1
|
Damane BP, Mulaudzi TV, Kader SS, Naidoo P, Dlamini Z, Mkhize-Kwitshana ZL. HIV-Helminth Co-Infections and Immune Checkpoints: Implications for Cancer Risk in South Africa. Viruses 2025; 17:451. [PMID: 40143377 PMCID: PMC11945842 DOI: 10.3390/v17030451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 03/14/2025] [Accepted: 03/18/2025] [Indexed: 03/28/2025] Open
Abstract
South Africa has the highest HIV prevalence globally, often co-occurring with helminth infections in impoverished regions. The coexistence of these infections leads to immunological interactions, potentially enhancing oncogenesis by upregulating immune checkpoint molecules (ICs) among other effects. Notably, most ICs are overexpressed in cancer and correlated with its progression. Helminth infections trigger Th2-type immunity, increasing immunosuppressive M2 macrophages, regulatory T cells, and associated IC molecules. PD-L2 is reported to contribute to Th2-type immunity induced by helminth infections. Similarly, TIM-3, elevated during chronic viral infections, induces a similar immunosuppressive profile. CTLA-4 and PD-1 impact T-cell function by interacting with CD28, crucial for T-cell function. CD28 is downregulated in chronic infections and cancer. This study investigated the impact of HIV-helminth co-infection on co-stimulatory and co-inhibitory molecule profiles associated with antitumor immunity. Using 78 serum samples collected from March 2020 to May 2021, participants were categorized into uninfected control (no HIV and helminth infections), HIV-infected, helminth-infected, and HIV-helminth co-infected groups. Multiplex immune regulatory molecule assay analysis was conducted. The data were analyzed using multivariate regression analysis and adjusted for confounders (age, gender, BMI, ART, supplements, and other chronic diseases). The uninfected control group was used as the baseline reference group for analysis. HIV-infected individuals had higher PD-1 (adjusted β = 0.12, p = 0.034) and TIM-3 (adjusted β = 23.15, p = 0.052) levels, with the latter showing a trend toward significance. However, lower CD28 levels (adjusted β = -651.95, p = 0.010) were observed. Helminth-infected individuals had higher TIM-3 levels (adjusted β = 20.98, p = 0.020). The co-infected group had higher PD-1 (unadjusted β = 0.18, p = 0.0046) and PD-L2 (adjusted β = 7.95, p = 0.033) levels. A significant decrease in CD28 profile was observed across all infected groups: HIV-infected (adjusted β = -651.95, p = 0.010), helminth-infected (adjusted β = -674.32, p = 0.001), and co-infected (adjusted β = -671.55, p = 0.044). The results suggest that HIV-helminth co-infections alter immune checkpoint markers, potentially increasing cancer risk by promoting an immunosuppressive microenvironment that hinders anti-cancer immunity. CD28's downregulation underscores immune inefficiency in chronic diseases. Addressing these co-infections is crucial for improving HIV care and potentially reducing cancer risks through targeted strategies.
Collapse
Affiliation(s)
- Botle Precious Damane
- Department of Surgery, Steve Biko Academic Hospital, University of Pretoria, Hatfield 0028, South Africa; (B.P.D.); (T.V.M.)
- Department of Medical Microbiology, College of Health Sciences, School of Laboratory Medicine & Medical Sciences, Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban 4041, South Africa
| | - Thanyani Victor Mulaudzi
- Department of Surgery, Steve Biko Academic Hospital, University of Pretoria, Hatfield 0028, South Africa; (B.P.D.); (T.V.M.)
| | - Sayed Shakeel Kader
- Department of Surgery, University of KwaZulu Natal, Durban 4001, South Africa;
| | - Pragalathan Naidoo
- Department of Medical Microbiology, College of Health Sciences, School of Laboratory Medicine & Medical Sciences, Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban 4041, South Africa
- Division of Research Capacity Development, South African Medical Research Council (SAMRC), Tygerberg, Cape Town 7505, South Africa
| | - Zodwa Dlamini
- SAMRC Precision Oncology Research Unit (PORU), DSTI/NRF SARChI Chair in Precision Oncology and Cancer Prevention (POCP), Pan Africa Cancer Research Institute (PACRI), University of Pretoria, Hatfield 0028, South Africa
| | - Zilungile Lynette Mkhize-Kwitshana
- Division of Research Capacity Development, South African Medical Research Council (SAMRC), Tygerberg, Cape Town 7505, South Africa
- Biomedical Sciences Department; School of Life and Consumer Sciences, College of Agriculture and Environmental Sciences, University of South Africa, Florida Campus, Johannesburg 1710, South Africa
| |
Collapse
|
2
|
Linnemann L, Antwi-Ekwuruke J, Gnanapragassam V, Bang C, Rühlemann M, Ruland J, Hartmann W, Heepmann L, Dörken S, Yunus SM, Viebrock B, Schlosser A, Lepenies B, Breloer M. The C-type lectin receptor MINCLE interferes with eosinophil function and protective intestinal immunity in Strongyloides ratti-infected mice. Mucosal Immunol 2025; 18:220-231. [PMID: 39581231 DOI: 10.1016/j.mucimm.2024.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 10/23/2024] [Accepted: 11/14/2024] [Indexed: 11/26/2024]
Abstract
Strongyloides ratti is a helminth parasite that displays tissue-migrating and intestinal life stages. Myeloid C-type lectin receptors (CLRs) are pattern recognition receptors that recognize pathogen-derived ligands and initiate immune responses. To date, the role of CLRs in S. ratti infection has not been investigated. Here, we show that S. ratti-derived ligands are recognized by the CLR Macrophage inducible Ca2+-dependent lectin receptor (MINCLE). While MINCLE-deficiency did not affect initiation of a protective anti-S. ratti type 2 immunity, MINCLE-deficient mice had a transient advantage in intestinal immunity. Unravelling the underlying mechanism, we show that next to macrophages, dendritic cells and neutrophils, a fraction of eosinophils express MINCLE and expand during S. ratti infection. MINCLE-deficient eosinophils exhibited a more active phenotype and prolonged expansion in vivo and displayed increased capacity to reduce S. ratti motility and produce reactive oxygen species in vitro, compared to wild-type (WT) eosinophils. Depletion of eosinophils in S. ratti-infected mice after the tissue-migration phase elevated intestinal worm burden in MINCLE-deficient mice to the WT level. Thus, our findings establish a central contribution of eosinophils to parasite ejection from the intestine and suggest that S. ratti-triggered signalling via MINCLE interferes with eosinophil mediated ejection of S. ratti from the intestine.
Collapse
Affiliation(s)
- Lara Linnemann
- Section Interface, Bernhard Nocht Institute for Tropical Medicine, 20359, Hamburg, Germany
| | | | - Vinayaga Gnanapragassam
- Institute for Immunology, University of Veterinary Medicine Hannover, 30559, Hanover, Germany; Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, 30559, Hanover, Germany
| | - Corinna Bang
- Institute of Clinical Molecular Biology, University Kiel, 24118, Kiel, Germany
| | - Malte Rühlemann
- Institute of Clinical Molecular Biology, University Kiel, 24118, Kiel, Germany
| | - Jürgen Ruland
- Institute of Clinical Chemistry and Pathobiochemistry, School of Medicine, Technical University of Munich, 81675, Munich, Germany; Center for Translational Cancer Research (TranslaTUM), 81675, Munich, Germany; German Cancer Consortium (DKTK), Partner Site Munich, Germany; German Center for Infection Research (DZIF), Partner Site Munich, Germany
| | - Wiebke Hartmann
- Section Interface, Bernhard Nocht Institute for Tropical Medicine, 20359, Hamburg, Germany
| | - Lennart Heepmann
- Section Interface, Bernhard Nocht Institute for Tropical Medicine, 20359, Hamburg, Germany
| | - Sara Dörken
- Section Interface, Bernhard Nocht Institute for Tropical Medicine, 20359, Hamburg, Germany
| | - Saleh M Yunus
- Section Interface, Bernhard Nocht Institute for Tropical Medicine, 20359, Hamburg, Germany
| | - Birte Viebrock
- Section Interface, Bernhard Nocht Institute for Tropical Medicine, 20359, Hamburg, Germany
| | - Annette Schlosser
- Section Interface, Bernhard Nocht Institute for Tropical Medicine, 20359, Hamburg, Germany
| | - Bernd Lepenies
- Institute for Immunology, University of Veterinary Medicine Hannover, 30559, Hanover, Germany; Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, 30559, Hanover, Germany
| | - Minka Breloer
- Section Interface, Bernhard Nocht Institute for Tropical Medicine, 20359, Hamburg, Germany; Department for Biology, University Hamburg, 20148, Hamburg, Germany.
| |
Collapse
|
3
|
Cheng CJ, Wang LC, Chu LJ, Chen KY, Huang CY, Lan KL, Huang KY. Extracellular vesicles from fifth-stage larval Angiostrongylus cantonensis upregulate cholesterol biosynthesis and suppress NLRP2-associated inflammatory responses in mouse astrocytes. mSystems 2025; 10:e0101424. [PMID: 39636121 PMCID: PMC11748502 DOI: 10.1128/msystems.01014-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 11/06/2024] [Indexed: 12/07/2024] Open
Abstract
Angiostrongylus cantonensis is a zoonotic parasite that causes severe symptoms in humans, including eosinophilic meningitis and eosinophilic meningoencephalitis. Extracellular vesicles (EVs) derived from helminthes have been implicated in regulating host survival and immune response. However, the roles of A. cantonensis EVs in modulating parasite pathogenesis and host immune response remain poorly understood. Herein, we characterized EVs derived from A. cantonensis fifth-stage larvae (L5) and adult worms. Ultrastructural features showed that EVs from adult worms are smaller in size compared with those from L5. Proteomic analysis identified stage-specific proteins packaged in L5 and adult worm EVs. To investigate the crosstalk between L5 EVs and host cells, RNA sequencing analysis was conducted to identify the differentially expressed genes (DEGs) and enriched biological pathways in mouse astrocytes treated with L5 EVs. GO and KEGG enrichment analysis demonstrated that the pathways related to "cholesterol biosynthesis" are significantly upregulated in L5 EV-treated astrocytes. Based on the transcriptomic data, we observed a downregulated trend of NOD-like receptors (NLRs) protein 2 (NLRP2), a key regulator of brain inflammation, in mouse astrocytes treated with L5 EVs. To validate this result, we utilized ATP to induce the expression of NLRP2 inflammasome-related genes and proteins, as well as the secretion of downstream cytokines. Notably, ATP-induced overexpression of NLRP2 inflammasome-related molecules was significantly reduced in mouse astrocytes upon L5 EV treatment. Collectively, our data suggest that A. cantonensis L5 EVs enhance cholesterol synthesis and potentially modulate immune response by reducing NLRP2 inflammasome-related signaling in non-permissive host cells.IMPORTANCEAngiostrongylus cantonensis is a significant causative agent of eosinophilic meningitis and eosinophilic meningoencephalitis in humans. Helminth-derived extracellular vesicles (EVs) are known to play a crucial role in parasite pathogenesis and host immunomodulation. However, the protein compositions of A. cantonensis EVs and their roles in parasite pathogenesis and host immune response remain unclear. Our results demonstrate for the first time the distinct protein compositions in A. cantonensis L5 and adult worm EVs. The highly abundant proteins in L5 EVs that have immunomodulatory or pathogenic potential in the host deserve further investigation. Additionally, the uptake of L5 EVs by mouse astrocytes significantly upregulates cholesterol synthesis and suppresses ATP-induced NLRP2 inflammasome-related signaling. This study highlights the immunomodulatory roles of L5 EVs in non-permissive hosts, suggesting their potential as therapeutic targets and vaccine candidates against A. cantonensis.
Collapse
Affiliation(s)
- Chien-Ju Cheng
- Graduate Institute of Pathology and Parasitology, National Defense Medical Center, Taipei City, Taiwan
- Department of Parasitology, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Lian-Chen Wang
- Department of Parasitology, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Graduate Institute of Biomedical Sciences, Chang Gung University, Taoyuan City, Taiwan
- Molecular Medicine Research Center, Chang Gung University, Taoyuan City, Taiwan
| | - Lichieh Julie Chu
- Graduate Institute of Biomedical Sciences, Chang Gung University, Taoyuan City, Taiwan
- Molecular Medicine Research Center, Chang Gung University, Taoyuan City, Taiwan
- Department of Otolaryngology—Head & Neck Surgery, Chang Gung Memorial Hospital, Taoyuan City, Taiwan
| | - Kuang-Yao Chen
- Department of Parasitology, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Graduate Institute of Biomedical Sciences, Chang Gung University, Taoyuan City, Taiwan
- Molecular Medicine Research Center, Chang Gung University, Taoyuan City, Taiwan
| | - Ching-Yun Huang
- Host-Parasite Interactions Laboratory, National Defense Medical Center, Taipei City, Taiwan
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei City, Taiwan
| | - Kuo-Lun Lan
- Department of Pathology, Tri-Service General Hospital, National Defense Medical Center, Taipei City, Taiwan
| | - Kuo-Yang Huang
- Graduate Institute of Pathology and Parasitology, National Defense Medical Center, Taipei City, Taiwan
- Host-Parasite Interactions Laboratory, National Defense Medical Center, Taipei City, Taiwan
| |
Collapse
|
4
|
Borup A, Sharifpour MF, Rossen LS, Whitehead B, Boysen AT, Olesen R, Bohn AB, Ridolfi A, Brucale M, Valle F, Paolini L, Radeghieri A, Bergese P, Miles K, Veitch M, Thomas T, Ruscher R, Wangchuk P, Giacomin P, Loukas A, Nejsum P. Helminth extracellular vesicles co-opt host monocytes to drive T cell anergy. J Extracell Vesicles 2025; 14:e70027. [PMID: 39815783 PMCID: PMC11735955 DOI: 10.1002/jev2.70027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 11/30/2024] [Indexed: 01/18/2025] Open
Abstract
Parasitic helminths secrete extracellular vesicles (EVs) into their host tissues to modulate immune responses, but the underlying mechanisms are poorly understood. We demonstrate that Ascaris EVs are efficiently internalised by monocytes in human peripheral blood mononuclear cells and increase the percentage of classical monocytes. Furthermore, EV treatment of monocytes induced a novel anti-inflammatory phenotype characterised by CD14+, CD16-, CC chemokine receptor 2 (CCR2-) and programmed death-ligand 1 (PD-L1)+ cells. In addition, Ascaris EVs induced T cell anergy in a monocyte-dependent mechanism. Targeting professional phagocytes to induce both direct and indirect pathways of immune modulation presents a highly novel and efficient mechanism of EV-mediated host-parasite communication. Intra-peritoneal administration of EVs induced protection against gut inflammation in the dextran sodium sulphate model of colitis in mice. Ascaris EVs were shown to affect circulating immune cells and protect against gut inflammation; this highlights their potential as a subject for further investigation in inflammatory conditions driven by dysregulated immune responses. However, their clinical translation would require further studies and careful consideration of ethical implications.
