1
|
Gao D, Bing C, Griffiths HR. Disrupted adipokine secretion and inflammatory responses in human adipocyte hypertrophy. Adipocyte 2025; 14:2485927. [PMID: 40176539 PMCID: PMC11980453 DOI: 10.1080/21623945.2025.2485927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 12/27/2024] [Accepted: 12/30/2024] [Indexed: 04/04/2025] Open
Abstract
Adipocyte hypertrophy is a critical contributor to obesity-induced inflammation and insulin resistance. This study employed a human adipocyte hypertrophy model to investigate the adipokine release, inflammatory responses, and the intracellular singling pathways. Hypertrophic adipocytes exhibited increased lipid content and lipolysis, a decline of anti-inflammatory adipokine adiponectin release and an increase of pro-inflammatory adipokine leptin release compared to mature adipocytes. Moreover, TNFα and LPS exacerbated the decrease in adiponectin secretion by hypertrophic adipocytes while promoting the secretion of leptin, MCP-1 and IL-6, which is associated with impaired activation of p38 and JNK MAPK and persistent activation of ERK and IκBα in hypertrophic adipocytes. These altered adipokine secretions and inflammatory responses within hypertrophic adipocytes may contribute to adipocyte dysfunction in human obesity.
Collapse
Affiliation(s)
- Dan Gao
- Institute of Molecular and Translational Medicine, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, China
- Ministry of Education, Key Laboratory of Environment and Genes Related to Diseases Xi’an Jiaotong University, Xi’an, China
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Center, Xi’an, China
| | - Chen Bing
- Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, UK
| | | |
Collapse
|
2
|
Tran NNQ, Choi H, Sactivel B, Oh YJ, Maeng HJ, Kim MK, Lee J, Kim YB, Lee DH, Oh BC, Jun HS, Chun KH. The dual targeting effects of KD025 on casein kinase 2 and ROCK2 in a mouse model of diet-induced obesity. Biochem Pharmacol 2025; 237:116933. [PMID: 40210126 DOI: 10.1016/j.bcp.2025.116933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 03/16/2025] [Accepted: 04/07/2025] [Indexed: 04/12/2025]
Abstract
KD025(belumosudil), a selective ROCK2 inhibitor, exhibits unique anti-adipogenic activity through inhibition of casein kinase 2 (CK2). This study investigated the dual inhibitory effects of KD025 on metabolism in a diet-induced obese model. C57BL/6 mice on a high fat diet (HFD) were treated with KD025 for 4 weeks, while fasudil (a pan-ROCK inhibitor) and CX-4945 (a CK2-specific inhibitor) served as comparison treatments. KD025 significantly reduced body weight gain without affecting food intake, serum insulin, or fasting blood glucose levels. In contrast, while both CX-4945 and fasudil treatments showed a trend toward weight reduction, these results were not statistically significant. KD025 improved lipid metabolism by significantly lowering LDL cholesterol and triglyceride, although it slightly impaired glucose metabolism, as observed in insulin and glucose tolerance tests. Weight reduction in the KD025- and CX-4945-treated groups was attributed to decreased adipose tissue mass, particularly in inguinal (ingWAT) and epididymal (epiWAT) fat depots. Hematoxylin and eosin (H&E) staining confirmed smaller adipocyte size in these groups. KD025 had no significant effect on serum levels of tumor necrosis factor-α (TNF-α), interleukin 6 (IL-6), or monocyte chemoattractant protein-1 (MCP-1) with varied inflammatory responses. Furthermore, KD025 and CX-4945 upregulated adipogenic and browning markers, such as Cebpa, Cidea, and Pparg in the epiWAT, though without significant UCP1 expression. Overall, KD025 effectively reduced weight gain in HFD-fed mice through dual inhibition of CK2 and ROCK2, highlighting its potential as a therapeutic agent for obesity-related conditions.
Collapse
Affiliation(s)
- Nhu Nguyen Quynh Tran
- Gachon Institute of Pharmaceutical Sciences, College of Pharmacy, Gachon University, Incheon 21936, Republic of Korea
| | - Hojung Choi
- Gachon Institute of Pharmaceutical Sciences, College of Pharmacy, Gachon University, Incheon 21936, Republic of Korea
| | - Bathiga Sactivel
- Gachon Institute of Pharmaceutical Sciences, College of Pharmacy, Gachon University, Incheon 21936, Republic of Korea
| | - Yu Jin Oh
- Gachon Institute of Pharmaceutical Sciences, College of Pharmacy, Gachon University, Incheon 21936, Republic of Korea
| | - Han-Joo Maeng
- Gachon Institute of Pharmaceutical Sciences, College of Pharmacy, Gachon University, Incheon 21936, Republic of Korea
| | - Min Kyung Kim
- Gachon Institute of Pharmaceutical Sciences, College of Pharmacy, Gachon University, Incheon 21936, Republic of Korea
| | - Jeongmi Lee
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Young-Bum Kim
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215, United States
| | - Dae Ho Lee
- Department of Internal Medicine, Gachon University College of Medicine, Incheon 21565, Republic of Korea
| | - Byung-Chul Oh
- Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon 21999, South Korea
| | - Hee-Sook Jun
- Gachon Institute of Pharmaceutical Sciences, College of Pharmacy, Gachon University, Incheon 21936, Republic of Korea; Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon 21999, South Korea
| | - Kwang-Hoon Chun
- Gachon Institute of Pharmaceutical Sciences, College of Pharmacy, Gachon University, Incheon 21936, Republic of Korea.
| |
Collapse
|
3
|
Wang T, Lin H, Deng Y, Chen W, Xu Y, Wang L, Zhou A, Zhang Y, Wang Z, Jin X, Zhang L, Wang X, Zhou Y, Wang R, Rong S. Time-restricted feeding mitigates HFD-induced sarcopenic obesity in aging mice through improving the sensitivity of FGF21. J Nutr Biochem 2025; 140:109893. [PMID: 40054671 DOI: 10.1016/j.jnutbio.2025.109893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 02/15/2025] [Accepted: 02/28/2025] [Indexed: 03/30/2025]
Abstract
Time-restricted feeding (TRF) is a dietary intervention that has been shown to have numerous health benefits. However, it is important to further investigate the potential effectiveness of TRF in addressing sarcopenic obesity (SO), which is characterized by a combination of age-related obesity and sarcopenia. In this study, 14-month-old C57BL/6J male mice were fed either regular chow diet or high-fat diet (HFD), and had either ad libitum or restricted access to food for 8 hours daily (Intervention for 7 months). For the human trial (ChiCTR2100052876), obese individuals (n=21) with a Body Mass Index ≥28 were recruited and instructed to adopt an 8-hour eating window and a 16-hour fasting period. Here, we found that the TRF intervention significantly reduced global fat mass (P < .001) and volume (P < .05), and increase lean mass compared to mice fed with HFD. Furthermore, TRF improved overall metabolic mobility (8h TRF+HFD vs. AL+HFD). This intervention also enhanced liver FGF21 protein levels (P < .01) and the expression of FGFR1 and FGF21 target genes in adipose and muscle tissues, thus improving mitochondrial quality control in these tissues. Notably, TRF interventions led to a significant decrease in serum FGF21 levels (P < .05). In the human trial, TRF intervention resulted in a significant reduction in weight (P < .001) and body fat levels (P < .001) among obese individuals, as well as a decrease in serum GLU (P < .001), insulin (P < .001), and TC levels (P < .05). Overall, the findings indicate that TRF intervention improves SO by regulating liver FGF21 expression, thereby enhancing FGF21 sensitivity in adipose and muscle tissues.
Collapse
Affiliation(s)
- Ting Wang
- Academy of Nutrition and Health, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Public Health, Wuhan University of Science and Technology, Wuhan, China; Institute of Pharmaceutical Process, Department of Pharmacy, College of Medicine, Wuhan University of Science and Technology, Wuhan, China
| | - Hongkun Lin
- Department of Food and Nutrition Health, School of Public Health, Wuhan University, Wuhan, China
| | - Yan Deng
- Academy of Nutrition and Health, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Public Health, Wuhan University of Science and Technology, Wuhan, China
| | - Wenwen Chen
- Academy of Nutrition and Health, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Public Health, Wuhan University of Science and Technology, Wuhan, China
| | - Yangliu Xu
- Academy of Nutrition and Health, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Public Health, Wuhan University of Science and Technology, Wuhan, China
| | - Li Wang
- Academy of Nutrition and Health, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Public Health, Wuhan University of Science and Technology, Wuhan, China
| | - Aojia Zhou
- Academy of Nutrition and Health, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Public Health, Wuhan University of Science and Technology, Wuhan, China
| | - Yidan Zhang
- Academy of Nutrition and Health, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Public Health, Wuhan University of Science and Technology, Wuhan, China
| | - Ziping Wang
- Academy of Nutrition and Health, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Public Health, Wuhan University of Science and Technology, Wuhan, China
| | - Xin Jin
- Academy of Nutrition and Health, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Public Health, Wuhan University of Science and Technology, Wuhan, China; Department of Clinical Nutrition, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Li Zhang
- Academy of Nutrition and Health, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Public Health, Wuhan University of Science and Technology, Wuhan, China; Xinhua Hospital of Hubei University of Chinese Medicine, Hubei Provincial Hospital of Integrated Chinese and Western Medicine, Wuhan, China
| | - Xin Wang
- Academy of Nutrition and Health, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Public Health, Wuhan University of Science and Technology, Wuhan, China
| | - Yang Zhou
- Department of Food and Nutrition Health, School of Public Health, Wuhan University, Wuhan, China
| | - Ruhan Wang
- Academy of Nutrition and Health, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Public Health, Wuhan University of Science and Technology, Wuhan, China
| | - Shuang Rong
- Academy of Nutrition and Health, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Public Health, Wuhan University of Science and Technology, Wuhan, China; Department of Food and Nutrition Health, School of Public Health, Wuhan University, Wuhan, China.
| |
Collapse
|
4
|
Song D, Li Y, Yang LL, Luo YX, Yao XQ. Bridging systemic metabolic dysfunction and Alzheimer's disease: the liver interface. Mol Neurodegener 2025; 20:61. [PMID: 40437610 PMCID: PMC12121119 DOI: 10.1186/s13024-025-00849-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Accepted: 05/09/2025] [Indexed: 06/01/2025] Open
Abstract
Alzheimer's disease (AD) is increasingly recognized as a systemic disorder with a substantial metabolic disorder component, where the liver significantly impacts the brain via the liver-brain axis. Key mechanisms include the liver's role in clearing peripheral β-amyloid (Aβ), the influence of hepatic enzymes and metabolites on cognitive decline, and the systemic effects of metabolic disorders on AD progression. Hepatokines, liver-secreted proteins including fibroblast growth factor (FGF)-21, selenoprotein P (SELENOP), Fetuin-A, Midbrain astrocyte-derived neurotrophic factor (MANF), apolipoprotein J (ApoJ), sex hormone-binding globulin (SHBG), Adropin and Angiopoietin-like protein 3 (ANGPTL3), could regulate insulin sensitivity, lipid metabolism, oxidative stress, immune responses, and neurotrophic support. These pathways are closely linked to core AD pathologies, including Aβ aggregation, tau hyperphosphorylation, neuroinflammation, oxidative stress and mitochondrial dysfunction. Lifestyle interventions, including exercise and dietary modifications, that regulate hepatokines expression may offer novel preventive and therapeutic strategies for AD. This review synthesizes current knowledge on the liver-brain crosstalk in AD, emphasizing the mechanistic role of liver in bridging metabolic dysfunction with neurodegeneration and underscores the diagnostic and therapeutic potential of hepatokines in addressing AD's complex pathology.
Collapse
Affiliation(s)
- Dan Song
- Department of Rehabilitation, The Second Affiliated Hospital of Chongqing Medical University, No. 74 Linjiang Road, Yuzhong District, Chongqing, 400010, China
| | - Yang Li
- Department of Rehabilitation, The Second Affiliated Hospital of Chongqing Medical University, No. 74 Linjiang Road, Yuzhong District, Chongqing, 400010, China
| | - Ling-Ling Yang
- Department of Rehabilitation, The Second Affiliated Hospital of Chongqing Medical University, No. 74 Linjiang Road, Yuzhong District, Chongqing, 400010, China
| | - Ya-Xi Luo
- Department of Rehabilitation, The Second Affiliated Hospital of Chongqing Medical University, No. 74 Linjiang Road, Yuzhong District, Chongqing, 400010, China.
| | - Xiu-Qing Yao
- Department of Rehabilitation, The Second Affiliated Hospital of Chongqing Medical University, No. 74 Linjiang Road, Yuzhong District, Chongqing, 400010, China.
- Chongqing Municipality Clinical Research Center for Geriatric Medicine, No. 76 Linjiang Road, Yuzhong District, Chongqing, 400010, China.
- Department of Rehabilitation Therapy, Chongqing Medical University, No. 1 Medical College Road, Yuzhong District, Chongqing, 400000, China.
| |
Collapse
|
5
|
Sun J, Brooks EC, Houshyar Y, Connor SJ, Paven G, Grimm MC, Hold GL. Unravelling the Relationship Between Obesity and Inflammatory Bowel Disease. Inflamm Bowel Dis 2025:izaf098. [PMID: 40397482 DOI: 10.1093/ibd/izaf098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Indexed: 05/22/2025]
Abstract
Mirroring the global obesity epidemic, obesity rates in inflammatory bowel disease (IBD) patients is rising. Several epidemiological studies propose that 15%-40% of adult patients with IBD are obese, and an additional 25%-40% fall into the overweight category. This article examines the pathophysiologic relationship between obesity and IBD concerning the role of visceral adipose tissue, microbiota shifts, dietary patterns, and hunger hormone changes. Additionally, increasing evidence is demonstrating the negative impact that obesity is having on disease course and quality of life in patients with IBD. Obesity has been demonstrated to be associated with an attenuated response to immunomodulators and biological agents, as well as higher rates of peri-operative surgical complications. A better understanding of the relationship between obesity and IBD can be applied to clinical decision-making in personalizing treatment plans, promoting weight loss in patients with obesity, and identifying areas of future research.
Collapse
Affiliation(s)
- Jessica Sun
- Microbiome Research Centre, School of Clinical Medicine, University of New South Wales, Sydney, NSW, Australia
- Prince of Wales Hospital, South Eastern Sydney Local Health District, Sydney, NSW, Australia
| | - Ella C Brooks
- Microbiome Research Centre, School of Clinical Medicine, University of New South Wales, Sydney, NSW, Australia
| | - Yashar Houshyar
- Microbiome Research Centre, School of Clinical Medicine, University of New South Wales, Sydney, NSW, Australia
- St. George and Sutherland Clinical Campuses, University of New South Wales, Sydney, NSW, Australia
| | - Susan J Connor
- Department of Gastroenterology and Hepatology, Liverpool Hospital, Liverpool, NSW 2170, Australia
| | - Gokulan Paven
- St. George and Sutherland Clinical Campuses, University of New South Wales, Sydney, NSW, Australia
| | - Michael C Grimm
- Microbiome Research Centre, School of Clinical Medicine, University of New South Wales, Sydney, NSW, Australia
- St. George and Sutherland Clinical Campuses, University of New South Wales, Sydney, NSW, Australia
| | - Georgina L Hold
- Microbiome Research Centre, School of Clinical Medicine, University of New South Wales, Sydney, NSW, Australia
- St. George and Sutherland Clinical Campuses, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
6
|
Du YZ, Yang JQ, Tang J, Zhang CT, Liu YF. Association between the skeletal muscle-to-visceral fat ratio and kidney stones: a cross-sectional study. Front Nutr 2025; 12:1549047. [PMID: 40416386 PMCID: PMC12101122 DOI: 10.3389/fnut.2025.1549047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Accepted: 04/14/2025] [Indexed: 05/27/2025] Open
Abstract
Objective Prior research has suggested links between skeletal muscle mass and visceral fat volume with kidney stone formation. However, the link between the skeletal muscle-to-visceral fat ratio (SVR) and kidney stone risk remains to be clarified. This study aims to explore the relationship between SVR and the risk of kidney stones, analyzing data from the National Health and Nutrition Examination Survey (NHANES). Methods The research encompassed 8,522 individuals from NHANES surveys from 2011 to 2018. Kidney stones were diagnosed through a standardized questionnaire, and SVR was calculated using dual-energy X-ray absorptiometry (DXA). Participants were grouped into quartiles based on their SVR. All data underwent weighting according to official guidelines. Logistic regression models assessed the correlation between SVR and kidney stone incidence, and subgroup analysis was employed to investigate its stability. Results Among the participants, 675 individuals, representing 8.73%, received a diagnosis of kidney stones, with an average age of 39.29 years (±0.28). Findings indicate that lower SVR correlates with increased kidney stone risk. Within the comprehensively adjusted multivariate model, compared to the lowest SVR quartile, the second, third, and fourth quartiles demonstrated significantly reduced risks, with ORs of 0.63 (95% CI = 0.47-0.84), 0.57 (95% CI = 0.42-0.79), and 0.39 (95% CI = 0.25-0.61), respectively. Restricted cubic spline (RCS) regression models demonstrated a non-linear relationship between SVR and kidney stone risk. The subgroup analysis demonstrated no significant differences in weighted associations across subgroups (interaction p-value > 0.05), except for BMI, which had a significant interaction (interaction p-value < 0.05). Conclusion The findings underscore that lower SVR correlates with increased kidney stone risk, a relationship that remains consistent across most demographics.
Collapse
Affiliation(s)
- Yuan-Zhuo Du
- Department of Urology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Jia-Qing Yang
- Department of Urology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Jian Tang
- The Second Affiliated Hospital, Department of Urology, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Chi-Teng Zhang
- The Second Affiliated Hospital, Department of Urology, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Yi-Fu Liu
- The Second Affiliated Hospital, Department of Urology, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| |
Collapse
|
7
|
Martins FF, Amarante MDSM, Oliveira DS, Vasques‐Monteiro IML, Souza‐Mello V, Daleprane JB, Camillo CDS. Obesity, White Adipose Tissue, and Adipokines Signaling in Male Reproduction. Mol Nutr Food Res 2025; 69:e70054. [PMID: 40195898 PMCID: PMC12087738 DOI: 10.1002/mnfr.70054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 02/19/2025] [Accepted: 03/17/2025] [Indexed: 04/09/2025]
Abstract
Currently, obesity is a global pandemic characterized by systemic metabolic complications that negatively impact several organs, including white adipose tissue (WAT) and the tissues of the male reproductive system. Since the discovery of leptin in 1994, WAT has been recognized as a dynamic endocrine organ for secreting a series of molecules with hormonal functions, collectively called adipokines. The link between obesity, WAT, adipokines, and the male reproductive system is direct and little explored. With changes in nutritional status, WAT undergoes morphofunctional changes, and the secretion of adipokines is altered, negatively impacting reproductive mechanisms, including steroidogenesis and spermatogenesis. In this review, we address in an updated way the structural and functional characteristics of WAT as well as the link between obesity and changes in the signaling pathways of the adipokines leptin, adiponectin, resistin, visfatin, apelin, chemerin, omentin-1, vaspin, and asprosin in male reproduction. Understanding the relationship between obesity, these adipokines, and reproductive dysfunction can contribute to new strategies for the treatment of subfertility and male infertility.
