1
|
Ali FH, Gentilcore G, Al-Jighefee HT, Taleb SA, Hssain AA, Qotba HA, Al Thani AA, Abu Raddad LJ, Nasrallah GK, Grivel JC, Yassine HM. Comprehensive analysis of human coronavirus antibody responses in ICU and non-ICU COVID-19 patients reveals IgG3 against SARS-CoV-2 spike protein as a key biomarker of disease severity. J Med Microbiol 2025; 74:002012. [PMID: 40359129 PMCID: PMC12075857 DOI: 10.1099/jmm.0.002012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 04/22/2025] [Indexed: 05/15/2025] Open
Abstract
Introduction. Pre-existing immunity to human coronaviruses (HCoVs) may shape the immune response in COVID-19 patients. Increasing evidence suggests that immune cross-reactivity between SARS-CoV-2 and other coronaviruses may determine clinical prognosis.Hypothesis. SARS-CoV-2 disease severity is influenced by pre-existing immunity to HCoVs, with distinct antibody profiles and cross-reactivity patterns.Aim. To investigate the antibody response of ICU and non-ICU SARS-CoV-2 patients against different HCoV proteins and assess the potential impact of pre-existing immunity on SARS-CoV-2 disease outcomes.Methodology. This study used a comprehensive HCoVs antigen bead array to measure antibody response to pathogenic Middle East respiratory syndrome coronavirus (MERS-CoV), SARS-CoV, SARS-CoV-2 and the four seasonal HCoVs in 70 ICU and 63 non-ICU COVID-19 patients.Results. Our analysis demonstrates an overall higher antibody response in ICU than in non-ICU COVID-19 patients. Interestingly, the anti-S1 IgG and IgA were significantly higher among ICU than in non-ICU patients. Similarly, the anti-S1 IgG against NL63 showed a lower response among ICU compared to non-ICU. Cross-reactivity was evident between SARS-CoV-2 and SARS-CoV antibodies but not with MERS-CoV and seasonal HCoVs. The subclass analysis of antibodies recognizing SARS-CoV-2 revealed that anti-S1 IgG1, IgG3, IgA1 and IgA2 were significantly higher in ICU compared to non-ICU. The predominant IgA subtype among SARS-CoV-2 patients was IgA1. We applied machine learning algorithms to subclass serological responses to build classifiers that could distinguish between ICU patients and patients with milder COVID-19. Out of 90 variables used in two different types of models, the variable of highest influence in determining the ICU status was IgG3 against SARS-CoV-2 S, and the top 8 variables of influence included the presence of IgG3 against S-trimer as well as IgA against SARS-CoV-2 S.Conclusion. Understanding the complexities of humoral immunity in various patients is critical for early medical intervention, disease management, selective vaccination and passive immunotherapy.
Collapse
Affiliation(s)
- Fatma H. Ali
- Biomedical Research Center, QH Health, Qatar University, Doha, Qatar
- Department of Biomedical Sciences, College of Health Sciences, QU Health, Qatar University, Doha, Qatar
| | | | | | - Sara Ahmad Taleb
- College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
| | - Ali Ait Hssain
- Medical Intensive Care Unit, Hamad Medical Corporation, Doha, Qatar
| | | | - Asmaa A. Al Thani
- Biomedical Research Center, QH Health, Qatar University, Doha, Qatar
- Department of Biomedical Sciences, College of Health Sciences, QU Health, Qatar University, Doha, Qatar
| | - Laith J. Abu Raddad
- Department of Population Health Sciences, Infectious Disease Epidemiology Group, Weill Cornell Medicine-Qatar, Doha, Qatar
| | - Gheyath K. Nasrallah
- Biomedical Research Center, QH Health, Qatar University, Doha, Qatar
- Department of Biomedical Sciences, College of Health Sciences, QU Health, Qatar University, Doha, Qatar
| | | | - Hadi M. Yassine
- Biomedical Research Center, QH Health, Qatar University, Doha, Qatar
- Department of Biomedical Sciences, College of Health Sciences, QU Health, Qatar University, Doha, Qatar
| |
Collapse
|
2
|
Liu Y, Li C, Wu Z, Zhao Y, Yin T, Liu X, Hui J, Wang Q, Pan Y, Shan Y, Qu X. Self-assembled epitope-based nanoparticles targeting the SARS-CoV-2 spike protein enhanced the immune response and induced potential broad neutralizing activity. Front Cell Infect Microbiol 2025; 15:1560330. [PMID: 40270771 PMCID: PMC12014594 DOI: 10.3389/fcimb.2025.1560330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Accepted: 03/20/2025] [Indexed: 04/25/2025] Open
Abstract
Introduction The ongoing COVID-19 has caused a global pandemic, resulting in millions of infections and deaths. While current vaccines target the SARS-CoV-2 spike (S) protein, its high mutation rate significantly compromises vaccine efficacy. We aimed to evaluate the potential of epitope-based nanoparticles (NPs) to induce broad cross-protection and durable immune responses against SARS-CoV-2. Methods Four conserved epitopes derived from the receptor-binding domain (RBD) and S2 subunit of the spike protein were integrated into Helicobacter pylori ferritin to create epitope-based NPs named S18-F, RBM-F, UH-F, and HR2-F. The immunogenicity of the epitope-based NPs was evaluated through animal experiments to measure epitope-specific antibody titers and assess neutralizing activity against SARS-CoV-2 pseudovirus. To characterize cellular immune responses, splenic lymphocyte proliferation following epitope stimulation was measured, and cytokine secretion profiles including IFN-γ, IL-2, IL-4, and IL-10 were analyzed to determine Th1/Th2 immune polarization. Antibody-dependent cellular cytotoxicity (ADCC) assays were performed to evaluate NP-enhanced recognition and elimination of infected target cells. Results These NPs induced high titers of epitope-specific antibodies lasting three months post-immunization. Sera from the RBM-F, UH-F, and HR2-F groups exhibited neutralizing activity against the SARS-CoV-2 pseudovirus WH-1 in vitro. Splenic lymphocytes from the S18-F, RBM-F, and UH-F groups showed significantly increased proliferation. Lymphocytes from the RBM-F group demonstrated increased secretion of IFN-γ, IL-2, IL-4, and IL-10 cytokines, indicating a balanced Th1 and Th2 immune response. Immune sera from the S18-F and mixed-immunized groups exhibited antibody-dependent cellular cytotoxicity. Discussion The results indicate that these NPs induce robust humoral and cellular immune responses, potentially offering a promising strategy for effective vaccine development against SARS-CoV-2.
Collapse
Affiliation(s)
- Yue Liu
- Department of Echocardiography, The First Hospital of Jilin University, Changchun, China
- Institute of Virology and AIDS Research, The First Hospital of Jilin University, Changchun, China
| | - Chenxi Li
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China
| | - Zirui Wu
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China
| | - Yu Zhao
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China
| | - Tieyan Yin
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China
| | - Xiaopan Liu
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China
| | - Jiaru Hui
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China
| | - Qingyu Wang
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China
| | - Yi Pan
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China
| | - Yaming Shan
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China
- Key Laboratory for Molecular Enzymology and Engineering, The Ministry of Education, School of Life Sciences, Jilin University, Changchun, China
| | - Xinglong Qu
- Department of Respiratory, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
3
|
Benlarbi M, Kenfack DD, Dionne K, Côté-Chenette M, Beaudoin-Bussières G, Bélanger É, Ding S, Goni OH, Ngoume YF, Tauzin A, Medjahed H, Ghedin E, Duerr R, Finzi A, Tongo M. Longitudinal humoral immunity against SARS-CoV-2 Spike following infection in individuals from Cameroon. Virology 2025; 605:110467. [PMID: 40037139 PMCID: PMC11937844 DOI: 10.1016/j.virol.2025.110467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 02/10/2025] [Accepted: 02/24/2025] [Indexed: 03/06/2025]
Abstract
In May 2023 the World Health Organization (WHO) declared the end of COVID-19 as a public health emergency. Seroprevalence studies performed in African countries, such as Cameroon, depicted a much higher COVID-19 burden than reported by the WHO. To better understand humoral responses kinetics following infection, we enrolled 333 participants from Yaoundé, Cameroon between March 2020 and January 2022. We measured the levels of antibodies targeting the SARS-CoV-2 receptor-binding-domain (RBD) and the Spike glycoproteins of Delta, Omicron BA.1 and BA.4/5 and the common cold coronavirus HCoV-OC43. We also evaluated plasma capacity to neutralize authentic SARS-CoV-2 virus and to mediate Antibody-Dependent Cellular Cytotoxicity (ADCC). Most individuals mounted a strong antibody response against SARS-CoV-2 Spike. Plasma neutralization waned faster than anti-Spike binding and ADCC. We observed differences in humoral responses by age and circulating variants. Altogether, we show a global overview of antibody dynamics and functionality against SARS-CoV-2 in Cameroon.
Collapse
Affiliation(s)
- Mehdi Benlarbi
- Centre de Recherche du CHUM, Montréal, Québec, Canada; Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, Québec, Canada
| | - Dell-Dylan Kenfack
- Center of Research for Emerging and Re-Emerging Diseases (CREMER), Institute of Medical Research and Study of Medicinal Plants (IMPM), Yaoundé, Cameroon
| | - Katrina Dionne
- Centre de Recherche du CHUM, Montréal, Québec, Canada; Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, Québec, Canada
| | - Maxime Côté-Chenette
- Centre de Recherche du CHUM, Montréal, Québec, Canada; Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, Québec, Canada
| | - Guillaume Beaudoin-Bussières
- Centre de Recherche du CHUM, Montréal, Québec, Canada; Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, Québec, Canada
| | - Étienne Bélanger
- Centre de Recherche du CHUM, Montréal, Québec, Canada; Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, Québec, Canada
| | - Shilei Ding
- Centre de Recherche du CHUM, Montréal, Québec, Canada
| | - Oumarou H Goni
- Center of Research for Emerging and Re-Emerging Diseases (CREMER), Institute of Medical Research and Study of Medicinal Plants (IMPM), Yaoundé, Cameroon
| | - Yannick F Ngoume
- Center of Research for Emerging and Re-Emerging Diseases (CREMER), Institute of Medical Research and Study of Medicinal Plants (IMPM), Yaoundé, Cameroon
| | - Alexandra Tauzin
- Centre de Recherche du CHUM, Montréal, Québec, Canada; Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, Québec, Canada
| | - Halima Medjahed
- Centre de Recherche du CHUM, Montréal, Québec, Canada; Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, Québec, Canada
| | - Elodie Ghedin
- Systems Genomics Section, Laboratory of Parasitic Diseases, NIAID, National Institutes of Health, Bethesda, MD, USA
| | - Ralf Duerr
- Vaccine Center, NYU Grossman School of Medicine, New York, USA; Department of Medicine, NYU Grossman School of Medicine, New York, USA; Department of Microbiology, NYU Grossman School of Medicine, New York, USA
| | - Andrés Finzi
- Centre de Recherche du CHUM, Montréal, Québec, Canada; Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, Québec, Canada.
| | - Marcel Tongo
- Center of Research for Emerging and Re-Emerging Diseases (CREMER), Institute of Medical Research and Study of Medicinal Plants (IMPM), Yaoundé, Cameroon; HIV Pathogenesis Program, The Doris Duke Medical Research Institute, University of KwaZulu Natal, Durban, South Africa.
| |
Collapse
|
4
|
Tao T, Tian L, Ke J, Zhang C, Li M, Xu X, Fan J, Tong Y, Fan H. Antibody-dependent enhancement of coronaviruses. Int J Biol Sci 2025; 21:1686-1704. [PMID: 39990674 PMCID: PMC11844293 DOI: 10.7150/ijbs.96112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 01/11/2025] [Indexed: 02/25/2025] Open
Abstract
The COVID-19 pandemic presents a significant challenge to the global health and the world economy, with humanity engaged in an extended struggle against the virus. Notable advancements have been achieved in the development of vaccines and therapeutic interventions, including the application of neutralizing antibodies (NAbs) and convalescent plasma (CP). While antibody-dependent enhancement (ADE) has not been observed in human clinical studies related to SARS-CoV-2, the potential for ADE remains a critical concern and challenge in addressing SARS-CoV-2 infections. Moreover, the causal relationship between ADE and viral characteristics remains to be clearly elucidated. Viruses that present with severe clinical manifestations of ADE have demonstrated the capacity to replicate in macrophages or other immune cells, or to alter the immunological status of these cells, which induces abortive infections characterized by systemic inflammation. In this review, we summarize experimental observations and clinical evidence concerning the ADE effect associated with coronaviruses. We critically examine the potential mechanisms through which coronaviruses mediate ADE, and propose strategies to mitigate this phenomenon in the context of viral infection treatment. Our aim is to offer informed recommendations for the containment of the COVID-19 pandemic and to strengthen the response to SARS-CoV-2, as well as to prepare for potential future coronavirus threats.