Collapse
Affiliation(s)
- Anne Borup
- Department of Clinical MedicineAarhus UniversityAarhusDenmark
- Department of Infectious DiseasesAarhus University HospitalAarhusDenmark
| | | | - Litten S. Rossen
- Department of Clinical MedicineAarhus UniversityAarhusDenmark
- Department of Infectious DiseasesAarhus University HospitalAarhusDenmark
| | - Bradley Whitehead
- Department of Clinical MedicineAarhus UniversityAarhusDenmark
- Department of Infectious DiseasesAarhus University HospitalAarhusDenmark
| | - Anders T. Boysen
- Department of Clinical MedicineAarhus UniversityAarhusDenmark
- Department of Infectious DiseasesAarhus University HospitalAarhusDenmark
| | - Rikke Olesen
- Department of Clinical MedicineAarhus UniversityAarhusDenmark
- Department of Infectious DiseasesAarhus University HospitalAarhusDenmark
| | - Anja B. Bohn
- Department of Biomedicine, FACS Core FacilityAarhus UniversityAarhusDenmark
| | - Andrea Ridolfi
- Department of Physics and Astronomy and LaserLaB AmsterdamVrije Universiteit AmsterdamAmsterdamThe Netherlands
| | - Marco Brucale
- Consorzio Interuniversitario per lo Sviluppo dei Sistemi a Grande Interfase (CSGI)University of FlorenceFlorenceItaly
- Consiglio Nazionale delle Ricerche (CNR)Istituto per lo Studio dei Materiali Nanostrutturati (ISMN)University of BolognaBolognaItaly
| | - Francesco Valle
- Consorzio Interuniversitario per lo Sviluppo dei Sistemi a Grande Interfase (CSGI)University of FlorenceFlorenceItaly
- Consiglio Nazionale delle Ricerche (CNR)Istituto per lo Studio dei Materiali Nanostrutturati (ISMN)University of BolognaBolognaItaly
| | - Lucia Paolini
- Consorzio Interuniversitario per lo Sviluppo dei Sistemi a Grande Interfase (CSGI)University of FlorenceFlorenceItaly
- Department of Molecular and Translational MedicineUniversity of BresciaBresciaItaly
| | - Annalisa Radeghieri
- Consorzio Interuniversitario per lo Sviluppo dei Sistemi a Grande Interfase (CSGI)University of FlorenceFlorenceItaly
- Department of Molecular and Translational MedicineUniversity of BresciaBresciaItaly
| | - Paolo Bergese
- Consorzio Interuniversitario per lo Sviluppo dei Sistemi a Grande Interfase (CSGI)University of FlorenceFlorenceItaly
- Department of Molecular and Translational MedicineUniversity of BresciaBresciaItaly
- Consiglio Nazionale delle Ricerche (CNR), Institute for Research and Biomedical Innovation (IRIB)University of PalermoPalermoItaly
| | - Kim Miles
- Australian Institute of Tropical Health and MedicineJames Cook UniversityCairnsQueenslandAustralia
| | - Margaret Veitch
- Australian Institute of Tropical Health and MedicineJames Cook UniversityCairnsQueenslandAustralia
| | - Tamara Thomas
- Australian Institute of Tropical Health and MedicineJames Cook UniversityCairnsQueenslandAustralia
| | - Roland Ruscher
- Australian Institute of Tropical Health and MedicineJames Cook UniversityCairnsQueenslandAustralia
| | - Phurpa Wangchuk
- Australian Institute of Tropical Health and MedicineJames Cook UniversityCairnsQueenslandAustralia
| | - Paul Giacomin
- Australian Institute of Tropical Health and MedicineJames Cook UniversityCairnsQueenslandAustralia
| | - Alex Loukas
- Australian Institute of Tropical Health and MedicineJames Cook UniversityCairnsQueenslandAustralia
| | - Peter Nejsum
- Department of Clinical MedicineAarhus UniversityAarhusDenmark
- Department of Infectious DiseasesAarhus University HospitalAarhusDenmark
| |
Collapse
|
5
|
Pillay R, Naidoo P, Mkhize-Kwitshana ZL. Exploring microRNA-Mediated Immune Responses to Soil-Transmitted Helminth and Herpes Simplex Virus Type 2 Co-Infections. Diseases 2025; 13:6. [PMID: 39851470 PMCID: PMC11765296 DOI: 10.3390/diseases13010006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 12/24/2024] [Accepted: 12/31/2024] [Indexed: 01/26/2025] Open
Abstract
Over the last two decades, the field of microRNA (miRNA) research has grown significantly. MiRNAs are a class of short, single-stranded, non-coding RNAs that regulate gene expression post-transcriptionally. Thereby, miRNAs regulate various essential biological processes including immunity. Dysregulated miRNAs are associated with various infectious and non-infectious diseases. Recently co-infection with soil-transmitted helminths (STHs) and herpes simplex virus type 2 (HSV-2) has become a focus of study. Both pathogens can profoundly influence host immunity, particularly in under-resourced and co-endemic regions. It is well known that STHs induce immunomodulatory responses that have bystander effects on unrelated conditions. Typically, STHs induce T-helper 2 (Th2) and immunomodulatory responses, which may dampen the proinflammatory T-helper 1 (Th1) immune responses triggered by HSV-2. However, the extent to which STH co-infection influences the host immune response to HSV-2 is not well understood. Moreover, little is known about how miRNAs shape the immune response to STH/HSV-2 co-infection. In this article, we explore the potential influence that STH co-infection may have on host immunity to HSV-2. Because STH and HSV-2 infections are widespread and disproportionately affect vulnerable and impoverished countries, it is important to consider how STHs may impact HSV-2 immunity. Specifically, we explore how miRNAs contribute to both helminth and HSV-2 infections and discuss how miRNAs may mediate STH/HSV-2 co-infections. Insight into miRNA-mediated immune responses may further improve our understanding of the potential impact of STH/HSV-2 co-infections.
Collapse
Affiliation(s)
- Roxanne Pillay
- Department of Biomedical Sciences, Faculty of Natural Sciences, Mangosuthu University of Technology, Umlazi, Durban 4031, South Africa
- Department of Medical Microbiology, College of Health Sciences, School of Laboratory Medicine & Medical Sciences, Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban 4001, South Africa
- Division of Research Capacity Development, South African Medical Research Council (SAMRC), Tygerberg, Cape Town 7505, South Africa
| | - Pragalathan Naidoo
- Department of Medical Microbiology, College of Health Sciences, School of Laboratory Medicine & Medical Sciences, Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban 4001, South Africa
- Division of Research Capacity Development, South African Medical Research Council (SAMRC), Tygerberg, Cape Town 7505, South Africa
| | - Zilungile L. Mkhize-Kwitshana
- Division of Research Capacity Development, South African Medical Research Council (SAMRC), Tygerberg, Cape Town 7505, South Africa
- Biomedical Sciences Department of Life and Consumer Sciences, College of Agriculture and Environmental Sciences, University of South Africa, Florida Campus, Johannesburg 1710, South Africa
| |
Collapse
|
6
|
Bellini I, Scribano D, Ambrosi C, Chiovoloni C, Rondón S, Pronio A, Palamara AT, Pietrantoni A, Kashkanova A, Sandoghdar V, D'Amelio S, Cavallero S. Anisakis extracellular vesicles elicit immunomodulatory and potentially tumorigenic outcomes on human intestinal organoids. Parasit Vectors 2024; 17:393. [PMID: 39285481 PMCID: PMC11406850 DOI: 10.1186/s13071-024-06471-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 09/02/2024] [Indexed: 09/19/2024] Open
Abstract
BACKGROUND Anisakis spp. are zoonotic nematodes causing mild to severe acute and chronic gastrointestinal infections. Chronic anisakiasis can lead to erosive mucosal ulcers, granulomas and inflammation, potential tumorigenic triggers. How Anisakis exerts its pathogenic potential through extracellular vesicles (EVs) and whether third-stage infective larvae may favor a tumorigenic microenvironment remain unclear. METHODS Here, we investigated the parasite's tumorigenic and immunomodulatory capabilities using comparative transcriptomics, qRT-PCR and protein analysis with multiplex ELISA on human intestinal organoids exposed to Anisakis EVs. Moreover, EVs were characterized in terms of shape, size and concentration using classic TEM, SEM and NTA analyses and advanced interferometric NTA. RESULTS Anisakis EVs showed classic shape features and a median average diameter of around 100 nm, according to NTA and iNTA. Moreover, a refractive index of 5-20% of non-water content suggested their effective biological cargo. After treatment of human intestinal organoids with Anisakis EVs, an overall parasitic strategy based on mitigation of the immune and inflammatory response was observed. Anisakis EVs impacted gene expression of main cytokines, cell cycle regulation and protein products. Seven key genes related to cell cycle regulation and apoptosis were differentially expressed in organoids exposed to EVs. In particular, the downregulation of EPHB2 and LEFTY1 and upregulation of NUPR1 genes known to be associated with colorectal cancer were observed, suggesting their involvement in tumorigenic microenvironment. A statistically significant reduction in specific mediators of inflammation and cell-cycle regulation from the polarized epithelium as IL-33R, CD40 and CEACAM1 from the apical chambers and IL-1B, GM-CSF, IL-15 and IL-23 from both chambers were observed. CONCLUSIONS The results here obtained unravel intestinal epithelium response to Anisakis EVs, impacting host's anthelminthic strategies and revealing for the first time to our knowledge the host-parasite interactions in the niche environment of an emerging accidental zoonosis. Use of an innovative EV characterization approach may also be useful for study of other helminth EVs, since the knowledge in this field is very limited.
Collapse
Affiliation(s)
- Ilaria Bellini
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| | - Daniela Scribano
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| | - Cecilia Ambrosi
- Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Open University, IRCCS, Rome, Italy
- Laboratory of Microbiology of Chronic-Neurodegenerative Diseases, San Raffaele Open University, IRCCS, Rome, Italy
| | - Claudia Chiovoloni
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| | - Silvia Rondón
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| | - Annamaria Pronio
- Digestive Endoscopy Unit, Department of General Surgery and Surgical Specialties "Paride Stefanini", Sapienza University of Rome, Azienda Policlinico Umberto I, Rome, Italy
| | - Anna Teresa Palamara
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
| | | | - Anna Kashkanova
- Max Planck Institute for the Science of Light, Erlangen, Germany
| | - Vahid Sandoghdar
- Max Planck Institute for the Science of Light, Erlangen, Germany
| | - Stefano D'Amelio
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| | - Serena Cavallero
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy.
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Laboratory Affiliated to Pasteur Institute, Fondazione Cenci Bolognetti, Piazzale Aldo Moro 5, 00185, Rome, Italy.
| |
Collapse
|
7
|
Wangchuk P, Yeshi K. Techniques, Databases and Software Used for Studying Polar Metabolites and Lipids of Gastrointestinal Parasites. Animals (Basel) 2024; 14:2671. [PMID: 39335259 PMCID: PMC11428429 DOI: 10.3390/ani14182671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 09/05/2024] [Accepted: 09/10/2024] [Indexed: 09/30/2024] Open
Abstract
Gastrointestinal parasites (GIPs) are organisms known to have coevolved for millennia with their mammalian hosts. These parasites produce small molecules, peptides, and proteins to evade or fight their hosts' immune systems and also to protect their host for their own survival/coexistence. The small molecules include polar compounds, amino acids, lipids, and carbohydrates. Metabolomics and lipidomics are emerging fields of research that have recently been applied to study helminth infections, host-parasite interactions and biochemicals of GIPs. This review comprehensively discusses metabolomics and lipidomics studies of the small molecules of GIPs, providing insights into the available tools and techniques, databases, and analytical software. Most metabolomics and lipidomics investigations employed LC-MS, MS or MS/MS, NMR, or a combination thereof. Recent advancements in artificial intelligence (AI)-assisted software tools and databases have propelled parasitomics forward, offering new avenues to explore host-parasite interactions, immunomodulation, and the intricacies of parasitism. As our understanding of AI technologies and their utilisation continue to expand, it promises to unveil novel perspectives and enrich the knowledge of these complex host-parasite relationships.
Collapse
Affiliation(s)
- Phurpa Wangchuk
- College of Public Health, Medical and Veterinary Sciences (CPHMVS), James Cook University, McGregor Rd, Smithfield, Cairns, QLD 4878, Australia
- Australian Institute of Tropical Health and Medicine (AITHM), James Cook University, McGregor Rd, Smithfield, Cairns, QLD 4878, Australia
| | - Karma Yeshi
- College of Public Health, Medical and Veterinary Sciences (CPHMVS), James Cook University, McGregor Rd, Smithfield, Cairns, QLD 4878, Australia
- Australian Institute of Tropical Health and Medicine (AITHM), James Cook University, McGregor Rd, Smithfield, Cairns, QLD 4878, Australia
| |
Collapse
|
8
|
Qadeer A, Wajid A, Rafey HA, Nawaz S, Khan S, Rahman SU, Alzahrani KJ, Khan MZ, Alsabi MNS, Ullah H, Safi SZ, Xia Z, Zahoor M. Exploring extracellular vesicles in zoonotic helminth biology: implications for diagnosis, therapeutic and delivery. Front Cell Infect Microbiol 2024; 14:1424838. [PMID: 39165921 PMCID: PMC11333462 DOI: 10.3389/fcimb.2024.1424838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 07/03/2024] [Indexed: 08/22/2024] Open
Abstract
Extracellular vesicles (EVs) have emerged as key intercellular communication and pathogenesis mediators. Parasitic organisms' helminths, cause widespread infections with significant health impacts worldwide. Recent research has shed light on the role of EVs in the lifecycle, immune evasion, and disease progression of these parasitic organisms. These tiny membrane-bound organelles including microvesicles and exosomes, facilitate the transfer of proteins, lipids, mRNAs, and microRNAs between cells. EVs have been isolated from various bodily fluids, offering a potential diagnostic and therapeutic avenue for combating infectious agents. According to recent research, EVs from helminths hold great promise in the diagnosis of parasitic infections due to their specificity, early detection capabilities, accessibility, and the potential for staging and monitoring infections, promote intercellular communication, and are a viable therapeutic tool for the treatment of infectious agents. Exploring host-parasite interactions has identified promising new targets for diagnostic, therapy, and vaccine development against helminths. This literature review delves into EVS's origin, nature, biogenesis, and composition in these parasitic organisms. It also highlights the proteins and miRNAs involved in EV release, providing a comprehensive summary of the latest findings on the significance of EVs in the biology of helminths, promising targets for therapeutic and diagnostic biomarkers.
Collapse
Affiliation(s)
- Abdul Qadeer
- Department of Cell Biology, School of Life Sciences, Central South University, Changsha, China
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Abdul Wajid
- Faculty of Pharmacy, Gomal University, Dera Ismail Khan, Pakistan
| | - Hafiz Abdul Rafey
- Shifa College of Pharmaceutical Sciences, Faculty of Pharmaceutical and Allied Health Sciences, Shifa Tameer-e-Millat University, Islamabad, Pakistan
| | - Saqib Nawaz
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Sawar Khan
- Department of Cell Biology, School of Life Sciences, Central South University, Changsha, China
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore, Pakistan
| | - Sajid Ur Rahman
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
- Department of Food Science and Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Khalid J. Alzahrani
- Department of Clinical Laboratories Sciences, College of Applied Medical Sciences, Taif University, Taif, Saudi Arabia
| | - Muhammad Zahoor Khan
- College of Agricultural Science and Engineering, Liaocheng University, Liaocheng, Shandong, China
| | - Mohammad Nafi Solaiman Alsabi
- Department of Basic Veterinary Medical Sciences, Faculty of Veterinary Medicine, Jordan University of Science and Technology, Irbid, Jordan
| | - Hanif Ullah
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
- West China School of Nursing/West China Hospital, Sichuan University, Chengdu, China
| | - Sher Zaman Safi
- Faculty of Medicine, Bioscience and Nursing, MAHSA University, Jenjarom, Selangor, Malaysia
| | - Zanxian Xia
- Department of Cell Biology, School of Life Sciences, Central South University, Changsha, China
| | - Muhammad Zahoor
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| |
Collapse
|
9
|
Zhang X, Yu C, Song L. Progress on the Regulation of the Host Immune Response by Parasite-Derived Exosomes. Pathogens 2024; 13:623. [PMID: 39204224 PMCID: PMC11357678 DOI: 10.3390/pathogens13080623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 07/19/2024] [Accepted: 07/24/2024] [Indexed: 09/03/2024] Open
Abstract
Exosomes are membrane-bound structures released by cells into the external environment that carry a significant amount of important cargo, such as proteins, DNA, RNA, and lipids. They play a crucial role in intercellular communication. Parasites have complex life cycles and can release exosomes at different stages. Exosomes released by parasitic pathogens or infected cells contain parasitic nucleic acids, antigenic molecules, virulence factors, drug-resistant proteins, proteases, lipids, etc. These components can regulate host gene expression across species or modulate signaling pathways, thereby dampening or activating host immune responses, causing pathological damage, and participating in disease progression. This review focuses on the means by which parasitic exosomes modulate host immune responses, elaborates on the pathogenic mechanisms of parasites, clarifies the interactions between parasites and hosts, and provides a theoretical basis and research directions for the prevention and treatment of parasitic diseases.
Collapse
Affiliation(s)
| | - Chuanxin Yu
- National Health Commission Key Laboratory of Parasitic Disease Control and Prevention, Jiangsu Provincial Key Laboratory on Parasite and Vector Control Technology, Jiangsu Provincial Medical Key Laboratory, Jiangsu Institute of Parasitic Diseases, Wuxi 214064, China;
| | - Lijun Song
- National Health Commission Key Laboratory of Parasitic Disease Control and Prevention, Jiangsu Provincial Key Laboratory on Parasite and Vector Control Technology, Jiangsu Provincial Medical Key Laboratory, Jiangsu Institute of Parasitic Diseases, Wuxi 214064, China;
| |
Collapse
|
10
|
Pękacz M, Basałaj K, Młocicki D, Kamaszewski M, Carretón E, Morchón R, Wiśniewski M, Zawistowska-Deniziak A. Molecular insights and antibody response to Dr20/22 in dogs naturally infected with Dirofilaria repens. Sci Rep 2024; 14:12979. [PMID: 38839868 PMCID: PMC11153217 DOI: 10.1038/s41598-024-63523-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 05/29/2024] [Indexed: 06/07/2024] Open
Abstract
Subcutaneous dirofilariasis, caused by the parasitic nematode Dirofilaria repens, is a growing concern in Europe, affecting both dogs and humans. This study focused on D. repens Dr20/22, a protein encoded by an alt (abundant larval transcript) gene family. While well-documented in L3 larvae of other filariae species, this gene family had not been explored in dirofilariasis. The research involved cloning Dr20/22 cDNA, molecular characterization, and evaluating its potential application in the diagnosis of dirofilariasis. Although Real-Time analysis revealed mRNA expression in both adult worms and microfilariae, the native protein remained undetected in lysates from both developmental stages. This suggests the protein's specificity for L3 larvae and may be related to a process called SLTS (spliced leader trans-splicing), contributing to stage-specific gene expression. The specificity of the antigen for invasive larvae positions it as a promising early marker for dirofilariasis. However, ELISA tests using sera from infected and uninfected dogs indicated limited diagnostic utility. While further research is required, our findings contribute to a deeper understanding of the molecular and immunological aspects of host-parasite interactions and could offer insights into the parasite's strategies for evading the immune system.