Collapse
Affiliation(s)
| | | | - Daiana Santana Oliveira
- Laboratory of MorphometryMetabolism and Cardiovascular DiseasesBiomedical CenterInstitute of BiologyRio de Janeiro State UniversityRio de JaneiroBrazil
| | - Isabela Macedo Lopes Vasques‐Monteiro
- Department of Basic and Experimental NutritionLaboratory for Studies of Interactions Between Nutrition and GeneticsLEINGRio de Janeiro State UniversityRio de JaneiroBrazil
| | - Vanessa Souza‐Mello
- Laboratory of MorphometryMetabolism and Cardiovascular DiseasesBiomedical CenterInstitute of BiologyRio de Janeiro State UniversityRio de JaneiroBrazil
| | - Julio Beltrame Daleprane
- Department of Basic and Experimental NutritionLaboratory for Studies of Interactions Between Nutrition and GeneticsLEINGRio de Janeiro State UniversityRio de JaneiroBrazil
| | | |
Collapse
|
8
|
Zhang W, Cai Q, You L, Zhang W, Zheng X, Jiang C, Chen C. Study on the common mechanisms of gastroesophageal reflux disease and interstitial lung disease. Hum Immunol 2025; 86:111300. [PMID: 40209518 DOI: 10.1016/j.humimm.2025.111300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 03/05/2025] [Accepted: 03/19/2025] [Indexed: 04/12/2025]
Abstract
OBJECTIVE Interstitial lung disease (ILD) and gastroesophageal reflux disease (GERD) have complex interactions and can exacerbate severity of each other. This study aimed to screen shared genes between ILD and GERD and explore their common mechanisms and clinical value. METHODS We obtained microarray datasets of ILD and GERD from public databases. Shared genes were screened by differential expression analysis and Venn analysis. Hub genes were screened from shared genes using the protein-protein interaction (PPI) network analysis. The ssGSEA algorithm was utilized to estimate immune infiltration level of ILD and GERD, and correlation of hub genes with immune cell infiltration was studied. Finally, potential drugs that may act on hub genes were screened using DSigDB. RESULTS 52 shared genes were obtained through Venn analysis. PPI network analysis identified 10 hub genes (BMP4, NT5E, PPARG, EPCAM, DPP4, KLF2, MMP1, AGR2, ADAMTS1, GATA6) that may have diagnostic performance (p < 0.05). The results of immune infiltration showed that hub genes were highly linked to multiple immune cell infiltrations (p < 0.05). In addition, we identified 5 potential drugs. Notably, thioridazine may target 5 hub genes (MMP1, AGR2, KLF2, ADAMTS1, and PPARG) simultaneously (p < 0.05) and had the potential to be a novel therapeutic drug. CONCLUSION In summary, we have screened out the hub genes with diagnostic value in ILD and GERD, and also revealed the close relationship between the hub genes and the disease immune microenvironment, providing new research directions for the common mechanism and interaction of the two diseases.
Collapse
Affiliation(s)
- Wen Zhang
- Ningde Clinical Medical College of Fujian Medical University, Ningde City 352100 Fujian Province, China; Department of Pulmonary and Critical Care Medicine, Ningde Municipal Hospital of Ningde Normal University, Ningde City 352100 Fujian Province, China
| | - Qizhi Cai
- Ningde Clinical Medical College of Fujian Medical University, Ningde City 352100 Fujian Province, China; Department of Gastroenterology Medicine, Ningde Municipal Hospital of Ningde Normal University, Ningde City 352100 Fujian Province, China
| | - Liusheng You
- Ningde Clinical Medical College of Fujian Medical University, Ningde City 352100 Fujian Province, China; Department of Gastroenterology Medicine, Ningde Municipal Hospital of Ningde Normal University, Ningde City 352100 Fujian Province, China
| | - Wei Zhang
- Ningde Clinical Medical College of Fujian Medical University, Ningde City 352100 Fujian Province, China; Department of Gastroenterology Medicine, Ningde Municipal Hospital of Ningde Normal University, Ningde City 352100 Fujian Province, China
| | - Xiujin Zheng
- Ningde Clinical Medical College of Fujian Medical University, Ningde City 352100 Fujian Province, China; Department of Gastroenterology Medicine, Ningde Municipal Hospital of Ningde Normal University, Ningde City 352100 Fujian Province, China
| | - Chenglin Jiang
- Ningde Clinical Medical College of Fujian Medical University, Ningde City 352100 Fujian Province, China; Department of Gastroenterology Medicine, Ningde Municipal Hospital of Ningde Normal University, Ningde City 352100 Fujian Province, China
| | - Changdan Chen
- Ningde Clinical Medical College of Fujian Medical University, Ningde City 352100 Fujian Province, China; Department of Gastroenterology Medicine, Ningde Municipal Hospital of Ningde Normal University, Ningde City 352100 Fujian Province, China.
| |
Collapse
|
9
|
Gholami Shahrebabak M, Mobasheri-Shiri M, Hesari M, Mollaamin Z, Gholami Shahrebabak A. Associations between exposure to air pollutants and in vitro fertilization outcomes: a systematic review and meta-analysis. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2025; 35:1354-1366. [PMID: 39171724 DOI: 10.1080/09603123.2024.2391466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 08/07/2024] [Indexed: 08/23/2024]
Abstract
We have undertaken a systematic review and meta-analysis to investigate the association between maternal exposure to air pollutants and outcomes of in vitro fertilization (IVF). Studies were identified through a comprehensive online search. After standardizing all air pollution concentrations to 10 μg/m3, we analyzed the levels of six air pollutants (PM2.5, PM10, O3, NO2, CO, and SO2) by applying a random effects model. A total of five articles met inclusion criteria upon final reviewing. Exposure to PM10, NO2, and CO was linked to the risk of ectopic pregnancy, while exposure to O3 was found to have a reverse association with biochemical pregnancy. Additionally, our analysis indicated a negative association between exposure to PM10, NO2, CO, and SO2 and live birth rates, as well as between NO2 exposure and intrauterine pregnancy. Our study emphasized the relationship between exposure to ambient air pollution and negative effects on pregnancy outcomes for women undergoing IVF.
Collapse
Affiliation(s)
- Maryam Gholami Shahrebabak
- Department of Pediatrics, School of Medicine, Afzalipour Hospital, Kerman University of Medical Sciences, Kerman, Iran
| | | | - Marjan Hesari
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Zahra Mollaamin
- Gynecologist and Obstetrician, Tehran University of Medical Sciences, Tehran, Iran
| | - Azam Gholami Shahrebabak
- Department of Pediatrics, Afzalipour Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
10
|
Zhai Y, Fu J, Yang J, Zhou Y. Quercetin in Shengxian Decoction exhibits anti-ferroptosis protective roles in a myocardial infarction model via targeting DPP4/ HMOX1, based on network pharmacology and molecular docking. Front Pharmacol 2025; 16:1583509. [PMID: 40365322 PMCID: PMC12069271 DOI: 10.3389/fphar.2025.1583509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2025] [Accepted: 03/31/2025] [Indexed: 05/15/2025] Open
Abstract
Background Myocardial infarction (MI) is characterized by high morbidity. In this study, we aimed to elucidate potential targets of Shengxian Decoction (SXD) against MI. Methods Pairing of SXD active ingredients and MI targets was conducted using the Chinese Medicine System Pharmacological Database, Gene Expression Omnibus (GEO), and STRING databases. The effects of SXD on MI were validated in vitro. Molecular docking was verified using cellular thermal shift assay (CETSA). Results A total of 40 active ingredients and 28 MI-related targets were obtained. Cross-analysis on 28 targets and cell death-related genes identified two crucial ferroptosis-related targets, namely, dipeptidyl peptidase 4 (DPP4) and heme oxygenase 1 (HMOX1). In cobalt chloride (CoCl2)-induced hypoxic H9c2 cells, SXD could remarkably improve cell viability and inhibit cell death. Meanwhile, SXD treatment significantly affected the ferroptosis-related markers in hypoxic H9c2 cells. Molecular docking and CETSA results showed that quercetin had good binding activity with DPP4 and HMOX1. Conclusion Important active ingredient quercetin in SXD could exert anti-ferroptosis protective roles on MI through targeting ferroptosis-related genes (DPP4/HMOX1), thereby contributing to the protective role of SXD on MI.
Collapse
Affiliation(s)
- Yuming Zhai
- Graduate School, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| | - Jiamei Fu
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| | - Jianfei Yang
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| | - Yabin Zhou
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| |
Collapse
|
11
|
Shang DF, Xu WQ, Zhao Q, Zhao CL, Wang SY, Han YL, Li HG, Liu MH, Zhao WX. Molecular mechanisms of pyroptosis in non-alcoholic steatohepatitis and feasible diagnosis and treatment strategies. Pharmacol Res 2025; 216:107754. [PMID: 40306603 DOI: 10.1016/j.phrs.2025.107754] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Revised: 04/11/2025] [Accepted: 04/27/2025] [Indexed: 05/02/2025]
Abstract
Pyroptosis is a distinct form of cell death that plays a critical role in intensifying inflammatory responses. It primarily occurs via the classical pathway, non-classical pathway, caspase-3/6/7/8/9-mediated pathways, and granzyme-mediated pathways. Key effector proteins involved in the pyroptosis process include gasdermin family proteins and pannexin-1 protein. Pyroptosis is intricately linked to the onset and progression of non-alcoholic steatohepatitis (NASH). During the development of NASH, factors such as pyroptosis, innate immunity, lipotoxicity, endoplasmic reticulum stress, and gut microbiota imbalance interact and interweave, collectively driving disease progression. This review analyzes the molecular mechanisms of pyroptosis and its role in the pathogenesis of NASH. Furthermore, it explores potential diagnostic and therapeutic strategies targeting pyroptosis, offering new avenues for improving the diagnosis and treatment of NASH.
Collapse
Affiliation(s)
- Dong-Fang Shang
- Henan University of CM, Zhengzhou 450000, China; The First Affiliated Hospital of Henan University of CM, Zhengzhou 450003, China
| | - Wen-Qian Xu
- Henan University of CM, Zhengzhou 450000, China
| | - Qing Zhao
- The First Affiliated Hospital of Henan University of CM, Zhengzhou 450003, China
| | - Chen-Lu Zhao
- The First Affiliated Hospital of Henan University of CM, Zhengzhou 450003, China
| | - Si-Ying Wang
- The First Affiliated Hospital of Henan University of CM, Zhengzhou 450003, China
| | - Yong-Li Han
- The First Affiliated Hospital of Henan University of CM, Zhengzhou 450003, China
| | - He-Guo Li
- The First Affiliated Hospital of Henan University of CM, Zhengzhou 450003, China.
| | - Ming-Hao Liu
- The First Affiliated Hospital of Henan University of CM, Zhengzhou 450003, China.
| | - Wen-Xia Zhao
- The First Affiliated Hospital of Henan University of CM, Zhengzhou 450003, China.
| |
Collapse
|
12
|
Datta S, Koka S, Boini KM. Understanding the Role of Adipokines in Cardiometabolic Dysfunction: A Review of Current Knowledge. Biomolecules 2025; 15:612. [PMID: 40427505 PMCID: PMC12109550 DOI: 10.3390/biom15050612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2025] [Revised: 04/13/2025] [Accepted: 04/19/2025] [Indexed: 05/29/2025] Open
Abstract
Cardiometabolic risk and associated dysfunctions contribute largely to the recent rise in mortality globally. Advancements in multi-omics in recent years promise a better understanding of potential biomarkers that enable an early diagnosis of cardiometabolic dysfunction. However, the molecular mechanisms driving the onset and progression of cardiometabolic disorders remain poorly understood. Adipokines are adipocyte-specific cytokines that are central to deleterious cardiometabolic alterations. They exhibit both pro-inflammatory and anti-inflammatory effects, complicating their association with cardiometabolic disturbances. Thus, understanding the cardiometabolic association of adipokines from a molecular and signaling perspective assumes great importance. This review presents a comprehensive outline of the most prominent adipokines exhibiting pro-inflammatory and/or anti-inflammatory functions in cardiometabolic dysfunction. The review also presents an insight into the pathophysiological implications of such adipokines in different cardiometabolic dysfunction conditions, the status of adipokine druggability, and future studies that can be undertaken to address the existing scientific gap. A clear understanding of the functional and mechanistic role of adipokines can potentially improve our understanding of cardiovascular disease pathophysiology and enhance our current therapeutic regimen in the years to come.
Collapse
Affiliation(s)
- Sayantap Datta
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, 4349 Martin Luther King Blvd., Houston, TX 77204, USA;
| | - Saisudha Koka
- Department of Pharmaceutical Sciences, College of Pharmacy, Texas A & M University, Kingsville, TX 78363, USA
| | - Krishna M. Boini
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, 4349 Martin Luther King Blvd., Houston, TX 77204, USA;
| |
Collapse
|
13
|
Wang B, Li L, Tang Y, Ran X. Joint association of triglyceride glucose index (TyG) and body roundness index (BRI) with stroke incidence: a national cohort study. Cardiovasc Diabetol 2025; 24:164. [PMID: 40241070 PMCID: PMC12004739 DOI: 10.1186/s12933-025-02724-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Accepted: 04/04/2025] [Indexed: 04/18/2025] Open
Abstract
BACKGROUND Insulin resistance (IR), as quantified by the triglyceride glucose (TyG) index, and visceral obesity, as assessed by the body roundness index (BRI), have been identified as pivotal risk factors for stroke. However, the combined impact of these two indicators on stroke risk has not been thoroughly investigated. This study aims to investigate both the separate and combined associations, as well as potential interactions, between the TyG index and/or BRI with respect to stroke incidence. METHODS This cohort study encompassed 6621 respondents who were free of stroke at baseline from the China Health and Retirement Longitudinal Study (CHARLS). Participants were categorized based on the median values of the TyG index or/and BRI. Cox proportional hazards regression models were employed to examine the associations between the TyG index alone, BRI alone, and their combined effects on stroke incidence. Both additive and multiplicative interaction effects were further estimated. RESULTS Among 6621 participants aged 45 years or older, the mean (SD) age was 58.06 (8.57) years, with 2951 (44.6%) being male. During a follow-up period of up to 9 years, 743 individuals experienced stroke events. Compared to participants with low TyG index and low BRI, the adjusted hazard ratios (HRs) were as follows: 1.36 (95% confidence interval [CI] 1.05-1.75) for high TyG index alone, 1.61 (95% CI 1.27-2.05) for high BRI alone, and 1.78 (95% CI 1.40-2.26) for high TyG index and high BRI. Neither additive nor multiplicative interactions between BRI and TyG for incident stroke were statistically significant. The combination of TyG and BRI enhanced the predictive capability for stroke compared to either biomarker alone. CONCLUSION We discovered that both the TyG index and BRI are strongly associated with stroke incidence. The joint assessment of TyG and BRI enhances the predictive capability for stroke, underscoring the critical role of IR and visceral adiposity in the identification and screening of stroke risk.
Collapse
Affiliation(s)
- Bingxue Wang
- Department of Endocrinology and Metabolism, West China Hospital of Sichuan University, Chengdu, China
- Innovation Research Center for Diabetic Foot, DiabeticFootCareCenter, West China Hospital of Sichuan University, Chengdu, China
| | - Liying Li
- Department of Cardiology, Fuwai Yunnan Cardiovascular Hospital, Kunming, China
| | - Ying Tang
- Department of Endocrinology and Metabolism, West China Hospital of Sichuan University, Chengdu, China
- Innovation Research Center for Diabetic Foot, DiabeticFootCareCenter, West China Hospital of Sichuan University, Chengdu, China
| | - Xingwu Ran
- Department of Endocrinology and Metabolism, West China Hospital of Sichuan University, Chengdu, China.
- Innovation Research Center for Diabetic Foot, DiabeticFootCareCenter, West China Hospital of Sichuan University, Chengdu, China.
- Center for High Altitude Medicine, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
14
|
Huang JX, Xiao BJ, Yan YX, Xie W, Feng LY, Liu XM. Association Between Visceral Adipose Tissue and Chronic Respiratory Diseases: A Two-Sample Multivariable Mendelian Randomization Study in European Population. Int J Chron Obstruct Pulmon Dis 2025; 20:919-928. [PMID: 40191268 PMCID: PMC11972585 DOI: 10.2147/copd.s510828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Accepted: 03/22/2025] [Indexed: 04/09/2025] Open
Abstract
Background The relationship between obesity and some respiratory diseases has been well documented. However there have been few studies on the association between visceral adipose tissue (VAT) and chronic respiratory diseases (CRDs), it remains unclear whether VAT is causally associated with CRDs. Methods We used two-sample Mendelian randomization (MR) to illuminate the effects of VAT on four CRDs: chronic obstructive pulmonary disease (COPD), allergic asthma, interstitial lung disease (ILD), and sarcoidosis. Inverse variance weighted (IVW) served as the primary assessment method. MR Egger, weighted median, Simple mode and Weighted mode were the supplementary methods for MR analysis. We used multivariate MR analysis to adjust for the effect of body mass index (BMI) on outcomes, Egger intercept, MR-pleiotropy residual sum and outlier, and leave-one-out analysis to confirm the MR results' consistency. Results Genetically-predicted VAT was associated with an increased risk of COPD (OR = 1.56; 95% CI: 1.34-1.82; P = 1.16×10-8), allergic asthma (OR = 1.44; 95% CI: 1.20-1.73; P = 8.63×10-5), and ILD (OR = 1.15; 95% CI: 1.04-1.26; P = 4.62×10-3). However, there was limited evidence to support an association between VAT and sarcoidosis. In multivariate MR analysis, VAT's associations with COPD, allergic asthma, and ILD persisted after adjusting for BMI. Conclusion This study provides evidence for a potential causal relationship between VAT and COPD, allergic asthma, and ILD; these relationships were independent of the effect of BMI.
