1
|
Frouard J, Telwatte S, Luo X, Elphick N, Thomas R, Arneson D, Roychoudhury P, Butte AJ, Wong JK, Hoh R, Deeks SG, Lee SA, Roan NR, Yukl S. HIV-SEQ REVEALS GLOBAL HOST GENE EXPRESSION DIFFERENCES BETWEEN HIV-TRANSCRIBING CELLS FROM VIREMIC AND SUPPRESSED PEOPLE WITH HIV. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.17.629023. [PMID: 39763963 PMCID: PMC11702770 DOI: 10.1101/2024.12.17.629023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/18/2025]
Abstract
"Active" reservoir cells transcribing HIV can perpetuate chronic inflammation in virally suppressed people with HIV (PWH) and likely contribute to viral rebound after antiretroviral therapy (ART) interruption, so they represent an important target for new therapies. These cells, however, are difficult to study using single-cell RNA-seq (scRNA-seq) due to their low frequency and low levels of HIV transcripts, which are usually not polyadenylated. Here, we developed "HIV-seq" to enable more efficient capture of HIV transcripts - including non-polyadenylated ones - for scRNA-seq analysis of cells from PWH. By spiking in a set of custom-designed capture sequences targeting conserved regions of the HIV genome during scRNA-seq, we increased our ability to find HIV RNA+ cells from PWH by up to 44%. Implementing HIV-seq in conjunction with surface phenotyping by CITE-seq on paired blood specimens from PWH before vs. after ART suppression, we found that HIV RNA+ cells were enriched among T effector memory (Tem) cells during both viremia and ART suppression, but exhibited a cytotoxic signature during viremia only. By contrast, HIV RNA+ cells from the ART-suppressed timepoints exhibited a distinct anti-inflammatory signature involving elevated TGF-β and diminished IFN signaling. Overall, these findings demonstrate that active reservoir cells exhibit transcriptional features distinct from HIV RNA+ cells during viremia, and underscore HIV-seq as a useful tool to better understand the mechanisms by which HIV-transcribing cells can persist during ART.
Collapse
Affiliation(s)
- Julie Frouard
- Gladstone Institutes, San Francisco, CA 94158, USA
- Department of Urology, University of California, San Francisco, CA 94158, USA
| | - Sushama Telwatte
- San Francisco Veterans Affairs (VA) Medical Center and University of California, San Francisco, CA, USA
- Department of Infectious Diseases, The University of Melbourne at the Peter Doherty Institute of Infection and Immunity, Melbourne, Australia
| | - Xiaoyu Luo
- Gladstone Institutes, San Francisco, CA 94158, USA
- Department of Urology, University of California, San Francisco, CA 94158, USA
| | | | | | - Douglas Arneson
- Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA, USA
| | - Pavitra Roychoudhury
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA; Viral and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Atul J Butte
- Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA, USA
| | - Joseph K Wong
- San Francisco Veterans Affairs (VA) Medical Center and University of California, San Francisco, CA, USA
| | - Rebecca Hoh
- Division of HIV, Infectious Diseases and Global Medicine, University of California, San Francisco, USA
| | - Steven G Deeks
- Division of HIV, Infectious Diseases and Global Medicine, University of California, San Francisco, USA
| | - Sulggi A Lee
- Zuckerberg San Francisco General Hospital and the University of California, San Francisco, USA
| | - Nadia R Roan
- Gladstone Institutes, San Francisco, CA 94158, USA
- Department of Urology, University of California, San Francisco, CA 94158, USA
| | - Steven Yukl
- San Francisco Veterans Affairs (VA) Medical Center and University of California, San Francisco, CA, USA
| |
Collapse
|
2
|
Janciauskiene S, Lechowicz U, Pelc M, Olejnicka B, Chorostowska-Wynimko J. Diagnostic and therapeutic value of human serpin family proteins. Biomed Pharmacother 2024; 175:116618. [PMID: 38678961 DOI: 10.1016/j.biopha.2024.116618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 04/15/2024] [Accepted: 04/17/2024] [Indexed: 05/01/2024] Open
Abstract
SERPIN (serine proteinase inhibitors) is an acronym for the superfamily of structurally similar proteins found in animals, plants, bacteria, viruses, and archaea. Over 1500 SERPINs are known in nature, while only 37 SERPINs are found in humans, which participate in inflammation, coagulation, angiogenesis, cell viability, and other pathophysiological processes. Both qualitative or quantitative deficiencies or overexpression and/or abnormal accumulation of SERPIN can lead to diseases commonly referred to as "serpinopathies". Hence, strategies involving SERPIN supplementation, elimination, or correction are utilized and/or under consideration. In this review, we discuss relationships between certain SERPINs and diseases as well as putative strategies for the clinical explorations of SERPINs.
Collapse
Affiliation(s)
- Sabina Janciauskiene
- Department of Pulmonary and Infectious Diseases and BREATH German Center for Lung Research (DZL), Hannover Medical School, Hannover, Germany; Department of Genetics and Clinical Immunology, National Institute of Tuberculosis and Lung Diseases, 26 Plocka St, Warsaw 01-138, Poland
| | - Urszula Lechowicz
- Department of Genetics and Clinical Immunology, National Institute of Tuberculosis and Lung Diseases, 26 Plocka St, Warsaw 01-138, Poland
| | - Magdalena Pelc
- Department of Genetics and Clinical Immunology, National Institute of Tuberculosis and Lung Diseases, 26 Plocka St, Warsaw 01-138, Poland
| | - Beata Olejnicka
- Department of Pulmonary and Infectious Diseases and BREATH German Center for Lung Research (DZL), Hannover Medical School, Hannover, Germany
| | - Joanna Chorostowska-Wynimko
- Department of Genetics and Clinical Immunology, National Institute of Tuberculosis and Lung Diseases, 26 Plocka St, Warsaw 01-138, Poland.
| |
Collapse
|
3
|
Ji L, Jiao Z, Zhang L, Shi J, Wan Q, Qian C, Wang H, Cao X, Shen B, Jiang L. Role of increased IGFBP2 in trophoblast cell proliferation and recurrent spontaneous abortion development: A pilot study. Physiol Rep 2024; 12:e15939. [PMID: 38316422 PMCID: PMC10843903 DOI: 10.14814/phy2.15939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 01/23/2024] [Accepted: 01/23/2024] [Indexed: 02/07/2024] Open
Abstract
Recurrent spontaneous abortion (RSA) is a serious condition that adversely affects women's health. Differentially expressed proteins (DEPs) in plasma of patients experiencing RSA is helpful to find new therapeutic targets and identified with mass spectrometry. In 57 DEPs, 21 were upregulated and 36 were downregulated in RSA. Gene ontology analyses indicated that identified DEPs were associated with cell proliferation, including significantly downregulated insulin-like growth factor binding protein 2 (IGFBP2). Immunohistochemical result using clinical decidual tissues also showed that IGFBP2 expression was significantly decreased in RSA trophoblasts. Cell proliferation assay indicated that IGFBP2 treatment increased the proliferation and mRNA expressions of PCNA and Ki67 in trophoblast cells. Transcriptome sequencing experiments and Kyoto Encyclopedia of Genes and Genomes analyses revealed that gene expression for components in PI3K-Akt pathway in trophoblasts was significantly upregulated following IGFBP2 treatment. To confirm bioinformatics findings, we did cell-based experiments and found that treatment of inhibitors for insulin-like growth factor (IGF)-1 receptor-PI3K-Akt pathway significantly reduced IGFBP2-induced trophoblast cell proliferation and mRNA expressions of PCNA and Ki67. Our findings suggest that IGFBP2 may increase trophoblast proliferation through the PI3K-Akt signaling pathway to affect pregnancy outcomes and that IGFBP2 may be a new target for future research and treatment of RSA.
Collapse
Affiliation(s)
- Li Ji
- The First Clinical Medical CollegeNanjing University of Traditional Chinese MedicineNanjingChina
- Department of Obstetrics and GynecologyLu'an Traditional Chinese Hospital, The Affiliated Hospital of Anhui University of Chinese MedicineLu'anChina
| | - Ziying Jiao
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese MedicineMacau University of Science and TechnologyMacauChina
| | - Lin Zhang
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese MedicineMacau University of Science and TechnologyMacauChina
| | - Jia Shi
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese MedicineMacau University of Science and TechnologyMacauChina
| | - Qianqian Wan
- The First Clinical Medical CollegeNanjing University of Traditional Chinese MedicineNanjingChina
- Department of GynecologyThe First Affiliated Hospital of Yunnan University of Traditional Chinese MedicineKunmingChina
| | - Chunzhi Qian
- Department of Obstetrics and GynecologyLu'an Traditional Chinese Hospital, The Affiliated Hospital of Anhui University of Chinese MedicineLu'anChina
| | - Han Wang
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese MedicineMacau University of Science and TechnologyMacauChina
| | - Xiaoyan Cao
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese MedicineMacau University of Science and TechnologyMacauChina
| | - Bing Shen
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese MedicineMacau University of Science and TechnologyMacauChina
- School of Basic Medicine SciencesAnhui Medical UniversityHefeiChina
| | - Lijuan Jiang
- The First Clinical Medical CollegeNanjing University of Traditional Chinese MedicineNanjingChina
- Department of GynecologyThe First Affiliated Hospital of Yunnan University of Traditional Chinese MedicineKunmingChina
| |
Collapse
|
4
|
Cui LY, Sun CP, Li YY, Liu S. Granulomatous mastitis in a 50-year-old male: A case report and review of literature. World J Clin Cases 2024; 12:451-459. [PMID: 38313639 PMCID: PMC10835698 DOI: 10.12998/wjcc.v12.i2.451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 12/11/2023] [Accepted: 12/21/2023] [Indexed: 01/11/2024] Open
Abstract
BACKGROUND Granulomatous mastitis (GM) an inflammatory disease of the breast that usually affects women of childbearing age, occurs very rarely in males. CASE SUMMARY We present a case study of a 50-year-old male patient with GM. The patient developed a breast lump following the cleaning of a previously embedded dirt-filled nipple. While an initial improvement was noted with antibiotic therapy, a recurrence occurred a year later, showing resistance to the previously effective antibiotics. Subsequently, the lesion was excised. The histopathological examination confirmed the diagnosis of GM. CONCLUSION GM should be considered a possible diagnosis of male breast masses.
Collapse
Affiliation(s)
- Le-Yin Cui
- Department of Breast Surgery, Longhua Hospital Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Chen-Ping Sun
- Department of Breast Surgery, Longhua Hospital Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Yun-Yuan Li
- Department of Pathology, Longhua Hospital Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Sheng Liu
- Graduate School, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| |
Collapse
|
5
|
Lafortune P, Zahid K, Ploszaj M, Awadalla E, Carroll TP, Geraghty P. Testing Alpha-1 Antitrypsin Deficiency in Black Populations. Adv Respir Med 2023; 92:1-12. [PMID: 38392031 PMCID: PMC10886060 DOI: 10.3390/arm92010001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/11/2023] [Accepted: 12/15/2023] [Indexed: 02/24/2024]
Abstract
Alpha-1 antitrypsin (AAT) deficiency (AATD) is an under-recognized hereditary disorder and a significant cause of chronic obstructive pulmonary disease (COPD), a disease that contributes to global mortality. AAT is encoded by the SERPINA1 gene, and severe mutation variants of this gene increase the risk of developing COPD. AATD is more frequently screened for in non-Hispanic White populations. However, AATD is also observed in other ethnic groups and very few studies have documented the mutation frequency in these other ethnic populations. Here, we review the current literature on AATD and allele frequency primarily in Black populations and discuss the possible clinical outcomes of low screening rates in a population that experiences poor health outcomes and whether the low frequency of AATD is related to a lack of screening in this population or a truly low frequency of mutations causing AATD. This review also outlines the harmful SERPINA1 variants, the current epidemiology knowledge of AATD, health inequity in Black populations, AATD prevalence in Black populations, the clinical implications of low screening of AATD in this population, and the possible dangers of not diagnosing or treating AATD.
Collapse
Affiliation(s)
- Pascale Lafortune
- Department of Medicine, State University of New York Downstate Medical Center, Brooklyn, NY 11203, USA; (P.L.); (K.Z.); (M.P.); (E.A.)
| | - Kanza Zahid
- Department of Medicine, State University of New York Downstate Medical Center, Brooklyn, NY 11203, USA; (P.L.); (K.Z.); (M.P.); (E.A.)
| | - Magdalena Ploszaj
- Department of Medicine, State University of New York Downstate Medical Center, Brooklyn, NY 11203, USA; (P.L.); (K.Z.); (M.P.); (E.A.)
| | - Emilio Awadalla
- Department of Medicine, State University of New York Downstate Medical Center, Brooklyn, NY 11203, USA; (P.L.); (K.Z.); (M.P.); (E.A.)
| | - Tomás P. Carroll
- Irish Centre for Genetic Lung Disease, Royal College of Surgeons in Ireland, D02 YN77 Dublin, Ireland
- Alpha-1 Foundation Ireland, Royal College of Surgeons in Ireland, D02 YN77 Dublin, Ireland
| | - Patrick Geraghty
- Department of Medicine, State University of New York Downstate Medical Center, Brooklyn, NY 11203, USA; (P.L.); (K.Z.); (M.P.); (E.A.)
| |
Collapse
|
6
|
Singh T, Mishra AK, Vojjala N, John KJ, George AA, Jha A, Hadley M. Cardiovascular complications following medical termination of pregnancy: An updated review. World J Cardiol 2023; 15:518-530. [PMID: 37900907 PMCID: PMC10600792 DOI: 10.4330/wjc.v15.i10.518] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/22/2023] [Accepted: 09/18/2023] [Indexed: 10/24/2023] Open
Abstract
BACKGROUND Around 1 million cases of medical termination of pregnancy (MTP) take place yearly in the United States of America with around 2 percent of this population developing complications. The cardiovascular (CVD) complications occurring post MTP or after stillbirth is not very well described. AIM To help the reader better understand, prepare, and manage these complications by reviewing various cardiac comorbidities seen after MTP. METHODS We performed a literature search in PubMed, Medline, RCA, and google scholar, using the search terms "abortions" or "medical/legal termination of pregnancy" and "cardiac complications" or "cardiovascular complications". RESULTS The most common complications described in the literature following MTP were infective endocarditis (IE) (n = 16), takotsubo cardiomyopathy (TTC) (n = 7), arrhythmias (n = 5), and sudden coronary artery dissection (SCAD) (n = 4). The most common valve involved in IE was the tricuspid valve in 69% (n = 10). The most observed causative organism was group B Streptococcus in 81% (n = 12). The most common type of TTC was apical type in 57% (n = 4). Out of five patients developing arrhythmia, bradycardia was the most common and was seen in 60% (3/5) of the patients. All four cases of SCAD-P type presented as acute coronary syndrome 10-14 d post termination of pregnancy with predominant involvement of the right coronary artery. Mortality was only reported following IE in 6.25%. Clinical recovery was reported consistently after optimal medical management following all these complications. CONCLUSION In conclusion, the occurrence of CVD complications following pregnancy termination is infrequently documented in the existing literature. In this review, the most common CVD complication following MTP was noted to be IE and TTC.
Collapse
Affiliation(s)
- Tejveer Singh
- Department of Internal Medicine, Saint Vincent Hospital, Worcester, MA 01608, United States
| | - Ajay K Mishra
- Division of Cardiology, Saint Vincent Hospital, Worcester, MA 01608, United States.
| | - Nikhil Vojjala
- Department of Internal Medicine, Post-Graduation Institute of Medical Education and Research, Chandigarh 00000, India
| | - Kevin John John
- Department of Internal Medicine, Tufts Medical Center, Boston, MA 01212, United States
| | - Anu A George
- Department of Internal Medicine, Saint Vincent Hospital, Worcester, MA 01608, United States
| | - Anil Jha
- Division of Cardiology, Saint Vincent Hospital, Worcester, MA 01608, United States
| | - Michelle Hadley
- Division of Cardiology, Saint Vincent Hospital, Worcester, MA 01608, United States
| |
Collapse
|
7
|
Yang X, Su XH, Zeng Z, Fan Y, Wu Y, Guo LL, Xu XY. Integrated analysis of comorbidity, pregnant outcomes, and amniotic fluid cytogenetics of fetuses with persistent left superior vena cava. World J Cardiol 2023; 15:500-507. [PMID: 37900905 PMCID: PMC10600788 DOI: 10.4330/wjc.v15.i10.500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 08/29/2023] [Accepted: 09/28/2023] [Indexed: 10/24/2023] Open
Abstract
BACKGROUND Persistent left superior vena cava (PLSVC) is the most common venous system variant. The clinical characteristics and amniotic fluid cytogenetics of fetuses with PLSVC remain to be further explored. AIM To develop reliable prenatal diagnostic recommendations through integrated analysis of the clinical characteristics of fetuses with PLSVC. METHODS Cases of PLSVC diagnosed using prenatal ultrasonography between September 2019 and November 2022 were retrospectively studied. The clinical characteristics of the pregnant women, ultrasonic imaging information, gestational age at diagnosis, pregnancy outcomes, and amniocentesis results were summarized and analyzed using categorical statistics and the chi-square test or Fisher's exact test. RESULTS Of the 97 cases diagnosed by prenatal ultrasound, 49 (50.5%) had isolated PLSVC and 48 (49.5%) had other structural abnormalities. The differences in pregnancy outcomes and amniocentesis conditions between the two groups were statistically significant (P < 0.05). No significant differences were identified between the two groups in terms of advanced maternal age and gestational age (P > 0.05). According to the results of the classification statistics, the most common intracardiac abnormality was a ventricular septal defect and the most common extracardiac abnormality was a single umbilical artery. In the subgroup analysis, the concurrent combination of intra- and extracardiac structural abnormalities was a risk factor for adverse pregnancy outcomes (odds ratio > 1, P < 0.05). Additionally, all abnormal cytogenetic findings on amniocentesis were observed in the comorbidity group. One case was diagnosed with 21-trisomy and six cases was diagnosed with chromosome segment duplication. CONCLUSION Examination for other structural abnormalities is strongly recommended when PLSVC is diagnosed. Poorer pregnancy outcomes and increased amniocentesis were observed in PLSVC cases with other structural abnormalities. Amniotic fluid cytogenetics of fetuses is recommended for PLSVC with other structural abnormalities.