Collapse
Affiliation(s)
- Mateusz Pękacz
- Division of Parasitology, Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences-SGGW, 02-786, Warsaw, Poland
| | - Katarzyna Basałaj
- Museum and Institute of Zoology, Polish Academy of Sciences, 00-818, Warsaw, Poland
| | - Daniel Młocicki
- Department of General Biology and Parasitology, Medical University of Warsaw, 02-004, Warsaw, Poland
| | - Maciej Kamaszewski
- Department of Ichthyology and Biotechnology in Aquaculture, Institute of Animal Sciences, Warsaw University of Life Sciences-SGGW, 02-786, Warsaw, Poland
| | - Elena Carretón
- Internal Medicine, Faculty of Veterinary Medicine, University of Las Palmas de Gran Canaria, Campus Arucas, Arucas, 35413, Las Palmas, Spain
| | - Rodrigo Morchón
- Zoonotic Diseases and One Health Group, Faculty of Pharmacy, University of Salamanca, Campus Miguel Unamuno, 37007, Salamanca, Spain
| | - Marcin Wiśniewski
- Division of Parasitology, Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences-SGGW, 02-786, Warsaw, Poland
| | - Anna Zawistowska-Deniziak
- Department of Immunology, Institute of Functional Biology and Ecology, Faculty of Biology, University of Warsaw, 02-095, Warsaw, Poland.
| |
Collapse
|
11
|
Rawat SS, Keshri AK, Arora N, Kaur R, Mishra A, Kumar R, Prasad A. Taenia solium cysticerci's extracellular vesicles Attenuate the AKT/mTORC1 pathway for Alleviating DSS-induced colitis in a murine model. J Extracell Vesicles 2024; 13:e12448. [PMID: 38779712 PMCID: PMC11112404 DOI: 10.1002/jev2.12448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 03/24/2024] [Accepted: 04/22/2024] [Indexed: 05/25/2024] Open
Abstract
The excretory-secretory proteome plays a pivotal role in both intercellular communication during disease progression and immune escape mechanisms of various pathogens including cestode parasites like Taenia solium. The cysticerci of T. solium causes infection in the central nervous system known as neurocysticercosis (NCC), which affects a significant population in developing countries. Extracellular vesicles (EVs) are 30-150-nm-sized particles and constitute a significant part of the secretome. However, the role of EV in NCC pathogenesis remains undetermined. Here, for the first time, we report that EV from T. solium larvae is abundant in metabolites that can negatively regulate PI3K/AKT pathway, efficiently internalized by macrophages to induce AKT and mTOR degradation through auto-lysosomal route with a prominent increase in the ubiquitination of both proteins. This results in less ROS production and diminished bacterial killing capability among EV-treated macrophages. Due to this, both macro-autophagy and caspase-linked apoptosis are upregulated, with a reduction of the autophagy substrate sequestome 1. In summary, we report that T. solium EV from viable cysts attenuates the AKT-mTOR pathway thereby promoting apoptosis in macrophages, and this may exert immunosuppression during an early viable stage of the parasite in NCC, which is primarily asymptomatic. Further investigation on EV-mediated immune suppression revealed that the EV can protect the mice from DSS-induced colitis and improve colon architecture. These findings shed light on the previously unknown role of T. solium EV and the therapeutic role of their immune suppression potential.
Collapse
Affiliation(s)
- Suraj Singh Rawat
- School of Biosciences and BioengineeringIndian Institute of Technology MandiMandiHimachal PradeshIndia
| | - Anand Kumar Keshri
- School of Biosciences and BioengineeringIndian Institute of Technology MandiMandiHimachal PradeshIndia
| | - Naina Arora
- School of Biosciences and BioengineeringIndian Institute of Technology MandiMandiHimachal PradeshIndia
| | - Rimanpreet Kaur
- School of Biosciences and BioengineeringIndian Institute of Technology MandiMandiHimachal PradeshIndia
| | - Amit Mishra
- Cellular and Molecular Neurobiology UnitIndian Institute of Technology JodhpurJodhpurRajasthanIndia
| | - Rajiv Kumar
- CSIR‐Institute of Himalayan Bioresource TechnologyPalampurHimachal PradeshIndia
| | - Amit Prasad
- School of Biosciences and BioengineeringIndian Institute of Technology MandiMandiHimachal PradeshIndia
| |
Collapse
|
12
|
Toychiev A, Gafner N, Belotserkovets V, Sekler D, Tashpulatova S, Osipova S. Impact of Ascaris lumbricoides infection on the development of chronic pulmonary aspergillosis in patients with COPD. Trop Doct 2024; 54:149-156. [PMID: 38291709 DOI: 10.1177/00494755241226488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
The aetiopathogenesis of chronic obstructive pulmonary disease (COPD) remains unclear. The aim of our study was to determine the possible influence of Ascaris lumbricoides on the development of chronic pulmonary aspergillosis (CPA) in patients with COPD. The prevalence of A. lumbricoides in patients with COPD with CPA (19.05%) was significantly higher than that in those without (9.20%) and controls (4.9%) (p < 0.05). Trends in levels of Interleukin-1β and of tumour necrosis factor α suggest ascariasis increases susceptibility to Aspergillus sp. in patients with COPD and can be considered an additional risk factor for CPA.
Collapse
Affiliation(s)
- Abdurakhim Toychiev
- Postdoctoral Researcher, Department of Immunology of Parasitic and Fungal Diseases, Republican Specialized Research and Practical Medical Center of Epidemiology, Microbiology, Infectious and Parasitic Diseases, Tashkent, Uzbekistan
| | - Natalya Gafner
- Pulmonologist, Department of Therapy, Republican Specialized Scientific and Practical Medical Center of Tuberculosis and Pulmonology, Tashkent, Uzbekistan
| | - Vera Belotserkovets
- Pulmonologist, Department of Therapy, Republican Specialized Scientific and Practical Medical Center of Tuberculosis and Pulmonology, Tashkent, Uzbekistan
| | - Dildora Sekler
- Senior Researcher, Department of Immunology of Parasitic and Fungal Diseases, Republican Specialized Research and Practical Medical Center of Epidemiology, Microbiology, Infectious and Parasitic Diseases, Tashkent, Uzbekistan
| | - Shakhnoza Tashpulatova
- Associate Professor, Department of Infectious and Child Infectious Diseases, Tashkent Medical Academy, Tashkent, Uzbekistan
| | - Svetlana Osipova
- Principal Investigator, Department of Immunology of Parasitic and Fungal Diseases, Republican Specialized Research and Practical Medical Center of Epidemiology, Microbiology, Infectious and Parasitic Diseases, Tashkent, Uzbekistan
| |
Collapse
|
13
|
Surtani S, Kailashiya J, Ansari MA, Dash D, Yadav AK, Kumar A. Platelet functions in lymphatic filariasis patients. Microvasc Res 2024; 152:104642. [PMID: 38070864 DOI: 10.1016/j.mvr.2023.104642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 11/27/2023] [Accepted: 12/03/2023] [Indexed: 02/03/2024]
Abstract
Filariasis is a chronic disease where parasitic worms survive in human hosts even for decades and lead to complications like lymphedema and elephantiasis. Despite the persistent existence of filarial parasites in human hosts, fatal and thrombotic complications are not known, unlike other parasitic diseases like malaria. This suggests that filarial parasites might be affecting the host's platelet functions. This study was conducted to examine platelet functions in confirmed filariasis patients and healthy controls. Results showed that filariasis patients had larger platelets, inhibited aggregation, and slower speed of aggregation, compared to controls. However, in vivo markers of platelet activation and degranulation (beta thromboglobulin and soluble P-selectin) were not affected. Observations suggested that there is increased platelet turnover, cellular apoptosis and inhibited platelet functions in filariasis patients compared to controls. Platelet function inhibition was not associated with the duration of disease, lymphedema-affected organs, or gender of patients. This study confirms that filarial parasites modulate platelet functions in human hosts.
Collapse
Affiliation(s)
- Sushil Surtani
- Department of Biochemistry, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Jyotsna Kailashiya
- Centre for Advanced Research on Platelet Signaling & Thrombosis Biology, Department of Biochemistry, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India.
| | - Mumtaz Ahmad Ansari
- Department of General Surgery, Sir Sundarlal Hospital, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Debabrata Dash
- Centre for Advanced Research on Platelet Signaling & Thrombosis Biology, Department of Biochemistry, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Awadesh Kumar Yadav
- National Centre for Disease Control, Ministry of Health and Family Welfare, Varanasi, Uttar Pradesh, India
| | - Ashutosh Kumar
- Department of Biochemistry, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| |
Collapse
|
14
|
Acevedo N, Lozano A, Zakzuk J, Llinás-Caballero K, Brodin D, Nejsum P, Williams AR, Caraballo L. Cystatin from the helminth Ascaris lumbricoides upregulates mevalonate and cholesterol biosynthesis pathways and immunomodulatory genes in human monocyte-derived dendritic cells. Front Immunol 2024; 15:1328401. [PMID: 38481989 PMCID: PMC10936004 DOI: 10.3389/fimmu.2024.1328401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 02/06/2024] [Indexed: 04/08/2024] Open
Abstract
Background Ascaris lumbricoides cystatin (Al-CPI) prevents the development of allergic airway inflammation and dextran-induced colitis in mice models. It has been suggested that helminth-derived cystatins inhibit cathepsins in dendritic cells (DC), but their immunomodulatory mechanisms are unclear. We aimed to analyze the transcriptional profile of human monocyte-derived DC (moDC) upon stimulation with Al-CPI to elucidate target genes and pathways of parasite immunomodulation. Methods moDC were generated from peripheral blood monocytes from six healthy human donors of Denmark, stimulated with 1 µM of Al-CPI, and cultured for 5 hours at 37°C. RNA was sequenced using TrueSeq RNA libraries and the NextSeq 550 v2.5 (75 cycles) sequencing kit (Illumina, Inc). After QC, reads were aligned to the human GRCh38 genome using Spliced Transcripts Alignment to a Reference (STAR) software. Differential expression was calculated by DESEq2 and expressed in fold changes (FC). Cell surface markers and cytokine production by moDC were evaluated by flow cytometry. Results Compared to unstimulated cells, Al-CPI stimulated moDC showed differential expression of 444 transcripts (|FC| ≥1.3). The top significant differences were in Kruppel-like factor 10 (KLF10, FC 3.3, PBH = 3 x 10-136), palladin (FC 2, PBH = 3 x 10-41), and the low-density lipoprotein receptor (LDLR, FC 2.6, PBH = 5 x 10-41). Upregulated genes were enriched in regulation of cholesterol biosynthesis by sterol regulatory element-binding proteins (SREBP) signaling pathways and immune pathways. Several genes in the cholesterol biosynthetic pathway showed significantly increased expression upon Al-CPI stimulation, even in the presence of lipopolysaccharide (LPS). Regarding the pathway of negative regulation of immune response, we found a significant decrease in the cell surface expression of CD86, HLA-DR, and PD-L1 upon stimulation with 1 µM Al-CPI. Conclusion Al-CPI modifies the transcriptome of moDC, increasing several transcripts encoding enzymes involved in cholesterol biosynthesis and SREBP signaling. Moreover, Al-CPI target several transcripts in the TNF-alpha signaling pathway influencing cytokine release by moDC. In addition, mRNA levels of genes encoding KLF10 and other members of the TGF beta and the IL-10 families were also modified by Al-CPI stimulation. The regulation of the mevalonate pathway and cholesterol biosynthesis suggests new mechanisms involved in DC responses to helminth immunomodulatory molecules.
Collapse
Affiliation(s)
- Nathalie Acevedo
- Institute for Immunological Research, University of Cartagena, Cartagena, Colombia
| | - Ana Lozano
- Institute for Immunological Research, University of Cartagena, Cartagena, Colombia
| | - Josefina Zakzuk
- Institute for Immunological Research, University of Cartagena, Cartagena, Colombia
| | | | - David Brodin
- Bioinformatics and Expression Analysis Core Facility (BEA), Karolinska Institutet, Huddinge, Sweden
| | - Peter Nejsum
- Department of Clinical Medicine. Aarhus University, Aarhus, Denmark
| | - Andrew R. Williams
- Department of Veterinary and Animal Sciences. University of Copenhagen, Frederiksberg, Denmark
| | - Luis Caraballo
- Institute for Immunological Research, University of Cartagena, Cartagena, Colombia
| |
Collapse
|
15
|
Wolstenholme AJ, Andersen EC, Choudhary S, Ebner F, Hartmann S, Holden-Dye L, Kashyap SS, Krücken J, Martin RJ, Midha A, Nejsum P, Neveu C, Robertson AP, von Samson-Himmelstjerna G, Walker R, Wang J, Whitehead BJ, Williams PDE. Getting around the roundworms: Identifying knowledge gaps and research priorities for the ascarids. ADVANCES IN PARASITOLOGY 2024; 123:51-123. [PMID: 38448148 PMCID: PMC11143470 DOI: 10.1016/bs.apar.2023.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
The ascarids are a large group of parasitic nematodes that infect a wide range of animal species. In humans, they cause neglected diseases of poverty; many animal parasites also cause zoonotic infections in people. Control measures include hygiene and anthelmintic treatments, but they are not always appropriate or effective and this creates a continuing need to search for better ways to reduce the human, welfare and economic costs of these infections. To this end, Le Studium Institute of Advanced Studies organized a two-day conference to identify major gaps in our understanding of ascarid parasites with a view to setting research priorities that would allow for improved control. The participants identified several key areas for future focus, comprising of advances in genomic analysis and the use of model organisms, especially Caenorhabditis elegans, a more thorough appreciation of the complexity of host-parasite (and parasite-parasite) communications, a search for novel anthelmintic drugs and the development of effective vaccines. The participants agreed to try and maintain informal links in the future that could form the basis for collaborative projects, and to co-operate to organize future meetings and workshops to promote ascarid research.
Collapse
Affiliation(s)
- Adrian J Wolstenholme
- Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement (INRAE), Université de Tours, ISP, Nouzilly, France.
| | - Erik C Andersen
- Department of Biology, Johns Hopkins University, Baltimore, MD, United States
| | - Shivani Choudhary
- Department of Biomedical Sciences, Iowa State University, Ames, IA, United States
| | - Friederike Ebner
- Department of Molecular Life Sciences, School of Life Sciences, Technische Universität München, Freising, Germany
| | - Susanne Hartmann
- Institute for Immunology, Freie Universität Berlin, Berlin, Germany
| | - Lindy Holden-Dye
- School of Biological Sciences, University of Southampton, Southampton, United Kingdom
| | - Sudhanva S Kashyap
- Department of Biomedical Sciences, Iowa State University, Ames, IA, United States
| | - Jürgen Krücken
- Institute for Parasitology and Tropical Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| | - Richard J Martin
- Department of Biomedical Sciences, Iowa State University, Ames, IA, United States
| | - Ankur Midha
- Institute for Immunology, Freie Universität Berlin, Berlin, Germany
| | - Peter Nejsum
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Cedric Neveu
- Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement (INRAE), Université de Tours, ISP, Nouzilly, France
| | - Alan P Robertson
- Department of Biomedical Sciences, Iowa State University, Ames, IA, United States
| | | | - Robert Walker
- School of Biological Sciences, University of Southampton, Southampton, United Kingdom
| | - Jianbin Wang
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, TN, United States
| | | | - Paul D E Williams
- Department of Biomedical Sciences, Iowa State University, Ames, IA, United States
| |
Collapse
|
16
|
Rich KD, Srivastava S, Muthye VR, Wasmuth JD. Identification of potential molecular mimicry in pathogen-host interactions. PeerJ 2023; 11:e16339. [PMID: 37953771 PMCID: PMC10637249 DOI: 10.7717/peerj.16339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 10/02/2023] [Indexed: 11/14/2023] Open
Abstract
Pathogens have evolved sophisticated strategies to manipulate host signaling pathways, including the phenomenon of molecular mimicry, where pathogen-derived biomolecules imitate host biomolecules. In this study, we resurrected, updated, and optimized a sequence-based bioinformatics pipeline to identify potential molecular mimicry candidates between humans and 32 pathogenic species whose proteomes' 3D structure predictions were available at the start of this study. We observed considerable variation in the number of mimicry candidates across pathogenic species, with pathogenic bacteria exhibiting fewer candidates compared to fungi and protozoans. Further analysis revealed that the candidate mimicry regions were enriched in solvent-accessible regions, highlighting their potential functional relevance. We identified a total of 1,878 mimicked regions in 1,439 human proteins, and clustering analysis indicated diverse target proteins across pathogen species. The human proteins containing mimicked regions revealed significant associations between these proteins and various biological processes, with an emphasis on host extracellular matrix organization and cytoskeletal processes. However, immune-related proteins were underrepresented as targets of mimicry. Our findings provide insights into the broad range of host-pathogen interactions mediated by molecular mimicry and highlight potential targets for further investigation. This comprehensive analysis contributes to our understanding of the complex mechanisms employed by pathogens to subvert host defenses and we provide a resource to assist researchers in the development of novel therapeutic strategies.
