1
|
Thi TN, Thanh HD, Nguyen VT, Kwon SY, Moon C, Hwang EC, Jung C. Complement regulatory protein CD46 promotes bladder cancer metastasis through activation of MMP9. Int J Oncol 2024; 65:71. [PMID: 38847230 PMCID: PMC11173367 DOI: 10.3892/ijo.2024.5659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 05/08/2024] [Indexed: 06/15/2024] Open
Abstract
CD46, a transmembrane protein known for protecting cells from complement‑mediated damage, is frequently dysregulated in various types of cancer. Its overexpression in bladder cancers safeguards the cancer cells against both complement and antibody‑mediated cytotoxicity. The present study explored a new role of CD46 in facilitating cancer cell invasion and metastasis, examining its regulatory effect on matrix metalloproteases (MMPs) and their effect on the metastatic capability of bladder cancer cells. Specifically, CD46 alteration positively influenced MMP9 expression, but not MMP2, in several bladder cancer cell lines. Furthermore, CD46 overexpression triggered phosphorylation of p38 MAPK and protein kinase B (AKT), leading to enhanced activator protein 1 (AP‑1) activity via c‑Jun upregulation. The inhibition of p38 or AKT pathways attenuated the CD46‑induced MMP9 and AP‑1 upregulation, indicating that the promotion of MMP9 by CD46 involved activating both p38 MAPK and AKT. Functionally, the upregulation of MMP9 by CD46 translated to increased migratory and invasive capabilities of bladder cancer cells, as well as enhanced in vivo metastasis. Overall, the present study revealed a novel role for CD46 as a metastasis promoter through MMP9 activation in bladder cancers and highlighted the regulatory mechanism of CD46‑mediated MMP9 promotion via p38 MAPK and AKT activation.
Collapse
Affiliation(s)
- Thuy Nguyen Thi
- Department of Anatomy, Chonnam National University Medical School, Gwangju 61469, Republic of Korea
| | - Hien Duong Thanh
- Department of Anatomy, Chonnam National University Medical School, Gwangju 61469, Republic of Korea
| | - Van-Tan Nguyen
- Department of Biomedical Science, Chonnam National University Medical School, Gwangju 61469, Republic of Korea
| | - Se-Young Kwon
- Department of Anatomy, Chonnam National University Medical School, Gwangju 61469, Republic of Korea
| | - Changjong Moon
- College of Veterinary Medicine, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Eu Chang Hwang
- Department of Urology, Chonnam National University Medical School, Gwangju 61469, Republic of Korea
| | - Chaeyong Jung
- Department of Anatomy, Chonnam National University Medical School, Gwangju 61469, Republic of Korea
| |
Collapse
|
2
|
Mao M, Peng Y, Tan K, Lan Z, Guo X, Huang F, Xu P, Yang S, Kwan KY, Cai X. Molecular characterization of complement regulatory factor CD46 in Trachinotus ovatus and its role in the antimicrobial immune responses and complement regulation. FISH & SHELLFISH IMMUNOLOGY 2023; 141:109092. [PMID: 37722441 DOI: 10.1016/j.fsi.2023.109092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 09/11/2023] [Accepted: 09/16/2023] [Indexed: 09/20/2023]
Abstract
CD46, as a cofactor of complement I factor, not only regulates the complement system but also functions as a pathogen receptor and is involved in controlling early pathogen infection through autophagy. In this study, a new CD46 gene (ToCD46) was identified from golden pompano (Trachinotus ovatus), which showed higher sequence homology with other teleosts CD46. Homology comparison showed that ToCD46 had higher sequence homology (46.95-52.85%) with other teleosts CD46 and lower homology with mammal. Tissue expression profile analysis showed that ToCD46 was generally expressed in all tissues with the highest expression level in liver, followed by head kidney, and showed different patterns of up-regulation in immune-related tissues after stimulation by Streptococcus agalactiae and Vibrio alginolyticus. The hemolytic activity analysis and apoptosis assay showed that rToCD46 decreased the hemolytic activity of serum of golden pompano and effectively inhibited the damage of A549 cells, suggesting that ToCD46 might be involved in the regulation of complement activation of golden pompano. In vitro antibacterial experiments showed that rToCD46 had antibacterial activity against gram negative bacteria V. alginolyticus but no effect on positive bacteria S. agalactiae. These results suggest that ToCD46 may be involved in the immune response of golden pompano to pathogens, which will provide important basic information for elucidating the evolutionary history of the complement system of golden pompano.