Collapse
Affiliation(s)
- Tao Tao
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Lili Tian
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Jiayi Ke
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Chuxie Zhang
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Maochen Li
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xiaolong Xu
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing 100010, China
| | - Junfen Fan
- Institute of Cerebrovascular Disease Research and Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing 100053, China
| | - Yigang Tong
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Huahao Fan
- School of Life Sciences, Tianjin University, Tianjin 300072, China
| |
Collapse
|
5
|
Yang Q, Kelkar A, Manicassamy B, Neelamegham S. Conserved role of spike S2 domain N-glycosylation across betacoronaviruses. NPJ VIRUSES 2025; 3:4. [PMID: 40295734 PMCID: PMC11762317 DOI: 10.1038/s44298-024-00085-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 12/10/2024] [Indexed: 04/30/2025]
Abstract
Besides acting as an immunological shield, the N-glycans of SARS-CoV-2 are also critical for viral life cycle. As the S2 subunit of spike is highly conserved across betacoronaviruses, we determined the functional significance of the five 'stem N-glycans' located in S2 between N1098-N1194. Studies were performed with 31 Asn-to-Gln mutants, betacoronavirus virus-like particles and single-cycle viral replicons. Deletions of stem N-glycans enhanced S1 shedding from trimeric spike, reduced ACE2 binding and abolished syncytia formation. When three or more N-glycans were deleted, spike expression on cell surface and incorporation into virions was both reduced. Viral entry function was progressively lost upon deleting the N1098 glycan in combination with additional glycosite modifications. In addition to SARS-CoV-2, deleting stem N-glycans in SARS-CoV and MERS-CoV spike also prevented viral entry into target cells. These data suggest multiple functional roles for the stem N-glycans, and evolutionarily conserved properties for these complex carbohydrates across human betacoronaviruses.
Collapse
Affiliation(s)
- Qi Yang
- Chemical & Biological Engineering, State University of New York, Buffalo, NY, USA
- Cell, Gene and Tissue Engineering Center, State University of New York, Buffalo, NY, USA
| | - Anju Kelkar
- Chemical & Biological Engineering, State University of New York, Buffalo, NY, USA
- Cell, Gene and Tissue Engineering Center, State University of New York, Buffalo, NY, USA
| | | | - Sriram Neelamegham
- Chemical & Biological Engineering, State University of New York, Buffalo, NY, USA.
- Cell, Gene and Tissue Engineering Center, State University of New York, Buffalo, NY, USA.
- Biomedical Engineering, State University of New York, Buffalo, NY, USA.
- Medicine, State University of New York, Buffalo, NY, USA.
- Clinical & Translational Research Center, Buffalo, NY, USA.
| |
Collapse
|
6
|
Shi YH, Shen JX, Tao Y, Xia YL, Zhang ZB, Fu YX, Zhang KQ, Liu SQ. Dissecting the Binding Affinity of Anti-SARS-CoV-2 Compounds to Human Transmembrane Protease, Serine 2: A Computational Study. Int J Mol Sci 2025; 26:587. [PMID: 39859303 PMCID: PMC11766390 DOI: 10.3390/ijms26020587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 01/05/2025] [Accepted: 01/09/2025] [Indexed: 01/27/2025] Open
Abstract
The human transmembrane protease, serine 2 (TMPRSS2), essential for SARS-CoV-2 entry, is a key antiviral target. Here, we computationally profiled the TMPRSS2-binding affinities of 15 antiviral compounds. Molecular dynamics (MD) simulations for the docked complexes revealed that three compounds exited the substrate-binding cavity (SBC), suggesting noncompetitive inhibition. Of the remaining compounds, five charged ones exhibited reduced binding stability due to competing electrostatic interactions and increased solvent exposure, while seven neutral compounds showed stronger binding affinity driven by van der Waals (vdW) interactions compensating for unfavorable electrostatic effects (including electrostatic interactions and desolvation penalties). Positive and negative hotspot residues were identified as uncharged and charged, respectively, both lining the SBC. Despite forming diverse interactions with compounds, the burial of positive hotspots led to strong vdW interactions that overcompensated for unfavorable electrostatic effects, whereas negative hotspots incurred high desolvation penalties, negating any favorable contributions. Charged residues at the SBC's outer rim can reduce binding affinity significantly when forming hydrogen bonds or salt bridges. These findings underscore the importance of enhancing vdW interactions with uncharged residues and minimizing the unfavorable electrostatic effects of charged residues, providing valuable insights for designing effective TMPRSS2 inhibitors.
Collapse
Affiliation(s)
- Yue-Hui Shi
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan and School of Life Sciences, Yunnan University, Kunming 650091, China; (Y.-H.S.); (J.-X.S.); (Y.T.); (Y.-L.X.); (K.-Q.Z.)
| | - Jian-Xin Shen
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan and School of Life Sciences, Yunnan University, Kunming 650091, China; (Y.-H.S.); (J.-X.S.); (Y.T.); (Y.-L.X.); (K.-Q.Z.)
| | - Yan Tao
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan and School of Life Sciences, Yunnan University, Kunming 650091, China; (Y.-H.S.); (J.-X.S.); (Y.T.); (Y.-L.X.); (K.-Q.Z.)
| | - Yuan-Ling Xia
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan and School of Life Sciences, Yunnan University, Kunming 650091, China; (Y.-H.S.); (J.-X.S.); (Y.T.); (Y.-L.X.); (K.-Q.Z.)
| | - Zhi-Bi Zhang
- Yunnan Key Laboratory of Stem Cell and Regenerative Medicine, Biomedical Engineering Research Center, Kunming Medical University, Kunming 650500, China;
| | - Yun-Xin Fu
- Human Genetics Center and Department of Biostatistics and Data Science, School of Public Health, The University of Texas Health Science Center, Houston, TX 77030, USA;
| | - Ke-Qin Zhang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan and School of Life Sciences, Yunnan University, Kunming 650091, China; (Y.-H.S.); (J.-X.S.); (Y.T.); (Y.-L.X.); (K.-Q.Z.)
| | - Shu-Qun Liu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan and School of Life Sciences, Yunnan University, Kunming 650091, China; (Y.-H.S.); (J.-X.S.); (Y.T.); (Y.-L.X.); (K.-Q.Z.)
| |
Collapse
|
7
|
Halfmann PJ, Patel RS, Loeffler K, Yasuhara A, Van De Velde LA, Yang JE, Chervin J, Troxell C, Huang M, Zheng N, Wright ER, Thomas PG, Wilson PC, Kawaoka Y, Kane RS. Multivalent S2 subunit vaccines provide broad protection against Clade 1 sarbecoviruses in female mice. Nat Commun 2025; 16:462. [PMID: 39774966 PMCID: PMC11706982 DOI: 10.1038/s41467-025-55824-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 12/31/2024] [Indexed: 01/11/2025] Open
Abstract
The continuing emergence of immune evasive SARS-CoV-2 variants and the previous SARS-CoV-1 outbreak collectively underscore the need for broadly protective sarbecovirus vaccines. Targeting the conserved S2 subunit of SARS-CoV-2 is a particularly promising approach to elicit broad protection. Here, we describe a nanoparticle vaccine displaying multiple copies of the SARS-CoV-1 S2 subunit. This vaccine alone, or as a cocktail with a SARS-CoV-2 S2 subunit vaccine, protects female transgenic K18-hACE2 mice from challenges with Omicron subvariant XBB as well as several sarbecoviruses identified as having pandemic potential including the bat sarbecovirus WIV1, BANAL-236, and a pangolin sarbecovirus. Challenge studies in female Fc-γ receptor knockout mice reveal that antibody-based cellular effector mechanisms play a role in protection elicited by these vaccines. These results demonstrate that our S2-based vaccines provide broad protection against clade 1 sarbecoviruses and offer insight into the mechanistic basis for protection.
Collapse
Affiliation(s)
- Peter J Halfmann
- Influenza Research Institute, Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI, USA
| | - Raj S Patel
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Kathryn Loeffler
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Atsuhiro Yasuhara
- Drukier Institute for Children's Health, Department of Pediatrics, Weill Cornell Medicine, New York, NY, USA
| | - Lee-Ann Van De Velde
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Jie E Yang
- Department of Biochemistry, University of Wisconsin, Madison, WI, USA
- Department of Biochemistry, Cryo-EM Research Center, University of Wisconsin, Madison, WI, USA
- Department of Biochemistry, Midwest Center for Cryo-Electron Tomography, University of Wisconsin, Madison, WI, USA
| | - Jordan Chervin
- Drukier Institute for Children's Health, Department of Pediatrics, Weill Cornell Medicine, New York, NY, USA
| | - Chloe Troxell
- Drukier Institute for Children's Health, Department of Pediatrics, Weill Cornell Medicine, New York, NY, USA
| | - Min Huang
- Drukier Institute for Children's Health, Department of Pediatrics, Weill Cornell Medicine, New York, NY, USA
| | - Naiying Zheng
- Drukier Institute for Children's Health, Department of Pediatrics, Weill Cornell Medicine, New York, NY, USA
| | - Elizabeth R Wright
- Department of Biochemistry, University of Wisconsin, Madison, WI, USA
- Department of Biochemistry, Cryo-EM Research Center, University of Wisconsin, Madison, WI, USA
- Department of Biochemistry, Midwest Center for Cryo-Electron Tomography, University of Wisconsin, Madison, WI, USA
| | - Paul G Thomas
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Patrick C Wilson
- Drukier Institute for Children's Health, Department of Pediatrics, Weill Cornell Medicine, New York, NY, USA
| | - Yoshihiro Kawaoka
- Influenza Research Institute, Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI, USA.
- Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Tokyo, Japan.
- The Research Center for Global Viral Diseases, National Center for Global Health and Medicine Research Institute, Tokyo, Japan.
- Pandemic Preparedness, Infection and Advanced Research Center (UTOPIA), University of Tokyo, Tokyo, Japan.
| | - Ravi S Kane
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA.
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA.
| |
Collapse
|
8
|
Edwards CT, Karunakaran KA, Garcia E, Beutler N, Gagne M, Golden N, Aoued H, Pellegrini KL, Burnett MR, Honeycutt CC, Lapp SA, Ton T, Lin MC, Metz A, Bombin A, Goff K, Scheuermann SE, Wilkes A, Wood JS, Ehnert S, Weissman S, Curran EH, Roy M, Dessasau E, Paiardini M, Upadhyay AA, Moore IN, Maness NJ, Douek DC, Piantadosi A, Andrabi R, Rogers TR, Burton DR, Bosinger SE. Passive infusion of an S2-Stem broadly neutralizing antibody protects against SARS-CoV-2 infection and lower airway inflammation in rhesus macaques. PLoS Pathog 2025; 21:e1012456. [PMID: 39847599 PMCID: PMC11793774 DOI: 10.1371/journal.ppat.1012456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 02/04/2025] [Accepted: 12/27/2024] [Indexed: 01/25/2025] Open
Abstract
The continued evolution of SARS-CoV-2 variants capable of subverting vaccine and infection-induced immunity suggests the advantage of a broadly protective vaccine against betacoronaviruses (β-CoVs). Recent studies have isolated monoclonal antibodies (mAbs) from SARS-CoV-2 recovered-vaccinated donors capable of neutralizing many variants of SARS-CoV-2 and other β-CoVs. Many of these mAbs target the conserved S2 stem region of the SARS-CoV-2 spike protein, rather than the receptor binding domain contained within S1 primarily targeted by current SARS-CoV-2 vaccines. One of these S2-directed mAbs, CC40.8, has demonstrated protective efficacy in small animal models against SARS-CoV-2 challenge. As the next step in the pre-clinical testing of S2-directed antibodies as a strategy to protect from SARS-CoV-2 infection, we evaluated the in vivo efficacy of CC40.8 in a clinically relevant non-human primate model by conducting passive antibody transfer to rhesus macaques (RM) followed by SARS-CoV-2 challenge. CC40.8 mAb was intravenously infused at 10mg/kg, 1mg/kg, or 0.1 mg/kg into groups (n = 6) of RM, alongside one group that received a control antibody (PGT121). Viral loads in the lower airway were significantly reduced in animals receiving higher doses of CC40.8. We observed a significant reduction in inflammatory cytokines and macrophages within the lower airway of animals infused with 10mg/kg and 1mg/kg doses of CC40.8. Viral genome sequencing demonstrated a lack of escape mutations in the CC40.8 epitope. Collectively, these data demonstrate the protective efficiency of broadly neutralizing S2-targeting antibodies against SARS-CoV-2 infection within the lower airway while providing critical preclinical work necessary for the development of pan-β-CoV vaccines.
