12:676628. [PMID: 34054868 PMCID: PMC8158159 DOI: 10.3389/fimmu.2021.676628] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 04/23/2021] [Indexed: 01/30/2023] Open
Abstract
For poultry producers, chronic low-grade intestinal inflammation has a negative impact on productivity by impairing nutrient absorption and allocation of nutrients for growth. Understanding the triggers of chronic intestinal inflammation and developing a non-invasive measurement is crucial to managing gut health in poultry. In this study, we developed two novel models of low-grade chronic intestinal inflammation in broiler chickens: a chemical model using dextran sodium sulfate (DSS) and a dietary model using a high non-starch polysaccharide diet (NSP). Further, we evaluated the potential of several proteins as biomarkers of gut inflammation. For these experiments, the chemical induction of inflammation consisted of two 5-day cycles of oral gavage of either 0.25mg DSS/ml or 0.35mg DSS/ml; whereas the NSP diet (30% rice bran) was fed throughout the experiment. At four times (14, 22, 28 and 36-d post-hatch), necropsies were performed to collect intestinal samples for histology, and feces and serum for biomarkers quantification. Neither DSS nor NSP treatments affected feed intake or livability. NSP-fed birds exhibited intestinal inflammation through 14-d, which stabilized by 36-d. On the other hand, the cyclic DSS-treatment produced inflammation throughout the entire experimental period. Histological examination of the intestine revealed that the inflammation induced by both models exhibited similar spatial and temporal patterns with the duodenum and jejunum affected early (at 14-d) whereas the ileum was compromised by 28-d. Calprotectin (CALP) was the only serum protein found to be increased due to inflammation. However, fecal CALP and Lipocalin-2 (LCN-2) concentrations were significantly greater in the induced inflammation groups at 28-d. This experiment demonstrated for the first time, two in vivo models of chronic gut inflammation in chickens, a DSS and a nutritional NSP protocols. Based on these models we observed that intestinal inflammation begins in the upper segments of small intestine and moved to the lower region over time. In the searching for a fecal biomarker for intestinal inflammation, LCN-2 showed promising results. More importantly, calprotectin has a great potential as a novel biomarker for poultry measured both in serum and feces.
Collapse
Affiliation(s)
- Gabriela C Dal Pont
- Department of Poultry Science, Texas A&M Agrilife Research, Texas A&M University, College Station, TX, United States.,Department of Veterinary Science, Federal University of Paraná, Curitiba, Brazil.,Department of Animal Science, Western Parana State University, Marechal C. Rondon, Brazil.,Innovad NV/SA, Essen, Belgium.,Southern Plains Agricultural Research Center, United States Department of Agriculture - Agricultural Research Service (USDA-ARS), College Station, TX, United States
| | - Bruna L Belote
- Department of Veterinary Science, Federal University of Paraná, Curitiba, Brazil
| | - Annah Lee
- Department of Poultry Science, Texas A&M Agrilife Research, Texas A&M University, College Station, TX, United States
| | - Cristiano Bortoluzzi
- Department of Poultry Science, Texas A&M Agrilife Research, Texas A&M University, College Station, TX, United States
| | - Cinthia Eyng
- Department of Animal Science, Western Parana State University, Marechal C. Rondon, Brazil
| | | | | | - Elizabeth Santin
- Department of Veterinary Science, Federal University of Paraná, Curitiba, Brazil
| | - Yuhua Z Farnell
- Department of Poultry Science, Texas A&M Agrilife Research, Texas A&M University, College Station, TX, United States
| | | | - Michael H Kogut
- Southern Plains Agricultural Research Center, United States Department of Agriculture - Agricultural Research Service (USDA-ARS), College Station, TX, United States
| |
Collapse
|
43
|
Assay considerations for fluorescein isothiocyanate-dextran (FITC-d): an indicator of intestinal permeability in broiler chickens. Poult Sci 2021; 100:101202. [PMID: 34111612 PMCID: PMC8192867 DOI: 10.1016/j.psj.2021.101202] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 03/12/2021] [Accepted: 03/26/2021] [Indexed: 12/16/2022] Open
Abstract
Fluorescein isothiocyanate-dextran (FITC-d) is being used as an indicator of intestinal paracellular permeability in poultry research. Especially with the industry moving toward antibiotic-free production, intestinal function and integrity issues have been a research focus. An increasing number of scientific conference abstracts and peer-reviewed journal publications have shown that 4-kDa FITC-d is an efficient marker candidate for measurement of intestinal permeability and can be applied in broiler research. However, experimental protocols vary by personnel, instruments used, and research institution, and potential concerns related to this assay have yet to receive the same amount of attention. Understanding protocol consistency within and across laboratories is vital for obtaining accurate, consistent, and comparable experimental results. This review is aimed to 1) summarize different FITC-d assays in broiler research from peer-reviewed publications during the past 6 yr and 2) discuss factors that can potentially affect intestinal permeability results when conducting the FITC-d assay. In summary, it is essential to pay attention to details, including gavage dose, fasting period, sample handling and lab analysis details when conducting the assay in broiler research. Differences in birds (breed/strain, age, and gender) and experimental design (diet, health status/challenge model, and sampling age) need to be considered when comparing serum FITC-d concentration results between different in vivo animal trials.