Collapse
Affiliation(s)
- Kaylee D. Rich
- Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, Canada
- Host-Parasite Interactions Research Training Network, University of Calgary, Calgary, Alberta, Canada
| | - Shruti Srivastava
- Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, Canada
- Host-Parasite Interactions Research Training Network, University of Calgary, Calgary, Alberta, Canada
| | - Viraj R. Muthye
- Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, Canada
- Host-Parasite Interactions Research Training Network, University of Calgary, Calgary, Alberta, Canada
| | - James D. Wasmuth
- Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, Canada
- Host-Parasite Interactions Research Training Network, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
17
|
Etebar F, Hosseini SH, Borhani Zarandi M, Moghadasi AN, Jalousian F. The immunomodulatory effects of the C-type lectin protein of Toxocara canis on experimental autoimmune encephalomyelitis. Parasite Immunol 2023; 45:e13010. [PMID: 37718988 DOI: 10.1111/pim.13010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 08/07/2023] [Accepted: 08/21/2023] [Indexed: 09/19/2023]
Abstract
Toxocara canis is a global zoonosis infection that can cause chronic and long-term toxocariasis in their paratenic host. The excretory-secretory (ES) products of T. canis larvae are considered to be responsible for the Th2 polarization and regulatory immune responses in toxocariasis. The C-type lectin family is one of the most prominent components of ES products of T. canis infective larvae. This study aimed to investigate the ameliorative effect of a T. canis C-type lectin recombinant protein (rCTL), on experimental autoimmune encephalomyelitis (EAE) which is a T-cell-mediated autoimmune disease of the central nervous system. C57BL/6 mice were subcutaneously treated with 30 μg rCTL, three times at an interval of 1 week. EAE was induced by myelin oligodendrocyte glycoprotein 35-55 peptide (MOG35-55 peptide) immunization, and weight and clinical scores were evaluated. Real time polymerase chain reaction was performed to evaluate the expression levels of T-bet, Gata3, and Foxp3 in splenocytes. In addition, the levels of interleukin 4, interferon gamma, and tumour growth factor-β (TGF-β) were quantified by enzyme-linked immunosorbent assay in splenocyte culture supernatants. The results indicated that the rCTL decreased clinical disability scores and delayed the onset of EAE. Furthermore, the data showed that rCTL treatment modulated the immune response, which was associated with upregulation of the mRNA expression of the Foxp3 gene and higher production of TGF-β in rCTL-treated mice. This study demonstrated that rCTL might be a potential agent to ameliorate EAE symptoms by stimulating anti-inflammatory responses.
Collapse
Affiliation(s)
- Fazeleh Etebar
- Faculty of Health, Centre for Immunology and Infection Control, Queensland University of Technology, Kelvin Grove, Queensland, Australia
- Department of Parasitology, Faculty of Veterinary Medicine, Tehran University, Tehran, Iran
| | - Seyed Hossein Hosseini
- Department of Parasitology, Faculty of Veterinary Medicine, Tehran University, Tehran, Iran
- Iranian Museum of Parasitology, Faculty of Veterinary Medicine, Tehran University, Tehran, Iran
| | - Mehdi Borhani Zarandi
- State Key Laboratory for Zoonotic Diseases, Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Abdorreza Naser Moghadasi
- Multiple Sclerosis Research Center, Neuroscience institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Fateme Jalousian
- Department of Parasitology, Faculty of Veterinary Medicine, Tehran University, Tehran, Iran
| |
Collapse
|
18
|
Fernandez‐Becerra C, Xander P, Alfandari D, Dong G, Aparici‐Herraiz I, Rosenhek‐Goldian I, Shokouhy M, Gualdron‐Lopez M, Lozano N, Cortes‐Serra N, Karam PA, Meneghetti P, Madeira RP, Porat Z, Soares RP, Costa AO, Rafati S, da Silva A, Santarém N, Fernandez‐Prada C, Ramirez MI, Bernal D, Marcilla A, Pereira‐Chioccola VL, Alves LR, Portillo HD, Regev‐Rudzki N, de Almeida IC, Schenkman S, Olivier M, Torrecilhas AC. Guidelines for the purification and characterization of extracellular vesicles of parasites. JOURNAL OF EXTRACELLULAR BIOLOGY 2023; 2:e117. [PMID: 38939734 PMCID: PMC11080789 DOI: 10.1002/jex2.117] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 08/21/2023] [Accepted: 09/14/2023] [Indexed: 06/29/2024]
Abstract
Parasites are responsible for the most neglected tropical diseases, affecting over a billion people worldwide (WHO, 2015) and accounting for billions of cases a year and responsible for several millions of deaths. Research on extracellular vesicles (EVs) has increased in recent years and demonstrated that EVs shed by pathogenic parasites interact with host cells playing an important role in the parasite's survival, such as facilitation of infection, immunomodulation, parasite adaptation to the host environment and the transfer of drug resistance factors. Thus, EVs released by parasites mediate parasite-parasite and parasite-host intercellular communication. In addition, they are being explored as biomarkers of asymptomatic infections and disease prognosis after drug treatment. However, most current protocols used for the isolation, size determination, quantification and characterization of molecular cargo of EVs lack greater rigor, standardization, and adequate quality controls to certify the enrichment or purity of the ensuing bioproducts. We are now initiating major guidelines based on the evolution of collective knowledge in recent years. The main points covered in this position paper are methods for the isolation and molecular characterization of EVs obtained from parasite-infected cell cultures, experimental animals, and patients. The guideline also includes a discussion of suggested protocols and functional assays in host cells.
Collapse
Affiliation(s)
- Carmen Fernandez‐Becerra
- ISGlobal, Barcelona Institute for Global HealthHospital Clínic‐Universitatde BarcelonaBarcelonaSpain
- IGTP Institut d'Investigació Germans Trias i PujolBadalona (Barcelona)Spain
- CIBERINFECISCIII‐CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos IIIMadridSpain
| | - Patrícia Xander
- Departamento de Ciências FarmacêuticasLaboratório de Imunologia Celular e Bioquímica de Fungos e ProtozoáriosDepartamento de Ciências FarmacêuticasInstituto de Ciências AmbientaisQuímicas e FarmacêuticasUniversidade Federal de São Paulo (UNIFESP)São PauloBrazil
| | - Daniel Alfandari
- Department of Biomolecular SciencesWeizmann Institute of Science (WIS)RehovotIsrael
| | - George Dong
- The Research Institute of the McGill University Health CentreMcGill UniversityMontréalQuébecCanada
| | - Iris Aparici‐Herraiz
- ISGlobal, Barcelona Institute for Global HealthHospital Clínic‐Universitatde BarcelonaBarcelonaSpain
| | | | - Mehrdad Shokouhy
- Department of Immunotherapy and Leishmania Vaccine ResearchPasteur Institute of IranTehranIran
| | - Melisa Gualdron‐Lopez
- ISGlobal, Barcelona Institute for Global HealthHospital Clínic‐Universitatde BarcelonaBarcelonaSpain
| | - Nicholy Lozano
- Departamento de Ciências FarmacêuticasLaboratório de Imunologia Celular e Bioquímica de Fungos e ProtozoáriosDepartamento de Ciências FarmacêuticasInstituto de Ciências AmbientaisQuímicas e FarmacêuticasUniversidade Federal de São Paulo (UNIFESP)São PauloBrazil
| | - Nuria Cortes‐Serra
- ISGlobal, Barcelona Institute for Global HealthHospital Clínic‐Universitatde BarcelonaBarcelonaSpain
| | - Paula Abou Karam
- Department of Biomolecular SciencesWeizmann Institute of Science (WIS)RehovotIsrael
| | - Paula Meneghetti
- Departamento de Ciências FarmacêuticasLaboratório de Imunologia Celular e Bioquímica de Fungos e ProtozoáriosDepartamento de Ciências FarmacêuticasInstituto de Ciências AmbientaisQuímicas e FarmacêuticasUniversidade Federal de São Paulo (UNIFESP)São PauloBrazil
| | - Rafael Pedro Madeira
- Departamento de Ciências FarmacêuticasLaboratório de Imunologia Celular e Bioquímica de Fungos e ProtozoáriosDepartamento de Ciências FarmacêuticasInstituto de Ciências AmbientaisQuímicas e FarmacêuticasUniversidade Federal de São Paulo (UNIFESP)São PauloBrazil
| | - Ziv Porat
- Flow Cytometry UnitLife Sciences Core Facilities, WISRehovotIsrael
| | | | - Adriana Oliveira Costa
- Departamento de Análises Clínicas e ToxicológicasFaculdade de Farmácia, Universidade Federal de Minas Gerais (UFMG)Belo HorizonteMinas GeraisBrasil
| | - Sima Rafati
- Department of Immunotherapy and Leishmania Vaccine ResearchPasteur Institute of IranTehranIran
| | - Anabela‐Cordeiro da Silva
- Host‐Parasite Interactions GroupInstitute of Research and Innovation in HealthUniversity of PortoPortoPortugal
- Department of Biological SciencesFaculty of PharmacyUniversity of PortoPortoPortugal
| | - Nuno Santarém
- Host‐Parasite Interactions GroupInstitute of Research and Innovation in HealthUniversity of PortoPortoPortugal
- Department of Biological SciencesFaculty of PharmacyUniversity of PortoPortoPortugal
| | | | - Marcel I. Ramirez
- EVAHPI ‐ Extracellular Vesicles and Host‐Parasite Interactions Research Group Laboratório de Biologia Molecular e Sistemática de TripanossomatideosInstituto Carlos Chagas‐FiocruzCuritibaParanáBrasil
| | - Dolores Bernal
- Departament de Bioquímica i Biologia Molecular, Facultat de Ciències BiològiquesUniversitat de ValènciaBurjassotValenciaSpain
| | - Antonio Marcilla
- Àrea de Parasitologia, Departament de Farmàcia i Tecnologia Farmacèutica i ParasitologiaUniversitat de ValènciaBurjassotValenciaSpain
| | - Vera Lucia Pereira‐Chioccola
- Laboratório de Biologia Molecular de Parasitas e Fungos, Centro de Parasitologia e MicologiaInstituto Adolfo Lutz (IAL)São PauloBrasil
| | - Lysangela Ronalte Alves
- Laboratório de Regulação da Expressão GênicaInstituto Carlos ChagasFiocruz ParanáCuritibaBrazil
- Research Center in Infectious DiseasesDivision of Infectious Disease and Immunity CHU de Quebec Research CenterDepartment of MicrobiologyInfectious Disease and ImmunologyFaculty of MedicineUniversity LavalQuebec CityQuebecCanada
| | - Hernando Del Portillo
- ISGlobal, Barcelona Institute for Global HealthHospital Clínic‐Universitatde BarcelonaBarcelonaSpain
- IGTP Institut d'Investigació Germans Trias i PujolBadalona (Barcelona)Spain
- ICREA Institució Catalana de Recerca i Estudis Avanc¸ats (ICREA)BarcelonaSpain
| | - Neta Regev‐Rudzki
- Department of Biomolecular SciencesWeizmann Institute of Science (WIS)RehovotIsrael
| | - Igor Correia de Almeida
- Department of Biological SciencesBorder Biomedical Research CenterThe University of Texas at El PasoEl PasoTexasUSA
| | - Sergio Schenkman
- Departamento de MicrobiologiaImunologia e Parasitologia, UNIFESPSão PauloBrazil
| | - Martin Olivier
- The Research Institute of the McGill University Health CentreMcGill UniversityMontréalQuébecCanada
| | - Ana Claudia Torrecilhas
- Departamento de Ciências FarmacêuticasLaboratório de Imunologia Celular e Bioquímica de Fungos e ProtozoáriosDepartamento de Ciências FarmacêuticasInstituto de Ciências AmbientaisQuímicas e FarmacêuticasUniversidade Federal de São Paulo (UNIFESP)São PauloBrazil
| |
Collapse
|
19
|
Nicolao MC, Rodrigues CR, Coccimiglio MB, Ledo C, Docena GH, Cumino AC. Characterization of protein cargo of Echinococcus granulosus extracellular vesicles in drug response and its influence on immune response. Parasit Vectors 2023; 16:255. [PMID: 37516852 PMCID: PMC10387209 DOI: 10.1186/s13071-023-05854-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 06/28/2023] [Indexed: 07/31/2023] Open
Abstract
BACKGROUND The Echinococcus granulosus sensu lato species complex causes cystic echinococcosis, a zoonotic disease of medical importance. Parasite-derived small extracellular vesicles (sEVs) are involved in the interaction with hosts intervening in signal transduction related to parasite proliferation and disease pathogenesis. Although the characteristics of sEVs from E. granulosus protoscoleces and their interaction with host dendritic cells (DCs) have been described, the effect of sEVs recovered during parasite pharmacological treatment on the immune response remains unexplored. METHODS Here, we isolated and characterized sEVs from control and drug-treated protoscoleces by ultracentrifugation, transmission electron microscopy, dynamic light scattering, and proteomic analysis. In addition, we evaluated the cytokine response profile induced in murine bone marrow-derived dendritic cells (BMDCs) by qPCR. RESULTS The isolated sEVs, with conventional size between 50 and 200 nm, regardless of drug treatment, showed more than 500 cargo proteins and, importantly, 20 known antigens and 70 potential antigenic proteins, and several integral-transmembrane and soluble proteins mainly associated with signal transduction, immunomodulation, scaffolding factors, extracellular matrix-anchoring, and lipid transport. The identity and abundance of proteins in the sEV-cargo from metformin- and albendazole sulfoxide (ABZSO)-treated parasites were determined by proteomic analysis, detecting 107 and eight exclusive proteins, respectively, which include proteins related to the mechanisms of drug action. We also determined that the interaction of murine BMDCs with sEVs derived from control parasites and those treated with ABZSO and metformin increased the expression of pro-inflammatory cytokines such as IL-12 compared to control cells. Additionally, protoscolex-derived vesicles from metformin treatments induced the production of IL-6, TNF-α, and IL-10. However, the expression of IL-23 and TGF-β was downregulated. CONCLUSIONS We demonstrated that sEV-cargo derived from drug-treated E. granulosus protoscoleces have immunomodulatory functions, as they enhance DC activation towards a type 1 pro-inflammatory profile against the parasite, and therefore support the proposal of a new approach for the prevention and treatment of secondary echinococcosis.
Collapse
Affiliation(s)
- María Celeste Nicolao
- Laboratorio de Zoonosis Parasitarias, IIPROSAM, Universidad Nacional de Mar del Plata (UNMdP), Funes 3350, Nivel Cero, 7600, Mar del Plata, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Christian Rodriguez Rodrigues
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
- Departamento de Química, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata (UNMdP), Funes 3350, Nivel 2, 7600, Mar del Plata, Argentina
| | - Magalí B Coccimiglio
- Laboratorio de Zoonosis Parasitarias, IIPROSAM, Universidad Nacional de Mar del Plata (UNMdP), Funes 3350, Nivel Cero, 7600, Mar del Plata, Argentina
| | - Camila Ledo
- Laboratorio de Zoonosis Parasitarias, IIPROSAM, Universidad Nacional de Mar del Plata (UNMdP), Funes 3350, Nivel Cero, 7600, Mar del Plata, Argentina
| | - Guillermo H Docena
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
- Instituto de Estudios Inmunológicos y Fisiopatológicos (IIFP), La Plata, Argentina
| | - Andrea C Cumino
- Laboratorio de Zoonosis Parasitarias, IIPROSAM, Universidad Nacional de Mar del Plata (UNMdP), Funes 3350, Nivel Cero, 7600, Mar del Plata, Argentina.
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina.
- Departamento de Química, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata (UNMdP), Funes 3350, Nivel 2, 7600, Mar del Plata, Argentina.
| |
Collapse
|
20
|
Mitra I, Bhattacharya A, Paul J, Anisuzzaman. Present status with impacts and roles of miRNA on Soil Transmitted Helminthiosis control: A review. CURRENT RESEARCH IN PHARMACOLOGY AND DRUG DISCOVERY 2023; 5:100162. [PMID: 37520661 PMCID: PMC10371793 DOI: 10.1016/j.crphar.2023.100162] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 06/22/2023] [Accepted: 07/10/2023] [Indexed: 08/01/2023] Open
Abstract
Soil-Transmitted Helminthiasis (STH) is one of the most widespread Neglected Tropical Diseases (NTDs), and almost 1.5 billion of the global population is affected, mostly in the indigent, countryside sectors of tropics/subtropics. STH, commonly caused by various nematodes, adversely affects the hosts' growth, cognatic development, and immunity. Albendazole is most commonly used against STH (Soil-Transmitted Helminths) but resistance has already been reported in different countries. To date, no effective vaccine is present against STH. miRNAs are a unique class of small non-coding RNA, regulating various biological activities indulging host immune responses in host-pathogen interaction of STH. Dysregulation of miRNAs are being considered as one of the most important aspect of host-parasite interactions. Thus, it is the prime importance to identify and characterize parasite-specific as well as host-derived miRNAs to understand the STH infection at the molecular level. Systematic bibliometric analysis reveals a huge knowledge gap in understanding the disease by using both host and parasitic miRNAs as a potential biomarker. In this study, we addressed the present status of the STH prevalence, and therapy under the light of miRNAs. This would further help in designing new inhibitors and therapeutic strategies to control STH.