Collapse
Affiliation(s)
- Christopher T. Edwards
- Division of Microbiology and Immunology, Emory National Primate Research Center, Emory University, Atlanta, Georgia, United States of America
| | - Kirti A. Karunakaran
- Department of Pathology, Microbiology & Immunology, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Elijah Garcia
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, California, United States of America
- Mayo Clinic Medical Scientist Training Program, Mayo Clinic College of Medicine and Science, Rochester, Minnesota, United States of America
| | - Nathan Beutler
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, California, United States of America
| | - Matthew Gagne
- Vaccine Research Center; National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Nadia Golden
- Tulane National Primate Research Center, Covington, Los Angeles, United States of America
| | - Hadj Aoued
- Emory National Primate Research Center Genomics Core, Emory National Primate Research Center, Emory University, Atlanta, Georgia, United States of America
| | - Kathryn L. Pellegrini
- Emory National Primate Research Center Genomics Core, Emory National Primate Research Center, Emory University, Atlanta, Georgia, United States of America
| | - Matthew R. Burnett
- Vaccine Research Center; National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Christopher Cole Honeycutt
- Vaccine Research Center; National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Stacey A. Lapp
- Division of Microbiology and Immunology, Emory National Primate Research Center, Emory University, Atlanta, Georgia, United States of America
| | - Thang Ton
- Division of Microbiology and Immunology, Emory National Primate Research Center, Emory University, Atlanta, Georgia, United States of America
| | - Mark C. Lin
- Division of Microbiology and Immunology, Emory National Primate Research Center, Emory University, Atlanta, Georgia, United States of America
| | - Amanda Metz
- Division of Microbiology and Immunology, Emory National Primate Research Center, Emory University, Atlanta, Georgia, United States of America
| | - Andrei Bombin
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Kelly Goff
- Tulane National Primate Research Center, Covington, Los Angeles, United States of America
| | - Sarah E. Scheuermann
- Tulane National Primate Research Center, Covington, Los Angeles, United States of America
| | - Amelia Wilkes
- Division of Animal Resources, Emory National Primate Research Center, Emory University, Atlanta, Georgia, United States of America
| | - Jennifer S. Wood
- Division of Animal Resources, Emory National Primate Research Center, Emory University, Atlanta, Georgia, United States of America
| | - Stephanie Ehnert
- Division of Animal Resources, Emory National Primate Research Center, Emory University, Atlanta, Georgia, United States of America
| | - Stacey Weissman
- Division of Animal Resources, Emory National Primate Research Center, Emory University, Atlanta, Georgia, United States of America
| | - Elizabeth H. Curran
- Division of Pathology, Emory National Primate Research Center, Emory University, Atlanta, Georgia, United States of America
| | - Melissa Roy
- Division of Pathology, Emory National Primate Research Center, Emory University, Atlanta, Georgia, United States of America
| | - Evan Dessasau
- Division of Histology, Emory National Primate Research Center, Emory University, Atlanta, Georgia, United States of America
| | - Mirko Paiardini
- Division of Microbiology and Immunology, Emory National Primate Research Center, Emory University, Atlanta, Georgia, United States of America
- Emory Vaccine Center, Emory National Primate Research Center, Atlanta, Georgia, United States of America
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Amit A. Upadhyay
- Division of Microbiology and Immunology, Emory National Primate Research Center, Emory University, Atlanta, Georgia, United States of America
| | - Ian N. Moore
- Division of Pathology, Emory National Primate Research Center, Emory University, Atlanta, Georgia, United States of America
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Nicholas J. Maness
- Tulane National Primate Research Center, Covington, Los Angeles, United States of America
| | - Daniel C. Douek
- Vaccine Research Center; National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Anne Piantadosi
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, United States of America
- Emory Vaccine Center, Emory National Primate Research Center, Atlanta, Georgia, United States of America
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Raiees Andrabi
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, California, United States of America
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, California, United States of America
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, California, United States of America
| | - Thomas R. Rogers
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, California, United States of America
- Division of Infectious Diseases, Department of Medicine, University of California, San Diego, La Jolla, California, United States of America
| | - Dennis R. Burton
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, California, United States of America
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, California, United States of America
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, California, United States of America
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard University, Cambridge, Massachusetts, United States of America
| | - Steven E. Bosinger
- Division of Microbiology and Immunology, Emory National Primate Research Center, Emory University, Atlanta, Georgia, United States of America
- Emory Vaccine Center, Emory National Primate Research Center, Atlanta, Georgia, United States of America
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia, United States of America
| |
Collapse
|
9
|
Chang TY, Li CJ, Chao TL, Chang SY, Chang SC. Design of the conserved epitope peptide of SARS-CoV-2 spike protein as the broad-spectrum COVID-19 vaccine. Appl Microbiol Biotechnol 2024; 108:486. [PMID: 39412657 PMCID: PMC11485143 DOI: 10.1007/s00253-024-13331-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/02/2024] [Accepted: 10/10/2024] [Indexed: 10/19/2024]
Abstract
Our previous study has found that monoclonal antibodies targeting a conserved epitope peptide spanning from residues 1144 to 1156 of SARS-CoV-2 spike (S) protein, namely S(1144-1156), can broadly neutralize all of the prevalent SARS-CoV-2 strains, including the wild type, Alpha, Epsilon, Delta, and Gamma variants. In the study, S(1144-1156) was conjugated with bovine serum albumin (BSA) and formulated with Montanide ISA 51 adjuvant for inoculation in BALB/c mice to study its potential as a vaccine candidate. Results showed that the titers of S protein-specific IgGs and the neutralizing antibodies in mouse sera against various SARS-CoV-2 variants, including the Omicron sublineages, were largely induced along with three doses of immunization. The significant release of IFN-γ and IL-2 was also observed by ELISpot assays through stimulating vaccinated mouse splenocytes with the S(1144-1156) peptide. Furthermore, the vaccination of the S(1143-1157)- and S(1142-1158)-EGFP fusion proteins can elicit more SARS-CoV-2 neutralizing antibodies in mouse sera than the S(1144-1156)-EGFP fusion protein. Interestingly, the antisera collected from mice inoculated with the S(1144-1156) peptide vaccine exhibited better efficacy for neutralizing Omicron BA.2.86 and JN.1 subvariants than Omicron BA.1, BA.2, and XBB subvariants. Since the amino acid sequences of the S(1144-1156) are highly conserved among various SARS-CoV-2 variants, the immunogen containing the S(1144-1156) core epitope can be designed as a broadly effective COVID-19 vaccine. KEY POINTS: • Inoculation of mice with the S(1144-1156) peptide vaccine can induce bnAbs against various SARS-CoV-2 variants. • The S(1144-1156) peptide stimulated significant release of IFN-γ and IL-2 in vaccinated mouse splenocytes. • The S(1143-1157) and S(1142-1158) peptide vaccines can elicit more SARS-CoV-2 nAbs in mice.
Collapse
Affiliation(s)
- Ting-Yu Chang
- Department of Biochemical Science and Technology, College of Life Science, National Taiwan University, Taipei, 106, Taiwan
| | - Chia-Jung Li
- Department of Biochemical Science and Technology, College of Life Science, National Taiwan University, Taipei, 106, Taiwan
| | - Tai-Ling Chao
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei, 100, Taiwan
| | - Sui-Yuan Chang
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei, 100, Taiwan.
- Department of Laboratory Medicine, College of Medicine, National Taiwan University Hospital, National Taiwan University, Taipei, 100, Taiwan.
| | - Shih-Chung Chang
- Department of Biochemical Science and Technology, College of Life Science, National Taiwan University, Taipei, 106, Taiwan.
- Center of Biotechnology, National Taiwan University, Taipei, 106, Taiwan.
| |
Collapse
|
10
|
Jaishwal P, Jha K, Singh SP. Revisiting the dimensions of universal vaccine with special focus on COVID-19: Efficacy versus methods of designing. Int J Biol Macromol 2024; 277:134012. [PMID: 39048013 DOI: 10.1016/j.ijbiomac.2024.134012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 05/28/2024] [Accepted: 07/17/2024] [Indexed: 07/27/2024]
Abstract
Even though the use of SARS-CoV-2 vaccines during the COVID-19 pandemic showed unprecedented success in a short time, it also exposed a flaw in the current vaccine design strategy to offer broad protection against emerging variants of concern. However, developing broad-spectrum vaccines is still a challenge for immunologists. The development of universal vaccines against emerging pathogens and their variants appears to be a practical solution to mitigate the economic and physical effects of the pandemic on society. Very few reports are available to explain the basic concept of universal vaccine design and development. This review provides an overview of the innate and adaptive immune responses generated against vaccination and essential insight into immune mechanisms helpful in designing universal vaccines targeting influenza viruses and coronaviruses. In addition, the characteristics, safety, and factors affecting the efficacy of universal vaccines have been discussed. Furthermore, several advancements in methods worthy of designing universal vaccines are described, including chimeric immunogens, heterologous prime-boost vaccines, reverse vaccinology, structure-based antigen design, pan-reactive antibody vaccines, conserved neutralizing epitope-based vaccines, mosaic nanoparticle-based vaccines, etc. In addition to the several advantages, significant potential constraints, such as defocusing the immune response and subdominance, are also discussed.
Collapse
Affiliation(s)
- Puja Jaishwal
- Department of Biotechnology, Mahatma Gandhi Central University, Motihari, India
| | - Kisalay Jha
- Department of Biotechnology, Mahatma Gandhi Central University, Motihari, India
| | | |
Collapse
|
11
|
Yang Q, Kelkar A, Manicassamy B, Neelamegham S. Conserved role of spike S2 domain N-glycosylation across beta-coronavirus family. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.05.611372. [PMID: 39282346 PMCID: PMC11398505 DOI: 10.1101/2024.09.05.611372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Besides acting as an immunological shield, the N-glycans of SARS-CoV-2 are also critical for viral life cycle. As the S2 subunit of spike is highly conserved across beta-coronaviruses, we determined the functional significance of the five 'stem N-glycans' located in S2 between N1098-N1194. Studies were performed with 31 Asn-to-Gln mutants, beta-coronavirus virus-like particles and single-cycle viral replicons. Deletions of stem N-glycans enhanced S1 shedding from trimeric spike, reduced ACE2 binding and abolished syncytia formation. When three or more N-glycans were deleted, spike expression on cell surface and incorporation into virions was both reduced. Viral entry function was progressively lost upon deleting the N1098 glycan in combination with additional glycosite modifications. In addition to SARS-CoV-2, deleting stem N-glycans in SARS-CoV and MERS-CoV spike also prevented viral entry into target cells. These data suggest multiple functional roles for the stem N-glycans, and evolutionarily conserved properties for these complex carbohydrates across human beta-coronaviruses.
Collapse
Affiliation(s)
- Qi Yang
- Chemical & Biological Engineering, State University of New York, Buffalo, NY 14260, USA
- Cell, Gene and Tissue Engineering Center, State University of New York, Buffalo, NY 14260, USA
| | - Anju Kelkar
- Chemical & Biological Engineering, State University of New York, Buffalo, NY 14260, USA
- Cell, Gene and Tissue Engineering Center, State University of New York, Buffalo, NY 14260, USA
| | - Balaji Manicassamy
- Microbiology and Immunology, University of Iowa, Iowa City, IA 52242, USA
| | - Sriram Neelamegham
- Chemical & Biological Engineering, State University of New York, Buffalo, NY 14260, USA
- Cell, Gene and Tissue Engineering Center, State University of New York, Buffalo, NY 14260, USA
- Biomedical Engineering, State University of New York, Buffalo, NY 14260, USA
- Medicine, State University of New York, Buffalo, NY 14260, USA
- Clinical & Translational Research Center, Buffalo, NY 14260, USA
| |
Collapse
|
12
|
Lee YR, Liou CW, Liu IH, Chang JM. A nonadjuvanted HLA-restricted peptide vaccine induced both T and B cell immunity against SARS-CoV-2 spike protein. Sci Rep 2024; 14:20579. [PMID: 39242614 PMCID: PMC11379847 DOI: 10.1038/s41598-024-71663-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 08/29/2024] [Indexed: 09/09/2024] Open
Abstract
During COVID-19 pandemic, cases of postvaccination infections and restored SARS-CoV-2 virus have increased after full vaccination, which might be contributed to by immune surveillance escape or virus rebound. Here, artificial linear 9-mer human leucocyte antigen (HLA)-restricted UC peptides were designed based on the well-conserved S2 region of the SARS-CoV-2 spike protein regardless of rapid mutation and glycosylation hindrance. The UC peptides were characterized for its effect on immune molecules and cells by HLA-tetramer refolding assay for HLA-binding ability, by HLA-tetramer specific T cell assay for engaged cytotoxic T lymphocytes (CTLs) involvement, by HLA-dextramer T cell assay for B cell activation, by intracellular cytokine release assay for polarization of immune response, Th1 or Th2. The specific lysis activity assay of T cells was performed for direct activation of cytotoxic T lymphocytes by UC peptides. Mice were immunized for immunogenicity of UC peptides in vivo and immunized sera was assay for complement cytotoxicity assay. Results appeared that through the engagement of UC peptides and immune molecules, HLA-I and II, that CTLs elicited cytotoxic activity by recognizing SARS-CoV-2 spike-bearing cells and preferably secreting Th1 cytokines. The UC peptides also showed immunogenicity and generated a specific antibody in mice by both intramuscular injection and oral delivery without adjuvant formulation. In conclusion, a T-cell vaccine could provide long-lasting protection against SARS-CoV-2 either during reinfection or during SARS-CoV-2 rebound. Due to its ability to eradicate SARS-CoV-2 virus-infected cells, a COVID-19 T-cell vaccine might provide a solution to lower COVID-19 severity and long COVID-19.