Collapse
|
44
|
Plasmodium chabaudi Infection Alters Intestinal Morphology and Mucosal Innate Immunity in Moderately Malnourished Mice. Nutrients 2021; 13:nu13030913. [PMID: 33799736 PMCID: PMC7998862 DOI: 10.3390/nu13030913] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 03/06/2021] [Accepted: 03/08/2021] [Indexed: 12/29/2022] Open
Abstract
Plasmodium falciparum is a protozoan parasite which causes malarial disease in humans. Infections commonly occur in sub-Saharan Africa, a region with high rates of inadequate nutrient consumption resulting in malnutrition. The complex relationship between malaria and malnutrition and their effects on gut immunity and physiology are poorly understood. Here, we investigated the effect of malaria infection in the guts of moderately malnourished mice. We utilized a well-established low protein diet that is deficient in zinc and iron to induce moderate malnutrition and investigated mucosal tissue phenotype, permeability, and innate immune response in the gut. We observed that the infected moderately malnourished mice had lower parasite burden at the peak of infection, but damaged mucosal epithelial cells and high levels of FITC-Dextran concentration in the blood serum, indicating increased intestinal permeability. The small intestine in the moderately malnourished mice were also shorter after infection with malaria. This was accompanied with lower numbers of CD11b+ macrophages, CD11b+CD11c+ myeloid cells, and CD11c+ dendritic cells in large intestine. Despite the lower number of innate immune cells, macrophages in the moderately malnourished mice were highly activated as determined by MHCII expression and increased IFNγ production in the small intestine. Thus, our data suggest that malaria infection may exacerbate some of the abnormalities in the gut induced by moderate malnutrition.
Collapse
|
45
|
von Buchholz JS, Bilic I, Aschenbach JR, Hess M, Mitra T, Awad WA. Establishment of a novel probe-based RT-qPCR approach for detection and quantification of tight junctions reveals age-related changes in the gut barriers of broiler chickens. PLoS One 2021; 16:e0248165. [PMID: 33667266 PMCID: PMC7935255 DOI: 10.1371/journal.pone.0248165] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 02/20/2021] [Indexed: 12/22/2022] Open
Abstract
Tight junctions (TJs) play a dominant role in gut barrier formation, therefore, resolving the structures of TJs in any animal species is crucial but of major importance in fast growing broilers. They are regulated in molecular composition, ultrastructure and function by intracellular proteins and the cytoskeleton. TJ proteins are classified according to their function into barrier-forming, scaffolding and pore-forming types with deductible consequences for permeability. In spite of their importance for gut health and its integrity limited studies have investigated the TJs in chickens, including the comprehensive evaluation of TJs molecular composition and function in the chicken gut. In the actual study sequence-specific probes to target different TJ genes (claudin 1, 3, 5, 7, 10, 19, zonula occludens 1 (ZO1), occludin (OCLN) and tricellulin (MD2)) were designed and probe-based RT-qPCRs were newly developed. Claudin (CLDN) 1, 5, ZO1 and CLDN 3, 7, MD2 were engulfed in multiplex RT-qPCRs, minimizing the number of separate reactions and enabling robust testing of many samples. All RT-qPCRs were standardized for chicken jejunum and caecum samples, which enabled specific detection and quantification of the gene expression. Furthermore, the newly established protocols were used to investigate the age developmental changes in the TJs of broiler chickens from 1-35 days of age in the same organ samples. Results revealed a significant increase in mRNA expression between 14 and 21days of age of all tested TJs in jejunum. However, in caecum, mRNA expression of some TJs decreased after 1 day of age whereas some TJs mRNA remained constant till 35 days of age. Taken together, determining the segment-specific changes in the expression of TJ- proteins by RT-qPCR provides a deeper understanding of the molecular mechanisms underpinning pathophysiological changes in the gut of broiler chickens with various etiologies.