Collapse
Affiliation(s)
- Imon Mitra
- Department of Biological Sciences, School of Life Science and Biotechnology, Adamas University, Kolkata, India
| | - Arijit Bhattacharya
- Department of Biological Sciences, School of Life Science and Biotechnology, Adamas University, Kolkata, India
| | - Joydeep Paul
- Department of Biotechnology, School of Life Science and Biotechnology, Adamas University, Kolkata, India
| | - Anisuzzaman
- Department of Parasitology, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh
| |
Collapse
|
21
|
Wangchuk P, Yeshi K, Loukas A. Metabolomics and lipidomics studies of parasitic helminths: molecular diversity and identification levels achieved by using different characterisation tools. Metabolomics 2023; 19:63. [PMID: 37356029 PMCID: PMC10290966 DOI: 10.1007/s11306-023-02019-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 05/15/2023] [Indexed: 06/27/2023]
Abstract
INTRODUCTION Helminths are parasitic worms that infect millions of people worldwide and secrete a variety of excretory-secretory products (ESPs), including proteins, peptides, and small molecules. Despite this, there is currently no comprehensive review article on cataloging small molecules from helminths, particularly focusing on the different classes of metabolites (polar and lipid molecules) identified from the ESP and somatic tissue extracts of helminths that were studied in isolation from their hosts. OBJECTIVE This review aims to provide a comprehensive assessment of the metabolomics and lipidomics studies of parasitic helminths using all available analytical platforms. METHOD To achieve this objective, we conducted a meta-analysis of the identification and characterization tools, metabolomics approaches, metabolomics standard initiative (MSI) levels, software, and databases commonly applied in helminth metabolomics studies published until November 2021. RESULT This review analyzed 29 studies reporting the metabolomic assessment of ESPs and somatic tissue extracts of 17 helminth species grown under ex vivo/in vitro culture conditions. Of these 29 studies, 19 achieved the highest level of metabolite identification (MSI level-1), while the remaining studies reported MSI level-2 identification. Only 155 small molecule metabolites, including polar and lipids, were identified using MSI level-1 characterization protocols from various helminth species. Despite the significant advances made possible by the 'omics' technology, standardized software and helminth-specific metabolomics databases remain significant challenges in this field. Overall, this review highlights the potential for future studies to better understand the diverse range of small molecules that helminths produce and leverage their unique metabolomic features to develop novel treatment options.
Collapse
Affiliation(s)
- Phurpa Wangchuk
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD 4878 Australia
| | - Karma Yeshi
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD 4878 Australia
| | - Alex Loukas
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD 4878 Australia
| |
Collapse
|
22
|
Al-kuraishy HM, Al-Gareeb AI, Alkazmi L, El-Bouseary MM, Hamad RS, Abdelhamid M, Batiha GES. The Potential Nexus between Helminths and SARS-CoV-2 Infection: A Literature Review. J Immunol Res 2023; 2023:5544819. [PMID: 37383608 PMCID: PMC10299886 DOI: 10.1155/2023/5544819] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 04/05/2023] [Accepted: 05/25/2023] [Indexed: 06/30/2023] Open
Abstract
Chronic helminth infections (CHIs) can induce immunological tolerance through the upregulation of regulatory T cells. In coronavirus disease 2019 (COVID-19), abnormal adaptive immune response and exaggerated immune response may cause immune-mediated tissue damage. Severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2) and CHIs establish complicated immune interactions due to SARS-CoV-2-induced immunological stimulation and CHIs-induced immunological tolerance. However, COVID-19 severity in patients with CHIs is mild, as immune-suppressive anti-inflammatory cytokines counterbalance the risk of cytokine storm. Since CHIs have immunomodulatory effects, therefore, this narrative review aimed to clarify how CHIs modulate the immunoinflammatory response in SARS-CoV-2 infection. CHIs, through helminth-derived molecules, may suppress SARS-CoV-2 entry and associated hyperinflammation through attenuation of the inflammatory signaling pathway. In addition, CHIs may reduce the COVID-19 severity by reducing the SARS-CoV-2 entry points in the initial phase and immunomodulation in the late phase of the disease by suppressing the release of pro-inflammatory cytokines. In conclusion, CHIs may reduce the severity of SARS-CoV-2 infection by reducing hyperinflammation and exaggerated immune response. Thus, retrospective and prospective studies are recommended in this regard.
Collapse
Affiliation(s)
- Hayder M. Al-kuraishy
- Department of Clinical Pharmacology and Medicine, College of Medicine, Al-Mustansiriya University, Baghdad, Iraq
| | - Ali I. Al-Gareeb
- Department of Clinical Pharmacology and Medicine, College of Medicine, Al-Mustansiriya University, Baghdad, Iraq
| | - Luay Alkazmi
- Biology Department, Faculty of Applied Sciences, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Maisra M. El-Bouseary
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - Rabab S. Hamad
- Biological Sciences Department, College of Science, King Faisal University, Al Ahsa 31982, Saudi Arabia
- Central Laboratory, Theodor Bilharz Research Institute, Giza 12411, Egypt
| | - Mahmoud Abdelhamid
- Department of Parasitology, Faculty of Veterinary Medicine, Aswan University, Aswan 81528, Egypt
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour 22511, AlBeheira, Egypt
| |
Collapse
|
23
|
Doolan R, Putananickal N, Tritten L, Bouchery T. How to train your myeloid cells: a way forward for helminth vaccines? Front Immunol 2023; 14:1163364. [PMID: 37325618 PMCID: PMC10266106 DOI: 10.3389/fimmu.2023.1163364] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 04/25/2023] [Indexed: 06/17/2023] Open
Abstract
Soil-transmitted helminths affect approximately 1.5 billion people worldwide. However, as no vaccine is currently available for humans, the current strategy for elimination as a public health problem relies on preventive chemotherapy. Despite more than 20 years of intense research effort, the development of human helminth vaccines (HHVs) has not yet come to fruition. Current vaccine development focuses on peptide antigens that trigger strong humoral immunity, with the goal of generating neutralizing antibodies against key parasite molecules. Notably, this approach aims to reduce the pathology of infection, not worm burden, with only partial protection observed in laboratory models. In addition to the typical translational hurdles that vaccines struggle to overcome, HHVs face several challenges (1): helminth infections have been associated with poor vaccine responses in endemic countries, probably due to the strong immunomodulation caused by these parasites, and (2) the target population displays pre-existing type 2 immune responses to helminth products, increasing the likelihood of adverse events such as allergy or anaphylaxis. We argue that such traditional vaccines are unlikely to be successful on their own and that, based on laboratory models, mucosal and cellular-based vaccines could be a way to move forward in the fight against helminth infection. Here, we review the evidence for the role of innate immune cells, specifically the myeloid compartment, in controlling helminth infections. We explore how the parasite may reprogram myeloid cells to avoid killing, notably using excretory/secretory (ES) proteins and extracellular vesicles (EVs). Finally, learning from the field of tuberculosis, we will discuss how anti-helminth innate memory could be harnessed in a mucosal-trained immunity-based vaccine.
Collapse
Affiliation(s)
- Rory Doolan
- Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Allschwil, Switzerland
- University of Basel, Basel, Switzerland
| | - Namitha Putananickal
- Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Allschwil, Switzerland
- University of Basel, Basel, Switzerland
| | - Lucienne Tritten
- Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Allschwil, Switzerland
- University of Basel, Basel, Switzerland
- Institute of Parasitology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Tiffany Bouchery
- Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Allschwil, Switzerland
- University of Basel, Basel, Switzerland
| |
Collapse
|
24
|
Scheunemann JF, Risch F, Reichwald JJ, Lenz B, Neumann AL, Garbe S, Frohberger SJ, Koschel M, Ajendra J, Rothe M, Latz E, Coch C, Hartmann G, Schumak B, Hoerauf A, Hübner MP. Potential of Nucleic Acid Receptor Ligands to Improve Vaccination Efficacy against the Filarial Nematode Litomosoides sigmodontis. Vaccines (Basel) 2023; 11:vaccines11050966. [PMID: 37243070 DOI: 10.3390/vaccines11050966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/03/2023] [Accepted: 05/04/2023] [Indexed: 05/28/2023] Open
Abstract
More than two-hundred-million people are infected with filariae worldwide. However, there is no vaccine available that confers long-lasting protection against filarial infections. Previous studies indicated that vaccination with irradiated infective L3 larvae reduces the worm load. This present study investigated whether the additional activation of cytosolic nucleic acid receptors as an adjuvant improves the efficacy of vaccination with irradiated L3 larvae of the rodent filaria Litomosoides sigmodontis with the aim of identifying novel vaccination strategies for filarial infections. Subcutaneous injection of irradiated L3 larvae in combination with poly(I:C) or 3pRNA resulted in neutrophil recruitment to the skin, accompanied by higher IP-10/CXCL10 and IFN-β RNA levels. To investigate the impact on parasite clearance, BALB/c mice received three subcutaneous injections in 2-week intervals with irradiated L3 larvae in combination with poly(I:C) or 3pRNA prior to the challenge infection. Vaccination with irradiated L3 larvae in combination with poly(I:C) or 3pRNA led to a markedly greater reduction in adult-worm counts by 73% and 57%, respectively, compared to the immunization with irradiated L3 larvae alone (45%). In conclusion, activation of nucleic acid-sensing immune receptors boosts the protective immune response against L. sigmodontis and nucleic acid-receptor agonists as vaccine adjuvants represent a promising novel strategy to improve the efficacy of vaccines against filariae and potentially other helminths.
Collapse
Affiliation(s)
- Johanna F Scheunemann
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, 53127 Bonn, Germany
| | - Frederic Risch
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, 53127 Bonn, Germany
| | - Julia J Reichwald
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, 53127 Bonn, Germany
| | - Benjamin Lenz
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, 53127 Bonn, Germany
| | - Anna-Lena Neumann
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, 53127 Bonn, Germany
| | - Stephan Garbe
- Clinic for Radiotherapy and Radiation Oncology, University Hospital Bonn, 53127 Bonn, Germany
| | - Stefan J Frohberger
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, 53127 Bonn, Germany
| | - Marianne Koschel
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, 53127 Bonn, Germany
| | - Jesuthas Ajendra
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, 53127 Bonn, Germany
| | - Maximilian Rothe
- Institute for Innate Immunity, University Hospital Bonn, 53127 Bonn, Germany
| | - Eicke Latz
- Institute for Innate Immunity, University Hospital Bonn, 53127 Bonn, Germany
| | - Christoph Coch
- Institute for Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, 53127 Bonn, Germany
- Nextevidence GmbH, 81541 Munich, Germany
| | - Gunther Hartmann
- Institute for Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, 53127 Bonn, Germany
- German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, 53127 Bonn, Germany
| | - Beatrix Schumak
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, 53127 Bonn, Germany
| | - Achim Hoerauf
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, 53127 Bonn, Germany
- German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, 53127 Bonn, Germany
| | - Marc P Hübner
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, 53127 Bonn, Germany
- German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, 53127 Bonn, Germany
| |
Collapse
|
25
|
Chakraborty P, Aravindhan V, Mukherjee S. Helminth-derived biomacromolecules as therapeutic agents for treating inflammatory and infectious diseases: What lessons do we get from recent findings? Int J Biol Macromol 2023; 241:124649. [PMID: 37119907 DOI: 10.1016/j.ijbiomac.2023.124649] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/20/2023] [Accepted: 04/24/2023] [Indexed: 05/01/2023]
Abstract
Despite the tremendous progress in healthcare sectors, a number of life-threatening infectious, inflammatory, and autoimmune diseases are continuously challenging mankind throughout the globe. In this context, recent successes in utilizing helminth parasite-derived bioactive macromolecules viz. glycoproteins, enzymes, polysaccharides, lipids/lipoproteins, nucleic acids/nucleotides, and small organic molecules for treating various disorders primarily resulted from inflammation. Among the several parasites that infect humans, helminths (cestodes, nematodes, and trematodes) are known as efficient immune manipulators owing to their explicit ability to modulate and modify the innate and adaptive immune responses of humans. These molecules selectively bind to immune receptors on innate and adaptive immune cells and trigger multiple signaling pathways to elicit anti-inflammatory cytokines, expansion of alternatively activated macrophages, T-helper 2, and immunoregulatory T regulatory cell types to induce an anti-inflammatory milieu. Reduction of pro-inflammatory responses and repair of tissue damage by these anti-inflammatory mediators have been exploited for treating a number of autoimmune, allergic, and metabolic diseases. Herein, the potential and promises of different helminths/helminth-derived products as therapeutic agents in ameliorating immunopathology of different human diseases and their mechanistic insights of function at cell and molecular level alongside the molecular signaling cross-talks have been reviewed by incorporating up-to-date findings achieved in the field.
Collapse
Affiliation(s)
- Pritha Chakraborty
- Integrative Biochemistry & Immunology Laboratory, Department of Animal Science, Kazi Nazrul University, Asansol 713340, India
| | | | - Suprabhat Mukherjee
- Integrative Biochemistry & Immunology Laboratory, Department of Animal Science, Kazi Nazrul University, Asansol 713340, India.
| |
Collapse
|
26
|
Kaplan H, Hooper PL, Gatz M, Mack WJ, Law EM, Chui HC, Sutherland ML, Sutherland JD, Rowan CJ, Wann LS, Allam AH, Thompson RC, Michalik DE, Lombardi G, Miyamoto MI, Eid Rodriguez D, Copajira Adrian J, Quispe Gutierrez R, Beheim BA, Cummings DK, Seabright E, Alami S, R. Garcia A, Buetow K, Thomas GS, Finch CE, Stieglitz J, Trumble BC, Gurven MD, Irimia A. Brain volume, energy balance, and cardiovascular health in two nonindustrial South American populations. Proc Natl Acad Sci U S A 2023; 120:e2205448120. [PMID: 36940322 PMCID: PMC10068758 DOI: 10.1073/pnas.2205448120] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 01/24/2023] [Indexed: 03/22/2023] Open
Abstract
Little is known about brain aging or dementia in nonindustrialized environments that are similar to how humans lived throughout evolutionary history. This paper examines brain volume (BV) in middle and old age among two indigenous South American populations, the Tsimane and Moseten, whose lifestyles and environments diverge from those in high-income nations. With a sample of 1,165 individuals aged 40 to 94, we analyze population differences in cross-sectional rates of decline in BV with age. We also assess the relationships of BV with energy biomarkers and arterial disease and compare them against findings in industrialized contexts. The analyses test three hypotheses derived from an evolutionary model of brain health, which we call the embarrassment of riches (EOR). The model hypothesizes that food energy was positively associated with late life BV in the physically active, food-limited past, but excess body mass and adiposity are now associated with reduced BV in industrialized societies in middle and older ages. We find that the relationship of BV with both non-HDL cholesterol and body mass index is curvilinear, positive from the lowest values to 1.4 to 1.6 SDs above the mean, and negative from that value to the highest values. The more acculturated Moseten exhibit a steeper decrease in BV with age than Tsimane, but still shallower than US and European populations. Lastly, aortic arteriosclerosis is associated with lower BV. Complemented by findings from the United States and Europe, our results are consistent with the EOR model, with implications for interventions to improve brain health.
Collapse
Affiliation(s)
- Hillard Kaplan
- Economic Science Institute, Chapman University, Orange, CA82866
| | - Paul L. Hooper
- Economic Science Institute, Chapman University, Orange, CA82866
- Department of Anthropology, University of New Mexico, Albuquerque, NM87131
| | - Margaret Gatz
- Center for Economic and Social Research, University of Southern California, Los Angeles, CA90089
| | - Wendy J. Mack
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA90089
| | - E. Meng Law
- Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, CA90089
- Department of Radiology, The Alfred Health Hospital, Melbourne, VIC3004, Australia
- iBRAIN Research Laboratory, Departments of Neuroscience, Computer Systems and Electrical Engineering, Monash University, Melbourne, VIC3800, Australia
| | - Helena C. Chui
- Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, CA90089
- Alzheimer’s Disease Research Center, Keck School of Medicine, University of Southern California, Los Angeles, CA90089
| | | | | | - Christopher J. Rowan
- Renown Institute for Heart and Vascular Health, Reno, NV89502
- School of Medicine, University of Nevada, Reno, NV89557
| | - L. Samuel Wann
- Division of Cardiology, University of New Mexico, Albuquerque, NM87131
| | - Adel H. Allam
- Department of Cardiology, School of Medicine, Al-Azhar University, Al Mikhaym Al Daem, Cairo4334003, Egypt
| | - Randall C. Thompson
- Saint Luke’s Mid America Heart Institute, University of Missouri - Kansas City, Kansas City, MO64111
| | - David E. Michalik
- Department of Pediatrics, School of Medicine, University of California at Irvine, Orange, CA92617
- MemorialCare Miller Children’s and Women’s Hospital, Long Beach, CA90806
| | - Guido Lombardi
- Laboratorio de Paleopatologia, Catedra Pedro Weiss, Universidad Peruana Cayetano Heredia, Lima15102, Peru
| | | | | | | | | | - Bret A. Beheim
- Department of Human Behavior, Ecology and Culture, Max Planck Institute for Evolutionary Anthropology, Leipzig04103, Germany
| | | | - Edmond Seabright
- Department of Anthropology, University of New Mexico, Albuquerque, NM87131
- School of Collective Intelligence, Universite Mohammed 6 Polytechnic, Ben Guerir43150, Morocco
| | - Sarah Alami
- School of Collective Intelligence, Universite Mohammed 6 Polytechnic, Ben Guerir43150, Morocco
- Department of Anthropology, University of California Santa Barbara, Santa Barbara, CA93106
| | - Angela R. Garcia
- Scientific Research Core, Phoenix Children’s Hospital, Phoenix, AZ85016
- Department of Child Health, University of Arizona, Tucson, AZ85724
| | - Kenneth Buetow
- Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Tempe, AZ85287
| | - Gregory S. Thomas
- MemorialCare Health Systems, Fountain Valley, CA92708
- Division of Cardiology, University of California, Irvine, Orange, CA92868
| | - Caleb E. Finch
- Ethel Percy Andrus Gerontology Center, Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA90089
- Department of Biological Sciences, Anthropology and Psychology, University of Southern California, Los Angeles, CA90089
| | - Jonathan Stieglitz
- Institute for Advanced Study in Toulouse, Toulouse 1 Capitole University, Toulouse31000, France
| | - Benjamin C. Trumble
- Center for Evolution and Medicine, School of Human Evolution and Social Change, Arizona State University, Tempe, AZ85287
| | - Michael D. Gurven
- Department of Anthropology, University of California Santa Barbara, Santa Barbara, CA93106
| | - Andrei Irimia
- Ethel Percy Andrus Gerontology Center, Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA90089
- Corwin D. Denney Research Center, Department of Biomedical Engineering, University of Southern California, Los Angeles, CA90089
| |
Collapse
|
27
|
Dagenais M, Tritten L. Hidden in plain sight: How helminths manage to thrive in host blood. FRONTIERS IN PARASITOLOGY 2023; 2:1128299. [PMID: 39816845 PMCID: PMC11732017 DOI: 10.3389/fpara.2023.1128299] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 02/27/2023] [Indexed: 01/18/2025]
Abstract
Parasitic helminths have evolved a plethora of elegant stratagems to regulate and evade the host immune system, contributing to their considerable persistence and longevity in their vertebrate hosts. Various mechanisms to achieve this state have been described, ranging from interfering with or actively modulating host immune responses to hiding from immune recognition. Because they damage surrounding vessels and disturb blood flow, blood-borne and blood-feeding parasites in particular must deal with much more than immune effector cells. Management of the host complement system and coagulation cascade, as well as the development of processes of hiding and masking, represent hallmarks of life in blood. Here we review recent findings on putative evasion strategies employed by blood-borne parasitic helminths, focusing on the interaction with and utilisation of host serum components by nematodes and trematodes.