Collapse
Affiliation(s)
- Meiqin Mao
- College of Marine Sciences, Guangxi Key Laboratory of Beibu Gulf Marine Biodiversity Conservation, Beibu Gulf University, Qinzhou, 535011, China
| | - Yinhui Peng
- College of Marine Sciences, Guangxi Key Laboratory of Beibu Gulf Marine Biodiversity Conservation, Beibu Gulf University, Qinzhou, 535011, China; College of Fishery, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Kianann Tan
- College of Marine Sciences, Guangxi Key Laboratory of Beibu Gulf Marine Biodiversity Conservation, Beibu Gulf University, Qinzhou, 535011, China
| | - Zhenyu Lan
- College of Marine Sciences, Guangxi Key Laboratory of Beibu Gulf Marine Biodiversity Conservation, Beibu Gulf University, Qinzhou, 535011, China
| | - Xiyi Guo
- College of Marine Sciences, Guangxi Key Laboratory of Beibu Gulf Marine Biodiversity Conservation, Beibu Gulf University, Qinzhou, 535011, China
| | - Fengping Huang
- College of Marine Sciences, Guangxi Key Laboratory of Beibu Gulf Marine Biodiversity Conservation, Beibu Gulf University, Qinzhou, 535011, China
| | - Peng Xu
- College of Marine Sciences, Guangxi Key Laboratory of Beibu Gulf Marine Biodiversity Conservation, Beibu Gulf University, Qinzhou, 535011, China
| | - Shaoyu Yang
- College of Marine Sciences, Guangxi Key Laboratory of Beibu Gulf Marine Biodiversity Conservation, Beibu Gulf University, Qinzhou, 535011, China.
| | - Kit Yue Kwan
- College of Marine Sciences, Guangxi Key Laboratory of Beibu Gulf Marine Biodiversity Conservation, Beibu Gulf University, Qinzhou, 535011, China.
| | - Xiaohui Cai
- College of Marine Sciences, Guangxi Key Laboratory of Beibu Gulf Marine Biodiversity Conservation, Beibu Gulf University, Qinzhou, 535011, China.
| |
Collapse
|
3
|
Zeng J, Xu H, Huang C, Sun Y, Xiao H, Yu G, Zhou H, Zhang Y, Yao W, Xiao W, Hu J, Wu L, Xing J, Wang T, Chen Z, Ye Z, Chen K. CD46 splice variant enhances translation of specific mRNAs linked to an aggressive tumor cell phenotype in bladder cancer. MOLECULAR THERAPY. NUCLEIC ACIDS 2021; 24:140-153. [PMID: 33767911 PMCID: PMC7972933 DOI: 10.1016/j.omtn.2021.02.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 02/19/2021] [Indexed: 01/02/2023]
Abstract
CD46 is well known to be involved in diverse biological processes. Although several splice variants of CD46 have been identified, little is known about the contribution of alternative splicing to its tumorigenic functions. In this study, we found that exclusion of CD46 exon 13 is significantly increased in bladder cancer (BCa) samples. In BCa cell lines, enforced expression of CD46-CYT2 (exon 13-skipping isoform) promoted, and CD46-CYT1 (exon 13-containing isoform) attenuated, cell growth, migration, and tumorigenicity in a xenograft model. We also applied interaction proteomics to identify exhaustively the complexes containing the CYT1 or CYT2 domain in EJ-1 cells. 320 proteins were identified that interact with the CYT1 and/or CYT2 domain, and most of them are new interactors. Using an internal ribosome entry site (IRES)-dependent reporter system, we established that CD46 could regulate mRNA translation through an interaction with the translation machinery. We also identified heterogeneous nuclear ribonucleoprotein (hnRNP)A1 as a novel CYT2 binding partner, and this interaction facilitates the interaction of hnRNPA1 with IRES RNA to promote IRES-dependent translation of HIF1a and c-Myc. Strikingly, the splicing factor SRSF1 is highly correlated with CD46 exon 13 exclusion in clinical BCa samples. Taken together, our findings contribute to understanding the role of CD46 in BCa development.
