1
|
Tao S, Norman PJ, You X, Kichula KM, Dong L, Chen N, He Y, Chen C, Zhang W, Zhu F. High-resolution KIR and HLA genotyping in three Chinese ethnic minorities reveals distinct origins. HLA 2024; 103:e15482. [PMID: 38625090 PMCID: PMC11027949 DOI: 10.1111/tan.15482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 03/05/2024] [Accepted: 04/02/2024] [Indexed: 04/17/2024]
Abstract
Polymorphism of killer-cell immunoglobulin-like receptors (KIRs) and their HLA class I ligands impacts the effector activity of cytotoxic NK cell and T cell subsets. Therefore, understanding the extent and implications of KIR and HLA class I genetic polymorphism across various populations is important for immunological and medical research. In this study, we conducted a high-resolution investigation of KIR and HLA class I diversity in three distinct Chinese ethnic minority populations. We studied the She, Yugur, and Tajik, and compared them with the Zhejiang Han population (Zhe), which represents the majority Southern Han ethnicity. Our findings revealed that the Tajik population exhibited the most diverse KIR copy number, allele, and haplotype diversity among the four populations. This diversity aligns with their proposed ancestral origin, closely resembling that of Iranian populations, with a relatively higher presence of KIR-B genes, alleles, and haplotypes compared with the other Chinese populations. The Yugur population displayed KIR distributions similar to those of the Tibetans and Southeast Asians, whereas the She population resembled the Zhe and other East Asians, as confirmed by genetic distance analysis of KIR. Additionally, we identified 12.9% of individuals across the three minority populations as having KIR haplotypes characterized by specific gene block insertions or deletions. Genetic analysis based on HLA alleles yielded consistent results, even though there were extensive variations in HLA alleles. The observed variations in KIR interactions, such as higher numbers of 2DL1-C2 interactions in Tajik and Yugur populations and of 2DL3-C1 interactions in the She population, are likely shaped by demographic and evolutionary mechanisms specific to their local environments. Overall, our findings offer valuable insights into the distribution of KIR and HLA diversity among three distinct Chinese ethnic minority populations, which can inform future clinical and population studies.
Collapse
Affiliation(s)
- Sudan Tao
- Blood Center of Zhejiang Province, Key Laboratory of Blood Safety Research of Zhejiang Province, Hangzhou, Zhejiang, People’s Republic of China
| | - Paul J. Norman
- Division of Biomedical Informatics and Personalized Medicine, and Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado, United States
| | - Xuan You
- Blood Center of Zhejiang Province, Key Laboratory of Blood Safety Research of Zhejiang Province, Hangzhou, Zhejiang, People’s Republic of China
| | - Katherine M. Kichula
- Division of Biomedical Informatics and Personalized Medicine, and Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado, United States
| | - Lina Dong
- Blood Center of Zhejiang Province, Key Laboratory of Blood Safety Research of Zhejiang Province, Hangzhou, Zhejiang, People’s Republic of China
| | - Nanying Chen
- Blood Center of Zhejiang Province, Key Laboratory of Blood Safety Research of Zhejiang Province, Hangzhou, Zhejiang, People’s Republic of China
| | - Yizhen He
- Blood Center of Zhejiang Province, Key Laboratory of Blood Safety Research of Zhejiang Province, Hangzhou, Zhejiang, People’s Republic of China
| | - Chen Chen
- Blood Center of Zhejiang Province, Key Laboratory of Blood Safety Research of Zhejiang Province, Hangzhou, Zhejiang, People’s Republic of China
| | - Wei Zhang
- Blood Center of Zhejiang Province, Key Laboratory of Blood Safety Research of Zhejiang Province, Hangzhou, Zhejiang, People’s Republic of China
| | - Faming Zhu
- Blood Center of Zhejiang Province, Key Laboratory of Blood Safety Research of Zhejiang Province, Hangzhou, Zhejiang, People’s Republic of China
| |
Collapse
|
2
|
Tao S, You X, Wang J, Zhang W, He J, Zhu F. Determination for KIR genotype and allele copy number via real-time quantitative PCR method. Immunogenetics 2024; 76:137-143. [PMID: 38206349 DOI: 10.1007/s00251-023-01331-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 12/29/2023] [Indexed: 01/12/2024]
Abstract
Killer cell immunoglobulin-like receptor (KIR) and human leukocyte antigen (HLA) play crucial roles in regulating NK cell activity. Here, we report a real-time quantitative PCR (qPCR) to genotype all KIR genes and their copy numbers simultaneously. With 18 pairs of locus-specific primers, we identified KIR genes by Ct values and determined KIR copy number using the 2-∆Ct method. Haplotypes were assigned based on KIR gene copy numbers. The real-time qPCR results were consistent with the NGS method, except for one sample with KIR2DL5 discrepancy. qPCR is a multiplex method that can identify KIR copy number, which helps obtain a relatively accurate haplotype structure, facilitating increased KIR research in laboratories where NGS or other high-resolution methods are not available.
Collapse
Affiliation(s)
- Sudan Tao
- Blood Center of Zhejiang Province, Key Laboratory of Blood Safety Research of Zhejiang Province, Hangzhou, Zhejiang, People's Republic of China
| | - Xuan You
- Blood Center of Zhejiang Province, Key Laboratory of Blood Safety Research of Zhejiang Province, Hangzhou, Zhejiang, People's Republic of China
| | - Jielin Wang
- Blood Center of Zhejiang Province, Key Laboratory of Blood Safety Research of Zhejiang Province, Hangzhou, Zhejiang, People's Republic of China
| | - Wei Zhang
- Blood Center of Zhejiang Province, Key Laboratory of Blood Safety Research of Zhejiang Province, Hangzhou, Zhejiang, People's Republic of China
| | - Ji He
- Blood Center of Zhejiang Province, Key Laboratory of Blood Safety Research of Zhejiang Province, Hangzhou, Zhejiang, People's Republic of China
| | - Faming Zhu
- Blood Center of Zhejiang Province, Key Laboratory of Blood Safety Research of Zhejiang Province, Hangzhou, Zhejiang, People's Republic of China.
| |
Collapse
|
3
|
Wu Y, Han W, Dong H, Liu X, Su X. The rising roles of exosomes in the tumor microenvironment reprogramming and cancer immunotherapy. MedComm (Beijing) 2024; 5:e541. [PMID: 38585234 PMCID: PMC10999178 DOI: 10.1002/mco2.541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 03/12/2024] [Accepted: 03/15/2024] [Indexed: 04/09/2024] Open
Abstract
Exosomes are indispensable for intercellular communications. Tumor microenvironment (TME) is the living environment of tumor cells, which is composed of various components, including immune cells. Based on TME, immunotherapy has been recently developed for eradicating cancer cells by reactivating antitumor effect of immune cells. The communications between tumor cells and TME are crucial for tumor development, metastasis, and drug resistance. Exosomes play an important role in mediating these communications and regulating the reprogramming of TME, which affects the sensitivity of immunotherapy. Therefore, it is imperative to investigate the role of exosomes in TME reprogramming and the impact of exosomes on immunotherapy. Here, we review the communication role of exosomes in regulating TME remodeling and the efficacy of immunotherapy, as well as summarize the underlying mechanisms. Furthermore, we also introduce the potential application of the artificially modified exosomes as the delivery systems of antitumor drugs. Further efforts in this field will provide new insights on the roles of exosomes in intercellular communications of TME and cancer progression, thus helping us to uncover effective strategies for cancer treatment.
Collapse
Affiliation(s)
- Yu Wu
- Clinical Medical Research Center of the Affiliated HospitalInner Mongolia Medical UniversityHohhotChina
| | - Wenyan Han
- Clinical Laboratorythe Second Affiliated Hospital of Inner Mongolia Medical UniversityHohhotChina
| | - Hairong Dong
- Clinical LaboratoryHohhot first hospitalHohhotChina
| | - Xiaofeng Liu
- Hepatopancreatobiliary Surgery Department IKey Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing)Peking University Cancer Hospital and InstituteBeijingChina
| | - Xiulan Su
- Clinical Medical Research Center of the Affiliated HospitalInner Mongolia Medical UniversityHohhotChina
| |
Collapse
|
4
|
Wu HM, Chen LH, Hsu LT, Lai CH. Immune Tolerance of Embryo Implantation and Pregnancy: The Role of Human Decidual Stromal Cell- and Embryonic-Derived Extracellular Vesicles. Int J Mol Sci 2022; 23:ijms232113382. [PMID: 36362169 PMCID: PMC9658721 DOI: 10.3390/ijms232113382] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/30/2022] [Accepted: 10/31/2022] [Indexed: 11/06/2022] Open
Abstract
Embryo–endometrial communication plays a critical role in embryo implantation and the establishment of a successful pregnancy. Successful pregnancy outcomes involve maternal immune modulation during embryo implantation. The endometrium is usually primed and immunomodulated by steroid hormones and embryo signals for subsequent embryo implantation and the maintenance of pregnancy. The roles of extracellular vesicles (EVs) and microRNAs for the embryo–maternal interactions have been elucidated recently. New evidence shows that endometrial EVs and trophectoderm-originated EV cargo, including microRNAs, proteins, and lipids in the physiological microenvironment, regulate maternal immunomodulation for embryo implantation and subsequent pregnancy. On the other hand, trophoblast-derived EVs also control the cross-communication between the trophoblasts and immune cells. The exploration of EV functions and mechanisms in the processes of embryo implantation and pregnancy will shed light on a practical tool for the diagnostic or therapeutic approaches to reproductive medicine and infertility.
Collapse
Affiliation(s)
- Hsien-Ming Wu
- Department of Obstetrics and Gynecology, Linkou Medical Center, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan 333, Taiwan
| | - Liang-Hsuan Chen
- Department of Obstetrics and Gynecology, Linkou Medical Center, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan 333, Taiwan
| | - Le-Tien Hsu
- Department of Obstetrics and Gynecology, Linkou Medical Center, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan 333, Taiwan
| | - Chyong-Huey Lai
- Department of Obstetrics and Gynecology, Linkou Medical Center, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan 333, Taiwan
- Gynecologic Cancer Research Center, Linkou Medical Center, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan
- Correspondence: ; Tel.: +886-3-328-1200 (ext. 8254)
| |
Collapse
|
5
|
Wang F, Xie S, Ran C, Hao H, Jiang T, Deng W, Bi X, Lin Y, Yang L, Sun F, Zeng Z, Xie Y, Li M, Yi W. Effect of Antiviral Therapy During Pregnancy on Natural Killer Cells in Pregnant Women With Chronic HBV Infection. Front Immunol 2022; 13:893628. [PMID: 35677040 PMCID: PMC9168030 DOI: 10.3389/fimmu.2022.893628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 04/22/2022] [Indexed: 11/18/2022] Open
Abstract
OBJECTIVE To study the effect of antiviral therapy during pregnancy on the frequency of natural killer (NK) cells in peripheral blood of women with HBV DNA positive chronic hepatitis B (CHB). METHOD In total 124 female subjects were divided into four groups: 11 healthy non-pregnant women (Normal group), 26 non-pregnant women in immune tolerance period of chronic hepatitis B virus (HBV) infection (CHB group), 41 pregnant CHB women without antiviral treatment during pregnancy (Untreated group), and 46 pregnant CHB women receiving antiviral treatment during pregnancy (Treated group). The frequency of NK cells in peripheral blood were detected by flow cytometry. RESULT The frequency of NK cells in healthy women [15.30 (12.80, 18.40)] was higher than that in women with HBV infection, but there was no significant statistical difference (p=0.436). The frequency of NK cells in CHB group [10.60 (6.00, 18.30)] was higher than those in pregnant CHB women [Untreated: 6.90 (4.89, 10.04), P=0.001; Treated: 9.42 (6.55, 14.10), P=0.047]. The frequency of NK cells in treated group was significantly higher than that in untreated group (P = 0.019). The frequencies of NK cells, CD56bright NK cells and NKp46dim NK cells at 12 and 24 weeks postpartum in the untreated group were increased significantly than those before delivery. In treated group, the frequencies of NK cells, CD56bright NK cells, NKp46+ NK cells and NKp46dim NK cells were significantly increased at 6 and 12 weeks than those before delivery. The frequencies of NK cells and CD56bright NK cells postpartum were increased significantly in treated group than those in untreated group. The frequencies of CD56dim NK cells decreased significantly after delivery in treated than those in untreated patients. Alanine aminotransferase (ALT) and aspartate aminotransferase (AST) significantly increased after delivery than those before delivery. The results showed that the postpartum ALT level was weak positive correlated with NKp46high frequency (r=0.199) and was weak negative correlated with NKp46dim frequency (r= -0.199). CONCLUSION Antiviral treatment during pregnancy could significantly increase the frequency of NK cells postpartum. Postpartum hepatitis may be related to the immune injury caused by change of NK cell frequency and HBV infection.
Collapse
Affiliation(s)
- Fuchuan Wang
- Department of Gynecology and Obstetrics, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Si Xie
- Division of Hepatology, Hepato-Pancreato-Biliary Center, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
| | - Chongping Ran
- Department of Hepatology Division 2, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Hongxiao Hao
- Department of Hepatology Division 2, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Tingting Jiang
- Department of Hepatology Division 2, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Wen Deng
- Department of Hepatology Division 2, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Xiaoyue Bi
- Department of Hepatology Division 2, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Yanjie Lin
- Department of Hepatology Division 2, Peking University Ditan Teaching Hospital, Beijing, China
| | - Liu Yang
- Department of Hepatology Division 2, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Fangfang Sun
- Department of Hepatology Division 2, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Zhan Zeng
- Department of Hepatology Division 2, Peking University Ditan Teaching Hospital, Beijing, China
| | - Yao Xie
- Department of Hepatology Division 2, Beijing Ditan Hospital, Capital Medical University, Beijing, China
- Department of Hepatology Division 2, Peking University Ditan Teaching Hospital, Beijing, China
| | - Minghui Li
- Department of Hepatology Division 2, Beijing Ditan Hospital, Capital Medical University, Beijing, China
- Department of Hepatology Division 2, Peking University Ditan Teaching Hospital, Beijing, China
| | - Wei Yi
- Department of Gynecology and Obstetrics, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
6
|
Hrvat A, Schmidt M, Obholzer M, Benders S, Kollenda S, Horn PA, Epple M, Brandau S, Mallmann-Gottschalk N. Reactivity of NK Cells Against Ovarian Cancer Cells Is Maintained in the Presence of Calcium Phosphate Nanoparticles. Front Immunol 2022; 13:830938. [PMID: 35251021 PMCID: PMC8895254 DOI: 10.3389/fimmu.2022.830938] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 01/26/2022] [Indexed: 11/29/2022] Open
Abstract
Calcium phosphate nanoparticles (CaP-NPs) are biodegradable carriers that can be functionalized with biologically active molecules. As such, they are potential candidates for delivery of therapeutic molecules in cancer therapies. In this context, it is important to explore whether CaP-NPs impair the natural or therapy-induced immune cell activity against cancer cells. Therefore, in this study, we have investigated the effects of different CaP-NPs on the anti-tumor activity of natural killer (NK) cells using different ovarian cancer (OC) cell line models. We explored these interactions in coculture systems consisting of NK cells, OC cells, CaP-NPs, and therapeutic Cetuximab antibodies (anti-EGFR, ADCC-inducing antibody). Our experiments revealed that aggregated CaP-NPs can serve as artificial targets, which activate NK cell degranulation and impair ADCC directed against tumor targets. However, when CaP-NPs were properly dissolved by sonication, they did not cause substantial activation. CaP-NPs with SiO2-SH-shell induced some activation of NK cells that was not observed with polyethyleneimine-coated CaP-NPs. Addition of CaP-NPs to NK killing assays did not impair conjugation of NK with OC and subsequent tumor cytolytic NK degranulation. Therapeutic antibody coupled to functionalized CaP-NPs maintained substantial levels of antibody-dependent cellular cytotoxic activity. Our study provides a cell biological basis for the application of functionalized CaP-NPs in immunologic anti-cancer therapies.
Collapse
Affiliation(s)
- Antonio Hrvat
- Experimental and Translational Research, Department of Otorhinolaryngology, University Hospital Essen, Essen, Germany
| | - Mathias Schmidt
- Experimental and Translational Research, Department of Otorhinolaryngology, University Hospital Essen, Essen, Germany
| | - Martin Obholzer
- Experimental and Translational Research, Department of Otorhinolaryngology, University Hospital Essen, Essen, Germany
| | - Sonja Benders
- Experimental and Translational Research, Department of Otorhinolaryngology, University Hospital Essen, Essen, Germany
| | - Sebastian Kollenda
- Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (CeNIDE), University of Duisburg-Essen, Essen, Germany
| | - Peter A. Horn
- Institute for Transfusion Medicine, University Hospital Essen, Essen, Germany
| | - Matthias Epple
- Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (CeNIDE), University of Duisburg-Essen, Essen, Germany
| | - Sven Brandau
- Experimental and Translational Research, Department of Otorhinolaryngology, University Hospital Essen, Essen, Germany
- German Cancer Consortium, Partner Site Essen-Düsseldorf, Essen, Germany
- *Correspondence: Sven Brandau,
| | - Nina Mallmann-Gottschalk
- Experimental and Translational Research, Department of Otorhinolaryngology, University Hospital Essen, Essen, Germany
- Department of Gynecology and Obstetrics, University Hospital Essen, Essen, Germany
| |
Collapse
|
7
|
Euchner J, Sprissler J, Cathomen T, Fürst D, Schrezenmeier H, Debatin KM, Schwarz K, Felgentreff K. Natural Killer Cells Generated From Human Induced Pluripotent Stem Cells Mature to CD56 brightCD16 +NKp80 +/- In-Vitro and Express KIR2DL2/DL3 and KIR3DL1. Front Immunol 2021; 12:640672. [PMID: 34017328 PMCID: PMC8129508 DOI: 10.3389/fimmu.2021.640672] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 04/13/2021] [Indexed: 12/15/2022] Open
Abstract
The differentiation of human induced pluripotent stem cells (hiPSCs) into T and natural killer (NK) lymphocytes opens novel possibilities for developmental studies of immune cells and in-vitro generation of cell therapy products. In particular, iPSC-derived NK cells gained interest in adoptive anti-cancer immunotherapies, since they enable generation of homogenous populations of NK cells with and without genetic engineering that can be grown at clinical scale. However, the phenotype of in-vitro generated NK cells is not well characterized. NK cells derive in the bone marrow and mature in secondary lymphoid tissues through distinct stages from CD56brightCD16- to CD56dimCD16+ NK cells that represents the most abandoned population in peripheral blood. In this study, we efficiently generated CD56+CD16+CD3- NK lymphocytes from hiPSC and characterized NK-cell development by surface expression of NK-lineage markers. Hematopoietic priming of hiPSC resulted in 31.9% to 57.4% CD34+CD45+ hematopoietic progenitor cells (HPC) that did not require enrichment for NK lymphocyte propagation. HPC were further differentiated into NK cells on OP9-DL1 feeder cells resulting in high purity of CD56brightCD16- and CD56brightCD16+ NK cells. The output of generated NK cells increased up to 40% when OP9-DL1 feeder cells were inactivated with mitomycine C. CD7 expression could be detected from the first week of differentiation indicating priming towards the lymphoid lineage. CD56brightCD16-/+ NK cells expressed high levels of DNAM-1, CD69, natural killer cell receptors NKG2A and NKG2D, and natural cytotoxicity receptors NKp46, NKp44, NKp30. Expression of NKp80 on 40% of NK cells, and a perforin+ and granzyme B+ phenotype confirmed differentiation up to stage 4b. Killer cell immunoglobulin-like receptor KIR2DL2/DL3 and KIR3DL1 were found on up to 3 and 10% of mature NK cells, respectively. NK cells were functional in terms of cytotoxicity, degranulation and antibody-dependent cell-mediated cytotoxicity.