Collapse
Affiliation(s)
- Maude Dagenais
- Institute of Parasitology, McGill University, Ste-Anne-de-Bellevue, QC, Canada
- Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Allschwil, Switzerland
- University of Basel, Basel, Switzerland
| | - Lucienne Tritten
- Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Allschwil, Switzerland
- University of Basel, Basel, Switzerland
- Institute of Parasitology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| |
Collapse
|
28
|
Mladineo I, Rončević T, Gerdol M, Tossi A. Helminthic host defense peptides: using the parasite to defend the host. Trends Parasitol 2023; 39:345-357. [PMID: 36890022 DOI: 10.1016/j.pt.2023.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 02/07/2023] [Accepted: 02/14/2023] [Indexed: 03/08/2023]
Abstract
Parasitic helminths are destined to share niches with a variety of microbiota that inevitably influence their interaction with the host. To modulate the microbiome for their benefit and defend against pathogenic isolates, helminths have developed host defense peptides (HDPs) and proteins as integral elements of their immunity. These often exert a relatively nonspecific membranolytic activity toward bacteria, sometimes with limited or no toxicity toward host cells. With a few exceptions, such as nematode cecropin-like peptides and antibacterial factors (ABFs), helminthic HDPs are largely underexplored. This review scrutinizes current knowledge on the repertoire of such peptides in helminths and promotes their research as potential leads for an anti-infective solution to the burgeoning problem of antibiotic resistance.
Collapse
Affiliation(s)
- Ivona Mladineo
- Laboratory of Functional Helminthology, Biology Centre, Czech Academy of Sciences, Institute of Parasitology BC CAS, Branišovska 31, Česke Budejovice 37005, Czech Republic.
| | - Tomislav Rončević
- Department of Biology, Faculty of Science, University of Split, Ruđera Boškovića 33, Split 21000, Croatia
| | - Marco Gerdol
- Department of Life Sciences, University of Trieste, Trieste 34127, Italy
| | - Alessandro Tossi
- Department of Life Sciences, University of Trieste, Trieste 34127, Italy
| |
Collapse
|
29
|
Abou-El-Naga IF, Mogahed NMFH. Potential roles of Toxocara canis larval excretory secretory molecules in immunomodulation and immune evasion. Acta Trop 2023; 238:106784. [PMID: 36502886 DOI: 10.1016/j.actatropica.2022.106784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 11/15/2022] [Accepted: 11/27/2022] [Indexed: 12/13/2022]
Abstract
Toxocara canis larvae invade various tissues of different vertebrate species without developing into adults in paratenic host. The long-term survival of the larvae despite exposure to the well-armed immune response is a notable achievement. The larvae modulate the immune response to help the survival of both the host and the larvae. They skew the immune response to type 2/regulatory phenotype. The outstanding ability of the larvae to modulate the host immune response and to evade the immune arms is attributed to the secretion of Toxocara excretory-secretory products (TESPs). TESPs are complex mixture of differing molecules. The present review deals with the molecular composition of the TESPs, their interaction with the host molecules, their effect on the innate immune response, the receptor recognition, the downstream signals the adaptive immunity and the repair of tissues. This review also addresses the role of TESPs molecules in the immune evasion strategy and the potential effect of the induced immunomodulation in some diseases. Identification of parasite components that influence the nematode-host interactions could enhance understanding the molecular basis of nematode pathogenicity. Furthermore, the identification of helminths molecules with immunomodulatory potential could be used in immunotherapies for some diseases.
Collapse
Affiliation(s)
- Iman F Abou-El-Naga
- Medical Parasitology Department, Faculty of Medicine, Alexandria University, 12 Abdel Hamid El Deeb Street, Tharwat, Alexandria, Egypt.
| | - Nermine M F H Mogahed
- Medical Parasitology Department, Faculty of Medicine, Alexandria University, 12 Abdel Hamid El Deeb Street, Tharwat, Alexandria, Egypt
| |
Collapse
|
30
|
Tsubokawa D. Immunomodulators secreted from parasitic helminths act on pattern recognition receptors. FRONTIERS IN PARASITOLOGY 2023; 1:1091596. [PMID: 39816467 PMCID: PMC11731691 DOI: 10.3389/fpara.2022.1091596] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 12/30/2022] [Indexed: 01/18/2025]
Abstract
Excretory-secretory (ES) products from parasitic helminths contain immunomodulatory molecules, which can regulate host immune responses. These immunomodulatory molecules are crucial for successful parasitism, and play roles in tissue migration, maturation, and reproduction. Some target pattern recognition receptors (PRRs), including toll-like receptor, C-type lectin receptor, receptor for advanced glycation end products, and nucleotide-binding oligomerization domain-like receptor. PRRs trigger activation of signaling cascades, inducing innate inflammatory responses and adaptive immunity in hosts. This article reviews ES immunomodulators identified in parasitic helminths that act on PRRs, and their PRR-facilitated immune-regulatory mechanisms. In addition, we describe the therapeutic potential of ES immunomodulators for allergic and inflammatory diseases.
Collapse
Affiliation(s)
- Daigo Tsubokawa
- Department of Parasitology and Tropical Medicine, Kitasato University School of Medicine, Sagamihara, Japan
| |
Collapse
|
31
|
Hautala K, Pursiainen J, Näreaho A, Nyman T, Varmanen P, Sukura A, Nielsen MK, Savijoki K. Label-free quantitative proteomics and immunoblotting identifies immunoreactive and other excretory-secretory (E/S) proteins of Anoplocephala perfoliata. Front Immunol 2022; 13:1045468. [PMID: 36466892 PMCID: PMC9709427 DOI: 10.3389/fimmu.2022.1045468] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 10/24/2022] [Indexed: 06/11/2024] Open
Abstract
Anoplocephala perfoliata is a common tapeworm in horses causing colic and even mortalities. Current diagnostic tests to detect A. perfoliata infections have their limitations and an improved method is needed. Immunoreactive excretory/secretory proteins (E/S proteome) of this parasite can provide promising candidates for diagnostic tests. We compared E/S proteins produced by small (length < 20 mm, width < 5 mm) and large (length 20 to 40 mm, width 5 to 10 mm) A. perfoliata worms in vitro by label-free quantitative proteomics using a database composed of related Hymenolepis diminuta, Echinococcus multilocularis/granulosus and Taenia aseatica proteins for protein identifications. Altogether, 509 E/S proteins were identified after incubating the worms in vitro for three and eight hours. The greatest E/S proteome changes suggested both worm size- and time-dependent changes in cytoskeleton remodeling, apoptosis, and production of antigens/immunogens. The E/S proteins collected at the three-hour time point represented the natural conditions better than those collected at the eight-hour time point, and thereby contained the most relevant diagnostic targets. Immunoblotting using antibodies from horses tested positive/negative for A. perfoliata indicated strongest antigenicity/immunogenicity with 13-, 30- and 100-kDa proteins, involving a thioredoxin, heat-shock chaperone 90 (Hsp90), dynein light chain component (DYNLL), tubulin-specific chaperone A (TBCA) and signaling pathway modulators (14-3-3 and Sj-Ts4). This is among the first studies identifying new diagnostic targets and A. perfoliata antigens eliciting a IgG-response in horses.
Collapse
Affiliation(s)
- Katja Hautala
- Veterinary Pathology and Parasitology, Department of Veterinary Biosciences, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Jami Pursiainen
- Veterinary Pathology and Parasitology, Department of Veterinary Biosciences, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Anu Näreaho
- Veterinary Pathology and Parasitology, Department of Veterinary Biosciences, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Tuula Nyman
- Institute of Clinical Medicine, Department of Immunology, University of Oslo and Rikshospitalet Oslo, Oslo, Norway
| | - Pekka Varmanen
- Department of Food and Nutrition, Faculty of Agriculture and Forestry, University of Helsinki, Helsinki, Finland
| | - Antti Sukura
- Veterinary Pathology and Parasitology, Department of Veterinary Biosciences, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Martin K. Nielsen
- Department of Veterinary Science, Maxwell H. Gluck Equine Research Center, University of Kentucky, Lexington, KY, United States
| | - Kirsi Savijoki
- Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| |
Collapse
|
32
|
Lundregan SL, Mäkinen H, Buer A, Holand H, Jensen H, Husby A. Infection by a helminth parasite is associated with changes in DNA methylation in the house sparrow. Ecol Evol 2022; 12:e9539. [PMID: 36447599 PMCID: PMC9702581 DOI: 10.1002/ece3.9539] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 10/24/2022] [Accepted: 11/03/2022] [Indexed: 11/29/2022] Open
Abstract
Parasites can exert strong selective pressures on their hosts and influence the evolution of host immunity. While several studies have examined the genetic basis for parasite resistance, the role of epigenetics in the immune response to parasites is less understood. Yet, epigenetic modifications, such as changes in DNA methylation, may allow species to respond rapidly to parasite prevalence or virulence. To test the role of DNA methylation in relation to parasite infection, we examined genome-wide DNA methylation before and during infection by a parasitic nematode, Syngamus trachea, in a natural population of house sparrows (Passer domesticus) using reduced representation bisulfite sequencing (RRBS). We found that DNA methylation levels were slightly lower in infected house sparrows, and we identified candidate genes relating to the initial immune response, activation of innate and adaptive immunity, and mucus membrane functional integrity that were differentially methylated between infected and control birds. Subsequently, we used methylation-sensitive high-resolution melting (MS-HRM) analyses to verify the relationship between methylation proportion and S. trachea infection status at two candidate genes in a larger sample dataset. We found that methylation level at NR1D1, but not CLDN22, remained related to infection status and that juvenile recruitment probability was positively related to methylation level at NR1D1. This underscores the importance of performing follow-up studies on candidate genes. Our findings demonstrate that plasticity in the immune response to parasites can be epigenetically mediated and highlight the potential for epigenetic studies in natural populations to provide further mechanistic insight into host-parasite interactions.
Collapse
Affiliation(s)
- Sarah L. Lundregan
- Department of Biology, Centre for Biodiversity DynamicsNorwegian University of Science and TechnologyTrondheimNorway
| | - Hannu Mäkinen
- Department of Biology, Centre for Biodiversity DynamicsNorwegian University of Science and TechnologyTrondheimNorway
- Evolutionary Biology, Department of Ecology and GeneticsUppsala UniversityUppsalaSweden
| | - Amberly Buer
- Department of Biology, Centre for Biodiversity DynamicsNorwegian University of Science and TechnologyTrondheimNorway
| | - Håkon Holand
- Department of Biology, Centre for Biodiversity DynamicsNorwegian University of Science and TechnologyTrondheimNorway
| | - Henrik Jensen
- Department of Biology, Centre for Biodiversity DynamicsNorwegian University of Science and TechnologyTrondheimNorway
| | - Arild Husby
- Department of Biology, Centre for Biodiversity DynamicsNorwegian University of Science and TechnologyTrondheimNorway
- Evolutionary Biology, Department of Ecology and GeneticsUppsala UniversityUppsalaSweden
| |
Collapse
|
33
|
Bellini I, Scribano D, Sarshar M, Ambrosi C, Pizzarelli A, Palamara AT, D’Amelio S, Cavallero S. Inflammatory Response in Caco-2 Cells Stimulated with Anisakis Messengers of Pathogenicity. Pathogens 2022; 11:1214. [PMID: 36297271 PMCID: PMC9611079 DOI: 10.3390/pathogens11101214] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/13/2022] [Accepted: 10/18/2022] [Indexed: 09/07/2024] Open
Abstract
Background: Anisakis spp. third-stage larvae (L3) are the causative agents of human zoonosis called anisakiasis. The accidental ingestion of L3 can cause acute and chronic inflammation at the gastric, intestinal, or ectopic levels. Despite its relevance in public health, studies on pathogenetic mechanisms and parasite-human interplay are scarce. The aim of this study was to investigate the human inflammatory response to different Anisakis vehicles of pathogenicity. Methods: Human colorectal adenocarcinoma (Caco-2) cells were exposed to Anisakis L3 (the initial contact with the host), extracellular vesicles (EVs, Anisakis-host communication), and crude extract (CE, the larval dying). The protein quantity and gene expression of two pro-inflammatory cytokines (IL-6 and IL-8) were investigated using an ELISA test (6 h and 24 h) and a qReal-Time PCR (1 h, 6 h, and 24 h), respectively. Results: The L3 and EVs induced a downregulation in both the Il-6 and Il-8 gene expression and protein quantity. On the contrary, the CE stimulated IL-6 gene expression and its protein release, not affecting IL-8. Conclusions: The Caco-2 cells seemed to not react to the exposure to the L3 and EVs, suggesting a parasite's immunomodulating action to remain alive in an inhospitable niche. Conversely, the dying larva (CE) could induce strong activation of the immune strategy of the host that, in vivo, would lead to parasite expulsion, eosinophilia, and/or granuloma formation.
Collapse
Affiliation(s)
- Ilaria Bellini
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, 00185 Rome, Italy
| | - Daniela Scribano
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, 00185 Rome, Italy
| | - Meysam Sarshar
- Research Laboratories, Bambino Gesù Children’s Hospital, IRCCS, 00146 Rome, Italy
| | - Cecilia Ambrosi
- Human Sciences and Promotion of the Quality of Life, San Raffaele Open University, IRCCS, 00166 Rome, Italy
| | - Antonella Pizzarelli
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, 00185 Rome, Italy
| | - Anna Teresa Palamara
- Laboratory Affiliated to Institute Pasteur Italia—Cenci Bolognetti Foundation, Department of Public Health and Infectious Diseases, Sapienza University of Rome, 00185 Rome, Italy
- Department of Infectious Diseases, National Institute of Health, 00185 Rome, Italy
| | - Stefano D’Amelio
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, 00185 Rome, Italy
| | - Serena Cavallero
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, 00185 Rome, Italy
| |
Collapse
|
34
|
A New Role for Old Friends: Effects of Helminth Infections on Vaccine Efficacy. Pathogens 2022; 11:pathogens11101163. [PMID: 36297220 PMCID: PMC9608950 DOI: 10.3390/pathogens11101163] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 09/30/2022] [Accepted: 09/30/2022] [Indexed: 11/06/2022] Open
Abstract
Vaccines are one of the most successful medical inventions to enable the eradication or control of common and fatal diseases. Environmental exposure of hosts, including helminth infections, plays an important role in immune responses to vaccines. Given that helminth infections are among the most common infectious diseases in the world, evaluating vaccine efficiency in helminth-infected populations may provide critical information for selecting optimal vaccination programs. Here, we reviewed the effects of helminth infections on vaccination and its underlying immunological mechanisms, based on findings from human studies and animal models. Moreover, the potential influence of helminth infections on SARS-CoV-2 vaccine was also discussed. Based on these findings, there is an urgent need for anthelmintic treatments to eliminate helminth suppressive impacts on vaccination effectiveness during implementing mass vaccination in parasite endemic areas.