Collapse
Affiliation(s)
- Xin Yang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| | - Xin-Hui Su
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| | - Zhen Zeng
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| | - Yao Fan
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| | - Yuan Wu
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| | - Li-Li Guo
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| | - Xiao-Yan Xu
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China.
| |
Collapse
|
8
|
Campagna MP, Lechner-Scott J, Maltby VE, Lea RA, Butzkueven H, Jokubaitis VG. Conceiving complexity: Biological mechanisms underpinning the lasting effect of pregnancy on multiple sclerosis outcomes. Autoimmun Rev 2023; 22:103388. [PMID: 37352902 DOI: 10.1016/j.autrev.2023.103388] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 06/18/2023] [Indexed: 06/25/2023]
Abstract
Multiple sclerosis (MS) is an autoimmune, demyelinating disease with the highest incidence in women of childbearing age. The effect of pregnancy on disease activity and progression is a primary concern for women with MS and their clinical teams. It is well established that inflammatory disease activity is naturally suppressed during pregnancy, followed by an increase postpartum. However, the long-term effect of pregnancy on disease progression is less understood. Having had a pregnancy before MS onset has been associated with an older age at first demyelinating event, an average delay of 3.4 years. After MS onset, there is conflicting evidence about the impact of pregnancy on long-term outcomes. The study with the longest follow-up to date showed that pregnancy was associated with a 0.36-point lower disability score after 10-years of disease in 1830 women. Understanding the biological mechanism by which pregnancy induces long-term beneficial effects on MS outcomes could provide mechanistic insights into the elusive determinants of secondary progression. Here, we review potential biological processes underlying this effect, including evidence that acute sex hormone exposure induces lasting changes to neurobiological and DNA methylation patterns, and how sustained methylation changes in immune cells can alter immune composition and function long-term.
Collapse
Affiliation(s)
- Maria Pia Campagna
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia.
| | - Jeannette Lechner-Scott
- School of Medicine and Public Health, University of Newcastle, Hunter Medical Research Institute, Newcastle, New South Wales, Australia; Department of Neurology, John Hunter Hospital, New Lambton Heights, New South Wales, Australia
| | - Vicki E Maltby
- School of Medicine and Public Health, University of Newcastle, Hunter Medical Research Institute, Newcastle, New South Wales, Australia; Department of Neurology, John Hunter Hospital, New Lambton Heights, New South Wales, Australia
| | - Rodney A Lea
- School of Medicine and Public Health, University of Newcastle, Hunter Medical Research Institute, Newcastle, New South Wales, Australia; Centre for Genomics and Personalised Health, School of Biomedical Science, Queensland University of Technology, Kelvin Grove, Queensland, Australia
| | - Helmut Butzkueven
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia; Department of Neurology, Alfred Health, Melbourne, Victoria, Australia
| | - Vilija G Jokubaitis
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia; Department of Neurology, Alfred Health, Melbourne, Victoria, Australia
| |
Collapse
|
9
|
Pérez-Luz S, Lalchandani J, Matamala N, Barrero MJ, Gil-Martín S, Saz SRD, Varona S, Monzón S, Cuesta I, Justo I, Marcacuzco A, Hierro L, Garfia C, Gomez-Mariano G, Janciauskiene S, Martínez-Delgado B. Quantitative Lipid Profiling Reveals Major Differences between Liver Organoids with Normal Pi*M and Deficient Pi*Z Variants of Alpha-1-antitrypsin. Int J Mol Sci 2023; 24:12472. [PMID: 37569847 PMCID: PMC10419530 DOI: 10.3390/ijms241512472] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/27/2023] [Accepted: 08/03/2023] [Indexed: 08/13/2023] Open
Abstract
Different mutations in the SERPINA1 gene result in alpha-1 antitrypsin (AAT) deficiency and in an increased risk for the development of liver diseases. More than 90% of severe deficiency patients are homozygous for Z (Glu342Lys) mutation. This mutation causes Z-AAT polymerization and intrahepatic accumulation which can result in hepatic alterations leading to steatosis, fibrosis, cirrhosis, and/or hepatocarcinoma. We aimed to investigate lipid status in hepatocytes carrying Z and normal M alleles of the SERPINA1 gene. Hepatic organoids were developed to investigate lipid alterations. Lipid accumulation in HepG2 cells overexpressing Z-AAT, as well as in patient-derived hepatic organoids from Pi*MZ and Pi*ZZ individuals, was evaluated by Oil-Red staining in comparison to HepG2 cells expressing M-AAT and liver organoids from Pi*MM controls. Furthermore, mass spectrometry-based lipidomics analysis and transcriptomic profiling were assessed in Pi*MZ and Pi*ZZ organoids. HepG2 cells expressing Z-AAT and liver organoids from Pi*MZ and Pi*ZZ patients showed intracellular accumulation of AAT and high numbers of lipid droplets. These latter paralleled with augmented intrahepatic lipids, and in particular altered proportion of triglycerides, cholesterol esters, and cardiolipins. According to transcriptomic analysis, Pi*ZZ organoids possess many alterations in genes and cellular processes of lipid metabolism with a specific impact on the endoplasmic reticulum, mitochondria, and peroxisome dysfunction. Our data reveal a relationship between intrahepatic accumulation of Z-AAT and alterations in lipid homeostasis, which implies that liver organoids provide an excellent model to study liver diseases related to the mutation of the SERPINA1 gene.
Collapse
Affiliation(s)
- Sara Pérez-Luz
- Molecular Genetics and Genetic Diagnostic Units, Institute of Rare Diseases Research (IIER), Spanish National Institute of Health Carlos III (ISCIII), 28220 Madrid, Spain; (S.P.-L.); (J.L.); (N.M.); (S.G.-M.); (S.R.-D.S.); (G.G.-M.)
| | - Jaanam Lalchandani
- Molecular Genetics and Genetic Diagnostic Units, Institute of Rare Diseases Research (IIER), Spanish National Institute of Health Carlos III (ISCIII), 28220 Madrid, Spain; (S.P.-L.); (J.L.); (N.M.); (S.G.-M.); (S.R.-D.S.); (G.G.-M.)
| | - Nerea Matamala
- Molecular Genetics and Genetic Diagnostic Units, Institute of Rare Diseases Research (IIER), Spanish National Institute of Health Carlos III (ISCIII), 28220 Madrid, Spain; (S.P.-L.); (J.L.); (N.M.); (S.G.-M.); (S.R.-D.S.); (G.G.-M.)
| | - Maria Jose Barrero
- Models and Mechanisms Unit, Institute of Rare Diseases Research (IIER), Spanish National Institute of Health Carlos III (ISCIII), 28220 Madrid, Spain;
| | - Sara Gil-Martín
- Molecular Genetics and Genetic Diagnostic Units, Institute of Rare Diseases Research (IIER), Spanish National Institute of Health Carlos III (ISCIII), 28220 Madrid, Spain; (S.P.-L.); (J.L.); (N.M.); (S.G.-M.); (S.R.-D.S.); (G.G.-M.)
- Centro de Investigación Biomédica en Red de Enfermedades Raras, CIBERER U758, 28029 Madrid, Spain
| | - Sheila Ramos-Del Saz
- Molecular Genetics and Genetic Diagnostic Units, Institute of Rare Diseases Research (IIER), Spanish National Institute of Health Carlos III (ISCIII), 28220 Madrid, Spain; (S.P.-L.); (J.L.); (N.M.); (S.G.-M.); (S.R.-D.S.); (G.G.-M.)
| | - Sarai Varona
- Bioinformatics Unit, Institute of Health Carlos III (ISCIII), 28220 Madrid, Spain; (S.V.); (S.M.); (I.C.)
| | - Sara Monzón
- Bioinformatics Unit, Institute of Health Carlos III (ISCIII), 28220 Madrid, Spain; (S.V.); (S.M.); (I.C.)
| | - Isabel Cuesta
- Bioinformatics Unit, Institute of Health Carlos III (ISCIII), 28220 Madrid, Spain; (S.V.); (S.M.); (I.C.)
| | - Iago Justo
- General and Digestive Surgery Department, Hospital 12 de Octubre, 28041 Madrid, Spain; (I.J.); (A.M.)
| | - Alberto Marcacuzco
- General and Digestive Surgery Department, Hospital 12 de Octubre, 28041 Madrid, Spain; (I.J.); (A.M.)
| | - Loreto Hierro
- Paediatric Hepatology Service, Research Institute of University Hospital La Paz, (IdiPAZ), 28046 Madrid, Spain;
| | - Cristina Garfia
- Digestive Department, Hospital 12 de Octubre, 28041 Madrid, Spain;
| | - Gema Gomez-Mariano
- Molecular Genetics and Genetic Diagnostic Units, Institute of Rare Diseases Research (IIER), Spanish National Institute of Health Carlos III (ISCIII), 28220 Madrid, Spain; (S.P.-L.); (J.L.); (N.M.); (S.G.-M.); (S.R.-D.S.); (G.G.-M.)
| | - Sabina Janciauskiene
- Department of Respiratory Medicine, Member of the German Center for Lung Research (DZL), Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Hannover Medical School, 30625 Hannover, Germany;
| | - Beatriz Martínez-Delgado
- Molecular Genetics and Genetic Diagnostic Units, Institute of Rare Diseases Research (IIER), Spanish National Institute of Health Carlos III (ISCIII), 28220 Madrid, Spain; (S.P.-L.); (J.L.); (N.M.); (S.G.-M.); (S.R.-D.S.); (G.G.-M.)
- Centro de Investigación Biomédica en Red de Enfermedades Raras, CIBERER U758, 28029 Madrid, Spain
| |
Collapse
|
10
|
Mazziotta C, Lanzillotti C, Govoni M, Falzoni S, Tramarin ML, Mazzoni E, Tognon M, Martini F, Rotondo JC. Immunological evidence of an early seroconversion to oncogenic Merkel cell polyomavirus in healthy children and young adults. Immunology 2023; 168:671-683. [PMID: 36321356 DOI: 10.1111/imm.13601] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 10/30/2022] [Indexed: 11/05/2022] Open
Abstract
Oncogenic Merkel cell polyomavirus (MCPyV) provokes a widespread and asymptomatic infection in humans. Herein, sera from healthy children and young adults (HC, n = 344) aged 0-20 years old were evaluated for anti-MCPyV immunoglobulin G (IgG) and IgM antibodies employing a recently developed immunoassay. Serum MCPyV IgG data from healthy subjects (HS, n = 510) and elderlies (ES, n = 226), aged 21-65/66-100 years old, from our previous studies, were included. The anti-MCPyV IgG and IgM rates in HC sera were 40.7% and 29.7%, respectively. A lower prevalence of anti-MCPyV IgGs was found in HC aged 0-5 years old (13%) compared to 6-10 (52.3%), 11-15 (60.5%) and 16-20 years old (61.6%) cohorts. Age-stratified HCs exhibited similar anti-MCPyV IgM rates (27.9%-32.9%). Serological profiles indicated that anti-MCPyV IgGs and IgMs had low optical densities (ODs) during the first years of life, while IgM ODs appeared to decrease throughout young adulthood. A lower anti-MCPyV IgGs rate was found in HC (40.7%) than HS (61.8%) and ES (63.7%). Upon the 5-years range age-stratification, a lower anti-MCPyV IgGs rate was found in the younger HC cohort aged 0-5 years old compared to the remaining older HC/HS/ES cohorts (52.3%-72%). The younger HC cohort exhibited the lowest anti-MCPyV IgG ODs than the older cohorts. Low anti-MCPyV IgMs rates and ODs were found in the 21-25 (17.5%) and 26-30 (7.7%) years old cohorts. Our data indicate that, upon an early-in-life seroconversion, the seropositivity for oncogenic MCPyV peaks in late childhood/young adulthood and remains at high prevalence and relatively stable throughout life.
Collapse
Affiliation(s)
- Chiara Mazziotta
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
- Center for Studies on Gender Medicine - Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Carmen Lanzillotti
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
- Center for Studies on Gender Medicine - Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Marcello Govoni
- Department of Medical Sciences, Rheumatology Unit, University of Ferrara, Ferrara, Italy
| | - Simonetta Falzoni
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | | | - Elisa Mazzoni
- Department of Chemistry, Pharmaceutical and Agricultural Sciences, University of Ferrara, Ferrara, Italy
| | - Mauro Tognon
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Fernanda Martini
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
- Center for Studies on Gender Medicine - Department of Medical Sciences, University of Ferrara, Ferrara, Italy
- Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - John Charles Rotondo
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
- Center for Studies on Gender Medicine - Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| |
Collapse
|
11
|
Giha HA, Abdulwahab RA, Abbas J, Shinwari Z, Alaiya A. Sex-Biased Expression of Genes Allocated in the Autosomal Chromosomes: Blood LC-MS/MS Protein Profiling in Healthy Subjects. Genet Res (Camb) 2023; 2023:8822205. [PMID: 36941947 PMCID: PMC10024626 DOI: 10.1155/2023/8822205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 02/22/2023] [Accepted: 02/24/2023] [Indexed: 03/14/2023] Open
Abstract
BACKGROUND Sex and gender have a large impact in human health and disease prediction. According to genomic/genetics, men differ from women by a limited number of genes in Y chromosome, while the phenotypes of the 2 sexes differ markedly. METHODS In this study, serum samples from six healthy Bahraini men and women were analyzed by liquid chromatography-mass spectrometry (LC-MS/MS). Bioinformatics databases and tools were used for protein/peptide (PPs) identification and gene localization. The PPs that differed significantly (p < 0.05, ANOVA) in abundance with a fold change (FC) of ≥1.5 were identified. RESULTS Revealed 20 PPs, 11 were upregulated in women with very high FC (up to 8 folds), and 9 were upregulated in men but with much lower FC. The PPs are encoded by genes located in autosomal chromosomes, indicative of sex-biased gene expression. The only PP related to sex, the sex hormone-binding globulin, was upregulated in women. The remaining PPs were involved in immunity, lipid metabolism, gene expression, connective tissue, and others, with some overlap in function. CONCLUSIONS The upregulated PPs in men or women are mostly reflecting the functon or risk/protection provided by the PPs to the specific sex, e.g., Apo-B100 of LDLC. Finally, the basis of sex-biased gene expression and sex phenotypic differences needs further investigation.
Collapse
Affiliation(s)
- Hayder A. Giha
- Department of Medical Biochemistry, College of Medicine and Medical Sciences, Arabian Gulf University, Manama 26671, Bahrain
- Medical Biochemistry and Molecular Biology, Khartoum, Sudan
| | - Rabab A. Abdulwahab
- Integrated Sciences Department, College of Health and Sport Sciences, University of Bahrain, Manama 32038, Bahrain
- Al Jawhara Centre for Molecular Medicine and Inherited Disorders, Arabian Gulf University, Manama 26671, Bahrain
| | - Jaafar Abbas
- Arad Health Center, Muharraq, Bahrain and Gulf Medical and Diabetes Center, Manama, Bahrain
| | - Zakia Shinwari
- Proteomics Unit, Stem Cell and Tissue Re-Engineering Program, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia
| | - Ayodele Alaiya
- Proteomics Unit, Stem Cell and Tissue Re-Engineering Program, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia
| |
Collapse
|
12
|
First Trimester Evaluation of Maternal Visceral Fat and Its Relationship with Adverse Pregnancy Outcomes. BIOLOGY 2023; 12:biology12020144. [PMID: 36829423 PMCID: PMC9953059 DOI: 10.3390/biology12020144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/10/2023] [Accepted: 01/13/2023] [Indexed: 01/18/2023]
Abstract
Obese women are more likely to experience pregnancy complications. The distribution of fat, and more particularly the rise in visceral fat, is well established to be more closely linked to the onset of cardiovascular disease and metabolic syndrome than obesity itself. We aim to examine the relationship between maternal visceral fat assessment in the first trimester and the appearance of adverse pregnancy outcomes. A prospective cohort study including 416 pregnant women was conducted. During the first trimester scan (11-13 + 6 weeks), all individuals had their visceral fat and subcutaneous thicknesses measured by ultrasonography. Blood samples were obtained, and maternal demographics and clinical information were documented. After delivery, the obstetric outcomes were evaluated. We contrasted two groups: one with healthy pregnancies and the other with adverse pregnancy outcomes (APO), defined as the development of at least one of the following complications: gestational diabetes mellitus, hypertensive disorders of pregnancy, abnormal fetal growth, preterm delivery or preterm premature rupture of membranes. Median maternal age was 33 and 34 years old for the uncomplicated and adverse pregnancy outcomes groups, respectively. We found that women with adverse pregnancy outcomes had higher VFT (median 30 vs. 26.5 mm, p = 0.001) and SFT (median 18.9 vs. 17.1 mm, p = 0.03). However, the visceral/subcutaneous fat ratio was not statistically different between groups. Finally, we performed a subanalysis for metabolic and placental vascular dysfunction complications. After performing a multivariate logistic regression analysis adjusted for maternal age, smoking, and mean arterial pressure, both the VFT (aOR 1.03, p < 0.001) and the ratio of visceral/subcutaneous fat (aOR 1.37, p = 0.04) were significantly associated with the development of adverse pregnancy outcomes; however, the associations of VFT and the VFT-to-SFT ratio were higher for the occurrence of gestational diabetes (aOR 1.07, p < 0.001; aOR 2.09, p = 0.001; respectively) and showed no relationships with placental complications. When conducting a first-trimester ultrasound assessment, sonographers may measure VFT without additional time or cost involved. Identification of pregnant women with increased VFT (>37 mm) may benefit from a close follow-up, especially for the development of gestational diabetes, independent of BMI.
