1
|
Lu C, Liu S, Gao M, Rubio J, Chatham WW, Hsu HC, Mountz JD. IL-4 alters TLR7-induced B cell developmental program in lupus. Clin Immunol 2025; 275:110472. [PMID: 40068727 DOI: 10.1016/j.clim.2025.110472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Revised: 02/18/2025] [Accepted: 03/06/2025] [Indexed: 03/27/2025]
Abstract
TLR7 stimulation of T-bet+CD11c+IgD-CD27- double-negative 2 (DN2) B cells is crucial for autoantibody formation in systemic lupus erythematosus (SLE). Here, we show that administration of IL-4 for five weeks significantly reduced autoantibodies and T-bet+CD11c+ IgD- B cells in autoimmune BXD2 mice treated with R848, a TLR7 agonist. Single-cell transcriptomics analysis indicates that following two doses of in vivo administration, IL-4 redirected development toward follicular, CD23+ germinal center (GC), and DN4-like memory B cells compared to treatment with R848 alone. While IL-4 enhanced genes related to antigen processing and presentation, it also suppressed R848-induced Ki67+ GC B cells in vivo. In vitro stimulation of SLE patient B cells with a DN2 polarizing cocktail revealed that IL-4 reduced the expression of interferon response and DN2 signature genes, promoting a population of CD23+T-bet- DN4 B population. These findings suggest that developmental reprogramming by IL-4 counteracts TLR7-promoted DN2 and GC B cells in SLE.
Collapse
Affiliation(s)
- Changming Lu
- Division of Clinical Immunology and Rheumatology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Shanrun Liu
- Division of Clinical Immunology and Rheumatology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Min Gao
- Clinical Genetics, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Jose Rubio
- Division of Clinical Immunology and Rheumatology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - W Winn Chatham
- Department of Internal Medicine, Kirk Kerkorian School of Medicine, University of Nevada, Las Vegas, Las Vegas, NV 89154, USA
| | - Hui-Chen Hsu
- Division of Clinical Immunology and Rheumatology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA; Medicine Service, Birmingham Veterans Affairs Health Care System, Birmingham, AL, USA.
| | - John D Mountz
- Division of Clinical Immunology and Rheumatology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA; Medicine Service, Birmingham Veterans Affairs Health Care System, Birmingham, AL, USA.
| |
Collapse
|
2
|
Sánchez-Salguero ES, Prieto-Chávez JL, García-Alonso CA, Lampousi AM, Alcorta-García MR, Lara-Diaz VJ, López-Villaseñor CN, Brunck MEG. Maternal obesity associates with altered humoral immunity in blood and colostrum. Mucosal Immunol 2025; 18:491-499. [PMID: 39870213 DOI: 10.1016/j.mucimm.2025.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 01/20/2025] [Accepted: 01/21/2025] [Indexed: 01/29/2025]
Abstract
Maternal obesity is a condition with increasing prevalence worldwide, that correlates with negative infant outcomes. Here we performed an observational cross-sectional study, where peripheral blood and colostrum samples from 37 mothers with BMI between 18.5-25 or > 30 kg/m2 (21 and 16 mothers, respectively) were collected 24-48 h postpartum. B lymphocyte subpopulations were investigated using flow cytometry. IgG, IgA, and IgM concentrations, and antibody production from colostrum-resident B cells were quantified. Overall, naïve B lymphocytes were the most abundant subtype in peripheral blood, while CD27-IgD- double-negative B cells were the most frequent in colostrum. The colostrum from mothers with BMI > 30 kg/m2 contained significantly more IgG-secreting colostrum-resident B cells, more total IgG, and less total IgA. Mothers with BMI > 30 kg/m2 who had been vaccinated with the Pfizer BioNTech bivalent vaccine during the third trimester of pregnancy (n = 8) did not show higher IgA or IgG antibody responses against SARS-CoV-2 RBD in either tissue types compared to unvaccinated mothers, contrasting with mother of BMI between 18.5-25 kg/m2 (n = 7). This is the first characterization of B lymphocyte subpopulations and antibodies in the colostrum of mothers with obesity. This work uncovers maternal obesity as a possible modifier of humoral immune components in colostrum.
Collapse
Affiliation(s)
- Erick S Sánchez-Salguero
- The Institute for Obesity Research, Tecnologico de Monterrey, Av. Eugenio Garza Sada 2501 Sur, Tecnologico, 64700 Monterrey, Nuevo Leon, Mexico; Sir William Dunn School of Pathology, University of Oxford, Oxford UK
| | - Jessica Lakshmi Prieto-Chávez
- Laboratorio de Citometría del Centro de Instrumentos, División de Desarrollo de la Investigación en Salud, Instituto Mexicano del Seguro Social, Av. Cuauhtémoc 330, Doctores, Cuauhtémoc 06720 CDMX, México
| | - Claudia Angélica García-Alonso
- The Institute for Obesity Research, Tecnologico de Monterrey, Av. Eugenio Garza Sada 2501 Sur, Tecnologico, 64700 Monterrey, Nuevo Leon, Mexico; Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Ave. Morones Prieto 3000 Poniente, Col. Doctores, 64710 Monterrey, Nuevo León, Mexico
| | - Anna-Maria Lampousi
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Mario R Alcorta-García
- Hospital Regional Materno Infantil, Servicios de Salud de Nuevo Leon, OPD, Av. San Rafael 460, San Rafael, 67140 Guadalupe, Nuevo Leon, Mexico; Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Ave. Morones Prieto 3000 Poniente, Col. Doctores, 64710 Monterrey, Nuevo León, Mexico
| | - Víctor J Lara-Diaz
- Pediatras 404, San Pedro Garza Garcia, Nuevo Leon, Mexico; University of New South Wales, Faculty of Medicine, Sydney, Australia
| | - Claudia N López-Villaseñor
- Hospital Regional Materno Infantil, Servicios de Salud de Nuevo Leon, OPD, Av. San Rafael 460, San Rafael, 67140 Guadalupe, Nuevo Leon, Mexico; School of Medicine and Health Sciences, Tecnologico de Monterrey, Av. Eugenio Garza Sada 2501 Sur, Tecnologico, 64849 Monterrey, Nuevo Leon, Mexico
| | - Marion E G Brunck
- The Institute for Obesity Research, Tecnologico de Monterrey, Av. Eugenio Garza Sada 2501 Sur, Tecnologico, 64700 Monterrey, Nuevo Leon, Mexico.
| |
Collapse
|
3
|
Niu ZS, Liu RX, Hu Y, Meng XR, Liu LH, Yang LT, Bai X, Chen MF, Pan DF. Complex causal relationships between genetic predictions of 731 immune cell phenotypes and novel coronavirus: A two-sample Mendelian randomization analysis. J Chin Med Assoc 2025; 88:231-237. [PMID: 39725715 DOI: 10.1097/jcma.0000000000001201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2024] Open
Abstract
BACKGROUND Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has had a significant impact on global health. While the virus primarily affects the respiratory system, the intricate interplay between immune cells and the virus remains poorly understood. This study investigates the causal relationship between 731 immune cell phenotypes and COVID-19 using Mendelian randomization (MR) analysis. METHODS A bidirectional two-sample MR analysis was conducted using genetic variants strongly associated with immune cell phenotypes as instrumental variables. Data for 731 immune cell phenotypes were sourced from the Genome-Wide Association Study (GWAS) catalog, while data for COVID-19 susceptibility were obtained from the OPEN GWAS database. Five MR methods (inverse variance weighted [IVW], MR-Egger, weighted median, simple mode, and weighted mode) were used to estimate causal effects, with IVW as the primary analysis method. RESULTS The study identified 57 immune cell phenotypes causally associated with COVID-19 risk across two independent GWAS datasets. Five immune cell phenotypes were consistently associated with COVID-19 risk across both datasets: CD3- lymphocyte %lymphocyte (protective), CD27 on CD20- (protective), CD20 on IgD+ CD38- unsw mem (increased risk), CD27 on IgD- CD38- (increased risk), and CD19 on B cell (increased risk). Sensitivity analyses confirmed the robustness of the findings. CONCLUSION This study provides compelling evidence for a causal relationship between specific immune cell phenotypes and COVID-19 risk. These findings highlight the potential for targeting these immune cell phenotypes as novel therapeutic targets for COVID-19 treatment and prevention.
Collapse
Affiliation(s)
- Ze-Su Niu
- Department of Emergency Medicine, The Third Clinical Medical College of Ningxia Medical University, Yinchuan, Ningxia, China
| | - Ru-Xin Liu
- Department of Emergency Medicine, The Third Clinical Medical College of Ningxia Medical University, Yinchuan, Ningxia, China
| | - Yi Hu
- Department of Emergency Medicine, The Third Clinical Medical College of Ningxia Medical University, Yinchuan, Ningxia, China
| | - Xiao-Rui Meng
- Department of Emergency Medicine, The Third Clinical Medical College of Ningxia Medical University, Yinchuan, Ningxia, China
| | - Li-Hong Liu
- Department of Emergency Medicine, The Third Clinical Medical College of Ningxia Medical University, Yinchuan, Ningxia, China
| | - Li-Ting Yang
- Department of Emergency Medicine, People's Hospital of Ningxia Hui Autonomous Region, Yinchuan, Ningxia, China
| | - Xue Bai
- Department of Emergency Medicine, People's Hospital of Ningxia Hui Autonomous Region, Yinchuan, Ningxia, China
| | - Meng-Fei Chen
- Department of Emergency Medicine, People's Hospital of Ningxia Hui Autonomous Region, Yinchuan, Ningxia, China
| | - Dong-Feng Pan
- Department of Emergency Medicine, The Third Clinical Medical College of Ningxia Medical University, Yinchuan, Ningxia, China
- Department of Emergency Medicine, People's Hospital of Ningxia Hui Autonomous Region, Yinchuan, Ningxia, China
| |
Collapse
|
4
|
Claireaux M, Elias G, Kerster G, Kuijper LH, Duurland MC, Paul AGA, Burger JA, Poniman M, Olijhoek W, de Jong N, de Jongh R, Wynberg E, van Willigen HDG, Prins M, De Bree GJ, de Jong MD, Kuijpers TW, Eftimov F, van der Schoot CE, Rispens T, Garcia-Vallejo JJ, ten Brinke A, van Gils MJ, van Ham SM. Deep profiling of B cells responding to various pathogens uncovers compartments in IgG memory B cell and antibody-secreting lineages. SCIENCE ADVANCES 2025; 11:eado1331. [PMID: 39970201 PMCID: PMC11837990 DOI: 10.1126/sciadv.ado1331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 01/16/2025] [Indexed: 02/21/2025]
Abstract
Improving our understanding of B cell transition to memory B cells (MBCs) and antibody-secreting cells (ASCs) is crucial for clinical monitoring and vaccine strategies. To explore these dynamics, we compared prepandemic antigen responses (influenza hemagglutinin, respiratory syncytial virus fusion glycoprotein, and tetanus toxoid) with recently encountered severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) antigen responses in convalescent COVID-19 patients using spectral flow cytometry. Our analysis revealed the CD43+CD71+IgG+ activated B cell subset, highly enriched for SARS-CoV-2 specificities, as a juncture for ASC and MBC differentiation, with CD86+ phenotypically similar to ASCs and CD86- to IgG+ MBCs. Moreover, subpopulations within IgG+ MBCs were further identified based on CD73 and CD24 expression. Activated MBCs (CD73-/CD24lo) were predominantly SARS-CoV-2-specific, while resting MBCs (CD73+/CD24hi) recognized prepandemic antigens. A CD95- subcluster within resting MBCs accounted for over 40% of prepandemic-specific cells, indicating long-lasting memory. These findings advance our understanding of IgG+ MBC and ASC development stages, shedding light on the decision-making process guiding their differentiation.
Collapse
Affiliation(s)
- Mathieu Claireaux
- Department of Medical Microbiology and Infection Prevention, Laboratory of Experimental Virology, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
- Amsterdam Institute for Immunology and Infectious diseases, Amsterdam, Netherlands
| | - George Elias
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory, University of Amsterdam, Amsterdam, Netherlands
| | - Gius Kerster
- Department of Medical Microbiology and Infection Prevention, Laboratory of Experimental Virology, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
- Amsterdam Institute for Immunology and Infectious diseases, Amsterdam, Netherlands
| | - Lisan H. Kuijper
- Amsterdam Institute for Immunology and Infectious diseases, Amsterdam, Netherlands
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory, University of Amsterdam, Amsterdam, Netherlands
| | - Mariël C. Duurland
- Amsterdam Institute for Immunology and Infectious diseases, Amsterdam, Netherlands
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory, University of Amsterdam, Amsterdam, Netherlands
| | | | - Judith A. Burger
- Department of Medical Microbiology and Infection Prevention, Laboratory of Experimental Virology, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
- Amsterdam Institute for Immunology and Infectious diseases, Amsterdam, Netherlands
| | - Meliawati Poniman
- Department of Medical Microbiology and Infection Prevention, Laboratory of Experimental Virology, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
- Amsterdam Institute for Immunology and Infectious diseases, Amsterdam, Netherlands
| | - Wouter Olijhoek
- Department of Medical Microbiology and Infection Prevention, Laboratory of Experimental Virology, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
- Amsterdam Institute for Immunology and Infectious diseases, Amsterdam, Netherlands
| | - Nina de Jong
- Amsterdam Institute for Immunology and Infectious diseases, Amsterdam, Netherlands
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory, University of Amsterdam, Amsterdam, Netherlands
| | - Rivka de Jongh
- Amsterdam Institute for Immunology and Infectious diseases, Amsterdam, Netherlands
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory, University of Amsterdam, Amsterdam, Netherlands
| | - Elke Wynberg
- Department of Medical Microbiology and Infection Prevention, Laboratory of Experimental Virology, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
- Amsterdam Institute for Immunology and Infectious diseases, Amsterdam, Netherlands
- Department of Infectious Diseases, Public Health Service of Amsterdam, GGD, Amsterdam, Netherlands
| | - Hugo D. G. van Willigen
- Department of Medical Microbiology and Infection Prevention, Laboratory of Experimental Virology, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
- Amsterdam Institute for Immunology and Infectious diseases, Amsterdam, Netherlands
| | - Maria Prins
- Amsterdam Institute for Immunology and Infectious diseases, Amsterdam, Netherlands
- Department of Infectious Diseases, Public Health Service of Amsterdam, GGD, Amsterdam, Netherlands
- Department of Internal Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Godelieve J. De Bree
- Amsterdam Institute for Immunology and Infectious diseases, Amsterdam, Netherlands
- Department of Internal Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Menno D. de Jong
- Department of Medical Microbiology and Infection Prevention, Laboratory of Experimental Virology, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
- Amsterdam Institute for Immunology and Infectious diseases, Amsterdam, Netherlands
| | - Taco W. Kuijpers
- Amsterdam Institute for Immunology and Infectious diseases, Amsterdam, Netherlands
- Department of Pediatric Immunology, Rheumatology and Infectious Disease, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Filip Eftimov
- Amsterdam Institute for Immunology and Infectious diseases, Amsterdam, Netherlands
- Department of Neurology and Neurophysiology, Amsterdam Neuroscience, Amsterdam UMC, location AMC, University of Amsterdam, Amsterdam, Netherlands
| | - C. Ellen van der Schoot
- Amsterdam Institute for Immunology and Infectious diseases, Amsterdam, Netherlands
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory, University of Amsterdam, Amsterdam, Netherlands
| | - Theo Rispens
- Amsterdam Institute for Immunology and Infectious diseases, Amsterdam, Netherlands
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory, University of Amsterdam, Amsterdam, Netherlands
| | - Juan J. Garcia-Vallejo
- Amsterdam Institute for Immunology and Infectious diseases, Amsterdam, Netherlands
- Department of Molecular Cell Biology & Immunology, Amsterdam University Medical Center (VUmc location), Amsterdam, Netherlands
- Cancer Center Amsterdam, Amsterdam, Netherlands
| | - Anja ten Brinke
- Amsterdam Institute for Immunology and Infectious diseases, Amsterdam, Netherlands
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory, University of Amsterdam, Amsterdam, Netherlands
| | - Marit J. van Gils
- Department of Medical Microbiology and Infection Prevention, Laboratory of Experimental Virology, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
- Amsterdam Institute for Immunology and Infectious diseases, Amsterdam, Netherlands
| | - S. Marieke van Ham
- Amsterdam Institute for Immunology and Infectious diseases, Amsterdam, Netherlands
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory, University of Amsterdam, Amsterdam, Netherlands
- Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
5
|
Flores-Gonzalez J, Buendia-Roldan I, Téllez-Quijada F, Peña-Bates C, Ramón-Luing LA, Castorena-Maldonado A, Falfán-Valencia R, Pérez-Rubio G, Selman M, Chavez-Galan L, Chávez-Galán L. Altered immune surveillance of B and T cells in patients with persistent residual lung abnormalities 12 months after severe COVID-19. Respir Res 2025; 26:22. [PMID: 39827348 PMCID: PMC11742501 DOI: 10.1186/s12931-025-03102-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 01/05/2025] [Indexed: 01/22/2025] Open
Abstract
BACKGROUND Post-COVID-19 respiratory sequelae often involve lung damage, which is called residual lung abnormalities, and potentially lead to chronic respiratory issues. The adaptive immune response, involving T-cells and B-cells, plays a critical role in pathogen control, inflammation, and tissue repair. However, the link between immune dysregulation and the development of residual lung abnormalities remains unclear. METHODS 109 patients discharged with residual lung abnormalities after a critical COVID-19 were followed for 12 months and divided as full recovery patients (FRG, n = 88) and persistent lung abnormalities (PLAG, n = 21). Cell profiling analysis was done using flow cytometry at 24 h of not antigen-specific in vitro stimulation. Plasma or supernatant levels of IFN-g, IL-4, IL-10, IgM, and IgG were assessed, and 10 patients (5 FRG, 5 PLAG) were randomly selected for detailed immune cell phenotyping and functional analysis of peripheral blood mononuclear cells using flow cytometry. RESULTS Compared to the FRG group, PLAG exhibited an increase of unswitched (p = 0.0159) and decreased double-negative activated B-cells (p = 0.0317), systemic IL-10 levels were lower, displayed reduced frequency of total B-cells, and impaired spontaneous IgM (p = 0.0357) and IgG (p = 0.0079) release in culture. Regarding T-cells, PLAG patients showed a reduction in effector memory CD4 + cells (p = 0.0159) and an increase in CD4 + TEMRA cells (p = 0.0079) following in vitro stimulation. Notably, the PLAG group also exhibited higher frequencies of central memory CD4 + Th2 (GATA3+) T-cells in response to activation than the FRG group (p = 0.0079). CONCLUSIONS Patients with residual lung abnormalities 12 months post-critical COVID-19 exhibit impaired B-cell function, increased unswitched B-cells, and higher frequencies of CD4 + TEMRA T-cells following in vitro activation. These immune imbalances may contribute to ongoing lung dysfunction and warrant further investigation as a potential mechanism in residual lung abnormalities. Larger studies are necessary to confirm these findings.
Collapse
Affiliation(s)
- Julio Flores-Gonzalez
- Instituto Nacional de Enfermedades Respiratorias Ismael Cosio Villegas, Mexico City, 14080, Mexico
| | - Ivette Buendia-Roldan
- Instituto Nacional de Enfermedades Respiratorias Ismael Cosio Villegas, Mexico City, 14080, Mexico
| | - Fernanda Téllez-Quijada
- Instituto Nacional de Enfermedades Respiratorias Ismael Cosio Villegas, Mexico City, 14080, Mexico
| | - Carlos Peña-Bates
- Instituto Nacional de Enfermedades Respiratorias Ismael Cosio Villegas, Mexico City, 14080, Mexico
| | - Lucero A Ramón-Luing
- Instituto Nacional de Enfermedades Respiratorias Ismael Cosio Villegas, Mexico City, 14080, Mexico
| | | | - Ramcés Falfán-Valencia
- Instituto Nacional de Enfermedades Respiratorias Ismael Cosio Villegas, Mexico City, 14080, Mexico
| | - Gloria Pérez-Rubio
- Instituto Nacional de Enfermedades Respiratorias Ismael Cosio Villegas, Mexico City, 14080, Mexico
| | - Moisés Selman
- Instituto Nacional de Enfermedades Respiratorias Ismael Cosio Villegas, Mexico City, 14080, Mexico
| | - Leslie Chavez-Galan
- Instituto Nacional de Enfermedades Respiratorias Ismael Cosio Villegas, Mexico City, 14080, Mexico.
| | - Leslie Chávez-Galán
- Instituto Nacional de Enfermedades Respiratorias Ismael Cosio Villegas, Mexico City, 14080, Mexico
| |
Collapse
|
6
|
Guerrera G, Sambucci M, Timperi E, Picozza M, Misiti A, Placido R, Corbisiero S, D’Orso S, Termine A, Fabrizio C, Gargano F, Eleuteri S, Marchioni L, Bordoni V, Coppola L, Iannetta M, Agrati C, Borsellino G, Battistini L. Identification of an immunological signature of long COVID syndrome. Front Immunol 2025; 15:1502937. [PMID: 39845978 PMCID: PMC11750999 DOI: 10.3389/fimmu.2024.1502937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 12/16/2024] [Indexed: 01/24/2025] Open
Abstract
Introduction Acute COVID-19 infection causes significant alterations in the innate and adaptive immune systems. While most individuals recover naturally, some develop long COVID (LC) syndrome, marked by persistent or new symptoms weeks to months after SARS-CoV-2 infection. Despite its prevalence, there are no clinical tests to distinguish LC patients from those fully recovered. Understanding the immunological basis of LC is essential for improving diagnostic and treatment approaches. Methods We performed deep immunophenotyping and functional assays to examine the immunological profiles of LC patients, individuals with active COVID-19, recovered patients, and healthy donors. This analysis assessed both innate and adaptive immune features, identifying potential biomarkers for LC syndrome. A Binomial Generalized Linear Model (BGLM) was used to pinpoint immune features characterizing LC. Results COVID-19 patients exhibited depletion of innate immune cell subsets, including plasmacytoid and conventional dendritic cells, classical, non-classical, and intermediate monocytes, and monocyte-derived inflammatory dendritic cells. Elevated basal inflammation was observed in COVID-19 patients compared to LC patients, whose immune profiles were closer to those of healthy donors and recovered individuals. However, LC patients displayed persistent immune alterations, including reduced T cell subsets (CD4, CD8, Tregs) and switched memory B cells, similar to COVID-19 patients. Through BGLM, a unique adaptive immune signature for LC was identified, featuring memory CD8 and gd T cells with low proliferative capacity and diminished expression of activation and homing receptors. Discussion The findings highlight a unique immunological signature associated with LC syndrome, characterized by persistent adaptive immune dysregulation. While LC patients displayed recovery in innate immune profiles comparable to healthy and Recovered individuals, deficits in T cell and memory B cell populations were evident, differentiating LC from full recovery. These findings provide insights into LC pathogenesis and may support the development of diagnostic tools and targeted therapies.