Collapse
Affiliation(s)
- Johanna Euchner
- Institute for Transfusion Medicine, Ulm University, Ulm, Germany.,International Graduate School in Molecular Medicine, Ulm University, Ulm, Germany
| | - Jasmin Sprissler
- International Graduate School in Molecular Medicine, Ulm University, Ulm, Germany.,Department of Pediatrics and Adolescent Medicine, Ulm University Medical Center, Ulm, Germany
| | - Toni Cathomen
- Institute for Transfusion Medicine and Gene Therapy, Medical Center - University of Freiburg, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Daniel Fürst
- Institute for Transfusion Medicine, Ulm University, Ulm, Germany.,Institute for Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Service Baden-Württemberg-Hessen, Ulm, Germany
| | - Hubert Schrezenmeier
- Institute for Transfusion Medicine, Ulm University, Ulm, Germany.,Institute for Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Service Baden-Württemberg-Hessen, Ulm, Germany
| | - Klaus-Michael Debatin
- Department of Pediatrics and Adolescent Medicine, Ulm University Medical Center, Ulm, Germany
| | - Klaus Schwarz
- Institute for Transfusion Medicine, Ulm University, Ulm, Germany.,Institute for Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Service Baden-Württemberg-Hessen, Ulm, Germany
| | - Kerstin Felgentreff
- Department of Pediatrics and Adolescent Medicine, Ulm University Medical Center, Ulm, Germany
| |
Collapse
|
8
|
Chaudhry K, Dowlati E, Bollard CM. Chimeric antigen receptor-engineered natural killer cells: a promising cancer immunotherapy. Expert Rev Clin Immunol 2021; 17:643-659. [PMID: 33821731 DOI: 10.1080/1744666x.2021.1911648] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Introduction:Widespread success of CD19 chimeric antigen receptor (CAR) T cells for the treatment of hematological malignancies have shifted the focus from conventional cancer treatments toward adoptive immunotherapy. There are major efforts to improve CAR constructs and to identify new target antigens. Even though the Food and Drug Administration has approved commercialization of some CD19 CART cell therapies, there are still some limitations that restrict their widespread clinical use. The manufacture of autologous products for individual patients is logistically cumbersome and expensive and allogeneic T cell products may pose an appreciable risk of graft-versus-host disease (GVHD).Areas covered:Natural killer (NK) cells are an attractive alternative for CART-based immunotherapies. They have the innate ability to detect and eliminate malignant cells and are safer in the 'off-the-shelf' setting. This review discusses the current progress within the CAR NK cell field, including the challenges, and future prospects. Gene engineered NK cells was used as the search term in PubMed and Google Scholar through to December 2020.Expert opinion:CAR NK cell therapies hold promise as an 'off-the-shelf' cell therapy for cancer. It is hoped that an enhanced understanding of their immunobiology and molecular mechanisms of action will improve their in vivo potency.
Collapse
Affiliation(s)
- Kajal Chaudhry
- Center for Cancer and Immunology Research, Children's National Hospital, Washington, DC, WA, USA
| | - Ehsan Dowlati
- Department of Neurosurgery, Georgetown University Medical Center, Washington, WA, USA
| | - Catherine M Bollard
- Center for Cancer and Immunology Research, Children's National Hospital, Washington, DC, WA, USA.,GW Cancer Center, George Washington University, Washington, DC, WA, USA.,Division of Blood and Marrow Transplantation, Children's National Hospital, Washington, DC, WA, USA
| |
Collapse
|
9
|
Tao S, Kichula KM, Harrison GF, Farias TDJ, Palmer WH, Leaton LA, Hajar CGN, Zefarina Z, Edinur HA, Zhu F, Norman PJ. The combinatorial diversity of KIR and HLA class I allotypes in Peninsular Malaysia. Immunology 2021; 162:389-404. [PMID: 33283280 PMCID: PMC7968402 DOI: 10.1111/imm.13289] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 11/18/2020] [Accepted: 11/21/2020] [Indexed: 12/16/2022] Open
Abstract
Killer cell immunoglobulin-like receptors (KIRs) interact with polymorphic human leucocyte antigen (HLA) class I molecules, modulating natural killer (NK) cell functions and affecting both the susceptibility and outcome of immune-mediated diseases. The KIR locus is highly diverse in gene content, copy number and allelic polymorphism within individuals and across geographical populations. To analyse currently under-represented Asian and Pacific populations, we investigated the combinatorial diversity of KIR and HLA class I in 92 unrelated Malay and 75 Malaysian Chinese individuals from the Malay Peninsula. We identified substantial allelic and structural diversity of the KIR locus in both populations and characterized novel variations at each analysis level. The Malay population is more diverse than Malay Chinese, likely representing a unique history including admixture with immigrating populations spanning several thousand years. Characterizing the Malay population are KIR haplotypes with large structural variants present in 10% individuals, and KIR and HLA alleles previously identified in Austronesian populations. Despite the differences in ancestries, the proportion of HLA allotypes that serve as KIR ligands is similar in each population. The exception is a significantly reduced frequency of interactions of KIR2DL1 with C2+ HLA-C in the Malaysian Chinese group, caused by the low frequency of C2+ HLA. One likely implication is a greater protection from preeclampsia, a pregnancy disorder associated with KIR2DL1, which shows higher incidence in the Malay than in the Malaysian Chinese. This first complete, high-resolution, characterization of combinatorial diversity of KIR and HLA in Malaysians will form a valuable reference for future clinical and population studies.
Collapse
Affiliation(s)
- Sudan Tao
- Division of Biomedical Informatics and Personalized MedicineDepartment of Immunology and MicrobiologyUniversity of Colorado Anschutz Medical CampusAuroraCOUSA
- Blood Center of Zhejiang ProvinceKey Laboratory of Blood Safety Research of Zhejiang ProvinceHangzhouZhejiangChina
| | - Katherine M. Kichula
- Division of Biomedical Informatics and Personalized MedicineDepartment of Immunology and MicrobiologyUniversity of Colorado Anschutz Medical CampusAuroraCOUSA
| | - Genelle F. Harrison
- Division of Biomedical Informatics and Personalized MedicineDepartment of Immunology and MicrobiologyUniversity of Colorado Anschutz Medical CampusAuroraCOUSA
| | - Ticiana Della Justina Farias
- Division of Biomedical Informatics and Personalized MedicineDepartment of Immunology and MicrobiologyUniversity of Colorado Anschutz Medical CampusAuroraCOUSA
| | - William H. Palmer
- Division of Biomedical Informatics and Personalized MedicineDepartment of Immunology and MicrobiologyUniversity of Colorado Anschutz Medical CampusAuroraCOUSA
| | - Laura Ann Leaton
- Division of Biomedical Informatics and Personalized MedicineDepartment of Immunology and MicrobiologyUniversity of Colorado Anschutz Medical CampusAuroraCOUSA
| | | | - Zulkafli Zefarina
- School of Medical SciencesUniversiti Sains Malaysia, Health CampusKelantanMalaysia
| | - Hisham Atan Edinur
- School of Health SciencesUniversiti Sains Malaysia, Health CampusKelantanMalaysia
| | - Faming Zhu
- Blood Center of Zhejiang ProvinceKey Laboratory of Blood Safety Research of Zhejiang ProvinceHangzhouZhejiangChina
| | - Paul J. Norman
- Division of Biomedical Informatics and Personalized MedicineDepartment of Immunology and MicrobiologyUniversity of Colorado Anschutz Medical CampusAuroraCOUSA
| |
Collapse
|
10
|
Immune Tolerance of the Human Decidua. J Clin Med 2021; 10:jcm10020351. [PMID: 33477602 PMCID: PMC7831321 DOI: 10.3390/jcm10020351] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 01/13/2021] [Accepted: 01/14/2021] [Indexed: 01/06/2023] Open
Abstract
The endometrium is necessary for implantation, complete development of the placenta, and a successful pregnancy. The endometrium undergoes repeated cycles of proliferation, decidualization (differentiation), and shedding during each menstrual cycle. The endometrium—including stromal, epithelial, vascular endothelial, and immune cells—is both functionally and morphologically altered in response to progesterone, causing changes in the number and types of immune cells. Immune cells make up half of the total number of endometrial cells during implantation and menstruation. Surprisingly, immune tolerant cells in the endometrium (uterine natural killer cells, T cells, and macrophages) have two conflicting functions: to protect the body by eliminating pathogenic microorganisms and other pathogens and to foster immunological change to tolerate the embryo during pregnancy. One of the key molecules involved in this control is the cytokine interleukin-15 (IL-15), which is secreted by endometrial stromal cells. Recently, it has been reported that IL-15 is directly regulated by the transcription factor heart- and neural crest derivatives-expressed protein 2 in endometrial stromal cells. In this review, we outline the significance of the endometrium and immune cell population during menstruation and early pregnancy and describe the factors involved in immune tolerance and their involvement in the establishment and maintenance of pregnancy.
Collapse
|
11
|
EZH1/2 Inhibitors Favor ILC3 Development from Human HSPC-CD34 + Cells. Cancers (Basel) 2021; 13:cancers13020319. [PMID: 33467134 PMCID: PMC7830003 DOI: 10.3390/cancers13020319] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 01/12/2021] [Accepted: 01/13/2021] [Indexed: 01/19/2023] Open
Abstract
Simple Summary It has been well-demonstrated that EZH1/2 enzymes are involved not only in tumor development and progression, but also in the regulation of normal hematopoiesis from CD34+-HSPC. Given the crucial role of NK cells in tumor immune surveillance, in this study, we investigated whether EZH1/2 inhibitors can interfere with NK cell differentiation and functional maturation. Our results suggest that EZH1/2 inhibitors push CD56+ precursor proliferation, skewing precursor cell lineage commitment towards ILC3. In recent years, several clinical trials on the use of EZH1/2 inhibitors against solid tumors have been carried out. Since these in vitro observations revealed possible epigenetic mechanisms involved in NK/ILC development, it is important to evaluate patient monitoring of competent NK cells repertoire in order to design appropriate therapeutic protocols. Abstract The dysregulation of epigenetic modifications has a well-established role in the development and progression of hematological malignancies and of solid tumors. In this context, EZH1/2 inhibitors have been designed to interfere with EZH1/2 enzymes involved in histone methylation (e.g., H3K27me3), leading to tumor growth arrest or the restoration of tumor suppressor gene transcription. However, these compounds also affect normal hematopoiesis, interfering with self-renewal and differentiation of CD34+-Hematopoietic Stem/Progenitor Cells (HSPC), and, in turn, could modulate the generation of potential anti-tumor effector lymphocytes. Given the important role of NK cells in the immune surveillance of tumors, it would be useful to understand whether epigenetic drugs can modulate NK cell differentiation and functional maturation. CD34+-HSPC were cultured in the absence or in the presence of the EZH1/2 inhibitor UNC1999 and EZH2 inhibitor GSK126. Our results show that UNC1999 and GSK126 increased CD56+ cell proliferation compared to the control condition. However, UNC1999 and GSK 126 favored the proliferation of no-cytotoxic CD56+ILC3, according to the early expression of the AHR and ROR-γt transcription factors. Our results describe novel epigenetic mechanisms involved in the modulation of NK cell maturation that may provide new tools for designing NK cell-based immunotherapy.
Collapse
|
12
|
Cao G, Cheng Y, Zheng X, Wei H, Tian Z, Sun R, Sun H. All-trans retinoic acid induces leukemia resistance to NK cell cytotoxicity by down-regulating B7-H6 expression via c-Myc signaling. Cancer Commun (Lond) 2021; 41:51-61. [PMID: 34236140 PMCID: PMC7819554 DOI: 10.1002/cac2.12121] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 10/31/2020] [Accepted: 11/23/2020] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND The interaction between activating receptor NKp30 and its major tumor ligand B7-H6 is important for NK cell-mediated tumor rejection. However, the regulation of B7-H6 by tumor therapeutics remains largely unknown. In this study, we investigated the regulation of B7-H6 by all-trans retinoic acid (atRA), a terminal differentiation inducer of tumor cells that is extensively used for clinical leukemia therapy. METHODS We investigated the role of NKp30:B7-H6 axis in NK cell-mediated tumor lysis against leukemia cells and the influence of atRA treatment on the cytotoxicity of NK cells using NK cell lines (NK92 and NKG) and leukemia cell lines (U-937 and THP-1). We evaluated the effect of atRA treatment on the expression of B7-H6 using real-time PCR, flow cytometry and western blotting. We used CRISPR/Cas9 to knockdown B7-H6 expression and siRNA to knockdown c-Myc in U-937 cells to evaluate the role of B7-H6 and c-Myc in atRA-induced tumor resistance against NK cells. RESULTS NK cell-mediated U-937 cell lysis was mainly dependent on NKp30/B7-H6 interaction. Blockade of B7-H6 by monoclonal antibody significantly impaired NK cytotoxicity. atRA treatment induced U-937 resistance to NK cell cytotoxicity by reducing B7-H6 expression, and showed no effect on NK cytotoxicity against B7-H6 knockdown U-937 cells. Epigenetic modifications, such as DNA methylation and histone deacetylase (HDAC), were not responsible for atRA-mediated B7-H6 down-regulation as inhibitors of these pathways could not restore B7-H6 mRNA expression. On the other hand, atRA treatment reduced c-Myc expression, which in turn inhibited the transcription of B7-H6 on leukemia cells. CONCLUSION atRA treatment promotes tumor cell resistance against NK cell-mediated lysis by down-regulating B7-H6 expression via the c-Myc signaling pathway, suggesting that more attention needs to be paid to the immunological adverse effects in the clinical use of atRA treatment.
Collapse
Affiliation(s)
- Guoshuai Cao
- Hefei National Laboratory for Physical Sciences at Microscalethe CAS Key Laboratory of Innate Immunity and Chronic DiseaseSchool of Basic Medical SciencesDivision of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiAnhui230027P. R. China
- Institute of ImmunologyUniversity of Science and Technology of ChinaHefeiAnhui230027P. R. China
| | - Ying Cheng
- Hefei National Laboratory for Physical Sciences at Microscalethe CAS Key Laboratory of Innate Immunity and Chronic DiseaseSchool of Basic Medical SciencesDivision of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiAnhui230027P. R. China
- Institute of ImmunologyUniversity of Science and Technology of ChinaHefeiAnhui230027P. R. China
| | - Xiaodong Zheng
- Hefei National Laboratory for Physical Sciences at Microscalethe CAS Key Laboratory of Innate Immunity and Chronic DiseaseSchool of Basic Medical SciencesDivision of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiAnhui230027P. R. China
- Institute of ImmunologyUniversity of Science and Technology of ChinaHefeiAnhui230027P. R. China
| | - Haiming Wei
- Hefei National Laboratory for Physical Sciences at Microscalethe CAS Key Laboratory of Innate Immunity and Chronic DiseaseSchool of Basic Medical SciencesDivision of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiAnhui230027P. R. China
- Institute of ImmunologyUniversity of Science and Technology of ChinaHefeiAnhui230027P. R. China
| | - Zhigang Tian
- Hefei National Laboratory for Physical Sciences at Microscalethe CAS Key Laboratory of Innate Immunity and Chronic DiseaseSchool of Basic Medical SciencesDivision of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiAnhui230027P. R. China
- Institute of ImmunologyUniversity of Science and Technology of ChinaHefeiAnhui230027P. R. China
- Research Unit of Natural Killer Cell StudyChinese Academy of Medical SciencesBeijing100864P. R. China
| | - Rui Sun
- Hefei National Laboratory for Physical Sciences at Microscalethe CAS Key Laboratory of Innate Immunity and Chronic DiseaseSchool of Basic Medical SciencesDivision of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiAnhui230027P. R. China
- Institute of ImmunologyUniversity of Science and Technology of ChinaHefeiAnhui230027P. R. China
| | - Haoyu Sun
- Hefei National Laboratory for Physical Sciences at Microscalethe CAS Key Laboratory of Innate Immunity and Chronic DiseaseSchool of Basic Medical SciencesDivision of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiAnhui230027P. R. China
- Institute of ImmunologyUniversity of Science and Technology of ChinaHefeiAnhui230027P. R. China
| |
Collapse
|
13
|
Extracellular Vesicles Orchestrate Immune and Tumor Interaction Networks. Cancers (Basel) 2020; 12:cancers12123696. [PMID: 33317058 PMCID: PMC7763968 DOI: 10.3390/cancers12123696] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 12/04/2020] [Accepted: 12/07/2020] [Indexed: 12/29/2022] Open
Abstract
Simple Summary Significant strides have been made to describe the pervasive role of extracellular vesicles (EVs) in health and disease. This work provides an insightful and unifying mechanistic understanding of EVs in immunity and tumorigenesis. This is achieved by dissecting the role of EVs within the continuum of immune cell physiology, immune–infection responses, and the immune–tumor microenvironment. Our work synthesizes important topical findings on immune EV signaling in mediating immune–tumor interaction networks. Abstract Extracellular vesicles (EVs) are emerging as potent and intricate intercellular communication networks. From their first discovery almost forty years ago, several studies have bolstered our understanding of these nano-vesicular structures. EV subpopulations are now characterized by differences in size, surface markers, cargo, and biological effects. Studies have highlighted the importance of EVs in biology and intercellular communication, particularly during immune and tumor interactions. These responses can be equally mediated at the proteomic and epigenomic levels through surface markers or nucleic acid cargo signaling, respectively. Following the exponential growth of EV studies in recent years, we herein synthesize new aspects of the emerging immune–tumor EV-based intercellular communications. We also discuss the potential role of EVs in fundamental immunological processes under physiological conditions, viral infections, and tumorigenic conditions. Finally, we provide insights on the future prospects of immune–tumor EVs and suggest potential avenues for the use of EVs in diagnostics and therapeutics.