Collapse
|
13
|
Illarionov RA, Pachuliia OV, Vashukova ES, Tkachenko AA, Maltseva AR, Postnikova TB, Nasykhova YA, Bespalova ON, Glotov AS. Plasma miRNA Profile in High Risk of Preterm Birth during Early and Mid-Pregnancy. Genes (Basel) 2022; 13:genes13112018. [PMID: 36360255 PMCID: PMC9690526 DOI: 10.3390/genes13112018] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/31/2022] [Accepted: 10/31/2022] [Indexed: 11/06/2022] Open
Abstract
In recent years evidence has been accumulated showing that miRNAs can act as potential biomarkers or targets for therapy of preterm birth, one of the most important problems in modern obstetrics. We have performed a prospective study of the miRNA profile in the plasma during the first and second trimesters in pregnant women with high risk of preterm birth (n = 13 cases and n = 11 controls). For the study group plasma blood samples at 9–13 weeks before diagnosis and at 22–24 weeks after start of therapy were selected. Using high-throughput sequencing technology we detected differences in the levels of 15 miRNAs (3 upregulated—hsa-miR-122-5p, hsa-miR-34a-5p, hsa-miR-34c-5p; 12 downregulated—hsa-miR-487b-3p, hsa-miR-493-3p, hsa-miR-432-5p, hsa-miR-323b-3p, hsa-miR-369-3p, hsa-miR-134-5p, hsa-miR-431-5p, hsa-miR-485-5p, hsa-miR-382-5p, hsa-miR-369-5p, hsa-miR-485-3p, hsa-miR-127-3p) (log2(FC) ≥ 1.5; FDR ≤ 0.05) during the first trimester compared with the control (non-high-risk of preterm birth pregnant women). All downregulated miRNAs in the first trimester from the placenta-specific C14MC cluster. During the second trimester no differentially expressed miRNAs were found. Our results suggest that the miRNA profile in plasma during early pregnancy may predict a high risk of preterm birth, which is important in preventing gestational problems as early as possible.
Collapse
Affiliation(s)
- Roman A. Illarionov
- Department of Genomic Medicine, D.O. Ott Research Institute for Obstetrics, Gynecology, and Reproduction, St. Petersburg 199034, Russia
- Resource Center “Biobank”, St. Petersburg State University, St. Petersburg 199034, Russia
| | - Olga V. Pachuliia
- Department of Genomic Medicine, D.O. Ott Research Institute for Obstetrics, Gynecology, and Reproduction, St. Petersburg 199034, Russia
| | - Elena S. Vashukova
- Department of Genomic Medicine, D.O. Ott Research Institute for Obstetrics, Gynecology, and Reproduction, St. Petersburg 199034, Russia
| | - Alexander A. Tkachenko
- Department of Genomic Medicine, D.O. Ott Research Institute for Obstetrics, Gynecology, and Reproduction, St. Petersburg 199034, Russia
- Institute of Applied Computer Sciences, ITMO University, St. Petersburg 197101, Russia
| | - Anastasia R. Maltseva
- Department of Genomic Medicine, D.O. Ott Research Institute for Obstetrics, Gynecology, and Reproduction, St. Petersburg 199034, Russia
| | - Tatyana B. Postnikova
- Department of Genomic Medicine, D.O. Ott Research Institute for Obstetrics, Gynecology, and Reproduction, St. Petersburg 199034, Russia
| | - Yulia A. Nasykhova
- Department of Genomic Medicine, D.O. Ott Research Institute for Obstetrics, Gynecology, and Reproduction, St. Petersburg 199034, Russia
| | - Olesya N. Bespalova
- Department of Genomic Medicine, D.O. Ott Research Institute for Obstetrics, Gynecology, and Reproduction, St. Petersburg 199034, Russia
| | - Andrey S. Glotov
- Department of Genomic Medicine, D.O. Ott Research Institute for Obstetrics, Gynecology, and Reproduction, St. Petersburg 199034, Russia
- Correspondence:
| |
Collapse
|
14
|
Sangeetha T, Nargis Begum T, Balamuralikrishnan B, Arun M, Rengasamy KRR, Senthilkumar N, Velayuthaprabhu S, Saradhadevi M, Sampathkumar P, Vijaya Anand A. Influence of SERPINA1 Gene Polymorphisms on Anemia and Chronic Obstructive Pulmonary Disease. J Renin Angiotensin Aldosterone Syst 2022; 2022:2238320. [PMID: 36320441 PMCID: PMC9592209 DOI: 10.1155/2022/2238320] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 09/16/2022] [Accepted: 09/29/2022] [Indexed: 11/29/2023] Open
Abstract
BACKGROUND Anemia is one of the predominant hematological conditions, whereas chronic obstructive pulmonary disease (COPD) is a predominant respiratory disease. These two diseases were found to be interlinked, but the physiological pathways are still unclear. AIM The current study has been aimed at analysing the genetic interrelationship between anemia and COPD in accordance with different altitudes. Methodology. The genetic analysis was performed in the SERPINA1 gene of anemia, COPD, and healthy individuals for the analysis of single nucleotide polymorphism at rs28949274 and rs17580 locations. Result and Discussion. The single nucleotide polymorphism at the locations rs28949274 and rs17580 was present in both anemic and COPD patients. The COPD patients were more prone to mutations (63% had rs28949274, and 11% had rs17580 polymorphisms) than the anemic patients (40% had rs28949274, and 1% had rs17580 polymorphisms). On the basis of altitude, high-altitude individuals were found to be more susceptible to both the polymorphisms. CONCLUSION Based on the current findings, we suggest that the SERPINA1 gene has a positive correlation with anemia as well as COPD, and the increase in altitude also influences the diseased conditions in a positive manner.
Collapse
Affiliation(s)
- Thangavelu Sangeetha
- Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore, Tamil Nadu, India
| | - Tajuddin Nargis Begum
- Department of Biotechnology, Jamal Mohammed College, Tiruchirapalli, Tamil Nadu, India
| | | | - Meyyazhagan Arun
- Department of Life Sciences, Christ Deemed to be University, Bengaluru, India
| | - Kannan R. R. Rengasamy
- Laboratory of Natural Products and Medicinal Chemistry (LNPMC), Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, Tamil Nadu 600077, India
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Potchefstroom 2520, South Africa
| | - Natchiappan Senthilkumar
- Chemistry and Bioprospecting Division, Institute of Forest Genetics and Tree Breeding (IFGTB-ICFRE), Coimbatore, Tamil Nadu, India
| | | | | | - Palanisamy Sampathkumar
- Department of Chemistry and Biosciences, SASTRA Deemed to be University, Kumbakonam, Tamil Nadu, India
| | - Arumugam Vijaya Anand
- Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore, Tamil Nadu, India
| |
Collapse
|
15
|
Zhang H, Wu L, Cheng B. Preoperative anemia and deep vein thrombosis in patients with perioperative bone trauma: a cohort study. BMC Musculoskelet Disord 2022; 23:905. [PMID: 36217199 PMCID: PMC9549669 DOI: 10.1186/s12891-022-05869-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 10/04/2022] [Indexed: 11/30/2022] Open
Abstract
Background In current active prevention (including physical and drug prevention), the incidence of perioperative deep vein thrombosis (DVT) of the lower extremities remains high in patients with bone trauma. Risk factors need to be further optimized, and high-risk patients must be identified early. Preoperative comorbidities, especially preoperative anemia, and DVT in patients with perioperative bone trauma are not clear. The purpose of this study was to explore the causal relationship between preoperative anemia and DVT in patients with perioperative bone trauma, and further reduce the incidence of DVT in patients with bone trauma. Objectives To analyze the relationship between preoperative anemia and perioperative DVT in patients with femoral and pelvic fractures and provide a reference for the optimization of risk factors for DVT. Methods The clinical data of 1049 patients with femoral and pelvic fractures who received surgical treatment from May 2018 to June 2021 were retrospectively analyzed. Propensity score matching (PSM) was performed for the covariates of DVT. Modified Poisson regression was used to analyze the relationship between preoperative anemia and DVT. Results After matching 1:1 propensity scores in 1049 patients included in this study, there were 258 patients in the anemic and non-anemic groups. Preoperative anemia was statistically significant for the formation of DVT in patients with perioperative bone trauma (P = 0.000, RR = 1.567 [95% CI 1.217–2.017]). This conclusion remained true after PSM (P = 0.009, RR = 1.500 [95% CI 1.105–2.036]). Preoperative anemia has some predictive value for perioperative DVT, with DVT-associated preoperative anemia thresholds of 125 g/L and area under the receiver operating characteristic curve of 0.5877 (95% CI 0.5345 to 0.6408). On this basis, sensitivity and specificity were 89.2 and 30.3%, respectively, with a Youden index of 0.195. In addition, we conducted an E-value determination of the propensity score; the E-value analysis showed robustness to unmeasured confounding. Conclusions Preoperative anemia is highly correlated with perioperative DVT in patients with bone trauma, which is the cause of perioperative DVT in these patients.
Collapse
Affiliation(s)
- Hui Zhang
- Department of Anesthesiology, The First Affiliated Hospital of Chongqing Medical University, Yuzhong District, Chongqing, 400000, China
| | - Linqin Wu
- Department of Anesthesiology, The First Affiliated Hospital of Chongqing Medical University, Yuzhong District, Chongqing, 400000, China
| | - Bo Cheng
- Department of Anesthesiology, The First Affiliated Hospital of Chongqing Medical University, Yuzhong District, Chongqing, 400000, China.
| |
Collapse
|
16
|
Wang J, Zhao Y, Chang P, Liu B, Yao R. Double filtration plasmapheresis for pregnancy with hyperlipidemia in glycogen storage disease type Ia: A case report. World J Clin Cases 2022; 10:10273-10278. [PMID: 36246825 PMCID: PMC9561557 DOI: 10.12998/wjcc.v10.i28.10273] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 07/04/2022] [Accepted: 08/23/2022] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Glycogen storage disease type Ia (GSDIa) is an autosomal recessive inborn error of carbohydrate metabolism that is caused by deficiency of the enzyme glucose-6-phosphatase (G6Pase), leading to disturbed glycogenolysis and gluconeogenesis. Patients with GSDIa show severe fasting hypoglycemia, hyperlipidemia, hyperlactacidemia, and hyperuricemia, which are associated with fatal outcomes in pregnant women and fetuses.
CASE SUMMARY Herein, we report the case of a 24-year-old female who on her first visit to the hospital, presented with pregnancy combined with extremely high hyperlipidemia and hyperlactic acidosis with anemia, and frequent hypoglycemia occurred during the treatment. Genetic tests revealed a mutation in the G6Pase gene (G6PC) at 17q21, the patient was finally diagnosed with glycogen storage disease type Ia for the first time after 22 years of inaccurate treatment. She has been treated with a continuous double filtration plasmapheresis (DFPP) strategy to remove blood lipids, and a cornstarch diet therapy. The patient did not develop pancreatitis during the course of the disease and a healthy baby girl weighing 3 kg was delivered.
CONCLUSION Patients with GSDIa may be misdiagnosed as epilepsy. DFPP can be used to control hyperlipidemia in GSDIa patients during pregnancy.
Collapse
Affiliation(s)
- Jie Wang
- Department of Anesthesiology, West China Hospital of Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Yi Zhao
- Department of Anesthesiology, West China Hospital of Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Pan Chang
- Department of Anesthesiology, West China Hospital of Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Bin Liu
- Department of Anesthesiology, West China Hospital of Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Rong Yao
- Department of Emergency, West China Hospital of Sichuan University, Chengdu 610041, Sichuan Province, China
| |
Collapse
|
17
|
Loss of Serpina1 in Mice Leads to Altered Gene Expression in Inflammatory and Metabolic Pathways. Int J Mol Sci 2022; 23:ijms231810425. [PMID: 36142337 PMCID: PMC9499171 DOI: 10.3390/ijms231810425] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 08/31/2022] [Accepted: 09/06/2022] [Indexed: 11/24/2022] Open
Abstract
The SERPINA1 gene encodes alpha1-antitrypsin (AAT), an acute phase glycoprotein and serine protease inhibitor that is mainly (80–90%) produced in the liver. Point mutations in the SERPINA1 gene can lead to the misfolding, intracellular accumulation, and deficiency of circulating AAT protein, increasing the risk of developing chronic liver diseases or chronic obstructive pulmonary disease. Currently, siRNA technology can knock down the SERPINA1 gene and limit defective AAT production. How this latter affects other liver genes is unknown. Livers were taken from age- and sex-matched C57BL/6 wild-type (WT) and Serpina1 knockout mice (KO) aged from 8 to 14 weeks, all lacking the five serpin A1a-e paralogues. Total RNA was isolated and RNA sequencing, and transcriptome analysis was performed. The knockout of the Serpina1 gene in mice changed inflammatory, lipid metabolism, and cholesterol metabolism-related gene expression in the liver. Independent single-cell sequencing data of WT mice verified the involvement of Serpina1 in cholesterol metabolism. Our results from mice livers suggested that designing therapeutic strategies for the knockout of the SERPINA1 gene in humans must account for potential perturbations of key metabolic pathways and consequent mitigation of side effects.
Collapse
|
18
|
Rotondo JC, Martini F, Maritati M, Caselli E, Gallenga CE, Guarino M, De Giorgio R, Mazziotta C, Tramarin ML, Badiale G, Tognon M, Contini C. Advanced Molecular and Immunological Diagnostic Methods to Detect SARS-CoV-2 Infection. Microorganisms 2022; 10:1193. [PMID: 35744711 PMCID: PMC9231257 DOI: 10.3390/microorganisms10061193] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/06/2022] [Accepted: 06/06/2022] [Indexed: 02/06/2023] Open
Abstract
COVID-19 emerged in late 2019 in China and quickly spread across the globe, causing over 521 million cases of infection and 6.26 million deaths to date. After 2 years, numerous advances have been made. First of all, the preventive vaccine, which has been implemented in record time, is effective in more than 95% of cases. Additionally, in the diagnostic field, there are numerous molecular and antigenic diagnostic kits that are equipped with high sensitivity and specificity. Real Time-PCR-based assays for the detection of viral RNA are currently considered the gold-standard method for SARS-CoV-2 diagnosis and can be used efficiently on pooled nasopharyngeal, or oropharyngeal samples for widespread screening. Moreover, additional, and more advanced molecular methods such as droplet-digital PCR (ddPCR), clustered regularly interspaced short palindromic repeats (CRISPR) and next-generation sequencing (NGS), are currently under development to detect the SARS-CoV-2 RNA. However, as the number of subjects infected with SARS-CoV-2 continuously increases globally, health care systems are being placed under increased stress. Thus, the clinical laboratory plays an important role, helping to select especially asymptomatic individuals who are actively carrying the live replicating virus, with fast and non-invasive molecular technologies. Recent diagnostic strategies, other than molecular methods, have been adopted to either detect viral antigens, i.e., antigen-based immunoassays, or human anti-SARS-CoV-2 antibodies, i.e., antibody-based immunoassays, in nasal or oropharyngeal swabs, as well as in blood or saliva samples. However, the role of mucosal sIgAs, which are essential in the control of viruses entering the body through mucosal surfaces, remains to be elucidated, and in particular the role of the immune response in counteracting SARS-CoV-2 infection, primarily at the site(s) of virus entry that appears to be promising.
Collapse
Affiliation(s)
- John Charles Rotondo
- Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy; (F.M.); (M.M.); (C.E.G.); (C.M.); (M.L.T.); (G.B.); (M.T.)