Collapse
Affiliation(s)
- Jin Zeng
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, P.R. China
- Hubei Institute of Urology, Wuhan 430030, P.R. China
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang 330000, P.R. China
| | - Hua Xu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, P.R. China
- Hubei Institute of Urology, Wuhan 430030, P.R. China
| | - Chunhua Huang
- College of Basic Medicine, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, P.R. China
| | - Yi Sun
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, P.R. China
- Hubei Institute of Urology, Wuhan 430030, P.R. China
| | - Haibing Xiao
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, P.R. China
- Hubei Institute of Urology, Wuhan 430030, P.R. China
| | - Gan Yu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, P.R. China
- Hubei Institute of Urology, Wuhan 430030, P.R. China
| | - Hui Zhou
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, P.R. China
- Hubei Institute of Urology, Wuhan 430030, P.R. China
| | - Yangjun Zhang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, P.R. China
- Hubei Institute of Urology, Wuhan 430030, P.R. China
| | - Weimin Yao
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, P.R. China
- Hubei Institute of Urology, Wuhan 430030, P.R. China
| | - Wei Xiao
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, P.R. China
- Hubei Institute of Urology, Wuhan 430030, P.R. China
| | - Junhui Hu
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA 90095, USA
| | - Lily Wu
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA 90095, USA
| | - Jinchun Xing
- Department of Urology, The First Affiliated Hospital of Xiamen University, Xiamen 361003, P.R. China
| | - Tao Wang
- Department of Urology, The First Affiliated Hospital of Xiamen University, Xiamen 361003, P.R. China
| | - Zhiqiang Chen
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, P.R. China
- Hubei Institute of Urology, Wuhan 430030, P.R. China
| | - Zhangqun Ye
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, P.R. China
- Hubei Institute of Urology, Wuhan 430030, P.R. China
| | - Ke Chen
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, P.R. China
- Hubei Institute of Urology, Wuhan 430030, P.R. China
| |
Collapse
|
4
|
Zadka Ł, Grybowski DJ, Dzięgiel P. Modeling of the immune response in the pathogenesis of solid tumors and its prognostic significance. Cell Oncol (Dordr) 2020; 43:539-575. [PMID: 32488850 PMCID: PMC7363737 DOI: 10.1007/s13402-020-00519-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/15/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Tumor initiation and subsequent progression are usually long-term processes, spread over time and conditioned by diverse aspects. Many cancers develop on the basis of chronic inflammation; however, despite dozens of years of research, little is known about the factors triggering neoplastic transformation under these conditions. Molecular characterization of both pathogenetic states, i.e., similarities and differences between chronic inflammation and cancer, is also poorly defined. The secretory activity of tumor cells may change the immunophenotype of immune cells and modify the extracellular microenvironment, which allows the bypass of host defense mechanisms and seems to have diagnostic and prognostic value. The phenomenon of immunosuppression is also present during chronic inflammation, and the development of cancer, due to its duration, predisposes patients to the promotion of chronic inflammation. The aim of our work was to discuss the above issues based on the latest scientific insights. A theoretical mechanism of cancer immunosuppression is also proposed. CONCLUSIONS Development of solid tumors may occur both during acute and chronic phases of inflammation. Differences in the regulation of immune responses between precancerous states and the cancers resulting from them emphasize the importance of immunosuppressive factors in oncogenesis. Cancer cells may, through their secretory activity and extracellular transport mechanisms, enhance deterioration of the immune system which, in turn, may have prognostic implications.
Collapse
Affiliation(s)
- Łukasz Zadka
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, ul. Chalubinskiego 6a, 50-368, Wroclaw, Poland.
| | - Damian J Grybowski
- Orthopedic Surgery, University of Illinois, 900 S. Ashland Avenue (MC944) Room 3356, Molecular Biology Research Building Chicago, Chicago, IL, 60607, USA
| | - Piotr Dzięgiel
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, ul. Chalubinskiego 6a, 50-368, Wroclaw, Poland
| |
Collapse
|
5
|
Benis N, Wells JM, Smits MA, Kar SK, van der Hee B, Dos Santos VAPM, Suarez-Diez M, Schokker D. High-level integration of murine intestinal transcriptomics data highlights the importance of the complement system in mucosal homeostasis. BMC Genomics 2019; 20:1028. [PMID: 31888466 PMCID: PMC6937694 DOI: 10.1186/s12864-019-6390-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Accepted: 12/12/2019] [Indexed: 12/25/2022] Open
Abstract
Background The mammalian intestine is a complex biological system that exhibits functional plasticity in its response to diverse stimuli to maintain homeostasis. To improve our understanding of this plasticity, we performed a high-level data integration of 14 whole-genome transcriptomics datasets from samples of intestinal mouse mucosa. We used the tool Centrality based Pathway Analysis (CePa), along with information from the Reactome database. Results The results show an integrated response of the mouse intestinal mucosa to challenges with agents introduced orally that were expected to perturb homeostasis. We observed that a common set of pathways respond to different stimuli, of which the most reactive was the Regulation of Complement Cascade pathway. Altered expression of the Regulation of Complement Cascade pathway was verified in mouse organoids challenged with different stimuli in vitro. Conclusions Results of the integrated transcriptomics analysis and data driven experiment suggest an important role of epithelial production of complement and host complement defence factors in the maintenance of homeostasis.
Collapse
Affiliation(s)
- Nirupama Benis
- Host Microbe Interactomics, Wageningen University & Research, Wageningen, The Netherlands. .,Systems and Synthetic Biology, Wageningen University & Research, Wageningen, The Netherlands.