Collapse
Affiliation(s)
| | - Manolo Sambucci
- Neuroimmunology Unit, Santa Lucia Foundation IRCCS, Rome, Italy
| | | | - Mario Picozza
- Neuroimmunology Unit, Santa Lucia Foundation IRCCS, Rome, Italy
| | - Andrea Misiti
- Neuroimmunology Unit, Santa Lucia Foundation IRCCS, Rome, Italy
- Data Science Unit, Santa Lucia Foundation IRCCS, Rome, Italy
| | - Roberta Placido
- Neuroimmunology Unit, Santa Lucia Foundation IRCCS, Rome, Italy
| | | | - Silvia D’Orso
- Neuroimmunology Unit, Santa Lucia Foundation IRCCS, Rome, Italy
| | - Andrea Termine
- Data Science Unit, Santa Lucia Foundation IRCCS, Rome, Italy
| | - Carlo Fabrizio
- Data Science Unit, Santa Lucia Foundation IRCCS, Rome, Italy
| | | | - Sharon Eleuteri
- Neuroimmunology Unit, Santa Lucia Foundation IRCCS, Rome, Italy
| | - Luisa Marchioni
- UOS Terapia Intensiva Postoperatoria e Assistenza Subintensiva, National Institute for Infectious Diseases IRCCS Lazzaro Spallanzani, Rome, Italy
| | - Veronica Bordoni
- Unit of Pathogen specific Immunity, Research Area of Hematology and Oncology, Bambino Gesù Children’s Hospital IRCCS, Rome, Italy
| | - Luigi Coppola
- Infectious disease Clinic, Policlinico Tor Vergata of Rome, Rome, Italy
| | - Marco Iannetta
- Department of Systems Medicine, Infectious Disease Clinic, Tor Vergata University, Rome, Italy
| | - Chiara Agrati
- Unit of Pathogen specific Immunity, Research Area of Hematology and Oncology, Bambino Gesù Children’s Hospital IRCCS, Rome, Italy
| | | | - Luca Battistini
- Neuroimmunology Unit, Santa Lucia Foundation IRCCS, Rome, Italy
| |
Collapse
|
7
|
Wang W, Hariharan M, Ding W, Bartlett A, Barragan C, Castanon R, Rothenberg V, Song H, Nery J, Aldridge A, Altshul J, Kenworthy M, Liu H, Tian W, Zhou J, Zeng Q, Chen H, Wei B, Gündüz IB, Norell T, Broderick TJ, McClain MT, Satterwhite LL, Burke TW, Petzold EA, Shen X, Woods CW, Fowler VG, Ruffin F, Panuwet P, Barr DB, Beare JL, Smith AK, Spurbeck RR, Vangeti S, Ramos I, Nudelman G, Sealfon SC, Castellino F, Walley AM, Evans T, Müller F, Greenleaf WJ, Ecker JR. Genetics and Environment Distinctively Shape the Human Immune Cell Epigenome. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2023.06.29.546792. [PMID: 37425926 PMCID: PMC10327221 DOI: 10.1101/2023.06.29.546792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
The epigenomic landscape of human immune cells is dynamically shaped by both genetic factors and environmental exposures. However, the relative contributions of these elements are still not fully understood. In this study, we employed single-nucleus methylation sequencing and ATAC-seq to systematically explore how pathogen and chemical exposures, along with genetic variation, influence the immune cell epigenome. We identified distinct exposure-associated differentially methylated regions (eDMRs) corresponding to each exposure, revealing how environmental factors remodel the methylome, alter immune cell states, and affect transcription factor binding. Furthermore, we observed a significant correlation between changes in DNA methylation and chromatin accessibility, underscoring the coordinated response of the epigenome. We also uncovered genotype-associated DMRs (gDMRs), demonstrating that while eDMRs are enriched in regulatory regions, gDMRs are preferentially located in gene body marks, suggesting that exposures and genetic factors exert differential regulatory control. Notably, disease-associated SNPs were frequently colocalized with meQTLs, providing new cell-type-specific insights into the genetic basis of disease. Our findings underscore the intricate interplay between genetic and environmental factors in sculpting the immune cell epigenome, offering a deeper understanding of how immune cell function is regulated in health and disease.
Collapse
Affiliation(s)
- Wenliang Wang
- Genomic Analysis Laboratory, The Salk Institute for Biological Studies, 10010 N Torrey Pines Rd, La Jolla, CA 92037, USA
| | - Manoj Hariharan
- Genomic Analysis Laboratory, The Salk Institute for Biological Studies, 10010 N Torrey Pines Rd, La Jolla, CA 92037, USA
| | - Wubin Ding
- Genomic Analysis Laboratory, The Salk Institute for Biological Studies, 10010 N Torrey Pines Rd, La Jolla, CA 92037, USA
| | - Anna Bartlett
- Genomic Analysis Laboratory, The Salk Institute for Biological Studies, 10010 N Torrey Pines Rd, La Jolla, CA 92037, USA
| | - Cesar Barragan
- Genomic Analysis Laboratory, The Salk Institute for Biological Studies, 10010 N Torrey Pines Rd, La Jolla, CA 92037, USA
| | - Rosa Castanon
- Genomic Analysis Laboratory, The Salk Institute for Biological Studies, 10010 N Torrey Pines Rd, La Jolla, CA 92037, USA
| | - Vince Rothenberg
- Genomic Analysis Laboratory, The Salk Institute for Biological Studies, 10010 N Torrey Pines Rd, La Jolla, CA 92037, USA
| | - Haili Song
- Genomic Analysis Laboratory, The Salk Institute for Biological Studies, 10010 N Torrey Pines Rd, La Jolla, CA 92037, USA
| | - Joseph Nery
- Genomic Analysis Laboratory, The Salk Institute for Biological Studies, 10010 N Torrey Pines Rd, La Jolla, CA 92037, USA
| | - Andrew Aldridge
- Duke University School of Medicine, Bryan Research Building, 311 Research Drive, Durham, NC 27710, USA
| | - Jordan Altshul
- Genomic Analysis Laboratory, The Salk Institute for Biological Studies, 10010 N Torrey Pines Rd, La Jolla, CA 92037, USA
| | - Mia Kenworthy
- Genomic Analysis Laboratory, The Salk Institute for Biological Studies, 10010 N Torrey Pines Rd, La Jolla, CA 92037, USA
| | - Hanqing Liu
- Genomic Analysis Laboratory, The Salk Institute for Biological Studies, 10010 N Torrey Pines Rd, La Jolla, CA 92037, USA
| | - Wei Tian
- Genomic Analysis Laboratory, The Salk Institute for Biological Studies, 10010 N Torrey Pines Rd, La Jolla, CA 92037, USA
| | - Jingtian Zhou
- Genomic Analysis Laboratory, The Salk Institute for Biological Studies, 10010 N Torrey Pines Rd, La Jolla, CA 92037, USA
| | - Qiurui Zeng
- Genomic Analysis Laboratory, The Salk Institute for Biological Studies, 10010 N Torrey Pines Rd, La Jolla, CA 92037, USA
| | - Huaming Chen
- Genomic Analysis Laboratory, The Salk Institute for Biological Studies, 10010 N Torrey Pines Rd, La Jolla, CA 92037, USA
| | - Bei Wei
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Irem B. Gündüz
- Integrative Cellular Biology & Bioinformatics Lab, Saarland University, 66123 Saarbrücken, Germany
| | - Todd Norell
- Healthspan, Resilience, and Performance, Florida Institute for Human and Machine Cognition, 40 S Alcaniz St, Pensacola, FL 32502, USA
| | - Timothy J Broderick
- Healthspan, Resilience, and Performance, Florida Institute for Human and Machine Cognition, 40 S Alcaniz St, Pensacola, FL 32502, USA
| | - Micah T. McClain
- Center for Infectious Disease Diagnostics and Innovation, Division of Infectious Diseases, Duke University Medical Center, Durham, NC 27710 USA
- Durham Veterans Affairs Medical Center, Durham, NC 27705 USA
| | - Lisa L. Satterwhite
- Department of Civil and Environmental Engineering, Pratt School of Engineering, Duke University, Durham, NC 27708, USA
| | - Thomas W. Burke
- Center for Infectious Disease Diagnostics and Innovation, Division of Infectious Diseases, Duke University Medical Center, Durham, NC 27710 USA
| | - Elizabeth A. Petzold
- Center for Infectious Disease Diagnostics and Innovation, Division of Infectious Diseases, Duke University Medical Center, Durham, NC 27710 USA
| | - Xiling Shen
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90024, USA
| | - Christopher W. Woods
- Center for Infectious Disease Diagnostics and Innovation, Division of Infectious Diseases, Duke University Medical Center, Durham, NC 27710 USA
- Durham Veterans Affairs Medical Center, Durham, NC 27705 USA
| | - Vance G. Fowler
- Center for Infectious Disease Diagnostics and Innovation, Division of Infectious Diseases, Duke University Medical Center, Durham, NC 27710 USA
- Duke Clinical Research Institute, Durham NC 27701 USA
| | - Felicia Ruffin
- Center for Infectious Disease Diagnostics and Innovation, Division of Infectious Diseases, Duke University Medical Center, Durham, NC 27710 USA
| | - Parinya Panuwet
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA 30322 USA
| | - Dana B. Barr
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA 30322 USA
| | | | - Anthony K. Smith
- Battelle Memorial Institute, 505 King Ave Columbus OH 43201, USA
| | | | - Sindhu Vangeti
- Department of Neurology, Icahn School of Medicine at Mount Sinai; New York, NY 10029, USA
| | - Irene Ramos
- Department of Neurology, Icahn School of Medicine at Mount Sinai; New York, NY 10029, USA
| | - German Nudelman
- Department of Neurology, Icahn School of Medicine at Mount Sinai; New York, NY 10029, USA
| | - Stuart C. Sealfon
- Department of Neurology, Icahn School of Medicine at Mount Sinai; New York, NY 10029, USA
| | - Flora Castellino
- U.S. Department of Health and Human Services, Administration for Strategic Preparedness and Response, Biomedical Advanced Research and Development Authority, Washington, DC, USA
| | - Anna Maria Walley
- Vaccitech plc, Unit 6-10, Zeus Building, Rutherford Avenue, Harwell OX11 0DF, United Kingdom
| | - Thomas Evans
- Vaccitech plc, Unit 6-10, Zeus Building, Rutherford Avenue, Harwell OX11 0DF, United Kingdom
| | - Fabian Müller
- Integrative Cellular Biology & Bioinformatics Lab, Saarland University, 66123 Saarbrücken, Germany
| | | | - Joseph R. Ecker
- Genomic Analysis Laboratory, The Salk Institute for Biological Studies, 10010 N Torrey Pines Rd, La Jolla, CA 92037, USA
- Howard Hughes Medical Institute, The Salk Institute for Biological Studies, 10010 N Torrey Pines Rd, La Jolla, CA 92037, USA
| |
Collapse
|
8
|
Aubergeon L, Felten R, Gottenberg JE, Dumortier H, Monneaux F. Subset of DN Memory B Cells Expressing Low Levels of Inhibitory Receptor BTLA Is Enriched in SLE Patients. Cells 2024; 13:2063. [PMID: 39768154 PMCID: PMC11674271 DOI: 10.3390/cells13242063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 12/09/2024] [Accepted: 12/10/2024] [Indexed: 01/11/2025] Open
Abstract
The dialogue between T and B cells can be regulated by different mechanisms, such as co-inhibitory receptors, which therefore play a crucial role in preventing autoimmune diseases such as systemic lupus erythematosus (SLE). B and T lymphocyte attenuator (BTLA) is a co-inhibitory receptor expressed on many myeloid and lymphoid cells. Although peripheral B cells express a very high amount of BTLA, previous works in the context of autoimmunity mainly focused on T cells, and whether BTLA expression on B cells plays a role in the lupus pathogenesis is still unclear. In the present study, we examine the expression of BTLA, as well as its ligand HVEM (Herpesvirus Entry Mediator), on various B cell subsets in lupus patients compared to healthy controls (HCs). We evidenced the existence of double-negative (DN; IgD-CD27-) memory B cells expressing very low levels of BTLA, which are enhanced in active lupus patients. An in-depth analysis revealed that these BTLAlow DN cells mainly correspond to the newly reported DN3 B cell subset, originally described in the context of SARS-CoV2 infection. These cells display an activated and antibody-secreting cell phenotype, and we propose that their low BTLA expression may favor their expansion and rapid differentiation into plasmablasts in lupus patients.
Collapse
Affiliation(s)
- Lucie Aubergeon
- Immunology, Immunopathology and Therapeutic Chemistry, Institute of Molecular and Cellular Biology, CNRS UPR3572, 67084 Strasbourg, France
| | - Renaud Felten
- Immunology, Immunopathology and Therapeutic Chemistry, Institute of Molecular and Cellular Biology, CNRS UPR3572, 67084 Strasbourg, France
- Rheumatology Department, National Reference Center for Autoimmune Diseases, Strasbourg University Hospital, 67000 Strasbourg, France
| | - Jacques-Eric Gottenberg
- Immunology, Immunopathology and Therapeutic Chemistry, Institute of Molecular and Cellular Biology, CNRS UPR3572, 67084 Strasbourg, France
- Rheumatology Department, National Reference Center for Autoimmune Diseases, Strasbourg University Hospital, 67000 Strasbourg, France
| | - Hélène Dumortier
- Immunology, Immunopathology and Therapeutic Chemistry, Institute of Molecular and Cellular Biology, CNRS UPR3572, 67084 Strasbourg, France
| | - Fanny Monneaux
- Immunology, Immunopathology and Therapeutic Chemistry, Institute of Molecular and Cellular Biology, CNRS UPR3572, 67084 Strasbourg, France
| |
Collapse
|
9
|
de Oliveira G, Costa-Rocha IA, Oliveira-Carvalho N, dos Santos TMAF, Campi-Azevedo AC, Peruhype-Magalhães V, Miranda VHS, Prado RO, Pereira AAS, Alves CC, Brito-de-Sousa JP, Reis LR, Costa-Pereira C, da Mata CPSM, Almeida VES, dos Santos LM, Almeida GG, Antonelli LRDV, Coelho-dos-Reis JG, Teixeira-Carvalho A, Martins-Filho OA. Phenotypic Timeline Kinetics, Integrative Networks, and Performance of T- and B-Cell Subsets Associated with Distinct Clinical Outcome of Severe COVID-19 Patients. Microorganisms 2024; 12:2272. [PMID: 39597661 PMCID: PMC11596994 DOI: 10.3390/microorganisms12112272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/12/2024] [Accepted: 07/17/2024] [Indexed: 11/29/2024] Open
Abstract
The present study aimed to evaluate the kinetics of the phenotypic profile and integrative networks of T/B-cells in severe COVID-19 patients, categorized according to disease outcome, during the circulation of the B.1.1.28 and B.1.1.33 SARS-CoV-2 strains in Brazil. Peripheral blood obtained at distinct time points (baseline/D0; D7; D14-28) was used for ex vivo flow cytometry immunophenotyping. The data demonstrated a decrease at D0 in the frequency of CD3+ T-cells and CD4+ T-cells and an increase in B-cells with mixed activation/exhaustion profiles. Higher changes in B-cell and CD4+ T-cells at D7 were associated with discharge/death outcomes, respectively. Regardless of the lower T/B-cell connectivity at D0, distinct profiles from D7/D14-28 revealed that, while discharge was associated with increasing connectivity for B-cells, CD4+ and CD8+ T-cells death was related to increased connectivity involving B-cells, but with lower connections mediated by CD4+ T-cells. The CD4+CD38+ and CD8+CD69+ subsets accurately classified COVID-19 vs. healthy controls throughout the kinetic analysis. Binary logistic regression identified CD4+CD107a+, CD4+T-bet+, CD8+CD69+, and CD8+T-bet+ at D0 and CD4+CD45RO+CD27+ at D7 as subsets associated with disease outcomes. Results showed that distinct phenotypic timeline kinetics and integrative networks of T/B-cells are associated with COVID-19 outcomes that may subsidize the establishment of applicable biomarkers for clinical/therapeutic monitoring.
Collapse
Affiliation(s)
- Gabriela de Oliveira
- Grupo Integrado de Pesquisas em Biomarcadores, Instituto René Rachou, Fundação Oswaldo Cruz-FIOCRUZ-Minas, Belo Horizonte 30190-002, MG, Brazil; (G.d.O.); (I.A.C.-R.); (N.O.-C.); (T.M.A.F.d.S.); (A.C.C.-A.); (V.P.-M.); (V.H.S.M.); (R.O.P.); (A.A.S.P.); (C.C.A.); (L.R.R.); (C.C.-P.); (L.M.d.S.); (J.G.C.-d.-R.); (A.T.-C.)
| | - Ismael Artur Costa-Rocha
- Grupo Integrado de Pesquisas em Biomarcadores, Instituto René Rachou, Fundação Oswaldo Cruz-FIOCRUZ-Minas, Belo Horizonte 30190-002, MG, Brazil; (G.d.O.); (I.A.C.-R.); (N.O.-C.); (T.M.A.F.d.S.); (A.C.C.-A.); (V.P.-M.); (V.H.S.M.); (R.O.P.); (A.A.S.P.); (C.C.A.); (L.R.R.); (C.C.-P.); (L.M.d.S.); (J.G.C.-d.-R.); (A.T.-C.)
| | - Nani Oliveira-Carvalho
- Grupo Integrado de Pesquisas em Biomarcadores, Instituto René Rachou, Fundação Oswaldo Cruz-FIOCRUZ-Minas, Belo Horizonte 30190-002, MG, Brazil; (G.d.O.); (I.A.C.-R.); (N.O.-C.); (T.M.A.F.d.S.); (A.C.C.-A.); (V.P.-M.); (V.H.S.M.); (R.O.P.); (A.A.S.P.); (C.C.A.); (L.R.R.); (C.C.-P.); (L.M.d.S.); (J.G.C.-d.-R.); (A.T.-C.)
| | - Tâmilla Mayane Alves Fidelis dos Santos
- Grupo Integrado de Pesquisas em Biomarcadores, Instituto René Rachou, Fundação Oswaldo Cruz-FIOCRUZ-Minas, Belo Horizonte 30190-002, MG, Brazil; (G.d.O.); (I.A.C.-R.); (N.O.-C.); (T.M.A.F.d.S.); (A.C.C.-A.); (V.P.-M.); (V.H.S.M.); (R.O.P.); (A.A.S.P.); (C.C.A.); (L.R.R.); (C.C.-P.); (L.M.d.S.); (J.G.C.-d.-R.); (A.T.-C.)
| | - Ana Carolina Campi-Azevedo
- Grupo Integrado de Pesquisas em Biomarcadores, Instituto René Rachou, Fundação Oswaldo Cruz-FIOCRUZ-Minas, Belo Horizonte 30190-002, MG, Brazil; (G.d.O.); (I.A.C.-R.); (N.O.-C.); (T.M.A.F.d.S.); (A.C.C.-A.); (V.P.-M.); (V.H.S.M.); (R.O.P.); (A.A.S.P.); (C.C.A.); (L.R.R.); (C.C.-P.); (L.M.d.S.); (J.G.C.-d.-R.); (A.T.-C.)
| | - Vanessa Peruhype-Magalhães
- Grupo Integrado de Pesquisas em Biomarcadores, Instituto René Rachou, Fundação Oswaldo Cruz-FIOCRUZ-Minas, Belo Horizonte 30190-002, MG, Brazil; (G.d.O.); (I.A.C.-R.); (N.O.-C.); (T.M.A.F.d.S.); (A.C.C.-A.); (V.P.-M.); (V.H.S.M.); (R.O.P.); (A.A.S.P.); (C.C.A.); (L.R.R.); (C.C.-P.); (L.M.d.S.); (J.G.C.-d.-R.); (A.T.-C.)
| | - Vitor Hugo Simões Miranda
- Grupo Integrado de Pesquisas em Biomarcadores, Instituto René Rachou, Fundação Oswaldo Cruz-FIOCRUZ-Minas, Belo Horizonte 30190-002, MG, Brazil; (G.d.O.); (I.A.C.-R.); (N.O.-C.); (T.M.A.F.d.S.); (A.C.C.-A.); (V.P.-M.); (V.H.S.M.); (R.O.P.); (A.A.S.P.); (C.C.A.); (L.R.R.); (C.C.-P.); (L.M.d.S.); (J.G.C.-d.-R.); (A.T.-C.)
| | - Roberta Oliveira Prado
- Grupo Integrado de Pesquisas em Biomarcadores, Instituto René Rachou, Fundação Oswaldo Cruz-FIOCRUZ-Minas, Belo Horizonte 30190-002, MG, Brazil; (G.d.O.); (I.A.C.-R.); (N.O.-C.); (T.M.A.F.d.S.); (A.C.C.-A.); (V.P.-M.); (V.H.S.M.); (R.O.P.); (A.A.S.P.); (C.C.A.); (L.R.R.); (C.C.-P.); (L.M.d.S.); (J.G.C.-d.-R.); (A.T.-C.)
| | - Agnes Antônia Sampaio Pereira
- Grupo Integrado de Pesquisas em Biomarcadores, Instituto René Rachou, Fundação Oswaldo Cruz-FIOCRUZ-Minas, Belo Horizonte 30190-002, MG, Brazil; (G.d.O.); (I.A.C.-R.); (N.O.-C.); (T.M.A.F.d.S.); (A.C.C.-A.); (V.P.-M.); (V.H.S.M.); (R.O.P.); (A.A.S.P.); (C.C.A.); (L.R.R.); (C.C.-P.); (L.M.d.S.); (J.G.C.-d.-R.); (A.T.-C.)
| | - Clarice Carvalho Alves
- Grupo Integrado de Pesquisas em Biomarcadores, Instituto René Rachou, Fundação Oswaldo Cruz-FIOCRUZ-Minas, Belo Horizonte 30190-002, MG, Brazil; (G.d.O.); (I.A.C.-R.); (N.O.-C.); (T.M.A.F.d.S.); (A.C.C.-A.); (V.P.-M.); (V.H.S.M.); (R.O.P.); (A.A.S.P.); (C.C.A.); (L.R.R.); (C.C.-P.); (L.M.d.S.); (J.G.C.-d.-R.); (A.T.-C.)
| | - Joaquim Pedro Brito-de-Sousa
- Departamento de Imunologia e Parasitologia, Universidade Federal de Uberlândia, Uberlândia 38408-100, MG, Brazil;
| | - Laise Rodrigues Reis
- Grupo Integrado de Pesquisas em Biomarcadores, Instituto René Rachou, Fundação Oswaldo Cruz-FIOCRUZ-Minas, Belo Horizonte 30190-002, MG, Brazil; (G.d.O.); (I.A.C.-R.); (N.O.-C.); (T.M.A.F.d.S.); (A.C.C.-A.); (V.P.-M.); (V.H.S.M.); (R.O.P.); (A.A.S.P.); (C.C.A.); (L.R.R.); (C.C.-P.); (L.M.d.S.); (J.G.C.-d.-R.); (A.T.-C.)
| | - Christiane Costa-Pereira
- Grupo Integrado de Pesquisas em Biomarcadores, Instituto René Rachou, Fundação Oswaldo Cruz-FIOCRUZ-Minas, Belo Horizonte 30190-002, MG, Brazil; (G.d.O.); (I.A.C.-R.); (N.O.-C.); (T.M.A.F.d.S.); (A.C.C.-A.); (V.P.-M.); (V.H.S.M.); (R.O.P.); (A.A.S.P.); (C.C.A.); (L.R.R.); (C.C.-P.); (L.M.d.S.); (J.G.C.-d.-R.); (A.T.-C.)
| | | | | | - Liliane Martins dos Santos
- Grupo Integrado de Pesquisas em Biomarcadores, Instituto René Rachou, Fundação Oswaldo Cruz-FIOCRUZ-Minas, Belo Horizonte 30190-002, MG, Brazil; (G.d.O.); (I.A.C.-R.); (N.O.-C.); (T.M.A.F.d.S.); (A.C.C.-A.); (V.P.-M.); (V.H.S.M.); (R.O.P.); (A.A.S.P.); (C.C.A.); (L.R.R.); (C.C.-P.); (L.M.d.S.); (J.G.C.-d.-R.); (A.T.-C.)
| | - Gregório Guilherme Almeida
- Biologia e Imunologia de Doenças Infecciosas e Parasitárias, Instituto René Rachou, Fundação Oswaldo Cruz-FIOCRUZ-Minas, Belo Horizonte 30190-002, MG, Brazil; (G.G.A.); (L.R.d.V.A.)
| | - Lis Ribeiro do Valle Antonelli
- Biologia e Imunologia de Doenças Infecciosas e Parasitárias, Instituto René Rachou, Fundação Oswaldo Cruz-FIOCRUZ-Minas, Belo Horizonte 30190-002, MG, Brazil; (G.G.A.); (L.R.d.V.A.)
| | - Jordana Grazziela Coelho-dos-Reis
- Grupo Integrado de Pesquisas em Biomarcadores, Instituto René Rachou, Fundação Oswaldo Cruz-FIOCRUZ-Minas, Belo Horizonte 30190-002, MG, Brazil; (G.d.O.); (I.A.C.-R.); (N.O.-C.); (T.M.A.F.d.S.); (A.C.C.-A.); (V.P.-M.); (V.H.S.M.); (R.O.P.); (A.A.S.P.); (C.C.A.); (L.R.R.); (C.C.-P.); (L.M.d.S.); (J.G.C.-d.-R.); (A.T.-C.)