Collapse
|
14
|
Prator CA, Donatelli J, Henrich TJ. From Berlin to London: HIV-1 Reservoir Reduction Following Stem Cell Transplantation. Curr HIV/AIDS Rep 2020; 17:385-393. [PMID: 32519184 DOI: 10.1007/s11904-020-00505-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
PURPOSE OF REVIEW Few interventional strategies lead to significant reductions in HIV-1 reservoir size or prolonged antiretroviral (ART)-free remission. Allogeneic stem cell transplantations (SCT) with or without donor cells harboring genetic mutations preventing functional expression of CCR5, an HIV coreceptor, lead to dramatic reductions in residual HIV burden. However, the mechanisms by which SCT reduces viral reservoirs and leads to a potential functional HIV cure are not well understood. RECENT FINDINGS A growing number of studies involving allogeneic SCT in people with HIV are emerging, including those with and without transplants involving CCR5Δ32/Δ32 mutations. Donor cells resistant to HIV entry are likely required in order to achieve permanent ART-free viral remission. However, dramatic reductions in the HIV reservoir secondary to beneficial graft-versus-host effects may lead to loss of HIV detection in blood and various tissues and lead to prolonged time to HIV rebound in individuals with wild-type CCR5 donors. Studies of SCT recipients and those who started very early ART during hyperacute infection suggest that dramatic reductions in reservoir size or restriction of initial reservoir seeding may lead to 8-10 months of time prior to eventual, and rapid, HIV recrudescence. Studies of allogeneic SCT in people with HIV have provided important insights into the size and nature of the HIV reservoir, and have invigorated other gene therapies to achieve HIV cure.
Collapse
Affiliation(s)
- Cecilia A Prator
- Division of Experimental Medicine, University of California San Francisco, 1001 Potrero Avenue Building 3, Room 525A, San Francisco, CA, 97706, USA
| | - Joanna Donatelli
- Division of Experimental Medicine, University of California San Francisco, 1001 Potrero Avenue Building 3, Room 525A, San Francisco, CA, 97706, USA.,California Institute of Regenerative Medicine, Bridges to Stem Cell Research Program, San Francisco State University, San Francisco, CA, USA
| | - Timothy J Henrich
- Division of Experimental Medicine, University of California San Francisco, 1001 Potrero Avenue Building 3, Room 525A, San Francisco, CA, 97706, USA.
| |
Collapse
|
15
|
Quatrini L, Tumino N, Moretta F, Besi F, Vacca P, Moretta L. Helper Innate Lymphoid Cells in Allogenic Hematopoietic Stem Cell Transplantation and Graft Versus Host Disease. Front Immunol 2020; 11:582098. [PMID: 33101308 PMCID: PMC7554507 DOI: 10.3389/fimmu.2020.582098] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 09/15/2020] [Indexed: 02/06/2023] Open
Abstract
Helper Innate Lymphoid Cells (hILCs), including ILC1s, ILC2s, and ILC3s, are mainly localized at the mucosal barriers where they play an important role in tissue regeneration and homeostasis through the secretion of specific sets of cytokines. The recent identification of a circulating ILC precursor able to generate all ILC mature subsets in physiological conditions, suggests that “ILC-poiesis” may be important in the context of hematopoietic stem cell transplantation (HSCT). Indeed, in HSCT the conditioning regimen (chemotherapy and radiotherapy) and Graft vs Host Disease (GvHD) may cause severe damages to mucosal tissues. Therefore, it is conceivable that rapid reconstitution of the hILC compartment may be beneficial in HSCT, by promoting mucosal tissue repair/regeneration and providing protection from opportunistic infections. In this review, we will summarize the evidence for a role of hILCs in allogenic HSCT for the treatment of hematological malignancies in all its steps, from the preparative regimen to the immune reconstitution in the recipient. The protective properties of hILCs at the mucosal barrier interfaces make them an attractive target to exploit in future cellular therapies aimed at improving allogenic HSCT outcome.
Collapse
Affiliation(s)
- Linda Quatrini
- Department of Immunology, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | - Nicola Tumino
- Department of Immunology, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | - Francesca Moretta
- Department of Laboratory Medicine, IRCCS Sacro Cuore Don Calabria Hospital, Negrar, Italy
| | - Francesca Besi
- Department of Immunology, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | - Paola Vacca
- Department of Immunology, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | - Lorenzo Moretta
- Department of Immunology, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| |
Collapse
|
16
|
Chen Y, Nagarajan C, Tan MS, Martinelli G, Cerchione C. BCMA-targeting approaches for treatment of multiple myeloma. Panminerva Med 2020; 63:28-36. [PMID: 32955181 DOI: 10.23736/s0031-0808.20.04121-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Recent advances in treatment modalities have led to improved survival in patients with multiple myeloma (MM). However, despite these, MM remains an incurable disease. Many MM patients relapse through and become refractory to current treatment strategies or are intolerant due to toxicities arising from therapy. As such, novel strategies addressing new targets are crucial in improving care for MM patients. BCMA has emerged as a rationale therapeutic target for treatment of MM as it is preferentially expressed in mature B-lymphocytes and plasma cells with the overexpression and activation of BCMA via its ligands associated with the disease progression in multiple myeloma. Given the high expression of BCMA in malignant Plasma cells compared to those from normal healthy volunteers, targeting BCMA should reduce risks of on-target off-tumor toxicities. The main BCMA-targeting approaches currently used for treatment of MM include: 1) chimeric antigen receptor (CAR) T-cell therapy; 2) bi- and multi- specific antibodies; and 3) monoclonal antibodies and their drug conjugates. This review will outline these therapeutic agents and present their emerging clinical data.
Collapse
Affiliation(s)
- Yunxin Chen
- Department of Hematology, Singapore General Hospital, Singapore, Singapore - .,SingHealth Duke NUS Blood Cancer Center, Singapore, Singapore -
| | - Chandramouli Nagarajan
- Department of Hematology, Singapore General Hospital, Singapore, Singapore.,SingHealth Duke NUS Blood Cancer Center, Singapore, Singapore
| | - Melinda S Tan
- Department of Hematology, Singapore General Hospital, Singapore, Singapore
| | - Giovanni Martinelli
- Unit of Hematology, IRCCS Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST), Meldola, Forlì-Cesena, Italy
| | - Claudio Cerchione
- Unit of Hematology, IRCCS Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST), Meldola, Forlì-Cesena, Italy
| |
Collapse
|
17
|
Cantoni C, Granata S, Bruschi M, Spaggiari GM, Candiano G, Zaza G. Recent Advances in the Role of Natural Killer Cells in Acute Kidney Injury. Front Immunol 2020; 11:1484. [PMID: 32903887 PMCID: PMC7438947 DOI: 10.3389/fimmu.2020.01484] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 06/08/2020] [Indexed: 01/18/2023] Open
Abstract
Growing evidence is revealing a central role for natural killer (NK) cells, cytotoxic cells belonging to the broad family of innate lymphoid cells (ILCs), in acute and chronic forms of renal disease. NK cell effector functions include both the recognition and elimination of virus-infected and tumor cells and the capability of sensing pathogens through Toll-like receptor (TLR) engagement. Notably, they also display immune regulatory properties, exerted thanks to their ability to secrete cytokines/chemokines and to establish interactions with different innate and adaptive immune cells. Therefore, because of their multiple functions, NK cells may have a major pathogenic role in acute kidney injury (AKI), and a better understanding of the molecular mechanisms driving NK cell activation in AKI and their downstream interactions with intrinsic renal cells and infiltrating immune cells could help to identify new potential biomarkers and to select clinically valuable novel therapeutic targets. In this review, we discuss the current literature regarding the potential involvement of NK cells in AKI.
Collapse
Affiliation(s)
- Claudia Cantoni
- Laboratory of Clinical and Experimental Immunology, Integrated Department of Services and Laboratories, IRCCS Istituto Giannina Gaslini, Genoa, Italy.,Department of Experimental Medicine (DIMES) and Center of Excellence for Biomedical Research (CEBR), University of Genoa, Genoa, Italy
| | - Simona Granata
- Renal Unit, Department of Medicine, University-Hospital of Verona, Verona, Italy
| | - Maurizio Bruschi
- Laboratory of Molecular Nephrology, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Grazia Maria Spaggiari
- Department of Experimental Medicine (DIMES) and Center of Excellence for Biomedical Research (CEBR), University of Genoa, Genoa, Italy
| | - Giovanni Candiano
- Laboratory of Molecular Nephrology, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Gianluigi Zaza
- Renal Unit, Department of Medicine, University-Hospital of Verona, Verona, Italy
| |
Collapse
|
18
|
Alicata C, Ashouri E, Nemat-Gorgani N, Guethlein LA, Marin WM, Tao S, Moretta L, Hollenbach JA, Trowsdale J, Traherne JA, Ghaderi A, Parham P, Norman PJ. KIR Variation in Iranians Combines High Haplotype and Allotype Diversity With an Abundance of Functional Inhibitory Receptors. Front Immunol 2020; 11:556. [PMID: 32300348 PMCID: PMC7142237 DOI: 10.3389/fimmu.2020.00556] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 03/11/2020] [Indexed: 01/03/2023] Open
Abstract
Natural killer (NK) cells are innate lymphocytes that eliminate infected and transformed cells. They discriminate healthy from diseased tissue through killer cell Ig-like receptor (KIR) recognition of HLA class I ligands. Directly impacting NK cell function, KIR polymorphism associates with infection control and multiple autoimmune and pregnancy syndromes. Here we analyze KIR diversity of 241 individuals from five groups of Iranians. These five populations represent Baloch, Kurd, and Lur, together comprising 15% of the ethnically diverse Iranian population. We identified 159 KIR alleles, including 11 not previously characterized. We also identified 170 centromeric and 94 telomeric haplotypes, and 15 different KIR haplotypes carrying either a deletion or duplication encompassing one or more complete KIR genes. As expected, comparing our data with those representing major worldwide populations revealed the greatest similarity between Iranians and Europeans. Despite this similarity we observed higher frequencies of KIR3DL1*001 in Iran than any other population, and the highest frequency of HLA-B*51, a Bw4-containing allotype that acts as a strong educator of KIR3DL1*001+ NK cells. Compared to Europeans, the Iranians we studied also have a reduced frequency of 3DL1*004, which encodes an allotype that is not expressed at the NK cell surface. Concurrent with the resulting high frequency of strong viable interactions between inhibitory KIR and polymorphic HLA class I, the majority of KIR-A haplotypes characterized do not express a functional activating receptor. By contrast, the most frequent KIR-B haplotype in Iran expresses only one functional inhibitory KIR and the maximum number of activating KIR. This first complete, high-resolution, characterization of the KIR locus of Iranians will form a valuable reference for future clinical and population studies.
Collapse
Affiliation(s)
- Claudia Alicata
- Department of Immunology, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | - Elham Ashouri
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA, United States.,Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, United States.,Hematology-Oncology and Stem Cell Transplantation Research Center, Tehran University of Medical Sciences, Tehran, Iran.,School of Medicine, Shiraz Institute for Cancer Research, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Neda Nemat-Gorgani
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA, United States.,Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, United States.,Division of Immunology, Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Lisbeth A Guethlein
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA, United States.,Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, United States
| | - Wesley M Marin
- Department of Neurology, University of California, San Francisco, San Francisco, CA, United States
| | - Sudan Tao
- Blood Center of Zhejiang Province, Hangzhou, China.,Division of Personalized Medicine, Department of Immunology and Microbiology, University of Colorado, Anschutz Medical Campus, Aurora, CO, United States
| | - Lorenzo Moretta
- Department of Immunology, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | - Jill A Hollenbach
- Department of Neurology, University of California, San Francisco, San Francisco, CA, United States
| | - John Trowsdale
- Division of Immunology, Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - James A Traherne
- Division of Immunology, Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Abbas Ghaderi
- School of Medicine, Shiraz Institute for Cancer Research, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Peter Parham
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA, United States.,Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, United States
| | - Paul J Norman
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA, United States.,Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, United States.,Division of Personalized Medicine, Department of Immunology and Microbiology, University of Colorado, Anschutz Medical Campus, Aurora, CO, United States
| |
Collapse
|
19
|
An Experimental Study Comparing the Expansion of Peripheral Blood Natural Killer (NK) Cells Cultured with Artificial Antigen-Presenting Cells, in the Presence or Absence of Bone Marrow Mesenchymal Stem Cells (MSCs). Mol Biotechnol 2020; 62:306-315. [PMID: 32193710 DOI: 10.1007/s12033-020-00250-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
NK cells have been seen as potential agents in adoptive immunotherapy for cancer. The main challenge for the success of this approach is to obtain a great quantity of activated NK cells for adoptive transfer. The present study had aimed to evaluate the effect of a feeder layer of irradiated MSCs in the in vitro expansion of NK cells. MSCs were obtained from the bone marrow (BM) cells remaining in the bag and filter used in the transplantation of hematopoietic stem cells. NK cells were obtained from peripheral blood (PB) of healthy volunteers. NK expansion and activation were stimulated by culture with artificial antigen-presenting cells (aAPCs) and IL-2, in the presence or absence of BM-MSCs. NK cell proliferation, phenotypic expression and cytotoxic activity were evaluated. Both culture conditions showed high NK purity with predominance of NK CD56brightCD16+ subset post expansion. However, cultures without the presence of MSCs showed higher NK proliferation, expression of activation markers (CD16 and NKG2D) and related cytotoxic activity. In this experimental study, the presence of a feeder layer of irradiated BM-MSCs interfered negatively in the expansion of PB-NKs, limiting their growth and activation. Further investigation is needed to understand the mechanisms of NK-MSC interaction and its implications.
Collapse
|
20
|
Characterization of Human NK Cell-Derived Exosomes: Role of DNAM1 Receptor In Exosome-Mediated Cytotoxicity Against Tumor. Cancers (Basel) 2020; 12:cancers12030661. [PMID: 32178479 PMCID: PMC7140072 DOI: 10.3390/cancers12030661] [Citation(s) in RCA: 124] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 03/05/2020] [Accepted: 03/10/2020] [Indexed: 01/18/2023] Open
Abstract
Despite the pivotal role of natural killer (NK) cells in defenses against tumors, their exploitation in cancer treatment is still limited due to their reduced ability to reaching tumor sites and the inhibitory effects of tumor microenvironment (TME) on their function. In this study, we have characterized the exosomes from IL2- or IL15-cultured human NK cells. Both cytokines induced comparable amounts of exosomes with similar cargo composition. Analysis of molecules contained within or exposed at the exosome surface, allowed the identification of molecules playing important roles in the NK cell function including IFN-γ, Lymphocyte Function-Associated Antigen (LFA-1), DNAX Accessory Molecule-1 (DNAM1) and Programmed Cell Death Protein (PD-1). Importantly, we show that DNAM1 is involved in exosome-mediated cytotoxicity as revealed by experiments using blocking antibodies to DNAM1 or DNAM1 ligands. In addition, antibody-mediated inhibition of exosome cytotoxicity results in a delay in target cell apoptosis. We also provide evidence that NK-exosomes may exert their cytolytic activity after short time interval and even at low concentrations. Regarding their possible use in immunotherapy, NK exosomes, detectable in peripheral blood, can diffuse into tissues and exert their cytolytic effect at tumor sites. This property offers a clue to integrate cancer treatments with NK exosomes.
Collapse
|
21
|
Salem ML, El-Naggar SA, Mobasher MA, Elgharabawy RM. The Toll-Like Receptor 3 Agonist Polyriboinosinic Polyribocytidylic Acid Increases the Numbers of NK Cells with Distinct Phenotype in the Liver of B6 Mice. J Immunol Res 2020; 2020:2489407. [PMID: 32211442 PMCID: PMC7077049 DOI: 10.1155/2020/2489407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 02/15/2020] [Indexed: 02/07/2023] Open
Abstract
One of the activating factors of the cells of the innate immune system is the agonists of toll-like receptors (TLRs). Our earlier publications detailed how poly(I:C), a TLR3 agonist, elevates the NK cell population and the associated antigen-specific CD8+ T cell responses. This study involved a single treatment of the B6 mice with poly(I:C) intraperitoneally. To perform a detailed phenotypic analysis, mononuclear cells were prepared from each of the liver, peripheral blood, and spleen. These cells were then examined for their NK cell population by flow cytometric analysis following cell staining with indicated antibodies. The findings of the study showed that the NK cell population of the liver with an NK1.1highCD11bhighCD11chigh B220+Ly6G- phenotype was elevated following the treatment with poly(I:C). In the absence of CD11b molecule (CR3-/- mice), poly(I:C) can still increase the remained numbers of NK cells with NK1.1+CD11b- and NK1.1+Ly6G- phenotypes in the liver while their numbers in the blood decrease. After the treatment with anti-AGM1 Ab, which induced depletion of NK1.1+CD11b+ cells and partial depletion of CD3+NK1.1+ and NK1.1+CD11b- cell populations, poly(I:C) normalized the partial decreases in the numbers of NK cells concomitant with increased numbers of NK1.1-CD11b+ cell population in both liver and blood. Regarding mice with a TLR3-/- phenotype, their injection with poly(I:C) resulted in the partial elevation in the NK cell population as compared to wild-type B6 mice. To summarise, the TLR3 agonist poly(I:C) results in the elevation of a subset of liver NK cells expressing the two myeloid markers CD11c and CD11b. The effect of poly(I:C) on NK cells is partially dependent on TLR3 and independent of the presence of CD11b.