| | - Jerry M Wells
- Host Microbe Interactomics, Wageningen University & Research, Wageningen, The Netherlands
| | - Mari A Smits
- Host Microbe Interactomics, Wageningen University & Research, Wageningen, The Netherlands.,Wageningen Livestock Research, Wageningen University & Research, Wageningen, The Netherlands.,Wageningen Bioveterinary Research, Wageningen University, Wageningen, The Netherlands
| | - Soumya Kanti Kar
- Host Microbe Interactomics, Wageningen University & Research, Wageningen, The Netherlands.,Wageningen Livestock Research, Wageningen University & Research, Wageningen, The Netherlands
| | - Bart van der Hee
- Host Microbe Interactomics, Wageningen University & Research, Wageningen, The Netherlands
| | - Vitor A P Martins Dos Santos
- Systems and Synthetic Biology, Wageningen University & Research, Wageningen, The Netherlands.,LifeGlimmer GmbH, Berlin, Germany
| | - Maria Suarez-Diez
- Systems and Synthetic Biology, Wageningen University & Research, Wageningen, The Netherlands
| | - Dirkjan Schokker
- Wageningen Livestock Research, Wageningen University & Research, Wageningen, The Netherlands
| |
Collapse
|
6
|
Desjardins P, Couture C, Germain L, Guérin SL. Contribution of the WNK1 kinase to corneal wound healing using the tissue-engineered human cornea as an in vitro model. J Tissue Eng Regen Med 2019; 13:1595-1608. [PMID: 31207112 DOI: 10.1002/term.2912] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 05/21/2019] [Accepted: 05/24/2019] [Indexed: 12/22/2022]
Abstract
Damage to the corneal epithelium triggers important changes in the extracellular matrix (ECM) to which basal human corneal epithelial cells (hCECs) attach. These changes are perceived by integrin receptors that activate different intracellular signalling pathways, ultimately leading to re-epithelialization of the injured epithelium. In this study, we investigated the impact of pharmacological inhibition of specific signal transduction mediators on corneal wound healing using both monolayers of hCECs and the human tissue-engineered cornea (hTEC) as an in vitro 3D model. RNA and proteins were isolated from the wounded and unwounded hTECs to conduct gene profiling analyses and protein kinase arrays. The impact of WNK1 inhibition was evaluated on the wounded hTECs as well as on hCECs monolayers using a scratch wound assay. Gene profiling and protein kinase arrays revealed that expression and activity of several mediators from the integrin-dependent signaling pathways were altered in response to the ECM changes occurring during corneal wound healing. Phosphorylation of the WNK1 kinase turned out to be the most striking activation event going on during this process. The inhibition of WNK1 by WNK463 reduced the rate of corneal wound closure in both the hTEC and hCECs grown in monolayer compared with their respective negative controls. WNK463 also reduced phosphorylation of the WNK1 downstream targets SPAK/OSR1 in wounded hTECs. These in vitro results allowed for a better understanding of the cellular and molecular mechanisms involved in corneal wound healing and identified WNK1 as a kinase important to ensure proper wound healing of the cornea.
Collapse
Affiliation(s)
- Pascale Desjardins
- CUO-Recherche, Médecine Régénératrice, Centre de recherche du CHU de Québec and Centre de Recherche en Organogénèse expérimentale de l'Université Laval/LOEX, Université Laval, Québec, QC, Canada
- Département d'Ophtalmologie, Faculté de médecine, Université Laval, Québec, QC, Canada
- Département de Chirurgie, Faculté de médecine, Université Laval, Québec, QC, Canada
| | - Camille Couture
- CUO-Recherche, Médecine Régénératrice, Centre de recherche du CHU de Québec and Centre de Recherche en Organogénèse expérimentale de l'Université Laval/LOEX, Université Laval, Québec, QC, Canada
- Département d'Ophtalmologie, Faculté de médecine, Université Laval, Québec, QC, Canada
- Département de Chirurgie, Faculté de médecine, Université Laval, Québec, QC, Canada
| | - Lucie Germain
- CUO-Recherche, Médecine Régénératrice, Centre de recherche du CHU de Québec and Centre de Recherche en Organogénèse expérimentale de l'Université Laval/LOEX, Université Laval, Québec, QC, Canada
- Département d'Ophtalmologie, Faculté de médecine, Université Laval, Québec, QC, Canada
- Département de Chirurgie, Faculté de médecine, Université Laval, Québec, QC, Canada
| | - Sylvain L Guérin
- CUO-Recherche, Médecine Régénératrice, Centre de recherche du CHU de Québec and Centre de Recherche en Organogénèse expérimentale de l'Université Laval/LOEX, Université Laval, Québec, QC, Canada
- Département d'Ophtalmologie, Faculté de médecine, Université Laval, Québec, QC, Canada
| |
Collapse
|
7
|
Zhou H, Hara H, Cooper DK. The complex functioning of the complement system in xenotransplantation. Xenotransplantation 2019; 26:e12517. [PMID: 31033064 PMCID: PMC6717021 DOI: 10.1111/xen.12517] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 03/15/2019] [Accepted: 03/22/2019] [Indexed: 12/25/2022]
Abstract
The role of complement in xenotransplantation is well-known and is a topic that has been reviewed previously. However, our understanding of the immense complexity of its interaction with other constituents of the innate immune response and of the coagulation, adaptive immune, and inflammatory responses to a xenograft is steadily increasing. In addition, the complement system plays a function in metabolism and homeostasis. New reviews at intervals are therefore clearly warranted. The pathways of complement activation, the function of the complement system, and the interaction between complement and coagulation, inflammation, and the adaptive immune system in relation to xenotransplantation are reviewed. Through several different mechanisms, complement activation is a major factor in contributing to xenograft failure. In the organ-source pig, the detrimental influence of the complement system is seen during organ harvest and preservation, for example, in ischemia-reperfusion injury. In the recipient, the effect of complement can be seen through its interaction with the immune, coagulation, and inflammatory responses. Genetic-engineering and other therapeutic methods by which the xenograft can be protected from the effects of complement activation are discussed. The review provides an updated source of reference to this increasingly complex subject.