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil
| | - Andréa Teixeira-Carvalho
- Grupo Integrado de Pesquisas em Biomarcadores, Instituto René Rachou, Fundação Oswaldo Cruz-FIOCRUZ-Minas, Belo Horizonte 30190-002, MG, Brazil; (G.d.O.); (I.A.C.-R.); (N.O.-C.); (T.M.A.F.d.S.); (A.C.C.-A.); (V.P.-M.); (V.H.S.M.); (R.O.P.); (A.A.S.P.); (C.C.A.); (L.R.R.); (C.C.-P.); (L.M.d.S.); (J.G.C.-d.-R.); (A.T.-C.)
| | - Olindo Assis Martins-Filho
- Grupo Integrado de Pesquisas em Biomarcadores, Instituto René Rachou, Fundação Oswaldo Cruz-FIOCRUZ-Minas, Belo Horizonte 30190-002, MG, Brazil; (G.d.O.); (I.A.C.-R.); (N.O.-C.); (T.M.A.F.d.S.); (A.C.C.-A.); (V.P.-M.); (V.H.S.M.); (R.O.P.); (A.A.S.P.); (C.C.A.); (L.R.R.); (C.C.-P.); (L.M.d.S.); (J.G.C.-d.-R.); (A.T.-C.)
| |
Collapse
|
10
|
Liu Z, Petinrin OO, Chen N, Toseef M, Liu F, Zhu Z, Qi F, Wong KC. Identification and evaluation of candidate COVID-19 critical genes and medicinal drugs related to plasma cells. BMC Infect Dis 2024; 24:1099. [PMID: 39363208 PMCID: PMC11451256 DOI: 10.1186/s12879-024-10000-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Accepted: 09/25/2024] [Indexed: 10/05/2024] Open
Abstract
The ongoing COVID-19 pandemic, caused by the SARS-CoV-2 virus, represents one of the most significant global health crises in recent history. Despite extensive research into the immune mechanisms and therapeutic options for COVID-19, there remains a paucity of studies focusing on plasma cells. In this study, we utilized the DESeq2 package to identify differentially expressed genes (DEGs) between COVID-19 patients and controls using datasets GSE157103 and GSE152641. We employed the xCell algorithm to perform immune infiltration analyses, revealing notably elevated levels of plasma cells in COVID-19 patients compared to healthy individuals. Subsequently, we applied the Weighted Gene Co-expression Network Analysis (WGCNA) algorithm to identify COVID-19 related plasma cell module genes. Further, positive cluster biomarker genes for plasma cells were extracted from single-cell RNA sequencing data (GSE171524), leading to the identification of 122 shared genes implicated in critical biological processes such as cell cycle regulation and viral infection pathways. We constructed a robust protein-protein interaction (PPI) network comprising 89 genes using Cytoscape, and identified 20 hub genes through cytoHubba. These genes were validated in external datasets (GSE152418 and GSE179627). Additionally, we identified three potential small molecules (GSK-1070916, BRD-K89997465, and idarubicin) that target key hub genes in the network, suggesting a novel therapeutic approach. These compounds were characterized by their ability to down-regulate AURKB, KIF11, and TOP2A effectively, as evidenced by their low free binding energies determined through computational analyses using cMAP and AutoDock. This study marks the first comprehensive exploration of plasma cells' role in COVID-19, offering new insights and potential therapeutic targets. It underscores the importance of a systematic approach to understanding and treating COVID-19, expanding the current body of knowledge and providing a foundation for future research.
Collapse
Affiliation(s)
- Zhe Liu
- Institute for Hepatology, The Second Affiliated Hospital, School of Medicine, National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, Southern University of Science and Technology, Shenzhen, Guangdong Province, 518112, China
- Department of Computer Science, City University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | | | - Nanjun Chen
- Department of Computer Science, City University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Muhammad Toseef
- Department of Computer Science, City University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Fang Liu
- Rocgene (Beijing) Technology Co., Ltd, Beijing, Beijing, 102200, China
| | - Zhongxu Zhu
- HIM-BGI Omics Center, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, China.
| | - Furong Qi
- Institute for Hepatology, The Second Affiliated Hospital, School of Medicine, National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, Southern University of Science and Technology, Shenzhen, Guangdong Province, 518112, China.
| | - Ka-Chun Wong
- Department of Computer Science, City University of Hong Kong, Hong Kong, Hong Kong SAR, China.
- Shenzhen Research Institute, City University of Hong Kong, Shenzhen, China.
| |
Collapse
|
11
|
Sejdic A, Hartling HJ, Gitz Holler J, Klingen Gjærde L, Matovu Dungu A, Engel Møller ME, Svanberg Teglgaard R, Utoft Niemann CU, Brooks PT, Mogensen TH, Weis N, Podlekareva D, Baum Jørgensen ML, Ortved Gang A, Stampe Hersby D, Hald A, Dam Nielsen S, Lebech AM, Helleberg M, Lundgren J, Træholt Franck K, Fischer TK, Harboe ZB, Marquart HV, Rye Ostrowski S, Lindegaard B. Deep immune cell phenotyping and induced immune cell responses at admission stratified by BMI in patients hospitalized with COVID-19: An observational multicenter cohort pilot study. Clin Immunol 2024; 267:110336. [PMID: 39117044 DOI: 10.1016/j.clim.2024.110336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 07/18/2024] [Accepted: 07/28/2024] [Indexed: 08/10/2024]
Abstract
INTRODUCTION Overweight and obesity are linked to increased hospitalization and mortality in COVID-19 patients. This study aimed to characterize induced immune responses and deep immune cell profiles stratified by BMI in hospitalized COVID-19 patients. METHODS AND RESULTS This observational multicenter cohort pilot study included 122 adult patients with PCR-confirmed COVID-19 in Denmark, stratified by BMI (normal weight, overweight, obese). Inflammation was assessed using TruCulture® and immune cell profiles by flow cytometry with a customized antibody panel (DuraClone®). Patients with obesity had a more pro-inflammatory phenotype with increased TNF-α, IL-8, IL-17, and IL-10 levels post-T cell stimulation, and altered B cell profiles. Patients with obesity showed higher concentrations of naïve, transitional, and non-isotype switched memory B cells, and plasmablasts compared to normal weight patients and healthy controls. CONCLUSIONS Obesity in hospitalized COVID-19 patients may correlate with elevated pro-inflammatory cytokines, anti-inflammatory IL-10, and increased B cell subset activation, highlighting the need for further studies.
Collapse
Affiliation(s)
- Adin Sejdic
- Department of Pulmonary and Infectious Diseases, Copenhagen University Hospital - North Zealand, Hillerød, Denmark; Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| | - Hans Jakob Hartling
- Department of Clinical Immunology, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Jon Gitz Holler
- Department of Pulmonary and Infectious Diseases, Copenhagen University Hospital - North Zealand, Hillerød, Denmark
| | - Lars Klingen Gjærde
- Department of Haematology, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Arnold Matovu Dungu
- Department of Pulmonary and Infectious Diseases, Copenhagen University Hospital - North Zealand, Hillerød, Denmark
| | | | | | - Carsten Utoft Utoft Niemann
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Department of Haematology, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Patrick Terrence Brooks
- Department of Clinical Immunology, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Trine H Mogensen
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark; Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Nina Weis
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Department of Infectious Diseases, Copenhagen University Hospital - Hvidovre, Copenhagen, Denmark
| | - Daria Podlekareva
- Department of Respiratory Medicine and Infectious Disease, Copenhagen University Hospital - Bispebjerg, Denmark
| | - Marie Louise Baum Jørgensen
- Department of Respiratory Medicine and Infectious Disease, Copenhagen University Hospital - Bispebjerg, Denmark
| | - Anne Ortved Gang
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Department of Haematology, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Ditte Stampe Hersby
- Department of Haematology, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Annemette Hald
- Department of Infectious Diseases, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Susanne Dam Nielsen
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Department of Infectious Diseases, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Anne-Mette Lebech
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Department of Infectious Diseases, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Marie Helleberg
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Department of Infectious Diseases, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Jens Lundgren
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Department of Infectious Diseases, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | | | - Thea K Fischer
- Department of Clinical Research, Copenhagen University Hospital - North Zealand, Hillerød, Denmark; Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| | - Zitta Barrella Harboe
- Department of Pulmonary and Infectious Diseases, Copenhagen University Hospital - North Zealand, Hillerød, Denmark; Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Hanne Vibeke Marquart
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Department of Clinical Immunology, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Sisse Rye Ostrowski
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Department of Clinical Immunology, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Birgitte Lindegaard
- Department of Pulmonary and Infectious Diseases, Copenhagen University Hospital - North Zealand, Hillerød, Denmark; Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
12
|
Aljuaid A. Increased Activation Markers of Adaptive Immunity in Patients with Severe COVID-19. J Clin Med 2024; 13:5664. [PMID: 39407725 PMCID: PMC11477269 DOI: 10.3390/jcm13195664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 09/04/2024] [Accepted: 09/18/2024] [Indexed: 10/20/2024] Open
Abstract
Introduction: COVID-19 is a pandemic disease and is widespread over the world. This disease shows a 5.1% mortality. The understanding of the disease has expanded rapidly in many areas, including virological, epidemiological, clinical, and management dimensions. To better understand the inflammatory and immune profiles that impact the pathogenesis and development of severe COVID-19 symptoms, further studies are essential. This research aims to explore the inflammatory and adaptive immune responses associated with COVID-19, considering factors such as genetic diversity and environmental exposure among Saudi patients. The goal is to determine if patients with severe COVID-19 exhibit different disease phenotypes. Materials and Methods: This case-control study includes 115 participants (healthy and with COVID-19 infection), 55 of which had confirmed cases of COVID-19 in intensive care units (ICUs) at different hospitals in Makkah City, Saudi Arabia. Whole blood samples were collected from June to September 2021 for cellular analyses, and inflammation marker data were collected from hospital records. The expression of activation markers on B (CD27 and CD38) and T cells (CD27 and HLA-DR) was obtained using the flow cytometry technique. Also, serum was collected for cytokine measurements, including IL-6, INF-γ, and TNF- α. Results: The results indicated that lymphopenia and excessive T cell activation were more prevalent in severe cases than in healthy individuals. Furthermore, the results revealed that severe COVID-19 patients had an increased frequency of CD19+ B cells, with changes in B cell subsets. The current study implies impairment and changes in the phenotype of adaptive cells (including T and B cells), with an increase in HLA-DR molecules and inflammation markers with pro-inflammatory cytokines in severe COVID-19 cases. Conclusions: The current study implies impairment and changes in the phenotype of adaptive cells (including T and B cells), with an increase in HLA-DR molecules and inflammation markers in severe COVID-19 cases, which could be targeted for therapeutic interventions. This might be a valuable approach for the diagnosis and treatment of severe COVID-19 cases.
Collapse
Affiliation(s)
- Abdulelah Aljuaid
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| |
Collapse
|
13
|
Sun Y, Lu Y, Pan X, Zhang C, Wang L, Zhang L. Early B lymphocyte subsets in blood predict prognosis in sepsis. Front Immunol 2024; 15:1437864. [PMID: 39359725 PMCID: PMC11445034 DOI: 10.3389/fimmu.2024.1437864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 08/28/2024] [Indexed: 10/04/2024] Open
Abstract
Background B lymphocytes play a key role in immunosuppression. This study investigated the prognostic value of B cell subsets in sepsis. Methods Flow cytometry was used to assess peripheral B cell subsets from patients with sepsis on the first and seventh days following admission, as well as 111 healthy controls. The patients were divided into survivors and non-survivors, based on 28-day prognosis. Results The analysis showed abnormal distribution and selective depletion of B cells and its subsets in the early stages of sepsis. On day 1, compared with survivors, non-survivors showed significant decreases in the proportion and absolute count of transitional (Tr) B cells, reductions in the proportion of CD5+ B cells, and increases in the proportion of double-negative (DN) B cells. On day 7, the proportions and absolute counts of Tr and CD5+ B cells significantly decreased whereas the proportion of DN B cells significantly increased in non-survivors. Ninety-four survivors and 15 non-survivors were included in our paired-sample rank-sum test. Compared to day 1, only the survivors showed significant increases in absolute B, Tr B, and CD5+ B cell counts by day 7. Multivariate Cox regression analysis showed that the proportion of DN B cells on day 1 (hazard ratio = 1.092 [95% confidence interval: 1.035-1.152], P = 0.001) was a risk factor for mortality, and Kaplan-Meier survival curve analysis showed that patients with proportions of DN B cells > 11.81% on day 1 had poorer prognoses. Receiver operating characteristic curve analysis showed that B cell subset parameters could predict mortality (area under the receiver operating characteristic curve [AUC], 0.741) and enhanced the prognostic value of the Acute Physiology and Chronic Health Evaluation II score (AUC, 0.840). Conclusion Our study revealed that deficiencies of B, Tr B, and CD5+ B cells, as well as a persistent increase in the proportion of DN B cells, were associated with poor prognosis-and that B cell subsets showed predictive value to mortality. These results provide new insights into the roles of B cell subsets in sepsis, as well as ways to better manage its progression and predict its course.
Collapse
Affiliation(s)
- Yingqian Sun
- Clinical Laboratory, Affiliated Dongyang Hospital of Wenzhou Medical University, Dongyang, Zhejiang, China
| | - Yan Lu
- Clinical Laboratory, Affiliated Dongyang Hospital of Wenzhou Medical University, Dongyang, Zhejiang, China
| | - Xinling Pan
- Department of Biomedical Sciences Laboratory, Affiliated Dongyang Hospital of Wenzhou Medical University, Dongyang, Zhejiang, China
| | - Chengliang Zhang
- Clinical Laboratory, Affiliated Dongyang Hospital of Wenzhou Medical University, Dongyang, Zhejiang, China
| | - Liang Wang
- Clinical Laboratory, Affiliated Dongyang Hospital of Wenzhou Medical University, Dongyang, Zhejiang, China
| | - Longyi Zhang
- Clinical Laboratory, Affiliated Dongyang Hospital of Wenzhou Medical University, Dongyang, Zhejiang, China
| |
Collapse
|
14
|
Silva-Junior AL, Oliveira LS, Dias S, Costa TCC, Xabregas LA, Alves-Hanna FS, Abrahim CMM, Neves WLL, Crispim MAE, Toro DM, Silva-Neto PV, Aponte DCM, Oliveira TC, Silva MCC, Matos MMM, Carvalho MPSS, Tarragô AM, Fraiji NA, Faccioli LH, Sorgi CA, Sabino EC, Teixeira-Carvalho A, Martins-Filho OA, Costa AG, Malheiro A. Immunologic mediators profile in COVID-19 convalescence. Sci Rep 2024; 14:20930. [PMID: 39251702 PMCID: PMC11384766 DOI: 10.1038/s41598-024-71419-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Accepted: 08/27/2024] [Indexed: 09/11/2024] Open
Abstract
SARS-CoV-2 caused the pandemic situation experienced since the beginning of 2020, and many countries faced the rapid spread and severe form of the disease. Mechanisms of interaction between the virus and the host were observed during acute phase, but few data are available when related to immunity dynamics in convalescents. We conducted a longitudinal study, with 51 healthy donors and 62 COVID-19 convalescent patients, which these had a 2-month follow-up after symptoms recovery. Venous blood sample was obtained from all participants to measure blood count, subpopulations of monocytes, lymphocytes, natural killer cells and dendritic cells. Serum was used to measure cytokines, chemokines, growth factors, anti-N IgG and anti-S IgG/IgM antibodies. Statistic was performed by Kruskal-Wallis test, and linear regression with days post symptoms and antibody titers. All analysis had confidence interval of 95%. Less than 35% of convalescents were anti-S IgM+, while more than 80% were IgG+ in D30. Anti-N IgG decreased along time, with loss of seroreactivity of 13%. Eosinophil count played a distinct role on both antibodies during all study, and the convalescence was orchestrated by higher neutrophil-to-lymphocyte ratio and IL-15, but initial stages were marked by increase in myeloid DCs, B1 lymphocytes, inflammatory and patrolling monocytes, G-CSF and IL-2. Later convalescence seemed to change to cytotoxicity mediated by T lymphocytes, plasmacytoid DCs, VEGF, IL-9 and CXCL10. Anti-S IgG antibodies showed the longest perseverance and may be a better option for diagnosis. The inflammatory pattern is yet present on initial stage of convalescence, but quickly shifts to a reparative dynamic. Meanwhile eosinophils seem to play a role on anti-N levels in convalescence, although may not be the major causative agent. We must highlight the importance of immunological markers on acute clinical outcomes, but their comprehension to potentialize adaptive system must be explored to improve immunizations and further preventive policies.
Collapse
Affiliation(s)
- Alexander Leonardo Silva-Junior
- Programa de Pós-Graduação em Biotecnologia, Universidade Federal do Amazonas (UFAM), Manaus, AM, Brazil
- Departamento de Ensino e Pesquisa, Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas (HEMOAM), Manaus, AM, Brazil
| | - Lucas Silva Oliveira
- Programa de Pós-Graduação em Biotecnologia, Universidade Federal do Amazonas (UFAM), Manaus, AM, Brazil
- Departamento de Ensino e Pesquisa, Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas (HEMOAM), Manaus, AM, Brazil
| | - Stephanny Dias
- Departamento de Ensino e Pesquisa, Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas (HEMOAM), Manaus, AM, Brazil
- Programa de Pós-Graduação em Ciências Aplicadas à Hematologia, Universidade do Estado do Amazonas (UEA), Manaus, AM, Brazil
| | - Thaina Cristina Cardoso Costa
- Departamento de Ensino e Pesquisa, Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas (HEMOAM), Manaus, AM, Brazil
| | - Lilyane Amorim Xabregas
- Departamento de Ensino e Pesquisa, Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas (HEMOAM), Manaus, AM, Brazil
| | - Fabíola Silva Alves-Hanna
- Departamento de Ensino e Pesquisa, Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas (HEMOAM), Manaus, AM, Brazil
- Programa de Pós-Graduação em Imunologia Básica e Aplicada, Universidade Federal do Amazonas (UFAM), Manaus, AM, Brazil
| | - Cláudia Maria Moura Abrahim
- Departamento de Ensino e Pesquisa, Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas (HEMOAM), Manaus, AM, Brazil
| | - Walter Luiz Lima Neves
- Departamento de Ensino e Pesquisa, Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas (HEMOAM), Manaus, AM, Brazil
| | - Myuki Alfaia Esashika Crispim
- Departamento de Ensino e Pesquisa, Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas (HEMOAM), Manaus, AM, Brazil
| | - Diana Mota Toro
- Programa de Pós-Graduação em Imunologia Básica e Aplicada, Universidade Federal do Amazonas (UFAM), Manaus, AM, Brazil
| | - Pedro Vieira Silva-Neto
- Programa de Pós-Graduação em Imunologia Básica e Aplicada, Universidade Federal do Amazonas (UFAM), Manaus, AM, Brazil
| | | | | | | | | | | | - Andrea Monteiro Tarragô
- Departamento de Ensino e Pesquisa, Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas (HEMOAM), Manaus, AM, Brazil
- Programa de Pós-Graduação em Ciências Aplicadas à Hematologia, Universidade do Estado do Amazonas (UEA), Manaus, AM, Brazil
- Rede Genômica em Saúde do Estado do Amazonas (REGESAM), Manaus, AM, Brazil
| | - Nelson Abrahim Fraiji
- Departamento de Ensino e Pesquisa, Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas (HEMOAM), Manaus, AM, Brazil
| | - Lúcia Helena Faccioli
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo (USP), Ribeirão Preto, SP, Brazil
| | - Carlos Artério Sorgi
- Programa de Pós-Graduação em Imunologia Básica e Aplicada, Universidade Federal do Amazonas (UFAM), Manaus, AM, Brazil
- Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo (USP), Ribeirão Preto, SP, Brazil
| | | | - Andrea Teixeira-Carvalho
- Grupo Integrado de Pesquisas em Biomarcadores, Instituto René Rachou, Fundação Oswaldo Cruz (FIOCRUZ-Minas), Belo Horizonte, MG, Brazil
| | - Olindo Assis Martins-Filho
- Grupo Integrado de Pesquisas em Biomarcadores, Instituto René Rachou, Fundação Oswaldo Cruz (FIOCRUZ-Minas), Belo Horizonte, MG, Brazil
| | - Allyson Guimarães Costa
- Departamento de Ensino e Pesquisa, Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas (HEMOAM), Manaus, AM, Brazil.
- Programa de Pós-Graduação em Ciências Aplicadas à Hematologia, Universidade do Estado do Amazonas (UEA), Manaus, AM, Brazil.
- Programa de Pós-Graduação em Imunologia Básica e Aplicada, Universidade Federal do Amazonas (UFAM), Manaus, AM, Brazil.
- Rede Genômica em Saúde do Estado do Amazonas (REGESAM), Manaus, AM, Brazil.
| | - Adriana Malheiro
- Programa de Pós-Graduação em Biotecnologia, Universidade Federal do Amazonas (UFAM), Manaus, AM, Brazil.
- Departamento de Ensino e Pesquisa, Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas (HEMOAM), Manaus, AM, Brazil.
- Programa de Pós-Graduação em Ciências Aplicadas à Hematologia, Universidade do Estado do Amazonas (UEA), Manaus, AM, Brazil.
- Programa de Pós-Graduação em Imunologia Básica e Aplicada, Universidade Federal do Amazonas (UFAM), Manaus, AM, Brazil.
- Rede Genômica em Saúde do Estado do Amazonas (REGESAM), Manaus, AM, Brazil.
| |
Collapse
|
15
|
Zhang Y, Hua J, Chen L. Identifying the plasma metabolome responsible for mediating immune cell action in severe COVID-19: a Mendelian randomization investigation. Front Cell Infect Microbiol 2024; 14:1393432. [PMID: 39224704 PMCID: PMC11366714 DOI: 10.3389/fcimb.2024.1393432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 07/30/2024] [Indexed: 09/04/2024] Open
Abstract
Introduction The immune response regulates the severity of COVID-19 (sCOVID-19). This study examined the cause-and-effect relationship between immune cell traits (ICTs) and the risk of severe COVID-19. Additionally, we discovered the potential role of plasma metabolome in modulating this risk. Methods Employing data from a genome-wide association study (GWAS), we conducted a two-sample Mendelian randomization (MR) assessment of 731 genetic ICTs and sCOVID-19 (5,101 cases, 1,383,241 controls) incidence. The MR analysis was utilized to further quantitate the degree of plasma metabolome-mediated regulation of immune traits in sCOVID-19. Results The inverse variance weighted method recognized 2 plasma metabolites (PMs) responsible for casual associations between immune cells and sCOVID-19 risk. These included Tridecenedioate (C13:1-DC) which regulated the association between CD27 on IgD- CD38br (OR 0.804, 95% CI 0.699-0.925, p = 0.002) and sCOVID-19 risk (mediated proportion: 18.7%); arginine to citrulline ratio which controlled the relationship of CD39 on monocyte (OR 1.053, 95% CI 1.013-1.094, p = 0.009) with sCOVID-19 risk (mediated proportion: -7.11%). No strong evidence that genetically predicted sCOVID-19 influenced the aforementioned immune traits. Conclusion In this study, we have successfully identified a cause-and-effect relationship between certain ICTs, PMs, and the likelihood of contracting severe COVID-19. Our findings can potentially improve the accuracy of COVID-19 prognostic evaluation and provide valuable insights into the underlying mechanisms of the disease.