Collapse
Affiliation(s)
- J. Sophia von Buchholz
- Department for Farm Animals and Veterinary Public Health, Clinic for Poultry and Fish Medicine, University of Veterinary Medicine, Vienna, Austria
| | - Ivana Bilic
- Department for Farm Animals and Veterinary Public Health, Clinic for Poultry and Fish Medicine, University of Veterinary Medicine, Vienna, Austria
| | - Jörg R. Aschenbach
- Department of Veterinary Medicine, Institute of Veterinary Physiology, Freie Universität Berlin, Berlin, Germany
| | - Michael Hess
- Department for Farm Animals and Veterinary Public Health, Clinic for Poultry and Fish Medicine, University of Veterinary Medicine, Vienna, Austria
| | - Taniya Mitra
- Department for Farm Animals and Veterinary Public Health, Clinic for Poultry and Fish Medicine, University of Veterinary Medicine, Vienna, Austria
| | - Wageha A. Awad
- Department for Farm Animals and Veterinary Public Health, Clinic for Poultry and Fish Medicine, University of Veterinary Medicine, Vienna, Austria
| |
Collapse
|
46
|
Zhou JM, Zhang HJ, Wu SG, Qiu K, Fu Y, Qi GH, Wang J. Supplemental Xylooligosaccharide Modulates Intestinal Mucosal Barrier and Cecal Microbiota in Laying Hens Fed Oxidized Fish Oil. Front Microbiol 2021; 12:635333. [PMID: 33692770 PMCID: PMC7937631 DOI: 10.3389/fmicb.2021.635333] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 01/20/2021] [Indexed: 12/05/2022] Open
Abstract
Our previous study indicated that dietary xylooligosaccharide (XOS) supplementation improved feed efficiency, ileal morphology, and nutrient digestibility in laying hens. The objective of this study was to evaluate the mitigative effects of XOS on intestinal mucosal barrier impairment and microbiota dysbiosis induced by oxidized fish oil (OFO) in laying hens. A total of 384 Hy-Line Brown layers at 50 weeks of age were randomly divided into four dietary treatments, including the diets supplemented with 20 g/kg of fresh fish oil (FFO group) or 20 g/kg of oxidized fish oil (OFO group), and the OFO diets with XOS addition at 200 mg/kg (OFO/XOS200 group) or 400 mg/kg (OFO/XOS400 group). Each treatment had eight replicates with 12 birds each. The OFO treatment decreased (P < 0.05) the production performance of birds from 7 to 12 weeks of the experiment, reduced (P < 0.05) ileal mucosal secretory immunoglobulin A (sIgA) content, and increased (P < 0.05) serum endotoxin concentration, as well as downregulated (P < 0.05) mRNA expression of claudin-1 (CLDN1) and claudin-5 (CLDN5) in the ileal mucosa at the end of the experiment. Dietary XOS addition (400 mg/kg) recovered (P < 0.05) these changes and further improved (P < 0.05) ileal villus height (VH) and the villus height-to-crypt depth ratio (VCR). In addition, OFO treatment altered cecal microbial composition of layers, and these alterations were probably involved in OFO-induced ileal mucosal impairment as causes or consequences. Supplemental XOS remodeled cecal microbiota of layers fed the OFO diet, characterized by an elevation in microbial richness and changes in microbial composition, including increases in Firmicutes, Ruminococcaceae, Verrucomicrobia (Akkermansia), Paraprevotella, Prevotella_9, and Oscillospira, along with a decrease in Erysipelatoclostridium. The increased abundance of Verrucomicrobia (Akkermansia) had positive correlations with the improved ileal VH and ileal mucosal expression of CLDN1. The abundance of Erysipelatoclostridium decreased by XOS addition was negatively associated with ileal VH, VCR, ileal mucosal sIgA content, and the relative expression of zonula occludens-2, CLDN1, and CLDN5. Collectively, supplemental XOS alleviated OFO-induced intestinal mucosal barrier dysfunction and performance impairment in laying hens, which could be at least partially attributed to the modulation of gut microbiota.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Jing Wang
- Laboratory of Quality and Safety Risk Assessment for Animal Products on Feed Hazards (Beijing) of the Ministry of Agriculture and Rural Affairs, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
47
|