Collapse
Affiliation(s)
- Jin-Xian Huang
- The Fourth Clinical Medicine College, Guangzhou University of Chinese Medicine, Shenzhen, People’s Republic of China
| | - Bing-Jie Xiao
- The Second Clinical Medicine College, Guangzhou University of Chinese Medicine, Guangzhou, People’s Republic of China
| | - Yu-Xin Yan
- The Fourth Clinical Medicine College, Guangzhou University of Chinese Medicine, Shenzhen, People’s Republic of China
| | - Wei Xie
- The Fourth Clinical Medicine College, Guangzhou University of Chinese Medicine, Shenzhen, People’s Republic of China
| | - Le-Yi Feng
- The Fourth Clinical Medicine College, Guangzhou University of Chinese Medicine, Shenzhen, People’s Republic of China
| | - Xue-Mei Liu
- Department of Endocrinology, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, People’s Republic of China
| |
Collapse
|
15
|
La Merrill MA, Smith MT, McHale CM, Heindel JJ, Atlas E, Cave MC, Collier D, Guyton KZ, Koliwad S, Nadal A, Rhodes CJ, Sargis RM, Zeise L, Blumberg B. Consensus on the key characteristics of metabolism disruptors. Nat Rev Endocrinol 2025; 21:245-261. [PMID: 39613954 PMCID: PMC11916920 DOI: 10.1038/s41574-024-01059-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/28/2024] [Indexed: 12/01/2024]
Abstract
Metabolism-disrupting agents (MDAs) are chemical, infectious or physical agents that increase the risk of metabolic disorders. Examples include pharmaceuticals, such as antidepressants, and environmental agents, such as bisphenol A. Various types of studies can provide evidence to identify MDAs, yet a systematic method is needed to integrate these data to help to identify such hazards. Inspired by work to improve hazard identification of carcinogens using key characteristics (KCs), we developed 12 KCs of MDAs based on our knowledge of processes underlying metabolic diseases and the effects of their causal agents: (1) alters function of the endocrine pancreas; (2) impairs function of adipose tissue; (3) alters nervous system control of metabolic function; (4) promotes insulin resistance; (5) disrupts metabolic signalling pathways; (6) alters development and fate of metabolic cell types; (7) alters energy homeostasis; (8) causes inappropriate nutrient handling and partitioning; (9) promotes chronic inflammation and immune dysregulation in metabolic tissues; (10) disrupts gastrointestinal tract function; (11) induces cellular stress pathways; and (12) disrupts circadian rhythms. In this Consensus Statement, we present the logic that revealed the KCs of MDAs and highlight evidence that supports the identification of KCs. We use chemical, infectious and physical agents as examples to illustrate how the KCs can be used to organize and use mechanistic data to help to identify MDAs.
Collapse
Affiliation(s)
- Michele A La Merrill
- Department of Environmental Toxicology, University of California, Davis, CA, USA.
| | - Martyn T Smith
- School of Public Health, University of California, Berkeley, CA, USA
| | - Cliona M McHale
- School of Public Health, University of California, Berkeley, CA, USA
| | - Jerrold J Heindel
- Healthy Environment and Endocrine Disruptor Strategies, Environmental Health Sciences, Bozeman, MT, USA
| | - Ella Atlas
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, Ontario, Canada
| | - Matthew C Cave
- Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, University of Louisville School of Medicine, Louisville, KY, USA
| | - David Collier
- Department of Pediatrics, East Carolina University, Greenville, NC, USA
| | - Kathryn Z Guyton
- Board on Environmental Studies and Toxicology, National Academies of Sciences, Engineering, and Medicine, Washington, DC, USA
| | - Suneil Koliwad
- Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Angel Nadal
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), CIBERDEM, Miguel Hernandez University of Elche, Elche, Spain
| | - Christopher J Rhodes
- Research and Early Development, Cardiovascular, Renal and Metabolic Diseases, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD, USA
| | - Robert M Sargis
- Division of Endocrinology, Diabetes and Metabolism, The University of Illinois at Chicago, Chicago, IL, USA
| | - Lauren Zeise
- Office of the Director, Office of Environmental Health Hazard Assessment of the California Environmental Protection Agency, Sacramento, CA, USA
| | - Bruce Blumberg
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA, USA
| |
Collapse
|
16
|
Huang Y, Zhao D, Yang Z, Wei C, Qiu X. The relationship between VAI, LAP, and depression and the mediation role of sleep duration-evidence from NHANES 2005-2020. BMC Psychiatry 2025; 25:228. [PMID: 40069662 PMCID: PMC11899296 DOI: 10.1186/s12888-025-06631-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 02/19/2025] [Indexed: 03/14/2025] Open
Abstract
BACKGROUND The relationship between obesity and mental health has attracted attention. However, large sample studies on the relationship between visceral fat obesity and depression are lacking. This study aimed to explore the relationship between visceral fat obesity and depression by using visceral adiposity index (VAI) and lipid accumulation product (LAP). Additionally, it sought to explore the potential mediating role of sleep duration in these associations. METHODS The data used in the current cross-sectional investigation are from the National Health and Nutrition Examination Survey (NHANES) spanning from 2005 to 2020, including 19,659 participants. Depression was measured using the nine-item Patient Health Questionnaire. Weighted multivariable regression analysis was used to evaluate the correlation of VAI and LAP with depression. The potential non-linear relationship was determined using smooth curve fitting and threshold effect analysis. Additionally, mediation analysis was performed to investigate the potential mediating role of sleep duration. The stability of the relationship was assessed through sensitivity analysis. RESULTS VAI and LAP were closely related to depression. In the fully adjusted model, VAI and LAP in the highest quartile increased the association of depression by 52% (OR = 1.52, 95% CI 1.20-1.92, P < 0.001) and 51% (OR = 1.51, 95% CI 1.19-1.91, P < 0.001), respectively, compared with the lowest quartile. Specific saturation effects for VAI, LAP, and depression were identified by smoothed curve fitting, with inflection points of 3.81 and 98.55, respectively. Additionally, mediation analysis revealed that 5.1% and 2.8% of the associations between VAI and LAP with depression were mediated through sleep duration. The results of the sensitivity analysis showed interactions between hypertension and cardiovascular disease in the associations of VAI, and depression (P < 0.05). CONCLUSION VAI and LAP are associated with depression in US adults. The associations between VAI and LAP with depression are non-linear, which may be mediated through sleep duration. The study highlights the potential of VAI and LAP as valuable tools for the prevention and management of depression.
Collapse
Affiliation(s)
- Yiqing Huang
- Medical School, Shenzhen University, No.1066, Xueyuan Avenue, Nanshan District, Shenzhen, Guangdong Province, 518060, People's Republic of China
| | - Dan Zhao
- Centre for Health Management and Policy Research, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Zhongfang Yang
- School of Nursing, Fudan University, 305 Fenglin Road, Shanghai, 200032, China
| | - Changning Wei
- School of Tech X Academy, Shenzhen Polytechnic University, Shenzhen, China
| | - Xichenhui Qiu
- Medical School, Shenzhen University, No.1066, Xueyuan Avenue, Nanshan District, Shenzhen, Guangdong Province, 518060, People's Republic of China.
- Rory Meyers College of Nursing, New York University, New York, NY, 10010, USA.
| |
Collapse
|
17
|
Lin YY, Huang CC, Ko CY, Tsai CH, Chang JW, Achudhan D, Tang CH. Omentin-1 modulates interleukin expression and macrophage polarization: Implications for rheumatoid arthritis therapy. Int Immunopharmacol 2025; 149:114205. [PMID: 39908806 DOI: 10.1016/j.intimp.2025.114205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 01/23/2025] [Accepted: 01/30/2025] [Indexed: 02/07/2025]
Abstract
BACKGROUND Rheumatoid arthritis (RA) is a systemic inflammatory and autoimmune disorder in which monocytes/macrophage infiltrate synovial membrane, differentiating into the pro- and anti-inflammatory M1 and M2 macrophage phenotypes. Omentin-1 is one of the adipokines that has anti-inflammatory and immunomodulatory effects; nevertheless, investigators have yet to elucidate the function of omentin-1 in RA development. It is still unclear how omentin-1 affects human autoimmune disease and what its beneficial role is. Thus, we show that omentin-1 exhibits a therapeutic effect on RA. METHODS Utilizing patient or animal tissue, MH7A cell-line, ELISA, and qPCR, we examined the expression of omentin-1 and inflammatory cytokines in the GEO databases. Omentin-1's effects on macrophage polarization were investigated using Immunofluorescence staining (IF) and qPCR. Additionally, the method by which omentin-1 regulates interleukins was discovered by IF labeling for STAT6 translocation, siRNA transfection, IPA software using several and pharmacological inhibitors. Omentin-1's effects were examined in an in vivo investigation using the type II collagen-induced arthritis model, micro-CT, and histological evaluation. RESULTS Results from the GSE97779 dataset and patients' tissues discovered that the level of omentin-1 and M2 macrophage markers are downregulated in human RA tissue samples compared to healthy tissue and negatively correlated with the expression of pro-inflammatory interleukins (ILs) and M1 macrophage. Stimulation of RA synovial fibroblasts with omentin-1 augmented IL-4 synthesis and subsequently enhanced anti-inflammatory ability as well as M2 polarization. The STAT6 transactivation through AMPK, PI3K, ERK, and JAK cascades regulates omentin-1-induced promotion of IL-4. Importantly, intra-articular injection of omentin-1 blocked collagen-induced arthritis-augmented pro-inflammatory response, cartilage degradation, and bone loss through upregulating IL-4 and M2 macrophages in vivo. CONCLUSION Our findings support a potential therapy goal for RA and a tenable mechanism to explain the relationship between omentin-1.
Collapse
Affiliation(s)
- Yen-You Lin
- Translational Medicine Center, Shin Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan; Department of Pharmacology, School of Medicine, China Medical University, Taichung, Taiwan
| | - Chien-Chung Huang
- School of Medicine, China Medical University, Taichung, Taiwan; Division of Immunology and Rheumatology, Department of Internal Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Chih-Yuan Ko
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan; Department of Orthopedic Surgery, China Medical University Hospital, Taichung, Taiwan
| | - Chun-Hao Tsai
- Department of Orthopedic Surgery, China Medical University Hospital, Taichung, Taiwan; Department of Sports Medicine, College of Health Care, China Medical University, Taichung, Taiwan
| | - Jun-Way Chang
- The Ph.D. Program of Biotechnology and Biomedical Industry, China Medical University, Taichung, Taiwan
| | - David Achudhan
- Department of Pharmacology, School of Medicine, China Medical University, Taichung, Taiwan
| | - Chih-Hsin Tang
- Department of Pharmacology, School of Medicine, China Medical University, Taichung, Taiwan; Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan; The Ph.D. Program of Biotechnology and Biomedical Industry, China Medical University, Taichung, Taiwan; Chinese Medicine Research Center, China Medical University, Taichung, Taiwan; Department of Medical Laboratory Science and Biotechnology, Asia University, Taichung, Taiwan.
| |
Collapse
|
18
|
Yang J, Shrestha A, Ramalingam L. Fishing for Solutions: How Pre-Conceptional Fish Oil Supplementation in Obese Fathers Reduces Risk of Non-Alcoholic Fatty Liver Disease in Offspring Mice. Mol Nutr Food Res 2025; 69:e202400452. [PMID: 39910853 PMCID: PMC11874265 DOI: 10.1002/mnfr.202400452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 11/30/2024] [Accepted: 01/03/2025] [Indexed: 02/07/2025]
Abstract
Metabolic dysfunction associated fatty liver disease (MAFLD) is a chronic condition with hepatic fat accumulation. The intergenerational effect of obesity has predominantly focused on mothers, with limited studies on paternal obesity. Nutritional intervention with fish oil (FO) has beneficial effects in reducing markers of obesity. We hypothesized that supplementing obese fathers with FO before conception could enhance the metabolic health of their offspring liver. Male mice were assigned to low-fat (LF), high fat (HF), or HF supplemented with FO for 10 weeks. Subsequently, these males were mated with females on a chow diet. Offspring were sacrificed at 8 weeks, and liver tissues were analyzed for gene expression and histology. Offspring body weight was not significantly impacted by paternal diet. However, male offspring of HF fathers had higher levels of markers of inflammation and fatty acid synthesis compared to offspring of LF fed fathers. Paternal FO supplementation significantly reduced fatty acid synthesis and glucose metabolism, while increasing fatty acid oxidation in male offspring, with a less pronounced effect in female offspring. These findings suggest that FO supplementation in obese fathers prior to conception attenuates the development of MAFLD in male offspring. This data underscores the significance of paternal nutritional intervention in promoting offspring health.
Collapse
Affiliation(s)
- Junhui Yang
- Department of Nutrition and Food StudiesSyracuse UniversitySyracuseNew YorkUSA
| | - Akriti Shrestha
- Department of Nutrition and Food StudiesSyracuse UniversitySyracuseNew YorkUSA
| | - Latha Ramalingam
- Department of Nutrition and Food StudiesSyracuse UniversitySyracuseNew YorkUSA
| |
Collapse
|
19
|
Goli SH, Lim JY, Basaran-Akgul N, Templeton SP. Adiponectin pathway activation dampens inflammation and enhances alveolar macrophage fungal killing via LC3-associated phagocytosis. PLoS Pathog 2025; 21:e1012363. [PMID: 40096083 PMCID: PMC11949351 DOI: 10.1371/journal.ppat.1012363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 03/27/2025] [Accepted: 02/18/2025] [Indexed: 03/19/2025] Open
Abstract
Although innate immunity is critical for antifungal host defense against the human opportunistic fungal pathogen Aspergillus fumigatus, potentially damaging inflammation must be controlled. Adiponectin (APN) is an adipokine produced mainly in adipose tissue that exerts anti-inflammatory effects in adipose-distal tissues such as the lung. We observed increased mortality and increased fungal burden and inflammation in neutropenic mice with invasive aspergillosis (IA) that lack APN or the APN receptors AdipoR1 or AdipoR2. Alveolar macrophages (AMs), early immune sentinels that detect and respond to lung infection, express both receptors, and APN-deficient AMs exhibited an inflammatory phenotype that was associated with decreased fungal killing. Pharmacological stimulation of AMs with AdipoR agonist AdipoRon rescued deficient killing in APN-/- AMs and was dependent on the presence of either receptor. Finally, APN-enhanced fungal killing was associated with increased activation of the non-canonical LC3 pathway of autophagy. Thus, our study identifies a novel role for APN in LC3-mediated killing of A.fumigatus.
Collapse
Affiliation(s)
- Sri Harshini Goli
- Department of Microbiology and Immunology, Indiana University School of Medicine-Terre Haute, Terre Haute, Indiana, United States of America
- Department of Biology, Indiana State University, Terre Haute, Indiana, United States of America
| | - Joo-Yeon Lim
- Department of Microbiology and Immunology, Indiana University School of Medicine-Terre Haute, Terre Haute, Indiana, United States of America
| | - Nese Basaran-Akgul
- Department of Microbiology and Immunology, Indiana University School of Medicine-Terre Haute, Terre Haute, Indiana, United States of America
| | - Steven P. Templeton
- Department of Microbiology and Immunology, Indiana University School of Medicine-Terre Haute, Terre Haute, Indiana, United States of America
| |
Collapse
|
20
|
Kołakowska K, Kiśluk J, Nikliński J. A Novel Insight into the Role of Obesity-Related Adipokines in Ovarian Cancer-State-of-the-Art Review and Future Perspectives. Int J Mol Sci 2025; 26:1857. [PMID: 40076482 PMCID: PMC11900017 DOI: 10.3390/ijms26051857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2025] [Revised: 02/17/2025] [Accepted: 02/19/2025] [Indexed: 03/14/2025] Open
Abstract
Ovarian cancer (OC) is one of the most fatal gynecological neoplasms. Meta-analyses have shown that the relationship between body mass index (BMI) and ovarian cancer incidence was detected in some types of ovarian cancer. Chronic inflammation and excessive accumulation of free fatty acids are key adipose tissue-derived factors initiating cancer development. Cancer cells transform adipose-derived stem cells into cancer-associated adipocytes, which produce adipokines and interleukins. It was revealed that adipokines exert a pleiotropic role in ovarian cancer pathogenesis. Chemerin presents both pro-cancer and anti-cancer action in ovarian cancer development. Chemerin induces angiogenesis and increases programmed death ligand-1 (PD-L1) expression, leading to enhanced proliferation and migration of OC cells. Apelin impacts cancer cell migration and acts as a mitogenic factor. Moreover, apelin exerts influence on lipid uptake into cancer cells and accelerates fatty acid oxidation, which provides energy for cancer cells. Visfatin induces matrix metallopeptidase 2 (MMP2) expression involved in extracellular matrix degradation and suppresses claudin 3 and 4 expression. Visfatin also induces a shift to anaerobic glucose metabolism and influences poly-ADP ribose polymerase (PARP). Resistin induces MMP2 and vascular endothelial growth factor (VEGF) expression and contributes to cisplatin-resistance development. A substantial body of evidence indicates that antagonists of adipokines mitigate OC progression, and adipokines are gaining gradual recognition as a potential therapeutic aim in ovarian cancer targeted therapy.
Collapse
Affiliation(s)
| | - Joanna Kiśluk
- Department of Clinical Molecular Biology, Medical University of Białystok, 15-269 Białystok, Poland; (K.K.)
| | | |
Collapse
|
21
|
de Andrade AG, Vanderley SER, de Farias Marques L, Almeida FS, Cavalcante-Silva LHA, Keesen TSL. Leptin, NK cells, and the weight of immunity: Insights into obesity. Int Immunopharmacol 2025; 147:113992. [PMID: 39755107 DOI: 10.1016/j.intimp.2024.113992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 12/28/2024] [Accepted: 12/29/2024] [Indexed: 01/06/2025]
Abstract
Obesity is a chronic inflammatory disease that affects more than 1 billion people worldwide and is associated with various metabolic and physiological dysfunctions, directly impacting the dynamics of the immune response, partly due to elevated leptin levels. Leptin is an important peptide hormone that regulates neuroendocrine function and energy homeostasis, with its blood levels reflecting energy reserves, fat mass, or energy deprivation. This hormone also plays a fundamental role in regulating immune function, including the activity of NK cells, which are essential components in antiviral and antitumor activity. In obese individuals, leptin resistance is commonly established, however, NK cells and other immune components remain responsive to this hormone. So far, leptin has demonstrated paradoxical activities of these cells, often associated with a dysfunctional profile when associated with obesity. The excessive fat is usually related to metabolic remodeling in NK cells, resulting in compromised antitumor responses due to reduced cytotoxic capacity and decreased expression of cytokines important for these defense mechanisms, such as IFN-γ. Therefore, this review approaches a better understanding of the immunoendocrine interactions between leptin and NK cells in the context of obesity.