Collapse
Affiliation(s)
- Hongmin Zhou
- Department of Cardiothoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Xenotransplantation Program, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Hidetaka Hara
- Xenotransplantation Program, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, USA
| | - David K.C. Cooper
- Xenotransplantation Program, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
8
|
Sina C, Kemper C, Derer S. The intestinal complement system in inflammatory bowel disease: Shaping intestinal barrier function. Semin Immunol 2018; 37:66-73. [PMID: 29486961 DOI: 10.1016/j.smim.2018.02.008] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 02/05/2018] [Accepted: 02/18/2018] [Indexed: 12/18/2022]
Abstract
The complement system is part of innate sensor and effector systems such as the Toll-like receptors (TLRs). It recognizes and quickly systemically and/or locally respond to microbial-associated molecular patterns (MAMPs) with a tailored defense reaction. MAMP recognition by intestinal epithelial cells (IECs) and appropriate immune responses are of major importance for the maintenance of intestinal barrier function. Enterocytes highly express various complement components that are suggested to be pivotal for proper IEC function. Appropriate activation of the intestinal complement system seems to play an important role in the resolution of chronic intestinal inflammation, while over-activation and/or dysregulation may worsen intestinal inflammation. Mice deficient for single complement components suffer from enhanced intestinal inflammation mimicking the phenotype of patients with chronic inflammatory bowel disease (IBD) such as Crohn's disease (CD) or ulcerative colitis (UC). However, the mechanisms leading to complement expression in IECs seem to differ markedly between UC and CD patients. Hence, how IECs, intestinal bacteria and epithelial cell expressed complement components interact in the course of IBD still remains to be mostly elucidated to define potential unique patterns contributing to the distinct subtypes of intestinal inflammation observed in CD and UC.
Collapse
Affiliation(s)
- Christian Sina
- Institute of Nutritional Medicine, Molecular Gastroenterology, University Hospital Schleswig-Holstein, Campus Lübeck, Ratzeburger Allee 160, 23538 Lübeck, Germany; 1st Department of Medicine, Section of Nutritional Medicine, University Hospital Schleswig-Holstein, Campus Lübeck, Ratzeburger Allee 160, 23538 Lübeck, Germany
| | - Claudia Kemper
- Institute for Systemic Inflammation Research, University of Lübeck, Ratzeburger Allee 160, 23538 Lübeck, Germany; Division of Transplant Immunology and Mucosal Biology, Medical Research Council Centre for Transplantation, King's College London, Guy's Hospital, Great Maze Pond, London SE1 9RT, UK; Laboratory of Molecular Immunology and the Immunology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Stefanie Derer
- Institute of Nutritional Medicine, Molecular Gastroenterology, University Hospital Schleswig-Holstein, Campus Lübeck, Ratzeburger Allee 160, 23538 Lübeck, Germany.
| |
Collapse
|
9
|
Freeley S, Kemper C, Le Friec G. The "ins and outs" of complement-driven immune responses. Immunol Rev 2017; 274:16-32. [PMID: 27782335 DOI: 10.1111/imr.12472] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The complement system represents an evolutionary old and critical component of innate immunity where it forms the first line of defense against invading pathogens. Originally described as a heat-labile fraction of the serum responsible for the opsonization and subsequent lytic killing of bacteria, work over the last century firmly established complement as a key mediator of the general inflammatory response but also as an acknowledged vital bridge between innate and adaptive immunity. However, recent studies particularly spanning the last decade have provided new insights into the novel modes and locations of complement activation and highlighted unexpected additional biological functions for this ancient system, for example, in regulating basic processes of the cell. In this review, we will cover the current knowledge about complement's established and novel roles in innate and adaptive immunity with a focus on the functional differences between serum circulating and intracellularly active complement and will describe and discuss the newly discovered cross-talks of complement with other cell effector systems particularly during T-cell induction and contraction.