Collapse
Affiliation(s)
- Mohamed L. Salem
- Immunology and Biotechnology Unit, Zoology Department, Faculty of Science, Tanta University, Tanta, Egypt
- Center of Excellence in Cancer Research, New Tanta University Teaching Hospital, Tanta University, Egypt
| | - Sabry A. El-Naggar
- Immunology and Biotechnology Unit, Zoology Department, Faculty of Science, Tanta University, Tanta, Egypt
- Center of Excellence in Cancer Research, New Tanta University Teaching Hospital, Tanta University, Egypt
| | - Maysa A. Mobasher
- Biochemistry Division, Department of Pathology, College of Medicine, Jouf University, Sakakah, Saudi Arabia
- Department of Clinical Pathology, El Ahrar Educational Hospital, Ministry of Health, Zagazig, Egypt
| | - Rehab M. Elgharabawy
- Department of Pharmacology and Toxicology, College of Pharmacy, Qassim University, Buraydah, Saudi Arabia
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| |
Collapse
|
22
|
Valenzuela-Vazquez L, Núñez-Enríquez JC, Sánchez-Herrera J, Jiménez-Hernández E, Martín-Trejo JA, Espinoza-Hernández LE, Medina-Sanson A, Flores-Villegas LV, Peñaloza-González JG, Refugio Torres-Nava J, Espinosa-Elizondo RM, Amador-Sánchez R, Santillán-Juárez JD, Flores-Lujano J, Pérez-Saldívar ML, García-López LR, Castañeda-Echevarría A, Rodríguez-Leyva F, Rosas-Vargas H, Mata-Rocha M, Duarte-Rodríguez DA, Sepúlveda-Robles OA, Mancilla-Herrera I, Mejía-Aranguré JM, Cruz-Munoz ME. Functional characterization of NK cells in Mexican pediatric patients with acute lymphoblastic leukemia: Report from the Mexican Interinstitutional Group for the Identification of the Causes of Childhood Leukemia. PLoS One 2020; 15:e0227314. [PMID: 31951638 PMCID: PMC6968843 DOI: 10.1371/journal.pone.0227314] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 12/16/2019] [Indexed: 12/16/2022] Open
Abstract
Acute lymphoblastic leukemia (ALL) is the most common cancer in children around the globe. Mexico City has one of the highest incidence rates of childhood leukemia worldwide with 49.5 cases per million children under the age of 15 which is similar to that reported for Hispanic populations living in the United States. In addition, it has been noted a dismal prognosis in Mexican and Hispanic ALL pediatric population. Although ALL, like cancer in general, has its origins in endogenous, exogenous, and genetic factors, several studies have shown that the immune system also plays a deterministic role in cancer development. Among various elements of the immune system, T lymphocytes and NK cells seem to dominate the immune response against leukemia. The aim of the present study was to perform a phenotypic and functional characterization of NK cells in ALL Mexican children at the moment of diagnosis and before treatment initiation. A case-control study was conducted by the Mexican Interinstitutional Group for the Identification of the Causes of Childhood Leukemia (MIGICCL). 41 cases were incident ALL children younger than 17 years old and residents of Mexico City. 14 controls were children without leukemia, matched by age and sex with cases. NK cell function was evaluated by degranulation assays towards K562 cells and SLAM-associated protein (SAP) expression was measured by intracellular staining. All assays were performed using peripheral blood mononuclear cells from controls and patients. The results indicate that NK mediated cytotoxicity, measured by CD107a degranulation assays in response to K562 cells, was reduced in ALL patients compared to controls. Interestingly, an impaired NK cell killing of target cells was not equally distributed among ALL patients. In contrast to patients classified as high-risk, standard-risk patients did not display a significant reduction in NK cell-mediated cytotoxicity. Moreover, patients presenting a leukocyte count ≥ 50,000xmm3 displayed a reduction in NK-cell mediated cytotoxicity and a reduction in SAP expression, indicating a positive correlation between a reduced SAP expression and an impaired NK cell-mediated citotoxicity. In the present study it was observed that unlike patients with standard-risk, NK cells from children presenting high-risk ALL, harbor an impaired cytotoxicity towards K562 at diagnosis. In addition, NK cell function was observed to be compromised in patients with a leukocyte count ≥50,000xmm3, where also it was noticed a decreased expression of SAP compared to patients with a leukocyte count <50,000xmm3. These data indicate NK cell-mediated cytotoxicity is not equally affected in ALL patients, nevertheless a positive correlation between low SAP expression and decreased NK cell-mediated cytotoxicity was observed in ALL patients with a leukocyte count ≥50,000xmm3. Finally, an abnormal NK cell-mediated cytotoxicity may represent a prognostic factor for high-risk acute lymphoblastic leukemia.
Collapse
Affiliation(s)
| | - Juan Carlos Núñez-Enríquez
- Unidad de Investigación Médica en Epidemiología Clínica, UMAE Hospital de Pediatría, Centro Médico Nacional (CMN) "Siglo XXI", Instituto Mexicano del Seguro Social (IMSS), Mexico City, Mexico
| | | | - Elva Jiménez-Hernández
- Servicio de Hematología Pediátrica, Hospital General “Gaudencio González Garza”, Centro Médico Nacional (CMN) "La Raza", IMSS, Mexico City, Mexico
| | - Jorge Alfonso Martín-Trejo
- Servicio de Hematología Pediátrica, UMAE Hospital de Pediatría, Centro Médico Nacional (CMN) "Siglo XXI", Instituto Mexicano del Seguro Social (IMSS), Mexico City, Mexico
| | - Laura Eugenia Espinoza-Hernández
- Servicio de Hematología Pediátrica, Hospital General “Gaudencio González Garza”, Centro Médico Nacional (CMN) "La Raza", IMSS, Mexico City, Mexico
| | - Aurora Medina-Sanson
- Servicio de Hemato-Oncologia, Hospital Infantil de México Federico Gómez, Secretaria de Salud (SS), Mexico City, Mexico
| | - Luz Victoria Flores-Villegas
- Servicio de Hematología Pediátrica, Centro Médico Nacional (CMN) “20 de Noviembre”, Instituto de Seguridad Social al Servicio de los Trabajadores del Estado (ISSSTE), Mexico City, Mexico
| | | | - José Refugio Torres-Nava
- Servicio de Oncología, Hospital Pediátrico de Moctezuma, Secretaría de Salud del D.F., Mexico City, Mexico
| | | | - Raquel Amador-Sánchez
- Hospital General Regional No. 1 "Carlos McGregor Sánchez Navarro", IMSS, Mexico City, Mexico
| | | | - Janet Flores-Lujano
- Unidad de Investigación Médica en Epidemiología Clínica, UMAE Hospital de Pediatría, Centro Médico Nacional (CMN) "Siglo XXI", Instituto Mexicano del Seguro Social (IMSS), Mexico City, Mexico
| | - María Luisa Pérez-Saldívar
- Unidad de Investigación Médica en Epidemiología Clínica, UMAE Hospital de Pediatría, Centro Médico Nacional (CMN) "Siglo XXI", Instituto Mexicano del Seguro Social (IMSS), Mexico City, Mexico
| | - Luis Ramiro García-López
- Servicio de Pediatría, Hospital Pediátrico de Tacubaya, Secretaría de Salud (SS), Mexico City, Mexico
| | | | | | - Haydeé Rosas-Vargas
- Unidad de Investigación Médica en Genética Humana, UMAE Hospital de Pediatría, Centro Médico Nacional (CMN) "Siglo XXI", IMSS, Mexico City, Mexico
| | - Minerva Mata-Rocha
- Unidad de Investigación Médica en Genética Humana, UMAE Hospital de Pediatría, Centro Médico Nacional (CMN) "Siglo XXI", IMSS, Mexico City, Mexico
| | - David Aldebarán Duarte-Rodríguez
- Unidad de Investigación Médica en Epidemiología Clínica, UMAE Hospital de Pediatría, Centro Médico Nacional (CMN) "Siglo XXI", Instituto Mexicano del Seguro Social (IMSS), Mexico City, Mexico
| | - Omar Alejandro Sepúlveda-Robles
- Unidad de Investigación Médica en Genética Humana, UMAE Hospital de Pediatría, Centro Médico Nacional (CMN) "Siglo XXI", IMSS, Mexico City, Mexico
| | - Ismael Mancilla-Herrera
- Departamento de infectología e inmunología, Instituto Nacional de Perinatología, Mexico City, Mexico
| | - Juan Manuel Mejía-Aranguré
- Coordinación de Investigación en Salud, Instituto Mexicano del Seguro Social (IMSS), Mexico City, Mexico
- * E-mail: (MECM); (JMMA)
| | - Mario Ernesto Cruz-Munoz
- Facultad de Medicina, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, Mexico
- * E-mail: (MECM); (JMMA)
| |
Collapse
|
23
|
Mallmann-Gottschalk N, Sax Y, Kimmig R, Lang S, Brandau S. EGFR-Specific Tyrosine Kinase Inhibitor Modifies NK Cell-Mediated Antitumoral Activity against Ovarian Cancer Cells. Int J Mol Sci 2019; 20:ijms20194693. [PMID: 31546690 PMCID: PMC6801374 DOI: 10.3390/ijms20194693] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 09/03/2019] [Accepted: 09/12/2019] [Indexed: 02/06/2023] Open
Abstract
The adverse prognosis of most patients with ovarian cancer is related to recurrent disease caused by resistance to chemotherapeutic and targeted therapeutics. Besides their direct activity against tumor cells, monoclonal antibodies and tyrosine kinase inhibitors (TKIs) also influence the antitumoral activity of immune cells, which has important implications for the design of immunotherapies. In this preclinical study, we treated different ovarian cancer cell lines with anti-epidermal growth factor receptor (EGFR) TKIs and co-incubated them with natural killer (NK) cells. We studied treatment-related structural and functional changes on tumor and immune cells in the presence of the anti-EGFR antibody cetuximab and investigated NK-mediated antitumoral activity. We show that long-term exposure of ovarian cancer cells to TKIs leads to reduced responsiveness of intrinsically sensitive cancer cells over time. Inversely, neither long-term treatment with TKIs nor cetuximab could overcome the intrinsic resistance of certain ovarian cancer cells to anti-EGFR agents. Remarkably, tumor cells pretreated with anti-EGFR TKIs showed increased sensitivity towards NK cell-mediated antibody-dependent cellular cytotoxicity (ADCC). In contrast, the cytokine secretion of NK cells was reduced by TKI sensitization. Our data suggest that sensitization of tumor cells by anti-EGFR TKIs differentially modulates interactions with NK cells. These data have important implications for the design of chemo-immuno combination therapies in this tumor entity.
Collapse
Affiliation(s)
- Nina Mallmann-Gottschalk
- Department of Gynecology and Obstetrics, University of Duisburg-Essen, Hufelandstr. 55, 45147 Essen, Germany.
- Department of Otorhinolaryngology, University of Duisburg-Essen, Hufelandstr. 55, 45147 Essen, Germany.
| | - Yvonne Sax
- Department of Otorhinolaryngology, University of Duisburg-Essen, Hufelandstr. 55, 45147 Essen, Germany.
| | - Rainer Kimmig
- Department of Gynecology and Obstetrics, University of Duisburg-Essen, Hufelandstr. 55, 45147 Essen, Germany.
| | - Stephan Lang
- Department of Otorhinolaryngology, University of Duisburg-Essen, Hufelandstr. 55, 45147 Essen, Germany.
| | - Sven Brandau
- Department of Otorhinolaryngology, University of Duisburg-Essen, Hufelandstr. 55, 45147 Essen, Germany.
| |
Collapse
|
24
|
Tabellini G, Patrizi O, Dobbs K, Lougaris V, Baronio M, Coltrini D, Plebani A, Badolato R, Notarangelo LD, Parolini S. From Natural Killer Cell Receptor Discovery to Characterization of Natural Killer Cell Defects in Primary Immunodeficiencies. Front Immunol 2019; 10:1757. [PMID: 31396241 PMCID: PMC6668486 DOI: 10.3389/fimmu.2019.01757] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 07/11/2019] [Indexed: 01/09/2023] Open
Abstract
Alessandro Moretta was Professor of Histology at University of Brescia from 1994 to 1997. It was in that period that we met and started a collaboration that continued in the years to follow. He immediately involved us in the production of monoclonal antibodies (mAbs) that allowed the identification and fine characterization of novel receptor molecules that were able to activate or inhibit human Natural Killer cell function, including several antibodies specific for Natural Cytotoxicity Receptor (NCR) and Killer-cell Immunoglobulin-like Receptor (KIR) molecules. These reagents, generated in our laboratory in Brescia, contributed to complete the studies aimed to characterize innate lymphoid NK cells, that had been initiated by Alessandro and his brother Lorenzo in Genoa. Soon, we identified an anti-KIR3DL2 that was subsequently shown to be helpful for the diagnosis and treatment of various forms of cutaneous T cell lymphoma. While in Brescia, Alessandro established a partnership with those of us who were working in the Department of Pediatrics; together, in short time we tackled the goal of studying the role of NK cells in patients with primary immunodeficiencies. This collaboration led to novel discoveries that shed light on the critical role played by NK cells in the immune response against virus and tumors in humans, as best exemplified by our characterization of the molecular mechanisms of impaired control of Epstein-Barr Virus (EBV) infection in patients with X-linked lymphoproliferative (XLP) disease. After Alessandro left Brescia to return to Genoa, our collaboration continued with the same enthusiasm, and even from a distance he remained an extraordinary example of an inspirational and generous mentor. This review is a sign of our gratitude to a mentor and a friend whom we deeply miss.
Collapse
Affiliation(s)
- Giovanna Tabellini
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Ornella Patrizi
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Kerry Dobbs
- Laboratory of Host Defenses, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Vassilios Lougaris
- Department of Experimental and Clinical Sciences, University of Brescia, Brescia, Italy
| | - Manuela Baronio
- Department of Experimental and Clinical Sciences, University of Brescia, Brescia, Italy
| | - Daniela Coltrini
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Alessandro Plebani
- Department of Experimental and Clinical Sciences, University of Brescia, Brescia, Italy
| | - Raffaele Badolato
- Department of Experimental and Clinical Sciences, University of Brescia, Brescia, Italy
| | - Luigi D Notarangelo
- Laboratory of Host Defenses, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Silvia Parolini
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| |
Collapse
|
25
|
CD56 expression in breast cancer induces sensitivity to natural killer-mediated cytotoxicity by enhancing the formation of cytotoxic immunological synapse. Sci Rep 2019; 9:8756. [PMID: 31217484 PMCID: PMC6584531 DOI: 10.1038/s41598-019-45377-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Accepted: 05/28/2019] [Indexed: 02/07/2023] Open
Abstract
We examined the potential value of the natural killer (NK) cell line; NK-92, as immunotherapy tool for breast cancer (BC) treatment and searched for biomarker(s) of sensitivity to NK-92-mediated cytotoxicity. The cytotoxic activity of NK-92 cells towards one breast precancerous and nine BC cell lines was analyzed using calcein-AM and degranulation assays. The molecules associated with NK-92-responsiveness were determined by differential gene expression analysis using RNA-sequencing and validated by RT-PCR, immunostaining and flow cytometry. NK-target interactions and immunological synapse formation were assessed by fluorescence microscopy. Potential biomarker expression was determined by IHC in 99 patient-derived BC tissues and 10 normal mammary epithelial tissues. Most (8/9) BC cell lines were resistant while only one BC and the precancerous cell lines were effectively killed by NK-92 lymphocytes. NK-92-sensitive target cells specifically expressed CD56, which ectopic expression in CD56-negative BC cells induced their sensitivity to NK-92-mediated killing, suggesting that CD56 is not only a biomarker of responsiveness but actively regulates NK function. CD56 adhesion molecules which are also expressed on NK cells accumulate at the immunological synapse enhancing NK-target interactions, cytotoxic granzyme B transfer from NK-92 to CD56-expressing target cells and induction of caspase 3 activation in targets. Interestingly, CD56 expression was found to be reduced in breast tumor tissues (36%) with strong inter- and intratumoral heterogeneity in comparison to normal breast tissues (80%). CD56 is a potential predictive biomarker for BC responsiveness to NK-92-cell based immunotherapy and loss of CD56 expression might be a mechanism of escape from NK-immunity.
Collapse
|
26
|
Vitale M, Cantoni C, Della Chiesa M, Ferlazzo G, Carlomagno S, Pende D, Falco M, Pessino A, Muccio L, De Maria A, Marcenaro E, Moretta L, Sivori S. An Historical Overview: The Discovery of How NK Cells Can Kill Enemies, Recruit Defense Troops, and More. Front Immunol 2019; 10:1415. [PMID: 31316503 PMCID: PMC6611392 DOI: 10.3389/fimmu.2019.01415] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 06/04/2019] [Indexed: 12/13/2022] Open
Abstract
Natural killer (NK) cells were originally defined as effector lymphocytes of innate immunity characterized by the unique ability of killing tumor and virally infected cells without any prior priming and expansion of specific clones. The "missing-self" theory, proposed by Klas Karre, the seminal discovery of the first prototypic HLA class I-specific inhibitory receptors, and, later, of the Natural Cytotoxicity Receptors (NCRs) by Alessandro Moretta, provided the bases to understand the puzzling behavior of NK cells. Actually, those discoveries proved crucial also for many of the achievements that, along the years, have contributed to the modern view of these cells. Indeed, NK cells, besides killing susceptible targets, are now known to functionally interact with different immune cells, sense pathogens using TLR, adapt their responses to the local environment, and, even, mount a sort of immunological memory. In this review, we will specifically focus on the main activating NK receptors and on their crucial role in the ever-increasing number of functions assigned to NK cells and other innate lymphoid cells (ILCs).