Collapse
Affiliation(s)
- Yixia Zhang
- Department of Hematology, Nanjing Lishui People’s Hospital, Zhongda Hospital Lishui Branch, Southeast University, Nanjing, China
| | - Jie Hua
- Department of Gastroenterology, Jiangsu Province People’s Hospital, Nanjing, China
| | - Liang Chen
- Department of Infectious Diseases, Taikang Xianlin Drum Tower Hospital, Affiliated Hospital of Medical College of Nanjing University, Nanjing, China
| |
Collapse
|
16
|
García-Vega M, Llamas-Covarrubias MA, Loza M, Reséndiz-Sandoval M, Hinojosa-Trujillo D, Melgoza-González E, Valenzuela O, Mata-Haro V, Hernández-Oñate M, Soto-Gaxiola A, Chávez-Rueda K, Nakai K, Hernández J. Single-cell transcriptomic analysis of B cells reveals new insights into atypical memory B cells in COVID-19. J Med Virol 2024; 96:e29851. [PMID: 39132689 DOI: 10.1002/jmv.29851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/10/2024] [Accepted: 07/31/2024] [Indexed: 08/13/2024]
Abstract
Here, we performed single-cell RNA sequencing of S1 and receptor binding domain protein-specific B cells from convalescent COVID-19 patients with different clinical manifestations. This study aimed to evaluate the role and developmental pathway of atypical memory B cells (MBCs) in response to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. The results revealed a proinflammatory signature across B cell subsets associated with disease severity, as evidenced by the upregulation of genes such as GADD45B, MAP3K8, and NFKBIA in critical and severe individuals. Furthermore, the analysis of atypical MBCs suggested a developmental pathway similar to that of conventional MBCs through germinal centers, as indicated by the expression of several genes involved in germinal center processes, including CXCR4, CXCR5, BCL2, and MYC. Additionally, the upregulation of genes characteristic of the immune response in COVID-19, such as ZFP36 and DUSP1, suggested that the differentiation and activation of atypical MBCs may be influenced by exposure to SARS-CoV-2 and that these genes may contribute to the immune response for COVID-19 recovery. Our study contributes to a better understanding of atypical MBCs in COVID-19 and the role of other B cell subsets across different clinical manifestations.
Collapse
Affiliation(s)
- Melissa García-Vega
- Laboratorio de Inmunología, Centro de Investigación en Alimentación y Desarrollo, A.C, Hermosillo, Sonora, Mexico
| | | | - Martin Loza
- The Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo, Japan
| | - Mónica Reséndiz-Sandoval
- Laboratorio de Inmunología, Centro de Investigación en Alimentación y Desarrollo, A.C, Hermosillo, Sonora, Mexico
| | - Diana Hinojosa-Trujillo
- Laboratorio de Inmunología, Centro de Investigación en Alimentación y Desarrollo, A.C, Hermosillo, Sonora, Mexico
| | - Edgar Melgoza-González
- Laboratorio de Inmunología, Centro de Investigación en Alimentación y Desarrollo, A.C, Hermosillo, Sonora, Mexico
| | - Olivia Valenzuela
- Departamento de Ciencias Químico Biológicas, División de Ciencias Biológicas y de la Salud, Universidad de Sonora, Hermosillo, Sonora, Mexico
| | - Verónica Mata-Haro
- Laboratorio de Microbiología e Inmunología, Centro de Investigación en Alimentación y Desarrollo, A.C, Hermosillo, Sonora, Mexico
| | - Miguel Hernández-Oñate
- CONAHCYT-Laboratorio de Fisiología y Biología Molecular de Plantas, Centro de Investigación en Alimentación y Desarrollo, A.C, Hermosillo, Sonora, Mexico
| | - Alan Soto-Gaxiola
- Hospital General del Estado de Sonora "Dr. Ernesto Ramos Bours", Secretaria de Salud del Estado de Sonora, Hermosillo, Sonora, Mexico
| | - Karina Chávez-Rueda
- Unidad de Investigación Médica en Inmunología, UMAE, Hospital de Pediatría, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Ciudad de México, Mexico
| | - Kenta Nakai
- The Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo, Japan
| | - Jesús Hernández
- Laboratorio de Inmunología, Centro de Investigación en Alimentación y Desarrollo, A.C, Hermosillo, Sonora, Mexico
| |
Collapse
|
17
|
Tsay GJ, Zouali M. Cellular pathways and molecular events that shape autoantibody production in COVID-19. J Autoimmun 2024; 147:103276. [PMID: 38936147 DOI: 10.1016/j.jaut.2024.103276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 05/26/2024] [Accepted: 06/18/2024] [Indexed: 06/29/2024]
Abstract
A hallmark of COVID-19 is the variety of complications that follow SARS-CoV-2 infection in some patients, and that target multiple organs and tissues. Also remarkable are the associations with several auto-inflammatory disorders and the presence of autoantibodies directed to a vast array of antigens. The processes underlying autoantibody production in COVID-19 have not been completed deciphered. Here, we review mechanisms involved in autoantibody production in COVID-19, multisystem inflammatory syndrome in children, and post-acute sequelae of COVID19. We critically discuss how genomic integrity, loss of B cell tolerance to self, superantigen effects of the virus, and extrafollicular B cell activation could underly autoantibody proaction in COVID-19. We also offer models that may account for the pathogenic roles of autoantibodies in the promotion of inflammatory cascades, thromboembolic phenomena, and endothelial and vascular deregulations.
Collapse
Affiliation(s)
- Gregory J Tsay
- Division of Immunology and Rheumatology, Department of Internal Medicine, China Medical University Hospital, Taichung, Taiwan; College of Medicine, China Medical University, Taichung, Taiwan
| | - Moncef Zouali
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan.
| |
Collapse
|
18
|
Reyes-Huerta RF, Mandujano-López V, Velásquez-Ortiz MG, Alcalá-Carmona B, Ostos-Prado MJ, Reyna-Juárez Y, Meza-Sánchez DE, Juárez-Vega G, Mejía-Domínguez NR, Torres-Ruiz J, Gómez-Martín D, Maravillas-Montero JL. Novel B-cell subsets as potential biomarkers in idiopathic inflammatory myopathies: insights into disease pathogenesis and disease activity. J Leukoc Biol 2024; 116:84-94. [PMID: 38554062 DOI: 10.1093/jleuko/qiae083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 03/01/2024] [Accepted: 03/19/2024] [Indexed: 04/01/2024] Open
Abstract
Idiopathic inflammatory myopathies are a heterogeneous group of rare autoimmune disorders characterized by progressive muscle weakness and the histopathologic findings of inflammatory infiltrates in muscle tissue. Although their pathogenesis remains indefinite, the association of autoantibodies with clinical manifestations and the evidence of high effectiveness of depleting therapies suggest that B cells could be implicated. Therefore, we explored the landscape of peripheral B cells in this disease by multiparametric flow cytometry, finding significant numerical decreases in memory and double-negative subsets, as well as an expansion of the naive compartment relative to healthy controls, that contribute to defining disease-associated B-cell subset signatures and correlating with different clinical features of patients. Additionally, we determined the potential value of these subsets as diagnostic biomarkers, thus positioning B cells as neglected key elements possibly participating in idiopathic inflammatory myopathy onset or development.
Collapse
Affiliation(s)
- Raúl F Reyes-Huerta
- B cell Immunology Laboratory, Coordinación de la Investigación Científica, Universidad Nacional Autónoma de México, Circuito de la Investigación Científica S/N, CU, Coyoacán, Mexico City 04510, Mexico
- Doctorado en Ciencias Biomédicas, Universidad Nacional Autónoma de México, Unidad de Posgrado, CU, Coyoacán, Mexico City 04510, Mexico
| | - Vladimir Mandujano-López
- B cell Immunology Laboratory, Coordinación de la Investigación Científica, Universidad Nacional Autónoma de México, Circuito de la Investigación Científica S/N, CU, Coyoacán, Mexico City 04510, Mexico
| | - Ma Guadalupe Velásquez-Ortiz
- B cell Immunology Laboratory, Coordinación de la Investigación Científica, Universidad Nacional Autónoma de México, Circuito de la Investigación Científica S/N, CU, Coyoacán, Mexico City 04510, Mexico
- Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, Unidad de Posgrado, CU, Coyoacán, Mexico City 04510, Mexico
| | - Beatriz Alcalá-Carmona
- Departamento de Inmunología y Reumatología, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Vasco de Quiroga 15, Belisario Domínguez Sección XVI, Tlalpan, Mexico City 14080, Mexico
| | - María J Ostos-Prado
- Departamento de Inmunología y Reumatología, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Vasco de Quiroga 15, Belisario Domínguez Sección XVI, Tlalpan, Mexico City 14080, Mexico
| | - Yatzil Reyna-Juárez
- Departamento de Inmunología y Reumatología, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Vasco de Quiroga 15, Belisario Domínguez Sección XVI, Tlalpan, Mexico City 14080, Mexico
| | - David E Meza-Sánchez
- B cell Immunology Laboratory, Coordinación de la Investigación Científica, Universidad Nacional Autónoma de México, Circuito de la Investigación Científica S/N, CU, Coyoacán, Mexico City 04510, Mexico
- Red de Apoyo a la Investigación, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán y Universidad Nacional Autónoma de México, Vasco de Quiroga 15, Belisario Domínguez Sección XVI, Tlalpan, Mexico City 14080, Mexico
| | - Guillermo Juárez-Vega
- Red de Apoyo a la Investigación, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán y Universidad Nacional Autónoma de México, Vasco de Quiroga 15, Belisario Domínguez Sección XVI, Tlalpan, Mexico City 14080, Mexico
| | - Nancy R Mejía-Domínguez
- Red de Apoyo a la Investigación, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán y Universidad Nacional Autónoma de México, Vasco de Quiroga 15, Belisario Domínguez Sección XVI, Tlalpan, Mexico City 14080, Mexico
| | - Jiram Torres-Ruiz
- Departamento de Inmunología y Reumatología, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Vasco de Quiroga 15, Belisario Domínguez Sección XVI, Tlalpan, Mexico City 14080, Mexico
| | - Diana Gómez-Martín
- Departamento de Inmunología y Reumatología, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Vasco de Quiroga 15, Belisario Domínguez Sección XVI, Tlalpan, Mexico City 14080, Mexico
- Red de Apoyo a la Investigación, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán y Universidad Nacional Autónoma de México, Vasco de Quiroga 15, Belisario Domínguez Sección XVI, Tlalpan, Mexico City 14080, Mexico
| | - José L Maravillas-Montero
- B cell Immunology Laboratory, Coordinación de la Investigación Científica, Universidad Nacional Autónoma de México, Circuito de la Investigación Científica S/N, CU, Coyoacán, Mexico City 04510, Mexico
- Red de Apoyo a la Investigación, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán y Universidad Nacional Autónoma de México, Vasco de Quiroga 15, Belisario Domínguez Sección XVI, Tlalpan, Mexico City 14080, Mexico
| |
Collapse
|
19
|
Sejdic A, Hartling HJ, Holler JG, Klingen Gjærde L, Lindegaard B, Dungu AM, Gnesin F, Møller MEE, Teglgaard RS, Niemann CU, Brooks PT, Jørgensen CS, Franck KT, Fischer TK, Marquart HV, Harboe ZB, Ostrowski SR. Immune cell populations and induced immune responses at admission in patients hospitalized with vaccine breakthrough SARS-CoV-2 infections. Front Immunol 2024; 15:1360843. [PMID: 38903511 PMCID: PMC11188326 DOI: 10.3389/fimmu.2024.1360843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Accepted: 05/17/2024] [Indexed: 06/22/2024] Open
Abstract
Background Vaccine breakthrough SARS-CoV-2 infections are common and of clinical and public health concern. However, little is known about the immunological characteristics of patients hospitalized due to these infections. We aimed to investigate and compare immune cell subpopulations and induced immune responses in vaccinated and non-vaccinated patients hospitalized with severe COVID-19. Methods A nested case-control study on adults (≥ 18 years) who received at least two doses of a mRNA-COVID-19 vaccine and were hospitalized with SARS-CoV-2 breakthrough infections and severe COVID-19 between January 7, 2021, and February 1, 2022, were eligible for inclusion. Age- and sex-matched non-vaccinated controls were identified. Immunophenotyping was performed using a custom-designed 10-color flow cytometry prefabricated freeze-dried antibody panel (DuraClone, Beckman Coulter (BC), Brea, Calif). TruCulture (Myriad RBM, Austin, USA) was used to assess induced immune response in whole blood, revealing different critical signaling pathways as a proxy for immune function. All samples were obtained within 48 hours of admission. Results In total, 20 hospitalized patients with severe COVID-19 and a breakthrough SARS-CoV-2 infection were included, ten vaccinated and ten non-vaccinated patients. Vaccinated patients had lower concentrations of CD19 B cells (p = 0.035), naïve CD4 T cells (p = 0.015), a higher proportion of γδ1 T cells (p = 0.019), and higher unstimulated immune cell release of IL-10 (p = 0.015). Conclusion We observed immunological differences between vaccinated and non-vaccinated patients hospitalized due to severe COVID-19 that indicate that vaccinated patients had lower B cell concentrations, lower concentrations of CD4 naïve T cells, a skewed gamma-delta V1/V2 ratio, and an exaggerated IL-10 response at admission. These results could indicate a suboptimal immune response involved in SARS-CoV-2 breakthrough infections that cause severe COVID-19 in vaccinated adults. However, the sample size was small, and further research is needed to confirm these results.
Collapse
Affiliation(s)
- Adin Sejdic
- Department of Pulmonary and Infectious Diseases, Copenhagen University Hospital – North Zealand, Hillerød, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Hans Jakob Hartling
- Department of Clinical Immunology, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Jon Gitz Holler
- Department of Pulmonary and Infectious Diseases, Copenhagen University Hospital – North Zealand, Hillerød, Denmark
| | - Lars Klingen Gjærde
- Department of Hematology, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Birgitte Lindegaard
- Department of Pulmonary and Infectious Diseases, Copenhagen University Hospital – North Zealand, Hillerød, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Arnold Matovu Dungu
- Department of Pulmonary and Infectious Diseases, Copenhagen University Hospital – North Zealand, Hillerød, Denmark
| | - Filip Gnesin
- Department of Cardiology, Copenhagen University Hospital – North Zealand, Hillerød, Denmark
| | | | | | - Carsten Utoft Niemann
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Hematology, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Patrick Terrence Brooks
- Department of Clinical Immunology, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | | | | | - Thea K. Fischer
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Research, Copenhagen University Hospital – North Zealand, Hillerød, Denmark
| | - Hanne Vibeke Marquart
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Immunology, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Zitta Barrella Harboe
- Department of Pulmonary and Infectious Diseases, Copenhagen University Hospital – North Zealand, Hillerød, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Sisse Rye Ostrowski
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Immunology, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| |
Collapse
|
20
|
Saito S, Bozorgmehr N, Sligl W, Osman M, Elahi S. The Role of Coinhibitory Receptors in B Cell Dysregulation in SARS-CoV-2-Infected Individuals with Severe Disease. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 212:1540-1552. [PMID: 38517295 DOI: 10.4049/jimmunol.2300783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 03/01/2024] [Indexed: 03/23/2024]
Abstract
Severe SARS-CoV-2 infection is associated with significant immune dysregulation involving different immune cell subsets. In this study, when analyzing critically ill COVID-19 patients versus those with mild disease, we observed a significant reduction in total and memory B cell subsets but an increase in naive B cells. Moreover, B cells from COVID-19 patients displayed impaired effector functions, evidenced by diminished proliferative capacity, reduced cytokine, and Ab production. This functional impairment was accompanied by an increased apoptotic potential upon stimulation in B cells from severely ill COVID-19 patients. Our further studies revealed the expansion of B cells expressing coinhibitory molecules (PD-1, PD-L1, TIM-1, VISTA, CTLA-4, and Gal-9) in intensive care unit (ICU)-admitted patients but not in those with mild disease. The coinhibitory receptor expression was linked to altered IgA and IgG expression and increased the apoptotic capacity of B cells. Also, we found a reduced frequency of CD24hiCD38hi regulatory B cells with impaired IL-10 production. Our mechanistic studies revealed that the upregulation of PD-L1 was linked to elevated plasma IL-6 levels in COVID-19 patients. This implies a connection between the cytokine storm and altered B cell phenotype and function. Finally, our metabolomic analysis showed a significant reduction in tryptophan but elevation of kynurenine in ICU-admitted COVID-19 patients. We found that kynurenine promotes PD-L1 expression in B cells, correlating with increased IL-6R expression and STAT1/STAT3 activation. Our observations provide novel insights into the complex interplay of B cell dysregulation, implicating coinhibitory receptors, IL-6, and kynurenine in impaired B cell effector functions, potentially contributing to the pathogenesis of COVID-19.
Collapse
Affiliation(s)
- Suguru Saito
- School of Dentistry, Division of Foundational Sciences, University of Alberta, Edmonton, AB, Canada
| | - Najmeh Bozorgmehr
- School of Dentistry, Division of Foundational Sciences, University of Alberta, Edmonton, AB, Canada
| | - Wendy Sligl
- Department of Critical Care Medicine, University of Alberta, Edmonton, AB, Canada
- Department of Medicine, Division of Infectious Diseases, University of Alberta, Edmonton, AB, Canada
| | - Mohammed Osman
- Department of Medicine, Division of Rheumatology, University of Alberta, Edmonton, AB, Canada
| | - Shokrollah Elahi
- School of Dentistry, Division of Foundational Sciences, University of Alberta, Edmonton, AB, Canada
- Department of Oncology, University of Alberta, Edmonton, AB, Canada
- Li Ka Shing Institute of Virology, University of Alberta, Edmonton, AB, Canada
- Women and Children Health Research Institute, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
21
|
Felisberto M, Walter LO, Cardoso CC, Santos-Pirath ÍM, Costa HZ, Gartner R, Werle I, Mohr ETB, Salvan da Rosa J, Lubschinski TL, Kretzer IF, Masukawa II, de Almeida Vanny P, Luiz MC, Rabello de Moraes AC, Santos-Silva MC, Dalmarco EM. Lymphocyte B Subtypes in Peripheral Blood: A Prognostic Biomarker for COVID-19 Patients. J Appl Lab Med 2024; 9:456-467. [PMID: 38321537 DOI: 10.1093/jalm/jfad123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 11/28/2023] [Indexed: 02/08/2024]
Abstract
BACKGROUND In view of the scientific gap in knowledge of the involvement of the B-cell compartment and clinical prognostic in SARS-CoV-2 infection, this work aims to evaluate the B-cell subsets and the presence of specific IgM and IgG, as well as neutralizing antibodies against SARS-CoV-2, in unvaccinated patients diagnosed with COVID-19. METHODS This study included 133 patients with COVID-19. Cellular components were assessed by flow cytometry, and immunoglobulin levels and reactivity were measured by indirect enzyme-linked immunosorbent assay. RESULTS Our results showed no changes in less differentiated B cells. However, non-switched memory B cells (NS-MBCs) and class-switched memory B cells (CS-MBCs) were reduced in the patients with moderate disease. Also, plasmablasts and double-negative (DN) or "atypical" memory B cells were increased in groups of patients with moderate to critical conditions. In addition, the production of IgM, IgG, and neutralizing antibodies against SARS-CoV-2 demonstrated a positive correlation between the positivity of antibodies against SARS-CoV-2 and disease severity. Besides being related to the development of a more severe course of the disease, the increase in DN B-cell count also contributed to a poorer disease outcome in patients with a higher percentage of these cells. On the other hand, we observed an increase in the absolute number of CS-MBCs in patients with greater chances of survival. CONCLUSIONS This study demonstrates that the B-cell compartment may contribute to the development of clinical symptoms of COVID-19, with changes in B-cell subset counts linked to disease course and patient prognosis.
Collapse
Affiliation(s)
- Mariano Felisberto
- Postgraduate Program in Pharmacy, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
- Clinical Analysis Department, Health Sciences Center, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Laura Otto Walter
- Postgraduate Program in Pharmacy, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
- Clinical Analysis Department, Health Sciences Center, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Chandra Chiappin Cardoso
- Clinical Analysis Department, Flow Cytometry Service, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Íris Mattos Santos-Pirath
- Clinical Analysis Department, Flow Cytometry Service, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Heloisa Zorzi Costa
- Clinical Analysis Department, Flow Cytometry Service, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Rafaela Gartner
- Clinical Analysis Department, Health Sciences Center, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Isabel Werle
- Clinical Analysis Department, Health Sciences Center, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Eduarda Talita Bramorski Mohr
- Postgraduate Program in Pharmacy, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
- Clinical Analysis Department, Health Sciences Center, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Julia Salvan da Rosa
- Postgraduate Program in Pharmacy, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
- Clinical Analysis Department, Health Sciences Center, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Tainá Larissa Lubschinski
- Postgraduate Program in Pharmacy, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
- Clinical Analysis Department, Health Sciences Center, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Iara Fabricia Kretzer
- Clinical Analysis Department, Health Sciences Center, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Ivete Ioshiko Masukawa
- Infectious Disease Service, University Hospital-Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
- Infectious Disease Service, State Health Department, Hospital Nereu Ramos, Florianópolis, SC, Brazil
| | - Patrícia de Almeida Vanny
- Infectious Disease Service, University Hospital-Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Magali Chaves Luiz
- Infectious Disease Service, State Health Department, Hospital Nereu Ramos, Florianópolis, SC, Brazil
| | - Ana Carolina Rabello de Moraes
- Postgraduate Program in Pharmacy, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
- Clinical Analysis Department, Health Sciences Center, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Maria Claudia Santos-Silva
- Postgraduate Program in Pharmacy, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
- Clinical Analysis Department, Flow Cytometry Service, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
- Clinical Analysis Department, Health Sciences Center, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Eduardo Monguilhott Dalmarco
- Postgraduate Program in Pharmacy, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
- Clinical Analysis Department, Health Sciences Center, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| |
Collapse
|
22
|
Xiao J, Luo Y, Li Y, Yao X. The characteristics of BCR-CDR3 repertoire in COVID-19 patients and SARS-CoV-2 vaccinated volunteers. J Med Virol 2024; 96:e29488. [PMID: 38415507 DOI: 10.1002/jmv.29488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 02/02/2024] [Accepted: 02/13/2024] [Indexed: 02/29/2024]
Abstract
The global COVID-19 pandemic has caused more than 1 billion infections, and numerous SARS-CoV-2 vaccines developed rapidly have been administered over 10 billion doses. The world is continuously concerned about the cytokine storms induced by the interaction between SARS-CoV-2 and host, long COVID, breakthrough infections postvaccination, and the impact of SARS-CoV-2 variants. BCR-CDR3 repertoire serves as a molecular target for monitoring the antiviral response "trace" of B cells, evaluating the effects, mechanisms, and memory abilities of individual responses to B cells, and has been successfully applied in analyzing the infection mechanisms, vaccine improvement, and neutralizing antibodies preparation of influenza virus, HIV, MERS, and Ebola virus. Based on research on BCR-CDR3 repertoire of COVID-19 patients and volunteers who received different SARS-CoV-2 vaccines in multiple laboratories worldwide, we focus on analyzing the characteristics and changes of BCR-CDR3 repertoire, such as diversity, clonality, V&J genes usage and pairing, SHM, CSR, shared CDR3 clones, as well as the summary on BCR sequences targeting virus-specific epitopes in the preparation and application research of SARS-CoV-2 potential therapeutic monoclonal antibodies. This review provides comparative data and new research schemes for studying the possible mechanisms of differences in B cell response between SARS-CoV-2 infection or vaccination, and supplies a foundation for improving vaccines after SARS-CoV-2 mutations and potential antibody therapy for infected individuals.