Khoshbin K, Camilleri M. Effects of dietary components on intestinal permeability in health and disease. Am J Physiol Gastrointest Liver Physiol 2020; 319:G589-G608. [PMID: 32902315 PMCID: PMC8087346 DOI: 10.1152/ajpgi.00245.2020] [Citation(s) in RCA: 111] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Altered intestinal permeability plays a role in many pathological conditions. Intestinal permeability is a component of the intestinal barrier. This barrier is a dynamic interface between the body and the food and pathogens that enter the gastrointestinal tract. Therefore, dietary components can directly affect this interface, and many metabolites produced by the host enzymes or the gut microbiota can act as signaling molecules or exert direct effects on this barrier. Our aim was to examine the effects of diet components on the intestinal barrier in health and disease states. Herein, we conducted an in-depth PubMed search based on specific key words (diet, permeability, barrier, health, disease, and disorder), as well as cross references from those articles. The normal intestinal barrier consists of multiple components in the lumen, epithelial cell layer and the lamina propria. Diverse methods are available to measure intestinal permeability. We focus predominantly on human in vivo studies, and the literature is reviewed to identify dietary factors that decrease (e.g., emulsifiers, surfactants, and alcohol) or increase (e.g., fiber, short-chain fatty acids, glutamine, and vitamin D) barrier integrity. Effects of these dietary items in disease states, such as metabolic syndrome, liver disease, or colitis are documented as examples of barrier dysfunction in the multifactorial diseases. Effects of diet on intestinal barrier function are associated with precise mechanisms in some instances; further research of those mechanisms has potential to clarify the role of dietary interventions in treating diverse pathologic states.
Collapse
Affiliation(s)
- Katayoun Khoshbin
- Clinical Enteric Neuroscience Translational and Epidemiological Research, Mayo Clinic, Rochester, Minnesota
| | - Michael Camilleri
- Clinical Enteric Neuroscience Translational and Epidemiological Research, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
48
|
Proszkowiec-Weglarz M, Schreier LL, Kahl S, Miska KB, Russell B, Elsasser TH. Effect of delayed feeding post-hatch on expression of tight junction- and gut barrier-related genes in the small intestine of broiler chickens during neonatal development. Poult Sci 2020; 99:4714-4729. [PMID: 32988506 PMCID: PMC7598124 DOI: 10.1016/j.psj.2020.06.023] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 04/03/2020] [Accepted: 06/16/2020] [Indexed: 01/04/2023] Open
Abstract
The gut not only plays a key role in digestion and absorption of nutrients but also forms a physical barrier and first line of defense between the host and the luminal environment. A functional gut barrier (mucus and epithelial cells with tight junctions [TJ]) is essential for optimal health and efficient production in poultry. In current broiler system, chicks are deprived of food and water up to 72 h due to uneven hatching, hatchery procedures, and transportation. Post-hatch feed delay results in lower BW, higher FCR and mortality, and delayed post-hatch gut development. Little is known about the effects of early neonatal development and delayed feeding immediately post-hatch on gut barrier function in chickens. Therefore, the aim of the present study was to characterize the expression pattern of gut barrier-related and TJ-related genes in the small intestine of broiler chickens during early development and delay in access to feed. Newly hatched chicks received feed and water immediately after hatch or were subjected to 48 h delayed access to feed to mimic commercial hatchery setting and operations. Birds were sampled (n = 6) at -48, 0, 4, 24, 48, 72, 96, 144, 192, 240, 288, and 336 h post-hatch. Jejunum and ileum were collected, cleaned of digesta, and snap-frozen in liquid nitrogen or fixed in paraformaldehyde. The relative mRNA levels of gut barrier- and TJ-related protein genes were measured by quantitative PCR and analyzed by 2-way ANOVA. In both tissues, changes (P < 0.05) in gene expression pattern of gut barrier-related and TJ-related genes were detected due to delayed access to feed post-hatch and/or development. In general, expression of TJ-related genes was downregulated while mRNA levels of gut barrier-related genes were upregulated during development. Histological differences and changes in mucin staining due to age and treatment were observed. These results suggest that delayed access to feed post-hatch may affect TJ structure and/or function and therefore gut barrier function and overall health of the chicken small intestine.