Collapse
Affiliation(s)
- Massimo Vitale
- U.O.C. Immunologia, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Claudia Cantoni
- Department of Experimental Medicine, University of Genoa, Genoa, Italy
- Centre of Excellence for Biomedical Research, University of Genoa, Genoa, Italy
- Laboratory of Clinical and Experimental Immunology, Integrated Department of Services and Laboratories, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Mariella Della Chiesa
- Department of Experimental Medicine, University of Genoa, Genoa, Italy
- Centre of Excellence for Biomedical Research, University of Genoa, Genoa, Italy
| | - Guido Ferlazzo
- Laboratory of Immunology and Biotherapy, Department of Human Pathology, University of Messina, Messina, Italy
| | - Simona Carlomagno
- Department of Experimental Medicine, University of Genoa, Genoa, Italy
| | - Daniela Pende
- U.O.C. Immunologia, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Michela Falco
- Laboratory of Clinical and Experimental Immunology, Integrated Department of Services and Laboratories, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Annamaria Pessino
- Medical Oncology Unit 1, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Letizia Muccio
- Department of Experimental Medicine, University of Genoa, Genoa, Italy
| | - Andrea De Maria
- Centre of Excellence for Biomedical Research, University of Genoa, Genoa, Italy
- Dipartimento di Scienze della Salute (DISSAL), University of Genoa, Genoa, Italy
- Clinica Malattie Infettive, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Emanuela Marcenaro
- Department of Experimental Medicine, University of Genoa, Genoa, Italy
- Centre of Excellence for Biomedical Research, University of Genoa, Genoa, Italy
| | - Lorenzo Moretta
- Laboratory of Tumor Immunology, Department of Immunology, IRCCS Ospedale Bambino Gesù, Rome, Italy
| | - Simona Sivori
- Department of Experimental Medicine, University of Genoa, Genoa, Italy
- Centre of Excellence for Biomedical Research, University of Genoa, Genoa, Italy
| |
Collapse
|
27
|
Muntasell A, Servitja S, Cabo M, Bermejo B, Pérez-Buira S, Rojo F, Costa-García M, Arpí O, Moraru M, Serrano L, Tusquets I, Martínez MT, Heredia G, Vera A, Martínez-García M, Soria L, Comerma L, Santana-Hernández S, Eroles P, Rovira A, Vilches C, Lluch A, Albanell J, López-Botet M. High Numbers of Circulating CD57 + NK Cells Associate with Resistance to HER2-Specific Therapeutic Antibodies in HER2 + Primary Breast Cancer. Cancer Immunol Res 2019; 7:1280-1292. [PMID: 31189644 DOI: 10.1158/2326-6066.cir-18-0896] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 04/11/2019] [Accepted: 06/10/2019] [Indexed: 11/16/2022]
Abstract
Natural killer (NK) cells can orchestrate effective antitumor immunity. The presence of tumor-infiltrating NK cells in diagnostic biopsies predicts pathologic complete response (pCR) to HER2-specific therapeutic antibodies in patients with primary breast cancer. Here, we analyzed whether diversity in circulating NK cells might influence tumor infiltration and HER2-specific therapeutic antibody efficacy. We found that numbers of circulating CD57+ NK cells inversely correlated with pCR to HER2-specific antibody treatment in patients with primary breast cancer independently of age, traditional clinicopathologic factors, and CD16A 158F/V genotype. This association was uncoupled from the expression of other NK-cell receptors, the presence of adaptive NK cells, or changes in major T-cell subsets, reminiscent of cytomegalovirus-induced immunomodulation. NK-cell activation against trastuzumab-coated HER2+ breast cancer cells was comparable in patients with high and low proportions of CD57+ NK cells. However, circulating CD57+ NK cells displayed decreased CXCR3 expression and CD16A-induced IL2-dependent proliferation in vitro Presence of CD57+ NK cells was reduced in breast tumor-associated infiltrates as compared with paired peripheral blood samples, suggesting deficient homing, proliferation, and/or survival of NK cells in the tumor niche. Indeed, numbers of circulating CD57+ were inversely related to tumor-infiltrating NK-cell numbers. Our data reveal that NK-cell differentiation influences their antitumor potential and that CD57+ NK cells may be a biomarker useful for tailoring HER2 antibody-based therapeutic strategies in breast cancer.
Collapse
Affiliation(s)
- Aura Muntasell
- Immunity and Infection, IMIM (Institut Hospital del Mar d'Investigacions Mèdiques), Barcelona, Spain.
| | - Sònia Servitja
- Cancer Research Program, IMIM (Institut Hospital del Mar d'Investigacions Mèdiques), Barcelona, Spain.,Department of Medical Oncology, Hospital del Mar-CIBERONC, Barcelona, Spain
| | - Mariona Cabo
- Immunity and Infection, IMIM (Institut Hospital del Mar d'Investigacions Mèdiques), Barcelona, Spain
| | - Begoña Bermejo
- Department of Oncology, Hospital Clinico de Valencia-CIBERONC, Valencia, Spain
| | - Sandra Pérez-Buira
- Department of Pathology, IIS "Fundacion Jimenez Diaz University Hospital," Madrid, Spain
| | - Federico Rojo
- Department of Pathology, IIS "Fundacion Jimenez Diaz University Hospital," Madrid, Spain
| | | | - Oriol Arpí
- Cancer Research Program, IMIM (Institut Hospital del Mar d'Investigacions Mèdiques), Barcelona, Spain
| | - Manuela Moraru
- HLA-Immunogenetics Department, Instituto Hospital Universitario Puerta de Hierro, Majadahonda, Spain
| | - Laia Serrano
- Department of Pathology, Hospital del Mar, Barcelona, Spain
| | - Ignasi Tusquets
- Cancer Research Program, IMIM (Institut Hospital del Mar d'Investigacions Mèdiques), Barcelona, Spain.,Department of Medical Oncology, Hospital del Mar-CIBERONC, Barcelona, Spain.,Universitat Pompeu Fabra, Barcelona, Spain
| | | | | | - Andrea Vera
- Immunity and Infection, IMIM (Institut Hospital del Mar d'Investigacions Mèdiques), Barcelona, Spain
| | - María Martínez-García
- Cancer Research Program, IMIM (Institut Hospital del Mar d'Investigacions Mèdiques), Barcelona, Spain.,Department of Medical Oncology, Hospital del Mar-CIBERONC, Barcelona, Spain
| | - Laura Soria
- Immunity and Infection, IMIM (Institut Hospital del Mar d'Investigacions Mèdiques), Barcelona, Spain
| | - Laura Comerma
- Department of Pathology, Hospital del Mar, Barcelona, Spain
| | - Sara Santana-Hernández
- Immunity and Infection, IMIM (Institut Hospital del Mar d'Investigacions Mèdiques), Barcelona, Spain
| | - Pilar Eroles
- Department of Oncology, Hospital Clinico de Valencia-CIBERONC, Valencia, Spain.,Biomedical Research Institute, INCLIVA, Valencia, Spain
| | - Ana Rovira
- Cancer Research Program, IMIM (Institut Hospital del Mar d'Investigacions Mèdiques), Barcelona, Spain.,Department of Medical Oncology, Hospital del Mar-CIBERONC, Barcelona, Spain
| | - Carlos Vilches
- HLA-Immunogenetics Department, Instituto Hospital Universitario Puerta de Hierro, Majadahonda, Spain
| | - Ana Lluch
- Department of Oncology, Hospital Clinico de Valencia-CIBERONC, Valencia, Spain.,Biomedical Research Institute, INCLIVA, Valencia, Spain.,Universitat de Valencia, Valencia, Spain
| | - Joan Albanell
- Cancer Research Program, IMIM (Institut Hospital del Mar d'Investigacions Mèdiques), Barcelona, Spain. .,Department of Medical Oncology, Hospital del Mar-CIBERONC, Barcelona, Spain.,Universitat Pompeu Fabra, Barcelona, Spain
| | - Miguel López-Botet
- Immunity and Infection, IMIM (Institut Hospital del Mar d'Investigacions Mèdiques), Barcelona, Spain.,Universitat Pompeu Fabra, Barcelona, Spain
| |
Collapse
|
28
|
Shahrabi S, Zayeri ZD, Ansari N, Hadad EH, Rajaei E. Flip-flops of natural killer cells in autoimmune diseases versus cancers: Immunologic axis. J Cell Physiol 2019; 234:16998-17010. [PMID: 30864163 DOI: 10.1002/jcp.28421] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Revised: 02/03/2019] [Accepted: 02/14/2019] [Indexed: 12/25/2022]
Abstract
Natural killer (NK) cells play an essential role in the immune response to infections, inflammations, and malignancies. Recent studies suggest that NK cell surface receptors and cytokines are the key points of the disease development and protection. We hypothesized that the interactions between NK cell receptors and targeted cells construct an eventual niche, and this niche has an eventual profile in various autoimmune diseases and cancers. The NK cells preactivated with cytokines, such as interleukin-2 (IL-2), IL-12, IL-15, and IL-18 can have higher cytotoxicity; however, the toxic side effect of IL-2 should be considered. The vicissitudes of NK cell profile and its receptors obey the environmental communications and cell interactions. Our vision around the NK cells as an immune axis remained dual, and we still cannot judge the immune responses based on the NK cell flip-flop. A design of eventual niche to monitor the NK cell and targeted cell interaction is needed to strengthen our ability in diagnosis and treatment approaches based on the NK cells. Here, we have reviewed the shifts in the NK cells and their surface receptors in autoimmune diseases, solid tumors, and leukemia, and also discussed the effective chemokines that affect NK cell activation and proliferation. The main aim of this review is to present a broader vision of the NK cell changes in autoimmune disease and cancers.
Collapse
Affiliation(s)
- Saeid Shahrabi
- Department of Biochemistry and Hematology, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Zeinab D Zayeri
- Golestan Hospital Clinical Research Development Unit, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Narges Ansari
- Isfahan Bone Metabolic Disorders Research Center, Department of Internal Medicine, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Elham H Hadad
- Research Center of Thalassemia and Hemoglobinopathy, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Elham Rajaei
- Golestan Hospital Clinical Research Development Unit, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
29
|
Cruz-Muñoz ME, Valenzuela-Vázquez L, Sánchez-Herrera J, Santa-Olalla Tapia J. From the "missing self" hypothesis to adaptive NK cells: Insights of NK cell-mediated effector functions in immune surveillance. J Leukoc Biol 2019; 105:955-971. [PMID: 30848847 DOI: 10.1002/jlb.mr0618-224rr] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 01/29/2019] [Accepted: 02/04/2019] [Indexed: 12/11/2022] Open
Abstract
The original discovery of NK cells approximately 40 yr ago was based on their unique capability to kill tumor cells without prior sensitization or priming, a process named natural cytotoxicity. Since then, several studies have documented that NK cells can kill hematopoietic and nonhematopoietic cancer cells. NK cells also recognize and kill cells that have undergone viral infections. Besides natural cytotoxicity, NK cells are also major effectors of antibody-dependent cell cytotoxicity (ADCC). Therefore, NK cells are well "armed" to recognize and mount immune responses against "insults" that result from cell transformation and viral infections. Because of these attributes, an essential role of NK cells in tumor surveillance was noted. Indeed, several studies have shown a correlation between impaired NK cell cytotoxicity and a higher risk of developing cancer. This evidence led to the idea that cancer initiation and progress is intimately related to an abnormal or misdirected immune response. Whereas all these ideas remain current, it is also true that NK cells represent a heterogeneous population with different abilities to secrete cytokines and to mediate cytotoxic functions. In addition, recent data has shown that NK cells are prone to suffer epigenetic modifications resulting in the acquisition of previously unrecognized attributes such as memory and long-term survival. Such NK cells, referred as "adaptive" or "memory-like," also display effector functions that are not necessarily equal to those observed in conventional NK cells. Given the new evidence available, it is essential to discuss the conceptual reasoning and misconceptions regarding the role of NK cells in immune surveillance and immunotherapy.
Collapse
|
30
|
Vacca P, Chiossone L, Mingari MC, Moretta L. Heterogeneity of NK Cells and Other Innate Lymphoid Cells in Human and Murine Decidua. Front Immunol 2019; 10:170. [PMID: 30800126 PMCID: PMC6375891 DOI: 10.3389/fimmu.2019.00170] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 01/21/2019] [Indexed: 12/30/2022] Open
Abstract
Innate lymphoid cells (ILCs) represent a heterogeneous group of cells lacking genetically rearranged antigen receptors that derive from common lymphoid progenitors. Five major groups of ILCs have been defined based on their cytokine production pattern and developmental transcription factor requirements: namely, natural killer (NK) cells, ILC1s, ILC2s, ILC3s, and lymphoid tissue-inducer (LTi) cells. ILC1s, ILC2s, and ILC3s mirror the corresponding T helper subsets (Th1, Th2, and Th17, respectively) and produce cytokines involved in defense against pathogens, lymphoid organogenesis, and tissue remodeling. During the first trimester of pregnancy, decidual tissues contain high proportion of decidual NK (dNK) cells, representing up to 50% of decidual lymphocytes, and ILC3s. They release peculiar cytokines and chemokines that contribute to successful pregnancy. Recent studies revealed that ILCs display a high degree of plasticity allowing their prompt adaptation to environmental changes. Decidual NK cells may derive from peripheral blood NK cells migrated when pregnancy establishes or from in situ differentiation of hematopoietic precursors. Previous studies showed that human and murine decidua contain dNK cells, tissue resident NK cells, and ILC3s, all characterized by unique phenotypic and functional properties, most likely induced by decidual microenvironment to favor the establishment and the maintenance of pregnancy. Thus, during the early phase of pregnancy, the simultaneous presence of different ILC subsets further underscores the complexity of the cellular components of decidual tissues as well as the role of decidual microenvironment in shaping the plasticity and the function of ILCs.
Collapse
Affiliation(s)
- Paola Vacca
- Department of Immunology, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | - Laura Chiossone
- Innate Pharma Research Labs, Innate Pharma, Marseille, France
| | - Maria Cristina Mingari
- Department of Experimental Medicine (DIMES) and Center of Excellence for Biomedical Research, University of Genoa, Genoa, Italy.,UOC Immunology, IRCCS Ospedale Policlinico, San Martino, Genoa, Italy
| | - Lorenzo Moretta
- Department of Immunology, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| |
Collapse
|
31
|
Li L, Wang L, Huang C, Diao L, Zhang Y, Zhang X, Xu J, Zeng Y. Chronic hepatitis B infection alters peripheral immune response in women with reproductive failure. Am J Reprod Immunol 2019; 81:e13083. [PMID: 30604518 DOI: 10.1111/aji.13083] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 11/30/2018] [Accepted: 11/30/2018] [Indexed: 02/06/2023] Open
Abstract
PROBLEM Does hepatitis B infection affect peripheral blood immune response in women with reproductive failure? METHOD OF STUDY Two hundred and twenty-seven women, including 10 HBsAg+ HBeAg+ , 27 HBsAg+ HBeAg- hepatitis sero-positive women, and 190 women without HBV infection, formed the study population. Their peripheral immune responses containing lymphocyte subsets, cytokine production, expression of cell surface markers and intracellular toxicity molecules, and pregnancy outcomes were retrospectively compared. RESULTS Comparing with HBsAg+ HBeAg- carriers and HBsAg- group, HBsAg+ HBeAg+ group had lower rates of CD3+ CD4+ helper T cells (31.7% vs 38.0% and 36.8%, P < 0.05, respectively), but higher frequency of CD19+ B cells (17.8% vs 14.0% and 13.2%, P < 0.05 and P < 0.01, respectively). NK cells in HBsAg+ HBeAg+ patients showed lower cytotoxic activity than that in two other groups (P < 0.05). Comparing with HBsAg- patients, HBsAg+ HBeAg+ group exhibited decreased expression of the activating receptor NKG2D (56.2% vs 66.1%, P < 0.05), as well as reduced expression of granzyme B (54.8% vs 70.5%, P < 0.05), perforin (49.9% vs 65.0%, P < 0.05), and granulysin (52.0% vs 67.9%, P < 0.01). Generally, a higher clinical pregnancy rate (85.7% vs 56.9%) and higher early miscarriage rate (33.3% vs 20.3%) were noticed in HBsAg+ HBeAg+ group than HBsAg- group. CONCLUSION Chronic HBV infection alters peripheral immune responses by upregulating B-cell frequency, decreasing CD3+ CD4+ helper T cells, and decreasing peripheral NK function and toxicity. These may influence pregnancy outcome on HBV-infected patients, and the pathogenesis of HBV infection on pregnancy outcome deserves to be further studied.