Collapse
Affiliation(s)
- Jiaping Xiao
- Department of Immunology, Center of Immunomolecular Engineering, Innovation & Practice Base for Graduate Students Education, Zunyi Medical University, Zunyi, Guizhou, China
- Fushun People's Hospital, Zigong, Sichuan, China
| | - Yan Luo
- Department of Immunology, Center of Immunomolecular Engineering, Innovation & Practice Base for Graduate Students Education, Zunyi Medical University, Zunyi, Guizhou, China
| | - Yangyang Li
- Department of Immunology, Center of Immunomolecular Engineering, Innovation & Practice Base for Graduate Students Education, Zunyi Medical University, Zunyi, Guizhou, China
| | - Xinsheng Yao
- Department of Immunology, Center of Immunomolecular Engineering, Innovation & Practice Base for Graduate Students Education, Zunyi Medical University, Zunyi, Guizhou, China
| |
Collapse
|
23
|
Woodruff MC, Faliti CE, Sanz I. Systems biology of B cells in COVID-19. Semin Immunol 2024; 72:101875. [PMID: 38489999 PMCID: PMC11988200 DOI: 10.1016/j.smim.2024.101875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/04/2024] [Accepted: 03/04/2024] [Indexed: 03/17/2024]
Abstract
The integration of multi-'omic datasets into complex systems-wide assessments has become a mainstay in immunologic investigation. This focus on high-dimensional data collection and analysis was on full display in the investigation of COVID-19, the respiratory illness resulting from infection by the novel coronavirus SARS-CoV-2. Particularly in the area of B cell biology, tremendous efforts in both cellular and serologic investigation have resulted in an increasingly detailed mapping of the coordinated effector, memory, and antibody secreting cell responses that underpin the development of humoral immunity in response to primary viral infection. Further, the rapid development and deployment of effective vaccines has allowed for the assessment of developing memory responses across a wide variety of immune contexts, including in patients with compromised immune function. The result has been a period of rapid gains in the understanding of B cell biology unrestricted to the study of COVID-19. Here, we outline the systems-level technologies that have been routinely implemented in these investigations throughout the pandemic, and discuss how their use has led to clear and applicable gains in pursuance of the amelioration of human infectious disease and beyond.
Collapse
Affiliation(s)
- Matthew C Woodruff
- Department of Medicine, Division of Rheumatology, Lowance Center for Human Immunology, Emory University, Atlanta, GA, USA; Emory Autoimmunity Center of Excellence, Emory University, Atlanta, GA, USA.
| | - Caterina E Faliti
- Department of Medicine, Division of Rheumatology, Lowance Center for Human Immunology, Emory University, Atlanta, GA, USA; Emory Autoimmunity Center of Excellence, Emory University, Atlanta, GA, USA.
| | - Ignacio Sanz
- Department of Medicine, Division of Rheumatology, Lowance Center for Human Immunology, Emory University, Atlanta, GA, USA; Emory Autoimmunity Center of Excellence, Emory University, Atlanta, GA, USA
| |
Collapse
|
24
|
Chen Z, Wang Y, He T, Li H, Ao L, Pan Q, Zhou Y, Zhu Q, Xiang D, Zhang G, Ling N, Chen M, Hu P, Peng M, Cai D, Zhang D, Ren H. Safety and Immunogenicity After Primary and Booster Inactivated SARS-Cov-2 Vaccination in Patients with Autoimmune Liver Diseases. J Clin Transl Hepatol 2024; 12:162-171. [PMID: 38343613 PMCID: PMC10851071 DOI: 10.14218/jcth.2023.00049] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 08/11/2023] [Accepted: 08/29/2023] [Indexed: 01/05/2025] Open
Abstract
BACKGROUND AND AIMS SARS-CoV-2 vaccines-associated autoimmune liver diseases have been reported in several case reports. However, the safety and immunogenicity after primary and booster inactivated SARS-CoV-2 vaccination in patients with autoimmune liver diseases (AILD) is still unknown. METHODS Eighty-four patients with AILD were prospectively followed up after the second dose (primary) of inactivated SARS-CoV-2 vaccine. Some of them received the third dose (booster) of inactivated vaccine. Adverse events (AEs), autoimmune activation, and liver inflammation exacerbation after primary and booster vaccination were recorded. Meanwhile, dynamics of antireceptor-binding-domain IgG (anti-RBD-IgG), neutralizing antibodies (NAbs) and RBD-specific B cells responses were evaluated. RESULTS The overall AEs in AILD patients after primary and booster vaccination were 26.2% and 13.3%, respectively. The decrease of C3 level and increase of immunoglobulin light chain κ and λ levels were observed in AILD patients after primary vaccination, however, liver inflammation was not exacerbated, even after booster vaccination. Both the seroprevalence and titers of anti-RBD-IgG and NAbs were decreased over time in AILD patients after primary vaccination. Notably, the antibody titers were significantly elevated after booster vaccination (10-fold in anti-RBD-IgG and 7.4-fold in NAbs, respectively), which was as high as in healthy controls. Unfortunately, the inferior antibody response was not enhanced after booster vaccination in patients with immunosuppressants. Changes of atypical memory B cells were inversely related to antibody levels, which indicate that the impaired immune memory was partially restored partly by the booster vaccination. CONCLUSIONS The well tolerability and enhanced humoral immune response of inactivated vaccine supports an additional booster vaccination in AILD patients without immunosuppressants.
Collapse
Affiliation(s)
- Zhiwei Chen
- Department of Infectious Diseases, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yuting Wang
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Taiyu He
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Hu Li
- Department of Infectious Diseases, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Ling Ao
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Qingbo Pan
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yingzhi Zhou
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Qian Zhu
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Dejuan Xiang
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Gaoli Zhang
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Ning Ling
- Department of Infectious Diseases, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Min Chen
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Peng Hu
- Department of Infectious Diseases, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Mingli Peng
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Dachuan Cai
- Department of Infectious Diseases, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Dazhi Zhang
- Department of Infectious Diseases, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Hong Ren
- Department of Infectious Diseases, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
25
|
Moll-Bernardes R, Ferreira JR, Sousa AS, Tortelly MB, Pimentel AL, Figueiredo ACBS, Schaustz EB, Secco JCP, Sales ARK, Terzi FVO, Xavier de Brito A, Sarmento RO, Noya-Rabelo MM, Fortier S, Matos E Silva FA, Vera N, Conde L, Cabral-Castro MJ, Albuquerque DC, Rosado de-Castro P, Camargo GC, Pinheiro MVT, Souza OF, Bozza FA, Luiz RR, Medei E. Impact of the immune profiles of hypertensive patients with and without obesity on COVID-19 severity. Int J Obes (Lond) 2024; 48:254-262. [PMID: 37932408 DOI: 10.1038/s41366-023-01407-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 10/16/2023] [Accepted: 10/20/2023] [Indexed: 11/08/2023]
Abstract
BACKGROUND Comorbidities such as obesity, hypertension, and diabetes are associated with COVID-19 development and severity, probably due to immune dysregulation; however, the mechanisms underlying these associations are not clear. The immune signatures of hypertensive patients with obesity with COVID-19 may provide new insight into the mechanisms of immune dysregulation and progression to severe disease in these patients. METHODS Hypertensive patients were selected prospectively from a multicenter registry of adults hospitalized with COVID-19 and stratified according to obesity (BMI ≥ 30 kg/m²). Clinical data including baseline characteristics, complications, treatment, and 46 immune markers were compared between groups. Logistic regression was performed to identify variables associated with the risk of COVID-19 progression in each group. RESULTS The sample comprised 213 patients (89 with and 124 without obesity). The clinical profiles of patients with and without obesity differed, suggesting potential interactions with COVID-19 severity. Relative to patients without obesity, patients with obesity were younger and fewer had cardiac disease and myocardial injury. Patients with obesity had higher EGF, GCSF, GMCSF, interleukin (IL)-1ra, IL-5, IL-7, IL-8, IL-15, IL-1β, MCP 1, and VEGF levels, total lymphocyte counts, and CD8+ CD38+ mean fluorescence intensity (MFI), and lower NK-NKG2A MFI and percentage of CD8+ CD38+ T cells. Significant correlations between cytokine and immune cell expression were observed in both groups. Five variables best predicted progression to severe COVID-19 in patients with obesity: diabetes, the EGF, IL-10, and IL-13 levels, and the percentage of CD8+ HLA-DR+ CD38+ cells. Three variables were predictive for patients without obesity: myocardial injury and the percentages of B lymphocytes and HLA-DR+ CD38+ cells. CONCLUSION Our findings suggest that clinical and immune variables and obesity interact synergistically to increase the COVID-19 progression risk. The immune signatures of hypertensive patients with and without obesity severe COVID-19 highlight differences in immune dysregulation mechanisms, with potential therapeutic applications.
Collapse
Affiliation(s)
| | - Juliana R Ferreira
- D'Or Institute for Research and Education, Rio de Janeiro, Brazil
- Cardiology and Internal Medicine Department, Rede D'Or São Luiz, São Paulo, Brazil
| | - Andréa Silvestre Sousa
- D'Or Institute for Research and Education, Rio de Janeiro, Brazil
- Evandro Chagas National Institute of Infectious Disease, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Mariana B Tortelly
- D'Or Institute for Research and Education, Rio de Janeiro, Brazil
- Cardiology and Internal Medicine Department, Rede D'Or São Luiz, São Paulo, Brazil
| | - Adriana L Pimentel
- D'Or Institute for Research and Education, Rio de Janeiro, Brazil
- Cardiology and Internal Medicine Department, Rede D'Or São Luiz, São Paulo, Brazil
| | - Ana Cristina B S Figueiredo
- D'Or Institute for Research and Education, Rio de Janeiro, Brazil
- Cardiology and Internal Medicine Department, Rede D'Or São Luiz, São Paulo, Brazil
| | | | | | | | - Flavia V O Terzi
- D'Or Institute for Research and Education, Rio de Janeiro, Brazil
- Cardiology and Internal Medicine Department, Rede D'Or São Luiz, São Paulo, Brazil
| | | | - Renée O Sarmento
- D'Or Institute for Research and Education, Rio de Janeiro, Brazil
- Internal Medicine Department, Rio de Janeiro Federal State University, Rio de Janeiro, Brazil
| | - Marcia M Noya-Rabelo
- D'Or Institute for Research and Education, Rio de Janeiro, Brazil
- Cardiology and Internal Medicine Department, Rede D'Or São Luiz, São Paulo, Brazil
- Bahia School of Medicine and Public Health, Bahia, Brazil
| | - Sergio Fortier
- D'Or Institute for Research and Education, Rio de Janeiro, Brazil
| | | | - Narendra Vera
- Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Luciana Conde
- Bahia School of Medicine and Public Health, Bahia, Brazil
| | - Mauro Jorge Cabral-Castro
- Institute of Microbiology Paulo de Góes, UFRJ, Rio de Janeiro, Brazil
- Department of Pathology, Faculty of Medicine, Fluminense Federal University, Niterói, Rio de Janeiro, Brazil
| | - Denilson C Albuquerque
- D'Or Institute for Research and Education, Rio de Janeiro, Brazil
- Cardiology Department, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | | | | | | | - Olga F Souza
- D'Or Institute for Research and Education, Rio de Janeiro, Brazil
- Cardiology and Internal Medicine Department, Rede D'Or São Luiz, São Paulo, Brazil
| | - Fernando A Bozza
- D'Or Institute for Research and Education, Rio de Janeiro, Brazil
- Evandro Chagas National Institute of Infectious Disease, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Ronir R Luiz
- D'Or Institute for Research and Education, Rio de Janeiro, Brazil
- Institute for Studies in Public Health-IESC, UFRJ, Rio de Janeiro, Brazil
| | - Emiliano Medei
- D'Or Institute for Research and Education, Rio de Janeiro, Brazil.
- National Center for Structural Biology and Bioimaging, UFRJ, Rio de Janeiro, Brazil.
| |
Collapse
|
26
|
Chen Z, Yuan Y, Hu Q, Zhu A, Chen F, Li S, Guan X, Lv C, Tang T, He Y, Cheng J, Zheng J, Hu X, Zhao J, Zhao J, Sun J. SARS-CoV-2 immunity in animal models. Cell Mol Immunol 2024; 21:119-133. [PMID: 38238440 PMCID: PMC10806257 DOI: 10.1038/s41423-023-01122-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 12/18/2023] [Indexed: 01/25/2024] Open
Abstract
The COVID-19 pandemic, which was caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has become a worldwide health crisis due to its transmissibility. SARS-CoV-2 infection results in severe respiratory illness and can lead to significant complications in affected individuals. These complications encompass symptoms such as coughing, respiratory distress, fever, infectious shock, acute respiratory distress syndrome (ARDS), and even multiple-organ failure. Animal models serve as crucial tools for investigating pathogenic mechanisms, immune responses, immune escape mechanisms, antiviral drug development, and vaccines against SARS-CoV-2. Currently, various animal models for SARS-CoV-2 infection, such as nonhuman primates (NHPs), ferrets, hamsters, and many different mouse models, have been developed. Each model possesses distinctive features and applications. In this review, we elucidate the immune response elicited by SARS-CoV-2 infection in patients and provide an overview of the characteristics of various animal models mainly used for SARS-CoV-2 infection, as well as the corresponding immune responses and applications of these models. A comparative analysis of transcriptomic alterations in the lungs from different animal models revealed that the K18-hACE2 and mouse-adapted virus mouse models exhibited the highest similarity with the deceased COVID-19 patients. Finally, we highlighted the current gaps in related research between animal model studies and clinical investigations, underscoring lingering scientific questions that demand further clarification.
Collapse
Affiliation(s)
- Zhao Chen
- State Key Laboratory of Respiratory Disease, National Clinical Research Centre for Respiratory Disease, National Centre for Respiratory Medicine, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510182, China
| | - Yaochang Yuan
- State Key Laboratory of Respiratory Disease, National Clinical Research Centre for Respiratory Disease, National Centre for Respiratory Medicine, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510182, China
| | - Qingtao Hu
- State Key Laboratory of Respiratory Disease, National Clinical Research Centre for Respiratory Disease, National Centre for Respiratory Medicine, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510182, China
- GMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, 510000, China
| | - Airu Zhu
- State Key Laboratory of Respiratory Disease, National Clinical Research Centre for Respiratory Disease, National Centre for Respiratory Medicine, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510182, China
| | - Fenghua Chen
- State Key Laboratory of Respiratory Disease, National Clinical Research Centre for Respiratory Disease, National Centre for Respiratory Medicine, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510182, China
| | - Shu Li
- State Key Laboratory of Respiratory Disease, National Clinical Research Centre for Respiratory Disease, National Centre for Respiratory Medicine, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510182, China
| | - Xin Guan
- State Key Laboratory of Respiratory Disease, National Clinical Research Centre for Respiratory Disease, National Centre for Respiratory Medicine, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510182, China
| | - Chao Lv
- State Key Laboratory of Respiratory Disease, National Clinical Research Centre for Respiratory Disease, National Centre for Respiratory Medicine, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510182, China
| | - Tian Tang
- State Key Laboratory of Respiratory Disease, National Clinical Research Centre for Respiratory Disease, National Centre for Respiratory Medicine, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510182, China
| | - Yiyun He
- State Key Laboratory of Respiratory Disease, National Clinical Research Centre for Respiratory Disease, National Centre for Respiratory Medicine, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510182, China
| | - Jinling Cheng
- State Key Laboratory of Respiratory Disease, National Clinical Research Centre for Respiratory Disease, National Centre for Respiratory Medicine, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510182, China
| | - Jie Zheng
- State Key Laboratory of Respiratory Disease, National Clinical Research Centre for Respiratory Disease, National Centre for Respiratory Medicine, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510182, China
| | - Xiaoyu Hu
- State Key Laboratory of Respiratory Disease, National Clinical Research Centre for Respiratory Disease, National Centre for Respiratory Medicine, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510182, China
| | - Jingxian Zhao
- State Key Laboratory of Respiratory Disease, National Clinical Research Centre for Respiratory Disease, National Centre for Respiratory Medicine, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510182, China.
- Guangzhou National Laboratory, Guangzhou, Guangdong, 510005, China.
| | - Jincun Zhao
- State Key Laboratory of Respiratory Disease, National Clinical Research Centre for Respiratory Disease, National Centre for Respiratory Medicine, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510182, China.
- Guangzhou National Laboratory, Guangzhou, Guangdong, 510005, China.
- Shanghai Institute for Advanced Immunochemical Studies, School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China.
- Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, the Second Affiliated Hospital, School of Medicine, Southern University of Science and Technology, Shenzhen, 518005, China.
| | - Jing Sun
- State Key Laboratory of Respiratory Disease, National Clinical Research Centre for Respiratory Disease, National Centre for Respiratory Medicine, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510182, China.
| |
Collapse
|
27
|
Leung JM, Wu MJ, Kheradpour P, Chen C, Drake KA, Tong G, Ridaura VK, Zisser HC, Conrad WA, Hudson N, Allen J, Welberry C, Parsy-Kowalska C, Macdonald I, Tapson VF, Moy JN, deFilippi CR, Rosas IO, Basit M, Krishnan JA, Parthasarathy S, Prabhakar BS, Salvatore M, Kim CC. Early immune factors associated with the development of post-acute sequelae of SARS-CoV-2 infection in hospitalized and non-hospitalized individuals. Front Immunol 2024; 15:1348041. [PMID: 38318183 PMCID: PMC10838987 DOI: 10.3389/fimmu.2024.1348041] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 01/02/2024] [Indexed: 02/07/2024] Open
Abstract
Background Infection by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) can lead to post-acute sequelae of SARS-CoV-2 (PASC) that can persist for weeks to years following initial viral infection. Clinical manifestations of PASC are heterogeneous and often involve multiple organs. While many hypotheses have been made on the mechanisms of PASC and its associated symptoms, the acute biological drivers of PASC are still unknown. Methods We enrolled 494 patients with COVID-19 at their initial presentation to a hospital or clinic and followed them longitudinally to determine their development of PASC. From 341 patients, we conducted multi-omic profiling on peripheral blood samples collected shortly after study enrollment to investigate early immune signatures associated with the development of PASC. Results During the first week of COVID-19, we observed a large number of differences in the immune profile of individuals who were hospitalized for COVID-19 compared to those individuals with COVID-19 who were not hospitalized. Differences between individuals who did or did not later develop PASC were, in comparison, more limited, but included significant differences in autoantibodies and in epigenetic and transcriptional signatures in double-negative 1 B cells, in particular. Conclusions We found that early immune indicators of incident PASC were nuanced, with significant molecular signals manifesting predominantly in double-negative B cells, compared with the robust differences associated with hospitalization during acute COVID-19. The emerging acute differences in B cell phenotypes, especially in double-negative 1 B cells, in PASC patients highlight a potentially important role of these cells in the development of PASC.
Collapse
Affiliation(s)
| | - Michelle J. Wu
- Verily Life Sciences, South San Francisco, CA, United States
| | | | - Chen Chen
- Verily Life Sciences, South San Francisco, CA, United States
| | | | - Gary Tong
- Verily Life Sciences, South San Francisco, CA, United States
| | | | | | - William A. Conrad
- Providence Little Company of Mary Medical Center Torrance, Torrance, CA, United States
| | | | - Jared Allen
- Oncimmune Limited, Nottingham, United Kingdom
| | | | | | | | - Victor F. Tapson
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - James N. Moy
- Department of Internal Medicine, Rush University Medical Center, Chicago, IL, United States
| | | | - Ivan O. Rosas
- Department of Medicine, Baylor College of Medicine, Houston, TX, United States
| | - Mujeeb Basit
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Jerry A. Krishnan
- Breathe Chicago Center, University of Illinois Chicago, Chicago, IL, United States
| | - Sairam Parthasarathy
- Division of Pulmonary, Allergy, Critical Care & Sleep Medicine, University of Arizona, Tucson, AZ, United States
| | - Bellur S. Prabhakar
- Department of Microbiology and Immunology, University of Illinois - College of Medicine, Chicago, IL, United States
| | - Mirella Salvatore
- Department of Medicine and Department of Population Health Sciences, Weill Cornell Medicine, New York, NY, United States
| | - Charles C. Kim
- Verily Life Sciences, South San Francisco, CA, United States
| |
Collapse
|
28
|
Najimi N, Kadi C, Elmtili N, Seghrouchni F, Bakri Y. Unravelling humoral immunity in SARS-CoV-2: Insights from infection and vaccination. Hum Antibodies 2024; 32:85-106. [PMID: 38758995 DOI: 10.3233/hab-230017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/19/2024]
Abstract
Following infection and vaccination against SARS-CoV-2, humoral components of the adaptive immune system play a key role in protecting the host. Specifically, B cells generate high-affinity antibodies against various antigens of the virus. In this review, we discuss the mechanisms of immunity initiation through both natural infection and vaccination, shedding light on the activation of B cell subsets in response to SARS-CoV-2 infection and vaccination. The innate immune system serves as the initial line of primary and nonspecific defence against viruses. However, within several days following infection or a vaccine dose, a virus-specific immune response is initiated, primarily by B cells that produce antibodies. These antibodies contribute to the resolution of the disease. Subsequently, these B cells transition into memory B cells, which play a crucial role in providing long-term immunity against the virus. CD4+ T helper cells initiate a cascade, leading to B cell somatic hypermutation, germinal center memory B cells, and the production of neutralizing antibodies. B-cell dysfunction can worsen disease severity and reduce vaccine efficacy. Notably, individuals with B cell immunodeficiency show lower IL-6 production. Furthermore, this review delves into several aspects of immune responses, such as hybrid immunity, which has shown promise in boosting broad-spectrum protection. Cross-reactive immunity is under scrutiny as well, as pre-existing antibodies can offer protection against the disease. We also decipher breakthrough infection mechanisms, especially with the novel variants of the virus. Finally, we discuss some potential therapeutic solutions regarding B cells including convalescent plasma therapy, B-1 cells, B regulatory cell (Breg) modulation, and the use of neutralizing monoclonal antibodies in combating the infection. Ongoing research is crucial to grasp population immunity trends and assess the potential need for booster doses in maintaining effective immune responses against potential viral threats.
Collapse
Affiliation(s)
- Nouhaila Najimi
- Laboratory of Human Pathologies Biology and Center of Genomic of Human Pathologies Biology, Faculty of Sciences, Mohammed V University, Rabat, Morocco
- Mohammed VI Center for Research and Innovation, Rabat, Morocco
- Mohammed VI University of Sciences and Health, Casablanca, Morocco
| | - Chaimae Kadi
- Mohammed VI Center for Research and Innovation, Rabat, Morocco
- Mohammed VI University of Sciences and Health, Casablanca, Morocco
- Laboratory of Biology and Health, Faculty of Sciences of Tétouan, Abdelmalek Essaâdi University, Tétouan, Morocco
| | - Noureddine Elmtili
- Laboratory of Biology and Health, Faculty of Sciences of Tétouan, Abdelmalek Essaâdi University, Tétouan, Morocco
| | - Fouad Seghrouchni
- Mohammed VI Center for Research and Innovation, Rabat, Morocco
- Mohammed VI University of Sciences and Health, Casablanca, Morocco
| | - Youssef Bakri
- Laboratory of Human Pathologies Biology and Center of Genomic of Human Pathologies Biology, Faculty of Sciences, Mohammed V University, Rabat, Morocco
| |
Collapse
|
29
|
Rubinstein A, Kudryavtsev I, Malkova A, Mammedova J, Isakov D, Isakova-Sivak I, Kudlay D, Starshinova A. Sarcoidosis-related autoimmune inflammation in COVID-19 convalescent patients. Front Med (Lausanne) 2023; 10:1271198. [PMID: 38179278 PMCID: PMC10765615 DOI: 10.3389/fmed.2023.1271198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 11/27/2023] [Indexed: 01/06/2024] Open
Abstract
Currently, there are a large number of reports about the development of autoimmune conditions after COVID-19. Also, there have been cases of sarcoid-like granulomas in convalescents as a part of the post-COVID-19 syndrome. Since one of the etiological theories of sarcoidosis considers it to be an autoimmune disease, we decided to study changes in the adaptive humoral immune response in sarcoidosis and SARS-CoV-2 infection and to find out whether COVID-19 can provoke the development of sarcoidosis. This review discusses histological changes in lymphoid organs in sarcoidosis and COVID-19, changes in B cell subpopulations, T-follicular helper cells (Tfh), and T-follicular regulatory cells (Tfr), and analyzes various autoantibodies detected in these pathologies. Based on the data studied, we concluded that SARS-CoV-2 infection may cause the development of autoimmune pathologies, in particular contributing to the onset of sarcoidosis in convalescents.