Collapse
Affiliation(s)
- Monika Proszkowiec-Weglarz
- Animal Biosciences and Biotechnology Laboratory, United States Department of Agriculture, Agricultural Research Service, Beltsville, MD 20705, USA.
| | - Lori L Schreier
- Animal Biosciences and Biotechnology Laboratory, United States Department of Agriculture, Agricultural Research Service, Beltsville, MD 20705, USA
| | - Stanislaw Kahl
- Animal Biosciences and Biotechnology Laboratory, United States Department of Agriculture, Agricultural Research Service, Beltsville, MD 20705, USA
| | - Katarzyna B Miska
- Animal Biosciences and Biotechnology Laboratory, United States Department of Agriculture, Agricultural Research Service, Beltsville, MD 20705, USA
| | - Beverly Russell
- Animal Biosciences and Biotechnology Laboratory, United States Department of Agriculture, Agricultural Research Service, Beltsville, MD 20705, USA
| | - Theodore H Elsasser
- Animal Biosciences and Biotechnology Laboratory, United States Department of Agriculture, Agricultural Research Service, Beltsville, MD 20705, USA
| |
Collapse
|
49
|
Zanu HK, Kheravii SK, Morgan NK, Bedford MR, Swick RA. Interactive effect of dietary calcium and phytase on broilers challenged with subclinical necrotic enteritis: part 2. Gut permeability, phytate ester concentrations, jejunal gene expression, and intestinal morphology. Poult Sci 2020; 99:4914-4928. [PMID: 32988528 PMCID: PMC7598120 DOI: 10.1016/j.psj.2020.06.030] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Revised: 06/04/2020] [Accepted: 06/19/2020] [Indexed: 02/09/2023] Open
Abstract
Calcium has the capacity to interact with phytate-P to form Ca-phytate complexes and decrease the ability of exogenous phytase to degrade phytic acid. This study investigated the hypothesis that high dietary Ca would impair gut permeability, phytate esters (inositol x-phosphate, IPx: IP3, IP4, IP5, and IP6) degradation, jejunal gene expression, and intestinal morphology. Ross 308 day-old male broilers (n = 768) were distributed into 48-floor pens each housing 16 birds in a factorial arrangement. Factors were NE challenge-no or yes; phytase level of 500 or 1,500 FTU/kg, and Ca level 0.6 or 1.0% starter, 0.5 or 0.9% grower, 0.4 or 0.8% finisher with available P in each phase. Challenged birds were gavaged with 3 field strains of Eimeria on day 9 and 108 CFU per mL of Clostridium perfringens Strain EHE-NE18 on day 14 and day 15. A phytase × Ca interaction was observed in the ileum for IP3 (P < 0.01), IP4 (P < 0.05), and IP6 (P < 0.01). The IP3 and IP4 concentrations were similar for both doses of phytase in the presence of low Ca, but with high Ca, both increased significantly but to a greater extent when the high dose of phytase was used. While IP6 concentrations were low and similar between both doses of phytase at low Ca levels, increasing dietary Ca levels increased IP6 concentrations regardless of phytase dose, but the effect was greater in the low phytase diet. A phytase × Ca interaction was detected for vitamin D receptor (VDR) (P < 0.05) expression where bird fed low phytase and low Ca recorded the highest expression of VDR, all other treatments being equivalent. The challenge decreased crypt depth to villus height ratio (P < 0.001). Challenge birds had higher fluorescein isothiocyanate dextran (P < 0.05) in blood compared with unchallenged birds. Thus, high Ca and high phytase, while not the best for IP6 destruction, did not lead to huge reductions in indicators of gut health.