Collapse
Affiliation(s)
- Longfei Li
- Shenzhen Key Laboratory of Reproductive Immunology for Peri-implantation, Shenzhen Zhongshan Institute for Reproduction and Genetics, Fertility Center, Shenzhen Zhongshan Urology Hospital, Shenzhen, Guangdong, China.,Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Linlin Wang
- Shenzhen Key Laboratory of Reproductive Immunology for Peri-implantation, Shenzhen Zhongshan Institute for Reproduction and Genetics, Fertility Center, Shenzhen Zhongshan Urology Hospital, Shenzhen, Guangdong, China
| | - Chunyu Huang
- Shenzhen Key Laboratory of Reproductive Immunology for Peri-implantation, Shenzhen Zhongshan Institute for Reproduction and Genetics, Fertility Center, Shenzhen Zhongshan Urology Hospital, Shenzhen, Guangdong, China
| | - Lianghui Diao
- Shenzhen Key Laboratory of Reproductive Immunology for Peri-implantation, Shenzhen Zhongshan Institute for Reproduction and Genetics, Fertility Center, Shenzhen Zhongshan Urology Hospital, Shenzhen, Guangdong, China
| | - Yongnu Zhang
- Shenzhen Key Laboratory of Reproductive Immunology for Peri-implantation, Shenzhen Zhongshan Institute for Reproduction and Genetics, Fertility Center, Shenzhen Zhongshan Urology Hospital, Shenzhen, Guangdong, China
| | - Xu Zhang
- Shenzhen Key Laboratory of Reproductive Immunology for Peri-implantation, Shenzhen Zhongshan Institute for Reproduction and Genetics, Fertility Center, Shenzhen Zhongshan Urology Hospital, Shenzhen, Guangdong, China
| | - Jian Xu
- Shenzhen Key Laboratory of Reproductive Immunology for Peri-implantation, Shenzhen Zhongshan Institute for Reproduction and Genetics, Fertility Center, Shenzhen Zhongshan Urology Hospital, Shenzhen, Guangdong, China
| | - Yong Zeng
- Shenzhen Key Laboratory of Reproductive Immunology for Peri-implantation, Shenzhen Zhongshan Institute for Reproduction and Genetics, Fertility Center, Shenzhen Zhongshan Urology Hospital, Shenzhen, Guangdong, China
| |
Collapse
|
32
|
Roato I, Vitale M. The Uncovered Role of Immune Cells and NK Cells in the Regulation of Bone Metastasis. Front Endocrinol (Lausanne) 2019; 10:145. [PMID: 30930851 PMCID: PMC6423901 DOI: 10.3389/fendo.2019.00145] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 02/18/2019] [Indexed: 12/17/2022] Open
Abstract
Bone is one of the main metastatic sites of solid tumors like breast, lung, and prostate cancer. Disseminated tumor cells (DTCs) and cancer stem cells (CSCs) represent the main target to counteract bone metastatization. These cells often localize in bone marrow (BM) at level of pre-metastatic niche: they can remain dormant for years or directly grow and create bone lesion, according to the different stimulations received in BM. The immune system in bone marrow is dampened and represents an appealing site for DTCs/CSCs. NK cells have an important role in controlling tumor progression, but their involvement in bone metastasis formation is an interesting and not fully investigated issue. Indeed, whether NK cells can interfere with CSC formation, kill them at the site of primary tumor, during circulation or in the pre-metastic niche needs to be elucidated. This review focuses on different aspects that regulate DTC/CSC life in bone and how NK cells potentially control bone metastasis formation.
Collapse
Affiliation(s)
- Ilaria Roato
- Center for Research and Medical Studies (CeRMS), A.O.U. Città della Salute e della Scienza di Torino, Turin, Italy
- *Correspondence: Ilaria Roato
| | - Massimo Vitale
- UOC Immunologia, IRCCS Ospedale Policlinico San Martino Genova, Genoa, Italy
| |
Collapse
|
33
|
Rodrigues-Santos P, López-Sejas N, Almeida JS, Ruzičková L, Couceiro P, Alves V, Campos C, Alonso C, Tarazona R, Freitas-Tavares P, Solana R, Santos-Rosa M. Effect of Age on NK Cell Compartment in Chronic Myeloid Leukemia Patients Treated With Tyrosine Kinase Inhibitors. Front Immunol 2018; 9:2587. [PMID: 30487792 PMCID: PMC6246921 DOI: 10.3389/fimmu.2018.02587] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 10/19/2018] [Indexed: 12/16/2022] Open
Abstract
Natural killer (NK) cells are a very important component of the innate immune response involved in the lysis of virus infected and tumor cells. Aging has a profound impact in the frequency, phenotype and function of NK cells. Chronic Myeloid Leukemia (CML) is caused by the BCR-ABL gene formation encoding aberrant oncoprotein tyrosine kinase. Treatment with tyrosine kinase inhibitors (TKIs) induces durable deep molecular response. The response to treatment and life expectancy is lower in older patients with chronic phase of CML than in younger patients. In this work we analyse NK cells from TKI-treated CML patients and healthy controls stratified according to age. We have analyzed the expression of NK receptors, activation markers, NK cell differentiation in CD56bright and CD56dim NK cell subsets and the expression of CD107a and IFN-γ in NK cells stimulated with K562. Whereas significant differences on the phenotype and function of NK cells were found between middle-aged (35–65 years old) and elderly (older than 65) healthy individuals, NK cells from TKI-treated CML patients do not show significant differences related with age in most parameters studied, indicating that age is not a limitation of the NK cell recovery after treatment with TKI. Our results also revealed differences in the expression of NK receptors, activation markers and functional assays in NK cells from TKI-treated CML patients compared with age-matched healthy controls. These results highlight the relevance of NK cells in TKI-treated patients and the need of an extensive analysis of the effect of aging on NK cell phenotype and function in these patients in order to define new NK-cell based strategies directed to control CML progression and achieve long-term disease remission after TKI cessation.
Collapse
Affiliation(s)
- Paulo Rodrigues-Santos
- Faculty of Medicine, Institute of Immunology, University of Coimbra, Coimbra, Portugal.,Laboratory of Immunology and Oncology, Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,Faculty of Medicine, Center of Investigation in Environment, Genetics and Oncobiology - CIMAGO, University of Coimbra, Coimbra, Portugal
| | - Nelson López-Sejas
- Department of Immunology, Instituto Maimónides de Investigación Biomédica de Córdoba - Reina Sofia University Hospital - University of Córdoba, Córdoba, Spain
| | - Jani Sofia Almeida
- Laboratory of Immunology and Oncology, Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,Faculty of Medicine, Center of Investigation in Environment, Genetics and Oncobiology - CIMAGO, University of Coimbra, Coimbra, Portugal
| | - Lenka Ruzičková
- Hematology Service, Coimbra Hospital and Universitary Centre, Coimbra, Portugal
| | - Patricia Couceiro
- Laboratory of Immunology and Oncology, Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,Faculty of Medicine, Center of Investigation in Environment, Genetics and Oncobiology - CIMAGO, University of Coimbra, Coimbra, Portugal
| | - Vera Alves
- Faculty of Medicine, Institute of Immunology, University of Coimbra, Coimbra, Portugal.,Faculty of Medicine, Center of Investigation in Environment, Genetics and Oncobiology - CIMAGO, University of Coimbra, Coimbra, Portugal
| | - Carmen Campos
- Department of Immunology, Instituto Maimónides de Investigación Biomédica de Córdoba - Reina Sofia University Hospital - University of Córdoba, Córdoba, Spain
| | - Corona Alonso
- Department of Immunology, Instituto Maimónides de Investigación Biomédica de Córdoba - Reina Sofia University Hospital - University of Córdoba, Córdoba, Spain
| | | | | | - Rafael Solana
- Department of Immunology, Instituto Maimónides de Investigación Biomédica de Córdoba - Reina Sofia University Hospital - University of Córdoba, Córdoba, Spain
| | - Manuel Santos-Rosa
- Faculty of Medicine, Institute of Immunology, University of Coimbra, Coimbra, Portugal.,Faculty of Medicine, Center of Investigation in Environment, Genetics and Oncobiology - CIMAGO, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
34
|
Damele L, Montaldo E, Moretta L, Vitale C, Mingari MC. Effect of Tyrosin Kinase Inhibitors on NK Cell and ILC3 Development and Function. Front Immunol 2018; 9:2433. [PMID: 30405627 PMCID: PMC6207002 DOI: 10.3389/fimmu.2018.02433] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 10/02/2018] [Indexed: 12/25/2022] Open
Abstract
Tyrosin kinase inhibitors (TKI) sharply improved the prognosis of Chronic Myeloid Leukemia (CML) and of Philadelphia+ Acute Lymphoblastic Leukemia (Ph+ALL) patients. However, TKI are not curative because of the development of resistance and lack of complete molecular remission in the majority of patients. Clinical evidences would support the notion that patient's immune system may play a key role in preventing relapses. In particular, increased proportions of terminally differentiated CD56+CD16+CD57+ NK cells have been reported to be associated with successful Imatinib therapy discontinuation or with a deep molecular response in Dasatinib-treated patients. In view of the potential role of NK cells in immune-response against CML, it is important to study whether any TKI have an effect on the NK cell development and identify possible molecular mechanism(s) by which continuous exposure to in vitro TKI may influence NK cell development and repertoire. To this end, CD34+ hematopoietic stem cells (HSC) were cultured in the absence or in the presence of Imatinib, Nilotinib, or Dasatinib. We show that all compounds exert an inhibitory effect on CD56+ cell recovery. In addition, Dasatinib sharply skewed the repertoire of CD56+ cell population, leading to an impaired recovery of CD56+CD117-CD16+CD94/NKG2A+EOMES+ mature cytotoxic NK cells, while the recovery of CD56+CD117+CD94/NKG2A-RORγt+ IL-22-producing ILC3 was not affected. This effect appears to involve the Dasatinib-mediated inhibition of Src kinases and, indirectly, of STAT5-signaling activation in CD34+ cells during first days of culture. Our studies, reveal a possible mechanism by which Dasatinib may interfere with the proliferation and maturation of fully competent NK cells, i.e., by targeting signaling pathways required for differentiation and survival of NK cells but not of ILC3.
Collapse
Affiliation(s)
- Laura Damele
- Dipartimento Medicina Sperimentale, Università degli Studi di Genova, Genova, Italy
- Centre of Excellence for Biomedical Research, Università degli Studi di Genova, Genova, Italy
| | | | - Lorenzo Moretta
- Immunology Area Lab, Pediatric Hospital Bambino Gesù, Rome, Italy
| | - Chiara Vitale
- Dipartimento Medicina Sperimentale, Università degli Studi di Genova, Genova, Italy
- UO Immunologia, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Maria Cristina Mingari
- Dipartimento Medicina Sperimentale, Università degli Studi di Genova, Genova, Italy
- Centre of Excellence for Biomedical Research, Università degli Studi di Genova, Genova, Italy
- UO Immunologia, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| |
Collapse
|
35
|
Gaggero S, Bruschi M, Petretto A, Parodi M, Del Zotto G, Lavarello C, Prato C, Santucci L, Barbuto A, Bottino C, Candiano G, Moretta A, Vitale M, Moretta L, Cantoni C. Nidogen-1 is a novel extracellular ligand for the NKp44 activating receptor. Oncoimmunology 2018; 7:e1470730. [PMID: 30228939 PMCID: PMC6140582 DOI: 10.1080/2162402x.2018.1470730] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 04/09/2018] [Accepted: 04/25/2018] [Indexed: 11/25/2022] Open
Abstract
The release of soluble ligands of activating Natural Killer (NK) cell receptors may represent a regulatory mechanism of NK cell function both in physiologic and in pathologic conditions. Here, we identified the extracellular matrix protein Nidogen-1 (NID1) as a ligand of NKp44, an important activating receptor expressed by activated NK cells. When released as soluble molecule, NID1 regulates NK cell function by modulating NKp44-induced IFN-γ production or cytotoxicity. In particular, it also modulates IFN-γ production induced by Platelet-Derived Growth Factor (PDGF)-DD following NKp44 engagement. We also show that NID1 may be present at the cell surface. In this form or when bound to a solid support (bNID1), NID1 fails to induce NK cell cytotoxicity or cytokine release. However, analysis by mass spectrometry revealed that exposure to bNID1 can induce in human NK cells relevant changes in the proteomic profiles suggesting an effect on different biological processes.
Collapse
Affiliation(s)
- Silvia Gaggero
- Department of Experimental Medicine, University of Genoa, Genoa, Italy
| | - Maurizio Bruschi
- Dipartimento dei Laboratori di Ricerca, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Andrea Petretto
- Dipartimento dei Laboratori di Ricerca, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Monica Parodi
- UOC Immunologia, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Genny Del Zotto
- Dipartimento dei Laboratori di Ricerca, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Chiara Lavarello
- Dipartimento dei Laboratori di Ricerca, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Carola Prato
- Department of Experimental Medicine, University of Genoa, Genoa, Italy
| | - Laura Santucci
- Dipartimento dei Laboratori di Ricerca, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Alessandra Barbuto
- Dipartimento dei Laboratori di Ricerca, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Cristina Bottino
- Department of Experimental Medicine, University of Genoa, Genoa, Italy.,Dipartimento dei Laboratori di Ricerca, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Giovanni Candiano
- Dipartimento dei Laboratori di Ricerca, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Alessandro Moretta
- Department of Experimental Medicine, University of Genoa, Genoa, Italy.,Center of Excellence for Biomedical Research, University of Genoa, Genoa, Italy
| | - Massimo Vitale
- UOC Immunologia, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Lorenzo Moretta
- Immunology area, IRCCS Ospedale Pediatrico Bambino Gesù, Rome, Italy
| | - Claudia Cantoni
- Department of Experimental Medicine, University of Genoa, Genoa, Italy.,Dipartimento dei Laboratori di Ricerca, IRCCS Istituto Giannina Gaslini, Genoa, Italy.,Center of Excellence for Biomedical Research, University of Genoa, Genoa, Italy
| |
Collapse
|
36
|
Melve GK, Ersvaer E, Eide GE, Kristoffersen EK, Bruserud Ø. Peripheral Blood Stem Cell Mobilization in Healthy Donors by Granulocyte Colony-Stimulating Factor Causes Preferential Mobilization of Lymphocyte Subsets. Front Immunol 2018; 9:845. [PMID: 29770133 PMCID: PMC5941969 DOI: 10.3389/fimmu.2018.00845] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Accepted: 04/05/2018] [Indexed: 01/23/2023] Open
Abstract
Background Allogeneic hematopoietic stem cell transplantation is associated with a high risk of immune-mediated post-transplant complications. Graft depletion of immunocompetent cell subsets is regarded as a possible strategy to reduce this risk without reducing antileukemic immune reactivity. Study design and methods We investigated the effect of hematopoietic stem cell mobilization with granulocyte colony-stimulating factor (G-CSF) on peripheral blood and stem cell graft levels of various T, B, and NK cell subsets in healthy donors. The results from flow cytometric cell quantification were examined by bioinformatics analyses. Results The G-CSF-induced mobilization of lymphocytes was a non-random process with preferential mobilization of naïve CD4+ and CD8+ T cells together with T cell receptor αβ+ T cells, naïve T regulatory cells, type 1 T regulatory cells, mature and memory B cells, and cytokine-producing NK cells. Analysis of circulating lymphoid cell capacity to release various cytokines (IFNγ, IL10, TGFβ, IL4, IL9, IL17, and IL22) showed preferential mobilization of IL10 releasing CD4+ T cells and CD3-19- cells. During G-CSF treatment, the healthy donors formed two subsets with generally strong and weaker mobilization of immunocompetent cells, respectively; hence the donors differed in their G-CSF responsiveness with regard to mobilization of immunocompetent cells. The different responsiveness was not reflected in the graft levels of various immunocompetent cell subsets. Furthermore, differences in donor G-CSF responsiveness were associated with time until platelet engraftment. Finally, strong G-CSF-induced mobilization of various T cell subsets seemed to increase the risk of recipient acute graft versus host disease, and this was independent of the graft T cell levels. Conclusion Healthy donors differ in their G-CSF responsiveness and preferential mobilization of immunocompetent cells. This difference seems to influence post-transplant recipient outcomes.
Collapse
Affiliation(s)
- Guro Kristin Melve
- Department of Immunology and Transfusion Medicine, Haukeland University Hospital, Bergen, Norway.,Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Elisabeth Ersvaer
- Department of Biomedical Laboratory Sciences, Western Norway University of Applied Sciences, Bergen, Norway
| | - Geir Egil Eide
- Centre for Clinical Research, Haukeland University Hospital, Bergen, Norway.,Department of Global Public Health and Primary Care, University of Bergen, Bergen, Norway
| | - Einar K Kristoffersen
- Department of Immunology and Transfusion Medicine, Haukeland University Hospital, Bergen, Norway.,Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Øystein Bruserud
- Department of Clinical Science, University of Bergen, Bergen, Norway.,Division for Hematology, Department of Medicine, Haukeland University Hospital, Bergen, Norway
| |
Collapse
|
37
|
Petretto A, Carbotti G, Inglese E, Lavarello C, Pistillo MP, Rigo V, Croce M, Longo L, Martini S, Vacca P, Ferrini S, Fabbi M. Proteomic analysis uncovers common effects of IFN-γ and IL-27 on the HLA class I antigen presentation machinery in human cancer cells. Oncotarget 2018; 7:72518-72536. [PMID: 27683036 PMCID: PMC5341926 DOI: 10.18632/oncotarget.12235] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2016] [Accepted: 09/17/2016] [Indexed: 12/25/2022] Open
Abstract
IL-27, a member of the IL-12-family of cytokines, has shown anti-tumor activity in several pre-clinical models due to anti-proliferative, anti-angiogenic and immune-enhancing effects. On the other hand, IL-27 demonstrated immune regulatory activities and inhibition of auto-immunity in mouse models. Also, we reported that IL-27, similar to IFN-γ, induces the expression of IL-18BP, IDO and PD-L1 immune regulatory molecules in human cancer cells. Here, a proteomic analysis reveals that IL-27 and IFN-γ display a broad overlap of functions on human ovarian cancer cells. Indeed, among 990 proteins modulated by either cytokine treatment in SKOV3 cells, 814 showed a concordant modulation by both cytokines, while a smaller number (176) were differentially modulated. The most up-regulated proteins were common to both IFN-γ and IL-27. In addition, functional analysis of IL-27-regulated protein networks highlighted pathways of interferon signaling and regulation, antigen presentation, protection from natural killer cell-mediated cytotoxicity, regulation of protein polyubiquitination and proteasome, aminoacid catabolism and regulation of viral protein levels. Importantly, we found that IL-27 induced HLA class I molecule expression in human cancer cells of different histotypes, including tumor cells showing very low expression. IL-27 failed only in a cancer cell line bearing a homozygous deletion in the B2M gene. Altogether, these data point out to a broad set of activities shared by IL-27 and IFN-γ, which are dependent on the common activation of the STAT1 pathway. These data add further explanation to the anti-tumor activity of IL-27 and also to its dual role in immune regulation.