Collapse
Affiliation(s)
- Artem Rubinstein
- Almazov National Medical Research Centre, Saint Petersburg, Russia
- Institution of Experimental Medicine, Saint Petersburg, Russia
| | - Igor Kudryavtsev
- Almazov National Medical Research Centre, Saint Petersburg, Russia
- Institution of Experimental Medicine, Saint Petersburg, Russia
- Far Eastern Federal University, Vladivostok, Russia
| | - Annа Malkova
- Ariel University Faculty of Natural Sciences, Ariel, Israel
| | | | - Dmitry Isakov
- First Saint Petersburg State I. Pavlov Medical University, Saint Petersburg, Russia
| | | | - Dmitry Kudlay
- Institute of Pharmacy, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
- NRC Institute of Immunology, Moscow, Russia
- Department of Pharmacognosy and Industrial Pharmacy, Faculty of Fundamental Medicine, Moscow, Russia
| | - Anna Starshinova
- Almazov National Medical Research Centre, Saint Petersburg, Russia
| |
Collapse
|
30
|
Morales-Núñez JJ, Muñoz-Valle JF, García-Chagollán M, Cerpa-Cruz S, Martínez-Bonilla GE, Medina-Rosales VM, Díaz-Pérez SA, Nicoletti F, Hernández-Bello J. Aberrant B-cell activation and B-cell subpopulations in rheumatoid arthritis: analysis by clinical activity, autoantibody seropositivity, and treatment. Clin Exp Immunol 2023; 214:314-327. [PMID: 37464892 PMCID: PMC10719220 DOI: 10.1093/cei/uxad076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 06/13/2023] [Accepted: 07/17/2023] [Indexed: 07/20/2023] Open
Abstract
Few studies analyze the role of B-cell subpopulations in rheumatoid arthritis (RA) pathophysiology. Therefore, this study aimed to analyze the differences in B-cell subpopulations and B-cell activation according to disease activity, RA subtype, and absence of disease-modifying antirheumatic drugs (DMARDs) therapy. These subgroups were compared with control subjects (CS). One hundred and thirty-nine subjects were included, of which 114 were RA patients, and 25 were controls. Patients were divided into 99 with seropositive RA, 6 with seronegative RA, and 9 without DMARDs. The patients with seropositive RA were subclassified based on the DAS28 index. A seven-color multicolor flow cytometry panel was used to identify B-cell immunophenotypes and cell activation markers. There were no changes in total B-cell frequencies between RA patients and controls. However, a lower frequency of memory B cells and pre-plasmablasts was observed in seropositive RA compared to controls (P < 0.0001; P = 0.0043, respectively). In contrast, a higher frequency of mature B cells was observed in RA than in controls (P = 0.0002). Among patients with RA, those with moderate activity had a higher percentage of B cells (P = 0.0021). The CD69+ marker was increased (P < 0.0001) in RA compared to controls, while the CD40+ frequency was decreased in patients (P < 0.0001). Transitional, naïve, and double-negative B-cell subpopulations were higher in seronegative RA than in seropositive (P < 0.01). In conclusion, in seropositive and seronegative RA patients, there are alterations in B-cell activation and B-cell subpopulations, independently of clinical activity and DMARDs therapy.
Collapse
Affiliation(s)
- José Javier Morales-Núñez
- Centro Universitario de Ciencias de la Salud, Doctorado en Ciencias Biomédicas, Universidad de Guadalajara, Jalisco, Mexico
- Centro Universitario de Ciencias de la Salud, Instituto de Investigación en Ciencias Biomédicas (IICB), Universidad de Guadalajara, Jalisco, Mexico
| | - José Francisco Muñoz-Valle
- Centro Universitario de Ciencias de la Salud, Instituto de Investigación en Ciencias Biomédicas (IICB), Universidad de Guadalajara, Jalisco, Mexico
| | - Mariel García-Chagollán
- Centro Universitario de Ciencias de la Salud, Doctorado en Ciencias Biomédicas, Universidad de Guadalajara, Jalisco, Mexico
- Centro Universitario de Ciencias de la Salud, Instituto de Investigación en Ciencias Biomédicas (IICB), Universidad de Guadalajara, Jalisco, Mexico
| | - Sergio Cerpa-Cruz
- Hospital Civil de Guadalajara “Fray Antonio Alcalde”, Servicio de Reumatología, Jalisco, Mexico
| | | | - Vianey Monserrat Medina-Rosales
- Centro Universitario de Ciencias de la Salud, Licenciatura en Médico, Cirujano y Partero, Universidad de Guadalajara, Jalisco, Mexico
| | - Saúl Alberto Díaz-Pérez
- Centro Universitario de Ciencias de la Salud, Doctorado en Ciencias Biomédicas, Universidad de Guadalajara, Jalisco, Mexico
- Centro Universitario de Ciencias de la Salud, Instituto de Investigación en Ciencias Biomédicas (IICB), Universidad de Guadalajara, Jalisco, Mexico
| | - Ferdinando Nicoletti
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Jorge Hernández-Bello
- Centro Universitario de Ciencias de la Salud, Instituto de Investigación en Ciencias Biomédicas (IICB), Universidad de Guadalajara, Jalisco, Mexico
| |
Collapse
|
31
|
Maehara T, Koga R, Nakamura S. Immune dysregulation in immunoglobulin G4-related disease. JAPANESE DENTAL SCIENCE REVIEW 2023; 59:1-7. [PMID: 36654676 PMCID: PMC9841035 DOI: 10.1016/j.jdsr.2022.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 11/30/2022] [Accepted: 12/18/2022] [Indexed: 01/10/2023] Open
Abstract
(IgG4-RD) is an immune-mediated fibrotic disorder characterized by severe resolution of inflammation and dysregulation of wound healing. IgG4-RD has been considered a unique disease since 2003, and significant progress has been achieved in the understanding of its essential features. The central role of B cells in IgG4-RD has been demonstrated by the robust clinical responsiveness of IgG4-RD to B cell depletion and the identification of multiple self-antigens that promote B cell expansion. Studies have increasingly revealed critical roles of these B cells and T cells in the pathogenesis of IgG4-RD, and we and other authors further identified CD4+ cytotoxic T lymphocytes as the main tissue-infiltrating CD4+ T cell subset in IgG4-RD tissues. Additionally, T follicular helper cell subsets that play a role in IgG4 isotype switching have been identified. In this review, we discuss research on IgG4-RD and the roles of B cell and T cell subsets, as well as the functions of CD4+ cytotoxic T cells in IgG4-RD pathogenesis. We highlight our findings from ongoing research using single-cell analysis of infiltrating CD4+ cytotoxic T cells, CD4+ follicular helper T cells, and infiltrating B cells in IgG4-RD and propose a model for the pathogenesis of IgG4-RD.
Collapse
Affiliation(s)
- Takashi Maehara
- Section of Oral and Maxillofacial Oncology, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Science, Kyushu University, Fukuoka, Japan,Dento-craniofacial Development and Regeneration Research Center, Faculty of Dental Science, Kyushu University, Fukuoka, Japan,Correspondence to: Section of Oral and Maxillofacial Oncology, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Science, Kyushu University, 3–1-1 Maidashi, Higashi-ku, Fukuoka 812–8582, Japan.
| | - Risako Koga
- Section of Oral and Maxillofacial Oncology, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Seiji Nakamura
- Section of Oral and Maxillofacial Oncology, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| |
Collapse
|
32
|
Al-Zahrani MH, Alghamdi RA, Tarbiah NI, Alkhattabi NA, Joharjy HM, Khalifa RA. Role of CD27 and SAMHD1 and their genetic susceptibility to COVID-19. Saudi J Biol Sci 2023; 30:103821. [PMID: 38020556 PMCID: PMC10666556 DOI: 10.1016/j.sjbs.2023.103821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 09/13/2023] [Accepted: 09/21/2023] [Indexed: 12/01/2023] Open
Abstract
SARS-CoV-2, which initiated the worldwide COVID-19 epidemic in 2019, has rapidly emerged and spread, resulting in significant public health challenges worldwide. The COVID-19 severity signs and their association with specific genes have been investigated to better comprehend this phenomenon. In this study, several genes were investigated to see whether they correspond with COVID-19 sickness severity. This research aims to determine and evaluate certain gene expression levels associated with the immune system, as these genes were reported to play important roles in immune control during the COVID-19 outbreak. We analyzed two immunity-linked genes: CD27 and SAMHD1 in COVID-19 patients' samples using RT-PCR, compared them to the samples from recovered, immunized, and healthy individuals. These data were examined to determine the potential relationships between clinical patterns, illness severity, and progression, and SARS-CoV-2 infection immunology. We observed that CD27 gene expression was higher in COVID-19 vaccinated and control groups, but lower in active and recovered COVID-19 patients. On the other hand, SAMHD1 gene expression was elevated in infected and recovered COVID-19 groups. According to our study, the proteins CD27 and SAMHD1 are essential for controlling the immunological response to COVID-19. Changes in their expression levels could increase the susceptibility of patients to severe complications associated with the disease. Therefore, the gene expression level of these proteins could serve as viable prognostic markers for COVID-19.
Collapse
Affiliation(s)
- Maryam H. Al-Zahrani
- Biochemistry Department, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Rana A. Alghamdi
- Department of Chemistry, Sciences and Arts College, King Abdulaziz University, Rabigh, Saudi Arabia
| | - Nesrin I. Tarbiah
- Biochemistry Department, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Nuha A. Alkhattabi
- Biochemistry Department, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Husam M. Joharjy
- Infection Control Department, King Abdulaziz Hospital, Ministry of Health, Jeddah, Saudi Arabia
| | - Reham A. Khalifa
- Medical Microbiology and Immunology, Faculty of Medicine, Ain Shams University, Cairo 11371, Egypt
| |
Collapse
|
33
|
Flores-Gonzalez J, Urbán-Solano A, Ramón-Luing LA, Cancino-Diaz JC, Contreras-Rodriguez A, Curiel-Quesada E, Hernández-Pando R, Chavez-Galan L. Active tuberculosis patients have high systemic IgG levels and B-cell fingerprinting, characterized by a reduced capacity to produce IFN-γ or IL-10 as a response to M.tb antigens. Front Immunol 2023; 14:1263458. [PMID: 38022616 PMCID: PMC10643169 DOI: 10.3389/fimmu.2023.1263458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 10/10/2023] [Indexed: 12/01/2023] Open
Abstract
Introduction Tuberculosis (TB) is a bacterial infection caused by Mycobacterium tuberculosis (M.tb). B cells are the central mediator of the humoral response; they are responsible for producing antibodies in addition to mediating other functions. The role of the cellular response during the TB spectrum by B cells is still controversial. Methods In this study, we evaluated the distribution of the circulating B cell subsets in patients with active and latent TB (ATB and LTB, respectively) and how they respond to stimuli of protein or lipid from M.tb. Results Here, we show that ATB patients show an immune fingerprinting. However, patients with drug-sensitive- (DS-TB) or drug-resistant- (DR-TB) TB have altered frequencies of circulating B cells. DS-TB and DR-TB display a unique profile characterized by high systemic levels of IFN-γ, IL-10, IgG, IgG/IgM ratio, and total B cells. Moreover, B cells from DR-TB are less efficient in producing IL-10, and both DS-TB and DR-TB produce less IFN-γ in response to M.tb antigens. Conclusion These results provide new insights into the population dynamics of the cellular immune response by B cells against M.tb and suggest a fingerprinting to characterize the B-cell response on DR-TB.
Collapse
Affiliation(s)
- Julio Flores-Gonzalez
- Laboratory of Integrative Immunology, Instituto Nacional de Enfermedades Respiratorias Ismael Cosio Villegas, Mexico City, Mexico
- Department of Microbiology, Laboratory of Immunomicrobiology, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Alexia Urbán-Solano
- Laboratory of Integrative Immunology, Instituto Nacional de Enfermedades Respiratorias Ismael Cosio Villegas, Mexico City, Mexico
| | - Lucero A. Ramón-Luing
- Laboratory of Integrative Immunology, Instituto Nacional de Enfermedades Respiratorias Ismael Cosio Villegas, Mexico City, Mexico
| | - Juan Carlos Cancino-Diaz
- Department of Microbiology, Laboratory of Immunomicrobiology, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Araceli Contreras-Rodriguez
- Department of Microbiology, Laboratory of Immunomicrobiology, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Everardo Curiel-Quesada
- Department of Biochemistry, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Rogelio Hernández-Pando
- Department of Pathology, Section of Experimental Pathology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Leslie Chavez-Galan
- Laboratory of Integrative Immunology, Instituto Nacional de Enfermedades Respiratorias Ismael Cosio Villegas, Mexico City, Mexico
| |
Collapse
|
34
|
Hernández-Pedro N, Arroyo-Hernández M, Barrios-Bernal P, Romero-Nuñez E, Sosa-Hernandez VA, Ávila-Ríos S, Maravillas-Montero JL, Pérez-Padilla R, de Miguel-Perez D, Rolfo C, Arrieta O. Impact of Tyrosine Kinase Inhibitors on the Immune Response to SARS-CoV-2 Vaccination in Patients with Non-Small Cell Lung Cancer. Vaccines (Basel) 2023; 11:1612. [PMID: 37897014 PMCID: PMC10611320 DOI: 10.3390/vaccines11101612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 10/06/2023] [Accepted: 10/12/2023] [Indexed: 10/29/2023] Open
Abstract
Immune dysregulation and cancer treatment may affect SARS-CoV-2 vaccination protection. Antibody production by B-cells play a vital role in the control and clearance of the SARS-CoV-2 virus. This study prospectively explores B-cell seroconversion following SARS-CoV-2 immunization in healthy individuals and non-small cell lung cancer (NSCLC) patients undergoing oncological treatment. 92 NSCLC patients and 27 healthy individuals' blood samples were collected after receiving any COVID-19 vaccine. Serum and mononuclear cells were isolated, and a serum surrogate virus neutralization test kit evaluated SARS-CoV-2 antibodies. B-cell subpopulations on mononuclear cells were characterized by flow cytometry. Patients were compared based on vaccination specifications and target mutation oncological treatment. A higher percentage of healthy individuals developed more SARS-CoV-2 neutralizing antibodies than NSCLC patients (63% vs. 54.3%; p = 0.03). NSCLC patients receiving chemotherapy (CTX) or tyrosine kinase inhibitors (TKIs) developed antibodies in 45.2% and 53.7%, of cases, respectively, showing an impaired antibody generation. CTX patients exhibited trends towards lower median antibody production than TKIs (1.0, IQR 83 vs. 38.23, IQR 89.22; p = 0.069). Patients receiving immunotherapy did not generate antibodies. A sub-analysis revealed that those with ALK mutations exhibited non-significant trends towards higher antibody titers (63.02, IQR 76.58 vs. 21.78, IQR 93.5; p = 0.1742) and B-cells quantification (10.80, IQR 7.52 vs. 7.22, IQR 3.32; p = 0.1382) against the SARS-CoV-2 spike protein than EGFR patients; nonetheless, these differences were not statistically significant. This study shows that antibodies against SARS-CoV-2 may be impaired in patients with NSCLC secondary to EGFR-targeted TKIs compared to ALK-directed treatment.
Collapse
Affiliation(s)
- Norma Hernández-Pedro
- Laboratorio de Medicina Personalizada, Instituto Nacional de Cancerología, S.S.A., San Fernando 22 Sección XVI, Tlalpan, Mexico City 14080, Mexico; (N.H.-P.); (P.B.-B.); (E.R.-N.)
| | - Marisol Arroyo-Hernández
- Thoracic Oncology Unit, Instituto Nacional de Cancerología, S.S.A., San Fernando 22 Sección XVI, Tlalpan, Mexico City 14080, Mexico;
| | - Pedro Barrios-Bernal
- Laboratorio de Medicina Personalizada, Instituto Nacional de Cancerología, S.S.A., San Fernando 22 Sección XVI, Tlalpan, Mexico City 14080, Mexico; (N.H.-P.); (P.B.-B.); (E.R.-N.)
| | - Eunice Romero-Nuñez
- Laboratorio de Medicina Personalizada, Instituto Nacional de Cancerología, S.S.A., San Fernando 22 Sección XVI, Tlalpan, Mexico City 14080, Mexico; (N.H.-P.); (P.B.-B.); (E.R.-N.)
| | - Victor A. Sosa-Hernandez
- Red de Apoyo a la Investigación, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City 14080, Mexico; (V.A.S.-H.); (J.L.M.-M.)
| | - Santiago Ávila-Ríos
- Centro de Investigación en Enfermedades Infecciosas (CIENI), Instituto Nacional de Enfermedades Respiratorias, Calzada de Tlalpan 4502, Belisario Domínguez Sección XVI, Tlalpan, Mexico City 14080, Mexico;
| | - José Luis Maravillas-Montero
- Red de Apoyo a la Investigación, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City 14080, Mexico; (V.A.S.-H.); (J.L.M.-M.)
| | - Rogelio Pérez-Padilla
- Department of Research on Tobacco and COPD, Instituto Nacional de Enfermedades Respiratorias, Calzada de Tlalpan 4502, Belisario Domínguez Sección XVI, Tlalpan, Mexico City 14080, Mexico;
| | - Diego de Miguel-Perez
- Mount Sinai Health System, Icahn School of Medicine at Mount Sinai, New York, NY 11776, USA; (D.d.M.-P.); (C.R.)
| | - Christian Rolfo
- Mount Sinai Health System, Icahn School of Medicine at Mount Sinai, New York, NY 11776, USA; (D.d.M.-P.); (C.R.)
| | - Oscar Arrieta
- Thoracic Oncology Unit, Instituto Nacional de Cancerología, S.S.A., San Fernando 22 Sección XVI, Tlalpan, Mexico City 14080, Mexico;
| |
Collapse
|
35
|
Bernard J, Yanamala N, Shah R, Seetharam K, Altes A, Dupuis M, Toubal O, Mahjoub H, Dumortier H, Tartar J, Salaun E, O'Connor K, Bernier M, Beaudoin J, Côté N, Vincentelli A, LeVen F, Maréchaux S, Pibarot P, Sengupta PP. Integrating Echocardiography Parameters With Explainable Artificial Intelligence for Data-Driven Clustering of Primary Mitral Regurgitation Phenotypes. JACC Cardiovasc Imaging 2023; 16:1253-1267. [PMID: 37178071 DOI: 10.1016/j.jcmg.2023.02.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 01/20/2023] [Accepted: 02/09/2023] [Indexed: 05/15/2023]
Abstract
BACKGROUND Primary mitral regurgitation (MR) is a heterogeneous clinical disease requiring integration of echocardiographic parameters using guideline-driven recommendations to identify severe disease. OBJECTIVES The purpose of this preliminary study was to explore novel data-driven approaches to delineate phenotypes of MR severity that benefit from surgery. METHODS The authors used unsupervised and supervised machine learning and explainable artificial intelligence (AI) to integrate 24 echocardiographic parameters in 400 primary MR subjects from France (n = 243; development cohort) and Canada (n = 157; validation cohort) followed up during a median time of 3.2 years (IQR: 1.3-5.3 years) and 6.8 (IQR: 4.0-8.5 years), respectively. The authors compared the phenogroups' incremental prognostic value over conventional MR profiles and for the primary endpoint of all-cause mortality incorporating time-to-mitral valve repair/replacement surgery as a covariate for survival analysis (time-dependent exposure). RESULTS High-severity (HS) phenogroups from the French cohort (HS: n = 117; low-severity [LS]: n = 126) and the Canadian cohort (HS: n = 87; LS: n = 70) showed improved event-free survival in surgical HS subjects over nonsurgical subjects (P = 0.047 and P = 0.020, respectively). A similar benefit of surgery was not seen in the LS phenogroup in both cohorts (P = 0.70 and P = 0.50, respectively). Phenogrouping showed incremental prognostic value in conventionally severe or moderate-severe MR subjects (Harrell C statistic improvement; P = 0.480; and categorical net reclassification improvement; P = 0.002). Explainable AI specified how each echocardiographic parameter contributed to phenogroup distribution. CONCLUSIONS Novel data-driven phenogrouping and explainable AI aided in improved integration of echocardiographic data to identify patients with primary MR and improved event-free survival after mitral valve repair/replacement surgery.
Collapse
Affiliation(s)
- Jérémy Bernard
- Institut Universitaire de Cardiologie et de Pneumologie de Québec-Université Laval/Québec Heart and Lung Institute, Laval University, Québec City, Québec, Canada
| | - Naveena Yanamala
- Robert Wood Johnson University Hospital, Rutgers Robert Wood Johnson Medical School, New Brunswick, New Jersey, USA
| | - Rohan Shah
- Robert Wood Johnson University Hospital, Rutgers Robert Wood Johnson Medical School, New Brunswick, New Jersey, USA
| | - Karthik Seetharam
- Robert Wood Johnson University Hospital, Rutgers Robert Wood Johnson Medical School, New Brunswick, New Jersey, USA
| | - Alexandre Altes
- Department of Cardiology, GCS-Groupement des Hôpitaux de l'Institut Catholique de Lille, Université Catholique de Lille, Lille, France
| | - Marlène Dupuis
- Institut Universitaire de Cardiologie et de Pneumologie de Québec-Université Laval/Québec Heart and Lung Institute, Laval University, Québec City, Québec, Canada
| | - Oumhani Toubal
- Institut Universitaire de Cardiologie et de Pneumologie de Québec-Université Laval/Québec Heart and Lung Institute, Laval University, Québec City, Québec, Canada
| | - Haïfa Mahjoub
- Institut Universitaire de Cardiologie et de Pneumologie de Québec-Université Laval/Québec Heart and Lung Institute, Laval University, Québec City, Québec, Canada
| | - Hélène Dumortier
- Department of Cardiology, GCS-Groupement des Hôpitaux de l'Institut Catholique de Lille, Université Catholique de Lille, Lille, France
| | - Jean Tartar
- Department of Cardiology, GCS-Groupement des Hôpitaux de l'Institut Catholique de Lille, Université Catholique de Lille, Lille, France
| | - Erwan Salaun
- Institut Universitaire de Cardiologie et de Pneumologie de Québec-Université Laval/Québec Heart and Lung Institute, Laval University, Québec City, Québec, Canada
| | - Kim O'Connor
- Institut Universitaire de Cardiologie et de Pneumologie de Québec-Université Laval/Québec Heart and Lung Institute, Laval University, Québec City, Québec, Canada
| | - Mathieu Bernier
- Institut Universitaire de Cardiologie et de Pneumologie de Québec-Université Laval/Québec Heart and Lung Institute, Laval University, Québec City, Québec, Canada
| | - Jonathan Beaudoin
- Institut Universitaire de Cardiologie et de Pneumologie de Québec-Université Laval/Québec Heart and Lung Institute, Laval University, Québec City, Québec, Canada
| | - Nancy Côté
- Institut Universitaire de Cardiologie et de Pneumologie de Québec-Université Laval/Québec Heart and Lung Institute, Laval University, Québec City, Québec, Canada
| | - André Vincentelli
- Cardiac Surgery Department, Centre Hospitalier Régional et Universitaire de Lille, Lille, France
| | - Florent LeVen
- Department of Cardiology, Hôpital La Cavale Blanche-Centre Hospitalier Regional Universitaire de Brest, Brest, France
| | - Sylvestre Maréchaux
- Department of Cardiology, GCS-Groupement des Hôpitaux de l'Institut Catholique de Lille, Université Catholique de Lille, Lille, France
| | - Philippe Pibarot
- Institut Universitaire de Cardiologie et de Pneumologie de Québec-Université Laval/Québec Heart and Lung Institute, Laval University, Québec City, Québec, Canada.
| | - Partho P Sengupta
- Robert Wood Johnson University Hospital, Rutgers Robert Wood Johnson Medical School, New Brunswick, New Jersey, USA.
| |
Collapse
|
36
|
Sayed AA, Al Nozha OM. Developing a COVID-19 Mortality Prediction (CoMPred) Indicator for ICU Diabetic Patients Treated with Tocilizumab in Saudi Arabia: A Proof-of-Concept Study. Biomedicines 2023; 11:2649. [PMID: 37893025 PMCID: PMC10603829 DOI: 10.3390/biomedicines11102649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 09/25/2023] [Accepted: 09/25/2023] [Indexed: 10/29/2023] Open
Abstract
Since the beginning of the COVID-19 pandemic, efforts have been made to underline its discourse and identify factors contributing to its severe forms. Clinically, many physicians depended on subjective criteria to determine its severe forms, which varied significantly between practices. However, they did not rely on objective laboratory findings. This study aimed to present a novel and objective laboratory-based indicator to predict mortality among COVID-19 patients. The study included 249 COVID-19 patients who were admitted to the ICU, of which 80 did not survive. The COVID-19 Mortality Prediction (CoMPred) indicator was developed by including the age and the following lab investigations: neutrophil-to-lymphocyte ratio (NLR), D-Dimer, PT, aPTT, ESR, CRP, and urea levels. A CoMPred score of 7.5 or higher carries a sensitivity of 81.10% in predicting mortality, i.e., a patient with a CoMPred score of 7.5 or higher has an 81.10% chance of dying. The CoMPred indicator score directly correlates with mortality, i.e., the higher the score, the higher the possibility of the patient dying. In conclusion, the CoMPred indicator is an objective tool that is affordable and widely available, will assist physicians, and limit the burden on clinical decisions on an unpredicted course of COVID-19 in patients.