Collapse
Affiliation(s)
- Simon Freeley
- Division of Transplant Immunology and Mucosal Biology, MRC Centre for Transplantation, King's College London, Guy's Hospital, London, UK
| | - Claudia Kemper
- Division of Transplant Immunology and Mucosal Biology, MRC Centre for Transplantation, King's College London, Guy's Hospital, London, UK. .,Laboratory of Molecular Immunology and the Immunology Center, National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health (NIH), Bethesda, MD, USA.
| | - Gaëlle Le Friec
- Division of Transplant Immunology and Mucosal Biology, MRC Centre for Transplantation, King's College London, Guy's Hospital, London, UK
| |
Collapse
|
10
|
Ly PT, Tang SJ, Roca X. Alternative polyadenylation expands the mRNA isoform repertoire of human CD46. Gene 2017; 625:21-30. [PMID: 28476687 DOI: 10.1016/j.gene.2017.05.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 04/28/2017] [Accepted: 05/02/2017] [Indexed: 11/28/2022]
Abstract
Alternative polyadenylation is a prevalent mechanism regulating mammalian gene expression. While tandem 3'-Untranslated-Region (3'UTR) polyadenylation changes expression levels, Intronic PolyAdenylation generates shorter transcripts encoding truncated proteins. Intronic PolyAdenylation regulates 20% of genes and is especially common in receptor tyrosine-kinase transcripts, generating soluble repressors. Here we report that human CD46, encoding a TransMembrane repressor of complement and T-cell co-stimulator, expresses multiple isoforms by alternative polyadenylation. We provide evidence for polyadenylation at several introns by RT-PCR of 5' intronic fragments, and by increase in such isoforms via functional U1 knockdown. We mapped various Intronic PolyAdenylation Sites by 3' Rapid Amplification of cDNA Ends (3'RACE), which could generate soluble or membrane-bound but tail-less CD46. Intronic PolyAdenylation could add to the source of soluble CD46 isoforms in fluids and tissues, which increase in cancers and autoimmune syndromes. Furthermore, 3'RACE identified three PolyAdenylation Sites within the last intron and exon, whose transcripts with shortened 3'UTRs could support higher CD46 expression. Finally, 3'RACE revealed that the CD46 Pseudogene only expresses short transcripts by early polyadenylation in intron 2. Overall, we report a wide variety of CD46 mRNA isoforms which could generate new protein isoforms, adding to the diverse physiological and pathological roles of CD46.
Collapse
Affiliation(s)
- Phuong Thao Ly
- School of Biological Sciences, Nanyang Technological University, 637551, Singapore; The Neuroscience and Behavioral Disorders Programme, Duke-NUS Graduate Medical School, Singapore
| | - Sze Jing Tang
- School of Biological Sciences, Nanyang Technological University, 637551, Singapore; Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Xavier Roca
- School of Biological Sciences, Nanyang Technological University, 637551, Singapore.
| |
Collapse
|
11
|
Tang SJ, Luo S, Ho JXJ, Ly PT, Goh E, Roca X. Characterization of the Regulation of CD46 RNA Alternative Splicing. J Biol Chem 2016; 291:14311-14323. [PMID: 27226545 DOI: 10.1074/jbc.m115.710350] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2015] [Indexed: 11/06/2022] Open
Abstract
Here we present a detailed analysis of the alternative splicing regulation of human CD46, which generates different isoforms with distinct functions. CD46 is a ubiquitous membrane protein that protects host cells from complement and plays other roles in immunity, autophagy, and cell adhesion. CD46 deficiency causes an autoimmune disorder, and this protein is also involved in pathogen infection and cancer. Before this study, the mechanisms of CD46 alternative splicing remained unexplored even though dysregulation of this process has been associated with autoimmune diseases. We proved that the 5' splice sites of CD46 cassette exons 7 and 8 encoding extracellular domains are defined by noncanonical mechanisms of base pairing to U1 small nuclear RNA. Next we characterized the regulation of CD46 cassette exon 13, whose inclusion or skipping generates different cytoplasmic tails with distinct functions. Using splicing minigenes, we identified multiple exonic and intronic splicing enhancers and silencers that regulate exon 13 inclusion via trans-acting splicing factors like PTBP1 and TIAL1. Interestingly, a common splicing activator such as SRSF1 appears to repress CD46 exon 13 inclusion. We also report that expression of CD46 mRNA isoforms is further regulated by non-sense-mediated mRNA decay and transcription speed. Finally, we successfully manipulated CD46 exon 13 inclusion using antisense oligonucleotides, opening up opportunities for functional studies of the isoforms as well as for therapeutics for autoimmune diseases. This study provides insight into CD46 alternative splicing regulation with implications for its function in the immune system and for genetic disease.
Collapse
Affiliation(s)
- Sze Jing Tang
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Shufang Luo
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Jia Xin Jessie Ho
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Phuong Thao Ly
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Eling Goh
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Xavier Roca
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore.
| |
Collapse
|
12
|
Abstract
Intestinal pathobionts that escape into the periphery can cause serious morbidity and death. In this issue of Immunity, Hasegawa et al. (2014) show that the host's protective measures against such events include interleukin-22-driven systemic elimination of pathobionts via complement regulation.