Collapse
Affiliation(s)
- Yi-Ru Lee
- Vacino Biotech Co., Ltd., 4F, No. 99, Lane 130, Sec 1, Academia Rd., Nangang District, Taipei, 11571, Taiwan, ROC
| | - Chiung-Wen Liou
- Vacino Biotech Co., Ltd., 4F, No. 99, Lane 130, Sec 1, Academia Rd., Nangang District, Taipei, 11571, Taiwan, ROC
| | - I-Hua Liu
- Vacino Biotech Co., Ltd., 4F, No. 99, Lane 130, Sec 1, Academia Rd., Nangang District, Taipei, 11571, Taiwan, ROC
| | - Jia-Ming Chang
- Vacino Biotech Co., Ltd., 4F, No. 99, Lane 130, Sec 1, Academia Rd., Nangang District, Taipei, 11571, Taiwan, ROC.
| |
Collapse
|
13
|
Weskamm LM, Tarnow P, Harms C, Huchon M, Raadsen MP, Friedrich M, Rübenacker L, Grüttner C, Garcia MG, Koch T, Becker S, Sutter G, Lhomme E, Haagmans BL, Fathi A, Blois SM, Dahlke C, Richert L, Addo MM. Dissecting humoral immune responses to an MVA-vectored MERS-CoV vaccine in humans using a systems serology approach. iScience 2024; 27:110470. [PMID: 39148710 PMCID: PMC11325358 DOI: 10.1016/j.isci.2024.110470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 06/11/2024] [Accepted: 07/03/2024] [Indexed: 08/17/2024] Open
Abstract
Besides neutralizing antibodies, which are considered an important measure for vaccine immunogenicity, Fc-mediated antibody functions can contribute to antibody-mediated protection. They are strongly influenced by structural antibody properties such as subclass and Fc glycan composition. We here applied a systems serology approach to dissect humoral immune responses induced by MVA-MERS-S, an MVA-vectored vaccine against the Middle East respiratory syndrome coronavirus (MERS-CoV). Building on preceding studies reporting the safety and immunogenicity of MVA-MERS-S, our study highlights the potential of a late boost, administered one year after prime, to enhance both neutralizing and Fc-mediated antibody functionality compared to the primary vaccination series. Distinct characteristics were observed for antibodies specific to the MERS-CoV spike protein S1 and S2 subunits, regarding subclass and glycan compositions as well as Fc functionality. These findings highlight the benefit of a late homologous booster vaccination with MVA-MERS-S and may be of interest for the design of future coronavirus vaccines.
Collapse
Affiliation(s)
- Leonie M Weskamm
- Institute for Infection Research and Vaccine Development (IIRVD), Center for Internal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department for Clinical Immunology of Infectious Diseases, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- German Center for Infection Research, Partner Site Hamburg-Lübeck-Borstel-Riems, Hamburg, Germany
| | - Paulina Tarnow
- Institute for Infection Research and Vaccine Development (IIRVD), Center for Internal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department for Clinical Immunology of Infectious Diseases, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- German Center for Infection Research, Partner Site Hamburg-Lübeck-Borstel-Riems, Hamburg, Germany
| | - Charlotte Harms
- Department of Obstetrics and Fetal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Glyco-HAM, a Cooperation of Universität Hamburg, Technology Platform Mass Spectrometry and University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Melanie Huchon
- University of Bordeaux, INSERM, INRIA, BPH, U1219, Sistm, Bordeaux, France
- Vaccine Research Institute, Creteil, France
| | - Matthijs P Raadsen
- Department of Viroscience, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Monika Friedrich
- Institute for Infection Research and Vaccine Development (IIRVD), Center for Internal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department for Clinical Immunology of Infectious Diseases, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- German Center for Infection Research, Partner Site Hamburg-Lübeck-Borstel-Riems, Hamburg, Germany
| | - Laura Rübenacker
- Institute for Infection Research and Vaccine Development (IIRVD), Center for Internal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department for Clinical Immunology of Infectious Diseases, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- German Center for Infection Research, Partner Site Hamburg-Lübeck-Borstel-Riems, Hamburg, Germany
| | - Cordula Grüttner
- Institute for Infection Research and Vaccine Development (IIRVD), Center for Internal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department for Clinical Immunology of Infectious Diseases, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- German Center for Infection Research, Partner Site Hamburg-Lübeck-Borstel-Riems, Hamburg, Germany
| | - Mariana G Garcia
- Department of Obstetrics and Fetal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Glyco-HAM, a Cooperation of Universität Hamburg, Technology Platform Mass Spectrometry and University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Till Koch
- Institute for Infection Research and Vaccine Development (IIRVD), Center for Internal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- German Center for Infection Research, Partner Site Hamburg-Lübeck-Borstel-Riems, Hamburg, Germany
- Antibiotic Stewardship Team, Pharmacy of the University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Stephan Becker
- Institute of Virology, Philipps University Marburg, Marburg, Germany
- German Center for Infection Research, Partner Site Gießen-Marburg-Langen, Marburg, Germany
| | - Gerd Sutter
- Division of Virology, Department of Veterinary Sciences, Ludwig Maximilian University Munich, Munich, Germany
- German Center for Infection Research, Partner Site München, Munich, Germany
| | - Edouard Lhomme
- University of Bordeaux, INSERM, INRIA, BPH, U1219, Sistm, Bordeaux, France
- Vaccine Research Institute, Creteil, France
- CHU de Bordeaux, Service d'Information Médicale, Bordeaux, France
| | - Bart L Haagmans
- Department of Viroscience, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Anahita Fathi
- Institute for Infection Research and Vaccine Development (IIRVD), Center for Internal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department for Clinical Immunology of Infectious Diseases, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- German Center for Infection Research, Partner Site Hamburg-Lübeck-Borstel-Riems, Hamburg, Germany
- Division of Infectious Diseases, 1st Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sandra M Blois
- Department of Obstetrics and Fetal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Glyco-HAM, a Cooperation of Universität Hamburg, Technology Platform Mass Spectrometry and University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christine Dahlke
- Institute for Infection Research and Vaccine Development (IIRVD), Center for Internal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department for Clinical Immunology of Infectious Diseases, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- German Center for Infection Research, Partner Site Hamburg-Lübeck-Borstel-Riems, Hamburg, Germany
| | - Laura Richert
- University of Bordeaux, INSERM, INRIA, BPH, U1219, Sistm, Bordeaux, France
- Vaccine Research Institute, Creteil, France
- CHU de Bordeaux, Service d'Information Médicale, Bordeaux, France
| | - Marylyn M Addo
- Institute for Infection Research and Vaccine Development (IIRVD), Center for Internal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department for Clinical Immunology of Infectious Diseases, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- German Center for Infection Research, Partner Site Hamburg-Lübeck-Borstel-Riems, Hamburg, Germany
| |
Collapse
|
14
|
Grunst MW, Qin Z, Dodero-Rojas E, Ding S, Prévost J, Chen Y, Hu Y, Pazgier M, Wu S, Xie X, Finzi A, Onuchic JN, Whitford PC, Mothes W, Li W. Structure and inhibition of SARS-CoV-2 spike refolding in membranes. Science 2024; 385:757-765. [PMID: 39146425 PMCID: PMC11449073 DOI: 10.1126/science.adn5658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 07/15/2024] [Indexed: 08/17/2024]
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike protein binds the receptor angiotensin converting enzyme 2 (ACE2) and drives virus-host membrane fusion through refolding of its S2 domain. Whereas the S1 domain contains high sequence variability, the S2 domain is conserved and is a promising pan-betacoronavirus vaccine target. We applied cryo-electron tomography to capture intermediates of S2 refolding and understand inhibition by antibodies to the S2 stem-helix. Subtomogram averaging revealed ACE2 dimers cross-linking spikes before transitioning into S2 intermediates, which were captured at various stages of refolding. Pan-betacoronavirus neutralizing antibodies targeting the S2 stem-helix bound to and inhibited refolding of spike prehairpin intermediates. Combined with molecular dynamics simulations, these structures elucidate the process of SARS-CoV-2 entry and reveal how pan-betacoronavirus S2-targeting antibodies neutralize infectivity by arresting prehairpin intermediates.
Collapse
Affiliation(s)
- Michael W. Grunst
- Department of Microbial Pathogenesis, Yale University, New Haven, CT, USA
| | - Zhuan Qin
- Department of Microbial Pathogenesis, Yale University, New Haven, CT, USA
| | | | - Shilei Ding
- Centre de Recherche du CHUM, Montréal, QC H2X 0A9, Canada
| | - Jérémie Prévost
- Centre de Recherche du CHUM, Montréal, QC H2X 0A9, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, QC H3T 1J4, Canada
| | - Yaozong Chen
- Infectious Disease Division, Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814-4712, USA
| | - Yanping Hu
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Marzena Pazgier
- Infectious Disease Division, Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814-4712, USA
| | - Shenping Wu
- Department of Pharmacology, Yale University, West Haven, CT 06516, USA
| | - Xuping Xie
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Andrés Finzi
- Centre de Recherche du CHUM, Montréal, QC H2X 0A9, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, QC H3T 1J4, Canada
| | - José N. Onuchic
- Center for Theoretical Biological Physics, Rice University, Houston, TX, USA
- Department of Physics and Astronomy, Rice University, Houston, TX, USA
- Department of Chemistry, Rice University, Houston, TX, USA
- Department of Biosciences, Rice University, Houston, TX, USA
| | - Paul C. Whitford
- Center for Theoretical Biological Physics, Northeastern University, Boston, MA, USA
- Department of Physics, Northeastern University, Boston, MA, USA
| | - Walther Mothes
- Department of Microbial Pathogenesis, Yale University, New Haven, CT, USA
| | - Wenwei Li
- Department of Microbial Pathogenesis, Yale University, New Haven, CT, USA
| |
Collapse
|
15
|
Guenthoer J, Garrett ME, Lilly M, Depierreux DM, Ruiz F, Chi M, Stoddard CI, Chohan V, Yaffe ZA, Sung K, Ralph D, Chu HY, Matsen FA, Overbaugh J. The S2 subunit of spike encodes diverse targets for functional antibody responses to SARS-CoV-2. PLoS Pathog 2024; 20:e1012383. [PMID: 39093891 PMCID: PMC11324185 DOI: 10.1371/journal.ppat.1012383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 08/14/2024] [Accepted: 07/01/2024] [Indexed: 08/04/2024] Open
Abstract
The SARS-CoV-2 virus responsible for the COVID-19 global pandemic has exhibited a striking capacity for viral evolution that drives continued evasion from vaccine and infection-induced immune responses. Mutations in the receptor binding domain of the S1 subunit of the spike glycoprotein have led to considerable escape from antibody responses, reducing the efficacy of vaccines and monoclonal antibody (mAb) therapies. Therefore, there is a need to interrogate more constrained regions of spike, such as the S2 subdomain. Here, we present a collection of S2 mAbs from two SARS-CoV-2 convalescent individuals that target multiple regions in S2, including regions outside of those commonly reported. One of the S2 mAbs, C20.119, which bound to a highly conserved epitope in the fusion peptide, was able to broadly neutralize across SARS-CoV-2 variants, SARS-CoV-1, and closely related zoonotic sarbecoviruses. The majority of the mAbs were non-neutralizing; however, many of them could mediate antibody-dependent cellular cytotoxicity (ADCC) at levels similar to the S1-targeting mAb S309 that was previously authorized for treatment of SARS-CoV-2 infections. Several of the mAbs with ADCC function also bound to spike trimers from other human coronaviruses (HCoVs), such as MERS-CoV and HCoV-HKU1. Our findings suggest S2 mAbs can target diverse epitopes in S2, including functional mAbs with HCoV and sarbecovirus breadth that likely target functionally constrained regions of spike. These mAbs could be developed for potential future pandemics, while also providing insight into ideal epitopes for eliciting a broad HCoV response.