- Center for Studies on Gender Medicine, Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy
| | - Fernanda Martini
- Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy; (F.M.); (M.M.); (C.E.G.); (C.M.); (M.L.T.); (G.B.); (M.T.)
- Center for Studies on Gender Medicine, Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy
- Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, 44121 Ferrara, Italy
| | - Martina Maritati
- Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy; (F.M.); (M.M.); (C.E.G.); (C.M.); (M.L.T.); (G.B.); (M.T.)
- Orthopaedic Ward, Casa di Cura Santa Maria Maddalena, 45030 Occhiobello, Italy
| | - Elisabetta Caselli
- Section of Microbiology, CIAS Research Center and LTTA, Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, 44121 Ferrara, Italy;
| | - Carla Enrica Gallenga
- Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy; (F.M.); (M.M.); (C.E.G.); (C.M.); (M.L.T.); (G.B.); (M.T.)
| | - Matteo Guarino
- Department of Translational Medicine, St. Anna University Hospital of Ferrara, University of Ferrara, 44124 Ferrara, Italy; (M.G.); (R.D.G.)
| | - Roberto De Giorgio
- Department of Translational Medicine, St. Anna University Hospital of Ferrara, University of Ferrara, 44124 Ferrara, Italy; (M.G.); (R.D.G.)
| | - Chiara Mazziotta
- Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy; (F.M.); (M.M.); (C.E.G.); (C.M.); (M.L.T.); (G.B.); (M.T.)
- Center for Studies on Gender Medicine, Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy
| | - Maria Letizia Tramarin
- Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy; (F.M.); (M.M.); (C.E.G.); (C.M.); (M.L.T.); (G.B.); (M.T.)
| | - Giada Badiale
- Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy; (F.M.); (M.M.); (C.E.G.); (C.M.); (M.L.T.); (G.B.); (M.T.)
| | - Mauro Tognon
- Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy; (F.M.); (M.M.); (C.E.G.); (C.M.); (M.L.T.); (G.B.); (M.T.)
| | - Carlo Contini
- Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy; (F.M.); (M.M.); (C.E.G.); (C.M.); (M.L.T.); (G.B.); (M.T.)
| |
Collapse
|
19
|
Tiensuu H, Haapalainen AM, Tissarinen P, Pasanen A, Määttä TA, Huusko JM, Ohlmeier S, Bergmann U, Ojaniemi M, Muglia LJ, Hallman M, Rämet M. Human placental proteomics and exon variant studies link AAT/SERPINA1 with spontaneous preterm birth. BMC Med 2022; 20:141. [PMID: 35477570 PMCID: PMC9047282 DOI: 10.1186/s12916-022-02339-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 03/14/2022] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Preterm birth is defined as live birth before 37 completed weeks of pregnancy, and it is a major problem worldwide. The molecular mechanisms that lead to onset of spontaneous preterm birth are incompletely understood. Prediction and evaluation of the risk of preterm birth is challenging as there is a lack of accurate biomarkers. In this study, our aim was to identify placental proteins that associate with spontaneous preterm birth. METHODS We analyzed the proteomes from placentas to identify proteins that associate with both gestational age and spontaneous labor. Next, rare and potentially damaging gene variants of the identified protein candidates were sought for from our whole exome sequencing data. Further experiments we performed on placental samples and placenta-associated cells to explore the location and function of the spontaneous preterm labor-associated proteins in placentas. RESULTS Exome sequencing data revealed rare damaging variants in SERPINA1 in families with recurrent spontaneous preterm deliveries. Protein and mRNA levels of alpha-1 antitrypsin/SERPINA1 from the maternal side of the placenta were downregulated in spontaneous preterm births. Alpha-1 antitrypsin was expressed by villous trophoblasts in the placenta, and immunoelectron microscopy showed localization in decidual fibrinoid deposits in association with specific extracellular proteins. siRNA knockdown in trophoblast-derived HTR8/SVneo cells revealed that SERPINA1 had a marked effect on regulation of the actin cytoskeleton pathway, Slit-Robo signaling, and extracellular matrix organization. CONCLUSIONS Alpha-1 antitrypsin is a protease inhibitor. We propose that loss of the protease inhibition effects of alpha-1 antitrypsin renders structures critical to maintaining pregnancy susceptible to proteases and inflammatory activation. This may lead to spontaneous premature birth.
Collapse
Affiliation(s)
- Heli Tiensuu
- PEDEGO Research Unit and Medical Research Center Oulu, University of Oulu, PO Box 5000, 90014, Oulu, Finland.,Department of Children and Adolescents, Oulu University Hospital, 90014, Oulu, Finland
| | - Antti M Haapalainen
- PEDEGO Research Unit and Medical Research Center Oulu, University of Oulu, PO Box 5000, 90014, Oulu, Finland.,Department of Children and Adolescents, Oulu University Hospital, 90014, Oulu, Finland
| | - Pinja Tissarinen
- PEDEGO Research Unit and Medical Research Center Oulu, University of Oulu, PO Box 5000, 90014, Oulu, Finland.,Department of Children and Adolescents, Oulu University Hospital, 90014, Oulu, Finland
| | - Anu Pasanen
- PEDEGO Research Unit and Medical Research Center Oulu, University of Oulu, PO Box 5000, 90014, Oulu, Finland.,Department of Children and Adolescents, Oulu University Hospital, 90014, Oulu, Finland
| | - Tomi A Määttä
- PEDEGO Research Unit and Medical Research Center Oulu, University of Oulu, PO Box 5000, 90014, Oulu, Finland.,Department of Children and Adolescents, Oulu University Hospital, 90014, Oulu, Finland
| | - Johanna M Huusko
- PEDEGO Research Unit and Medical Research Center Oulu, University of Oulu, PO Box 5000, 90014, Oulu, Finland.,Department of Children and Adolescents, Oulu University Hospital, 90014, Oulu, Finland.,Division of Human Genetics, Center for Prevention of Preterm Birth, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, March of Dimes Prematurity Research Center Ohio Collaborative, Cincinnati, OH, 45267, USA
| | - Steffen Ohlmeier
- Proteomics and Mass Spectrometry Core Facilities, Biocenter Oulu, Faculty of Biochemistry and Molecular Medicine, University of Oulu, 90014, Oulu, Finland
| | - Ulrich Bergmann
- Proteomics and Mass Spectrometry Core Facilities, Biocenter Oulu, Faculty of Biochemistry and Molecular Medicine, University of Oulu, 90014, Oulu, Finland
| | - Marja Ojaniemi
- PEDEGO Research Unit and Medical Research Center Oulu, University of Oulu, PO Box 5000, 90014, Oulu, Finland.,Department of Children and Adolescents, Oulu University Hospital, 90014, Oulu, Finland
| | - Louis J Muglia
- Division of Human Genetics, Center for Prevention of Preterm Birth, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, March of Dimes Prematurity Research Center Ohio Collaborative, Cincinnati, OH, 45267, USA.,Burroughs Wellcome Fund, Research Triangle Park, North Carolina, 27709, USA
| | - Mikko Hallman
- PEDEGO Research Unit and Medical Research Center Oulu, University of Oulu, PO Box 5000, 90014, Oulu, Finland. .,Department of Children and Adolescents, Oulu University Hospital, 90014, Oulu, Finland.
| | - Mika Rämet
- PEDEGO Research Unit and Medical Research Center Oulu, University of Oulu, PO Box 5000, 90014, Oulu, Finland. .,Department of Children and Adolescents, Oulu University Hospital, 90014, Oulu, Finland. .,Faculty of Medicine and Health Technology, Tampere University, 33014, Tampere, Finland.
| |
Collapse
|
20
|
Mazziotta C, Lanzillotti C, Gafà R, Touzé A, Durand MA, Martini F, Rotondo JC. The Role of Histone Post-Translational Modifications in Merkel Cell Carcinoma. Front Oncol 2022; 12:832047. [PMID: 35350569 PMCID: PMC8957841 DOI: 10.3389/fonc.2022.832047] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 02/01/2022] [Indexed: 12/12/2022] Open
Abstract
Merkel Cell Carcinoma (MCC) is a rare but highly aggressive form of non-melanoma skin cancer whose 5-year survival rate is 63%. Merkel cell polyomavirus (MCPyV), a small DNA tumor virus, is the etiological agent of MCC. Although representing a small proportion of MCC cases, MCPyV-negative MCCs have also been identified. The role of epigenetic mechanisms, including histone post-translational modifications (PTMs) in MCC, have been only partially determined. This review aims to describe the most recent progress on PTMs and their regulative factors in the context of MCC onset/development, providing an overview of current findings on both MCC subtypes. An outline of current knowledge on the potential employment of PTMs and related factors as diagnostic and prognostic markers, as well as novel treatment strategies targeting the reversibility of PTMs for MCC therapy is provided. Recent research shows that PTMs are emerging as important epigenetic players involved in MCC onset/development, and therefore may show a potential clinical significance. Deeper and integrated knowledge of currently known PTM dysregulations is of paramount importance in order to understand the molecular basis of MCC and improve the diagnosis, prognosis, and therapeutic options for this deadly tumor.
Collapse
Affiliation(s)
- Chiara Mazziotta
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
- Center for Studies on Gender Medicine, Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Carmen Lanzillotti
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
- Center for Studies on Gender Medicine, Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Roberta Gafà
- Department of Translational Medicine and for Romagna, University of Ferrara, Ferrara, Italy
| | - Antoine Touzé
- ISP “Biologie des infections à polyomavirus” Team, UMR INRA 1282, University of Tours, Tours, France
| | - Marie-Alice Durand
- ISP “Biologie des infections à polyomavirus” Team, UMR INRA 1282, University of Tours, Tours, France
| | - Fernanda Martini
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
- Center for Studies on Gender Medicine, Department of Medical Sciences, University of Ferrara, Ferrara, Italy
- Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - John Charles Rotondo
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
- Center for Studies on Gender Medicine, Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| |
Collapse
|
21
|
A Review of Alpha-1 Antitrypsin Binding Partners for Immune Regulation and Potential Therapeutic Application. Int J Mol Sci 2022; 23:ijms23052441. [PMID: 35269582 PMCID: PMC8910375 DOI: 10.3390/ijms23052441] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 02/17/2022] [Accepted: 02/18/2022] [Indexed: 02/06/2023] Open
Abstract
Alpha-1 antitrypsin (AAT) is the canonical serine protease inhibitor of neutrophil-derived proteases and can modulate innate immune mechanisms through its anti-inflammatory activities mediated by a broad spectrum of protein, cytokine, and cell surface interactions. AAT contains a reactive methionine residue that is critical for its protease-specific binding capacity, whereby AAT entraps the protease on cleavage of its reactive centre loop, neutralises its activity by key changes in its tertiary structure, and permits removal of the AAT-protease complex from the circulation. Recently, however, the immunomodulatory role of AAT has come increasingly to the fore with several prominent studies focused on lipid or protein-protein interactions that are predominantly mediated through electrostatic, glycan, or hydrophobic potential binding sites. The aim of this review was to investigate the spectrum of AAT molecular interactions, with newer studies supporting a potential therapeutic paradigm for AAT augmentation therapy in disorders in which a chronic immune response is strongly linked.
Collapse
|
22
|
Rotondo JC, Mazziotta C, Lanzillotti C, Stefani C, Badiale G, Campione G, Martini F, Tognon M. The Role of Purinergic P2X7 Receptor in Inflammation and Cancer: Novel Molecular Insights and Clinical Applications. Cancers (Basel) 2022; 14:1116. [PMID: 35267424 PMCID: PMC8909580 DOI: 10.3390/cancers14051116] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 02/09/2022] [Accepted: 02/17/2022] [Indexed: 12/11/2022] Open
Abstract
The purinergic P2X7 receptor (P2X7R) is a transmembrane protein whose expression has been related to a variety of cellular processes, while its dysregulation has been linked to inflammation and cancer. P2X7R is expressed in cancer and immune system cell surfaces. ATP plays a key role in numerous metabolic processes due to its abundance in the tumour microenvironment. P2X7R plays an important role in cancer by interacting with ATP. The unusual property of P2X7R is that stimulation with low doses of ATP causes the opening of a permeable channel for sodium, potassium, and calcium ions, whereas sustained stimulation with high doses of ATP favours the formation of a non-selective pore. The latter effect induces a change in intracellular homeostasis that leads to cell death. This evidence suggests that P2X7R has both pro- and anti-tumour proprieties. P2X7R is increasingly recognised as a regulator of inflammation. In this review, we aimed to describe the most relevant characteristics of P2X7R function, activation, and its ligands, while also summarising the role of P2X7R activation in the context of inflammation and cancer. The currently used therapeutic approaches and clinical trials of P2X7R modulators are also described.
Collapse
Affiliation(s)
- John Charles Rotondo
- Laboratories of Cell Biology and Molecular Genetics, Section of Experimental Medicine, Department of Medical Sciences, School of Medicine, University of Ferrara, 44121 Ferrara, Italy; (J.C.R.); (C.M.); (C.L.); (C.S.); (G.B.); (G.C.); (F.M.)
- Centre for Studies on Gender Medicine, Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy
| | - Chiara Mazziotta
- Laboratories of Cell Biology and Molecular Genetics, Section of Experimental Medicine, Department of Medical Sciences, School of Medicine, University of Ferrara, 44121 Ferrara, Italy; (J.C.R.); (C.M.); (C.L.); (C.S.); (G.B.); (G.C.); (F.M.)
- Centre for Studies on Gender Medicine, Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy
| | - Carmen Lanzillotti
- Laboratories of Cell Biology and Molecular Genetics, Section of Experimental Medicine, Department of Medical Sciences, School of Medicine, University of Ferrara, 44121 Ferrara, Italy; (J.C.R.); (C.M.); (C.L.); (C.S.); (G.B.); (G.C.); (F.M.)
- Centre for Studies on Gender Medicine, Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy
| | - Chiara Stefani
- Laboratories of Cell Biology and Molecular Genetics, Section of Experimental Medicine, Department of Medical Sciences, School of Medicine, University of Ferrara, 44121 Ferrara, Italy; (J.C.R.); (C.M.); (C.L.); (C.S.); (G.B.); (G.C.); (F.M.)
| | - Giada Badiale
- Laboratories of Cell Biology and Molecular Genetics, Section of Experimental Medicine, Department of Medical Sciences, School of Medicine, University of Ferrara, 44121 Ferrara, Italy; (J.C.R.); (C.M.); (C.L.); (C.S.); (G.B.); (G.C.); (F.M.)
| | - Giulia Campione
- Laboratories of Cell Biology and Molecular Genetics, Section of Experimental Medicine, Department of Medical Sciences, School of Medicine, University of Ferrara, 44121 Ferrara, Italy; (J.C.R.); (C.M.); (C.L.); (C.S.); (G.B.); (G.C.); (F.M.)
| | - Fernanda Martini
- Laboratories of Cell Biology and Molecular Genetics, Section of Experimental Medicine, Department of Medical Sciences, School of Medicine, University of Ferrara, 44121 Ferrara, Italy; (J.C.R.); (C.M.); (C.L.); (C.S.); (G.B.); (G.C.); (F.M.)
- Centre for Studies on Gender Medicine, Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy
- Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, 44121 Ferrara, Italy
| | - Mauro Tognon
- Laboratories of Cell Biology and Molecular Genetics, Section of Experimental Medicine, Department of Medical Sciences, School of Medicine, University of Ferrara, 44121 Ferrara, Italy; (J.C.R.); (C.M.); (C.L.); (C.S.); (G.B.); (G.C.); (F.M.)
| |
Collapse
|
23
|
Oton-Gonzalez L, Mazziotta C, Iaquinta MR, Mazzoni E, Nocini R, Trevisiol L, D’Agostino A, Tognon M, Rotondo JC, Martini F. Genetics and Epigenetics of Bone Remodeling and Metabolic Bone Diseases. Int J Mol Sci 2022; 23:1500. [PMID: 35163424 PMCID: PMC8836080 DOI: 10.3390/ijms23031500] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 01/24/2022] [Accepted: 01/26/2022] [Indexed: 02/06/2023] Open
Abstract
Bone metabolism consists of a balance between bone formation and bone resorption, which is mediated by osteoblast and osteoclast activity, respectively. In order to ensure bone plasticity, the bone remodeling process needs to function properly. Mesenchymal stem cells differentiate into the osteoblast lineage by activating different signaling pathways, including transforming growth factor β (TGF-β)/bone morphogenic protein (BMP) and the Wingless/Int-1 (Wnt)/β-catenin pathways. Recent data indicate that bone remodeling processes are also epigenetically regulated by DNA methylation, histone post-translational modifications, and non-coding RNA expressions, such as micro-RNAs, long non-coding RNAs, and circular RNAs. Mutations and dysfunctions in pathways regulating the osteoblast differentiation might influence the bone remodeling process, ultimately leading to a large variety of metabolic bone diseases. In this review, we aim to summarize and describe the genetics and epigenetics of the bone remodeling process. Moreover, the current findings behind the genetics of metabolic bone diseases are also reported.