Collapse
Affiliation(s)
- Hidekazu Yamamoto
- Division of Transplant Immunology and Mucosal Biology, MRC Centre for Transplantation, King's College London, Guy's Hospital, London SE1 9RT, UK
| | - Claudia Kemper
- Division of Transplant Immunology and Mucosal Biology, MRC Centre for Transplantation, King's College London, Guy's Hospital, London SE1 9RT, UK.
| |
Collapse
|
13
|
Gene-expression profiling of calves 6 and 9 months after inoculation with Mycobacterium avium subspecies paratuberculosis. Vet Res 2014; 45:96. [PMID: 25294045 PMCID: PMC4198621 DOI: 10.1186/s13567-014-0096-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Accepted: 09/05/2014] [Indexed: 12/11/2022] Open
Abstract
Early detection of Johne’s disease (JD) caused by Mycobacterium avium subspecies paratuberculosis (MAP) is essential to reduce transmission; consequently, new diagnostic techniques and approaches to detect MAP or markers of early MAP infection are being explored. The objective was to identify biomarkers associated with MAP infection at 6 and 9 months after oral inoculation. Therefore, gene expression analysis was done using whole blood cells obtained from MAP-infected calves. All MAP-inoculated calves had a cell-mediated immune response (IFN-γ) to Johnin PPD specific antigens, and 60% had an antibody response to MAP antigens. Gene expression analysis at 6 months after inoculation revealed downregulation of chemoattractants, namely neutrophil beta-defensin-9 like peptide (BNBD9-Like), S100 calcium binding protein A9 (s100A9) and G protein coupled receptor 77 (GPR77) or C5a anaphylatoxin chemotactic receptor (C5a2). Furthermore, BOLA/MHC-1 intracellular antigen presentation gene was downregulated 9 months after inoculation. In parallel, qPCR experiments to evaluate the robustness of some differentially expressed genes revealed consistent downregulation of BOLA/MHC-I, BNBD9-Like and upregulation of CD46 at 3, 6, 9, 12, and 15 months after inoculation. In conclusion, measuring the expression of these genes has potential for implementation in a diagnostic tool for the early detection of MAP infection.
Collapse
|
14
|
Abstract
Complement is well appreciated to be a potent innate immune defense against microbes and is important in the housekeeping act of removal of apoptotic and effete cells. It is also understood that hyperactivation of complement, or the lack of regulators, may underlie chronic inflammatory diseases. A pipeline of products to intervene in complement activation, some already in clinical use, is being studied in various chronic inflammatory diseases. To date, the role of complement in inflammatory bowel disease has not received a lot of research interest. Novel genetically modified laboratory animals and experiments using antagonists to complement effector molecules have kindled important research observations implicating the complement system in inflammatory bowel disease pathogenesis. We review the evidence base for the role and potential therapeutic manipulation of the complement cascade in inflammatory bowel disease.
Collapse
|
15
|
Tumor Restrictions to Oncolytic Virus. Biomedicines 2014; 2:163-194. [PMID: 28548066 PMCID: PMC5423468 DOI: 10.3390/biomedicines2020163] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Revised: 03/17/2014] [Accepted: 03/28/2014] [Indexed: 02/06/2023] Open
Abstract
Oncolytic virotherapy has advanced since the days of its conception but therapeutic efficacy in the clinics does not seem to reach the same level as in animal models. One reason is premature oncolytic virus clearance in humans, which is a reasonable assumption considering the immune-stimulating nature of the oncolytic agents. However, several studies are beginning to reveal layers of restriction to oncolytic virotherapy that are present before an adaptive neutralizing immune response. Some of these barriers are present constitutively halting infection before it even begins, whereas others are raised by minute cues triggered by virus infection. Indeed, we and others have noticed that delivering viruses to tumors may not be the biggest obstacle to successful therapy, but instead the physical make-up of the tumor and its capacity to mount antiviral defenses seem to be the most important efficacy determinants. In this review, we summarize the constitutive and innate barriers to oncolytic virotherapy and discuss strategies to overcome them.
Collapse
|
16
|
Abstract
CD46 is an important regulator of the complement system by preventing unwanted deposition of the complement activation products and opsonins C3b/C4b onto self-tissue. Recently, intracellular signals mediated by CD46 activation on several distinct human cell types have demonstrated that CD46 also plays decisive roles in immuneregulation. The growing recognition of CD46 as key regulator in several vital biological processes, led to increased demand in sensitive methods for monitoring CD46 expression and changes thereof on cells and in tissues. Here we describe a method, which allows for studying CD46 expression on the surface of cells using specific antibodies in combination with fluorescence-activated cell sorting (FACS) analysis.
Collapse
Affiliation(s)
- Martin Kolev
- Division of Transplantation Immunology and Mucosal Biology, MRC Centre for Transplantation, King's College London, Guy's Hospital, London, UK
| | | |
Collapse
|
17
|
Yamamoto H, Fara AF, Dasgupta P, Kemper C. CD46: the 'multitasker' of complement proteins. Int J Biochem Cell Biol 2013; 45:2808-20. [PMID: 24120647 DOI: 10.1016/j.biocel.2013.09.016] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2013] [Revised: 09/23/2013] [Accepted: 09/30/2013] [Indexed: 12/12/2022]
Abstract
Complement is undeniably quintessential for innate immunity by detecting and eliminating infectious microorganisms. Recent work, however, highlights an equally profound impact of complement on the induction and regulation of a wide range of immune cells. In particular, the complement regulator CD46 emerges as a key sensor of immune activation and a vital modulator of adaptive immunity. In this review, we summarize the current knowledge of CD46-mediated signalling events and their functional consequences on immune-competent cells with a specific focus on those in CD4(+) T cells. We will also discuss the promises and challenges that potential therapeutic modulation of CD46 may hold and pose.