Collapse
Affiliation(s)
- Jamie Guenthoer
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
| | - Meghan E. Garrett
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
| | - Michelle Lilly
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
| | - Delphine M. Depierreux
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
| | - Felicitas Ruiz
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
| | - Margaret Chi
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
| | - Caitlin I. Stoddard
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
| | - Vrasha Chohan
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
| | - Zak A. Yaffe
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
| | - Kevin Sung
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
| | - Duncan Ralph
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
| | - Helen Y. Chu
- Division of Allergy and Infectious Diseases, University of Washington, Seattle, Washington, United States of America
| | - Frederick A. Matsen
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
- Howard Hughes Medical Institute, Seattle, Washington, United States of America
| | - Julie Overbaugh
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
| |
Collapse
|
16
|
Edwards CT, Karunakaran KA, Garcia E, Beutler N, Gagne M, Golden N, Aoued H, Pellegrini KL, Burnett MR, Honeycutt CC, Lapp SA, Ton T, Lin MC, Metz A, Bombin A, Goff K, Scheuermann SE, Wilkes A, Wood JS, Ehnert S, Weissman S, Curran EH, Roy M, Dessasau E, Paiardini M, Upadhyay AA, Moore I, Maness NJ, Douek DC, Piantadosi A, Andrabi R, Rogers TR, Burton DR, Bosinger SE. Passive infusion of an S2-Stem broadly neutralizing antibody protects against SARS-CoV-2 infection and lower airway inflammation in rhesus macaques. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.30.605768. [PMID: 39109178 PMCID: PMC11302620 DOI: 10.1101/2024.07.30.605768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
The continued evolution of SARS-CoV-2 variants capable of subverting vaccine and infection-induced immunity suggests the advantage of a broadly protective vaccine against betacoronaviruses (β-CoVs). Recent studies have isolated monoclonal antibodies (mAbs) from SARS-CoV-2 recovered-vaccinated donors capable of neutralizing many variants of SARS-CoV-2 and other β-CoVs. Many of these mAbs target the conserved S2 stem region of the SARS-CoV-2 spike protein, rather the receptor binding domain contained within S1 primarily targeted by current SARS-CoV-2 vaccines. One of these S2-directed mAbs, CC40.8, has demonstrated protective efficacy in small animal models against SARS-CoV-2 challenge. As the next step in the pre-clinical testing of S2-directed antibodies as a strategy to protect from SARS-CoV-2 infection, we evaluated the in vivo efficacy of CC40.8 in a clinically relevant non-human primate model by conducting passive antibody transfer to rhesus macaques (RM) followed by SARS-CoV-2 challenge. CC40.8 mAb was intravenously infused at 10mg/kg, 1mg/kg, or 0.1 mg/kg into groups (n=6) of RM, alongside one group that received a control antibody (PGT121). Viral loads in the lower airway were significantly reduced in animals receiving higher doses of CC40.8. We observed a significant reduction in inflammatory cytokines and macrophages within the lower airway of animals infused with 10mg/kg and 1mg/kg doses of CC40.8. Viral genome sequencing demonstrated a lack of escape mutations in the CC40.8 epitope. Collectively, these data demonstrate the protective efficiency of broadly neutralizing S2-targeting antibodies against SARS-CoV-2 infection within the lower airway while providing critical preclinical work necessary for the development of pan-β-CoV vaccines.
Collapse
Affiliation(s)
- Christopher T. Edwards
- Division of Microbiology and Immunology, Emory National Primate Research Center, Emory University, Atlanta, GA 30329, USA
| | - Kirti A. Karunakaran
- Department of Pathology, Microbiology & Immunology, Vanderbilt University, Nashville, TN 37235, USA
| | - Elijah Garcia
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
- Mayo Clinic Medical Scientist Training Program, Mayo Clinic College of Medicine and Science, 200 First Street SW, Rochester, Minnesota 55356, USA
| | - Nathan Beutler
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Matthew Gagne
- Vaccine Research Center; National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Nadia Golden
- Tulane National Primate Research Center, Covington, LA, USA
| | - Hadj Aoued
- Emory National Primate Research Center Genomics Core, Emory National Primate Research Center, Emory University, Atlanta, GA 30329, USA
| | - Kathryn L. Pellegrini
- Emory National Primate Research Center Genomics Core, Emory National Primate Research Center, Emory University, Atlanta, GA 30329, USA
| | - Matthew R. Burnett
- Vaccine Research Center; National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Christopher Cole Honeycutt
- Vaccine Research Center; National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Stacey A. Lapp
- Division of Microbiology and Immunology, Emory National Primate Research Center, Emory University, Atlanta, GA 30329, USA
| | - Thang Ton
- Division of Microbiology and Immunology, Emory National Primate Research Center, Emory University, Atlanta, GA 30329, USA
| | - Mark C. Lin
- Division of Microbiology and Immunology, Emory National Primate Research Center, Emory University, Atlanta, GA 30329, USA
| | - Amanda Metz
- Division of Microbiology and Immunology, Emory National Primate Research Center, Emory University, Atlanta, GA 30329, USA
| | - Andrei Bombin
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Kelly Goff
- Tulane National Primate Research Center, Covington, LA, USA
| | | | - Amelia Wilkes
- Division of Animal Resources, Emory National Primate Research Center, Emory University, Atlanta, GA 30329, USA
| | - Jennifer S. Wood
- Division of Animal Resources, Emory National Primate Research Center, Emory University, Atlanta, GA 30329, USA
| | - Stephanie Ehnert
- Division of Animal Resources, Emory National Primate Research Center, Emory University, Atlanta, GA 30329, USA
| | - Stacey Weissman
- Division of Animal Resources, Emory National Primate Research Center, Emory University, Atlanta, GA 30329, USA
| | - Elizabeth H. Curran
- Division of Pathology, Emory National Primate Research Center, Emory University, Atlanta, GA 30329, USA
| | - Melissa Roy
- Division of Pathology, Emory National Primate Research Center, Emory University, Atlanta, GA 30329, USA
| | - Evan Dessasau
- Division of Histology, Emory National Primate Research Center, Emory University, Atlanta, GA 30329, USA
| | - Mirko Paiardini
- Division of Microbiology and Immunology, Emory National Primate Research Center, Emory University, Atlanta, GA 30329, USA
- Emory Vaccine Center, Emory National Primate Research Center, Atlanta, Georgia, USA
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Amit A. Upadhyay
- Division of Microbiology and Immunology, Emory National Primate Research Center, Emory University, Atlanta, GA 30329, USA
| | - Ian Moore
- Division of Pathology, Emory National Primate Research Center, Emory University, Atlanta, GA 30329, USA
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | | | - Daniel C. Douek
- Vaccine Research Center; National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Anne Piantadosi
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA
- Emory Vaccine Center, Emory National Primate Research Center, Atlanta, Georgia, USA
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Raiees Andrabi
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Thomas R. Rogers
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
- Division of Infectious Diseases, Department of Medicine, University of California, San Diego, La Jolla, CA 92037, USA
| | - Dennis R. Burton
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard University, Cambridge, MA 02139, USA
| | - Steven E. Bosinger
- Division of Microbiology and Immunology, Emory National Primate Research Center, Emory University, Atlanta, GA 30329, USA
- Emory Vaccine Center, Emory National Primate Research Center, Atlanta, Georgia, USA
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|
17
|
Biswas D, Mahalingam G, Subaschandrabose RK, Priya S, Ramachandran R, Suresh S, Mathivanan TV, Balu NV, Selvaraj K, Nellickal AJ, Christudoss P, Samuel P, Kt RD, Marepally S, Moorthy M. Role of prior immunity in binding to spike of "future" Omicron subvariants. Indian J Med Microbiol 2024; 50:100615. [PMID: 38782260 DOI: 10.1016/j.ijmmb.2024.100615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 04/18/2024] [Accepted: 05/15/2024] [Indexed: 05/25/2024]
Abstract
BACKGROUND Throughout the COVID-19 pandemic, virus evolution and large-scale vaccination programs have caused multiple exposures to SARS CoV-2 spike protein, resulting in complex antibody profiles. The binding of these to spike protein of "future" variants in the context of such heterogeneous exposure has not been studied. METHODS We tested archival sera (Delta and Omicron period) stratified by anti-spike antibody (including IgG) levels for reactivity to Omicron-subvariants(BA.1, BA.2,BA.2.12.1, BA.2.75, BA.4/5 and BF.7) spike protein. Assessed antigenic distance between groups using Antigenic Cartography and performed hierarchical clustering of antibody data in a Euclidean distance framework. RESULTS Antibody (including IgG) antibody reactivity to Wild-type (CLIA) and subvariants (ELISA) spike protein were similar between periods (p > 0.05). Both 'High S' and 'Low S' of Delta and Omicron periods were closely related to "future" subvariants by Antigenic Cartography. Sera from different S groups clustered together with 'Low S' interspersed between 'High S' on hierarchical clustering, suggesting common binding sites. Further, anti-spike antibodies (including IgG) to Wild-type (S1/S2 and Trimeric S) clustered with Omicron-subvariant binding antibodies. CONCLUSIONS Hybrid immunity caused by cumulative virus exposure in Delta or Omicron periods resulted in equivalent binding to "future" variants, which might be due to binding to conserved regions of spike protein of future variants. A prominent finding is that the 'Low S' antibody demonstrates similar binding.
Collapse
Affiliation(s)
- Deepayan Biswas
- Department of Clinical Virology, Christian Medical College, Vellore, Tamil Nadu, Pin: 632004, India.
| | - Gokulnath Mahalingam
- Centre for Stem Cell Research (CSCR) (a unit of InStem, Bengaluru), Christian Medical College, Vellore, Pin: 632002, Tamil Nadu, India.
| | | | - Sangeetha Priya
- Department of Clinical Virology, Christian Medical College, Vellore, Tamil Nadu, Pin: 632004, India.
| | - Rohini Ramachandran
- Department of Clinical Virology, Christian Medical College, Vellore, Tamil Nadu, Pin: 632004, India.
| | - Sevanthy Suresh
- Centre for Stem Cell Research (CSCR) (a unit of InStem, Bengaluru), Christian Medical College, Vellore, Pin: 632002, Tamil Nadu, India.
| | - Tamil Venthan Mathivanan
- Department of Clinical Virology, Christian Medical College, Vellore, Tamil Nadu, Pin: 632004, India.
| | - Nelson Vijaykumar Balu
- Department of Clinical Virology, Christian Medical College, Vellore, Tamil Nadu, Pin: 632004, India.
| | - Kavitha Selvaraj
- Department of Clinical Virology, Christian Medical College, Vellore, Tamil Nadu, Pin: 632004, India.
| | - Arun Jose Nellickal
- Department of Clinical Biochemistry, Christian Medical College, Vellore, Tamil Nadu, Pin: 632004, India.
| | - Pamela Christudoss
- Department of Clinical Biochemistry, Christian Medical College, Vellore, Tamil Nadu, Pin: 632004, India.
| | - Prasanna Samuel
- Department of Biostatistics, Christian Medical College, Vellore, Tamil Nadu, Pin: 632002, India.
| | - Ramya Devi Kt
- Department of Biotechnology, SRM Institute of Science and Technology, Kanchipuram, Tamil Nadu, Pin: 603203, India.
| | - Srujan Marepally
- Centre for Stem Cell Research (CSCR) (a unit of InStem, Bengaluru), Christian Medical College, Vellore, Pin: 632002, Tamil Nadu, India.
| | - Mahesh Moorthy
- Department of Clinical Virology, Christian Medical College, Vellore, Tamil Nadu, Pin: 632004, India.
| |
Collapse
|
18
|
Lobaina Y, Chen R, Suzarte E, Ai P, Musacchio A, Lan Y, Chinea G, Tan C, Silva R, Guillen G, Yang K, Li W, Perera Y, Hermida L. A Nasal Vaccine Candidate, Containing Three Antigenic Regions from SARS-CoV-2, to Induce a Broader Response. Vaccines (Basel) 2024; 12:588. [PMID: 38932317 PMCID: PMC11209543 DOI: 10.3390/vaccines12060588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 05/24/2024] [Accepted: 05/25/2024] [Indexed: 06/28/2024] Open
Abstract
A chimeric protein, formed by two fragments of the conserved nucleocapsid (N) and S2 proteins from SARS-CoV-2, was obtained as a recombinant construct in Escherichia coli. The N fragment belongs to the C-terminal domain whereas the S2 fragment spans the fibre structure in the post-fusion conformation of the spike protein. The resultant protein, named S2NDH, was able to form spherical particles of 10 nm, which forms aggregates upon mixture with the CpG ODN-39M. Both preparations were recognized by positive COVID-19 human sera. The S2NDH + ODN-39M formulation administered by the intranasal route resulted highly immunogenic in Balb/c mice. It induced cross-reactive anti-N humoral immunity in both sera and bronchoalveolar fluids, under a Th1 pattern. The cell-mediated immunity (CMI) was also broad, with positive response even against the N protein of SARS-CoV-1. However, neither neutralizing antibodies (NAb) nor CMI against the S2 region were obtained. As alternative, the RBD protein was included in the formulation as inducer of NAb. Upon evaluation in mice by the intranasal route, a clear adjuvant effect was detected for the S2NDH + ODN-39M preparation over RBD. High levels of NAb were induced against SARS-CoV-2 and SARS-CoV-1. The bivalent formulation S2NDH + ODN-39M + RBD, administered by the intranasal route, constitutes an attractive proposal as booster vaccine of sarbecovirus scope.