Collapse
Affiliation(s)
- Andrea Petretto
- Core Facilities-Proteomics Laboratory, Istituto Giannina Gaslini, Genoa, Italy
| | - Grazia Carbotti
- Department of Integrated Oncological Therapies, IRCCS AOU San Martino-IST Istituto Nazionale per la Ricerca sul Cancro, Genoa, Italy
| | - Elvira Inglese
- Core Facilities-Proteomics Laboratory, Istituto Giannina Gaslini, Genoa, Italy
| | - Chiara Lavarello
- Core Facilities-Proteomics Laboratory, Istituto Giannina Gaslini, Genoa, Italy
| | - Maria Pia Pistillo
- Tumor Epigenetics Unit, IRCCS AOU San Martino-IST Istituto Nazionale per la Ricerca sul Cancro, Genoa, Italy
| | - Valentina Rigo
- Department of Integrated Oncological Therapies, IRCCS AOU San Martino-IST Istituto Nazionale per la Ricerca sul Cancro, Genoa, Italy
| | - Michela Croce
- Department of Integrated Oncological Therapies, IRCCS AOU San Martino-IST Istituto Nazionale per la Ricerca sul Cancro, Genoa, Italy
| | - Luca Longo
- Department of Integrated Oncological Therapies, IRCCS AOU San Martino-IST Istituto Nazionale per la Ricerca sul Cancro, Genoa, Italy
| | - Stefania Martini
- Department of Integrated Oncological Therapies, IRCCS AOU San Martino-IST Istituto Nazionale per la Ricerca sul Cancro, Genoa, Italy
| | - Paola Vacca
- Department of Integrated Oncological Therapies, IRCCS AOU San Martino-IST Istituto Nazionale per la Ricerca sul Cancro, Genoa, Italy.,Department of Experimental Medicine (DIMES), University of Genoa, Genoa, Italy
| | - Silvano Ferrini
- Department of Integrated Oncological Therapies, IRCCS AOU San Martino-IST Istituto Nazionale per la Ricerca sul Cancro, Genoa, Italy
| | - Marina Fabbi
- Department of Integrated Oncological Therapies, IRCCS AOU San Martino-IST Istituto Nazionale per la Ricerca sul Cancro, Genoa, Italy
| |
Collapse
|
38
|
Wang L, Quan Y, Yue Y, Heng X, Che F. Interleukin-37: A crucial cytokine with multiple roles in disease and potentially clinical therapy. Oncol Lett 2018; 15:4711-4719. [PMID: 29552110 DOI: 10.3892/ol.2018.7982] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 10/19/2017] [Indexed: 12/26/2022] Open
Abstract
Interleukin (IL)-37, a new IL-1 family member, has received increasing attention in recent years. In the past decade, it has been determined that IL-37 is expressed in various normal cells and tissues and is regulated by inflammatory stimuli and pro-cytokines via different signal transduction pathways. Recently, it has been found that IL-37 is expressed in a variety of cancers, chronic inflammatory and autoimmune disorders, and exerts anti-inflammatory effects. Moreover, a growing body of literature demonstrates that IL-37 plays a vital role in inhibiting both innate and adaptive immune responses as well as inflammatory reactions. In addition, IL-37 may prove to be a new and potentially useful target for effective cytokine therapy. Further evidence is needed to clarify in more detail the effects of IL-37 in experimental and clinical studies. Based on an extensive summary of published data, the aim of this review is to outline the current knowledge of IL-37, including the location, structure, expression, regulation and function, as well as the potential clinical applications of this cytokine.
Collapse
Affiliation(s)
- Lijuan Wang
- Central Laboratory, Hematology Laboratory, Linyi People's Hospital, Shandong University, Linyi, Shandong 276000, P.R. China.,Department of Hematology, Hematology Laboratory, Linyi People's Hospital, Shandong University, Linyi, Shandong 276000, P.R. China
| | - Yanchun Quan
- Central Laboratory, Hematology Laboratory, Linyi People's Hospital, Shandong University, Linyi, Shandong 276000, P.R. China
| | - Yongfang Yue
- Department of Gynecologic Oncology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| | - Xueyuan Heng
- Department of Neurosurgery, Linyi People's Hospital, Shandong University, Linyi, Shandong 276000, P.R. China
| | - Fengyuan Che
- Central Laboratory, Hematology Laboratory, Linyi People's Hospital, Shandong University, Linyi, Shandong 276000, P.R. China
| |
Collapse
|
39
|
Thompson TW, Kim AB, Li PJ, Wang J, Jackson BT, Huang KTH, Zhang L, Raulet DH. Endothelial cells express NKG2D ligands and desensitize antitumor NK responses. eLife 2017; 6:30881. [PMID: 29231815 PMCID: PMC5792093 DOI: 10.7554/elife.30881] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 12/11/2017] [Indexed: 12/15/2022] Open
Abstract
Natural Killer (NK) cells confer protection from tumors and infections by releasing cytotoxic granules and pro-inflammatory cytokines upon recognition of diseased cells. The responsiveness of NK cells to acute stimulation is dynamically tuned by steady-state receptor-ligand interactions of an NK cell with its cellular environment. Here, we demonstrate that in healthy WT mice the NK activating receptor NKG2D is engaged in vivo by one of its ligands, RAE-1ε, which is expressed constitutively by lymph node endothelial cells and highly induced on tumor-associated endothelium. This interaction causes internalization of NKG2D from the NK cell surface and transmits an NK-intrinsic signal that desensitizes NK cell responses globally to acute stimulation, resulting in impaired NK antitumor responses in vivo. White blood cells called “natural killer cells” are part of the first line of immune defense. Often called NK cells for short, one job of these cells is to help prevent cancer by killing tumor cells. If an NK cell spots a tumor cell, it must become energized so that it can deliver the killing blow, which comes in the form of a packet of cell-killing “cytotoxic” granules. Yet tumor cells look very similar to healthy cells, and NK cells must be able to tell the difference to be effective. Molecules on the outer surface of the NK cell control how the cell recognizes tumors, and deliver the signals the cell needs to become energized. One of these surface molecules is called NKG2D. It interacts with “partner” molecules found on the surface of cancer cells and tells the NK cell to attack. These partner molecules are not usually found on healthy cells, helping the immune system to tell the difference. After NKG2D interacts with its partner molecules, it moves inside the NK cell. This makes the cell less able to become energized. If the NK cells do not encounter any partner molecules in healthy mice, blocking the interactions should have no effect on NKG2D levels. But now, Thompson et al. find that blocking one of these interactions increased the levels of NKG2D on the surface of NK cells in healthy mice. Further experiments revealed that NK cells in mice constantly encounter an NKG2D partner molecule called RAE-1ε. A search for the source of RAE-1ε in healthy mice pointed to blood vessels inside the lymph nodes. NK cells pass through theses organs as part of their normal path around the body. Thompson et al. also saw that NK cells from healthy mice were less responsive than NK cells from mutant mice that lacked RAE-1ε. As a result of their encounters with RAE-1ε in healthy mice, the NK cells were less able to kill tumor cells. Blocking the interaction between NKG2D and RAE-1ε in mice re-energized their NK cells. More cells were able to enter tumors in these mice and the cells became better at killing tumors. Together these findings increase the current understanding of the biological processes that control NK cells. Further research may lead to new treatments for diseases like cancer. But first, scientists need to find out whether NK cells behave in the same way in humans as they do in mice. If so, developing ways to block the interaction could re-energize human NK cells to better kill cancer cells.
Collapse
Affiliation(s)
- Thornton W Thompson
- Department of Molecular and Cell Biology, Cancer Research Laboratory, University of California, Berkeley, United States
| | - Alexander Byungsuk Kim
- Department of Molecular and Cell Biology, Cancer Research Laboratory, University of California, Berkeley, United States
| | - P Jonathan Li
- Department of Molecular and Cell Biology, Cancer Research Laboratory, University of California, Berkeley, United States
| | - Jiaxi Wang
- Department of Molecular and Cell Biology, Cancer Research Laboratory, University of California, Berkeley, United States
| | - Benjamin T Jackson
- Department of Molecular and Cell Biology, Cancer Research Laboratory, University of California, Berkeley, United States
| | - Kristen Ting Hui Huang
- Department of Molecular and Cell Biology, Cancer Research Laboratory, University of California, Berkeley, United States
| | - Lily Zhang
- Department of Molecular and Cell Biology, Cancer Research Laboratory, University of California, Berkeley, United States
| | - David H Raulet
- Department of Molecular and Cell Biology, Cancer Research Laboratory, University of California, Berkeley, United States
| |
Collapse
|
40
|
Acheampong DO. Acute Myeloid Leukemic Cells Express NKG2D or Shed off NKG2D Ligand to Escape Immune-Surveillance. ACTA ACUST UNITED AC 2017. [DOI: 10.15406/htij.2017.05.00132] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
41
|
Zeng J, Tang SY, Toh LL, Wang S. Generation of "Off-the-Shelf" Natural Killer Cells from Peripheral Blood Cell-Derived Induced Pluripotent Stem Cells. Stem Cell Reports 2017; 9:1796-1812. [PMID: 29173894 PMCID: PMC5785702 DOI: 10.1016/j.stemcr.2017.10.020] [Citation(s) in RCA: 102] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 10/25/2017] [Accepted: 10/25/2017] [Indexed: 01/09/2023] Open
Abstract
Current donor cell-dependent strategies can only produce limited “made-to-order” therapeutic natural killer (NK) cells for limited patients. To provide unlimited “off-the-shelf” NK cells that serve many recipients, we designed and demonstrated a holistic manufacturing scheme to mass-produce NK cells from induced pluripotent stem cells (iPSCs). Starting with a highly accessible human cell source, peripheral blood cells (PBCs), we derived a good manufacturing practice-compatible iPSC source, PBC-derived iPSCs (PBC-iPSCs) for this purpose. Through our original protocol that excludes CD34+ cell enrichment and spin embryoid body formation, high-purity functional and expandable NK cells were generated from PBC-iPSCs. Above all, most of these NK cells expressed no killer cell immunoglobulin-like receptors (KIRs), which renders them unrestricted by recipients' human leukocyte antigen genotypes. Hence, we have established a practical “from blood cell to stem cells and back with less (less KIRs)” strategy to generate abundant “universal” NK cells from PBC-iPSCs for a wide range of patients. A GMP-compatible iPSC source has been generated from peripheral blood cells An industry-friendly protocol has been developed to produce NK cells from iPSCs These iPSC-derived NK cells are high-purity, functional, and KIR negative These iPSC-derived NK cells recognize and kill a wide variety of cancer cells
Collapse
Affiliation(s)
- Jieming Zeng
- Institute of Bioengineering and Nanotechnology, 31 Biopolis Way, The Nanos, #09-01, Singapore 138669, Singapore.
| | - Shin Yi Tang
- Institute of Bioengineering and Nanotechnology, 31 Biopolis Way, The Nanos, #09-01, Singapore 138669, Singapore; Department of Biological Sciences, National University of Singapore, Singapore 117543, Singapore
| | - Lai Ling Toh
- Institute of Bioengineering and Nanotechnology, 31 Biopolis Way, The Nanos, #09-01, Singapore 138669, Singapore
| | - Shu Wang
- Institute of Bioengineering and Nanotechnology, 31 Biopolis Way, The Nanos, #09-01, Singapore 138669, Singapore; Department of Biological Sciences, National University of Singapore, Singapore 117543, Singapore.
| |
Collapse
|
42
|
Stabile H, Nisti P, Peruzzi G, Fionda C, Pagliara D, Brescia PL, Merli P, Locatelli F, Santoni A, Gismondi A. Reconstitution of multifunctional CD56 lowCD16 low natural killer cell subset in children with acute leukemia given α/β T cell-depleted HLA-haploidentical haematopoietic stem cell transplantation. Oncoimmunology 2017; 6:e1342024. [PMID: 28932646 DOI: 10.1080/2162402x.2017.1342024] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Revised: 06/06/2017] [Accepted: 06/07/2017] [Indexed: 12/26/2022] Open
Abstract
We recently described the CD56lowCD16low subset of Natural Killer (NK) cells that both mediate cytotoxic activity and produce IFNγ, being more abundant in bone marrow (BM) than in peripheral blood (PB) of pediatric normal subjects. Given the multifunctional properties of this subset, we examined its development and functional recovery in a cohort of children undergoing α/β T-cell depleted HLA-haploidentical haematopoietic stem cell transplantation (HSCT). The results obtained indicate that CD56lowCD16low NK cells are present in both PB and BM already at one month post-HSCT, with an increased frequency in BM of graft recipients as compared with normal subjects. During the first 6 months after HSCT, no difference in CD56lowCD16low NK cells distribution between PB and BM was observed. In comparison to normal subjects, CD56lowCD16low NK cells from transplanted patients show lower expression levels of CD25 and CD127 and higher levels of CD122, and accordingly, produce higher amounts of IFNγ after stimulation with IL-12 plus IL-15. The recovery of NK-cell cytotoxicity after HSCT was strictly restricted to CD56lowCD16low NK cells, and their ability to degranulate against K562 target cells or autologous leukemic blasts was completely restored only one year after HSCT. Based on the phenotypic and functional ability of reconstituted CD56lowCD16low NK cells, we suggest that they play an important role in host defense against leukemia relapse and infections after HSCT, and represent an ideal candidate for approaches of adoptive immunotherapy.
Collapse
Affiliation(s)
| | | | | | | | - Daria Pagliara
- Dept. Pediatric Hematology/Oncology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ospedale Pediatrico Bambino Gesù, Rome
| | - Pomonia Letizia Brescia
- Dept. Pediatric Hematology/Oncology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ospedale Pediatrico Bambino Gesù, Rome
| | - Pietro Merli
- Dept. Pediatric Hematology/Oncology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ospedale Pediatrico Bambino Gesù, Rome
| | - Franco Locatelli
- Dept. Pediatric Hematology/Oncology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ospedale Pediatrico Bambino Gesù, Rome.,University of Pavia, Italy
| | | | - Angela Gismondi
- Dept. Molecular Medicine.,Eleonora Lorillard Spencer Cenci Foundation
| |
Collapse
|
43
|
Pinoli M, Marino F, Cosentino M. Dopaminergic Regulation of Innate Immunity: a Review. J Neuroimmune Pharmacol 2017; 12:602-623. [PMID: 28578466 DOI: 10.1007/s11481-017-9749-2] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 04/28/2017] [Indexed: 12/13/2022]
Abstract
Dopamine (DA) is a neurotransmitter in the central nervous system as well as in peripheral tissues. Emerging evidence however points to DA also as a key transmitter between the nervous system and the immune system as well as a mediator produced and released by immune cells themselves. Dopaminergic pathways have received so far extensive attention in the adaptive branch of the immune system, where they play a role in health and disease such as multiple sclerosis, rheumatoid arthritis, cancer, and Parkinson's disease. Comparatively little is known about DA and the innate immune response, although DA may affect innate immune system cells such as dendritic cells, macrophages, microglia, and neutrophils. The present review aims at providing a complete and exhaustive summary of currently available evidence about DA and innate immunity, and to become a reference for anyone potentially interested in the fields of immunology, neurosciences and pharmacology. A wide array of dopaminergic drugs is used in therapeutics for non-immune indications, such as Parkinson's disease, hyperprolactinemia, shock, hypertension, with a usually favorable therapeutic index, and they might be relatively easily repurposed for immune-mediated disease, thus leading to innovative treatments at low price, with benefit for patients as well as for the healthcare systems.
Collapse
Affiliation(s)
- Monica Pinoli
- Center of Research in Medical Pharmacology, University of Insubria, Via Ottorino Rossi n. 9, 21100, Varese, VA, Italy
| | - Franca Marino
- Center of Research in Medical Pharmacology, University of Insubria, Via Ottorino Rossi n. 9, 21100, Varese, VA, Italy.
| | - Marco Cosentino
- Center of Research in Medical Pharmacology, University of Insubria, Via Ottorino Rossi n. 9, 21100, Varese, VA, Italy
| |
Collapse
|
44
|
Croxatto D, Martini S, Chiossone L, Scordamaglia F, Simonassi CF, Moretta L, Mingari MC, Vacca P. IL15 induces a potent antitumor activity in NK cells isolated from malignant pleural effusions and overcomes the inhibitory effect of pleural fluid. Oncoimmunology 2017; 6:e1293210. [PMID: 28507797 DOI: 10.1080/2162402x.2017.1293210] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 02/03/2017] [Accepted: 02/04/2017] [Indexed: 12/14/2022] Open
Abstract
Natural Killer (NK) cells are capable of recognizing and killing cancer cells and play an important role in tumor immunosurveillance. However, tumor-infiltrating NK cells are frequently impaired in their functional capability. A remarkable exception is represented by NK cells isolated from malignant pleural effusions (PE) that are not anergic and, upon IL2-induced activation, efficiently kill tumor cells. Although IL2 is used in various clinical trials, severe side effects may occur in treated patients. In this study, we investigated whether also other clinical-grade cytokines could induce strong cytotoxicity in NK cells isolated from pleural fluid of patients with primary or metastatic tumors of different origins. We show that PE-NK cells, cultured for short-time intervals with IL15, maintain the CD56bright phenotype, a high expression of the main activating receptors, produce cytokines and kill tumor cells in vitro similarly to those treated with IL2. Moreover, IL15-activated PE-NK cells could greatly reduce the growth of established tumors in mice. This in vivo antitumor effect correlated with the ability of IL15-activated PE-NK cells to traffic from periphery to the tumor site. Finally, we show that IL15 can counteract the inhibitory effect of the tumor pleural microenvironment. Our study suggests that IL15-activated NK cells isolated from pleural fluid (otherwise discarded after thoracentesis) may represent a suitable source of effector cells to be used in adoptive immunotherapy of cancer.