Collapse
|
35
|
Wu J, Liao Y, Li D, Zhu Z, Zhang L, Wu Z, He P, Wang L. Extracellular vesicles derived from Trichinella Spiralis larvae promote the polarization of macrophages to M2b type and inhibit the activation of fibroblasts. Front Immunol 2022; 13:974332. [PMID: 36211336 PMCID: PMC9532625 DOI: 10.3389/fimmu.2022.974332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 09/05/2022] [Indexed: 11/14/2022] Open
Abstract
Trichinella spiralis (T. spiralis) is a globally distributed food-borne parasite that can coexist with the host for a long time after infection. Trichinella-derived secretions can regulate the immune response and fibroblasts of the host, but the specific mechanisms involved are still unclear. The purpose of this study was to investigate the role of T. spiralis larvae-derived extracellular vesicles (EVs) and their key miRNAs in the process of T. spiralis–host interaction. In this study, we found that the EVs of T. spiralis larvae, as well as miR-1-3p and let-7-5p, expressed in T. spiralis larvae-derived EVs, can promote the polarization of bone marrow macrophages to M2b type while inhibiting the activation of fibroblasts. These findings will contribute to further understanding of the molecular mechanisms underlying T. spiralis–host interactions.
Collapse
Affiliation(s)
- Ji Wu
- Medical Department of Xizang Minzu University, Xianyang, China
| | - Yao Liao
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Key Laboratory of Tropical Disease Control, Ministry of Education, Sun Yat-sen University, Guangzhou, China
- Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, China
| | - Dinghao Li
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Key Laboratory of Tropical Disease Control, Ministry of Education, Sun Yat-sen University, Guangzhou, China
- Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, China
| | - Zifeng Zhu
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Key Laboratory of Tropical Disease Control, Ministry of Education, Sun Yat-sen University, Guangzhou, China
- Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, China
| | - Lichao Zhang
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Key Laboratory of Tropical Disease Control, Ministry of Education, Sun Yat-sen University, Guangzhou, China
- Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, China
| | - Zhongdao Wu
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Key Laboratory of Tropical Disease Control, Ministry of Education, Sun Yat-sen University, Guangzhou, China
- Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, China
- *Correspondence: Lifu Wang, ; Ping He, ; Zhongdao Wu,
| | - Ping He
- Medical Department of Xizang Minzu University, Xianyang, China
- *Correspondence: Lifu Wang, ; Ping He, ; Zhongdao Wu,
| | - Lifu Wang
- Guangzhou Key Laboratory for Clinical Rapid Diagnosis and Early Warning of Infectious Diseases, KingMed School of Laboratory Medicine, Guangzhou Medical University, Guangzhou, China
- *Correspondence: Lifu Wang, ; Ping He, ; Zhongdao Wu,
| |
Collapse
|
36
|
Yeshi K, Ruscher R, Loukas A, Wangchuk P. Immunomodulatory and biological properties of helminth-derived small molecules: Potential applications in diagnostics and therapeutics. FRONTIERS IN PARASITOLOGY 2022; 1:984152. [PMID: 39816468 PMCID: PMC11731824 DOI: 10.3389/fpara.2022.984152] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 08/23/2022] [Indexed: 01/18/2025]
Abstract
Parasitic helminths secrete and excrete a vast array of molecules known to help skew or suppress the host's immune response, thereby establishing a niche for sustained parasite maintenance. Indeed, the immunomodulatory potency of helminths is attributed mainly to excretory/secretory products (ESPs). The ESPs of helminths and the identified small molecules (SM) are reported to have diverse biological and pharmacological properties. The available literature reports only limited metabolites, and the identity of many metabolites remains unknown due to limitations in the identification protocols and helminth-specific compound libraries. Many metabolites are known to be involved in host-parasite interactions and pathogenicity. For example, fatty acids (e.g., stearic acid) detected in the infective stages of helminths are known to have a role in host interaction through facilitating successful penetration and migration inside the host. Moreover, excreted/secreted SM detected in helminth species are found to possess various biological properties, including anti-inflammatory activities, suggesting their potential in developing immunomodulatory drugs. For example, helminths-derived somatic tissue extracts and whole crude ESPs showed anti-inflammatory properties by inhibiting the secretion of proinflammatory cytokines from human peripheral blood mononuclear cells and suppressing the pathology in chemically-induced experimental mice model of colitis. Unlike bigger molecules like proteins, SM are ideal candidates for drug development since they are small structures, malleable, and lack immunogenicity. Future studies should strive toward identifying unknown SM and isolating the under-explored niche of helminth metabolites using the latest metabolomics technologies and associated software, which hold potential keys for finding new diagnostics and novel therapeutics.
Collapse
Affiliation(s)
- Karma Yeshi
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine (AITHM), James Cook University, Cairns, QLD, Australia
| | | | | | | |
Collapse
|
37
|
Characterization of antigens of Enterobius vermicularis (pinworm) eggs. Sci Rep 2022; 12:14414. [PMID: 36002555 PMCID: PMC9402560 DOI: 10.1038/s41598-022-18303-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 08/09/2022] [Indexed: 11/08/2022] Open
Abstract
Enterobiasis (pinworm infection) caused by Enterobius vermicularis is a common parasitic infection prevalent worldwide especially in children. Infection is diagnosed by microscopic detection of E. vermicularis eggs on perianal swabs. This study aimed to characterize the antigens of E. vermicularis eggs as a preliminary step towards identifying diagnostic targets for detection in infected individuals. The study was conducted between October 2019 and February 2020, following approval from Ethics Review Committee of the Faculty of Medicine, University of Colombo (EC-19-034). E. vermicularis eggs were harvested from perianal swabs using acetone and purified with 1× PBS (pH 7.2). A portion of eggs was used for preparing antigen slides, while the rest were sonicated and vortexed with glass beads and inoculated subcutaneously (with weekly booster doses) into a Wistar rat for developing antibodies. Blood drawing from rat was done weekly for 5 weeks. Confirmation of the presence of antibodies was done by surface immunofluorescence against eggs on the antigen slides. Protein bands were determined using SDS-PAGE assay and immunogenic antigen bands were determined by reacting with antiserum after immunoblotting. The band sizes of the proteins were determined against corresponding bands of a protein ladder. Surface immunofluorescence was positive with serum obtained from day 14 post-inoculation from the Wistar rat as well as that obtained from a person with chronic enterobiasis. The most prominent and immunogenic protein bands identified from egg antigens were 21 kDa, 66 kDa, 83 kDa, 96 kDa, 112 kDa, 121 kDa, 140 kDa and 151 kDa. Methods used in this study were effective in obtaining E. vermicularis egg antigens which were immunogenic. Furthermore, surface antigens of intact eggs reacted with antibodies developed against crushed egg antigens. These findings may pave the way for the development of effective immunodiagnostics.
Collapse
|
38
|
Tassis P, Symeonidou I, Gelasakis AI, Kargaridis M, Aretis G, Arsenopoulos KV, Tzika E, Papadopoulos E. Serological Assessment of Ascaris suum Exposure in Greek Pig Farms and Associated Risk Factors Including Lawsonia intracellularis. Pathogens 2022; 11:pathogens11090959. [PMID: 36145391 PMCID: PMC9503870 DOI: 10.3390/pathogens11090959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/19/2022] [Accepted: 08/21/2022] [Indexed: 11/29/2022] Open
Abstract
The effects of nematodes and bacteria on intestinal health are of primary importance in modern swine production. The aim of the present study was to assess the seropositivity status of Ascaris suum infection in fatteners in intensive swine farms in Greece and address possible risk factors, including Lawsonia intracellularis as a predisposing factor to swine ascariosis. In total, 360 blood serum samples from pigs in the late fattening period, from 24 Greek swine farrow-to-finish farms (15 samples/farm) were collected and tested with Svanovir® A. suum antibody ELISA and Ileitis antibody ELISA. The results demonstrated 34.4% seropositive samples for A. suum and 42.2% for L. intracellularis. The analysis of predisposing risk factors suggested that the frequency of application of anthelminthic treatment to sows more than two times per year was significantly associated with the lower likelihood of A. suum infection, whereas a greater likelihood of A. suum infection was observed in pigs with concurrent L. intracellularis exposure. The results highlight the importance of proper anthelminthic metaphylaxis of the breeding stock, as well as the likely outcome of concurrent exposure to two intestinal pathogens in pigs, implying a possible association between intestinal nematodes and bacteria in swine.
Collapse
Affiliation(s)
- Panagiotis Tassis
- Farm Animals Clinic, School of Veterinary Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54627 Thessaloniki, Greece
| | - Isaia Symeonidou
- Laboratory of Parasitology and Parasitic Diseases, School of Veterinary Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
- Correspondence:
| | - Athanasios I. Gelasakis
- Laboratory of Anatomy and Physiology of Farm Animals, Department of Animal Science, School of Animal Biosciences, Agricultural University of Athens, 11855 Athens, Greece
| | - Michalis Kargaridis
- Gerolymatos International SA, 13 Asklipiou St., Kryoneri, 14568 Athens, Greece
| | - George Aretis
- Boehringer Ingelheim Hellas, Leof. Andrea Siggrou 340, Kallithea, 17673 Athens, Greece
| | - Konstantinos V. Arsenopoulos
- Laboratory of Parasitology and Parasitic Diseases, School of Veterinary Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Eleni Tzika
- Farm Animals Clinic, School of Veterinary Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54627 Thessaloniki, Greece
| | - Elias Papadopoulos
- Laboratory of Parasitology and Parasitic Diseases, School of Veterinary Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| |
Collapse
|
39
|
Trelis M, Sánchez-López CM, Sánchez-Palencia LF, Ramírez-Toledo V, Marcilla A, Bernal D. Proteomic Analysis of Extracellular Vesicles From Fasciola hepatica Hatching Eggs and Juveniles in Culture. Front Cell Infect Microbiol 2022; 12:903602. [PMID: 35719328 PMCID: PMC9203882 DOI: 10.3389/fcimb.2022.903602] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 05/06/2022] [Indexed: 01/17/2023] Open
Abstract
The identification of extracellular vesicles (EVs) in Fasciola hepatica has provided a new way to understand parasite-host communication. Most of the studies on EVs have focused on the adult stage of F. hepatica, but recently, the presence of EVs from different developmental stages has been reported. To better understand the potential role of EVs in the biology of the parasite and in the infection process, the protein cargo of EVs from embryonated eggs and newly-excysted juvenile (NEJs) flukes cultured up to 28 days, has been analyzed. EVs were isolated by size exclusion chromatography and evaluated by nanoparticle tracking analysis and transmission electron microscopy. LC-MS/MS proteomic analysis of EVs revealed the presence of 23 different proteins from embryonated egg-derived EVs and 29 different proteins from NEJ-derived EVs. Most of the identified proteins had been previously described in EVs from F. hepatica adults, including cytoskeletal proteins, glycolytic enzymes, stress-related proteins and tetraspanins. Nevertheless, EVs from hatching eggs and NEJs exhibited qualitative differences in composition, when compared to EVs form adults, including the absence of cathepsin cysteine peptidases. The differential content of the EVs released by the different developmental stages of the parasite reflect the intense activity of NEJs at this early stage, with several proteins involved in membrane traffic and cell physiology. This new set of identified proteins could help to understand key metabolic, biochemical and molecular mechanisms mediated by EVs that take place upon egg hatching and after parasite excystment.
Collapse
Affiliation(s)
- María Trelis
- Área de Parasitología, Departament de Farmàcia i Tecnologia Farmacèutica i Parasitologia, Universitat de València, Valencia, Spain
- Joint Research Unit on Endocrinology, Nutrition and Clinical Dietetics, Health Research Institute La Fe, Universitat de Valencia, Valencia, Spain
| | - Christian M. Sánchez-López
- Área de Parasitología, Departament de Farmàcia i Tecnologia Farmacèutica i Parasitologia, Universitat de València, Valencia, Spain
- Joint Research Unit on Endocrinology, Nutrition and Clinical Dietetics, Health Research Institute La Fe, Universitat de Valencia, Valencia, Spain
| | - Liz F. Sánchez-Palencia
- Área de Parasitología, Departament de Farmàcia i Tecnologia Farmacèutica i Parasitologia, Universitat de València, Valencia, Spain
| | | | - Antonio Marcilla
- Área de Parasitología, Departament de Farmàcia i Tecnologia Farmacèutica i Parasitologia, Universitat de València, Valencia, Spain
- Joint Research Unit on Endocrinology, Nutrition and Clinical Dietetics, Health Research Institute La Fe, Universitat de Valencia, Valencia, Spain
| | - Dolores Bernal
- Departament de Bioquímica i Biologia Molecular, Facultat de Ciències Biològiques, Universitat de València, Valencia, Spain
- *Correspondence: Dolores Bernal,
| |
Collapse
|
40
|
Prodjinotho UF, Gres V, Henkel F, Lacorcia M, Dandl R, Haslbeck M, Schmidt V, Winkler AS, Sikasunge C, Jakobsson PJ, Henneke P, Esser-von Bieren J, Prazeres da Costa C. Helminthic dehydrogenase drives PGE 2 and IL-10 production in monocytes to potentiate Treg induction. EMBO Rep 2022; 23:e54096. [PMID: 35357743 PMCID: PMC9066053 DOI: 10.15252/embr.202154096] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 03/02/2022] [Accepted: 03/14/2022] [Indexed: 01/03/2023] Open
Abstract
Immunoregulation of inflammatory, infection‐triggered processes in the brain constitutes a central mechanism to control devastating disease manifestations such as epilepsy. Observational studies implicate the viability of Taenia solium cysts as key factor determining severity of neurocysticercosis (NCC), the most common cause of epilepsy, especially in children, in Sub‐Saharan Africa. Viable, in contrast to decaying, cysts mostly remain clinically silent by yet unknown mechanisms, potentially involving Tregs in controlling inflammation. Here, we show that glutamate dehydrogenase from viable cysts instructs tolerogenic monocytes to release IL‐10 and the lipid mediator PGE2. These act in concert, converting naive CD4+ T cells into CD127−CD25hiFoxP3+CTLA‐4+ Tregs, through the G protein‐coupled receptors EP2 and EP4 and the IL‐10 receptor. Moreover, while viable cyst products strongly upregulate IL‐10 and PGE2 transcription in microglia, intravesicular fluid, released during cyst decay, induces pro‐inflammatory microglia and TGF‐β as potential drivers of epilepsy. Inhibition of PGE2 synthesis and IL‐10 signaling prevents Treg induction by viable cyst products. Harnessing the PGE2‐IL‐10 axis and targeting TGF‐ß signaling may offer an important therapeutic strategy in inflammatory epilepsy and NCC.
Collapse
Affiliation(s)
- Ulrich Fabien Prodjinotho
- Institute for Medical Microbiology, Immunology and Hygiene, TUM School of Medicine, Technical University of Munich (TUM), Munich, Germany.,Center for Global Health, TUM School of Medicine, Technical University of Munich (TUM), Munich, Germany
| | - Vitka Gres
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center and Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Fiona Henkel
- Center of Allergy and Environment (ZAUM), Technical University of Munich and Helmholtz Center Munich, Munich, Germany
| | - Matthew Lacorcia
- Institute for Medical Microbiology, Immunology and Hygiene, TUM School of Medicine, Technical University of Munich (TUM), Munich, Germany
| | - Ramona Dandl
- Department of Chemistry, Technical University Munich (TUM), Garching, Germany
| | - Martin Haslbeck
- Department of Chemistry, Technical University Munich (TUM), Garching, Germany
| | - Veronika Schmidt
- Center for Global Health, TUM School of Medicine, Technical University of Munich (TUM), Munich, Germany.,Department of Neurology, University Hospital, Klinikum rechts der Isar, Technical University Munich (TUM), Munich, Germany.,Center for Global Health, Institute of Health and Society, University of Oslo, Oslo, Norway
| | - Andrea Sylvia Winkler
- Center for Global Health, TUM School of Medicine, Technical University of Munich (TUM), Munich, Germany.,Department of Neurology, University Hospital, Klinikum rechts der Isar, Technical University Munich (TUM), Munich, Germany.,Center for Global Health, Institute of Health and Society, University of Oslo, Oslo, Norway
| | - Chummy Sikasunge
- Department of Paraclinicals, School of Veterinary Medicine, University of Zambia, Lusaka, Zambia
| | - Per-Johan Jakobsson
- Rheumatology Unit, Department of Medicine, Solna, Karolinska University Hospital, Stockholm, Sweden
| | - Philipp Henneke
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center and Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Center for Pediatrics and Adolescent Medicine, Medical Center, University of Freiburg, Freiburg, Germany.,Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany
| | - Julia Esser-von Bieren
- Center of Allergy and Environment (ZAUM), Technical University of Munich and Helmholtz Center Munich, Munich, Germany
| | - Clarissa Prazeres da Costa
- Institute for Medical Microbiology, Immunology and Hygiene, TUM School of Medicine, Technical University of Munich (TUM), Munich, Germany.,Center for Global Health, TUM School of Medicine, Technical University of Munich (TUM), Munich, Germany.,German Center for Infection and Research (DZIF), Munich, Germany
| |
Collapse
|
41
|
Borup A, Boysen AT, Ridolfi A, Brucale M, Valle F, Paolini L, Bergese P, Nejsum P. Comparison of separation methods for immunomodulatory extracellular vesicles from helminths. JOURNAL OF EXTRACELLULAR BIOLOGY 2022; 1:e41. [PMID: 38939526 PMCID: PMC11080882 DOI: 10.1002/jex2.41] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 03/03/2022] [Accepted: 04/04/2022] [Indexed: 06/29/2024]
Abstract
Helminths survive within their host by secreting immunomodulatory compounds, which hold therapeutic potential for inflammatory conditions. Helminth-derived extracellular vesicles (EVs) are one such component proposed to possess immunomodulatory activities. Due to the recent discovery of helminth EVs, standardised protocols for EV separation are lacking. Excretory/secretory products of the porcine helminth, Ascaris suum, were used to compare three EV separation methods: Size exclusion chromatography (SEC), ultracentrifugation (UC) and a combination of the two. Their performance was evaluated by EV yield, sample purity and the ability of EVs to suppress lipopolysaccharide (LPS)-induced inflammation in vitro. We found that all three separation methods successfully separated helminth EVs with a similar EV yield. Functional studies showed that EVs from all three methods reduced LPS-induced levels of tumour necrosis factor (TNF-α) in a dose-dependent manner. Overall, the three separation methods showed similar performance, however, the combination of UC+SEC presented with slightly higher purity than either method alone.