Collapse
Affiliation(s)
- Yadira Lobaina
- Research Department, China-Cuba Biotechnology Joint Innovation Center (CCBJIC), Lengshuitan District, Yongzhou 425000, China; (Y.L.); (R.C.); (P.A.); (A.M.); (Y.L.); (C.T.); (K.Y.); (W.L.)
- R&D Department, Yongzhou Zhong Gu Biotechnology Co., Ltd., Yangjiaqiao Street, Lengshuitan District, Yongzhou 425000, China
| | - Rong Chen
- Research Department, China-Cuba Biotechnology Joint Innovation Center (CCBJIC), Lengshuitan District, Yongzhou 425000, China; (Y.L.); (R.C.); (P.A.); (A.M.); (Y.L.); (C.T.); (K.Y.); (W.L.)
- Yongzhou Development and Construction Investment Co., Ltd. (YDCI), Changfeng Industry Park, Yongzhou Economic and Technological Development Zone, No. 1 Liebao Road, Lengshuitan District, Yongzhou 425000, China
| | - Edith Suzarte
- Research Department, Center for Genetic Engineering and Biotechnology, Havana 10600, Cuba; (E.S.); (G.C.); (G.G.)
| | - Panchao Ai
- Research Department, China-Cuba Biotechnology Joint Innovation Center (CCBJIC), Lengshuitan District, Yongzhou 425000, China; (Y.L.); (R.C.); (P.A.); (A.M.); (Y.L.); (C.T.); (K.Y.); (W.L.)
- Yongzhou Development and Construction Investment Co., Ltd. (YDCI), Changfeng Industry Park, Yongzhou Economic and Technological Development Zone, No. 1 Liebao Road, Lengshuitan District, Yongzhou 425000, China
| | - Alexis Musacchio
- Research Department, China-Cuba Biotechnology Joint Innovation Center (CCBJIC), Lengshuitan District, Yongzhou 425000, China; (Y.L.); (R.C.); (P.A.); (A.M.); (Y.L.); (C.T.); (K.Y.); (W.L.)
- R&D Department, Yongzhou Zhong Gu Biotechnology Co., Ltd., Yangjiaqiao Street, Lengshuitan District, Yongzhou 425000, China
- Research Department, Center for Genetic Engineering and Biotechnology, Havana 10600, Cuba; (E.S.); (G.C.); (G.G.)
| | - Yaqin Lan
- Research Department, China-Cuba Biotechnology Joint Innovation Center (CCBJIC), Lengshuitan District, Yongzhou 425000, China; (Y.L.); (R.C.); (P.A.); (A.M.); (Y.L.); (C.T.); (K.Y.); (W.L.)
- Yongzhou Development and Construction Investment Co., Ltd. (YDCI), Changfeng Industry Park, Yongzhou Economic and Technological Development Zone, No. 1 Liebao Road, Lengshuitan District, Yongzhou 425000, China
| | - Glay Chinea
- Research Department, Center for Genetic Engineering and Biotechnology, Havana 10600, Cuba; (E.S.); (G.C.); (G.G.)
| | - Changyuan Tan
- Research Department, China-Cuba Biotechnology Joint Innovation Center (CCBJIC), Lengshuitan District, Yongzhou 425000, China; (Y.L.); (R.C.); (P.A.); (A.M.); (Y.L.); (C.T.); (K.Y.); (W.L.)
- Yongzhou Development and Construction Investment Co., Ltd. (YDCI), Changfeng Industry Park, Yongzhou Economic and Technological Development Zone, No. 1 Liebao Road, Lengshuitan District, Yongzhou 425000, China
| | - Ricardo Silva
- Science and Innovation Directorate, BioCubaFarma, Independence Avenue, No. 8126, Corner 100 Street, Havana 10800, Cuba;
| | - Gerardo Guillen
- Research Department, Center for Genetic Engineering and Biotechnology, Havana 10600, Cuba; (E.S.); (G.C.); (G.G.)
| | - Ke Yang
- Research Department, China-Cuba Biotechnology Joint Innovation Center (CCBJIC), Lengshuitan District, Yongzhou 425000, China; (Y.L.); (R.C.); (P.A.); (A.M.); (Y.L.); (C.T.); (K.Y.); (W.L.)
- Yongzhou Development and Construction Investment Co., Ltd. (YDCI), Changfeng Industry Park, Yongzhou Economic and Technological Development Zone, No. 1 Liebao Road, Lengshuitan District, Yongzhou 425000, China
| | - Wen Li
- Research Department, China-Cuba Biotechnology Joint Innovation Center (CCBJIC), Lengshuitan District, Yongzhou 425000, China; (Y.L.); (R.C.); (P.A.); (A.M.); (Y.L.); (C.T.); (K.Y.); (W.L.)
- Yongzhou Development and Construction Investment Co., Ltd. (YDCI), Changfeng Industry Park, Yongzhou Economic and Technological Development Zone, No. 1 Liebao Road, Lengshuitan District, Yongzhou 425000, China
| | - Yasser Perera
- Research Department, China-Cuba Biotechnology Joint Innovation Center (CCBJIC), Lengshuitan District, Yongzhou 425000, China; (Y.L.); (R.C.); (P.A.); (A.M.); (Y.L.); (C.T.); (K.Y.); (W.L.)
- R&D Department, Yongzhou Zhong Gu Biotechnology Co., Ltd., Yangjiaqiao Street, Lengshuitan District, Yongzhou 425000, China
- Research Department, Center for Genetic Engineering and Biotechnology, Havana 10600, Cuba; (E.S.); (G.C.); (G.G.)
| | - Lisset Hermida
- Research Department, China-Cuba Biotechnology Joint Innovation Center (CCBJIC), Lengshuitan District, Yongzhou 425000, China; (Y.L.); (R.C.); (P.A.); (A.M.); (Y.L.); (C.T.); (K.Y.); (W.L.)
- R&D Department, Yongzhou Zhong Gu Biotechnology Co., Ltd., Yangjiaqiao Street, Lengshuitan District, Yongzhou 425000, China
- Yongzhou Development and Construction Investment Co., Ltd. (YDCI), Changfeng Industry Park, Yongzhou Economic and Technological Development Zone, No. 1 Liebao Road, Lengshuitan District, Yongzhou 425000, China
- Science and Innovation Directorate, BioCubaFarma, Independence Avenue, No. 8126, Corner 100 Street, Havana 10800, Cuba;
| |
Collapse
|
19
|
Kumar A, Kaushal R, Sharma H, Sharma K, Menon MB, P V. Mapping of long stretches of highly conserved sequences in over 6 million SARS-CoV-2 genomes. Brief Funct Genomics 2024; 23:256-264. [PMID: 37461194 DOI: 10.1093/bfgp/elad027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 06/15/2023] [Accepted: 06/26/2023] [Indexed: 05/18/2024] Open
Abstract
We identified 11 conserved stretches in over 6.3 million SARS-CoV-2 genomes including all the major variants of concerns. Each conserved stretch is ≥100 nucleotides in length with ≥99.9% conservation at each nucleotide position. Interestingly, six of the eight conserved stretches in ORF1ab overlapped significantly with well-folded experimentally verified RNA secondary structures. Furthermore, two of the conserved stretches were mapped to regions within the S2-subunit that undergo dynamic structural rearrangements during viral fusion. In addition, the conserved stretches were significantly depleted for zinc-finger antiviral protein (ZAP) binding sites, which facilitated the recognition and degradation of viral RNA. These highly conserved stretches in the SARS-CoV-2 genome were poorly conserved at the nucleotide level among closely related β-coronaviruses, thus representing ideal targets for highly specific and discriminatory diagnostic assays. Our findings highlight the role of structural constraints at both RNA and protein levels that contribute to the sequence conservation of specific genomic regions in SARS-CoV-2.
Collapse
Affiliation(s)
- Akhil Kumar
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, New Delhi, India
| | - Rishika Kaushal
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, New Delhi, India
| | - Himanshi Sharma
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, New Delhi, India
| | - Khushboo Sharma
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, New Delhi, India
| | - Manoj B Menon
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, New Delhi, India
| | - Vivekanandan P
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, New Delhi, India
| |
Collapse
|
20
|
Cornejo A, Franco C, Rodriguez-Nuñez M, García A, Belisario I, Mayora S, Garzaro DJ, Zambrano JL, Jaspe RC, Hidalgo M, Parra-Giménez N, Claro FE, Liprandi F, de Waard JH, Rangel HR, Pujol FH. Humoral Immunity across the SARS-CoV-2 Spike after Sputnik V (Gam-COVID-Vac) Vaccination. Antibodies (Basel) 2024; 13:41. [PMID: 38804309 PMCID: PMC11130906 DOI: 10.3390/antib13020041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/21/2024] [Accepted: 05/06/2024] [Indexed: 05/29/2024] Open
Abstract
SARS-CoV-2 vaccines have contributed to attenuating the burden of the COVID-19 pandemic by promoting the development of effective immune responses, thus reducing the spread and severity of the pandemic. A clinical trial with the Sputnik-V vaccine was conducted in Venezuela from December 2020 to July 2021. The aim of this study was to explore the antibody reactivity of vaccinated individuals towards different regions of the spike protein (S). Neutralizing antibody (NAb) activity was assessed using a commercial surrogate assay, detecting NAbs against the receptor-binding domain (RBD), and a plaque reduction neutralization test. NAb levels were correlated with the reactivity of the antibodies to the spike regions over time. The presence of Abs against nucleoprotein was also determined to rule out the effect of exposure to the virus during the clinical trial in the serological response. A high serological reactivity was observed to S and specifically to S1 and the RBD. S2, although recognized with lower intensity by vaccinated individuals, was the subunit exhibiting the highest cross-reactivity in prepandemic sera. This study is in agreement with the high efficacy reported for the Sputnik V vaccine and shows that this vaccine is able to induce an immunity lasting for at least 180 days. The dissection of the Ab reactivity to different regions of S allowed us to identify the relevance of epitopes outside the RBD that are able to induce NAbs. This research may contribute to the understanding of vaccine immunity against SARS-CoV-2, which could contribute to the design of future vaccine strategies.
Collapse
Affiliation(s)
- Alejandro Cornejo
- Laboratorio de Bioquímica Celular, Centro de Microbiología y Biología Celular, Instituto Venezolano de Investigaciones Científicas (IVIC), Caracas 1020A, Venezuela;
| | - Christopher Franco
- Laboratorio de Virología Celular, Centro de Microbiología y Biología Celular, IVIC, Caracas 1020A, Venezuela; (C.F.); (J.L.Z.)
| | - Mariajose Rodriguez-Nuñez
- Laboratorio de Virología Molecular, Centro de Microbiología y Biología Celular, IVIC, Caracas 1020A, Venezuela; (M.R.-N.); (D.J.G.); (R.C.J.); (H.R.R.)
| | - Alexis García
- Instituto de Inmunología, Universidad Central de Venezuela (UCV), Caracas 1040A, Venezuela; (A.G.); (I.B.); (S.M.)
| | - Inirida Belisario
- Instituto de Inmunología, Universidad Central de Venezuela (UCV), Caracas 1040A, Venezuela; (A.G.); (I.B.); (S.M.)
| | - Soriuska Mayora
- Instituto de Inmunología, Universidad Central de Venezuela (UCV), Caracas 1040A, Venezuela; (A.G.); (I.B.); (S.M.)
| | - Domingo José Garzaro
- Laboratorio de Virología Molecular, Centro de Microbiología y Biología Celular, IVIC, Caracas 1020A, Venezuela; (M.R.-N.); (D.J.G.); (R.C.J.); (H.R.R.)
| | - José Luis Zambrano
- Laboratorio de Virología Celular, Centro de Microbiología y Biología Celular, IVIC, Caracas 1020A, Venezuela; (C.F.); (J.L.Z.)
| | - Rossana Celeste Jaspe
- Laboratorio de Virología Molecular, Centro de Microbiología y Biología Celular, IVIC, Caracas 1020A, Venezuela; (M.R.-N.); (D.J.G.); (R.C.J.); (H.R.R.)
| | - Mariana Hidalgo
- Laboratorio de Inmunoparasitología, Centro de Microbiología y Biología Celular, IVIC, Caracas 1020A, Venezuela;
| | - Nereida Parra-Giménez
- Laboratorio de Fisiología de Parásitos, Centro Biofísica y Bioquímica, IVIC, Caracas 1020A, Venezuela;
| | - Franklin Ennodio Claro
- Departamento de Tuberculosis, Servicio Autónomo Instituto de Biomedicina “Dr. Jacinto Convit”, UCV, Caracas 1010A, Venezuela; (F.E.C.); (J.H.d.W.)
| | - Ferdinando Liprandi
- Laboratorio de Biología de Virus, Centro de Microbiología y Biología Celular, IVIC, Caracas 1020A, Venezuela;
| | - Jacobus Henri de Waard
- Departamento de Tuberculosis, Servicio Autónomo Instituto de Biomedicina “Dr. Jacinto Convit”, UCV, Caracas 1010A, Venezuela; (F.E.C.); (J.H.d.W.)