Collapse
Affiliation(s)
- Lucia Oton-Gonzalez
- Department of Medical Sciences, University of Ferrara, 64/b, Fossato di Mortara Street, 44121 Ferrara, Italy; (L.O.-G.); (C.M.); (M.R.I.); (M.T.)
| | - Chiara Mazziotta
- Department of Medical Sciences, University of Ferrara, 64/b, Fossato di Mortara Street, 44121 Ferrara, Italy; (L.O.-G.); (C.M.); (M.R.I.); (M.T.)
- Center for Studies on Gender Medicine, Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy
| | - Maria Rosa Iaquinta
- Department of Medical Sciences, University of Ferrara, 64/b, Fossato di Mortara Street, 44121 Ferrara, Italy; (L.O.-G.); (C.M.); (M.R.I.); (M.T.)
- Center for Studies on Gender Medicine, Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy
| | - Elisa Mazzoni
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, 44121 Ferrara, Italy;
| | - Riccardo Nocini
- Unit of Otolaryngology, University of Verona, 37134 Verona, Italy;
| | - Lorenzo Trevisiol
- Unit of Maxillo-Facial Surgery and Dentistry, University of Verona, 37134 Verona, Italy; (L.T.); (A.D.)
| | - Antonio D’Agostino
- Unit of Maxillo-Facial Surgery and Dentistry, University of Verona, 37134 Verona, Italy; (L.T.); (A.D.)
| | - Mauro Tognon
- Department of Medical Sciences, University of Ferrara, 64/b, Fossato di Mortara Street, 44121 Ferrara, Italy; (L.O.-G.); (C.M.); (M.R.I.); (M.T.)
| | - John Charles Rotondo
- Department of Medical Sciences, University of Ferrara, 64/b, Fossato di Mortara Street, 44121 Ferrara, Italy; (L.O.-G.); (C.M.); (M.R.I.); (M.T.)
- Center for Studies on Gender Medicine, Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy
| | - Fernanda Martini
- Department of Medical Sciences, University of Ferrara, 64/b, Fossato di Mortara Street, 44121 Ferrara, Italy; (L.O.-G.); (C.M.); (M.R.I.); (M.T.)
- Center for Studies on Gender Medicine, Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy
- Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, 44121 Ferrara, Italy
| |
Collapse
|
24
|
Wu L, Zhou Y, Guan Y, Xiao R, Cai J, Chen W, Zheng M, Sun K, Chen C, Huang G, Zhang X, Qian Z, Shen S. Seven Genes Associated With Lymphatic Metastasis in Thyroid Cancer That Is Linked to Tumor Immune Cell Infiltration. Front Oncol 2022; 11:756246. [PMID: 35141140 PMCID: PMC8818997 DOI: 10.3389/fonc.2021.756246] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 12/06/2021] [Indexed: 12/18/2022] Open
Abstract
ObjectiveSince there are few studies exploring genes associated with lymphatic metastasis of thyroid carcinoma (THCA), this study was conducted to explore genes associated with lymphatic metastasis of THCA and to investigate the relationship with immune infiltration.MethodsDifferentially expressed genes associated with THCA lymphatic metastasis were analyzed based on The Cancer Genome Atlas Program (TCGA) database; a protein-protein interaction(PPI)network was constructed to screen for pivotal genes. Based on the identified hub genes, their expression in THCA with and without lymphatic metastasis were determined. Functional enrichment analysis was performed. The correlation between the identified genes and immune cell infiltration was explored. LASSO logistic regression analysis was performed to determine the risk score of the most relevant gene constructs and multifactor COX regression analysis based on genes in the risk score formula.ResultsA total of 115 genes were differentially expressed in THCA with and without lymphatic metastasis, including 28 upregulated genes and 87 downregulated genes. The PPI network identified seven hub genes (EVA1A, TIMP1, SERPINA1, FAM20A, FN1, TNC, MXRA8); the expression of all seven genes was upregulated in the group with lymphatic metastasis; Immuno-infiltration analysis showed that all seven genes were significantly positively correlated with macrophage M1 and NK cells and negatively correlated with T-cell CD4+ and myeloid dendritic cells. LASSO logistic regression analysis identified the five most relevant genes (EVA1A, SERPINA1, FN1, TNC, MXRA8), and multi-factor COX regression analysis showed EVA1A, SERPINA1 and FN1 as independent prognostic factors.ConclusionSeven genes were associated with lymphatic metastasis of THCA and with tumor immune cell infiltration.
Collapse
Affiliation(s)
- Linfeng Wu
- Oncology and Hematology, Wenzhou Hospital of Integrated Traditional Chinese and Western Medicine, Wenzhou, China
| | - Yuying Zhou
- Oncology and Hematology, Wenzhou Hospital of Integrated Traditional Chinese and Western Medicine, Wenzhou, China
| | - Yaoyao Guan
- Oncology and Hematology, Wenzhou Hospital of Integrated Traditional Chinese and Western Medicine, Wenzhou, China
| | - Rongyao Xiao
- Oncology and Hematology, Wenzhou Hospital of Integrated Traditional Chinese and Western Medicine, Wenzhou, China
| | - Jiaohao Cai
- Oncology and Hematology, Wenzhou Hospital of Integrated Traditional Chinese and Western Medicine, Wenzhou, China
| | - Weike Chen
- Oncology and Hematology, Wenzhou Hospital of Integrated Traditional Chinese and Western Medicine, Wenzhou, China
| | - Mengmeng Zheng
- Oncology and Hematology, Wenzhou Hospital of Integrated Traditional Chinese and Western Medicine, Wenzhou, China
| | - Kaiting Sun
- Oncology and Hematology, Wenzhou Hospital of Integrated Traditional Chinese and Western Medicine, Wenzhou, China
| | - Chao Chen
- Oncology and Hematology, Wenzhou Hospital of Integrated Traditional Chinese and Western Medicine, Wenzhou, China
| | - Guanli Huang
- Thyroid Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xiaogang Zhang
- Hongyuan Biotech, Suzhou Biobay, Suzhou, China
- Prophet Genomics Inc, San Jose, CA, United States
| | - Ziliang Qian
- Hongyuan Biotech, Suzhou Biobay, Suzhou, China
- Prophet Genomics Inc, San Jose, CA, United States
| | - Shurong Shen
- Oncology and Hematology, Wenzhou Hospital of Integrated Traditional Chinese and Western Medicine, Wenzhou, China
- *Correspondence: Shurong Shen,
| |
Collapse
|
25
|
Mazziotta C, Rotondo JC, Lanzillotti C, Campione G, Martini F, Tognon M. Cancer biology and molecular genetics of A 3 adenosine receptor. Oncogene 2022; 41:301-308. [PMID: 34750517 PMCID: PMC8755539 DOI: 10.1038/s41388-021-02090-z] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 09/01/2021] [Accepted: 10/21/2021] [Indexed: 12/16/2022]
Abstract
A3 adenosine receptor (A3AR) is a cell membrane protein, which has been found to be overexpressed in a large number of cancer types. This receptor plays an important role in cancer by interacting with adenosine. Specifically, A3AR has a dual nature in different pathophysiological conditions, as it is expressed according to tissue type and stimulated by an adenosine dose-dependent manner. A3AR activation leads to tumor growth, cell proliferation and survival in some cases, while triggering cytostatic and apoptotic pathways in others. This review aims to describe the most relevant aspects of A3AR activation and its ligands whereas it summarizes A3AR activities in cancer. Progress in the field of A3AR modulators, with a potential therapeutic role in cancer treatment are reported, as well.
Collapse
Affiliation(s)
- Chiara Mazziotta
- Laboratories of Cell Biology and Molecular Genetics, Section of Experimental Medicine, Department of Medical Sciences, School of Medicine, University of Ferrara, 64/b, Fossato di Mortara Street, 44121, Ferrara, Italy
- Center for Studies on Gender Medicine-Department of Medical Sciences, University of Ferrara, 64/b, Fossato di Mortara Street, 44121, Ferrara, Italy
| | - John Charles Rotondo
- Laboratories of Cell Biology and Molecular Genetics, Section of Experimental Medicine, Department of Medical Sciences, School of Medicine, University of Ferrara, 64/b, Fossato di Mortara Street, 44121, Ferrara, Italy
- Center for Studies on Gender Medicine-Department of Medical Sciences, University of Ferrara, 64/b, Fossato di Mortara Street, 44121, Ferrara, Italy
| | - Carmen Lanzillotti
- Laboratories of Cell Biology and Molecular Genetics, Section of Experimental Medicine, Department of Medical Sciences, School of Medicine, University of Ferrara, 64/b, Fossato di Mortara Street, 44121, Ferrara, Italy
- Center for Studies on Gender Medicine-Department of Medical Sciences, University of Ferrara, 64/b, Fossato di Mortara Street, 44121, Ferrara, Italy
| | - Giulia Campione
- Laboratories of Cell Biology and Molecular Genetics, Section of Experimental Medicine, Department of Medical Sciences, School of Medicine, University of Ferrara, 64/b, Fossato di Mortara Street, 44121, Ferrara, Italy
| | - Fernanda Martini
- Laboratories of Cell Biology and Molecular Genetics, Section of Experimental Medicine, Department of Medical Sciences, School of Medicine, University of Ferrara, 64/b, Fossato di Mortara Street, 44121, Ferrara, Italy.
- Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, 44121, Ferrara, Italy.
| | - Mauro Tognon
- Laboratories of Cell Biology and Molecular Genetics, Section of Experimental Medicine, Department of Medical Sciences, School of Medicine, University of Ferrara, 64/b, Fossato di Mortara Street, 44121, Ferrara, Italy.
| |
Collapse
|
26
|
Wei H, Green E, Ball L, Fan H, Lee J, Strange C, Wang H. Proteomic Analysis of Exosomes Secreted from Human Alpha-1 Antitrypsin Overexpressing Mesenchymal Stromal Cells. BIOLOGY 2021; 11:biology11010009. [PMID: 35053007 PMCID: PMC8773149 DOI: 10.3390/biology11010009] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/07/2021] [Accepted: 12/18/2021] [Indexed: 12/24/2022]
Abstract
Extracellular vesicles (EVs) mediate many therapeutic effects of stem cells during cellular therapies. Bone marrow-derived mesenchymal stromal cells (BM-MSCs) were manufactured to overexpress the human antiprotease alpha-1 antitrypsin (hAAT) and studied to compare the EV production compared to lentivirus treated control MSCs. The goal of this study was to compare protein profiles in the EVs/exosomes of control and hAAT-MSCs using unbiased, high resolution liquid chromatography and mass spectrometry to explore differences. Nanoparticle tracking analysis (NTA) showed that the particle size of the EVs from control MSCs or hAAT-MSCs ranged from 30 to 200 nm. Both MSCs and hAAT-MSCs expressed exosome-associated proteins, including CD63, CD81, and CD9. hAAT-MSCs also expressed high levels of hAAT. We next performed proteomic analysis of EVs from three healthy donor cell lines. Exosomes collected from cell supernatant were classified by GO analysis which showed proteins important to cell adhesion and extracellular matrix organization. However, there were differences between exosomes from control MSCs and hAAT-MSCs in cytokine signaling of the immune system, stem cell differentiation, and carbohydrate metabolism (p < 0.05). These results show that hAAT-MSC exosomes contain a different profile of paracrine effectors with altered immune function, impacts on MSC stemness, differentiation, and prevention of cell apoptosis and survival that could contribute to improved therapeutic functions.
Collapse
Affiliation(s)
- Hua Wei
- Departments of Surgery, Medical University of South Carolina, CRI 410, 173 Ashley Avenue, Charleston, SC 29425, USA; (H.W.); (E.G.)
| | - Erica Green
- Departments of Surgery, Medical University of South Carolina, CRI 410, 173 Ashley Avenue, Charleston, SC 29425, USA; (H.W.); (E.G.)
| | - Lauren Ball
- Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, CRI 311, 173 Ashley Avenue, Charleston, SC 29425, USA;
| | - Hongkuan Fan
- Pathology and Laboratory Medicine, Medical University of South Carolina, CRI 610, 173 Ashley Avenue, Charleston, SC 29425, USA;
| | | | - Charlie Strange
- Department of Medicine, Medical University of South Carolina, CSB 816, 96 Jonathan Lucas St., Charleston, SC 29425, USA;
| | - Hongjun Wang
- Departments of Surgery, Medical University of South Carolina, CRI 410, 173 Ashley Avenue, Charleston, SC 29425, USA; (H.W.); (E.G.)
- Center for Cellular Therapy, Medical University of South Carolina, Charleston, SC 29425, USA
- Ralph H. Johnson VA Medical Center, Charleston, SC 29425, USA
- Correspondence: ; Tel.: +843-792-1800; Fax: 843-792-3315
| |
Collapse
|
27
|
Fee LT, Gogoi D, O’Brien ME, McHugh E, Casey M, Gough C, Murphy M, Hopkins AM, Carroll TP, McElvaney NG, Reeves EP. C3d Elicits Neutrophil Degranulation and Decreases Endothelial Cell Migration, with Implications for Patients with Alpha-1 Antitrypsin Deficiency. Biomedicines 2021; 9:biomedicines9121925. [PMID: 34944741 PMCID: PMC8698851 DOI: 10.3390/biomedicines9121925] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/09/2021] [Accepted: 12/11/2021] [Indexed: 12/25/2022] Open
Abstract
Alpha-1 antitrypsin (AAT) deficiency (AATD) is characterized by increased risk for emphysema, chronic obstructive pulmonary disease (COPD), vasculitis, and wound-healing impairment. Neutrophils play a central role in the pathogenesis of AATD. Dysregulated complement activation in AATD results in increased plasma levels of C3d. The current study investigated the impact of C3d on circulating neutrophils. Blood was collected from AATD (n = 88) or non-AATD COPD patients (n = 10) and healthy controls (HC) (n = 40). Neutrophils were challenged with C3d, and degranulation was assessed by Western blotting, ELISA, or fluorescence resonance energy transfer (FRET) substrate assays. Ex vivo, C3d levels were increased in plasma (p < 0.0001) and on neutrophil plasma membranes (p = 0.038) in AATD compared to HC. C3d binding to CR3 receptors triggered primary (p = 0.01), secondary (p = 0.004), and tertiary (p = 0.018) granule release and increased CXCL8 secretion (p = 0.02). Ex vivo plasma levels of bactericidal-permeability-increasing-protein (p = 0.02), myeloperoxidase (p < 0.0001), and lactoferrin (p < 0.0001) were significantly increased in AATD patients. In endothelial cell scratch wound assays, C3d significantly decreased cell migration (p < 0.0001), an effect potentiated by neutrophil degranulated proteins (p < 0.0001). In summary, AATD patients had increased C3d in plasma and on neutrophil membranes and, together with neutrophil-released granule enzymes, reduced endothelial cell migration and wound healing, with potential implications for AATD-related vasculitis.
Collapse
Affiliation(s)
- Laura T. Fee
- Alpha-1 Foundation Ireland, Royal College of Surgeons in Ireland, Beaumont Hospital, D02 YN77 Dublin, Ireland; (L.T.F.); (T.P.C.)
- Irish Centre for Genetic Lung Disease, Department of Medicine, Royal College of Surgeons in Ireland, Beaumont Hospital, D02 YN77 Dublin, Ireland; (D.G.); (M.E.O.); (E.M.); (M.C.); (C.G.); (M.M.); (N.G.M.)
| | - Debananda Gogoi
- Irish Centre for Genetic Lung Disease, Department of Medicine, Royal College of Surgeons in Ireland, Beaumont Hospital, D02 YN77 Dublin, Ireland; (D.G.); (M.E.O.); (E.M.); (M.C.); (C.G.); (M.M.); (N.G.M.)
| | - Michael E. O’Brien
- Irish Centre for Genetic Lung Disease, Department of Medicine, Royal College of Surgeons in Ireland, Beaumont Hospital, D02 YN77 Dublin, Ireland; (D.G.); (M.E.O.); (E.M.); (M.C.); (C.G.); (M.M.); (N.G.M.)
| | - Emer McHugh
- Irish Centre for Genetic Lung Disease, Department of Medicine, Royal College of Surgeons in Ireland, Beaumont Hospital, D02 YN77 Dublin, Ireland; (D.G.); (M.E.O.); (E.M.); (M.C.); (C.G.); (M.M.); (N.G.M.)
| | - Michelle Casey
- Irish Centre for Genetic Lung Disease, Department of Medicine, Royal College of Surgeons in Ireland, Beaumont Hospital, D02 YN77 Dublin, Ireland; (D.G.); (M.E.O.); (E.M.); (M.C.); (C.G.); (M.M.); (N.G.M.)
| | - Ciara Gough
- Irish Centre for Genetic Lung Disease, Department of Medicine, Royal College of Surgeons in Ireland, Beaumont Hospital, D02 YN77 Dublin, Ireland; (D.G.); (M.E.O.); (E.M.); (M.C.); (C.G.); (M.M.); (N.G.M.)
| | - Mark Murphy
- Irish Centre for Genetic Lung Disease, Department of Medicine, Royal College of Surgeons in Ireland, Beaumont Hospital, D02 YN77 Dublin, Ireland; (D.G.); (M.E.O.); (E.M.); (M.C.); (C.G.); (M.M.); (N.G.M.)
| | - Ann M. Hopkins
- Department of Surgery, Royal College of Surgeons in Ireland, Beaumont Hospital, D02 YN77 Dublin, Ireland;
| | - Tomás P. Carroll
- Alpha-1 Foundation Ireland, Royal College of Surgeons in Ireland, Beaumont Hospital, D02 YN77 Dublin, Ireland; (L.T.F.); (T.P.C.)