Collapse
Affiliation(s)
- H K Zanu
- School of Environmental and Rural Science, University of New England, Armidale, NSW 2351, Australia
| | - S K Kheravii
- School of Environmental and Rural Science, University of New England, Armidale, NSW 2351, Australia
| | - N K Morgan
- School of Environmental and Rural Science, University of New England, Armidale, NSW 2351, Australia
| | - M R Bedford
- AB Vista, Marlborough, Wiltshire SN8 4AN, United Kingdom
| | - R A Swick
- School of Environmental and Rural Science, University of New England, Armidale, NSW 2351, Australia.
| |
Collapse
|
50
|
Hollemans MS, van Baal J, de Vries Reilingh G, Kemp B, Lammers A, de Vries S. Intestinal epithelium integrity after delayed onset of nutrition in broiler chickens. Poult Sci 2020; 99:6818-6827. [PMID: 33248597 PMCID: PMC7704972 DOI: 10.1016/j.psj.2020.08.079] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 08/18/2020] [Accepted: 08/24/2020] [Indexed: 12/20/2022] Open
Abstract
Fasting older broiler chickens (>7 d of age) enlarges the intestinal tight junction (TJ) pore size, resulting in high paracellular intestinal permeability. Broiler chickens often do not receive feed and water (nutrition) directly after hatch, which may result in fasting up to 72 h of age. Whether perinatal fasting affects intestinal permeability is minimally studied. We therefore investigated whether delayed access to nutrition after hatch increases intestinal permeability, compared with broilers receiving early access to nutrition. Therefore, 432 hatched broilers received nutrition 72 h after hatch (delayed nutrition [DN]) or directly after hatch (early nutrition [EN]) and were reared under similar conditions until 14 d of age. Two hours after application of an oral pulse dose (3.85 mg) of fluorescein isothiocyanate-dextran (4000 Da) at 4, 10, and 14 d of age, blood plasma concentrations of the marker were measured in 24 to 36 broilers per treatment and time point. Marker concentration in plasma did not differ between DN and EN broilers at any age. The villus width measured in at least 8 broilers per treatment was smaller in DN than in EN broilers at 4 d for both the ileum (92 ± 3 μm vs. 121 ± 4; P < 0.001) and colon (100 ± 3 vs. 120 ± 4; P < 0.01). Real-time quantitative PCR revealed that the expression of TJ protein claudin 3 in the ceca was elevated in DN, compared with EN broilers at 4 d of age, whereas that of zonula occludens 1 in the ileum was reduced. Expression of host defense-related genes was reduced in DN, compared with EN broilers, in the ileum (cyclo-oxygenase 2, mucin 2) and ceca (interleukin 1β, cyclo-oxygenase 2). We conclude that 72-hour DN reduced the BW up to 14 d of age, coinciding with transient effects on the villus width in the ileum and colon, and divergent expression of genes involved in TJ formation and host defense. These effects likely reflect the delayed onset of intestinal and immune development in DN, compared with EN broilers, while DN does not fundamentally alter intestinal permeability.
Collapse
Affiliation(s)
- M S Hollemans
- Innovation Team, Coppens Diervoeding B.V., NL-5700AB Helmond, The Netherlands; Adaptation Physiology Group, Wageningen University & Research, NL-6700AH Wageningen, The Netherlands; Animal Nutrition Group, Wageningen University & Research, NL-6700AH Wageningen, The Netherlands.
| | - J van Baal
- Animal Nutrition Group, Wageningen University & Research, NL-6700AH Wageningen, The Netherlands
| | - G de Vries Reilingh
- Adaptation Physiology Group, Wageningen University & Research, NL-6700AH Wageningen, The Netherlands
| | - B Kemp
- Adaptation Physiology Group, Wageningen University & Research, NL-6700AH Wageningen, The Netherlands
| | - A Lammers
- Adaptation Physiology Group, Wageningen University & Research, NL-6700AH Wageningen, The Netherlands
| | - S de Vries
- Animal Nutrition Group, Wageningen University & Research, NL-6700AH Wageningen, The Netherlands
| |
Collapse
|