- Laboratorios de Investigación, Facultad de Ciencias de Salud, Universidad de Las Américas (UDLA), Quito 170125, Ecuador
| | - Héctor Rafael Rangel
- Laboratorio de Virología Molecular, Centro de Microbiología y Biología Celular, IVIC, Caracas 1020A, Venezuela; (M.R.-N.); (D.J.G.); (R.C.J.); (H.R.R.)
| | - Flor Helene Pujol
- Laboratorio de Virología Molecular, Centro de Microbiología y Biología Celular, IVIC, Caracas 1020A, Venezuela; (M.R.-N.); (D.J.G.); (R.C.J.); (H.R.R.)
| |
Collapse
|
21
|
Kim JW, Lee JH, Kim HJ, Heo K, Lee Y, Jang HJ, Lee HY, Park JW, Cho YB, Shin HG, Yang HR, Lee HE, Song JY, Lee S. Empowering SARS-CoV-2 variant neutralization with a bifunctional antibody engineered with tandem heptad repeat 2 peptides. J Med Virol 2024; 96:e29506. [PMID: 38445718 DOI: 10.1002/jmv.29506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 01/28/2024] [Accepted: 02/23/2024] [Indexed: 03/07/2024]
Abstract
With the global pandemic and the continuous mutations of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the need for effective and broadly neutralizing treatments has become increasingly urgent. This study introduces a novel strategy that targets two aspects simultaneously, using bifunctional antibodies to inhibit both the attachment of SARS-CoV-2 to host cell membranes and viral fusion. We developed pioneering IgG4-(HR2)4 bifunctional antibodies by creating immunoglobulin G4-based and phage display-derived human monoclonal antibodies (mAbs) that specifically bind to the SARS-CoV-2 receptor-binding domain, engineered with four heptad repeat 2 (HR2) peptides. Our in vitro experiments demonstrate the superior neutralization efficacy of these engineered antibodies against various SARS-CoV-2 variants, ranging from original SARS-CoV-2 strain to the recently emerged Omicron variants, as well as SARS-CoV, outperforming the parental mAb. Notably, intravenous monotherapy with the bifunctional antibody neutralizes a SARS-CoV-2 variant in a murine model without causing significant toxicity. In summary, this study unveils the significant potential of HR2 peptide-driven bifunctional antibodies as a potent and versatile strategy for mitigating SARS-CoV-2 infections. This approach offers a promising avenue for rapid development and management in the face of the continuously evolving SARS-CoV-2 variants, holding substantial promise for pandemic control.
Collapse
Affiliation(s)
- Ji Woong Kim
- Department of Biopharmaceutical Chemistry, Kookmin University, Seoul, Republic of Korea
| | - Ji Hyun Lee
- Department of Biopharmaceutical Chemistry, Kookmin University, Seoul, Republic of Korea
| | - Hyun Jung Kim
- Department of Biopharmaceutical Chemistry, Kookmin University, Seoul, Republic of Korea
| | - Kyun Heo
- Department of Biopharmaceutical Chemistry, Kookmin University, Seoul, Republic of Korea
- Department of Chemistry, Kookmin University, Seoul, Republic of Korea
- Antibody Research Institute, Kookmin University, Seoul, Republic of Korea
| | - Yoonwoo Lee
- Department of Nuclear Medicine, Seoul National University Bundang Hospital, Seoul, Republic of Korea
| | - Hui Jeong Jang
- Department of Nuclear Medicine, Seoul National University Bundang Hospital, Seoul, Republic of Korea
| | - Ho-Young Lee
- Department of Nuclear Medicine, Seoul National University Bundang Hospital, Seoul, Republic of Korea
| | - Jun Won Park
- Division of Biomedical Convergence, Kangwon National University, Chuncheon, Republic of Korea
| | - Yea Bin Cho
- Department of Biopharmaceutical Chemistry, Kookmin University, Seoul, Republic of Korea
| | - Ha Gyeong Shin
- Department of Biopharmaceutical Chemistry, Kookmin University, Seoul, Republic of Korea
| | - Ha Rim Yang
- Department of Biopharmaceutical Chemistry, Kookmin University, Seoul, Republic of Korea
| | - Hee Eon Lee
- Department of Biopharmaceutical Chemistry, Kookmin University, Seoul, Republic of Korea
| | - Jin Young Song
- Department of Biopharmaceutical Chemistry, Kookmin University, Seoul, Republic of Korea
| | - Sukmook Lee
- Department of Biopharmaceutical Chemistry, Kookmin University, Seoul, Republic of Korea
- Department of Chemistry, Kookmin University, Seoul, Republic of Korea
- Antibody Research Institute, Kookmin University, Seoul, Republic of Korea
| |
Collapse
|
22
|
Zhang D, Kukkar D, Kim KH, Bhatt P. A comprehensive review on immunogen and immune-response proteins of SARS-CoV-2 and their applications in prevention, diagnosis, and treatment of COVID-19. Int J Biol Macromol 2024; 259:129284. [PMID: 38211928 DOI: 10.1016/j.ijbiomac.2024.129284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 01/03/2024] [Accepted: 01/04/2024] [Indexed: 01/13/2024]
Abstract
Exposure to severe acute respiratory syndrome-corona virus-2 (SARS-CoV-2) prompts humoral immune responses in the human body. As the auxiliary diagnosis of a current infection, the existence of viral proteins can be checked from specific antibodies (Abs) induced by immunogenic viral proteins. For people with a weakened immune system, Ab treatment can help neutralize viral antigens to resist and treat the disease. On the other hand, highly immunogenic viral proteins can serve as effective markers for detecting prior infections. Additionally, the identification of viral particles or the presence of antibodies may help establish an immune defense against the virus. These immunogenic proteins rather than SARS-CoV-2 can be given to uninfected people as a vaccination to improve their coping ability against COVID-19 through the generation of memory plasma cells. In this work, we review immunogenic and immune-response proteins derived from SARS-CoV-2 with regard to their classification, origin, and diverse applications (e.g., prevention (vaccine development), diagnostic testing, and treatment (via neutralizing Abs)). Finally, advanced immunization strategies against COVID-19 are discussed along with the contemporary circumstances and future challenges.
Collapse
Affiliation(s)
- Daohong Zhang
- College of Food Engineering, Ludong University, Yantai 264025, Shandong, China; Bio-Nanotechnology Research Institute, Ludong University, Yantai 264025, Shandong, China
| | - Deepak Kukkar
- Department of Biotechnology, Chandigarh University, Gharuan, Mohali 140413, Punjab, India; University Center for Research and Development, Chandigarh University, Gharuan, Mohali 140413, Punjab, India
| | - Ki-Hyun Kim
- Department of Civil & Environmental Engineering, Hanyang University, 222 Wangsimni-Ro, Seoul 04763, Republic of Korea.
| | - Poornima Bhatt
- Department of Biotechnology, Chandigarh University, Gharuan, Mohali 140413, Punjab, India; University Center for Research and Development, Chandigarh University, Gharuan, Mohali 140413, Punjab, India
| |
Collapse
|
23
|
Tan S, Zhao J, Hu X, Li Y, Wu Z, Lu G, Yu Z, Du B, Liu Y, Li L, Chen Y, Li Y, Yao Y, Zhang X, Rao J, Gao G, Peng Y, Liu H, Yuan Z, Liu J, Wang Q, Hu H, Gao X, Zhou H, Yu H, Xu Y, Yu W, Feng L, Wang M, Shan C, Lu J, Lin J. Preclinical evaluation of RQ3013, a broad-spectrum mRNA vaccine against SARS-CoV-2 variants. Sci Bull (Beijing) 2023; 68:3192-3206. [PMID: 37993332 DOI: 10.1016/j.scib.2023.11.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 10/19/2023] [Accepted: 11/02/2023] [Indexed: 11/24/2023]
Abstract
The global emergence of SARS-CoV-2 variants has led to increasing breakthrough infections in vaccinated populations, calling for an urgent need to develop more effective and broad-spectrum vaccines to combat COVID-19. Here we report the preclinical development of RQ3013, an mRNA vaccine candidate intended to bring broad protection against SARS-CoV-2 variants of concern (VOCs). RQ3013, which contains pseudouridine-modified mRNAs formulated in lipid nanoparticles, encodes the spike (S) protein harboring a combination of mutations responsible for immune evasion of VOCs. Here we characterized the expressed S immunogen and evaluated the immunogenicity, efficacy, and safety of RQ3013 in various animal models. RQ3013 elicited robust immune responses in mice, hamsters, and nonhuman primates (NHP). It can induce high titers of antibodies with broad cross-neutralizing ability against the wild-type, B.1.1.7, B.1.351, B.1.617.2, and the newly emerging Omicron variants. In mice and NHP, two doses of RQ3013 protected the upper and lower respiratory tract against infection by SARS-CoV-2 and its variants. Furthermore, our safety assessment of RQ3013 in NHP showed no observable adverse effects. These results provide strong support for the evaluation of RQ3013 in clinical trials and suggest that it may be a promising candidate for broad protection against COVID-19 and its variants.
Collapse
Affiliation(s)
- Shudan Tan
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai 200438, China; Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai 200438, China; Zhangjiang mRNA Innovation and Translation Center, Fudan University, Shanghai 200438, China
| | - Jinghua Zhao
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai 200438, China; Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai 200438, China; Zhangjiang mRNA Innovation and Translation Center, Fudan University, Shanghai 200438, China
| | - Xue Hu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Yufeng Li
- Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Zihan Wu
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai 200438, China; Zhangjiang mRNA Innovation and Translation Center, Fudan University, Shanghai 200438, China
| | - Guoliang Lu
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai 200438, China; Zhangjiang mRNA Innovation and Translation Center, Fudan University, Shanghai 200438, China
| | - Zhaoli Yu
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai 200438, China; Zhangjiang mRNA Innovation and Translation Center, Fudan University, Shanghai 200438, China
| | - Binhe Du
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai 200438, China; Zhangjiang mRNA Innovation and Translation Center, Fudan University, Shanghai 200438, China
| | - Yan Liu
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai 200438, China; Zhangjiang mRNA Innovation and Translation Center, Fudan University, Shanghai 200438, China
| | - Li Li
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai 200438, China; Zhangjiang mRNA Innovation and Translation Center, Fudan University, Shanghai 200438, China
| | - Yuchen Chen
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai 200438, China; Zhangjiang mRNA Innovation and Translation Center, Fudan University, Shanghai 200438, China
| | - Ye Li
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai 200438, China; Zhangjiang mRNA Innovation and Translation Center, Fudan University, Shanghai 200438, China
| | - Yanfeng Yao
- Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Xiaoyu Zhang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Juhong Rao
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Ge Gao
- Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Yun Peng
- Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Hang Liu
- Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Zhiming Yuan
- Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Jia Liu
- Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Qianran Wang
- Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Hengrui Hu
- Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Xiaobo Gao
- Shanghai RNACure Biopharma Co., Ltd., Shanghai 200438, China
| | - Hui Zhou
- Zhangjiang mRNA Innovation and Translation Center, Fudan University, Shanghai 200438, China; Shanghai RNACure Biopharma Co., Ltd., Shanghai 200438, China
| | - Hang Yu
- Shanghai RNACure Biopharma Co., Ltd., Shanghai 200438, China
| | - Yingjie Xu
- Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Department of Biochemistry and Molecular Cell Biology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Wei Yu
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai 200438, China; Zhangjiang mRNA Innovation and Translation Center, Fudan University, Shanghai 200438, China.
| | - Lin Feng
- Department of Experimental Research, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangzhou 510060, China.
| | - Manli Wang
- Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China.
| | - Chao Shan
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China.
| | - Jing Lu
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai 200438, China; Zhangjiang mRNA Innovation and Translation Center, Fudan University, Shanghai 200438, China; Shanghai RNACure Biopharma Co., Ltd., Shanghai 200438, China.
| | - Jinzhong Lin
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai 200438, China; Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai 200438, China; Zhangjiang mRNA Innovation and Translation Center, Fudan University, Shanghai 200438, China.