Collapse
Affiliation(s)
- Anne Borup
- Department of Clinical MedicineAarhus UniversityAarhusDenmark
| | | | - Andrea Ridolfi
- Consorzio Interuniversitario per lo Sviluppo dei Sistemi a Grande Interfase (CSGI)University of FlorenceFlorenceItaly
- Consiglio Nazionale delle Ricerche (CNR)Istituto per lo Studio dei Materiali Nanostrutturati (ISMN)University of BolognaBolognaItaly
- Department of ChemistryUniversity of FlorenceFlorenceItaly
| | - Marco Brucale
- Consorzio Interuniversitario per lo Sviluppo dei Sistemi a Grande Interfase (CSGI)University of FlorenceFlorenceItaly
- Consiglio Nazionale delle Ricerche (CNR)Istituto per lo Studio dei Materiali Nanostrutturati (ISMN)University of BolognaBolognaItaly
| | - Francesco Valle
- Consorzio Interuniversitario per lo Sviluppo dei Sistemi a Grande Interfase (CSGI)University of FlorenceFlorenceItaly
- Consiglio Nazionale delle Ricerche (CNR)Istituto per lo Studio dei Materiali Nanostrutturati (ISMN)University of BolognaBolognaItaly
| | - Lucia Paolini
- Consorzio Interuniversitario per lo Sviluppo dei Sistemi a Grande Interfase (CSGI)University of FlorenceFlorenceItaly
- Department of Molecular and Translational MedicineUniversity of BresciaBresciaItaly
| | - Paolo Bergese
- Consorzio Interuniversitario per lo Sviluppo dei Sistemi a Grande Interfase (CSGI)University of FlorenceFlorenceItaly
- Department of Molecular and Translational MedicineUniversity of BresciaBresciaItaly
- Consiglio Nazionale delle Ricerche (CNR)Institute for Research and Biomedical Innovation (IRIB)University of PalermoPalermoItaly
| | - Peter Nejsum
- Department of Clinical MedicineAarhus UniversityAarhusDenmark
| |
Collapse
|
42
|
Gildner TE, Cepon-Robins TJ, Urlacher SS. Cumulative host energetic costs of soil-transmitted helminth infection. Trends Parasitol 2022; 38:629-641. [DOI: 10.1016/j.pt.2022.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 04/25/2022] [Accepted: 04/26/2022] [Indexed: 11/24/2022]
|
43
|
Ianiro G, Iorio A, Porcari S, Masucci L, Sanguinetti M, Perno CF, Gasbarrini A, Putignani L, Cammarota G. How the gut parasitome affects human health. Therap Adv Gastroenterol 2022; 15:17562848221091524. [PMID: 35509426 PMCID: PMC9058362 DOI: 10.1177/17562848221091524] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 02/23/2022] [Indexed: 02/04/2023] Open
Abstract
The human gut microbiome (GM) is a complex ecosystem that includes numerous prokaryotic and eukaryotic inhabitants. The composition of GM can influence an array of host physiological functions including immune development. Accumulating evidence suggest that several members of non-bacterial microbiota, including protozoa and helminths, that were earlier considered as pathogens, could have a commensal or beneficial relationship with the host. Here we examine the most recent data from omics studies on prokaryota-meiofauna-host interaction as well as the impact of gut parasitome on gut bacterial ecology and its role as 'immunological driver' in health and disease to glimpse new therapeutic perspectives.
Collapse
Affiliation(s)
| | - Andrea Iorio
- Department of Diagnostic and Laboratory Medicine, Unit of Parasitology and Multimodal Laboratory Medicine Research Area, Unit of Human Microbiome, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Serena Porcari
- Gastroenterology Unit, Fondazione Policlinico Gemelli IRCCS, Roma, Italy
| | - Luca Masucci
- Microbiology Unit, Fondazione Policlinico Universitario ‘A. Gemelli’ IRCCS, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Maurizio Sanguinetti
- Microbiology Unit, Fondazione Policlinico Universitario ‘A. Gemelli’ IRCCS, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Carlo Federico Perno
- Department of Diagnostic and Laboratory Medicine, Unit of Microbiology and Diagnostic Immunology, and Multimodal Laboratory Medicine Research Area, Ospedale Pediatrico Bambino Gesù, Roma, Italy
| | - Antonio Gasbarrini
- Gastroenterology Unit, Fondazione Policlinico Gemelli IRCCS, Roma, Italy
| | - Lorenza Putignani
- Department of Diagnostic and Laboratory Medicine, Unit of Parasitology and Multimodal Laboratory Medicine Research Area, Unit of Human Microbiome, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Giovanni Cammarota
- Gastroenterology Unit, Fondazione Policlinico Gemelli IRCCS, Roma, Italy
| |
Collapse
|
44
|
Administration of Hookworm Excretory/Secretory Proteins Improves Glucose Tolerance in a Mouse Model of Type 2 Diabetes. Biomolecules 2022; 12:biom12050637. [PMID: 35625566 PMCID: PMC9138508 DOI: 10.3390/biom12050637] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 04/19/2022] [Accepted: 04/22/2022] [Indexed: 01/27/2023] Open
Abstract
Diabetes is recognised as the world’s fastest growing chronic condition globally. Helminth infections have been shown to be associated with a lower prevalence of type 2 diabetes (T2D), in part due to their ability to induce a type 2 immune response. Therefore, to understand the molecular mechanisms that underlie the development of T2D-induced insulin resistance, we treated mice fed on normal or diabetes-promoting diets with excretory/secretory products (ES) from the gastrointestinal helminth Nippostrongylus brasiliensis. We demonstrated that treatment with crude ES products from adult worms (AES) or infective third-stage larvae (L3ES) from N. brasiliensis improved glucose tolerance and attenuated body weight gain in mice fed on a high glycaemic index diet. N. brasiliensis ES administration to mice was associated with a type 2 immune response measured by increased eosinophils and IL-5 in peripheral tissues but not IL-4, and with a decrease in the level of IL-6 in adipose tissue and corresponding increase in IL-6 levels in the liver. Moreover, treatment with AES or L3ES was associated with significant changes in the community composition of the gut microbiota at the phylum and order levels. These data highlight a role for N. brasiliensis ES in modulating the immune response associated with T2D, and suggest that N. brasiliensis ES contain molecules with therapeutic potential for treating metabolic syndrome and T2D.
Collapse
|
45
|
Optimized Protocol for the Isolation of Extracellular Vesicles from the Parasitic Worm Schistosoma mansoni with Improved Purity, Concentration, and Yield. J Immunol Res 2022; 2022:5473763. [PMID: 35434142 PMCID: PMC9012646 DOI: 10.1155/2022/5473763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 02/21/2022] [Indexed: 11/17/2022] Open
Abstract
In the past decade, the interest in helminth-derived extracellular vesicles (EVs) increased owing to their role in pathogen-host communication. However, the availability of EVs from these parasitic worms is often limited due to the restricted occurrence and culturing possibilities of these organisms. Schistosoma mansoni is one of several helminths that have been shown to release EVs affecting the immune response of their host. Further investigation of mechanisms underlying these EV-induced effects warrants separation of EVs from other components of the helminth excretory/secretory products. However, isolation of high-purity EVs often come to the expense of reduced EV yield. We therefore aimed to develop an optimized protocol for isolation of EVs from S. mansoni schistosomula and adult worms with respect to purity, concentration, and yield. We tested the use of small (1.7 ml) iodixanol density gradients and demonstrated that this enabled western blot-based analysis of the EV marker protein tetraspanin-2 (TSP-2) in gradient fractions without additional concentration steps. Moreover, the concentration and yield of EVs obtained with small iodixanol gradients were higher compared to medium-sized (4.3 ml) or conventional large-sized (12 ml) gradients. Additionally, we provide evidence that iodixanol is preferred over sucrose as medium for the small density gradients, because EVs in iodixanol gradients reached equilibrium much faster (2 hours) and iodixanol but not sucrose was suitable for purification of schistosomula EVs. Finally, we demonstrate that the small iodixanol gradients were able to separate adult worm EVs from non-EV contaminants such as the blood digestion product hemozoin. Our optimized small iodixanol density gradient allows to simultaneously separate and concentrate EVs while reducing handling time and EV loss and can be applied for EVs from helminths and other limited EV sources.
Collapse
|
46
|
Bąska P, Norbury LJ. The Role of Nuclear Factor Kappa B (NF-κB) in the Immune Response against Parasites. Pathogens 2022; 11:pathogens11030310. [PMID: 35335634 PMCID: PMC8950322 DOI: 10.3390/pathogens11030310] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/17/2022] [Accepted: 02/25/2022] [Indexed: 12/28/2022] Open
Abstract
The immune system consists of various cells, organs, and processes that interact in a sophisticated manner to defend against pathogens. Upon initial exposure to an invader, nonspecific mechanisms are raised through the activation of macrophages, monocytes, basophils, mast cells, eosinophils, innate lymphoid cells, or natural killer cells. During the course of an infection, more specific responses develop (adaptive immune responses) whose hallmarks include the expansion of B and T cells that specifically recognize foreign antigens. Cell to cell communication takes place through physical interactions as well as through the release of mediators (cytokines, chemokines) that modify cell activity and control and regulate the immune response. One regulator of cell states is the transcription factor Nuclear Factor kappa B (NF-κB) which mediates responses to various stimuli and is involved in a variety of processes (cell cycle, development, apoptosis, carcinogenesis, innate and adaptive immune responses). It consists of two protein classes with NF-κB1 (p105/50) and NF-κB2 (p100/52) belonging to class I, and RelA (p65), RelB and c-Rel belonging to class II. The active transcription factor consists of a dimer, usually comprised of both class I and class II proteins conjugated to Inhibitor of κB (IκB). Through various stimuli, IκB is phosphorylated and detached, allowing dimer migration to the nucleus and binding of DNA. NF-κB is crucial in regulating the immune response and maintaining a balance between suppression, effective response, and immunopathologies. Parasites are a diverse group of organisms comprised of three major groups: protozoa, helminths, and ectoparasites. Each group induces distinct effector immune mechanisms and is susceptible to different types of immune responses (Th1, Th2, Th17). This review describes the role of NF-κB and its activity during parasite infections and its contribution to inducing protective responses or immunopathologies.
Collapse
Affiliation(s)
- Piotr Bąska
- Division of Pharmacology and Toxicology, Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences-SGGW, 02-786 Warsaw, Poland
- Correspondence:
| | - Luke J. Norbury
- Department of Biosciences and Food Technology, School of Science, STEM College, RMIT University, Bundoora, VIC 3083, Australia;
| |
Collapse
|
47
|
What Do In Vitro and In Vivo Models Tell Us about Anisakiasis? New Tools Still to Be Explored. Pathogens 2022; 11:pathogens11030285. [PMID: 35335609 PMCID: PMC8953344 DOI: 10.3390/pathogens11030285] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 02/18/2022] [Accepted: 02/21/2022] [Indexed: 02/04/2023] Open
Abstract
Anisakiasis is a zoonosis caused by the ingestion of raw or undercooked seafood infected with third-stage larvae (L3) of the marine nematode Anisakis. Based on L3 localization in human accidental hosts, gastric, intestinal or ectopic (extra-gastrointestinal) anisakiasis can occur, in association with mild to severe symptoms of an allergic nature. Given the increasing consumption of fish worldwide, the European Food Safety Authority declared Anisakis as an emerging pathogen. Despite its importance for public health and economy, the scientific literature is largely characterized by taxonomic, systematic and ecological studies, while investigations on clinical aspects, such as the inflammatory and immune response during anisakiasis, using a proper model that simulates the niche of infection are still very scarce. The aims of this review are to describe the clinical features of anisakiasis, to report the main evidence from the in vivo and in vitro studies carried out to date, highlighting limitations, and to propose future perspectives in the study field of anisakiasis.
Collapse
|
48
|
Sotillo J. MS-Based Extracellular Vesicle (EVs) Analysis: An Application to Helminth-Secreted EVs. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2021; 2420:11-20. [PMID: 34905162 DOI: 10.1007/978-1-0716-1936-0_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Parasite infections caused by helminths affect hundreds of millions worldwide. Despite their socioeconomic importance and impact on health, there is still an urgent need to develop appropriate control approaches. The recent discovery that helminths, as most eukaryotic organisms, secrete extracellular vesicles (EVs) of different type has opened new avenues for the characterization of novel diagnostic and vaccine candidates that could serve for this purpose. Herein, we describe a method for the isolation of highly pure microvesicles and exosomes, two of the most relevant populations of EVs secreted by helminths, and describe a validated approach to characterize the proteins from different compartments of EVs. These proteins could be further developed into suitable diagnostic and vaccine candidates against these devastating infections.
Collapse
Affiliation(s)
- Javier Sotillo
- Laboratorio de Referencia e Investigación en Parasitología, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
49
|
Ademe M, Girma F. The Influence of Helminth Immune Regulation on COVID-19 Clinical Outcomes: Is it Beneficial or Detrimental? Infect Drug Resist 2021; 14:4421-4426. [PMID: 34737582 PMCID: PMC8558425 DOI: 10.2147/idr.s335447] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 10/19/2021] [Indexed: 12/28/2022] Open
Abstract
Immunologically, chronic worm infections prevent themselves from strong immune responses by skewing the host response towards a T helper 2 (Th2) type. The regulatory response initiated by helminth infections is supposed to temper responses to non-helminth antigens including viral infections which will, in turn, alter the clinical outcomes of infections. In view of this, recent reports highlighted the possible negative associations of severe COVID-19 and helminth co-infections in helminth-endemic regions. As the pathology of COVID-19 is primarily mediated by an excessive immune response and subsequent cytokine storm, which contributes to the poor prognosis of COVID-19, helminth-driven immune modulation will hypothetically contribute to the less severe outcomes of COVID-19. Nevertheless, emerging reports also stated that COVID-19 and helminth co-infections may have more hidden outcomes than predictable ones. Herein, the current knowledge on the interaction of COVID-19 and helminth co-infections will be discussed.
Collapse
Affiliation(s)
- Muluneh Ademe
- Department of Microbiology, Immunology and Parasitology, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | - Friehiwot Girma
- Department of Pediatrics and Child Health Nursing, School of Health Sciences, College of Medicine and Health Sciences, Bahir Dar University, Bahir Dar, Ethiopia
| |
Collapse
|
50
|
Zamora V, Carlos Andreu-Ballester J, Rodero M, Cuéllar C. Anisakis simplex: Immunomodulatory effects of larval antigens on the activation of Toll like Receptors. Int Immunopharmacol 2021; 100:108120. [PMID: 34537480 DOI: 10.1016/j.intimp.2021.108120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 08/30/2021] [Accepted: 08/30/2021] [Indexed: 12/13/2022]
Abstract
AIMS The objective of this investigation is to evaluate the mechanisms Anisakis simplex employs to modify its host immune system, regarding the larval antigens interactions with Toll-Like-Receptors (TLRs). METHODS AND RESULTS In a previous study, we described that the stimulation of bone marrow derived dendritic cells (BMDCs) with A. simplex larval antigens drive an acute inflammatory response in BALB/c mice, but a more discrete and longer response in C57BL/6J. Moreover, when A. simplex larval antigens were combined with TLR agonists (TLR 1/2-9), they modified mainly TLR2, TLR4 and TLR9 agonists responses in both mice strains, and also TLR3, TLR5 and TLR7 in BALB/c. Antigen-presenting ability was analyzed by the detection of CD11c + cells expressing surface markers (CD80-86, MHC I-II), intracellular cytokines (IL-10, IL-12, TNF-α) and intracellular proteins (Myd88, NF-κβ) by Flow Cytometry. Secreted IL-10 was measured by ELISA. CONCLUSION Our findings confirm not only that the host genetic basis plays a role in the development of a Th2/Th1/Treg response, but also it states A. simplex larval antigens present specific mechanisms to modify the innate response of the host. As allergies share common pathways with the immune response against this particular helminth, our results provide a better understanding into the specific mechanisms of A. simplex allergy related diseases.
Collapse
Affiliation(s)
- Vega Zamora
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad Complutense de Madrid, Spain.
| | | | - Marta Rodero
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad Complutense de Madrid, Spain
| | - Carmen Cuéllar
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad Complutense de Madrid, Spain
| |
Collapse
|