Collapse
Affiliation(s)
- Arthur Gomes de Andrade
- Immunology Laboratory of Infectious Diseases, Department of Cellular and Molecular Biology, Federal University of Paraiba, João Pessoa, Paraíba 58051-900, Brazil
| | - Shayenne Eduarda Ramos Vanderley
- Immunology Laboratory of Infectious Diseases, Department of Cellular and Molecular Biology, Federal University of Paraiba, João Pessoa, Paraíba 58051-900, Brazil
| | - Lorrane de Farias Marques
- Immunology Laboratory of Infectious Diseases, Department of Cellular and Molecular Biology, Federal University of Paraiba, João Pessoa, Paraíba 58051-900, Brazil
| | - Fernanda Silva Almeida
- Immunology Laboratory of Infectious Diseases, Department of Cellular and Molecular Biology, Federal University of Paraiba, João Pessoa, Paraíba 58051-900, Brazil
| | | | - Tatjana Souza Lima Keesen
- Immunology Laboratory of Infectious Diseases, Department of Cellular and Molecular Biology, Federal University of Paraiba, João Pessoa, Paraíba 58051-900, Brazil.
| |
Collapse
|
22
|
Alzubi A, Glowacki HX, Burns JL, Van K, Martin JLA, Monk JM. Dose-Dependent Effects of Short-Chain Fatty Acids on 3T3-L1 Adipocyte Adipokine Secretion and Metabolic Function. Nutrients 2025; 17:571. [PMID: 39940429 PMCID: PMC11820615 DOI: 10.3390/nu17030571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 01/15/2025] [Accepted: 01/27/2025] [Indexed: 02/16/2025] Open
Abstract
BACKGROUND Short-chain fatty acids (SCFAs) produced from microbial fermentation of non-digestible carbohydrates and protein have been shown to modulate adipocyte adipokine secretion and metabolic function, which has implications for mitigating dysfunction in obese adipose tissue; however, the individual effects of different SCFAs and the optimal concentration required is unknown. The purpose of this study was to dose-dependently determine the effects of individual SCFAs on adipocyte adipokine secretion and metabolic function. METHODS We recapitulated the obese adipocyte inflammatory conditions using mature 3T3-L1 adipocytes and a physiological concentration of lipopolysaccharide (LPS) ± individual SCFAs, namely acetate, propionate, and butyrate, in a dose-dependent manner (0.25 mM, 0.5 mM, and 1 mM) for 24 h. RESULTS SCFAs dose-dependently affected inflammatory adipokine secretion, wherein at 1 mM, all three SCFAs reduced the secretion of leptin, IL-6 and IL-1β, but only propionate and butyrate reduced MCP-1/CCL2 and MIP-1α/CCL3 compared to control (p < 0.05). Interestingly, 1 mM acetate increased RANTES/CCL5 secretion versus control, whereas propionate and butyrate decreased RANTES/CCL5 secretion, and only 1 mM propionate reduced MCP-3/CCL7 secretion (p < 0.05). At the lower 0.5 mM concentration, both propionate and butyrate reduced IL-6 and IL-1β secretion compared to control (p < 0.05), and there was no difference in adipokine secretion between groups at the 0.25 mM SCFA concentration (p > 0.05). Intracellular protein expression in the ratio of phosphorylated-to-total STAT3 was reduced by all SCFAs at 1 mM and by propionate and butyrate at 0.5 mM versus control (p < 0.05). The ratio fo phosphorylated-to-total NFκB p65 expression was reduced by propionate and butyrate at 1 mM and by butyrate alone at 0.5 mM compared to control (p < 0.05). Basal (no insulin stimulation) and insulin-stimulated glucose uptake did not differ between control and any 1 mM SCFA treatment conditions (p > 0.05). CONCLUSIONS Individual SCFAs exert different dose-dependent effects on LPS-stimulated adipocyte function.
Collapse
Affiliation(s)
| | | | | | | | | | - Jennifer M. Monk
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada
| |
Collapse
|
23
|
Gao Y, Chen C, Huang X, Liu Y, Zhou Z, Pan Y. Omentin-1, a Protective Adipokine for Irritable Bowel Syndrome. J Inflamm Res 2025; 18:1689-1701. [PMID: 39925934 PMCID: PMC11806724 DOI: 10.2147/jir.s499613] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 01/25/2025] [Indexed: 02/11/2025] Open
Abstract
Introduction Irritable bowel syndrome (IBS) is characterized by patients' high level of suffering. There is increasing evidence for involvement of the immune system in this disease. Adipokines have been reported to be critical immunoregulators in many clinical conditions, including gastrointestinal (GI) inflammatory diseases. Our study aimed to investigate associations of omentin-1 (a newly discovered adipokine) with IBS. Methods In the current study, serum levels of omentin-1 were measured in 209 patients with IBS (including three subtypes) and 188 healthy controls by enzyme-linked immunosorbent assay (ELISA). The somatic symptoms of IBS were determined by the 5-item IBS symptoms severity score (IBS-SSS), quality of life (QOL) by 34-item IBS-QOL questionnaire, and psychological disorders by Patient Health Questionnaire (PHQ-9), Hospital Anxiety and Depression Scale (HADS), Visceral Sensitivity Index (VSI). Therapeutic effect of omentin-1 for IBS was investigated in a 2,4,6-trinitrobenzenesulfonic acid (TNBS)-induced IBS mouse model. Results We found that serum levels of omentin-1 were significantly decreased in patients with the diarrhea-predominant IBS (IBS-D) subtype (not the constipation or alternating subtype) compared to those in healthy subjects. Patients with lower serum omentin-1 levels suffered from higher severity of somatic symptoms (abdominal pain and distention, flatulence, rumbling), lower QOL, and worse psychological status. In a one-year follow-up, serum omentin-1 levels showed potential to reflect the disease progression. Additionally, lower omentin-1 levels were found to be accompanied with higher levels of serum pro-inflammatory cytokine concentrations in patients with IBS-D. Supplement of omentin-1 was protective against visceral hypersensitivity and mucosal inflammation in an IBS mouse model. Discussion Our findings highlight the potential value of serum omentin-1 levels as an innovative biomarker in IBS, emphasizing its significance in improving clinical treatment and management of the disease.
Collapse
Affiliation(s)
- Yanping Gao
- Department of Gastroenterology, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, People’s Republic of China
- Clinical Immunology Translational Medicine Key Laboratory of Sichuan Province, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, People’s Republic of China
| | - Chen Chen
- Department of Gastroenterology, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, People’s Republic of China
- Clinical Immunology Translational Medicine Key Laboratory of Sichuan Province, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, People’s Republic of China
| | - Xijing Huang
- Clinical Immunology Translational Medicine Key Laboratory of Sichuan Province, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, People’s Republic of China
| | - Ya Liu
- Department of Gastroenterology, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, People’s Republic of China
| | - Zhou Zhou
- Department of Gastroenterology, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, People’s Republic of China
| | - Yan Pan
- Department of Gastroenterology, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, People’s Republic of China
| |
Collapse
|
24
|
Park JS, Lee J, Wang F, Ma H, Zhou Z, Lee YS, Oh K, Lee H, Sui G, Lee S, Yang YM, Lee JW, Ji YH, Park CW, Yoo HS, Hwang BY, Han SB, Song N, Oh S, Kim B, Seki E, Hong JT, Roh YS. A1AT dysregulation of metabolically stressed hepatocytes by Kupffer cells drives MASH and fibrosis. Exp Mol Med 2025; 57:450-465. [PMID: 39939782 PMCID: PMC11873038 DOI: 10.1038/s12276-025-01408-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 11/19/2024] [Accepted: 11/25/2024] [Indexed: 02/14/2025] Open
Abstract
Metabolic dysfunction-associated steatohepatitis (MASH) is associated with the activation of Kupffer cells (KCs) and hepatic stellate cells, at which point a metabolically stressed hepatocyte becomes integral to the progression of the disease. We observed a significant reduction in the level of alpha-1-antitrypsin (A1AT), a hepatocyte-derived secreted factor, in both patients with MASH and mice fed a fast-food diet (FFD). KC-mediated hepatic inflammation, most notably IL-1β, led to the transcriptional inhibition of A1AT by HNF4α. In quintuple Serpina1a-e knockout mice, ablation of A1AT worsened MASH through increased activity of proteinase 3 (PR3), a proinflammatory protease produced by F4/80hi/CD11blow/TIM4-/CCR2+ monocyte-derived KCs (MoKCs). Conversely, A1AT restoration or PR3 inhibition mitigated MASH progression. A PR3-bound cytokine array identified IL-32 as a key factor associated with MASH. Combining IL-32 with SERPINA1, the gene encoding A1AT, synergistically predicted patients at risk of MASH through univariate logistic regression analysis. Furthermore, in vivo overexpression of IL-32γ alleviated MASH induced by FFD. However, additional knockout of A1AT increased PR3 activity, consequently abolishing the anti-MASH effects of IL-32γ. Blocking PR3-mediated IL-32γ cleavage via the V104A mutation sustained its protective actions, while the PR3-cleaved C-terminal fragment activated KCs. Additionally, after cleavage, the antifibrogenic effect of IL-32γ is lost, resulting in a failure to prevent the activation of hepatic stellate cells. This study highlights the critical role of hepatocyte-derived A1AT in the PR3/IL-32γ axis during MASH development. Strategies to correct A1AT dysregulation, such as A1AT supplementation or PR3 inhibition with sivelestat, may offer protection against the development and progression of MASH and fibrosis. Elevated hepatic IL-1β levels in MASH lead to the downregulation of A1AT via the transcription factor HNF4α, resulting in increased recruitment of proinflammatory MoKCs and heightened PR3 activity. PR3 cleaves IL-32γ, transforming it from an anti-inflammatory and antifibrogenic cytokine into a potent activator of KCs and failing to prevent HSC activation. This cascade amplifies liver inflammation and fibrosis, suggesting that targeting the A1AT/PR3/IL-32γ axis could be a strategy for treating MASH.
Collapse
Affiliation(s)
- Jeong-Su Park
- College of Pharmacy and Medical Research Center, Chungbuk National University, Cheongju, South Korea
| | - Jin Lee
- Department of Pathology, School of Medicine, University of California, San Diego, CA, USA
| | - Feng Wang
- College of Pharmacy and Medical Research Center, Chungbuk National University, Cheongju, South Korea
| | - Hwan Ma
- College of Pharmacy and Medical Research Center, Chungbuk National University, Cheongju, South Korea
| | - Zixiong Zhou
- Department of Pathology and Institute of Oncology, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Yong-Sun Lee
- Toxicological Evaluation and Research Department, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Cheongju, South Korea
| | - Kwangyeon Oh
- College of Pharmacy and Medical Research Center, Chungbuk National University, Cheongju, South Korea
| | - Haram Lee
- College of Pharmacy, Korea University, Sejong, South Korea
| | - Guoyan Sui
- College of Pharmacy and Medical Research Center, Chungbuk National University, Cheongju, South Korea
| | - Sangkyu Lee
- College of Pharmacy, Sungkyunkwan University, Suwon, South Korea
| | - Yoon Mee Yang
- College of Pharmacy, Kangwon National University, Chuncheon, South Korea
| | - Jang-Won Lee
- Research and Development Center, MediTake Co. Ltd., Suwon, South Korea
| | - Yong-Ha Ji
- Research and Development Center, MediTake Co. Ltd., Suwon, South Korea
| | - Chun-Woong Park
- College of Pharmacy and Medical Research Center, Chungbuk National University, Cheongju, South Korea
| | - Hwan-Soo Yoo
- College of Pharmacy and Medical Research Center, Chungbuk National University, Cheongju, South Korea
| | - Bang-Yeon Hwang
- College of Pharmacy and Medical Research Center, Chungbuk National University, Cheongju, South Korea
| | - Sang-Bae Han
- College of Pharmacy and Medical Research Center, Chungbuk National University, Cheongju, South Korea
| | - Nan Song
- College of Pharmacy and Medical Research Center, Chungbuk National University, Cheongju, South Korea
| | - Soohwan Oh
- College of Pharmacy, Korea University, Sejong, South Korea
| | - Bumseok Kim
- College of Veterinary Medicine and Biosafety Research Institute, Jeonbuk National University, Iksan, South Korea
| | - Ekihiro Seki
- Karsh Division of Gastroenterology and Hepatology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Jin Tae Hong
- College of Pharmacy and Medical Research Center, Chungbuk National University, Cheongju, South Korea.
| | - Yoon Seok Roh
- College of Pharmacy and Medical Research Center, Chungbuk National University, Cheongju, South Korea.
| |
Collapse
|
25
|
Zhang H, Yu M, Li L, Chen C, He Q. Obesity-related indices are associated with self-reported infertility in women: findings from the National Health and Nutrition Examination Survey. J Int Med Res 2025; 53:3000605251315019. [PMID: 39932267 PMCID: PMC11815785 DOI: 10.1177/03000605251315019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Accepted: 01/06/2025] [Indexed: 02/14/2025] Open
Abstract
OBJECTIVE Obesity can contribute to infertility, but the exact relationship between infertility risk and obesity-related measurements like waist-to-height ratio (WHtR), body roundness index (BRI), conicity index (CoI), and A body shape index (ABSI) in women is uncertain. We investigated the association between these indices and female infertility. METHODS In this cross-sectional study, we used National Health and Nutrition Examination Survey data (2013-2018). We used weighted multivariable logistic regression analysis, receiver operating characteristic (ROC) curves, and subgroup analysis, as well as propensity score matching. RESULTS Among 3373 participants, 344 (10.2%) reported infertility. A significant link between higher infertility risk and increased WHtR, BRI, CoI, ABSI, and body mass index (BMI) was found. Multivariable logistic regression analysis showed WHtR (odds ratio [OR] = 1.27, 95% confidence interval [CI]: 1.14-1.42), BRI (OR = 1.09, 95% CI: 1.05-1.14), CoI (OR = 1.36, 95% CI: 1.18-1.56), ABSI (OR = 1.22, 95% CI: 1.12-1.33), and BMI (OR = 1.03, 95% CI: 1.02-1.05) were significantly associated with female infertility. CoI had the best diagnostic performance (area under the ROC curve 0.628, 95% CI: 0.597-0.658). CONCLUSIONS Obesity-related indices were positively linked to infertility risk among women in the United States. These indices serve as valuable tools for assessing female infertility risk.
Collapse
Affiliation(s)
- Hong Zhang
- Department of Obstetrics and Gynecology, First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Minmin Yu
- Department of Obstetrics and Gynecology, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Li Li
- Department of Ultrasound, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Chen Chen
- Department of Infectious Disease, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Qinyuan He
- Department of Obstetrics and Gynecology, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| |
Collapse
|
26
|
Yang LZ, Yang Y, Hong C, Wu QZ, Shi XJ, Liu YL, Chen GZ. Systematic Mendelian Randomization Exploring Druggable Genes for Hemorrhagic Strokes. Mol Neurobiol 2025; 62:1359-1372. [PMID: 38977622 PMCID: PMC11772512 DOI: 10.1007/s12035-024-04336-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 06/26/2024] [Indexed: 07/10/2024]
Abstract
Patients with hemorrhagic stroke have high rates of morbidity and mortality, and drugs for prevention are very limited. Mendelian randomization (MR) analysis can increase the success rate of drug development by providing genetic evidence. Previous MR analyses only analyzed the role of individual drug target genes in hemorrhagic stroke; therefore, we used MR analysis to systematically explore the druggable genes for hemorrhagic stroke. We sequentially performed summary-data-based MR analysis and two-sample MR analysis to assess the associations of all genes within the database with intracranial aneurysm, intracerebral hemorrhage, and their subtypes. Validated genes were further analyzed by colocalization. Only genes that were positive in all three analyses and were druggable were considered desirable genes. We also explored the mediators of genes affecting hemorrhagic stroke incidence. Finally, the associations of druggable genes with other cardiovascular diseases were analyzed to assess potential side effects. We identified 56 genes that significantly affected hemorrhagic stroke incidence. Moreover, TNFSF12, SLC22A4, SPARC, KL, RELT, and ADORA3 were found to be druggable. The inhibition of TNFSF12, SLC22A4, and SPARC can reduce the risk of intracranial aneurysm, subarachnoid hemorrhage, and intracerebral hemorrhage. Gene-induced hypertension may be a potential mechanism by which these genes cause hemorrhagic stroke. We also found that blocking these genes may cause side effects, such as ischemic stroke and its subtypes. Our study revealed that six druggable genes were associated with hemorrhagic stroke, and the inhibition of TNFSF12, SLC22A4, and SPARC had preventive effects against hemorrhagic strokes.
Collapse
Affiliation(s)
- Lun-Zhe Yang
- Department of Neurosurgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Yong Yang
- Department of Neurosurgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Chuan Hong
- Department of Neurosurgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Qi-Zhe Wu
- Department of Neurosurgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Xiong-Jie Shi
- Department of Neurosurgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Yi-Lin Liu
- Department of Neurosurgery, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Guang-Zhong Chen
- Department of Neurosurgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China.
| |
Collapse
|
27
|
Beydoun MA, Beydoun HA, Noren Hooten N, Li Z, Hu Y, Georgescu MF, Hossain S, Tanaka T, Bouhrara M, Maino Vieytes CA, Fanelli‐Kuczmarski MT, Launer LJ, Evans MK, Zonderman AB. Plasma proteomic biomarkers as mediators or moderators for the association between poor cardiovascular health and white matter microstructural integrity: The UK Biobank study. Alzheimers Dement 2025; 21:e14507. [PMID: 39822062 PMCID: PMC11864230 DOI: 10.1002/alz.14507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 11/16/2024] [Accepted: 12/03/2024] [Indexed: 01/19/2025]
Abstract
INTRODUCTION The plasma proteome's mediating or moderating roles in the association between poor cardiovascular health (CVH) and brain white matter (WM) microstructural integrity are largely unknown. METHODS Data from 3953 UK Biobank participants were used (40-70 years, 2006-2010), with a neuroimaging visit between 2014 and 2021. Poor CVH was determined using Life's Essential 8 (LE8) and reversing standardized z-scores (LE8z _rev). The plasma proteome was examined as a potential mediator or moderator of LE8z _rev's effects on quantitative diffusion-weighted magnetic resonance imaging (dMRI) metrics. RESULTS LE8z_rev was significantly associated with deteriorated WM microstructural integrity, as reflected by lower tract-averaged fractional anisotropy (dMRI-FAmean), (β ± standared error (SE): -0.00152 ± 0.0003, p < 0.001) and higher tract-averaged orientation dispersion (dMRI-ODmean), (β ± SE:+0.00081 ± 0.00017, p < 0.001). Ten strongly mediating plasma proteins of 1463 were identified, with leptin as the principal driver. DISCUSSION Poor CVH is linked to poor WM microstructural integrity measures (lower FAmean and higher ODmean), mostly mediated through leptin. HIGHLIGHTS Up to 3953 UK Biobank participants were selected for this study. Poor cardiovascular health (CVH) was determined using Life's Essential 8. The plasma proteome was examined as a potential mediator or moderator of poor CVH's effect on dMRI metrics. Ten plasma proteins were identified with strong mediating effects, with leptin being the principal driver.