- Irish Centre for Genetic Lung Disease, Department of Medicine, Royal College of Surgeons in Ireland, Beaumont Hospital, D02 YN77 Dublin, Ireland; (D.G.); (M.E.O.); (E.M.); (M.C.); (C.G.); (M.M.); (N.G.M.)
| | - Noel G. McElvaney
- Irish Centre for Genetic Lung Disease, Department of Medicine, Royal College of Surgeons in Ireland, Beaumont Hospital, D02 YN77 Dublin, Ireland; (D.G.); (M.E.O.); (E.M.); (M.C.); (C.G.); (M.M.); (N.G.M.)
| | - Emer P. Reeves
- Irish Centre for Genetic Lung Disease, Department of Medicine, Royal College of Surgeons in Ireland, Beaumont Hospital, D02 YN77 Dublin, Ireland; (D.G.); (M.E.O.); (E.M.); (M.C.); (C.G.); (M.M.); (N.G.M.)
- Correspondence:
| |
Collapse
|
28
|
Mazziotta C, Pellielo G, Tognon M, Martini F, Rotondo JC. Significantly Low Levels of IgG Antibodies Against Oncogenic Merkel Cell Polyomavirus in Sera From Females Affected by Spontaneous Abortion. Front Microbiol 2021; 12:789991. [PMID: 34970247 PMCID: PMC8712937 DOI: 10.3389/fmicb.2021.789991] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 10/27/2021] [Indexed: 12/12/2022] Open
Abstract
Merkel cell polyomavirus (MCPyV) is a small DNA tumor virus ubiquitous in humans. MCPyV establishes a clinically asymptomatic lifelong infection in healthy immunocompetent individuals. Viral infections are considered to be risk factors for spontaneous abortion (SA), which is the most common adverse complication of pregnancy. The role of MCPyV in SA remains undetermined. Herein, the impact of MCPyV infection in females affected by SA was investigated. Specifically, an indirect enzyme-linked immunosorbent assay (ELISA) method with two linear synthetic peptides/mimotopes mimicking MCPyV antigens was used to investigate immunoglobulin G (IgG) antibodies against MCPyV in sera from 94 females affected by SA [mean ± standard deviation (SD) age 35 ± (6) years] and from 96 healthy females undergoing voluntary pregnancy interruption [VI, mean (±SD) age 32 ± (7) years]. MCPyV seroprevalence and serological profiles were analyzed. The overall prevalence of serum IgG antibodies against MCPyV was 35.1% (33/94) and 37.5% (36/96) in SA and VI females, respectively (p > 0.05). Notably, serological profile analyses indicated lower optical densities (ODs) in females with SA compared to those undergoing VI (p < 0.05), thus indicating a reduced IgG antibody response in SA females. Circulating IgGs were identified in sera from SA and VI females. Our immunological findings indicate that a relatively reduced fraction of pregnant females carry serum anti-MCPyV IgG antibodies, while SA females presented a more pronounced decrease in IgG antibody response to MCPyV. Although yet to be determined, this immunological decrease might prompt an increase in MCPyV multiplication events in females experiencing abortive events. The role of MCPyV in SA, if present, remains to be determined.
Collapse
Affiliation(s)
- Chiara Mazziotta
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
- Center for Studies on Gender Medicine, Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Giulia Pellielo
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Mauro Tognon
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Fernanda Martini
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
- Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - John Charles Rotondo
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
- Center for Studies on Gender Medicine, Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| |
Collapse
|
29
|
A Novel Cellular Therapy to Treat Pancreatic Pain in Experimental Chronic Pancreatitis Using Human Alpha-1 Antitrypsin Overexpressing Mesenchymal Stromal Cells. Biomedicines 2021; 9:biomedicines9111695. [PMID: 34829924 PMCID: PMC8615652 DOI: 10.3390/biomedicines9111695] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/07/2021] [Accepted: 11/08/2021] [Indexed: 01/13/2023] Open
Abstract
Chronic pancreatitis (CP) is characterized by pancreatic inflammation, fibrosis, and abdominal pain that is challenging to treat. Mesenchymal stromal cells (MSCs) overexpressing human alpha-1 antitrypsin (hAAT-MSCs) showed improved mobility and protective functions over native MSCs in nonobese diabetic mice. We investigated whether hAAT-MSCs could mitigate CP and its associated pain using trinitrobenzene sulfonic acid (TNBS)-induced CP mouse models. CP mice were given native human MSCs or hAAT-MSCs (0.5 × 106 cells/mouse, i.v., n = 6–8/group). The index of visceral pain was measured by graduated von Frey filaments. Pancreatic morphology and pancreatic mast cell count were analyzed by morphological stains. Nociceptor transient receptor potential vanilloid 1 (TRPV1) expression in dorsal root ganglia (DRG) was determined by immunohistochemistry. hAAT-MSC-treated CP mice best preserved pancreatic morphology and histology. MSC or hAAT-MSC infusion reduced abdominal pain sensitivities. hAAT-MSC therapy also suppressed TRPV1 expression in DRG and reduced pancreatic mast cell density induced by TNBS. Overall, hAAT-MSCs reduced pain and mitigated pancreatic inflammation in CP equal to MSCs with a trend toward a higher pancreatic weight and better pain relief in the hAAT-MSC group compared to the MSC group. Both MSCs and hAAT-MSCs might be used as a novel therapeutic tool for CP-related pain.
Collapse
|
30
|
Rotondo JC, Mazziotta C, Lanzillotti C, Tognon M, Martini F. Epigenetic Dysregulations in Merkel Cell Polyomavirus-Driven Merkel Cell Carcinoma. Int J Mol Sci 2021; 22:11464. [PMID: 34768895 PMCID: PMC8584046 DOI: 10.3390/ijms222111464] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 10/15/2021] [Accepted: 10/20/2021] [Indexed: 12/14/2022] Open
Abstract
Merkel cell polyomavirus (MCPyV) is a small DNA virus with oncogenic potential. MCPyV is the causative agent of Merkel Cell Carcinoma (MCC), a rare but aggressive tumor of the skin. The role of epigenetic mechanisms, such as histone posttranslational modifications (HPTMs), DNA methylation, and microRNA (miRNA) regulation on MCPyV-driven MCC has recently been highlighted. In this review, we aim to describe and discuss the latest insights into HPTMs, DNA methylation, and miRNA regulation, as well as their regulative factors in the context of MCPyV-driven MCC, to provide an overview of current findings on how MCPyV is involved in the dysregulation of these epigenetic processes. The current state of the art is also described as far as potentially using epigenetic dysregulations and related factors as diagnostic and prognostic tools is concerned, in addition to targets for MCPyV-driven MCC therapy. Growing evidence suggests that the dysregulation of HPTMs, DNA methylation, and miRNA pathways plays a role in MCPyV-driven MCC etiopathogenesis, which, therefore, may potentially be clinically significant for this deadly tumor. A deeper understanding of these mechanisms and related factors may improve diagnosis, prognosis, and therapy for MCPyV-driven MCC.
Collapse
Affiliation(s)
- John Charles Rotondo
- Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy; (C.M.); (C.L.); (M.T.)
- Center for Studies on Gender Medicine, Department of Medical Sciences, University of Ferrara, 64/b, Fossato di Mortara Street, Ferrara 44121, Italy
| | - Chiara Mazziotta
- Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy; (C.M.); (C.L.); (M.T.)
- Center for Studies on Gender Medicine, Department of Medical Sciences, University of Ferrara, 64/b, Fossato di Mortara Street, Ferrara 44121, Italy
| | - Carmen Lanzillotti
- Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy; (C.M.); (C.L.); (M.T.)
- Center for Studies on Gender Medicine, Department of Medical Sciences, University of Ferrara, 64/b, Fossato di Mortara Street, Ferrara 44121, Italy
| | - Mauro Tognon
- Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy; (C.M.); (C.L.); (M.T.)
| | - Fernanda Martini
- Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy; (C.M.); (C.L.); (M.T.)
- Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, 44121 Ferrara, Italy
| |
Collapse
|
31
|
Mazziotta C, Lanzillotti C, Govoni M, Pellielo G, Mazzoni E, Tognon M, Martini F, Rotondo JC. Decreased IgG Antibody Response to Viral Protein Mimotopes of Oncogenic Merkel Cell Polyomavirus in Sera From Healthy Elderly Subjects. Front Immunol 2021; 12:738486. [PMID: 34733278 PMCID: PMC8558529 DOI: 10.3389/fimmu.2021.738486] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 09/22/2021] [Indexed: 12/14/2022] Open
Abstract
Merkel cell polyomavirus (MCPyV) is the main causative agent of Merkel cell carcinoma (MCC), a rare but aggressive skin tumor with a typical presentation age >60 years. MCPyV is ubiquitous in humans. After an early-age primary infection, MCPyV establishes a clinically asymptomatic lifelong infection. In immunocompromised patients/individuals, including elders, MCC can arise following an increase in MCPyV replication events. Elders are prone to develop immunesenescence and therefore represent an important group to investigate. In addition, detailed information on MCPyV serology in elders has been debated. These findings cumulatively indicate the need for new research verifying the impact of MCPyV infection in elderly subjects (ES). Herein, sera from 226 ES, aged 66-100 years, were analyzed for anti-MCPyV IgGs with an indirect ELISA using peptides mimicking epitopes from the MCPyV capsid proteins VP1-2. Immunological data from sera belonging to a cohort of healthy subjects (HS) (n = 548) aged 18-65 years, reported in our previous study, were also included for comparisons. Age-/gender-specific seroprevalence and serological profiles were investigated. MCPyV seroprevalence in ES was 63.7% (144/226). Age-specific MCPyV seroprevalence resulted as 62.5% (25/40), 71.7% (33/46), 64.9% (37/57), 63.8% (30/47), and 52.8% (19/36) in ES aged 66-70, 71-75, 76-80, 81-85, and 86-100 years, respectively (p > 0.05). MCPyV seroprevalence was 67% (71/106) and 61% (73/120) in ES males and females, respectively (p > 0.05). Lack of age-/gender-related variations in terms of MCPyV serological profiles was found in ES (p > 0.05). Notably, serological profile analyses indicated lower optical densities (ODs) in ES compared with HS (p < 0.05), while lower ODs were also determined in ES males compared with HS males (p < 0.05). Our data cumulatively suggest that oncogenic MCPyV circulates in elders asymptomatically at a relatively high prevalence, while immunesenescence might be responsible for a decreased IgG antibody response to MCPyV, thereby potentially leading to an increase in MCPyV replication levels. In the worse scenario, alongside other factors, MCPyV might drive MCC carcinogenesis, as described in elders with over 60 years of age.
Collapse
Affiliation(s)
- Chiara Mazziotta
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
- Center for Studies on Gender Medicine, Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Carmen Lanzillotti
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
- Center for Studies on Gender Medicine, Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Marcello Govoni
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Giulia Pellielo
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Elisa Mazzoni
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Mauro Tognon
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Fernanda Martini
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
- Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - John Charles Rotondo
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
- Center for Studies on Gender Medicine, Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| |
Collapse
|
32
|
Vincenzi F, Rotondo JC, Pasquini S, Di Virgilio F, Varani K, Tognon M. A 3 Adenosine and P2X7 Purinergic Receptors as New Targets for an Innovative Pharmacological Therapy of Malignant Pleural Mesothelioma. Front Oncol 2021; 11:679285. [PMID: 34660262 PMCID: PMC8518529 DOI: 10.3389/fonc.2021.679285] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 09/09/2021] [Indexed: 01/23/2023] Open
Abstract
Human malignant pleural mesothelioma (MPM) is a rare, but aggressive tumor of the serosal cavities whose 5-year survival rate is 15%. At present, there are no effective therapies for MPM. Although recent findings suggest that A3 adenosine (A3AR) and P2X7 (P2X7R) receptors can be employed as antitumoral pharmacological targets in MPM, their potential role in a combined therapy is currently unknown. The A3AR agonist Cl-IB-MECA and the P2X7 receptor antagonist AZ10606120, as a single compound or in combination, were investigated in vitro for their anti-tumor activities. Assays were carried out in MPM cell lines IST-Mes2 and MPP89 and in primary human normal mesothelial cells (HMCs), as control. Single treatment with Cl-IB-MECA reduced cell proliferation and favored a pro-apoptotic effect in both MPP89 and IST-Mes2 cell lines, whereas AZ10606120 inhibited cell proliferation and induced apoptosis in IST-Mes2, only. The combined treatment with Cl-IB-MECA and AZ10606120 reduced cell proliferation and favored apoptosis in MPP89 and IST-Mes2 cell lines, whereas no synergistic effect was detected. These data cumulatively suggest the absence of a synergistic effect in combined targeting of A3 adenosine and P2X7 receptors of MPM cell lines. This study may stimulate further investigations aimed at determining new combinations of antitumor compounds and more effective therapeutic strategies against MPM.
Collapse
Affiliation(s)
- Fabrizio Vincenzi
- Department of Translational Medicine, Pharmacology Section, University of Ferrara, Ferrara, Italy
| | - John Charles Rotondo
- Department of Medical Sciences, Experimental Medicine Section, Laboratories of Cell Biology and Molecular Genetics, University of Ferrara, Ferrara, Italy
| | - Silvia Pasquini
- Department of Translational Medicine, Pharmacology Section, University of Ferrara, Ferrara, Italy
| | - Francesco Di Virgilio
- Department of Medical Sciences, Experimental Medicine Section, Pathology Unit, University of Ferrara, Ferrara, Italy
| | - Katia Varani
- Department of Translational Medicine, Pharmacology Section, University of Ferrara, Ferrara, Italy
| | - Mauro Tognon
- Department of Medical Sciences, Experimental Medicine Section, Laboratories of Cell Biology and Molecular Genetics, University of Ferrara, Ferrara, Italy
| |
Collapse
|
33
|
Alpha-1 Antitrypsin and Hepatocellular Carcinoma in Liver Cirrhosis: SERPINA1 MZ or MS Genotype Carriage Decreases the Risk. Int J Mol Sci 2021; 22:ijms221910560. [PMID: 34638908 PMCID: PMC8509047 DOI: 10.3390/ijms221910560] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 09/12/2021] [Accepted: 09/27/2021] [Indexed: 12/20/2022] Open
Abstract
Heterozygotes for Z or S alleles of alpha-1-antrypsin (AAT) have low serum AAT levels. Our aim was to compare the risk of hepatocellular carcinoma (HCC) in patients with liver cirrhosis carrying the SERPINA1 MM, MZ and MS genotypes. The study groups consisted of 1119 patients with liver cirrhosis of various aetiologies, and 3240 healthy individuals served as population controls. The MZ genotype was significantly more frequent in the study group (55/1119 vs. 87/3240, p < 0.0001). The MS genotype frequency was comparable in controls (32/119 vs. 101/3240, p = 0.84). MZ and MS heterozygotes had lower serum AAT level than MM homozygotes (medians: 0.90 g/L; 1.40 g/L and 1.67 g/L; p < 0.001 for both). There were significantly fewer patients with HCC in the cirrhosis group among MZ and MS heterozygotes than in MM homozygotes (5/55 and 1/32 respectively, vs. 243/1022, p < 0.01 for both). The risk of HCC was lower in MZ and MS heterozygotes than in MM homozygotes (OR 0.3202; 95% CI 0.1361–0.7719 and OR 0.1522; 95% CI 0.02941–0.7882, respectively). Multivariate analysis of HCC risk factors identified MZ or MS genotype carriage as a protective factor, whereas age, male sex, BMI and viral aetiology of cirrhosis increased HCC risk.
Collapse
|
34
|
Kosinski P, Kedzia M, Mostowska A, Gutaj P, Lipa M, Wender-Ozegowska E, Rozy A, Chorostowska-Wynimko J, Wielgos M, Jezela-Stanek A. Alpha-1 Antitrypsin Z Variant (AAT PI*Z) as a Risk Factor for Intrahepatic Cholestasis of Pregnancy. Front Genet 2021; 12:720465. [PMID: 34557220 PMCID: PMC8454405 DOI: 10.3389/fgene.2021.720465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 07/27/2021] [Indexed: 11/18/2022] Open
Abstract
Background: Intrahepatic cholestasis of pregnancy (ICP; prevalence 0.2–15.6%) is the most common pregnancy-related liver disorder. It may have serious consequences for a pregnancy, including increased risk of preterm delivery, meconium staining of amniotic fluid, fetal bradycardia, distress, and fetal demise. In cases of high bile acids (>100μmol/L), patients have 10-fold increase in the risk of stillbirth. Biophysical methods of fetal monitoring, such as cardiotocography, ultrasonography, or Doppler have been proven unreliable for risk prediction in the course of intrahepatic cholestasis. Therefore, we believe extensive research for more specific, especially early, markers should be carried out. By analogy with cholestasis in children with inherited alpha-1 antitrypsin deficiency (AATD), we hypothesized the SERPINA1 Z pathogenic variant might be related to a higher risk of cholestasis in pregnancy. This study aimed to investigate the most common AATD variants (Z and S SERPINA1 alleles) in a group of cholestatic pregnant women. Results: The Z carrier frequency was calculated to be 6.8%, which is much higher compared to the general population [2.3%; the Chi-squared test with Yates correction is 6.8774 (p=0.008)]. Conclusion: Increased prevalence of SERPINA1 PI*Z variant in a group of women with intrahepatic cholestasis may suggest a possible genetic origin of a higher risk of intrahepatic cholestasis in pregnancy.