Collapse
Affiliation(s)
- D Croxatto
- Department of Experimental Medicine (DIMES), University of Genoa, Genoa, Italy
| | - S Martini
- IRCCS AOU San Martino-IST, Genoa, Italy
| | - L Chiossone
- Centre d'Immunologie de Marseille-Luminy, Université d'Aix-Marseille UM2, Inserm, U1104, CNRS UMR7280, Marseille, France
| | | | - C F Simonassi
- Department of Pneumology, AO Villa Scassi, Genoa, Italy
| | - L Moretta
- Department of Immunology, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | - M C Mingari
- Department of Experimental Medicine (DIMES), University of Genoa, Genoa, Italy.,IRCCS AOU San Martino-IST, Genoa, Italy
| | - P Vacca
- Department of Experimental Medicine (DIMES), University of Genoa, Genoa, Italy.,IRCCS AOU San Martino-IST, Genoa, Italy
| |
Collapse
|
45
|
Del Zotto G, Marcenaro E, Vacca P, Sivori S, Pende D, Della Chiesa M, Moretta F, Ingegnere T, Mingari MC, Moretta A, Moretta L. Markers and function of human NK cells in normal and pathological conditions. CYTOMETRY PART B-CLINICAL CYTOMETRY 2017; 92:100-114. [PMID: 28054442 DOI: 10.1002/cyto.b.21508] [Citation(s) in RCA: 105] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Revised: 12/22/2016] [Accepted: 12/29/2016] [Indexed: 01/05/2023]
Abstract
Natural killer (NK) cells, the most important effectors of the innate lymphoid cells (ILCs), play a fundamental role in tumor immune-surveillance, defense against viruses and, in general, in innate immune responses. NK cell activation is mediated by several activating receptors and co-receptors able to recognize ligands on virus-infected or tumor cells. To prevent healthy cells from auto-aggression, NK cells are provided with strong inhibitory receptors (KIRs and NKG2A) which recognize HLA class I molecules on target cells and, sensing their level of expression, allow killing of targets underexpressing HLA-class I. In vivo, NK cell-mediated anti-tumor function may be suppressed by tumor or tumor-associated cells via inhibitory soluble factors/cytokines or the engagement of the so called immune-check point molecules (e.g., PD1-PDL1). The study of these immune check-points is now offering new important opportunities for the therapy of cancer. In haemopoietic stem cell transplantation, alloreactive NK cells (i.e., those that express KIRs, which do not recognize HLA class I molecules on patient cells), derived from HSC of haploidentical donors, are able to kill leukemia blasts and patient's DC, thus preventing both tumor relapses and graft-versus-host disease. A clear correlation exists between size of the alloreactive NK cell population and clinical outcome. Thus, in view of the recent major advances in cancer therapy based on immuno-mediated mechanisms, the phenotypic analysis of cells and molecules involved in these mechanisms plays an increasingly major role. © 2017 International Clinical Cytometry Society.
Collapse
Affiliation(s)
| | - Emanuela Marcenaro
- Department of Experimental Medicine, University of Genova, Genova, Italy.,Centro di Eccellenza per la Ricerca Biomedica-CEBR, Genova, Italy
| | - Paola Vacca
- Department of Experimental Medicine, University of Genova, Genova, Italy.,U.O. Immunology IRCCS AOU San Martino-IST, Genova, Italy
| | - Simona Sivori
- Department of Experimental Medicine, University of Genova, Genova, Italy.,Centro di Eccellenza per la Ricerca Biomedica-CEBR, Genova, Italy
| | - Daniela Pende
- U.O. Immunology IRCCS AOU San Martino-IST, Genova, Italy
| | | | - Francesca Moretta
- Department of Internal Medicine, University of Verona, Verona, Italy.,Ospedale Sacro Cuore Negrar, Verona, Italy
| | - Tiziano Ingegnere
- Department of Immunology, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | - Maria Cristina Mingari
- Department of Experimental Medicine, University of Genova, Genova, Italy.,U.O. Immunology IRCCS AOU San Martino-IST, Genova, Italy
| | - Alessandro Moretta
- Department of Experimental Medicine, University of Genova, Genova, Italy.,Centro di Eccellenza per la Ricerca Biomedica-CEBR, Genova, Italy
| | - Lorenzo Moretta
- Department of Immunology, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| |
Collapse
|
46
|
Sommariva M, Le Noci V, Storti C, Bianchi F, Tagliabue E, Balsari A, Sfondrini L. Activation of NK cell cytotoxicity by aerosolized CpG-ODN/poly(I:C) against lung melanoma metastases is mediated by alveolar macrophages. Cell Immunol 2017; 313:52-58. [PMID: 28089340 DOI: 10.1016/j.cellimm.2017.01.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Revised: 01/03/2017] [Accepted: 01/04/2017] [Indexed: 12/31/2022]
Abstract
Controversies remain about NK cells direct responsiveness to Toll-like receptor (TLR) agonists or dependence on macrophages. In a melanoma lung metastasis model, aerosolized TLR9 and TLR3 agonists have been reported to induce antitumor immunity through NK cells activation. In the current study, we demonstrated that in vitro TLR9/TLR3 stimulation induced IFN-γ secretion by NK cells, but an increase in their cytotoxicity was detected only after NK cells co-culture with in vitro TLR9/TLR3 agonists pretreated alveolar macrophages. Alveolar macrophages from melanoma lung metastases-bearing mice, treated with aerosolized TLR agonists, also promoted NK cell cytotoxicity. Activated NK cells from lungs of melanoma metastases-bearing mice that were given aerosolized TLR9/TLR3 agonists were able to polarize naive alveolar macrophages toward a M1-like phenotype. Our results demonstrate that activation of NK cells in the lung after TLR engagement is mediated by alveolar macrophages and that activated NK cells shape macrophage behavior.
Collapse
Affiliation(s)
- Michele Sommariva
- Dipartimento di Scienze Biomediche per la Salute, Università degli Studi di Milano, via Magiagalli 31, 20133 Milan, Italy.
| | - Valentino Le Noci
- Dipartimento di Scienze Biomediche per la Salute, Università degli Studi di Milano, via Magiagalli 31, 20133 Milan, Italy.
| | - Chiara Storti
- Dipartimento di Scienze Biomediche per la Salute, Università degli Studi di Milano, via Magiagalli 31, 20133 Milan, Italy.
| | - Francesca Bianchi
- Dipartimento di Scienze Biomediche per la Salute, Università degli Studi di Milano, via Magiagalli 31, 20133 Milan, Italy.
| | - Elda Tagliabue
- Molecular Targets Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, via Amadeo 42, 20133 Milan, Italy.
| | - Andrea Balsari
- Dipartimento di Scienze Biomediche per la Salute, Università degli Studi di Milano, via Magiagalli 31, 20133 Milan, Italy; Molecular Targets Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, via Amadeo 42, 20133 Milan, Italy.
| | - Lucia Sfondrini
- Dipartimento di Scienze Biomediche per la Salute, Università degli Studi di Milano, via Magiagalli 31, 20133 Milan, Italy.
| |
Collapse
|
47
|
Masuda J, Kawamoto H, Strober W, Takayama E, Mizutani A, Murakami H, Ikawa T, Kitani A, Maeno N, Shigehiro T, Satoh A, Seno A, Arun V, Kasai T, Fuss IJ, Katsura Y, Seno M. Transient Tcf3 Gene Repression by TALE-Transcription Factor Targeting. Appl Biochem Biotechnol 2016; 180:1559-1573. [PMID: 27406037 DOI: 10.1007/s12010-016-2187-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Accepted: 07/04/2016] [Indexed: 12/14/2022]
Abstract
Transplantation of hematopoietic stem and progenitor cells (HSCs) i.e., self-renewing cells that retain multipotentiality, is now a widely performed therapy for many hematopoietic diseases. However, these cells are present in low number and are subject to replicative senescence after extraction; thus, the acquisition of sufficient numbers of cells for transplantation requires donors able to provide repetitive blood samples and/or methods of expanding cell numbers without disturbing cell multipotentiality. Previous studies have shown that HSCs maintain their multipotentiality and self-renewal activity if TCF3 transcription function is blocked under B cell differentiating conditions. Taking advantage of this finding to devise a new approach to HSC expansion in vitro, we constructed an episomal expression vector that specifically targets and transiently represses the TCF3 gene. This consisted of a vector encoding a transcription activator-like effector (TALE) fused to a Krüppel-associated box (KRAB) repressor. We showed that this TALE-KRAB vector repressed expression of an exogenous reporter gene in HEK293 and COS-7 cell lines and, more importantly, efficiently repressed endogenous TCF3 in a human B lymphoma cell line. These findings suggest that this vector can be used to maintain multipotentiality in HSC being subjected to a long-term expansion regimen prior to transplantation.
Collapse
Affiliation(s)
- Junko Masuda
- Division of Medical Bioengineering, Graduate School of Natural Science and Technology, Okayama University, Okayama, 700-8530, Japan.
- Mucosal Immunity Section, Laboratory of Host Defenses, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA.
| | - Hiroshi Kawamoto
- Laboratory for Lymphocyte Development, RIKEN Research Center for Allergy and Immunology, Yokohama, 230-0045, Japan
- Department of Immunology, Institute for Frontier Medical Sciences, Kyoto University, Kyoto, 606-8507, Japan
| | - Warren Strober
- Mucosal Immunity Section, Laboratory of Host Defenses, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Eiji Takayama
- Department of Oral Biochemistry, Asahi University School of Dentistry, Hozumi 1851, Gifu, 501-0296, Japan
| | - Akifumi Mizutani
- Division of Medical Bioengineering, Graduate School of Natural Science and Technology, Okayama University, Okayama, 700-8530, Japan
| | - Hiroshi Murakami
- Division of Medical Bioengineering, Graduate School of Natural Science and Technology, Okayama University, Okayama, 700-8530, Japan
| | - Tomokatsu Ikawa
- Laboratory for Lymphocyte Development, RIKEN Research Center for Allergy and Immunology, Yokohama, 230-0045, Japan
- Laboratory for Immune Regeneration, RIKEN Center for Integrative Medical Sciences, Yokohama, 230-0045, Japan
| | - Atsushi Kitani
- Mucosal Immunity Section, Laboratory of Host Defenses, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Narumi Maeno
- Division of Medical Bioengineering, Graduate School of Natural Science and Technology, Okayama University, Okayama, 700-8530, Japan
| | - Tsukasa Shigehiro
- Division of Medical Bioengineering, Graduate School of Natural Science and Technology, Okayama University, Okayama, 700-8530, Japan
| | - Ayano Satoh
- Division of Medical Bioengineering, Graduate School of Natural Science and Technology, Okayama University, Okayama, 700-8530, Japan
| | - Akimasa Seno
- Division of Medical Bioengineering, Graduate School of Natural Science and Technology, Okayama University, Okayama, 700-8530, Japan
| | - Vaidyanath Arun
- Division of Medical Bioengineering, Graduate School of Natural Science and Technology, Okayama University, Okayama, 700-8530, Japan
| | - Tomonari Kasai
- Division of Medical Bioengineering, Graduate School of Natural Science and Technology, Okayama University, Okayama, 700-8530, Japan
| | - Ivan J Fuss
- Mucosal Immunity Section, Laboratory of Host Defenses, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Yoshimoto Katsura
- Laboratory for Lymphocyte Development, RIKEN Research Center for Allergy and Immunology, Yokohama, 230-0045, Japan
- Division of Cell Regeneration and Transplantation, Advanced Medical Research Center, School of Medicine, Nihon University, Tokyo, 173-8610, Japan
| | - Masaharu Seno
- Division of Medical Bioengineering, Graduate School of Natural Science and Technology, Okayama University, Okayama, 700-8530, Japan
| |
Collapse
|
48
|
Beneficial in-vitro effects of interleukin-2, interleukin-12, and their combination on functional and receptor characteristics of natural killer cells in metastatic melanoma patients with normal serum lactate dehydrogenase levels. Melanoma Res 2016; 26:551-564. [DOI: 10.1097/cmr.0000000000000289] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
49
|
Impola U, Larjo A, Salmenniemi U, Putkonen M, Itälä-Remes M, Partanen J. Graft Immune Cell Composition Associates with Clinical Outcome of Allogeneic Hematopoietic Stem Cell Transplantation in Patients with AML. Front Immunol 2016; 7:523. [PMID: 27917176 PMCID: PMC5117118 DOI: 10.3389/fimmu.2016.00523] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Accepted: 11/09/2016] [Indexed: 12/17/2022] Open
Abstract
Complications of allogeneic hematopoietic stem cell transplantation (HSCT) have been attributed to immune cells transferred into the patient with the graft. However, a detailed immune cell composition of the graft is usually not evaluated. In the present study, we determined the level of variation in the composition of immune cells between clinical HSCT grafts and whether this variation is associated with clinical outcome. Sizes of major immune cell populations in 50 clinical grafts from a single HSCT Centre were analyzed using flow cytometry. A statistical comparison between cell levels and clinical outcomes of HSCT was performed. Overall survival, acute graft-versus-host disease (aGVHD), chronic graft-versus-host disease (cGVHD), and relapse were used as the primary endpoints. Individual HSCT grafts showed considerable variation in their numbers of immune cell populations, including CD123+ dendritic cells and CD34+ cells, which may play a role in GVHD. Acute myeloid leukemia (AML) patients who developed aGVHD were transplanted with higher levels of effector CD3+ T, CD19+ B, and CD123+ dendritic cells than AML patients without aGVHD, whereas grafts with a high CD34+ content protected against aGVHD. AML patients with cGVHD had received grafts with a lower level of monocytes and a higher level of CD34+ cells than those without cGVHD. There is considerable variation in the levels of immune cell populations between HSCT grafts, and this variation is associated with outcomes of HSCT in AML patients. A detailed analysis of the immune cell content of the graft can be used in risk assessment of HSCT.
Collapse
Affiliation(s)
- Ulla Impola
- Finnish Red Cross Blood Service, Research and Development , Helsinki , Finland
| | - Antti Larjo
- Finnish Red Cross Blood Service, Research and Development , Helsinki , Finland
| | | | | | | | - Jukka Partanen
- Finnish Red Cross Blood Service, Research and Development , Helsinki , Finland
| |
Collapse
|
50
|
Tsukerman P, Eisenstein EM, Chavkin M, Schmiedel D, Wong E, Werner M, Yaacov B, Averbuch D, Molho-Pessach V, Stepensky P, Kaynan N, Bar-On Y, Seidel E, Yamin R, Sagi I, Elpeleg O, Mandelboim O. Cytokine secretion and NK cell activity in human ADAM17 deficiency. Oncotarget 2016; 6:44151-60. [PMID: 26683521 PMCID: PMC4792548 DOI: 10.18632/oncotarget.6629] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Accepted: 11/21/2015] [Indexed: 12/26/2022] Open
Abstract
Genetic deficiencies provide insights into gene function in humans. Here we describe a patient with a very rare genetic deficiency of ADAM17. We show that the patient's PBMCs had impaired cytokine secretion in response to LPS stimulation, correlating with the clinical picture of severe bacteremia from which the patient suffered. ADAM17 was shown to cleave CD16, a major NK killer receptor. Functional analysis of patient's NK cells demonstrated that his NK cells express normal levels of activating receptors and maintain high surface levels of CD16 following mAb stimulation. Activation of individual NK cell receptors showed that the patient's NK cells are more potent when activated directly by CD16, albeit no difference was observed in Antibody Depedent Cytotoxicity (ADCC) assays. Our data suggest that ADAM17 inhibitors currently considered for clinical use to boost CD16 activity should be cautiously applied, as they might have severe side effects resulting from impaired cytokine secretion.
Collapse
Affiliation(s)
- Pinchas Tsukerman
- Lautenberg Center for General and Tumor Immunology, The Hebrew University, The BioMedical Research Institute, Hadassah Medical School, Jerusalem, Israel
| | - Eli M Eisenstein
- Department of Pediatrics, Hadassah-Hebrew University Medical Center, Mount Scopus, Jerusalem il, Israel
| | - Maor Chavkin
- Department of Pediatrics, Hadassah-Hebrew University Medical Center, Mount Scopus, Jerusalem il, Israel
| | - Dominik Schmiedel
- Lautenberg Center for General and Tumor Immunology, The Hebrew University, The BioMedical Research Institute, Hadassah Medical School, Jerusalem, Israel
| | - Eitan Wong
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Marion Werner
- Monique and Jacques Roboh Department of Genetic Research, Hadassah, Hebrew University Medical Center, Jerusalem, Israel
| | - Barak Yaacov
- Monique and Jacques Roboh Department of Genetic Research, Hadassah, Hebrew University Medical Center, Jerusalem, Israel
| | - Diana Averbuch
- Pediatric Infectious Diseases Unit, Hadassah-Hebrew University Medical Center, Ein Kerem, Kiryat Hadassah, Jerusalem, Israel
| | - Vered Molho-Pessach
- Department of Dermatology, Hadassah Hebrew University Medical Center, Ein Kerem, Kiryat Hadassah, Jerusalem, Israel
| | - Polina Stepensky
- Pediatric Hemato-Oncology and Bone Marrow Transplantation Department, Hadassah-Hebrew University Medical Center, Ein Kerem, Kiryat Hadassah, Jerusalem, Israel
| | - Noa Kaynan
- Lautenberg Center for General and Tumor Immunology, The Hebrew University, The BioMedical Research Institute, Hadassah Medical School, Jerusalem, Israel
| | - Yotam Bar-On
- Lautenberg Center for General and Tumor Immunology, The Hebrew University, The BioMedical Research Institute, Hadassah Medical School, Jerusalem, Israel
| | - Einat Seidel
- Lautenberg Center for General and Tumor Immunology, The Hebrew University, The BioMedical Research Institute, Hadassah Medical School, Jerusalem, Israel
| | - Rachel Yamin
- Lautenberg Center for General and Tumor Immunology, The Hebrew University, The BioMedical Research Institute, Hadassah Medical School, Jerusalem, Israel
| | - Irit Sagi
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Orly Elpeleg
- Monique and Jacques Roboh Department of Genetic Research, Hadassah, Hebrew University Medical Center, Jerusalem, Israel
| | - Ofer Mandelboim
- Lautenberg Center for General and Tumor Immunology, The Hebrew University, The BioMedical Research Institute, Hadassah Medical School, Jerusalem, Israel
| |
Collapse
|