Collapse
Affiliation(s)
- May A. Beydoun
- Laboratory of Epidemiology and Population SciencesNational Institute on Aging, NIA/NIH/IRPBaltimoreMarylandUSA
| | - Hind A. Beydoun
- VA National Center on Homelessness Among VeteransU.S. Department of Veterans AffairsWashington, DCUSA
- Department of Management, Policy, and Community Health, School of Public HealthUniversity of Texas Health Science Center at HoustonHoustonTexasUSA
| | - Nicole Noren Hooten
- Laboratory of Epidemiology and Population SciencesNational Institute on Aging, NIA/NIH/IRPBaltimoreMarylandUSA
| | - Zhiguang Li
- Laboratory of Epidemiology and Population SciencesNational Institute on Aging, NIA/NIH/IRPBaltimoreMarylandUSA
| | - Yi‐Han Hu
- Laboratory of Epidemiology and Population SciencesNational Institute on Aging, NIA/NIH/IRPBaltimoreMarylandUSA
| | - Michael F. Georgescu
- Laboratory of Epidemiology and Population SciencesNational Institute on Aging, NIA/NIH/IRPBaltimoreMarylandUSA
| | - Sharmin Hossain
- Department of Human Services (DHS)State of MarylandBaltimoreMarylandUSA
| | - Toshiko Tanaka
- Translational Gerontology BranchNational Institute on Aging, NIA/NIH/IRPBaltimoreMarylandUSA
| | - Mustapha Bouhrara
- Laboratory of Clinical InvestigationNational Institute on Aging, NIA/NIH/IRPBaltimoreMarylandUSA
| | - Christian A. Maino Vieytes
- Laboratory of Epidemiology and Population SciencesNational Institute on Aging, NIA/NIH/IRPBaltimoreMarylandUSA
| | - Marie T. Fanelli‐Kuczmarski
- Laboratory of Epidemiology and Population SciencesNational Institute on Aging, NIA/NIH/IRPBaltimoreMarylandUSA
| | - Lenore J. Launer
- Laboratory of Epidemiology and Population SciencesNational Institute on Aging, NIA/NIH/IRPBaltimoreMarylandUSA
| | - Michele K. Evans
- Laboratory of Epidemiology and Population SciencesNational Institute on Aging, NIA/NIH/IRPBaltimoreMarylandUSA
| | - Alan B. Zonderman
- Laboratory of Epidemiology and Population SciencesNational Institute on Aging, NIA/NIH/IRPBaltimoreMarylandUSA
| |
Collapse
|
28
|
Zhu H, Xiao C, Chen J, Guo B, Wang W, Tang Z, Cao Y, Zhan L, Zhang JH. New insights into the structure domain and function of NLR family CARD domain containing 5. Cell Commun Signal 2025; 23:42. [PMID: 39849460 PMCID: PMC11755879 DOI: 10.1186/s12964-024-02012-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 12/22/2024] [Indexed: 01/25/2025] Open
Abstract
NOD-like receptor family CARD domain-containing 5 (NLRC5) is a major transcriptional coactivator of MHC class I genes. NLRC5 is the largest member of the NLR family and contains three domains: an untypical caspase recruitment domain (uCARD), a central nucleotide-binding and oligomerization domain (NOD or NACHT), and a leucine-rich repeat (LRR) domain. The functional variability of NLRC5 has been attributed to its different domain interactions with specific ligands in different cell types. In this review, we address the molecular mechanisms and their implications in multiple microenvironments based on the different functional domains of NLRC5.
Collapse
Affiliation(s)
- Haiqing Zhu
- The Second Affiliated Hospital of Anhui Medical University, No. 678 Furong Road, Hefei, Anhui, 230601, China
| | - Chengwei Xiao
- The Second Affiliated Hospital of Bengbu Medical University, No. 663 Longhua Road, Bengbu, Anhui, 233040, China
| | - Jiahua Chen
- The Second Affiliated Hospital of Anhui Medical University, No. 678 Furong Road, Hefei, Anhui, 230601, China
| | - Bao Guo
- The Second Affiliated Hospital of Anhui Medical University, No. 678 Furong Road, Hefei, Anhui, 230601, China
| | - Wenyan Wang
- The Second Affiliated Hospital of Anhui Medical University, No. 678 Furong Road, Hefei, Anhui, 230601, China
| | - Zhenhai Tang
- Center for Scientific Research of Anhui Medical University, No. 81 Meishan Road, Hefei, Anhui, 230022, China
| | - Yunxia Cao
- The First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei, Anhui, 230022, China.
| | - Lei Zhan
- The First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei, Anhui, 230022, China.
| | - Jun-Hui Zhang
- The Second Affiliated Hospital of Anhui Medical University, No. 678 Furong Road, Hefei, Anhui, 230601, China.
| |
Collapse
|
29
|
Li YZ, Tian Y, Yang C, Liu YF, Qu SL, Huang L, Zhang C. Adipose tissue macrophages-derived exosomal MiR-500a-5p under high glucose promotes adipocytes inflammation by suppressing Nrf2 expression. Int J Biochem Cell Biol 2025; 178:106713. [PMID: 39617207 DOI: 10.1016/j.biocel.2024.106713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 11/25/2024] [Accepted: 11/26/2024] [Indexed: 12/16/2024]
Abstract
BACKGROUND Type 2 diabetes (T2DM) is a chronic metabolic disorder characterized by insulin resistance and chronic inflammation. Adipose tissue macrophages (ATMs), central players in mediating pro-inflammatory responses within adipose tissue, have been shown to influence insulin sensitivity through exosome secretion. While the role of macrophages-derived exosomal miRNA has been studied in various diseases, their pathogenic roles in T2DM, particularly ATMs-derived exosomal miRNA in adipose tissue inflammation, remain underexplored. OBJECTIVES This study focuses specifically on T2DM, investigating the role of ATM-derived exosomal miRNAs in adipose tissue inflammation, a critical factor in the pathogenesis of T2DM. METHODS ATM were isolated from visceral adipose tissues in patients with or without diabetes. Differentially expressed miRNAs in ATM-derived exosomes were predicted by high-throughput RNA sequencing. The RAW264.7 macrophages and 3T3-L1 preadipocytes was selected as a model system. Quantitative RT-PCR was used to assess miR-500a-5p expression. The direct binding of miR-500a-5p to Nrf2 mRNA 3' UTR was verified by dual luciferase assay. RESULTS MiR-500a-5p was also enriched in the exosomes of high-glucose-treated macrophages. Furthermore, these exosomes induced high expression of miR-500a-5p and activation of the NLRP3 inflammasome in adipocytes when co-cultured with them. Additionally, the reduction of miR-500a-5p expression in macrophages by using a miR-500a-5p inhibitor ameliorated the pro-inflammatory properties of the exosomes, and co-culturing these exosomes with adipocytes resulted in decreased expression of NLRP3 inflammasome-associated proteins in adipocytes. In contrast, induction of miR-500a-5p expression led to the opposite results. Moreover, the dual-luciferase assay confirmed that miR-500a-5p directly targeted the 3' UTR of Nrf2 mRNA. Unlike miR-500a-5p, Nrf2 exhibited an anti-inflammatory response. CONCLUSION The results indicate that ATM-derived exosomal miR-500a-5p promotes NLRP3 inflammasome activation and adipose tissue inflammation through down-regulation of Nrf2 in adipocytes.
Collapse
Affiliation(s)
- Yong-Zhen Li
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan province, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, PR China; Department of Pathology, The First People's Hospital of Zigong, Zigong 643099, PR China
| | - Yuan Tian
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan province, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, PR China
| | - Chen Yang
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan province, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, PR China; Department of Pathology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei 441021, PR China
| | - Yi-Fan Liu
- Research Laboratory of Translational Medicine, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, PR China
| | - Shun-Lin Qu
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan province, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, PR China
| | - Liang Huang
- Research Laboratory of Translational Medicine, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, PR China.
| | - Chi Zhang
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan province, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, PR China.
| |
Collapse
|
30
|
Duan F, Wu J, Chang J, Peng H, Liu Z, Liu P, Han X, Sun T, Shang D, Yang Y, Li Z, Li P, Liu Y, Zhu Y, Lv Y, Guo X, Zhao Y, An Y. Deciphering endocrine function of adipose tissue and its significant influences in obesity-related diseases caused by its dysfunction. Differentiation 2025; 141:100832. [PMID: 39709882 DOI: 10.1016/j.diff.2024.100832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 12/15/2024] [Accepted: 12/16/2024] [Indexed: 12/24/2024]
Abstract
Current research has found that adipose tissue is not only involved in energy metabolism, but also a highly active endocrine organ that secretes various adipokines, including adiponectin, leptin, resistin and apelin, which are involved in the regulation of physiology and pathology of tissues and organs throughout the body. With the yearly increasing incidence, obesity has become a risk factor for a variety of pathological changes, including inflammation and metabolic syndrome in various system (endocrine, circulatory, locomotor and central nervous system). Thus these symptoms lead to multi-organ dysfunctions, including the heart, liver, kidneys, brain and joints. An in-depth summary of the roles of adipokines in the regulation of other tissues and organs can help to provide more effective therapeutic strategies for obesity-related diseases and explore potential therapeutic targets. Therefore, this review has retrospected the endocrine function of adipose tissue under obesity and the role of dysregulated adipokine secretion in related diseases and the underlying mechanisms, in order to provide a theoretical basis for targeting adipokine-mediated systemic dysregulation.
Collapse
Affiliation(s)
- Feiyi Duan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China; Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, 475004, China
| | - Jiaoyan Wu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China; Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, 475004, China
| | - Jiayi Chang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China; Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, 475004, China
| | - Haoyuan Peng
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China; Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, 475004, China
| | - Zitao Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China; Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, 475004, China
| | - Pengfei Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China; Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, 475004, China
| | - Xu Han
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China; School of Stomatology, Henan University, Kaifeng, 475004, China
| | - Tiantian Sun
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China; School of Stomatology, Henan University, Kaifeng, 475004, China
| | - Dandan Shang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China; Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, 475004, China
| | - Yutian Yang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China; Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, 475004, China
| | - Zhihao Li
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China; Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, 475004, China
| | - Pengkun Li
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China; Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, 475004, China
| | - Yixuan Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China; Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, 475004, China
| | - Yonghao Zhu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China; School of Stomatology, Henan University, Kaifeng, 475004, China
| | - Yunzhi Lv
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China; School of Stomatology, Henan University, Kaifeng, 475004, China
| | - Xiumei Guo
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China; Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, 475004, China
| | - Ying Zhao
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China; Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, 475004, China
| | - Yang An
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China; Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, 475004, China.
| |
Collapse
|
31
|
Xu M, Jin X, Shen Z. ZAG promotes colorectal cancer cell proliferation and epithelial-mesenchymal transition by promoting lipid synthesis. Open Life Sci 2024; 19:20221007. [PMID: 39711976 PMCID: PMC11662974 DOI: 10.1515/biol-2022-1007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 10/21/2024] [Accepted: 10/23/2024] [Indexed: 12/24/2024] Open
Abstract
Colorectal cancer (CRC) is a common malignant tumor characterized by a high degree of invasiveness, and since zinc-α2 glycoprotein (ZAG) has been implicated in the progression of several malignancies, this study was designed to investigate the role of ZAG in CRC. Its expression was assessed using the GEPIA database, and short hairpin RNA (shRNA) interference was conducted to create ZAG knockdown in CRC cell lines. We also conducted lipid synthesis, cell proliferation, apoptosis, and epithelial-mesenchymal transition (EMT) experiments to elucidate the effects of ZAG expression on CRC, as well as explored the potential underlying mechanistic pathways. Our findings reveal that ZAG is overexpressed in CRC. In vitro, ZAG knockdown resulted in the suppression of lipid production, cell division, and EMT while concurrently promoting apoptosis. The phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT)/mechanistic target of rapamycin (mTOR) signaling pathway was found to mediate the effects of ZAG on CRC cells. In conclusion, the downregulation of ZAG can inhibit CRC cell survival, EMT, and lipid production via the PI3K/AKT/mTOR signaling pathway.
Collapse
Affiliation(s)
- Maotao Xu
- Department of Gastroenterology, The Ninth People’s Hospital of Chongqing, Chognqing, 400700, China
| | - Xingzheng Jin
- Department of Surgery, Southwest University Hospital, Chongqing, 400700, China
| | - Zhouli Shen
- Department of Gastroenterology, The Ninth People’s Hospital of Chongqing, No. 69, Jialing Village, Beibei District, Chognqing, 400700, China
| |
Collapse
|
32
|
Valencia-Ortega J, Galicia-Hernández V, Castillo-Santos A, Molerés-Orduña M, Arceo-Cerna C, Perichart-Perera O, Rodríguez-Cano AM, Rodríguez-Hernández C, Estrada-Gutierrez G, Camacho-Arroyo I, Solis-Paredes JM. Maternal organokines throughout pregnancy as predictors of neonatal anthropometric characteristics and adiposity. Front Endocrinol (Lausanne) 2024; 15:1423950. [PMID: 39698038 PMCID: PMC11653021 DOI: 10.3389/fendo.2024.1423950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 11/05/2024] [Indexed: 12/20/2024] Open
Abstract
Aims To evaluate the relation between maternal concentrations of progranulin (PGRN), adipocyte fatty acid-binding protein (AFABP), brain-derived neurotrophic factor (BDNF), and fibroblast growth factor 21 (FGF21) throughout pregnancy with neonatal weight and length at birth and at one month of age, as well as with the percentage of fat mass at one month of age. Besides, we evaluated the association between maternal organokine concentrations with pregestational nutritional status and gestational weight gain (GWG). Methods Longitudinal study of 100 healthy pregnant women and their neonates. Conventional biochemical tests were performed and maternal organokine concentrations were measured by ELISA. Neonatal percent fat mass was determined using the PEA POD system, and weight and length were measured using a soft tape measure and a baby scale. Multiple linear regression models were made to predict neonatal anthropometric measurements and adiposity. Results In all women, PGRN concentrations significantly increased as pregnancy progressed, while AFABP concentrations increased until the third trimester and the highest BDNF concentrations were observed in the second trimester of pregnancy. In contrast, FGF21 concentrations did not change during pregnancy. Only maternal obesity was associated with some differences in AFABP and FGF21 concentrations. Gestational age at birth, maternal age and third-trimester PGRN concentrations predicted weight (gestational age at birth: β=0.11; maternal age: β=-0.033; PGRN: β=0.003, p<0.001) and, together with first-trimester BDNF concentrations, length (gestational age at birth: β=0.76; maternal age: β=-0.21; PGRN: β=0.24; BDNF: β=0.06, p<0.001) at birth. Maternal age and third-trimester BDNF concentrations predicted one-month-old neonate length (maternal age: β=-1.03; BDNF: β=0.45, p<0.001). Pregestational body mass index (pBMI), GWG, second-trimester FGF21 concentrations, and third-trimester AFABP concentrations predicted neonatal fat mass percentage (pBMI: β=-0.58; GWG: β=-0.32; FGF21: β=-0.004; AFABP: β=-1.27, p<0.001) at one month of age. Conclusion Maternal PGRN, AFABP, and BDNF concentrations, but not FGF21, vary throughout pregnancy. These organokines and maternal characteristics can be useful in the prediction of neonatal weight, length, and percentage fat mass.
Collapse
Affiliation(s)
- Jorge Valencia-Ortega
- Unidad de Investigación en Reproducción Humana, Instituto Nacional de Perinatología-Facultad de Química, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Victoria Galicia-Hernández
- Department of Reproductive and Perinatal Health Research, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes, Mexico City, Mexico
- Sección de Estudios de Posgrado, Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Andrea Castillo-Santos
- Department of Reproductive and Perinatal Health Research, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes, Mexico City, Mexico
- Sección de Estudios de Posgrado, Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Miranda Molerés-Orduña
- Department of Reproductive and Perinatal Health Research, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes, Mexico City, Mexico
- Sección de Estudios de Posgrado, Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Carla Arceo-Cerna
- Department of Reproductive and Perinatal Health Research, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes, Mexico City, Mexico
- Sección de Estudios de Posgrado, Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Otilia Perichart-Perera
- Nutrition and Bioprogramming Coordination, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes, Mexico City, Mexico
| | - Ameyalli M. Rodríguez-Cano
- Nutrition and Bioprogramming Coordination, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes, Mexico City, Mexico
| | - Carolina Rodríguez-Hernández
- Nutrition and Bioprogramming Coordination, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes, Mexico City, Mexico
| | - Guadalupe Estrada-Gutierrez
- Department of Immunobiochemistry, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes, Mexico City, Mexico
| | - Ignacio Camacho-Arroyo
- Unidad de Investigación en Reproducción Humana, Instituto Nacional de Perinatología-Facultad de Química, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Juan Mario Solis-Paredes
- Department of Reproductive and Perinatal Health Research, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes, Mexico City, Mexico
| |
Collapse
|
33
|
Tao J, Li H, Wang H, Tan J, Yang X. Metabolic dysfunction-associated fatty liver disease and osteoporosis: the mechanisms and roles of adiposity. Osteoporos Int 2024; 35:2087-2098. [PMID: 39136721 DOI: 10.1007/s00198-024-07217-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 07/26/2024] [Indexed: 11/21/2024]
Abstract
Nonalcoholic fatty liver disease (NAFLD) has recently been renamed metabolic dysfunction-associated fatty liver disease (MAFLD) by international consensus. Both MAFLD and osteoporosis are highly prevalent metabolic diseases. Recent evidence indicates that NAFLD increases the risk of low bone mineral density and osteoporosis, likely mediated by obesity. NAFLD has a close association with obesity and other metabolic disorders. Although obesity was previously thought to protect against bone loss, it now heightens osteoporotic fracture risk. This overview summarizes current clinical correlations between obesity, NAFLD, and osteoporosis, with a focus on recent insights into potential mechanisms interconnecting these three conditions. This study reviewed the scientific literature on the relationship between obesity, nonalcoholic fatty liver disease, and osteoporosis as well as the scientific literature that reveals the underlying pathophysiologic mechanisms between the three. Emerging evidence suggests obesity plays a key role in mediating the relationship between NAFLD and osteoporosis. Accumulating laboratory evidence supports plausible pathophysiological links between obesity, NAFLD, and osteoporosis, including inflammatory pathways, insulin resistance, gut microbiota dysbiosis, bone marrow adiposity, and alterations in insulin-like growth factor-1 signaling. Adiposity has important associations with NAFLD and osteoporosis, the underlying pathophysiologic mechanisms between the three may provide new therapeutic targets for this complex patient population.