Collapse
Affiliation(s)
- Przemyslaw Kosinski
- First Department of Obstetrics and Gynecology, Medical University of Warsaw, Warsaw, Poland.,"Club 35", Scientific Group of Polish Society of Obstetricians and Gynaecologists, Warsaw, Poland
| | - Malgorzata Kedzia
- Division of Reproduction, Department of Obstetrics, Gynecology, and Gynecologic Oncology, Poznan University of Medical Sciences, Poznań, Poland
| | - Adrianna Mostowska
- Department of Biochemistry and Molecular Biology, Poznan University of Medical Sciences, Poznań, Poland
| | - Pawel Gutaj
- "Club 35", Scientific Group of Polish Society of Obstetricians and Gynaecologists, Warsaw, Poland.,Division of Reproduction, Department of Obstetrics, Gynecology, and Gynecologic Oncology, Poznan University of Medical Sciences, Poznań, Poland
| | - Michal Lipa
- First Department of Obstetrics and Gynecology, Medical University of Warsaw, Warsaw, Poland.,"Club 35", Scientific Group of Polish Society of Obstetricians and Gynaecologists, Warsaw, Poland
| | - Ewa Wender-Ozegowska
- Division of Reproduction, Department of Obstetrics, Gynecology, and Gynecologic Oncology, Poznan University of Medical Sciences, Poznań, Poland
| | - Adriana Rozy
- Department of Genetics and Clinical Immunology, National Institute of Tuberculosis and Lung Diseases, Warsaw, Poland
| | - Joanna Chorostowska-Wynimko
- Department of Genetics and Clinical Immunology, National Institute of Tuberculosis and Lung Diseases, Warsaw, Poland
| | - Miroslaw Wielgos
- First Department of Obstetrics and Gynecology, Medical University of Warsaw, Warsaw, Poland
| | - Aleksandra Jezela-Stanek
- Department of Genetics and Clinical Immunology, National Institute of Tuberculosis and Lung Diseases, Warsaw, Poland
| |
Collapse
|
35
|
Rotondo JC, Martini F, Maritati M, Mazziotta C, Di Mauro G, Lanzillotti C, Barp N, Gallerani A, Tognon M, Contini C. SARS-CoV-2 Infection: New Molecular, Phylogenetic, and Pathogenetic Insights. Efficacy of Current Vaccines and the Potential Risk of Variants. Viruses 2021; 13:1687. [PMID: 34578269 PMCID: PMC8473168 DOI: 10.3390/v13091687] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 08/16/2021] [Accepted: 08/21/2021] [Indexed: 12/11/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a newly discovered coronavirus responsible for the coronavirus disease 2019 (COVID-19) pandemic. COVID-19 has rapidly become a public health emergency of international concern. Although remarkable scientific achievements have been reached since the beginning of the pandemic, the knowledge behind this novel coronavirus, in terms of molecular and pathogenic characteristics and zoonotic potential, is still relatively limited. Today, there is a vaccine, or rather several vaccines, which, for the first time in the history of highly contagious infectious diseases that have plagued mankind, has been manufactured in just one year. Currently, four vaccines are licensed by regulatory agencies, and they use RNA or viral vector technologies. The positive effects of the vaccination campaign are being felt in many parts of the world, but the disappearance of this new infection is still far from being a reality, as it is also threatened by the presence of novel SARS-CoV-2 variants that could undermine the effectiveness of the vaccine, hampering the immunization control efforts. Indeed, the current findings indicate that SARS-CoV-2 is adapting to transmission in humans more efficiently, while further divergence from the initial archetype should be considered. In this review, we aimed to provide a collection of the current knowledge regarding the molecular, phylogenetic, and pathogenetic insights into SARS-CoV-2. The most recent findings obtained with respect to the impact of novel emerging SARS-CoV-2 variants as well as the development and implementation of vaccines are highlighted.
Collapse
Affiliation(s)
- John Charles Rotondo
- Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy; (F.M.); (M.M.); (C.M.); (G.D.M.); (C.L.); (N.B.); (A.G.); (M.T.)
- Center for Studies on Gender Medicine, Department of Medical Sciences, University of Ferrara, 64/b, Fossato di Mortara Street, 44121 Ferrara, Italy
| | - Fernanda Martini
- Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy; (F.M.); (M.M.); (C.M.); (G.D.M.); (C.L.); (N.B.); (A.G.); (M.T.)
- Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, 44121 Ferrara, Italy
| | - Martina Maritati
- Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy; (F.M.); (M.M.); (C.M.); (G.D.M.); (C.L.); (N.B.); (A.G.); (M.T.)
| | - Chiara Mazziotta
- Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy; (F.M.); (M.M.); (C.M.); (G.D.M.); (C.L.); (N.B.); (A.G.); (M.T.)
- Center for Studies on Gender Medicine, Department of Medical Sciences, University of Ferrara, 64/b, Fossato di Mortara Street, 44121 Ferrara, Italy
| | - Giulia Di Mauro
- Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy; (F.M.); (M.M.); (C.M.); (G.D.M.); (C.L.); (N.B.); (A.G.); (M.T.)
- Center for Studies on Gender Medicine, Department of Medical Sciences, University of Ferrara, 64/b, Fossato di Mortara Street, 44121 Ferrara, Italy
| | - Carmen Lanzillotti
- Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy; (F.M.); (M.M.); (C.M.); (G.D.M.); (C.L.); (N.B.); (A.G.); (M.T.)
- Center for Studies on Gender Medicine, Department of Medical Sciences, University of Ferrara, 64/b, Fossato di Mortara Street, 44121 Ferrara, Italy
| | - Nicole Barp
- Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy; (F.M.); (M.M.); (C.M.); (G.D.M.); (C.L.); (N.B.); (A.G.); (M.T.)
| | - Altea Gallerani
- Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy; (F.M.); (M.M.); (C.M.); (G.D.M.); (C.L.); (N.B.); (A.G.); (M.T.)
| | - Mauro Tognon
- Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy; (F.M.); (M.M.); (C.M.); (G.D.M.); (C.L.); (N.B.); (A.G.); (M.T.)
| | - Carlo Contini
- Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy; (F.M.); (M.M.); (C.M.); (G.D.M.); (C.L.); (N.B.); (A.G.); (M.T.)
| |
Collapse
|
36
|
Hawkins P, Sya J, Hup NK, Murphy MP, McElvaney NG, Reeves EP. Alpha-1 Antitrypsin Augmentation Inhibits Proteolysis of Neutrophil Membrane Voltage-Gated Proton Channel-1 in Alpha-1 Deficient Individuals. ACTA ACUST UNITED AC 2021; 57:medicina57080814. [PMID: 34441020 PMCID: PMC8398194 DOI: 10.3390/medicina57080814] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/04/2021] [Accepted: 08/05/2021] [Indexed: 11/16/2022]
Abstract
Background and Objectives: Alpha-1 antitrypsin is a serine protease inhibitor that demonstrates an array of immunomodulatory functions. Individuals with the genetic condition of alpha-1 antitrypsin deficiency (AATD) are at increased risk of early onset emphysematous lung disease. This lung disease is partly driven by neutrophil mediated lung destruction in an environment of low AAT. As peripheral neutrophil hyper-responsiveness in AATD leads to excessive degranulation and increased migration to the airways, we examined the expression of the membrane voltage-gated proton channel-1 (HVCN1), which is integrally linked to neutrophil function. The objectives of this study were to evaluate altered HVCN1 in AATD neutrophils, serine protease-dependent degradation of HVCN1, and to investigate the ability of serum AAT to control HVCN1 expression. Materials and Methods: Circulating neutrophils were purified from AATD patients (n = 20), AATD patients receiving AAT augmentation therapy (n = 3) and healthy controls (n = 20). HVCN1 neutrophil expression was assessed by flow cytometry and Western blot analysis. Neutrophil membrane bound elastase was measured by fluorescence resonance energy transfer. Results: In this study we demonstrated that HVCN1 protein is under-expressed in AATD neutrophils (p = 0.02), suggesting a link between reduced HVCN1 expression and AAT deficiency. We have demonstrated that HVCN1 undergoes significant proteolytic degradation in activated neutrophils (p < 0.0001), primarily due to neutrophil elastase activity (p = 0.0004). In addition, the treatment of AATD individuals with AAT augmentation therapy increased neutrophil plasma membrane HVCN1 expression (p = 0.01). Conclusions: Our results demonstrate reduced levels of HVCN1 in peripheral blood neutrophils that may influence the neutrophil-dominated immune response in the AATD airways and highlights the role of antiprotease treatment and specifically AAT augmentation therapy in protecting neutrophil membrane expression of HVCN1.
Collapse
|
37
|
Rotondo JC, Lanzillotti C, Mazziotta C, Tognon M, Martini F. Epigenetics of Male Infertility: The Role of DNA Methylation. Front Cell Dev Biol 2021; 9:689624. [PMID: 34368137 PMCID: PMC8339558 DOI: 10.3389/fcell.2021.689624] [Citation(s) in RCA: 98] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 06/17/2021] [Indexed: 12/18/2022] Open
Abstract
In recent years, a number of studies focused on the role of epigenetics, including DNA methylation, in spermatogenesis and male infertility. We aimed to provide an overview of the knowledge concerning the gene and genome methylation and its regulation during spermatogenesis, specifically in the context of male infertility etiopathogenesis. Overall, the findings support the hypothesis that sperm DNA methylation is associated with sperm alterations and infertility. Several genes have been found to be differentially methylated in relation to impaired spermatogenesis and/or reproductive dysfunction. Particularly, DNA methylation defects of MEST and H19 within imprinted genes and MTHFR within non-imprinted genes have been repeatedly linked with male infertility. A deep knowledge of sperm DNA methylation status in association with reduced reproductive potential could improve the development of novel diagnostic tools for this disease. Further studies are needed to better elucidate the mechanisms affecting methylation in sperm and their impact on male infertility.
Collapse
|
38
|
Mazziotta C, Lanzillotti C, Torreggiani E, Oton-Gonzalez L, Iaquinta MR, Mazzoni E, Gaboriaud P, Touzé A, Silvagni E, Govoni M, Martini F, Tognon M, Rotondo JC. Serum Antibodies Against the Oncogenic Merkel Cell Polyomavirus Detected by an Innovative Immunological Assay With Mimotopes in Healthy Subjects. Front Immunol 2021; 12:676627. [PMID: 34168646 PMCID: PMC8217635 DOI: 10.3389/fimmu.2021.676627] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 05/20/2021] [Indexed: 12/22/2022] Open
Abstract
Merkel cell polyomavirus (MCPyV), a small DNA tumor virus, has been detected in Merkel cell carcinoma (MCC) and in normal tissues. Since MCPyV infection occurs in both MCC-affected patients and healthy subjects (HS), innovative immunoassays for detecting antibodies (abs) against MCPyV are required. Herein, sera from HS were analyzed with a novel indirect ELISA using two synthetic peptides mimicking MCPyV capsid protein epitopes of VP1 and VP2. Synthetic peptides were designed to recognize IgGs against MCPyV VP mimotopes using a computer-assisted approach. The assay was set up evaluating its performance in detecting IgGs anti-MCPyV on MCPyV-positive (n=65) and -negative (n=67) control sera. Then, the ELISA was extended to sera (n=548) from HS aged 18-65 yrs old. Age-specific MCPyV-seroprevalence was investigated. Performance evaluation indicated that the assay showed 80% sensitivity, 91% specificity and 83.9% accuracy, with positive and negative predictive values of 94.3% and 71%, respectively. The ratio expected/obtained data agreement was 86%, with a Cohen's kappa of 0.72. Receiver-operating characteristic (ROC) curves analysis indicated that the areas under the curves (AUCs) for the two peptides were 0.82 and 0.74, respectively. Intra-/inter-run variations were below 9%. The overall prevalence of serum IgGs anti-MCPyV in HS was 62.9% (345/548). Age-specific MCPyV-seroprevalence was 63.1% (82/130), 56.7% (68/120), 64.5% (91/141), and 66.2% (104/157) in HS aged 18-30, 31-40, 41-50 and 51-65 yrs old, respectively (p>0.05). Performance evaluation suggests that our indirect ELISA is reliable in detecting IgGs anti-MCPyV. Our immunological data indicate that MCPyV infection occurs asymptomatically, at a relatively high prevalence, in humans.
Collapse
Affiliation(s)
- Chiara Mazziotta
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | | | - Elena Torreggiani
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | | | | | - Elisa Mazzoni
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Pauline Gaboriaud
- ISP “Biologie des infections à polyomavirus” Team, UMR INRA 1282, University of Tours, Tours, France
| | - Antoine Touzé
- ISP “Biologie des infections à polyomavirus” Team, UMR INRA 1282, University of Tours, Tours, France
| | - Ettore Silvagni
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Marcello Govoni
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Fernanda Martini
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Mauro Tognon
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | | |
Collapse
|
39
|
Wu CC, Lu YT, Yeh TS, Chan YH, Dash S, Yu JS. Identification of Fucosylated SERPINA1 as a Novel Plasma Marker for Pancreatic Cancer Using Lectin Affinity Capture Coupled with iTRAQ-Based Quantitative Glycoproteomics. Int J Mol Sci 2021; 22:ijms22116079. [PMID: 34199928 PMCID: PMC8200073 DOI: 10.3390/ijms22116079] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 05/24/2021] [Accepted: 05/31/2021] [Indexed: 02/06/2023] Open
Abstract
Pancreatic cancer (PC) is an aggressive cancer with a high mortality rate, necessitating the development of effective diagnostic, prognostic and predictive biomarkers for disease management. Aberrantly fucosylated proteins in PC are considered a valuable resource of clinically useful biomarkers. The main objective of the present study was to identify novel plasma glycobiomarkers of PC using the iTRAQ quantitative proteomics approach coupled with Aleuria aurantia lectin (AAL)-based glycopeptide enrichment and isotope-coded glycosylation site-specific tagging, with a view to analyzing the glycoproteome profiles of plasma samples from patients with non-metastatic and metastatic PC and gallstones (GS). As a result, 22 glycopeptides with significantly elevated levels in plasma samples of PC were identified. Fucosylated SERPINA1 (fuco-SERPINA1) was selected for further validation in 121 plasma samples (50 GS and 71 PC) using an AAL-based reverse lectin ELISA technique developed in-house. Our analyses revealed significantly higher plasma levels of fuco-SERPINA1 in PC than GS subjects (310.7 ng/mL v.s. 153.6 ng/mL, p = 0.0114). Elevated fuco-SERPINA1 levels were associated with higher TNM stage (p = 0.024) and poorer prognosis for overall survival (log-rank test, p = 0.0083). The increased plasma fuco-SERPINA1 levels support the utility of this protein as a novel prognosticator for PC.
Collapse
Affiliation(s)
- Chia-Chun Wu
- Molecular Medicine Research Center, Chang Gung University, Taoyuan 33302, Taiwan; (C.-C.W.); (Y.-T.L.)
| | - Yu-Ting Lu
- Molecular Medicine Research Center, Chang Gung University, Taoyuan 33302, Taiwan; (C.-C.W.); (Y.-T.L.)
| | - Ta-Sen Yeh
- Department of General Surgery, Chang Gung Memorial Hospital, Linkou 33305, Taiwan; (T.-S.Y.); (Y.-H.C.)
- College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Yun-Hsin Chan
- Department of General Surgery, Chang Gung Memorial Hospital, Linkou 33305, Taiwan; (T.-S.Y.); (Y.-H.C.)
| | - Srinivas Dash
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan;
| | - Jau-Song Yu
- Molecular Medicine Research Center, Chang Gung University, Taoyuan 33302, Taiwan; (C.-C.W.); (Y.-T.L.)
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan;
- Liver Research Center, Chang Gung Memorial Hospital, Linkou 33305, Taiwan
- Research Center for Food and Cosmetic Safety, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan 33302, Taiwan
- Correspondence: ; Tel.: +886-3-211-8800 (ext. 5171); Fax: +886-3-211-8891
| |
Collapse
|
40
|
Therapeutic Potential of Alpha-1 Antitrypsin in Type 1 and Type 2 Diabetes Mellitus. ACTA ACUST UNITED AC 2021; 57:medicina57040397. [PMID: 33923873 PMCID: PMC8073794 DOI: 10.3390/medicina57040397] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/12/2021] [Accepted: 04/17/2021] [Indexed: 12/21/2022]
Abstract
Alpha-1 antitrypsin (AAT) has established anti-inflammatory and immunomodulatory effects in chronic obstructive pulmonary disease but there is increasing evidence of its role in other inflammatory and immune-mediated conditions, like diabetes mellitus (DM). AAT activity is altered in both developing and established type 1 diabetes mellitus (T1DM) as well in established type 2 DM (T2DM). Augmentation therapy with AAT appears to favorably impact T1DM development in mice models and to affect β-cell function and inflammation in humans with T1DM. The role of AAT in T2DM is less clear, but AAT activity appears to be reduced in T2DM. This article reviews these associations and emerging therapeutic strategies using AAT to treat DM.