Collapse
Affiliation(s)
- Hidekazu Yamamoto
- Division of Transplant Immunology and Mucosal Biology, MRC Centre for Transplantation, King's College London, Guy's Hospital, London SE1 9RT, UK; The Urology Centre, Guy's and St. Thomas' NHS Foundations Trust, London SE1 9RT, UK
| | | | | | | |
Collapse
|
18
|
Le Friec G, Sheppard D, Whiteman P, Karsten CM, Shamoun SAT, Laing A, Bugeon L, Dallman MJ, Melchionna T, Chillakuri C, Smith RA, Drouet C, Couzi L, Fremeaux-Bacchi V, Köhl J, Waddington SN, McDonnell JM, Baker A, Handford PA, Lea SM, Kemper C. The CD46-Jagged1 interaction is critical for human TH1 immunity. Nat Immunol 2012; 13:1213-21. [PMID: 23086448 PMCID: PMC3505834 DOI: 10.1038/ni.2454] [Citation(s) in RCA: 131] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2012] [Accepted: 09/19/2012] [Indexed: 12/13/2022]
Abstract
CD46 is a complement regulator with important roles related to the immune response. CD46 functions as a pathogen receptor and is a potent costimulator for the induction of interferon-γ (IFN-γ)-secreting effector T helper type 1 (T(H)1) cells and their subsequent switch into interleukin 10 (IL-10)-producing regulatory T cells. Here we identified the Notch family member Jagged1 as a physiological ligand for CD46. Furthermore, we found that CD46 regulated the expression of Notch receptors and ligands during T cell activation and that disturbance of the CD46-Notch crosstalk impeded induction of IFN-γ and switching to IL-10. Notably, CD4(+) T cells from CD46-deficient patients and patients with hypomorphic mutations in the gene encoding Jagged1 (Alagille syndrome) failed to mount appropriate T(H)1 responses in vitro and in vivo, which suggested that CD46-Jagged1 crosstalk is responsible for the recurrent infections in subpopulations of these patients.
Collapse
Affiliation(s)
- Gaëlle Le Friec
- Division of Transplantation Immunology and Mucosal Biology, MRC Centre for Transplantation, King’s College London, Guy’s Hospital, London, UK
| | - Devon Sheppard
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Pat Whiteman
- Department of Biochemistry, University of Oxford, Oxford, UK
| | - Christian M. Karsten
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany
| | - Salley Al-Tilib Shamoun
- Child Health Clinical Academic Grouping, King’s Health Partners, Denmark Hill Campus, London, UK
| | - Adam Laing
- Division of Transplantation Immunology and Mucosal Biology, MRC Centre for Transplantation, King’s College London, Guy’s Hospital, London, UK
| | - Laurence Bugeon
- Division of Cell and Molecular Biology, Department of Life Sciences, Imperial College London, London, UK
| | - Margaret J. Dallman
- Division of Cell and Molecular Biology, Department of Life Sciences, Imperial College London, London, UK
| | - Teresa Melchionna
- Division of Transplantation Immunology and Mucosal Biology, MRC Centre for Transplantation, King’s College London, Guy’s Hospital, London, UK
| | | | - Richard A. Smith
- Division of Transplantation Immunology and Mucosal Biology, MRC Centre for Transplantation, King’s College London, Guy’s Hospital, London, UK
| | - Christian Drouet
- Université Joseph Fourier, GREPI/AGIM CNRS FRE3405, CHU de Grenoble, Grenoble, France
| | - Lionel Couzi
- Nephrology-Transplantation, CHU Bordeaux, Bordeaux, France
| | - Veronique Fremeaux-Bacchi
- Cordeliers Research Center, Inserm Unite Mixte de Recherche en Sante (UMRS) 872, Paris, France
- Hopital Europeen Georges Pompidou, Service d’Immunologie Biologique, Assistance Publique-Hopitaux de Paris, Paris, France
| | - Jörg Köhl
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany
- Division of Cellular and Molecular Immunology, Cincinnati Children’s Hospital Medical Center and University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Simon N. Waddington
- Institute for Women’s Health, Gene Transfer Technology Group, University College London, London
| | - James M. McDonnell
- Randall Division of Cell & Molecular Biophysics, King’s College London, UK
| | - Alastair Baker
- Child Health Clinical Academic Grouping, King’s Health Partners, Denmark Hill Campus, London, UK
| | | | - Susan M. Lea
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Claudia Kemper
- Division of Transplantation Immunology and Mucosal Biology, MRC Centre for Transplantation, King’s College London, Guy’s Hospital, London, UK
| |
Collapse
|