Collapse
Affiliation(s)
- Jie Tao
- Department of General Practice, the Affiliated Huai'an No.1 People's Hospital of Nanjing Medical University, Huai'an, Jiangsu Province, China
| | - Hong Li
- Department of Health Management Center, the Affiliated Huai'an No.1 People's Hospital of Nanjing Medical University, Huai'an, Jiangsu Province, China
| | - Honggang Wang
- Department of Gastroenterology, the Affiliated Huai'an No.1 People's Hospital of Nanjing Medical University, Huai'an, Jiangsu Province, China
| | - Juan Tan
- Department of General Practice, the Affiliated Huai'an No.1 People's Hospital of Nanjing Medical University, Huai'an, Jiangsu Province, China.
| | - Xiaozhong Yang
- Department of Gastroenterology, the Affiliated Huai'an No.1 People's Hospital of Nanjing Medical University, Huai'an, Jiangsu Province, China.
| |
Collapse
|
34
|
Palma-Jacinto JA, López-López E, Medina-Franco JL, Montero-Ruíz O, Santiago-Roque I. Putative mechanism of a multivitamin treatment against insulin resistance. Adipocyte 2024; 13:2369777. [PMID: 38937879 PMCID: PMC11216102 DOI: 10.1080/21623945.2024.2369777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 06/12/2024] [Indexed: 06/29/2024] Open
Abstract
Insulin resistance is caused by the abnormal secretion of proinflammatory cytokines in adipose tissue, which is induced by an increase in lipid accumulation in adipocytes, hepatocytes, and myocytes. The inflammatory pathway involves multiple targets such as nuclear factor kappa B, inhibitor of nuclear factor κ-B kinase, and mitogen-activated protein kinase. Vitamins are micronutrients with anti-inflammatory activities that have unclear mechanisms. The present study aimed to describe the putative mechanisms of vitamins involved in the inflammatory pathway of insulin resistance. The strategy to achieve this goal was to integrate data mining and analysis, target prediction, and molecular docking simulation calculations to support our hypotheses. Our results suggest that the multitarget activity of vitamins A, B1, B2, B3, B5, B6, B7, B12, C, D3, and E inhibits nuclear factor kappa B and mitogen-activated protein kinase, in addition to vitamins A and B12 against inhibitor of nuclear factor κ-B kinase. The findings of this study highlight the pharmacological potential of using an anti-inflammatory and multitarget treatment based on vitamins and open new perspectives to evaluate the inhibitory activity of vitamins against nuclear factor kappa B, mitogen-activated protein kinase, and inhibitor of nuclear factor κ-B kinase in an insulin-resistant context.
Collapse
Affiliation(s)
- José Antonio Palma-Jacinto
- Laboratory of Biochemistry and Neurotoxicology, Faculty of Bioanalysis-Xalapa, Universidad Veracruzana, Médicos y Odontólogos S/N Unidad del Bosque, Xalapa, Mexico
| | - Edgar López-López
- DIFACQUIM Research Group, Department of Pharmacy, School of Chemistry, Universidad Nacional Autónoma de México, Mexico City, Mexico
- Department of Chemistry and Graduate Program in Pharmacology, Center for Research, Advanced Studies of the National Polytechnic Institute, Mexico City, Mexico
| | - José Luis Medina-Franco
- DIFACQUIM Research Group, Department of Pharmacy, School of Chemistry, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Oreth Montero-Ruíz
- Laboratory of Biochemistry and Neurotoxicology, Faculty of Bioanalysis-Xalapa, Universidad Veracruzana, Médicos y Odontólogos S/N Unidad del Bosque, Xalapa, Mexico
| | - Isela Santiago-Roque
- Laboratory of Biochemistry and Neurotoxicology, Faculty of Bioanalysis-Xalapa, Universidad Veracruzana, Médicos y Odontólogos S/N Unidad del Bosque, Xalapa, Mexico
| |
Collapse
|
35
|
Afrisham R, Farrokhi V, Ayyoubzadeh SM, Vatannejad A, Fadaei R, Moradi N, Jadidi Y, Alizadeh S. CCN5/WISP2 serum levels in patients with coronary artery disease and type 2 diabetes and its correlation with inflammation and insulin resistance; a machine learning approach. Biochem Biophys Rep 2024; 40:101857. [PMID: 39552711 PMCID: PMC11564987 DOI: 10.1016/j.bbrep.2024.101857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 10/25/2024] [Accepted: 10/25/2024] [Indexed: 11/19/2024] Open
Abstract
Introduction Studies have shown various effects of CCN5/WISP2 on metabolic pathways, yet no prior investigation has established a link between its serum levels and CAD and/or T2DM. Therefore, this study seeks to explore the relation between CCN5 and the risk factor of CAD and/or diabetes, in comparison to individuals with good health, marking a pioneering endeavor in this field. Methods This case-control study investigates serum levels of CCN5, TNF-α, IL-6, adiponectin, and fasting insulin in a population of 160 individuals recruited into four equal groups (T2DM, CAD, CAD-T2DM, and healthy controls). Statistical tests comprise Chi-square tests, ANOVA, Spearman correlation, and logistic regression. ROC curves were used to represent the diagnostic potential of CCN5. Disease states are predicted by machine learning algorithms: Decision Tree, Gradient Boosted Trees, Random Forest, Naïve Bayes, and KNN. These models' performance was evaluated by various metrics, all of which were ensured to be robust by applying 10-fold cross-validation. Analyses were done in SPSS and GraphPad Prism and RapidMiner software. Results The CAD, T2DM, and CAD-T2DM groups had significantly higher CCN5 concentrations compared to the healthy control group (CAD: 336.87 ± 107.36 ng/mL, T2DM: 367.46 ± 102.15 ng/mL, CAD-T2DM: 404.68 ± 108.15 ng/mL, control: 205.62 ± 63.34 ng/mL; P < 0.001). A positive and significant correlation was observed between CCN5 and cytokines (IL-6 and TNF-α) in all patient groups (P < 0.05). Multinomial logistic regression analysis indicated a significant association between CCN5 and T2DM-CAD, T2DM, and CAD conditions (P < 0.001) even after adjusting for gender, BMI, and age (P < 0.001). Regarding the machine learning models, the Naïve Bayes model showed the best performance for classifying cases of T2DM, achieving an AUC value of 0.938±0.066. For predicting CAD, the Random Forest classifier achieved the highest AUC value of 0.994±0.020. In the case of CAD-T2DM prediction, the Naïve Bayes model demonstrated the highest AUC of 0.981±0.059, along with an Accuracy of 97.50 % ± 7.91 % and an F-measure of 96.67 % ± 10.54 %. Conclusion Our study has revealed, for the first time, a positive connection between CCN5 serum levels and the risk of developing T2DM and CAD. Nonetheless, more research is needed to ascertain whether CCN5 can serve as a predictive marker.
Collapse
Affiliation(s)
- Reza Afrisham
- Department of Medical Laboratory Sciences, School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran
| | - Vida Farrokhi
- Department of Hematology and Transfusion Sciences, School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed Mohammad Ayyoubzadeh
- Department of Health Information Management, School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran
| | - Akram Vatannejad
- Department of Comparative Biosciences, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Reza Fadaei
- Sleep Disorders Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Nariman Moradi
- Liver and Digestive Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Yasaman Jadidi
- Department of Medical Laboratory Sciences, School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran
| | - Shaban Alizadeh
- Department of Hematology and Transfusion Sciences, School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
36
|
Sandoval EYH, Gómez ZJD. Irisin and neuroinflammation: Challenges and opportunities. Exp Mol Pathol 2024; 140:104941. [PMID: 39467426 DOI: 10.1016/j.yexmp.2024.104941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 10/01/2024] [Accepted: 10/21/2024] [Indexed: 10/30/2024]
Abstract
Irisin is a myokine that is cleaved from 5-domain type III fibronectin (FNDC5), and is known for its metabolic functions as it stimulates browning of white adipose tissue; similarly, effects on the central nervous system have been described, specifically in neurodevelopmental and neuroprotection processes. The purpose of this review is to describe recent information on the effects of irisin on neuroinflammation to contribute to the knowledge about the mechanisms by which irisin and exercise could generate benefits for some neurological diseases. The review conducted found several studies describing the effect of irisin on pathways such as STAT3, p38, cAMP/PKA/CREB, as well as effects on GFAP protein expression or apoptosis processes in both in vitro and in vivo models; likewise, these pathways are associated with better BDNF expression. Despite increasing information on this topic, it is still necessary to clarify the mechanisms by which irisin has effects on neuroinflammation and this could represent an opportunity to generate more treatments for diseases such as Alzheimer's, Parkinson's or Diabetes Mellitus.
Collapse
Affiliation(s)
| | - Zulma Janeth Dueñas Gómez
- Department of Physiological Sciences, School of Medicine, Universidad Nacional de Colombia, Bogotá, Colombia
| |
Collapse
|
37
|
Lee TL, Hsuan CF, Lu NH, Tsai IT, Hsu CC, Wang CP, Lu YC, Hu TM, Chung FM, Lee YJ, Tang WH. Circulating RBP4 and FABP4 concentrations in patients with chronic schizophrenia are associated with increased epicardial adipose tissue volume and metabolic syndrome. Eur Arch Psychiatry Clin Neurosci 2024:10.1007/s00406-024-01950-5. [PMID: 39604670 DOI: 10.1007/s00406-024-01950-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 11/20/2024] [Indexed: 11/29/2024]
Abstract
Schizophrenia has been linked to an elevated cardiovascular risk profile and premature onset of cardiovascular disease. Quantifying epicardial adipose tissue (EAT) volume provides insight into its correlation with coronary artery disease (CAD) severity and associated risk factors. Previous research indicates higher pericardial adipose tissue in individuals with schizophrenia compared to non-schizophrenic counterparts. RBP4, FABP3, and FABP4 have been implicated in CAD pathogenesis. In this study, we examined the potential increase in EAT volume in individuals with chronic schizophrenia and aimed to elucidate the relationship between circulating levels of RBP4, FABP3, and FABP4 with EAT volume and coronary artery calcium score within this cohort. We recruited 186 consecutive patients with chronic schizophrenia and utilized enzyme-linked immunosorbent assay to assess plasma concentrations of RBP4, FABP3, and FABP4. Cardiac multislice computed tomography measured EAT volume and coronary artery calcium scores. Significantly higher EAT volume in patients with chronic schizophrenia compared to controls. RBP4 associated positively with metabolic factors and EAT volumes, while FABP3 associated positively with creatinine and coronary atherosclerosis markers. FABP4 showed positive associations with metabolic factors, hypertension, and EAT volumes, but negative associations with HDL-C and eGFR. Logistic regression identified RBP4 and FABP4 as independent factors associated with increased EAT volumes, even after adjusting for known biomarkers. Both RBP4 and FABP4 were significantly associated with metabolic syndrome components and EAT volume. This study elucidates the association between chronic schizophrenia and augmented EAT volume, suggesting plausible correlations with CAD-related health complications through RBP4 and FABP4 pathways.
Collapse
Affiliation(s)
- Thung-Lip Lee
- Division of Cardiology, Department of Internal Medicine, E-Da Hospital, I-Shou University, Kaohsiung, 82445, Taiwan
- School of Medicine for International Students, College of Medicine, I-Shou University, Kaohsiung, 82445, Taiwan
| | - Chin-Feng Hsuan
- Division of Cardiology, Department of Internal Medicine, E-Da Hospital, I-Shou University, Kaohsiung, 82445, Taiwan
- School of Medicine, College of Medicine, I-Shou University, Kaohsiung, 82445, Taiwan
- Division of Cardiology, Department of Internal Medicine, E-Da Dachang Hospital, I-Shou University, Kaohsiung, 807066, Taiwan
| | - Nan-Han Lu
- School of Medicine, College of Medicine, I-Shou University, Kaohsiung, 82445, Taiwan
- Department of Radiology, E-Da Cancer Hospital, I-Shou University, Kaohsiung, 82445, Taiwan
| | - I-Ting Tsai
- School of Medicine, College of Medicine, I-Shou University, Kaohsiung, 82445, Taiwan
- Department of Emergency, E-Da Hospital, I-Shou University, Kaohsiung, 82445, Taiwan
| | - Chia-Chang Hsu
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, E-Da Hospital, I-Shou University, Kaohsiung, 82445, Taiwan
- Health Examination Center, E-Da Dachang Hospital, I-Shou University, Kaohsiung, 807066, Taiwan
- The School of Chinese Medicine for Post Baccalaureate, College of Medicine, I-Shou University, Kaohsiung, 82445, Taiwan
| | - Chao-Ping Wang
- Division of Cardiology, Department of Internal Medicine, E-Da Hospital, I-Shou University, Kaohsiung, 82445, Taiwan
- School of Medicine for International Students, College of Medicine, I-Shou University, Kaohsiung, 82445, Taiwan
| | - Yung-Chuan Lu
- Division of Endocrinology and Metabolism, Department of Internal Medicine, E-Da Hospital, I-Shou University, Kaohsiung, 82445, Taiwan
| | - Tsung-Ming Hu
- Department of Psychiatry, Taipei Veterans General Hospital, Yuli Branch, Hualien, 98142, Taiwan
- Department of Management, Fo Guang University, Jiaosi, Yilan, 262307, Taiwan
| | - Fu-Mei Chung
- Division of Cardiology, Department of Internal Medicine, E-Da Hospital, I-Shou University, Kaohsiung, 82445, Taiwan
| | - Yau-Jiunn Lee
- Lee's Endocrinologic Clinic, Pingtung, 90000, Taiwan
| | - Wei-Hua Tang
- Division of Cardiology, Department of Internal Medicine, Taipei Veterans General Hospital, Yuli Branch, No. 91, Xinxing St., Yuli Township, Hualien, 981002, Taiwan.
- Faculty of Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei, 112304, Taiwan.
| |
Collapse
|
38
|
Singh R, Chen JY, Hawks SR, Wagatsuma Y. A Prospective Study on Lifestyle Factors, Body Mass Index Changes, and Lipitension Risk in Japanese Young and Middle-Aged Women. J Womens Health (Larchmt) 2024; 33:1576-1586. [PMID: 39011601 DOI: 10.1089/jwh.2024.0073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/17/2024] Open
Abstract
Background: This study investigates how lifestyle factors and westernization contribute to obesity and examines the influence of body mass index (BMI) changes and lifestyle factors on "lipitension," a significant risk factor for heart disease and metabolic syndrome. Methods: This prospective study focused on women aged 20-64 without pre-existing hypertension and dyslipidemia who underwent regular medical checkups between April 2016 and March 2022. Anthropometric measurements and blood pressure, along with low-density lipoprotein, high-density lipoprotein, and triglycerides levels, were assessed. Results: Over an average 46.5-month follow-up, 11.5% of initially healthy young and middle-aged women developed lipitension. Categorizing participants based on BMI changes revealed stable (63.8%), decreased (12.5%), and increased (23.8%) groups within this 11.5%. Increased BMI is linked with a heightened hazard risk for lipitension. Women with increased BMI who refrained from snacking (aHR [95% confidence interval (CI)] = 2.750 [1.433-5.279]), avoided late-night eating (aHR [95% CI] = 1.346 [1.032-1.754]), and engaged in alcohol consumption (aHR [95% CI] = 2.037 [1.138-3.646]) showed an elevated risk. Conversely, within the decreased BMI group, behaviors like skipping breakfast (aHR [95% CI] = 0.190 [0.047-0.764]), eating quickly (aHR [95% CI] = 0.457 [0.215-0.972]), and not eating late (aHR [95% CI] = 0.665 [0.467-0.948]) were associated to a reduced lipitension. Subgroup analysis for women with BMI <23 revealed specific behaviors influencing lipitension risk in both BMI-increased and BMI-stable groups. Conclusion: Customized interventions, including for women with BMI <23, enhance heart health, mitigating global lifestyle diseases and obesity.
Collapse
Affiliation(s)
- Rupa Singh
- Department of Clinical Trials and Clinical Epidemiology, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Japan
| | - Jou-Yin Chen
- Department of Clinical Trials and Clinical Epidemiology, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Japan
| | - Steven R Hawks
- Kinesiology and Health Science, Utah State University, Moab, Utah, USA
| | - Yukiko Wagatsuma
- Department of Clinical Trials and Clinical Epidemiology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| |
Collapse
|
39
|
Berta E, Halmi S, Molnár I, Hutkai D, Csiha S, Bhattoa HP, Lőrincz H, Somodi S, Katkó M, Harangi M, Paragh G, Nagy EV, Bodor M. Low Serum Fibroblast Growth Factor 21 Level and Its Altered Regulation by Thyroid Hormones in Patients with Hashimoto's Thyroiditis on Levothyroxine Substitution. Metabolites 2024; 14:565. [PMID: 39452947 PMCID: PMC11509456 DOI: 10.3390/metabo14100565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/15/2024] [Accepted: 10/19/2024] [Indexed: 10/26/2024] Open
Abstract
BACKGROUND/OBJECTIVES Fibroblast growth factor 21 (FGF21) is a hormonal regulator of lipid and glucose metabolism exerting protection against atherosclerosis by multiple actions on the blood vessels, liver, and adipose tissues. We aimed to investigate serum FGF21 level and its relation to thyroid hormones and metabolic parameters among patients with Hashimoto's thyroiditis (HT). METHODS Eighty patients with HT on levothyroxine treatment and eighty-two age- and BMI-matched adults without thyroid disease serving as controls were enrolled. Serum FGF21 concentrations were determined with an enzyme-linked immunosorbent assay. RESULTS Median serum FGF21 level was significantly lower in HT patients compared with controls (74.2 (33.4-148.3) pg/mL vs. 131.9 (44.8-236.3) pg/mL; p = 0.03). We found a positive correlation between FGF21 and age, triglyceride, total cholesterol, and low-density lipoprotein cholesterol in both groups, while thyroid stimulating hormone and C-reactive protein showed a positive correlation, and thyroxine had an inverse correlation with FGF21 only in control subjects. According to multiple regression analyses, thyroid status is the main predictor of FGF21 in healthy controls, while it is not a significant predictor of FGF21 among HT patients on levothyroxine supplementation therapy. CONCLUSIONS Our results indicate that the physiological role of thyroid function in the regulation of FGF21 synthesis is impaired in HT patients, which may contribute to the metabolic alterations characteristic of HT patients.