Collapse
|
41
|
Rotondo JC, Aquila G, Oton-Gonzalez L, Selvatici R, Rizzo P, De Mattei M, Pavasini R, Tognon M, Campo GC, Martini F. Methylation of SERPINA1 gene promoter may predict chronic obstructive pulmonary disease in patients affected by acute coronary syndrome. Clin Epigenetics 2021; 13:79. [PMID: 33858475 PMCID: PMC8048251 DOI: 10.1186/s13148-021-01066-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Accepted: 04/03/2021] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Diagnostic biomarkers for detecting chronic obstructive pulmonary disease (COPD) in acute coronary syndrome (ACS) patients are not available. SERPINA1, coding for the most potent circulating anti-inflammatory protein in the lung, has been found to be differentially methylated in blood cells from COPD patients. This study aimed to investigate the methylation profile of SERPINA1 in blood cells from ACS patients, with (COPD+) or without COPD (COPD-). METHODS Blood samples were from 115 ACS patients, including 30 COPD+ and 85 COPD- according to lung function phenotype, obtained with spirometry. DNA treated with sodium bisulfite was PCR-amplified at SERPINA1 promoter region. Methylation analysis was carried out by sequencing the PCR products. Lymphocytes count in ACS patients was recorded at hospital admission and discharge. RESULTS SERPINA1 was hypermethylated in 24/30 (80%) COPD+ and 48/85 (56.5%) COPD- (p < 0.05). Interestingly, at hospital discharge, lymphocytes count was higher in COPD- patients carrying SERPINA1 hypermethylated (1.98 × 103 ± 0.6 cell/µl) than in COPD- carrying SERPINA1 hypomethylated (1.7 × 103 ± 0.48 cell/µl) (p < 0.05). CONCLUSIONS SERPINA1 is hypermethylated in blood cells from COPD+ patients. COPD- carrying SERPINA1 hypermethylated and high lymphocytes count may be at risk of COPD development. Therefore, SERPINA1 hypermethylation may represent a potential biomarker for predicting COPD development in ACS patients.
Collapse
Affiliation(s)
| | - Giorgio Aquila
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | | | - Rita Selvatici
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Paola Rizzo
- Department of Translational Medicine and for Romagna, University of Ferrara, Ferrara, Italy
- Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, 70 Eliporto Street, 44121, Ferrara, Italy
| | - Monica De Mattei
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Rita Pavasini
- Cardiology Unit, Azienda Ospedaliera Universitaria Di Ferrara, Ferrara, Italy
| | - Mauro Tognon
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | | | - Fernanda Martini
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy.
- Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, 70 Eliporto Street, 44121, Ferrara, Italy.
| |
Collapse
|
42
|
Lanzillotti C, De Mattei M, Mazziotta C, Taraballi F, Rotondo JC, Tognon M, Martini F. Long Non-coding RNAs and MicroRNAs Interplay in Osteogenic Differentiation of Mesenchymal Stem Cells. Front Cell Dev Biol 2021; 9:646032. [PMID: 33898434 PMCID: PMC8063120 DOI: 10.3389/fcell.2021.646032] [Citation(s) in RCA: 87] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 03/11/2021] [Indexed: 12/23/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) have gained great attention as epigenetic regulators of gene expression in many tissues. Increasing evidence indicates that lncRNAs, together with microRNAs (miRNAs), play a pivotal role in osteogenesis. While miRNA action mechanism relies mainly on miRNA-mRNA interaction, resulting in suppressed expression, lncRNAs affect mRNA functionality through different activities, including interaction with miRNAs. Recent advances in RNA sequencing technology have improved knowledge into the molecular pathways regulated by the interaction of lncRNAs and miRNAs. This review reports on the recent knowledge of lncRNAs and miRNAs roles as key regulators of osteogenic differentiation. Specifically, we described herein the recent discoveries on lncRNA-miRNA crosstalk during the osteogenic differentiation of mesenchymal stem cells (MSCs) derived from bone marrow (BM), as well as from different other anatomical regions. The deep understanding of the connection between miRNAs and lncRNAs during the osteogenic differentiation will strongly improve knowledge into the molecular mechanisms of bone growth and development, ultimately leading to discover innovative diagnostic and therapeutic tools for osteogenic disorders and bone diseases.
Collapse
Affiliation(s)
- Carmen Lanzillotti
- Section of Experimental Medicine, Department of Medical Sciences, School of Medicine, University of Ferrara, Ferrara, Italy
| | - Monica De Mattei
- Section of Experimental Medicine, Department of Medical Sciences, School of Medicine, University of Ferrara, Ferrara, Italy
| | - Chiara Mazziotta
- Section of Experimental Medicine, Department of Medical Sciences, School of Medicine, University of Ferrara, Ferrara, Italy
| | - Francesca Taraballi
- Center for Musculoskeletal Regeneration, Houston Methodist Research Institute, Houston, TX, United States
- Orthopedics and Sports Medicine, Houston Methodist Hospital, Houston, TX, United States
| | - John Charles Rotondo
- Section of Experimental Medicine, Department of Medical Sciences, School of Medicine, University of Ferrara, Ferrara, Italy
| | - Mauro Tognon
- Section of Experimental Medicine, Department of Medical Sciences, School of Medicine, University of Ferrara, Ferrara, Italy
| | - Fernanda Martini
- Section of Experimental Medicine, Department of Medical Sciences, School of Medicine, University of Ferrara, Ferrara, Italy
- Laboratory for Technologies of Advanced Therapies, University of Ferrara, Ferrara, Italy
| |
Collapse
|
43
|
Mazziotta C, Lanzillotti C, Iaquinta MR, Taraballi F, Torreggiani E, Rotondo JC, Otòn-Gonzalez L, Mazzoni E, Frontini F, Bononi I, De Mattei M, Tognon M, Martini F. MicroRNAs Modulate Signaling Pathways in Osteogenic Differentiation of Mesenchymal Stem Cells. Int J Mol Sci 2021; 22:2362. [PMID: 33673409 PMCID: PMC7956574 DOI: 10.3390/ijms22052362] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 02/18/2021] [Accepted: 02/24/2021] [Indexed: 02/06/2023] Open
Abstract
Mesenchymal stem cells (MSCs) have been identified in many adult tissues and they have been closely studied in recent years, especially in view of their potential use for treating diseases and damaged tissues and organs. MSCs are capable of self-replication and differentiation into osteoblasts and are considered an important source of cells in tissue engineering for bone regeneration. Several epigenetic factors are believed to play a role in the osteogenic differentiation of MSCs, including microRNAs (miRNAs). MiRNAs are small, single-stranded, non-coding RNAs of approximately 22 nucleotides that are able to regulate cell proliferation, differentiation and apoptosis by binding the 3' untranslated region (3'-UTR) of target mRNAs, which can be subsequently degraded or translationally silenced. MiRNAs control gene expression in osteogenic differentiation by regulating two crucial signaling cascades in osteogenesis: the transforming growth factor-beta (TGF-β)/bone morphogenic protein (BMP) and the Wingless/Int-1(Wnt)/β-catenin signaling pathways. This review provides an overview of the miRNAs involved in osteogenic differentiation and how these miRNAs could regulate the expression of target genes.
Collapse
Affiliation(s)
- Chiara Mazziotta
- Department of Medical Sciences, Section of Experimental Medicine, School of Medicine, University of Ferrara, 64b Fossato di Mortara Street, 44121 Ferrara, Italy; (C.M.); (C.L.); (M.R.I.); (E.T.); (J.C.R.); (L.O.-G.); (E.M.); (F.F.); (I.B.); (F.M.)
| | - Carmen Lanzillotti
- Department of Medical Sciences, Section of Experimental Medicine, School of Medicine, University of Ferrara, 64b Fossato di Mortara Street, 44121 Ferrara, Italy; (C.M.); (C.L.); (M.R.I.); (E.T.); (J.C.R.); (L.O.-G.); (E.M.); (F.F.); (I.B.); (F.M.)
| | - Maria Rosa Iaquinta
- Department of Medical Sciences, Section of Experimental Medicine, School of Medicine, University of Ferrara, 64b Fossato di Mortara Street, 44121 Ferrara, Italy; (C.M.); (C.L.); (M.R.I.); (E.T.); (J.C.R.); (L.O.-G.); (E.M.); (F.F.); (I.B.); (F.M.)
| | - Francesca Taraballi
- Center for Musculoskeletal Regeneration, Houston Methodist Research Institute, 6670 Bertner Ave, Houston, TX 77030, USA;
- Orthopedics and Sports Medicine, Houston Methodist Hospital, 6565 Fannin Street, Houston, TX 77030, USA
| | - Elena Torreggiani
- Department of Medical Sciences, Section of Experimental Medicine, School of Medicine, University of Ferrara, 64b Fossato di Mortara Street, 44121 Ferrara, Italy; (C.M.); (C.L.); (M.R.I.); (E.T.); (J.C.R.); (L.O.-G.); (E.M.); (F.F.); (I.B.); (F.M.)
| | - John Charles Rotondo
- Department of Medical Sciences, Section of Experimental Medicine, School of Medicine, University of Ferrara, 64b Fossato di Mortara Street, 44121 Ferrara, Italy; (C.M.); (C.L.); (M.R.I.); (E.T.); (J.C.R.); (L.O.-G.); (E.M.); (F.F.); (I.B.); (F.M.)
| | - Lucia Otòn-Gonzalez
- Department of Medical Sciences, Section of Experimental Medicine, School of Medicine, University of Ferrara, 64b Fossato di Mortara Street, 44121 Ferrara, Italy; (C.M.); (C.L.); (M.R.I.); (E.T.); (J.C.R.); (L.O.-G.); (E.M.); (F.F.); (I.B.); (F.M.)
| | - Elisa Mazzoni
- Department of Medical Sciences, Section of Experimental Medicine, School of Medicine, University of Ferrara, 64b Fossato di Mortara Street, 44121 Ferrara, Italy; (C.M.); (C.L.); (M.R.I.); (E.T.); (J.C.R.); (L.O.-G.); (E.M.); (F.F.); (I.B.); (F.M.)
| | - Francesca Frontini
- Department of Medical Sciences, Section of Experimental Medicine, School of Medicine, University of Ferrara, 64b Fossato di Mortara Street, 44121 Ferrara, Italy; (C.M.); (C.L.); (M.R.I.); (E.T.); (J.C.R.); (L.O.-G.); (E.M.); (F.F.); (I.B.); (F.M.)
| | - Ilaria Bononi
- Department of Medical Sciences, Section of Experimental Medicine, School of Medicine, University of Ferrara, 64b Fossato di Mortara Street, 44121 Ferrara, Italy; (C.M.); (C.L.); (M.R.I.); (E.T.); (J.C.R.); (L.O.-G.); (E.M.); (F.F.); (I.B.); (F.M.)
| | - Monica De Mattei
- Department of Medical Sciences, Section of Experimental Medicine, School of Medicine, University of Ferrara, 64b Fossato di Mortara Street, 44121 Ferrara, Italy; (C.M.); (C.L.); (M.R.I.); (E.T.); (J.C.R.); (L.O.-G.); (E.M.); (F.F.); (I.B.); (F.M.)
| | - Mauro Tognon
- Department of Medical Sciences, Section of Experimental Medicine, School of Medicine, University of Ferrara, 64b Fossato di Mortara Street, 44121 Ferrara, Italy; (C.M.); (C.L.); (M.R.I.); (E.T.); (J.C.R.); (L.O.-G.); (E.M.); (F.F.); (I.B.); (F.M.)
| | - Fernanda Martini
- Department of Medical Sciences, Section of Experimental Medicine, School of Medicine, University of Ferrara, 64b Fossato di Mortara Street, 44121 Ferrara, Italy; (C.M.); (C.L.); (M.R.I.); (E.T.); (J.C.R.); (L.O.-G.); (E.M.); (F.F.); (I.B.); (F.M.)
- Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, 70, Eliporto Street, 44121 Ferrara, Italy
| |
Collapse
|
44
|
Oton-Gonzalez L, Rotondo JC, Cerritelli L, Malagutti N, Lanzillotti C, Bononi I, Ciorba A, Bianchini C, Mazziotta C, De Mattei M, Pelucchi S, Tognon M, Martini F. Association between oncogenic human papillomavirus type 16 and Killian polyp. Infect Agent Cancer 2021; 16:3. [PMID: 33413530 PMCID: PMC7792173 DOI: 10.1186/s13027-020-00342-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 12/25/2020] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Killian polyp (KP) is a benign lesion that arises from the maxillary sinus. The etiology of KP is unknown. The aim of this study was to investigate the potential involvement of human papilloma- (HPV) and polyoma-viruses (HPyV) infections in the onset of KP. METHODS DNA from antral (n = 14) and nasal (n = 14) KP fractions were analyzed for HPV and HPyV sequences, genotypes, viral DNA load and physical status along with expression of viral proteins and p16 cellular protein. RESULTS The oncogenic HPV16 was detected in 3/14 (21.4%) antral KPs, whilst nasal KPs tested HPV-negative (0/14). The mean HPV16 DNA load was 4.65 ± 2.64 copy/104 cell. The whole HPV16 episomal genome was detected in one KP sample, whereas HPV16 DNA integration in two KPs. P16 mRNA level was lower in the KP sample carrying HPV16 episome than in KPs carrying integrated HPV16 and HPV- negative KPs (p< 0.001). None of the antral and nasal KP samples tested positive for HPyV DNA (0/28). CONCLUSIONS A fraction of KP tested positive for the oncogenic HPV16. HPV16 detection in the KP antral portion may be consistent with HPV16 infection derived from the maxillary sinus. HPV16 DNA integration represents a novel finding. Altogether, these data improve our knowledge on the association between KP and HPV infection, whereas it indicates that the KP onset is heterogeneous.
Collapse
Affiliation(s)
- Lucia Oton-Gonzalez
- Department of Medical Sciences, Laboratories of Cell Biology and Molecular Genetics, School of Medicine, University of Ferrara, 64/B, Fossato di Mortara Street, 44121, Ferrara, Italy
| | - John Charles Rotondo
- Department of Medical Sciences, Laboratories of Cell Biology and Molecular Genetics, School of Medicine, University of Ferrara, 64/B, Fossato di Mortara Street, 44121, Ferrara, Italy
| | - Luca Cerritelli
- Department of Biomedical Sciences and Specialistic Surgeries, ENT Section, University of Ferrara and University Hospital of Ferrara, 8, Aldo Moro Square, 44124, Cona, Italy
| | - Nicola Malagutti
- Department of Biomedical Sciences and Specialistic Surgeries, ENT Section, University of Ferrara and University Hospital of Ferrara, 8, Aldo Moro Square, 44124, Cona, Italy
| | - Carmen Lanzillotti
- Department of Medical Sciences, Laboratories of Cell Biology and Molecular Genetics, School of Medicine, University of Ferrara, 64/B, Fossato di Mortara Street, 44121, Ferrara, Italy
| | - Ilaria Bononi
- Department of Medical Sciences, Laboratories of Cell Biology and Molecular Genetics, School of Medicine, University of Ferrara, 64/B, Fossato di Mortara Street, 44121, Ferrara, Italy
| | - Andrea Ciorba
- Department of Biomedical Sciences and Specialistic Surgeries, ENT Section, University of Ferrara and University Hospital of Ferrara, 8, Aldo Moro Square, 44124, Cona, Italy
| | - Chiara Bianchini
- Department of Biomedical Sciences and Specialistic Surgeries, ENT Section, University of Ferrara and University Hospital of Ferrara, 8, Aldo Moro Square, 44124, Cona, Italy
| | - Chiara Mazziotta
- Department of Medical Sciences, Laboratories of Cell Biology and Molecular Genetics, School of Medicine, University of Ferrara, 64/B, Fossato di Mortara Street, 44121, Ferrara, Italy
| | - Monica De Mattei
- Department of Medical Sciences, Laboratories of Cell Biology and Molecular Genetics, School of Medicine, University of Ferrara, 64/B, Fossato di Mortara Street, 44121, Ferrara, Italy
| | - Stefano Pelucchi
- Department of Biomedical Sciences and Specialistic Surgeries, ENT Section, University of Ferrara and University Hospital of Ferrara, 8, Aldo Moro Square, 44124, Cona, Italy
| | - Mauro Tognon
- Department of Medical Sciences, Laboratories of Cell Biology and Molecular Genetics, School of Medicine, University of Ferrara, 64/B, Fossato di Mortara Street, 44121, Ferrara, Italy.
| | - Fernanda Martini
- Department of Medical Sciences, Laboratories of Cell Biology and Molecular Genetics, School of Medicine, University of Ferrara, 64/B, Fossato di Mortara Street, 44121, Ferrara, Italy.
| |
Collapse
|