Collapse
Affiliation(s)
- Anwar A. Sayed
- Department of Medical Microbiology and Immunology, College of Medicine, Taibah University, Madina 42353, Saudi Arabia
| | - Omar M. Al Nozha
- Department of Medicine, Taibah University, Madina 42353, Saudi Arabia
- Department of Medicine, Saudi German Hospital, Madina 42373, Saudi Arabia
| |
Collapse
|
37
|
Chung MKY, Gong L, Kwong DL, Lee VH, Lee AW, Guan X, Kam N, Dai W. Functions of double-negative B cells in autoimmune diseases, infections, and cancers. EMBO Mol Med 2023; 15:e17341. [PMID: 37272217 PMCID: PMC10493577 DOI: 10.15252/emmm.202217341] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 04/11/2023] [Accepted: 04/13/2023] [Indexed: 06/06/2023] Open
Abstract
Most mature B cells can be divided into four subtypes based on the expression of the surface markers IgD and CD27: IgD+ CD27- naïve B cells, IgD+ CD27+ unswitched memory B cells, IgD- CD27+ switched memory B cells, and IgD- CD27- double-negative (DN) B cells. Despite their small population size in normal peripheral blood, DN B cells play integral roles in various diseases. For example, they generate autoimmunity in autoimmune conditions, while these cells may generate both autoimmune and antipathogenic responses in COVID-19, or act in a purely antipathogenic capacity in malaria. Recently, DN B cells have been identified in nasopharyngeal carcinoma and non-small-cell lung cancers, where they may play an immunosuppressive role. The distinct functions that DN B cells play in different diseases suggest that they are a heterogeneous B-cell population. Therefore, further study of the mechanisms underlying the involvement of DN B cells in these diseases is essential for understanding their pathogenesis and the development of therapeutic strategies. Further research is thus warranted to characterize the DN B-cell population in detail.
Collapse
Affiliation(s)
- Michael King Yung Chung
- Department of Clinical Oncology, Li Ka Shing Faculty of MedicineThe University of Hong KongHong KongHong Kong
| | - Lanqi Gong
- Department of Clinical Oncology, Li Ka Shing Faculty of MedicineThe University of Hong KongHong KongHong Kong
- Department of Clinical Oncology, Shenzhen Key Laboratory for Cancer Metastasis and Personalized TherapyThe University of Hong Kong‐Shenzhen HospitalShenzhenChina
| | - Dora Lai‐Wan Kwong
- Department of Clinical Oncology, Li Ka Shing Faculty of MedicineThe University of Hong KongHong KongHong Kong
- Department of Clinical Oncology, Shenzhen Key Laboratory for Cancer Metastasis and Personalized TherapyThe University of Hong Kong‐Shenzhen HospitalShenzhenChina
| | - Victor Ho‐Fun Lee
- Department of Clinical Oncology, Li Ka Shing Faculty of MedicineThe University of Hong KongHong KongHong Kong
- Department of Clinical Oncology, Shenzhen Key Laboratory for Cancer Metastasis and Personalized TherapyThe University of Hong Kong‐Shenzhen HospitalShenzhenChina
| | - Ann Wing‐Mui Lee
- Department of Clinical Oncology, Li Ka Shing Faculty of MedicineThe University of Hong KongHong KongHong Kong
- Department of Clinical Oncology, Shenzhen Key Laboratory for Cancer Metastasis and Personalized TherapyThe University of Hong Kong‐Shenzhen HospitalShenzhenChina
| | - Xin‐Yuan Guan
- Department of Clinical Oncology, Li Ka Shing Faculty of MedicineThe University of Hong KongHong KongHong Kong
- Department of Clinical Oncology, Shenzhen Key Laboratory for Cancer Metastasis and Personalized TherapyThe University of Hong Kong‐Shenzhen HospitalShenzhenChina
| | - Ngar‐Woon Kam
- Department of Clinical Oncology, Li Ka Shing Faculty of MedicineThe University of Hong KongHong KongHong Kong
- Laboratory for Synthetic Chemistry and Chemical BiologyHong Kong (SAR)China
| | - Wei Dai
- Department of Clinical Oncology, Li Ka Shing Faculty of MedicineThe University of Hong KongHong KongHong Kong
- Department of Clinical Oncology, Shenzhen Key Laboratory for Cancer Metastasis and Personalized TherapyThe University of Hong Kong‐Shenzhen HospitalShenzhenChina
| |
Collapse
|
38
|
Satitsuksanoa P, Iwasaki S, Boersma J, Bel Imam M, Schneider SR, Chang I, van de Veen W, Akdis M. B cells: The many facets of B cells in allergic diseases. J Allergy Clin Immunol 2023; 152:567-581. [PMID: 37247640 DOI: 10.1016/j.jaci.2023.05.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 03/30/2023] [Accepted: 05/16/2023] [Indexed: 05/31/2023]
Abstract
B cells play a key role in our immune system through their ability to produce antibodies, suppress a proinflammatory state, and contribute to central immune tolerance. We aim to provide an in-depth knowledge of the molecular biology of B cells, including their origin, developmental process, types and subsets, and functions. In allergic diseases, B cells are well known to induce and maintain immune tolerance through the production of suppressor cytokines such as IL-10. Similarly, B cells protect against viral infections such as severe acute respiratory syndrome coronavirus 2 that caused the recent coronavirus disease 2019 pandemic. Considering the unique and multifaceted functions of B cells, we hereby provide a comprehensive overview of the current knowledge of B-cell biology and its clinical applications in allergic diseases, organ transplantation, and cancer.
Collapse
Affiliation(s)
- Pattraporn Satitsuksanoa
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zürich, Davos, Switzerland.
| | - Sayuri Iwasaki
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zürich, Davos, Switzerland; Wageningen University & Research, Wageningen, The Netherlands
| | - Jolien Boersma
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zürich, Davos, Switzerland; Wageningen University & Research, Wageningen, The Netherlands
| | - Manal Bel Imam
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zürich, Davos, Switzerland
| | - Stephan R Schneider
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zürich, Davos, Switzerland
| | - Iris Chang
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zürich, Davos, Switzerland; Sean N. Parker Centre for Allergy and Asthma Research, Department of Medicine, Stanford University, Palo Alto, Calif
| | - Willem van de Veen
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zürich, Davos, Switzerland
| | - Mübeccel Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zürich, Davos, Switzerland.
| |
Collapse
|
39
|
Castleman MJ, Santos AL, Lesteberg KE, Maloney JP, Janssen WJ, Mould KJ, Beckham JD, Pelanda R, Torres RM. Activation and pro-inflammatory cytokine production by unswitched memory B cells during SARS-CoV-2 infection. Front Immunol 2023; 14:1213344. [PMID: 37638016 PMCID: PMC10449608 DOI: 10.3389/fimmu.2023.1213344] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 07/03/2023] [Indexed: 08/29/2023] Open
Abstract
Memory B cells are comprised of unswitched (CD27+IgD+) and switched (CD27+IgD-) subsets. The origin and function of unswitched human memory B cells are debated in the literature, whereas switched memory B cells are primed to respond to recurrent infection. Unswitched memory B cells have been described to be reduced in frequency with severe SARS-CoV2 infection and here we characterize their activation status, BCR functionality, and contribution to virally-induced cytokine production. Analyses of whole blood from healthy individuals, people immunized against SARS-CoV2, and those who have had mild and severe SARS-CoV2 infection, confirm a reduction in the frequency of unswitched memory B cells during severe SARS-CoV2 infection and demonstrate this reduction is associated with increased levels of systemic TNFα. We further document how severe viral infection is associated with an increased frequency of 'IgD+' only memory B cells that correlate with increased IgG autoantibody levels. Unswitched and switched memory B cells from severe SARS-CoV2 infection displayed evidence of heightened activation with a concomitant reduction in the expression of the inhibitory receptor CD72. Functionally, both populations of memory B cells from severe SARS-COV2 infection harbored a signaling-competent BCR that displayed enhanced BCR signaling activity in the unswitched population. Finally, we demonstrate that B cells from mild SARS-CoV2 infection are poised to secrete pro-inflammatory cytokines IL-6 and TNFα. Importantly, unswitched memory B cells were a major producer of IL-6 and switched memory B cells were a major producer of TNFα in response to viral TLR ligands. Together these data indicate that B cells contribute to the inflammatory milieu during viral infection.
Collapse
Affiliation(s)
- Moriah J. Castleman
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, United States
| | - Adriana Luna Santos
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, United States
| | - Kelsey E. Lesteberg
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, United States
- Department of Medicine, Division of Infectious Disease, University of Colorado School of Medicine, Aurora, CO, United States
| | - James P. Maloney
- Department of Medicine, Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado School of Medicine, Aurora, CO, United States
| | - William J. Janssen
- Department of Medicine, National Jewish Health, Denver, CO, United States
- Department of Medicine, University of Colorado, Aurora, CO, United States
| | - Kara J. Mould
- Department of Medicine, National Jewish Health, Denver, CO, United States
- Department of Medicine, University of Colorado, Aurora, CO, United States
| | - J. David Beckham
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, United States
- Department of Medicine, Division of Infectious Disease, University of Colorado School of Medicine, Aurora, CO, United States
- Rocky Mountain Regional VA, Medical Center, Aurora, CO, United States
| | - Roberta Pelanda
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, United States
| | - Raul M. Torres
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, United States
| |
Collapse
|
40
|
Kwon KW, Kim JW, Moon S, Yoon JH, Youn SH, Hyun SH, Kim HG, Kweon DH, Cho JY. Korean Red Ginseng Relieves Inflammation and Modulates Immune Response Induced by Pseudo-Type SARS-CoV-2. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2023; 51:1361-1384. [PMID: 37489113 DOI: 10.1142/s0192415x23500623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/26/2023]
Abstract
Few studies have reported the therapeutic effects of Korean red ginseng (KRG) against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). However, the positive effects of KRG on other viruses have been reported and the effects of KRG on pulmonary inflammatory diseases have also been studied. Therefore, this study investigated the therapeutic effects of KRG-water extract (KRG-WE) in a pseudo-type SARS-CoV-2 (PSV)-induced lung injury model. Constructing the pseudovirus, human angiotensin-converting enzyme 2 (hACE2) transgenic mice were infected via intranasal injection that had been orally administered with KRG-WE for six weeks. After 7-days post infection (dpi), the antiviral effects of KRG-WE were confirmed, followed by real-time polymerase chain reaction (PCR), western blot analysis, flow cytometric analysis, and an enzyme-linked immunoassay (ELISA). KRG-WE significantly inhibited an increase in immunoglobulin caused by PSV. Furthermore, KRG-WE effectively suppressed alveolar macrophages (AMs) inside the lungs and helped normalize the population of other immune cells. In addition, virus-induced gene expression and inflammatory signals such as nuclear factor-kappa B and other upstream molecules were downregulated. Moreover, KRG-WE also normalized gene expression and protein activity in the spleen. In conclusion, KRG-WE reduced AMs, normalized the immune response, and decreased the expression of inflammatory genes and activation of signaling pathway phosphorylation, thereby exhibiting anti-inflammatory effects and attenuating lung damage.
Collapse
Affiliation(s)
- Ki Woong Kwon
- Department of Integrative Biotechnology, Sungkyunkwan University, 2066 Seobu-ro, Suwon 16419, Republic of Korea
| | - Ji Won Kim
- Department of Integrative Biotechnology, Sungkyunkwan University, 2066 Seobu-ro, Suwon 16419, Republic of Korea
| | - Seokoh Moon
- Department of Integrative Biotechnology, Sungkyunkwan University, 2066 Seobu-ro, Suwon 16419, Republic of Korea
| | - Jeong Hyeon Yoon
- Department of Integrative Biotechnology, Sungkyunkwan University, 2066 Seobu-ro, Suwon 16419, Republic of Korea
| | - Soo-Hyun Youn
- Laboratory of Natural Products Efficacy Research, Korea Ginseng Corporation, 30 Gajeong-ro, Shinseong-dong, Yuseong-gu, Daejeon 34128, Republic of Korea
| | - Sun Hee Hyun
- Laboratory of Natural Products Efficacy Research, Korea Ginseng Corporation, 30 Gajeong-ro, Shinseong-dong, Yuseong-gu, Daejeon 34128, Republic of Korea
| | - Han Gyung Kim
- Department of Integrative Biotechnology, Sungkyunkwan University, 2066 Seobu-ro, Suwon 16419, Republic of Korea
| | - Dae-Hyuk Kweon
- Department of Integrative Biotechnology, Sungkyunkwan University, 2066 Seobu-ro, Suwon 16419, Republic of Korea
| | - Jae Youl Cho
- Department of Integrative Biotechnology, Sungkyunkwan University, 2066 Seobu-ro, Suwon 16419, Republic of Korea
| |
Collapse
|
41
|
Sweet DR, Freeman ML, Zidar DA. Immunohematologic Biomarkers in COVID-19: Insights into Pathogenesis, Prognosis, and Prevention. Pathog Immun 2023; 8:17-50. [PMID: 37427016 PMCID: PMC10324469 DOI: 10.20411/pai.v8i1.572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 05/24/2023] [Indexed: 07/11/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19) has had profound effects on the health of individuals and on healthcare systems worldwide. While healthcare workers on the frontlines have fought to quell multiple waves of infection, the efforts of the larger research community have changed the arch of this pandemic as well. This review will focus on biomarker discovery and other efforts to identify features that predict outcomes, and in so doing, identify possible effector and passenger mechanisms of adverse outcomes. Identifying measurable soluble factors, cell-types, and clinical parameters that predict a patient's disease course will have a legacy for the study of immunologic responses, especially stimuli, which induce an overactive, yet ineffectual immune system. As prognostic biomarkers were identified, some have served to represent pathways of therapeutic interest in clinical trials. The pandemic conditions have created urgency for accelerated target identification and validation. Collectively, these COVID-19 studies of biomarkers, disease outcomes, and therapeutic efficacy have revealed that immunologic systems and responses to stimuli are more heterogeneous than previously assumed. Understanding the genetic and acquired features that mediate divergent immunologic outcomes in response to this global exposure is ongoing and will ultimately improve our preparedness for future pandemics, as well as impact preventive approaches to other immunologic diseases.
Collapse
Affiliation(s)
- David R. Sweet
- Case Western Reserve University School of Medicine, Cleveland, OH
| | - Michael L. Freeman
- Division of Infectious Diseases and HIV Medicine, Case Western Reserve University, Cleveland, OH
| | - David A. Zidar
- Harrington Heart and Vascular Institute, University Hospitals Cleveland Medical Center, Cleveland, OH
- Cardiology Section, Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, OH
- Center for Global Health and Diseases, Department of Pathology, Case Western Reserve University School of Medicine, Case Western Reserve University, Cleveland, OH
| |
Collapse
|
42
|
Yu M, Charles A, Cagigi A, Christ W, Österberg B, Falck-Jones S, Azizmohammadi L, Åhlberg E, Falck-Jones R, Svensson J, Nie M, Warnqvist A, Hellgren F, Lenart K, Arcoverde Cerveira R, Ols S, Lindgren G, Lin A, Maecker H, Bell M, Johansson N, Albert J, Sundling C, Czarnewski P, Klingström J, Färnert A, Loré K, Smed-Sörensen A. Delayed generation of functional virus-specific circulating T follicular helper cells correlates with severe COVID-19. Nat Commun 2023; 14:2164. [PMID: 37061513 PMCID: PMC10105364 DOI: 10.1038/s41467-023-37835-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 04/03/2023] [Indexed: 04/17/2023] Open
Abstract
Effective humoral immune responses require well-orchestrated B and T follicular helper (Tfh) cell interactions. Whether these interactions are impaired and associated with COVID-19 disease severity is unclear. Here, longitudinal blood samples across COVID-19 disease severity are analysed. We find that during acute infection SARS-CoV-2-specific circulating Tfh (cTfh) cells expand with disease severity. SARS-CoV-2-specific cTfh cell frequencies correlate with plasmablast frequencies and SARS-CoV-2 antibody titers, avidity and neutralization. Furthermore, cTfh cells but not other memory CD4 T cells, from severe patients better induce plasmablast differentiation and antibody production compared to cTfh cells from mild patients. However, virus-specific cTfh cell development is delayed in patients that display or later develop severe disease compared to those with mild disease, which correlates with delayed induction of high-avidity neutralizing antibodies. Our study suggests that impaired generation of functional virus-specific cTfh cells delays high-quality antibody production at an early stage, potentially enabling progression to severe disease.
Collapse
Affiliation(s)
- Meng Yu
- Division of Immunology and Allergy, Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Afandi Charles
- Division of Immunology and Allergy, Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Alberto Cagigi
- Division of Immunology and Allergy, Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Wanda Christ
- Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Björn Österberg
- Division of Immunology and Allergy, Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Sara Falck-Jones
- Division of Immunology and Allergy, Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Lida Azizmohammadi
- Division of Immunology and Allergy, Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Eric Åhlberg
- Division of Immunology and Allergy, Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Ryan Falck-Jones
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
- Department of Perioperative Medicine and Intensive Care, Karolinska University Hospital, Stockholm, Sweden
| | - Julia Svensson
- Division of Immunology and Allergy, Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Mu Nie
- Division of Immunology and Allergy, Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Anna Warnqvist
- Division of Biostatistics, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Fredrika Hellgren
- Division of Immunology and Allergy, Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Klara Lenart
- Division of Immunology and Allergy, Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Rodrigo Arcoverde Cerveira
- Division of Immunology and Allergy, Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Sebastian Ols
- Division of Immunology and Allergy, Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Gustaf Lindgren
- Division of Immunology and Allergy, Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Ang Lin
- Division of Immunology and Allergy, Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Holden Maecker
- The Human Immune Monitoring Center, Institute of Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford, CA, USA
| | - Max Bell
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
- Department of Perioperative Medicine and Intensive Care, Karolinska University Hospital, Stockholm, Sweden
| | - Niclas Johansson
- Division of Infectious Diseases, Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Infectious Diseases, Karolinska University Hospital Solna, Stockholm, Sweden
| | - Jan Albert
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
- Clinical Microbiology, Karolinska University Hospital Solna, Stockholm, Sweden
| | - Christopher Sundling
- Division of Infectious Diseases, Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Infectious Diseases, Karolinska University Hospital Solna, Stockholm, Sweden
| | - Paulo Czarnewski
- Department of Biochemistry and Biophysics, National Bioinformatics Infrastructure Sweden, Science for Life Laboratory, Stockholm University, Solna, Sweden
| | - Jonas Klingström
- Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Anna Färnert
- Division of Infectious Diseases, Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Infectious Diseases, Karolinska University Hospital Solna, Stockholm, Sweden
| | - Karin Loré
- Division of Immunology and Allergy, Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Anna Smed-Sörensen
- Division of Immunology and Allergy, Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden.
| |
Collapse
|
43
|
Gomez-Lopez N, Romero R, Escobar MF, Carvajal JA, Echavarria MP, Albornoz LL, Nasner D, Miller D, Gallo DM, Galaz J, Arenas-Hernandez M, Bhatti G, Done B, Zambrano MA, Ramos I, Fernandez PA, Posada L, Chaiworapongsa T, Jung E, Garcia-Flores V, Suksai M, Gotsch F, Bosco M, Than NG, Tarca AL. Pregnancy-specific responses to COVID-19 revealed by high-throughput proteomics of human plasma. COMMUNICATIONS MEDICINE 2023; 3:48. [PMID: 37016066 PMCID: PMC10071476 DOI: 10.1038/s43856-023-00268-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 03/03/2023] [Indexed: 04/06/2023] Open
Abstract
BACKGROUND Pregnant women are at greater risk of adverse outcomes, including mortality, as well as obstetrical complications resulting from COVID-19. However, pregnancy-specific changes that underlie such worsened outcomes remain unclear. METHODS Plasma samples were collected from pregnant women and non-pregnant individuals (male and female) with (n = 72 pregnant, 52 non-pregnant) and without (n = 29 pregnant, 41 non-pregnant) COVID-19. COVID-19 patients were grouped as asymptomatic, mild, moderate, severe, or critically ill according to NIH classifications. Proteomic profiling of 7,288 analytes corresponding to 6,596 unique protein targets was performed using the SOMAmer platform. RESULTS Herein, we profile the plasma proteome of pregnant and non-pregnant COVID-19 patients and controls and show alterations that display a dose-response relationship with disease severity; yet, such proteomic perturbations are dampened during pregnancy. In both pregnant and non-pregnant state, the proteome response induced by COVID-19 shows enrichment of mediators implicated in cytokine storm, endothelial dysfunction, and angiogenesis. Shared and pregnancy-specific proteomic changes are identified: pregnant women display a tailored response that may protect the conceptus from heightened inflammation, while non-pregnant individuals display a stronger response to repel infection. Furthermore, the plasma proteome can accurately identify COVID-19 patients, even when asymptomatic or with mild symptoms. CONCLUSION This study represents the most comprehensive characterization of the plasma proteome of pregnant and non-pregnant COVID-19 patients. Our findings emphasize the distinct immune modulation between the non-pregnant and pregnant states, providing insight into the pathogenesis of COVID-19 as well as a potential explanation for the more severe outcomes observed in pregnant women.
Collapse
Affiliation(s)
- Nardhy Gomez-Lopez
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS), Detroit, MI, USA.
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA.
- Department of Biochemistry, Microbiology and Immunology, Wayne State University School of Medicine, Detroit, MI, USA.
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI, USA.
| | - Roberto Romero
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS), Detroit, MI, USA.
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI, USA.
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI, USA.
- Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, MI, USA.