Collapse
Affiliation(s)
- Eszter Berta
- Division of Metabolism, Department of Internal Medicine, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary; (H.L.); (S.S.); (M.H.); (G.P.)
- Department of Clinical Basics, Faculty of Pharmacy, University of Debrecen, H-4032 Debrecen, Hungary; (S.C.); (M.B.)
| | - Sándor Halmi
- Doctoral School of Health Sciences, University of Debrecen, H-4032 Debrecen, Hungary; (S.H.); (I.M.)
| | - István Molnár
- Doctoral School of Health Sciences, University of Debrecen, H-4032 Debrecen, Hungary; (S.H.); (I.M.)
- Division of Endocrinology, Department of Internal Medicine, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary; (M.K.); (E.V.N.)
| | - Dávid Hutkai
- Division of Nephrology, Department of Internal Medicine, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary;
- Kálmán Laki Doctoral School, University of Debrecen, H-4032 Debrecen, Hungary
| | - Sára Csiha
- Department of Clinical Basics, Faculty of Pharmacy, University of Debrecen, H-4032 Debrecen, Hungary; (S.C.); (M.B.)
- Doctoral School of Health Sciences, University of Debrecen, H-4032 Debrecen, Hungary; (S.H.); (I.M.)
- Division of Endocrinology, Department of Internal Medicine, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary; (M.K.); (E.V.N.)
| | - Harjit Pal Bhattoa
- Department of Laboratory Medicine, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary;
| | - Hajnalka Lőrincz
- Division of Metabolism, Department of Internal Medicine, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary; (H.L.); (S.S.); (M.H.); (G.P.)
| | - Sándor Somodi
- Division of Metabolism, Department of Internal Medicine, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary; (H.L.); (S.S.); (M.H.); (G.P.)
- Department of Emergency Medicine, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary
| | - Mónika Katkó
- Division of Endocrinology, Department of Internal Medicine, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary; (M.K.); (E.V.N.)
| | - Mariann Harangi
- Division of Metabolism, Department of Internal Medicine, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary; (H.L.); (S.S.); (M.H.); (G.P.)
| | - György Paragh
- Division of Metabolism, Department of Internal Medicine, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary; (H.L.); (S.S.); (M.H.); (G.P.)
| | - Endre V. Nagy
- Division of Endocrinology, Department of Internal Medicine, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary; (M.K.); (E.V.N.)
| | - Miklós Bodor
- Department of Clinical Basics, Faculty of Pharmacy, University of Debrecen, H-4032 Debrecen, Hungary; (S.C.); (M.B.)
- Division of Endocrinology, Department of Internal Medicine, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary; (M.K.); (E.V.N.)
| |
Collapse
|
40
|
Baudin J, Hernandez-Baixauli J, Romero-Giménez J, Yang H, Mulero F, Puiggròs F, Mardinoglu A, Arola L, Caimari A. A cocktail of histidine, carnosine, cysteine and serine reduces adiposity and improves metabolic health and adipose tissue immunometabolic function in ovariectomized rats. Biomed Pharmacother 2024; 179:117326. [PMID: 39208671 DOI: 10.1016/j.biopha.2024.117326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 08/13/2024] [Accepted: 08/21/2024] [Indexed: 09/04/2024] Open
Abstract
Many women have sought alternative therapies to address menopause. Recently, a multi-ingredient supplement (MIS) containing L-histidine, L-carnosine, L-serine, and L-cysteine has been shown to be effective at ameliorating hepatic steatosis (HS) in ovariectomized (OVX) rats, a postmenopausal oestrogen deficiency model. Considering that HS frequently accompanies obesity, which often occurs during menopause, we aimed to investigate the effects of this MIS for 8 weeks in OVX rats. Twenty OVX rats were orally supplemented with either MIS (OVX-MIS) or vehicle (OVX). Ten OVX rats received vehicle orally along with subcutaneous injections of 17β-oestradiol (OVX-E2), whereas 10 rats underwent a sham operation and received oral and injected vehicles (control group). MIS consumption partly counteracted the fat mass accretion observed in OVX animals, leading to decreased total fat mass, adiposity index and retroperitoneal white adipose tissue (RWAT) adipocyte hypertrophy. OVX-MIS rats also displayed increased lean mass and lean/fat ratio, suggesting a healthier body composition, similar to the results reported for OVX-E2 animals. MIS consumption decreased the circulating levels of the proinflammatory marker CRP, the total cholesterol-to-HDL-cholesterol ratio and the leptin-to-adiponectin ratio, a biomarker of diabetes risk and metabolic syndrome. RWAT transcriptomics indicated that MIS favourably regulated genes involved in adipocyte structure and morphology, cell fate determination and differentiation, glucose/insulin homeostasis, inflammation, response to stress and oxidative phosphorylation, which may be mechanisms underlying the beneficial effects described for OVX-MIS rats. Our results pave the way for using this MIS formulation to improve the body composition and immunometabolic health of menopausal women.
Collapse
Affiliation(s)
- Julio Baudin
- Eurecat, Centre Tecnològic de Catalunya, Technological Unit of Nutrition and Health, Reus 43204, Spain; Nutrigenomics Research Group, Department of Biochemistry and Biotechnology, Universitat Rovira i Virgili, Tarragona 43007, Spain
| | - Julia Hernandez-Baixauli
- Eurecat, Centre Tecnològic de Catalunya, Technological Unit of Nutrition and Health, Reus 43204, Spain
| | - Jordi Romero-Giménez
- Eurecat, Centre Tecnològic de Catalunya, Technological Unit of Nutrition and Health, Reus 43204, Spain
| | - Hong Yang
- Science for Life Laboratory, KTH Royal Institute of Technology, Stockholm SE-17165, Sweden
| | - Francisca Mulero
- Molecular Imaging Unit, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Francesc Puiggròs
- Eurecat, Centre Tecnològic de Catalunya, Biotechnology Area, Reus 43204, Spain
| | - Adil Mardinoglu
- Science for Life Laboratory, KTH Royal Institute of Technology, Stockholm SE-17165, Sweden; Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, London, United Kingdom
| | - Lluís Arola
- Nutrigenomics Research Group, Department of Biochemistry and Biotechnology, Universitat Rovira i Virgili, Tarragona 43007, Spain.
| | - Antoni Caimari
- Eurecat, Centre Tecnològic de Catalunya, Biotechnology Area, Reus 43204, Spain.
| |
Collapse
|
41
|
Cabral-García GA, Cruz-Muñoz JR, Valdez-Morales EE, Barajas-Espinosa A, Liñán-Rico A, Guerrero-Alba R. Pharmacology of P2X Receptors and Their Possible Therapeutic Potential in Obesity and Diabetes. Pharmaceuticals (Basel) 2024; 17:1291. [PMID: 39458933 PMCID: PMC11509955 DOI: 10.3390/ph17101291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/21/2024] [Accepted: 09/26/2024] [Indexed: 10/28/2024] Open
Abstract
The role of P2X ionotropic receptors in the behavior of purinergic signaling on pathophysiological processes has been widely studied. In recent years, the important participation of P2X receptors in physiological and pathological processes, such as energy metabolism, characteristic inflammatory responses of the immune system, and nociceptive activity in response to pain stimuli, has been noted. Here, we explore the molecular characteristics of the P2X receptors and the use of the different agonist and antagonist agents recently described, focusing on their potential as new therapeutic targets in the treatment of diseases with emphasis on obesity, diabetes, and some of the complications derived from these pathologies.
Collapse
Affiliation(s)
- Guillermo A. Cabral-García
- Departamento de Fisiología y Farmacología, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Aguascalientes 20100, Mexico; (G.A.C.-G.); (J.R.C.-M.); (E.E.V.-M.)
| | - José R. Cruz-Muñoz
- Departamento de Fisiología y Farmacología, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Aguascalientes 20100, Mexico; (G.A.C.-G.); (J.R.C.-M.); (E.E.V.-M.)
| | - Eduardo E. Valdez-Morales
- Departamento de Fisiología y Farmacología, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Aguascalientes 20100, Mexico; (G.A.C.-G.); (J.R.C.-M.); (E.E.V.-M.)
- Consejo Nacional de Humanidades, Ciencias y Tecnologías (CONAHCyT), Ciudad de México 03940, Mexico;
| | - Alma Barajas-Espinosa
- Escuela Superior de Huejutla, Universidad Autónoma del Estado de Hidalgo, Huejutla de Reyes 43000, Hidalgo, Mexico;
| | - Andrómeda Liñán-Rico
- Consejo Nacional de Humanidades, Ciencias y Tecnologías (CONAHCyT), Ciudad de México 03940, Mexico;
- Centro Universitario de Investigaciones Biomédicas, Universidad de Colima, Colima 28045, Mexico
| | - Raquel Guerrero-Alba
- Departamento de Fisiología y Farmacología, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Aguascalientes 20100, Mexico; (G.A.C.-G.); (J.R.C.-M.); (E.E.V.-M.)
| |
Collapse
|
42
|
Caturano A, Vetrano E, Galiero R, Sardu C, Rinaldi L, Russo V, Monda M, Marfella R, Sasso FC. Advances in the Insulin-Heart Axis: Current Therapies and Future Directions. Int J Mol Sci 2024; 25:10173. [PMID: 39337658 PMCID: PMC11432093 DOI: 10.3390/ijms251810173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 09/17/2024] [Accepted: 09/20/2024] [Indexed: 09/30/2024] Open
Abstract
The insulin-heart axis plays a pivotal role in the pathophysiology of cardiovascular disease (CVD) in insulin-resistant states, including type 2 diabetes mellitus. Insulin resistance disrupts glucose and lipid metabolism, leading to systemic inflammation, oxidative stress, and atherogenesis, which contribute to heart failure (HF) and other CVDs. This review was conducted by systematically searching PubMed, Scopus, and Web of Science databases for peer-reviewed studies published in the past decade, focusing on therapeutic interventions targeting the insulin-heart axis. Studies were selected based on their relevance to insulin resistance, cardiovascular outcomes, and the efficacy of pharmacologic treatments. Key findings from the review highlight the efficacy of lifestyle modifications, such as dietary changes and physical activity, which remain the cornerstone of managing insulin resistance and improving cardiovascular outcomes. Moreover, pharmacologic interventions, such as metformin, sodium-glucose cotransporter 2 inhibitors, glucagon-like peptide-1 receptor agonists, and dipeptidyl peptidase-4 inhibitors, have shown efficacy in reducing cardiovascular risk by addressing metabolic dysfunction, reducing inflammation, and improving endothelial function. Furthermore, emerging treatments, such as angiotensin receptor-neprilysin inhibitors, and mechanical interventions like ventricular assist devices offer new avenues for managing HF in insulin-resistant patients. The potential of these therapies to improve left ventricular ejection fraction and reverse pathological cardiac remodeling highlights the importance of early intervention. However, challenges remain in optimizing treatment regimens and understanding the long-term cardiovascular effects of these agents. Future research should focus on personalized approaches that integrate lifestyle and pharmacologic therapies to effectively target the insulin-heart axis and mitigate the burden of cardiovascular complications in insulin-resistant populations.
Collapse
Affiliation(s)
- Alfredo Caturano
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, 80138 Naples, Italy; (A.C.); (E.V.); (R.G.); (C.S.); (R.M.)
- Department of Experimental Medicine, University of Campania Luigi Vanvitelli, 80138 Naples, Italy;
| | - Erica Vetrano
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, 80138 Naples, Italy; (A.C.); (E.V.); (R.G.); (C.S.); (R.M.)
| | - Raffaele Galiero
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, 80138 Naples, Italy; (A.C.); (E.V.); (R.G.); (C.S.); (R.M.)
| | - Celestino Sardu
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, 80138 Naples, Italy; (A.C.); (E.V.); (R.G.); (C.S.); (R.M.)
| | - Luca Rinaldi
- Department of Medicine and Health Sciences “Vincenzo Tiberio”, University of Molise, 86100 Campobasso, Italy
| | - Vincenzo Russo
- Department of Biology, College of Science and Technology, Sbarro Institute for Cancer Research and Molecular Medicine, Temple University, Philadelphia, PA 19122, USA;
- Division of Cardiology, Department of Medical Translational Sciences, University of Campania Luigi Vanvitelli, 80138 Naples, Italy
| | - Marcellino Monda
- Department of Experimental Medicine, University of Campania Luigi Vanvitelli, 80138 Naples, Italy;
| | - Raffaele Marfella
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, 80138 Naples, Italy; (A.C.); (E.V.); (R.G.); (C.S.); (R.M.)
| | - Ferdinando Carlo Sasso
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, 80138 Naples, Italy; (A.C.); (E.V.); (R.G.); (C.S.); (R.M.)
| |
Collapse
|
43
|
Mitsis A, Khattab E, Myrianthefs M, Tzikas S, Kadoglou NPE, Fragakis N, Ziakas A, Kassimis G. Chemerin in the Spotlight: Revealing Its Multifaceted Role in Acute Myocardial Infarction. Biomedicines 2024; 12:2133. [PMID: 39335646 PMCID: PMC11428948 DOI: 10.3390/biomedicines12092133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 09/15/2024] [Accepted: 09/18/2024] [Indexed: 09/30/2024] Open
Abstract
Chemerin, an adipokine known for its role in adipogenesis and inflammation, has emerged as a significant biomarker in cardiovascular diseases, including acute myocardial infarction (AMI). Recent studies have highlighted chemerin's involvement in the pathophysiological processes of coronary artery disease (CAD), where it modulates inflammatory responses, endothelial function, and vascular remodelling. Elevated levels of chemerin have been associated with adverse cardiovascular outcomes, including increased myocardial injury, left ventricular dysfunction, and heightened inflammatory states post-AMI. This manuscript aims to provide a comprehensive review of the current understanding of chemerin's role in AMI, detailing its molecular mechanisms, clinical implications, and potential as a biomarker for diagnosis and prognosis. Additionally, we explore the therapeutic prospects of targeting chemerin pathways to mitigate myocardial damage and improve clinical outcomes in AMI patients. By synthesizing the latest research findings, this review seeks to elucidate the multifaceted role of chemerin in AMI and its promise as a target for innovative therapeutic strategies.
Collapse
Affiliation(s)
- Andreas Mitsis
- Cardiology Department, Nicosia General Hospital, State Health Services Organization, Nicosia 2029, Cyprus; (E.K.); (M.M.)
| | - Elina Khattab
- Cardiology Department, Nicosia General Hospital, State Health Services Organization, Nicosia 2029, Cyprus; (E.K.); (M.M.)
| | - Michael Myrianthefs
- Cardiology Department, Nicosia General Hospital, State Health Services Organization, Nicosia 2029, Cyprus; (E.K.); (M.M.)
| | - Stergios Tzikas
- Third Department of Cardiology, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece;
| | | | - Nikolaos Fragakis
- Second Department of Cardiology, Aristotle University of Thessaloniki, 54642 Thessaloniki, Greece; (N.F.); (G.K.)
| | - Antonios Ziakas
- First Department of Cardiology, AHEPA University Hospital, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece;
| | - George Kassimis
- Second Department of Cardiology, Aristotle University of Thessaloniki, 54642 Thessaloniki, Greece; (N.F.); (G.K.)
| |
Collapse
|
44
|
da Costa CS, de Oliveira TF, Dos Santos FCF, Padilha AS, Krause M, Carneiro MTWD, Miranda-Alves L, Graceli JB. Subacute cadmium exposure changes different metabolic functions, leading to type 1 and 2 diabetes mellitus features in female rats. ENVIRONMENTAL TOXICOLOGY 2024; 39:4278-4297. [PMID: 38712533 DOI: 10.1002/tox.24306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 02/15/2024] [Accepted: 04/23/2024] [Indexed: 05/08/2024]
Abstract
Cadmium (Cd) is a heavy metal that acts as endocrine disrupting chemical (EDC). Few studies have investigated the effects of Cd exposure on metabolic dysfunctions, such as type 1 and 2 diabetes mellitus (T1DM and T2DM). Thus, we assessed whether subacute Cd exposure at occupational levels causes abnormalities in white adipose tissue (WAT), liver, pancreas, and skeletal muscle. We administered cadmium chloride (CdCl2) (100 ppm in drinking water for 30 days) to female rats and evaluated Cd levels in serum and metabolic organs, morphophysiology, inflammation, oxidative stress, fibrosis, and gene expression. High Cd levels were found in serum, WAT, liver, pancreas, and skeletal muscle. Cd-exposed rats showed low adiposity, dyslipidemia, insulin resistance, systemic inflammation, and oxidative stress compared to controls. Cd exposure reduced adipocyte size, hyperleptinemia, increased cholesterol levels, inflammation, apoptosis and fibrosis in WAT. Cd-exposed rats had increased liver cholesterol levels, insulin receptor beta (IRβ) and peroxisome proliferator-activated receptor-gamma coactivator-1alpha (PGC1α) expression, karyomegaly, inflammation, and fibrosis. Cd exposure reduced insulin levels and pancreatic islet size and increased inflammation and fibrosis. Cd exposure reduced skeletal muscle fiber diameter and increased IR expression and inflammation. Finally, strong positive correlations were observed between serum, tissue Cd levels, abnormal morphology, tissue inflammation and fibrosis. Thus, these data suggest that subacute Cd exposure impairs WAT, liver, pancreas and skeletal muscle function, leading to T1DM and T2DM features and other complications in female rats.