- Detroit Medical Center, Detroit, MI, USA.
| | - María Fernanda Escobar
- Departamento de Ginecología y Obstetricia, Fundación Valle del Lili, Cali, Colombia
- Departamento de Ginecología y Obstetricia, Facultad de Ciencias de la Salud, Universidad Icesi, Cali, Colombia
| | - Javier Andres Carvajal
- Departamento de Ginecología y Obstetricia, Fundación Valle del Lili, Cali, Colombia
- Departamento de Ginecología y Obstetricia, Facultad de Ciencias de la Salud, Universidad Icesi, Cali, Colombia
| | - Maria Paula Echavarria
- Departamento de Ginecología y Obstetricia, Fundación Valle del Lili, Cali, Colombia
- Departamento de Ginecología y Obstetricia, Facultad de Ciencias de la Salud, Universidad Icesi, Cali, Colombia
| | - Ludwig L Albornoz
- Departamento de Laboratorio Clínico y Patología, Fundación Valle del Lili, Cali, Colombia
- Facultad de Ciencias de la Salud, Universidad Icesi, Cali, Colombia
| | - Daniela Nasner
- Centro de Investigaciones Clínicas, Fundación Valle del Lili, Cali, Colombia
| | - Derek Miller
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS), Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Dahiana M Gallo
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS), Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Jose Galaz
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS), Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
- Division of Obstetrics and Gynecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Marcia Arenas-Hernandez
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS), Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Gaurav Bhatti
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS), Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Bogdan Done
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS), Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Maria Andrea Zambrano
- Departamento de Ginecología y Obstetricia, Facultad de Ciencias de la Salud, Universidad Icesi, Cali, Colombia
| | - Isabella Ramos
- Departamento de Ginecología y Obstetricia, Facultad de Ciencias de la Salud, Universidad Icesi, Cali, Colombia
| | - Paula Andrea Fernandez
- Departamento de Ginecología y Obstetricia, Facultad de Ciencias de la Salud, Universidad Icesi, Cali, Colombia
| | - Leandro Posada
- Departamento de Ginecología y Obstetricia, Facultad de Ciencias de la Salud, Universidad Icesi, Cali, Colombia
| | - Tinnakorn Chaiworapongsa
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS), Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Eunjung Jung
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS), Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Valeria Garcia-Flores
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS), Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Manaphat Suksai
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS), Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Francesca Gotsch
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS), Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Mariachiara Bosco
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS), Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Nandor Gabor Than
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS), Detroit, MI, USA
- Systems Biology of Reproduction Research Group, Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Hungary
- Maternity Private Clinic of Obstetrics and Gynecology, Budapest, Hungary
- Department of Obstetrics and Gynecology, Semmelweis University, Budapest, Hungary
- Genesis Theranostix Group, Budapest, Hungary
| | - Adi L Tarca
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS), Detroit, MI, USA.
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA.
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI, USA.
- Department of Computer Science, Wayne State University College of Engineering, Detroit, MI, USA.
| |
Collapse
|
44
|
The safety and immunogenicity of inactivated COVID-19 vaccine in old pulmonary tuberculosis patients. Eur J Clin Microbiol Infect Dis 2023; 42:503-512. [PMID: 36849838 PMCID: PMC9970849 DOI: 10.1007/s10096-023-04566-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Accepted: 02/07/2023] [Indexed: 03/01/2023]
Abstract
The immunogenicity and safety of vaccines against coronavirus disease 2019 (COVID-19) remain unknown in patients with a history of pulmonary tuberculosis (OPTB). Therefore, the safety and effectiveness of inactivated vaccines against severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) were assessed in patients with a history of PTB. The study cohort included 106 healthy controls and 93 adult patients with OPTB who received a two-dose vaccination. The study period was 21 to 105 days. Concentrations of antibodies (Abs) against receptor-binding domain (RBD) IgG and SARS-CoV-2 neutralizing Abs (NAbs) were measured, in addition to the frequencies of SARS-CoV-2-specific B and a portion T cells. The incidence of adverse events was similar between the OPTB patients and healthy controls. No severe adverse events occurred. Concentrations of Abs against RBD-IgG and CoV-2 neutralizing Abs in addition to the frequencies of RBD-specific memory B cells proportions were lower in OPTB patients than the healthy controls (all, p < 0.05), while the frequencies of cytotoxic T-lymphocyte-associated protein 4 (CTLA-4+) cells were higher (p = 0.023). There was no obvious correlation between age and blood concentrations of Abs against RBD-IgG and CoV-2 neutralizing Abs, while immune responses were similar in the fibrosis and calcification groups. The period of time following full-course vaccination and lymphocyte counts were associated to anti-RBD-IgG responses. Inactivated COVID-19 vaccinations were well tolerated in OPTB patients, although immunogenicity was limited in this population. This study has been registered at ClinicalTrials.gov (NCT05043246).
Collapse
|
45
|
Aharon A, Dangot A, Kinaani F, Zavaro M, Bannon L, Bar-Lev T, Keren-Politansky A, Avivi I, Jacob G. Extracellular Vesicles of COVID-19 Patients Reflect Inflammation, Thrombogenicity, and Disease Severity. Int J Mol Sci 2023; 24:ijms24065918. [PMID: 36982991 PMCID: PMC10054500 DOI: 10.3390/ijms24065918] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 02/27/2023] [Accepted: 03/15/2023] [Indexed: 03/30/2023] Open
Abstract
Severe COVID-19 infections present with cytokine storms, hypercoagulation, and acute respiratory distress syndrome, with extracellular vesicles (EVs) being involved in coagulation and inflammation. This study aimed to determine whether coagulation profiles and EVs reflect COVID-19 disease severity. Thirty-six patients with symptomatic COVID-19 infection with mild/moderate/severe disease (12 in each group) were analyzed. Sixteen healthy individuals served as controls. Coagulation profiles and EV characteristics were tested by nanoparticle tracking analysis (NTA), flow cytometry, and Western blot. While coagulation factors VII, V, VIII, and vWF were comparable, significant differences were found in patients' D-Dimer/fibrinogen/free protein S levels compared to controls. Severe patients' EVs displayed higher percentages of small EVs (<150 nm) with increased expression of exosome marker CD63. Severe patients' EVs displayed high levels of platelet markers (CD41) and coagulation factors (tissue factor activity, endothelial protein C receptor). EVs of patients with moderate/severe disease expressed significantly higher levels of immune cell markers (CD4/CD8/CD14) and contained higher levels of IL-6. We demonstrated that EVs, but not the coagulation profile, may serve as biomarkers for COVID-19 severity. EVs demonstrated elevated levels of immune- and vascular-related markers in patients with moderate/severe disease, and may play a role in disease pathogenesis.
Collapse
Affiliation(s)
- Anat Aharon
- Hematology Research Laboratory, Hematology Department, Tel-Aviv Sourasky Medical Center, Tel Aviv 69978, Israel
- The Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6423906, Israel
| | - Ayelet Dangot
- Hematology Research Laboratory, Hematology Department, Tel-Aviv Sourasky Medical Center, Tel Aviv 69978, Israel
- The Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6423906, Israel
| | - Fadi Kinaani
- Department of Medicine F, Tel-Aviv Sourasky Medical Center, Tel Aviv 6423906, Israel
| | - Mor Zavaro
- Hematology Research Laboratory, Hematology Department, Tel-Aviv Sourasky Medical Center, Tel Aviv 69978, Israel
- The Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6423906, Israel
| | - Lian Bannon
- Department of Medicine F, Tel-Aviv Sourasky Medical Center, Tel Aviv 6423906, Israel
| | - Tali Bar-Lev
- Hematology Research Laboratory, Hematology Department, Tel-Aviv Sourasky Medical Center, Tel Aviv 69978, Israel
| | | | - Irit Avivi
- The Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6423906, Israel
- Hematology Department, Tel-Aviv Sourasky Medical Center, Tel Aviv 69978, Israel
| | - Giris Jacob
- The Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6423906, Israel
- Department of Medicine F, Tel-Aviv Sourasky Medical Center, Tel Aviv 6423906, Israel
- Recanati Center, Tel-Aviv Sourasky Medical Center, Tel Aviv 69978, Israel
| |
Collapse
|
46
|
Silva-Junior AL, Oliveira LDS, Belezia NCT, Tarragô AM, Costa AGD, Malheiro A. Immune Dynamics Involved in Acute and Convalescent COVID-19 Patients. IMMUNO 2023; 3:86-111. [DOI: 10.3390/immuno3010007] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025] Open
Abstract
COVID-19 is a viral disease that has caused millions of deaths around the world since 2020. Many strategies have been developed to manage patients in critical conditions; however, comprehension of the immune system is a key factor in viral clearance, tissue repairment, and adaptive immunity stimulus. Participation of immunity has been identified as a major factor, along with biomarkers, prediction of clinical outcomes, and antibody production after infection. Immune cells have been proposed not only as a hallmark of severity, but also as a predictor of clinical outcomes, while dynamics of inflammatory molecules can also induce worse consequences for acute patients. For convalescent patients, mild disease was related to higher antibody production, although the factors related to the specific antibodies based on a diversity of antigens were not clear. COVID-19 was explored over time; however, the study of immunological predictors of outcomes is still lacking discussion, especially in convalescent patients. Here, we propose a review using previously published studies to identify immunological markers of COVID-19 outcomes and their relation to antibody production to further contribute to the clinical and laboratorial management of patients.
Collapse
Affiliation(s)
- Alexander Leonardo Silva-Junior
- Programa de Pós-Graduação em Biotecnologia, Universidade Federal do Amazonas (UFAM), Manaus 69067-005, AM, Brazil
- Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas (HEMOAM), Manaus 69050-001, AM, Brazil
- Centro Universitário do Norte (UNINORTE), Manaus 69020-031, AM, Brazil
| | - Lucas da Silva Oliveira
- Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas (HEMOAM), Manaus 69050-001, AM, Brazil
- Centro Universitário do Norte (UNINORTE), Manaus 69020-031, AM, Brazil
| | - Nara Caroline Toledo Belezia
- Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas (HEMOAM), Manaus 69050-001, AM, Brazil
- Centro Universitário do Norte (UNINORTE), Manaus 69020-031, AM, Brazil
| | - Andréa Monteiro Tarragô
- Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas (HEMOAM), Manaus 69050-001, AM, Brazil
- Programa de Pós-Graduação em Ciências Aplicadas à Hematologia, Universidade do Estado do Amazonas (UEA), Manaus 69065-001, AM, Brazil
| | - Allyson Guimarães da Costa
- Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas (HEMOAM), Manaus 69050-001, AM, Brazil
- Programa de Pós-Graduação em Ciências Aplicadas à Hematologia, Universidade do Estado do Amazonas (UEA), Manaus 69065-001, AM, Brazil
- Programa de Pós-Graduação em Imunologia, Universidade Federal do Amazonas (UFAM), Manaus 69067-005, AM, Brazil
| | - Adriana Malheiro
- Programa de Pós-Graduação em Biotecnologia, Universidade Federal do Amazonas (UFAM), Manaus 69067-005, AM, Brazil
- Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas (HEMOAM), Manaus 69050-001, AM, Brazil
- Programa de Pós-Graduação em Ciências Aplicadas à Hematologia, Universidade do Estado do Amazonas (UEA), Manaus 69065-001, AM, Brazil
- Programa de Pós-Graduação em Imunologia, Universidade Federal do Amazonas (UFAM), Manaus 69067-005, AM, Brazil
| |
Collapse
|
47
|
Demultiplexing Ig repertoires by parallel mRNA/DNA sequencing shows major differential alterations in severe COVID-19. iScience 2023; 26:106260. [PMID: 36845033 PMCID: PMC9942447 DOI: 10.1016/j.isci.2023.106260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 01/14/2023] [Accepted: 02/17/2023] [Indexed: 02/24/2023] Open
Abstract
To understand the fine differential elements that can lead to or prevent acute respiratory distress syndrome (ARDS) in COVID-19 patients, it is crucial to investigate the immune response architecture. We herein dissected the multiple layers of B cell responses by flow cytometry and Ig repertoire analysis from acute phase to recovery. Flow cytometry with FlowSOM analysis showed major changes associated with COVID-19 inflammation such as an increase of double-negative B-cells and ongoing plasma cell differentiation. This paralleled COVID-19-driven expansion of two disconnected B-cell repertoires. Demultiplexing successive DNA and RNA Ig repertoire patterns characterized an early expansion of IgG1 clonotypes with atypically long and uncharged CDR3, the abundance of this inflammatory repertoire being correlated with ARDS and likely pejorative. A superimposed convergent response included convergent anti-SARS-CoV-2 clonotypes. It featured progressively increasing somatic hypermutation together with normal-length or short CDR3 and it persisted until a quiescent memory B-cell stage after recovery.
Collapse
|
48
|
Chauvin C, Levillayer L, Roumier M, Nielly H, Roth C, Karnam A, Bonam SR, Bourgarit A, Dubost C, Bousquet A, Le Burel S, Mestiri R, Sene D, Galland J, Vasse M, Groh M, Le Marchand M, Vassord-Dang C, Gautier JF, Pham-Thi N, Verny C, Pitard B, Planchais C, Mouquet H, Paul R, Simon-Loriere E, Bayry J, Gilardin L, Sakuntabhai A. Tocilizumab-treated convalescent COVID-19 patients retain the cross-neutralization potential against SARS-CoV-2 variants. iScience 2023; 26:106124. [PMID: 36776936 PMCID: PMC9894676 DOI: 10.1016/j.isci.2023.106124] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 10/10/2022] [Accepted: 01/30/2023] [Indexed: 02/05/2023] Open
Abstract
Although tocilizumab treatment in severe and critical coronavirus disease 2019 (COVID-19) patients has proven its efficacy at the clinical level, there is little evidence supporting the effect of short-term use of interleukin-6 receptor blocking therapy on the B cell sub-populations and the cross-neutralization of SARS-CoV-2 variants in convalescent COVID-19 patients. We performed immunological profiling of 69 tocilizumab-treated and non-treated convalescent COVID-19 patients in total. We observed that SARS-CoV-2-specific IgG1 titers depended on disease severity but not on tocilizumab treatment. The plasma of both treated and non-treated patients infected with the ancestral variant exhibit strong neutralizing activity against the ancestral virus and the Alpha, Beta, and Delta variants of SARS-CoV-2, whereas the Gamma and Omicron viruses were less sensitive to seroneutralization. Overall, we observed that, despite the clinical benefits of short-term tocilizumab therapy in modifying the cytokine storm associated with COVID-19 infections, there were no modifications in the robustness of B cell and IgG responses to Spike antigens.
Collapse
Affiliation(s)
- Camille Chauvin
- Institut Pasteur, Université de Paris, Functional Genetics of Infectious Diseases Unit, Department of Global Health, 75015 Paris, France.,Centre National de la Recherche Scientifique (CNRS), UMR2000, Paris Cedex 15, France
| | - Laurine Levillayer
- Institut Pasteur, Université de Paris, Functional Genetics of Infectious Diseases Unit, Department of Global Health, 75015 Paris, France.,Centre National de la Recherche Scientifique (CNRS), UMR2000, Paris Cedex 15, France
| | - Mathilde Roumier
- Service de Médecine Interne, Hôpital Foch, 92151 Suresnes, France
| | - Hubert Nielly
- Service de Médecine Interne, Hôpital d'Instruction des Armées Bégin, 94160 Saint Mandé, France
| | - Claude Roth
- Institut Pasteur, Université de Paris, Functional Genetics of Infectious Diseases Unit, Department of Global Health, 75015 Paris, France.,Centre National de la Recherche Scientifique (CNRS), UMR2000, Paris Cedex 15, France
| | - Anupama Karnam
- Institut National de la Santé et de la Recherche Médicale, Centre de Recherche des Cordeliers, Sorbonne Université, Université de Paris, Paris, 75006, France
| | - Srinivasa Reddy Bonam
- Institut National de la Santé et de la Recherche Médicale, Centre de Recherche des Cordeliers, Sorbonne Université, Université de Paris, Paris, 75006, France
| | - Anne Bourgarit
- Hôpital Jean Verdier, HUPSSD, AP-HP, 93140 Bondy, France.,Sorbonne Paris-Nord University (Paris 13), 93000 Bobigny, France.,Inserm, UMR 1135 CIMI, 75013 Paris, France
| | - Clément Dubost
- Service de réanimation, Hôpital militaire Bégin, 94120 Saint Mandé, France.,Université Paris-Saclay, ENS Paris-Saclay, CNRS, Centre Borelli, 91190, Gif-sur-Yvette, France
| | - Aurore Bousquet
- Département des laboratoires, Hôpital militaire Bégin, 94120 Saint Mandé, France
| | - Sébastien Le Burel
- Service de Médecine Interne, Hôpital d'Instruction des Armées Bégin, 94160 Saint Mandé, France
| | - Raphaële Mestiri
- Service de Médecine Interne, Hôpital d'Instruction des Armées Bégin, 94160 Saint Mandé, France
| | - Damien Sene
- Département de médecine interne, Hôpital Lariboisière, Université de Paris (Diderot), AP-HP, 75010 Paris, France
| | - Joris Galland
- Département de médecine interne, Hôpital Lariboisière, Université de Paris (Diderot), AP-HP, 75010 Paris, France
| | - Marc Vasse
- Laboratoire de Biologie Médicale, Hôpital Foch, 92151 Suresnes, France.,UMRS-1176, Le Kremlin Bicêtre, France
| | - Matthieu Groh
- Service de Médecine Interne, Hôpital Foch, 92151 Suresnes, France
| | - Mathilde Le Marchand
- Department of Clinical Research and Innovation, Foch Hospital, 40 rue Worth, 92150 Suresnes, France
| | - Camille Vassord-Dang
- Department of Clinical Research and Innovation, Foch Hospital, 40 rue Worth, 92150 Suresnes, France
| | - Jean-François Gautier
- Departement of Diabetes and Endocrinology, Hôpital Lariboisière, APHP, and INSERM U1138 Paris, France.,Université de Paris, 75006 Paris, France
| | - Nhan Pham-Thi
- Unité de Neurophysiologie du Stress, Département des Neurosciences, Institut de Recherche Biomédicale des Armées (IRBA), BP 73 91223 Brétigny sur Orge Cedex, France
| | - Christiane Verny
- Unité de Neurophysiologie du Stress, Département des Neurosciences, Institut de Recherche Biomédicale des Armées (IRBA), BP 73 91223 Brétigny sur Orge Cedex, France
| | - Bruno Pitard
- Nantes Université, INSERM, CNRS, Immunology and New Concepts in ImmunoTherapy, INCIT,UMR 1302, F-44000 Nantes, France
| | - Cyril Planchais
- Institut Pasteur, Université de Paris, Humoral Immunology Unit, Department of Immunology, 75015 Paris, France
| | - Hugo Mouquet
- Institut Pasteur, Université de Paris, Humoral Immunology Unit, Department of Immunology, 75015 Paris, France
| | - Richard Paul
- Institut Pasteur, Université de Paris, Functional Genetics of Infectious Diseases Unit, Department of Global Health, 75015 Paris, France.,Centre National de la Recherche Scientifique (CNRS), UMR2000, Paris Cedex 15, France
| | - Etienne Simon-Loriere
- Institut Pasteur, Université de Paris, G5 Evolutionary Genomics of RNA viruses, 75015 Paris, France
| | - Jagadeesh Bayry
- Institut National de la Santé et de la Recherche Médicale, Centre de Recherche des Cordeliers, Sorbonne Université, Université de Paris, Paris, 75006, France.,Department of Biological Sciences & Engineering, Indian Institute of Technology Palakkad, Palakkad 678623, India
| | - Laurent Gilardin
- Institut National de la Santé et de la Recherche Médicale, Centre de Recherche des Cordeliers, Sorbonne Université, Université de Paris, Paris, 75006, France.,Sorbonne Paris-Nord University (Paris 13), 93000 Bobigny, France.,Service de médecine interne, Hôpital Jean Verdier, HUPSSD, AP-HP, 93140 Bondy, France
| | - Anavaj Sakuntabhai
- Institut Pasteur, Université de Paris, Functional Genetics of Infectious Diseases Unit, Department of Global Health, 75015 Paris, France.,Centre National de la Recherche Scientifique (CNRS), UMR2000, Paris Cedex 15, France.,International Vaccine Design Center (vDesC), The Institute of Medical Science, The University of Tokyo (IMSUT), Tokyo, Japan
| |
Collapse
|
49
|
Beckers L, Somers V, Fraussen J. IgD -CD27 - double negative (DN) B cells: Origins and functions in health and disease. Immunol Lett 2023; 255:67-76. [PMID: 36906182 DOI: 10.1016/j.imlet.2023.03.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 03/03/2023] [Accepted: 03/07/2023] [Indexed: 03/11/2023]
Abstract
Human B cells can be divided into four main subsets based on differential expression of immunoglobulin (Ig)D and CD27. IgD-CD27- double negative (DN) B cells make up a heterogeneous group of B cells that have first been described in relation to aging and systemic lupus erythematosus but have been mostly disregarded in B cell research. Over the last few years, DN B cells have gained a lot of interest because of their involvement in autoimmune and infectious diseases. DN B cells can be divided into different subsets that originate via different developmental processes and have different functional properties. Further research into the origin and function of different DN subsets is needed to better understand the role of these B cells in normal immune responses and how they could be targeted in specific pathologies. In this review, we give an overview of both phenotypic and functional properties of DN B cells and provide insight into the currently proposed origins of DN B cells. Moreover, their involvement in normal aging and different pathologies is discussed.
Collapse
Affiliation(s)
- Lien Beckers
- University MS Center (UMSC), Hasselt-Pelt, Hasselt, Belgium; Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Hasselt, Belgium
| | - Veerle Somers
- University MS Center (UMSC), Hasselt-Pelt, Hasselt, Belgium; Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Hasselt, Belgium
| | - Judith Fraussen
- University MS Center (UMSC), Hasselt-Pelt, Hasselt, Belgium; Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Hasselt, Belgium.
| |
Collapse
|
50
|
Brown B, Ojha V, Fricke I, Al-Sheboul SA, Imarogbe C, Gravier T, Green M, Peterson L, Koutsaroff IP, Demir A, Andrieu J, Leow CY, Leow CH. Innate and Adaptive Immunity during SARS-CoV-2 Infection: Biomolecular Cellular Markers and Mechanisms. Vaccines (Basel) 2023; 11:408. [PMID: 36851285 PMCID: PMC9962967 DOI: 10.3390/vaccines11020408] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 02/01/2023] [Accepted: 02/04/2023] [Indexed: 02/16/2023] Open
Abstract
The coronavirus 2019 (COVID-19) pandemic was caused by a positive sense single-stranded RNA (ssRNA) severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). However, other human coronaviruses (hCoVs) exist. Historical pandemics include smallpox and influenza, with efficacious therapeutics utilized to reduce overall disease burden through effectively targeting a competent host immune system response. The immune system is composed of primary/secondary lymphoid structures with initially eight types of immune cell types, and many other subtypes, traversing cell membranes utilizing cell signaling cascades that contribute towards clearance of pathogenic proteins. Other proteins discussed include cluster of differentiation (CD) markers, major histocompatibility complexes (MHC), pleiotropic interleukins (IL), and chemokines (CXC). The historical concepts of host immunity are the innate and adaptive immune systems. The adaptive immune system is represented by T cells, B cells, and antibodies. The innate immune system is represented by macrophages, neutrophils, dendritic cells, and the complement system. Other viruses can affect and regulate cell cycle progression for example, in cancers that include human papillomavirus (HPV: cervical carcinoma), Epstein-Barr virus (EBV: lymphoma), Hepatitis B and C (HB/HC: hepatocellular carcinoma) and human T cell Leukemia Virus-1 (T cell leukemia). Bacterial infections also increase the risk of developing cancer (e.g., Helicobacter pylori). Viral and bacterial factors can cause both morbidity and mortality alongside being transmitted within clinical and community settings through affecting a host immune response. Therefore, it is appropriate to contextualize advances in single cell sequencing in conjunction with other laboratory techniques allowing insights into immune cell characterization. These developments offer improved clarity and understanding that overlap with autoimmune conditions that could be affected by innate B cells (B1+ or marginal zone cells) or adaptive T cell responses to SARS-CoV-2 infection and other pathologies. Thus, this review starts with an introduction into host respiratory infection before examining invaluable cellular messenger proteins and then individual immune cell markers.
Collapse
Affiliation(s)
| | | | - Ingo Fricke
- Independent Immunologist and Researcher, 311995 Lamspringe, Germany
| | - Suhaila A Al-Sheboul
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, Jordan University of Science and Technology, Irbid 22110, Jordan
- Department of Medical Microbiology, International School of Medicine, Medipol University-Istanbul, Istanbul 34810, Turkey
| | | | - Tanya Gravier
- Independent Researcher, MPH, San Francisco, CA 94131, USA
| | | | | | | | - Ayça Demir
- Faculty of Medicine, Afyonkarahisar University, Istanbul 03030, Turkey
| | - Jonatane Andrieu
- Faculté de Médecine, Aix–Marseille University, 13005 Marseille, France
| | - Chiuan Yee Leow
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, USM, Penang 11800, Malaysia
| | - Chiuan Herng Leow
- Institute for Research in Molecular Medicine, (INFORMM), Universiti Sains Malaysia, USM, Penang 11800, Malaysia
| |
Collapse
|