Collapse
Affiliation(s)
- Charles S da Costa
- Department of Morphology, Federal University of Espirito Santo, Vitória, Brazil
| | | | | | | | - Maiara Krause
- Department of Chemistry, Federal University of Espirito Santo, Vitória, Brazil
| | | | - Leandro Miranda-Alves
- Experimental Endocrinology Research, Development and Innovation Group, Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Jones B Graceli
- Department of Morphology, Federal University of Espirito Santo, Vitória, Brazil
| |
Collapse
|
45
|
Zhaoyu L, Xiaomeng Y, Na L, Jiamin S, Guanhua D, Xiuying Y. Roles of natural products on myokine expression and secretion in skeletal muscle atrophy. Gen Comp Endocrinol 2024; 355:114550. [PMID: 38768928 DOI: 10.1016/j.ygcen.2024.114550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 05/15/2024] [Accepted: 05/15/2024] [Indexed: 05/22/2024]
Abstract
Skeletal muscles serve both in movement and as endocrine organs. Myokines secreted by skeletal muscles activate biological functions within muscles and throughout the body via autocrine, paracrine, and/or endocrine pathways. Skeletal muscle atrophy can influence myokine expression and secretion, while myokines can impact the structure and function of skeletal muscles. Regulating the expression and secretion of myokines through the pharmacological approach is a strategy for alleviating skeletal muscle atrophy. Natural products possess complex structures and chemical properties. Previous studies have demonstrated that various natural products exert beneficial effects on skeletal muscle atrophy. This article reviewed the regulatory effects of natural products on myokines and summarized the research progress on skeletal muscle atrophy associated with myokine regulation. The focus is on how small-molecule natural products affect the regulation of interleukin 6 (IL-6), irisin, myostatin, IGF-1, and FGF-21 expression. We contend that the development of small-molecule natural products targeting the regulation of myokines holds promise in combating skeletal muscle atrophy.
Collapse
Affiliation(s)
- Liu Zhaoyu
- Beijing Key Laboratory of Drug Target Identification and New Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, PR China
| | - Ye Xiaomeng
- Beijing Key Laboratory of Drug Target Identification and New Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, PR China
| | - Li Na
- Beijing Key Laboratory of Drug Target Identification and New Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, PR China
| | - Shang Jiamin
- Beijing Key Laboratory of Drug Target Identification and New Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, PR China
| | - Du Guanhua
- Beijing Key Laboratory of Drug Target Identification and New Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, PR China.
| | - Yang Xiuying
- Beijing Key Laboratory of Drug Target Identification and New Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, PR China.
| |
Collapse
|
46
|
Zhang M, Li G, Li K, Gao Z, Yin C, Zeng F, Yang H, Dong W, Zhou G, Pan W, Wang Y, Jin J. Prognostic significance of serum secreted frizzled-related protein 5 in patients with acute aortic dissection. Heliyon 2024; 10:e35905. [PMID: 39253195 PMCID: PMC11382199 DOI: 10.1016/j.heliyon.2024.e35905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 08/05/2024] [Accepted: 08/06/2024] [Indexed: 09/11/2024] Open
Abstract
Background Secreted frizzled-related protein 5 (SFRP5) is a novel adipokine that has been found to be closely associated with metabolic and cardiovascular diseases. We investigated serum SFRP5 levels during the acute phase and their predictive value for the prognosis of acute aortic dissection (AAD). Methods In total, 152 AAD patients and 164 controls were enrolled in this study. Serum SFRP5 levels were measured using an enzyme-linked immunosorbent assay (ELISA). AAD patients were divided into high-SFRP5 and low-SFRP5 groups based on the optimal cutoff value and followed up for prognosis. The primary endpoint was all-cause mortality, and the secondary endpoint focused on AAD-related events (including AAD-related mortality and unplanned reoperations). Results Serum SFRP5 levels were significantly higher in AAD patients than in non-AAD controls, regardless of whether they had Stanford type A or B AD. Multivariate logistic regression analysis revealed an independent association between SFRP5 and the presence of AAD (adjusted OR 1.267, 95 % CI 1.152-1.394; p < 0.001). The receiver operating characteristic curve demonstrated that the optimal cutoff value for SFRP5 to predict the presence of AAD was 10.26 ng/mL (AUC 0.7241, sensitivity 49.34 %, specificity 87.20 %). Notably, serum SFRP5 levels of patients in the death group were significantly higher than those in the survival group. Compared with patients in the low-SFRP5 group, those in the high-SFRP5 group exhibited a significantly increased risk of all-cause mortality (HR 9.540, 95 % CI 2.803-32.473; p < 0.001) and AAD-related events (HR 6.915, 95 % CI 2.361-20.254; p < 0.001) during the follow-up period. Conclusion Serum SFRP5 levels were significantly elevated in the acute phase of AAD, and high serum SFRP5 levels were independently associated with poor AAD prognosis. These results suggest that serum SFRP5 level during the acute phase may be an effective biomarker and therapeutic target for the prognosis of AAD.
Collapse
Affiliation(s)
- Mingle Zhang
- Department of Cardiology, The Second Affiliated Hospital (Xinqiao Hospital) of Army Medical University, Chongqing, 400037, China
- School of Medicine, Chongqing University, Chongqing, 400044, China
| | - Gaoshan Li
- Department of Cardiology, The Second Affiliated Hospital (Xinqiao Hospital) of Army Medical University, Chongqing, 400037, China
| | - Kunyan Li
- Department of Cardiology, The Second Affiliated Hospital (Xinqiao Hospital) of Army Medical University, Chongqing, 400037, China
| | - Zhichun Gao
- Department of Cardiology, The Second Affiliated Hospital (Xinqiao Hospital) of Army Medical University, Chongqing, 400037, China
| | - Chun Yin
- Department of Cardiology, The Second Affiliated Hospital (Xinqiao Hospital) of Army Medical University, Chongqing, 400037, China
| | - Fangzheng Zeng
- Department of Emergency Medicine, The Second Affiliated Hospital (Xinqiao Hospital) of Army Medical University, Chongqing, 400037, China
| | - Hao Yang
- Department of Cardiology, The Second Affiliated Hospital (Xinqiao Hospital) of Army Medical University, Chongqing, 400037, China
| | - Wang Dong
- Department of Cardiology, The Second Affiliated Hospital (Xinqiao Hospital) of Army Medical University, Chongqing, 400037, China
| | - Guiquan Zhou
- Department of Cardiology, The Second Affiliated Hospital (Xinqiao Hospital) of Army Medical University, Chongqing, 400037, China
| | - Wenxu Pan
- Department of Cardiology, The Second Affiliated Hospital (Xinqiao Hospital) of Army Medical University, Chongqing, 400037, China
| | - Ying Wang
- Department of Cardiology, The Second Affiliated Hospital (Xinqiao Hospital) of Army Medical University, Chongqing, 400037, China
| | - Jun Jin
- Department of Cardiology, The Second Affiliated Hospital (Xinqiao Hospital) of Army Medical University, Chongqing, 400037, China
| |
Collapse
|
47
|
Mączka K, Stasiak O, Przybysz P, Grymowicz M, Smolarczyk R. The Impact of the Endocrine and Immunological Function of Adipose Tissue on Reproduction in Women with Obesity. Int J Mol Sci 2024; 25:9391. [PMID: 39273337 PMCID: PMC11395521 DOI: 10.3390/ijms25179391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 08/21/2024] [Accepted: 08/27/2024] [Indexed: 09/15/2024] Open
Abstract
Obesity, which leads to metabolic dysregulation and body function impairment, emerges as one of the pressing health challenges worldwide. Excessive body fat deposits comprise a dynamic and biologically active organ possessing its own endocrine function. One of the mechanisms underlying the pathophysiology of obesity is low-grade systemic inflammation mediated by pro-inflammatory factors such as free fatty acids, lipopolysaccharides, adipokines (including leptin, resistin and visfatin) and cytokines (TNF-α, IL-1β, Il-6), which are secreted by adipose tissue. Together with obesity-induced insulin resistance and hyperandrogenism, the exacerbated immune response has a negative impact on the hypothalamic-pituitary-gonadal axis at all levels and directly affects reproduction. In women, it results in disrupted ovarian function, irregular menstrual cycles and anovulation, contributing to infertility. This review focuses on the abnormal intracellular communication, altered gene expression and signaling pathways activated in obesity, underscoring its multifactorial character and consequences at a molecular level. Extensive presentation of the complex interplay between adipokines, cytokines, immune cells and neurons may serve as a foundation for future studies in search of potential sites for more targeted treatment of reproductive disorders related to obesity.
Collapse
Affiliation(s)
- Katarzyna Mączka
- Department of Gynecological Endocrinology, Medical University of Warsaw, 00-315 Warsaw, Poland
- Doctoral School, Medical University of Warsaw, 02-091 Warsaw, Poland
| | - Olga Stasiak
- Department of Gynecological Endocrinology, Medical University of Warsaw, 00-315 Warsaw, Poland
| | - Paulina Przybysz
- Department of Gynecological Endocrinology, Medical University of Warsaw, 00-315 Warsaw, Poland
| | - Monika Grymowicz
- Department of Gynecological Endocrinology, Medical University of Warsaw, 00-315 Warsaw, Poland
| | - Roman Smolarczyk
- Department of Gynecological Endocrinology, Medical University of Warsaw, 00-315 Warsaw, Poland
| |
Collapse
|
48
|
Goli SH, Lim JY, Basaran-Akgul N, Templeton SP. Adiponectin pathway activation dampens inflammation and enhances alveolar macrophage fungal killing via LC3-associated phagocytosis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.24.600373. [PMID: 38979340 PMCID: PMC11230297 DOI: 10.1101/2024.06.24.600373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Although innate immunity is critical for antifungal host defense against the human opportunistic fungal pathogen Aspergillus fumigatus, potentially damaging inflammation must be controlled. Adiponectin (APN) is an adipokine produced mainly in adipose tissue that exerts anti-inflammatory effects in adipose-distal tissues such as the lung. We observed 100% mortality and increased fungal burden and inflammation in neutropenic mice with invasive aspergillosis (IA) that lack APN or the APN receptors AdipoR1 or AdipoR2. Alveolar macrophages (AMs), early immune sentinels that detect and respond to lung infection, express both receptors, and APN-/- AMs exhibited an inflammatory/M1 phenotype that was associated with decreased fungal killing. Pharmacological stimulation of AMs with AdipoR agonist AdipoRon partially rescued deficient killing in APN-/- AMs that was dependent on both receptors. Finally, APN-enhanced fungal killing was associated with increased activation of the non-canonical LC3 pathway of autophagy. Thus, our study identifies a novel role for APN in LC3-mediated killing of A. fumigatus.
Collapse
Affiliation(s)
- Sri Harshini Goli
- Department of Microbiology and Immunology, Indiana University School of Medicine-Terre Haute, Terre Haute, IN 47809, USA
- Department of Biology, Indiana State University, Terre Haute, IN 47809, USA
| | - Joo-Yeon Lim
- Department of Microbiology and Immunology, Indiana University School of Medicine-Terre Haute, Terre Haute, IN 47809, USA
| | - Nese Basaran-Akgul
- Department of Microbiology and Immunology, Indiana University School of Medicine-Terre Haute, Terre Haute, IN 47809, USA
| | - Steven P. Templeton
- Department of Microbiology and Immunology, Indiana University School of Medicine-Terre Haute, Terre Haute, IN 47809, USA
| |
Collapse
|
49
|
Zhou Y, Su J, Dong Y, He Z, Wang Y, Chen S, Lv G. Buddleoside-rich Chrysanthemum indicum L. extract modulates macrophage-mediated inflammation to prevent metabolic syndrome induced by unhealthy diet. BMC Complement Med Ther 2024; 24:315. [PMID: 39179999 PMCID: PMC11344343 DOI: 10.1186/s12906-024-04583-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Accepted: 07/09/2024] [Indexed: 08/26/2024] Open
Abstract
BACKGROUND Metabolic syndrome (MetS) is a precursor to the development of many diseases (atherosclerosis, diabetes, etc.). It is marked by disruptions in glucose and lipid metabolism, along with hypertension. Numerous types of risk factors contribute to the development of the MetS, inflammation and insulin resistance are present throughout the metabolic abnormalities. Chrysanthemum indicum L. is a traditional Chinese plant used for both tea and medicine, known for its high content of total flavonoids, which are important secondary metabolites. Our research led to the extraction of a Buddleoside-Rich Chrysanthemum indicum L. extract (BUDE) which has demonstrated anti-inflammatory properties. Nonetheless, the specific role and mechanism of BUDE in preventing MetS remain unclear. METHODS The study initially evaluated the role of BUDE in preventing MetS. Subsequently, it investigated the anti-inflammatory properties of BUDE in the liver and pancreas in response to unhealthy diets. It then examined the level of insulin resistance and pancreatic β-cell function induced by inflammation. Additionally, an lipopolysaccharide (LPS)-induced macrophage inflammation model was used to further investigate the ameliorative effects of BUDE in inflammation. RESULTS BUDE has hypotensive, hypoglycemic and hypolipidemic effects. It can also resolve the imbalance between macrophage subpopulations, impede the triggering of the NF-κB signaling pathway, reduce the secretion of inflammatory mediators, ameliorate insulin resistance, and safeguard organs such as the liver and pancreas from inflammatory damage. These effects collectively contribute to preventing the development of MetS. DISCUSSION BUDE has the ability to modulate macrophage-mediated inflammation, leading to improved insulin resistance. Additionally, it delivers antihypertensive, hypoglycemic, and hypolipidemic effects, offering a potential for preventing MetS.
Collapse
Affiliation(s)
- Yiqing Zhou
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, No. 548, Binwen Road, Binjiang District, Hangzhou, Zhejiang, 310053, China
| | - Jie Su
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, No. 548, Binwen Road, Binjiang District, Hangzhou, Zhejiang, 310053, China
| | - Yingjie Dong
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, No. 548, Binwen Road, Binjiang District, Hangzhou, Zhejiang, 310053, China
| | - Ziwen He
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, No. 548, Binwen Road, Binjiang District, Hangzhou, Zhejiang, 310053, China
| | - Yajun Wang
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, No. 548, Binwen Road, Binjiang District, Hangzhou, Zhejiang, 310053, China
| | - Suhong Chen
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, No. 18, Chaowang Road, Xiacheng District, Hangzhou, Zhejiang, 310014, China.
- Zhejiang Provincial Key Laboratory of TCM for Innovative R & D and Digital Intelligent Manufacturing of TCM Great Health Products, Huzhou, 313200, China.
| | - Guiyuan Lv
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, No. 548, Binwen Road, Binjiang District, Hangzhou, Zhejiang, 310053, China.
| |
Collapse
|
50
|
Xiao H, Chen W, Lu D, Shi G, Xia X, Yao S. GDF15 regulated by HDAC2 exerts suppressive effects on oxygen-glucose deprivation/reoxygenation-induced neuronal cell pyroptosis via the NLRP3 inflammasome. Toxicol Res (Camb) 2024; 13:tfae112. [PMID: 39070057 PMCID: PMC11270593 DOI: 10.1093/toxres/tfae112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 06/02/2024] [Accepted: 07/18/2024] [Indexed: 07/30/2024] Open
Abstract
Background Pyroptosis, inflammation-related programed cell death mediated by NLRP3 inflammasome, is involved in the pathogenesis of cerebral hypoxic-ischemic injury. Our study aims to explore the biological role of growth differentiation factor (GDF)15 in oxygen-glucose deprivation/reoxygenation (OGD/R)-induced neuronal pyroptosis. Methods HT22 neurons were subjected to OGD/R to simulate cerebral hypoxic-ischemic injury. Cells were transfected with plasmids to overexpress GDF15, or lentiviral-based shRNAs constructs to silence GDF15. ELISA assay was used to detect GDF15, IL-1β, IL-18, and neuron specific enolase (NSE) levels. Cell pyroptosis was measured by flow cytometery. Chromatin immunoprecipitation assay was used to detect interaction of H3K27ac with GDF15 promoter. GDF15, NLRP3, Caspase-1 p20 and GSDMD-N expressions were measured by Western blotting. Results Patients with malignant middle cerebral artery infarction showed decreased GDF15, but increased IL-1β, IL-18, and NSE levels in serum compared to healthy controls. OGD/R treatment caused significant increases in the levels of IL-1β, IL-18 and NSE, percentages of pyroptotic cells, and expressions of NLRP3, Caspase-1 p20, and GSDMD in HT22 cells, which were markedly reversed by GDF15 overexpression. However, GDF15 knockdown resulted in neuronal injury similar to those observed in OGD/R treatment. The GDF15 knockdown-induced effects were counteracted by treatment with NLRP3 inhibitor. OGD/R decreased the enrichment of H3K27ac in the promoter of GDF15 to down-regulate GDF15, but was compromised by co-treatment with HDAC2 inhibitor. Conclusion Our data demonstrates that GDF15 attenuates OGD/R-induced pyroptosis through NLRP3 inflammasome. HDAC2 is involved in mediating OGD-induced GDF15 down-regulation via H3K27ac modification. GDF15 overexpression and HDAC2 inhibition hold potential as useful therapeutic strategies for neuroprotection.
Collapse
Affiliation(s)
- Hua Xiao
- Medical College of Soochow University, No. 1, Shizi Street, Gusu District, Suzhou 215000, China
- Department of Neurosurgery, Affiliated Hospital of Zunyi Medical University, 149 Dalian Road, Huichuan District, Zunyi 563000, China
| | - Wei Chen
- Department of Neurosurgery, Affiliated Hospital of Zunyi Medical University, 149 Dalian Road, Huichuan District, Zunyi 563000, China
| | - Darong Lu
- Department of Neurosurgery, Affiliated Hospital of Zunyi Medical University, 149 Dalian Road, Huichuan District, Zunyi 563000, China
| | - Guixin Shi
- Department of Neurosurgery, Affiliated Hospital of Zunyi Medical University, 149 Dalian Road, Huichuan District, Zunyi 563000, China
| | - Xiangping Xia
- Department of Neurosurgery, Affiliated Hospital of Zunyi Medical University, 149 Dalian Road, Huichuan District, Zunyi 563000, China
| | - Shengtao Yao
- Department of Neurosurgery, Affiliated Hospital of Zunyi Medical University, 149 Dalian Road, Huichuan District, Zunyi 563000, China
| |
Collapse
|