| |
Collapse
|
24
|
Mohazzab A, Fallah Mehrabadi MH, Es-Haghi A, Kalantari S, Mokhberalsafa L, Setarehdan SA, Sadeghi F, Rezaei Mokarram A, Haji Moradi M, Razaz SH, Taghdiri M, Ansarifar A, Lotfi M, Khorasani A, Nofeli M, Masoumi S, Boluki Z, Erfanpoor S, Bagheri Amiri F, Esmailzadehha N, Filsoof S, Mohseni V, Ghahremanzadeh N, Safari S, Shahsavan M, Bayazidi S, Raghami Derakhshani M, Rabiee MH, Golmoradi-Zadeh R, Khodadoost B, Solaymani-Dodaran M, Banihashemi SR. Phase II, Safety and Immunogenicity of RAZI Cov Pars (RCP) SARS Cov-2 Vaccine in Adults Aged 18-70 Years; A Randomized, Double-Blind Clinical Trial. J Pharm Sci 2023; 112:3012-3021. [PMID: 37832918 DOI: 10.1016/j.xphs.2023.09.027] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/30/2023] [Accepted: 09/30/2023] [Indexed: 10/15/2023]
Abstract
BACKGROUND This study explores the safety and immunogenicity of the Razi-Cov-Pars (RCP) SARS Cov-2 recombinant spike protein vaccine. METHOD In a randomized, double-blind, placebo-controlled trial, adults aged 18-70 were randomly allocated to receive selected 10 µg/200 µl vaccine strengths or placebo (adjuvant). It included two intramuscular injections at days 0 and 21, followed by an intranasal dose at day 51. Immediate and delayed solicited local and systemic adverse reactions after each dose up to a week, and specific IgG antibodies against SARS Cov-2 spike antigens two weeks after the 2nd dose were assessed as primary outcomes. Secondary safety outcomes were abnormal laboratory findings and medically attended adverse events (MAAE) over six months follow up. Secondary immunogenicity outcomes were neutralizing antibody activity and cell-mediated immune response. RESULT Between May 27th and July 15th, 2021, 500 participants were enrolled. Participants' mean (SD) age was 37.8 (9.0), and 67.0 % were male. No immediate adverse reaction was observed following the intervention. All solicited local and systemic adverse events were moderate (Grade I-II). Specific IgG antibody response against S antigen in the vaccine group was 5.28 times (95 %CI: 4.02-6.94) the placebo group with a 75 % seroconversion rate. During six months of follow-up, 8 SAEs were reported, unrelated to the study intervention. The participants sustained their acquired humoral responses at the end of the sixth month. The vaccine predominantly resulted in T-helper 1 cell-mediated immunity, CD8+ cytotoxic T-cell increase, and no increase in inflammatory IL-6 cytokine. CONCLUSION RCP vaccine is safe and creates strong and durable humoral and cellular immunity. TRIAL REGISTRATION (IRCT20201214049709N2).
Collapse
Affiliation(s)
- Arash Mohazzab
- School of Public Health, Iran University of Medical Sciences, Tehran, Iran; Reproductive Biotechnology Research Center, Avicenna Research Institute Tehran, ACECR, Tehran, Iran
| | - Mohammad Hossein Fallah Mehrabadi
- Department of epidemiology, Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| | - Ali Es-Haghi
- Department of Physico Chemistry, Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| | - Saeed Kalantari
- Departments of Infectious Diseases and Tropical Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Ladan Mokhberalsafa
- Department of epidemiology, Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| | | | - Fariba Sadeghi
- Department of epidemiology, Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| | - Ali Rezaei Mokarram
- Research and Development Department, Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| | - Monireh Haji Moradi
- Department of immunology, Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| | - Seyad Hossein Razaz
- Department of immunology, Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| | - Maryam Taghdiri
- Department of immunology, Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| | - Akram Ansarifar
- School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Mohsen Lotfi
- Department of Quality Control, Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| | - Akbar Khorasani
- Research and Development Department, Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| | - Mojtaba Nofeli
- Research and Development Department, Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| | - Safdar Masoumi
- Department of Biostatistics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Zahra Boluki
- Knowledge Utilization Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Saeed Erfanpoor
- School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Fahimeh Bagheri Amiri
- Department of Epidemiology and Biostatistics, Research Centre for Emerging and Reemerging infectious diseases, Pasteur Institute of Iran, Tehran, Iran
| | - Neda Esmailzadehha
- School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Sara Filsoof
- School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Vahideh Mohseni
- School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | | | - Shiva Safari
- School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Masoumeh Shahsavan
- School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Shnoo Bayazidi
- School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Maryam Raghami Derakhshani
- Department of epidemiology, Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| | - Mohammad Hasan Rabiee
- Department Of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Rezvan Golmoradi-Zadeh
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Behnam Khodadoost
- School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Masoud Solaymani-Dodaran
- Clinical Trial Center, Iran University of Medical Science, Tehran, Iran; Minimally Invasive Surgery Research Center, Hazrat-e-Rasool Hospital, Iran University of Medical Science, Tehran, Iran.
| | - Seyed Reza Banihashemi
- Department of immunology, Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran.
| |
Collapse
|
25
|
Kapingidza AB, Marston DJ, Harris C, Wrapp D, Winters K, Mielke D, Xiaozhi L, Yin Q, Foulger A, Parks R, Barr M, Newman A, Schäfer A, Eaton A, Flores JM, Harner A, Catanzaro NJ, Mallory ML, Mattocks MD, Beverly C, Rhodes B, Mansouri K, Van Itallie E, Vure P, Dunn B, Keyes T, Stanfield-Oakley S, Woods CW, Petzold EA, Walter EB, Wiehe K, Edwards RJ, Montefiori DC, Ferrari G, Baric R, Cain DW, Saunders KO, Haynes BF, Azoitei ML. Engineered immunogens to elicit antibodies against conserved coronavirus epitopes. Nat Commun 2023; 14:7897. [PMID: 38036525 PMCID: PMC10689493 DOI: 10.1038/s41467-023-43638-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 11/15/2023] [Indexed: 12/02/2023] Open
Abstract
Immune responses to SARS-CoV-2 primarily target the receptor binding domain of the spike protein, which continually mutates to escape acquired immunity. Other regions in the spike S2 subunit, such as the stem helix and the segment encompassing residues 815-823 adjacent to the fusion peptide, are highly conserved across sarbecoviruses and are recognized by broadly reactive antibodies, providing hope that vaccines targeting these epitopes could offer protection against both current and emergent viruses. Here we employ computational modeling to design scaffolded immunogens that display the spike 815-823 peptide and the stem helix epitopes without the distracting and immunodominant receptor binding domain. These engineered proteins bind with high affinity and specificity to the mature and germline versions of previously identified broadly protective human antibodies. Epitope scaffolds interact with both sera and isolated monoclonal antibodies with broadly reactivity from individuals with pre-existing SARS-CoV-2 immunity. When used as immunogens, epitope scaffolds elicit sera with broad betacoronavirus reactivity and protect as "boosts" against live virus challenge in mice, illustrating their potential as components of a future pancoronavirus vaccine.
Collapse
Affiliation(s)
- A Brenda Kapingidza
- Duke Human Vaccine Institute, Duke University, Durham, NC, USA
- Department of Medicine, Duke University, Durham, NC, USA
| | - Daniel J Marston
- Duke Human Vaccine Institute, Duke University, Durham, NC, USA
- Department of Medicine, Duke University, Durham, NC, USA
| | - Caitlin Harris
- Duke Human Vaccine Institute, Duke University, Durham, NC, USA
- Department of Medicine, Duke University, Durham, NC, USA
| | - Daniel Wrapp
- Duke Human Vaccine Institute, Duke University, Durham, NC, USA
- Department of Medicine, Duke University, Durham, NC, USA
| | - Kaitlyn Winters
- Duke Human Vaccine Institute, Duke University, Durham, NC, USA
- Department of Medicine, Duke University, Durham, NC, USA
| | - Dieter Mielke
- Department of Surgery, Duke University, Durham, NC, USA
- Center for Human Systems Immunology, Duke University, Durham, NC, USA
| | - Lu Xiaozhi
- Duke Human Vaccine Institute, Duke University, Durham, NC, USA
- Department of Medicine, Duke University, Durham, NC, USA
| | - Qi Yin
- Duke Human Vaccine Institute, Duke University, Durham, NC, USA
- Department of Medicine, Duke University, Durham, NC, USA
| | - Andrew Foulger
- Duke Human Vaccine Institute, Duke University, Durham, NC, USA
- Department of Medicine, Duke University, Durham, NC, USA
| | - Rob Parks
- Duke Human Vaccine Institute, Duke University, Durham, NC, USA
- Department of Medicine, Duke University, Durham, NC, USA
| | - Maggie Barr
- Duke Human Vaccine Institute, Duke University, Durham, NC, USA
- Department of Medicine, Duke University, Durham, NC, USA
| | - Amanda Newman
- Duke Human Vaccine Institute, Duke University, Durham, NC, USA
- Department of Medicine, Duke University, Durham, NC, USA
| | - Alexandra Schäfer
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Amanda Eaton
- Department of Surgery, Duke University, Durham, NC, USA
| | - Justine Mae Flores
- Duke Human Vaccine Institute, Duke University, Durham, NC, USA
- Department of Medicine, Duke University, Durham, NC, USA
| | - Austin Harner
- Duke Human Vaccine Institute, Duke University, Durham, NC, USA
- Department of Medicine, Duke University, Durham, NC, USA
| | - Nicholas J Catanzaro
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Michael L Mallory
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Melissa D Mattocks
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Christopher Beverly
- Duke Human Vaccine Institute, Duke University, Durham, NC, USA
- Department of Medicine, Duke University, Durham, NC, USA
| | - Brianna Rhodes
- Duke Human Vaccine Institute, Duke University, Durham, NC, USA
- Department of Medicine, Duke University, Durham, NC, USA
| | | | - Elizabeth Van Itallie
- Duke Human Vaccine Institute, Duke University, Durham, NC, USA
- Department of Medicine, Duke University, Durham, NC, USA
| | - Pranay Vure
- Duke Human Vaccine Institute, Duke University, Durham, NC, USA
- Department of Medicine, Duke University, Durham, NC, USA
| | - Brooke Dunn
- Department of Surgery, Duke University, Durham, NC, USA
| | - Taylor Keyes
- Department of Surgery, Duke University, Durham, NC, USA
| | | | - Christopher W Woods
- Duke Human Vaccine Institute, Duke University, Durham, NC, USA
- Department of Medicine, Duke University, Durham, NC, USA
- Center for Infectious Diseases and Diagnostic Innovation, Duke University Medical Center, Durham, NC, USA
| | - Elizabeth A Petzold
- Center for Infectious Diseases and Diagnostic Innovation, Duke University Medical Center, Durham, NC, USA
| | - Emmanuel B Walter
- Duke Human Vaccine Institute, Duke University, Durham, NC, USA
- Department of Pediatrics, Duke University, Durham, NC, USA
| | - Kevin Wiehe
- Duke Human Vaccine Institute, Duke University, Durham, NC, USA
- Department of Medicine, Duke University, Durham, NC, USA
| | - Robert J Edwards
- Duke Human Vaccine Institute, Duke University, Durham, NC, USA
- Department of Medicine, Duke University, Durham, NC, USA
| | | | - Guido Ferrari
- Duke Human Vaccine Institute, Duke University, Durham, NC, USA
- Department of Surgery, Duke University, Durham, NC, USA
- Center for Human Systems Immunology, Duke University, Durham, NC, USA
- Department of Molecular Genetics and Microbiology, Duke University, Durham, NC, USA
| | - Ralph Baric
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Derek W Cain
- Duke Human Vaccine Institute, Duke University, Durham, NC, USA
- Department of Medicine, Duke University, Durham, NC, USA
| | - Kevin O Saunders
- Duke Human Vaccine Institute, Duke University, Durham, NC, USA
- Department of Surgery, Duke University, Durham, NC, USA
- Department of Molecular Genetics and Microbiology, Duke University, Durham, NC, USA
- Department of Immunology, Duke University, Durham, NC, USA
| | - Barton F Haynes
- Duke Human Vaccine Institute, Duke University, Durham, NC, USA
- Department of Medicine, Duke University, Durham, NC, USA
- Department of Immunology, Duke University, Durham, NC, USA
| | - Mihai L Azoitei
- Duke Human Vaccine Institute, Duke University, Durham, NC, USA.
- Department of Medicine, Duke University, Durham, NC, USA.
| |
Collapse
|
26
|
Balinsky CA, Jiang L, Jani V, Cheng Y, Zhang Z, Belinskaya T, Qiu Q, Long TK, Schilling MA, Jenkins SA, Corson KS, Martin NJ, Letizia AG, Hontz RD, Sun P. Antibodies to S2 domain of SARS-CoV-2 spike protein in Moderna mRNA vaccinated subjects sustain antibody-dependent NK cell-mediated cell cytotoxicity against Omicron BA.1. Front Immunol 2023; 14:1266829. [PMID: 38077368 PMCID: PMC10702584 DOI: 10.3389/fimmu.2023.1266829] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 10/24/2023] [Indexed: 12/18/2023] Open
Abstract
Vaccination with the primary two-dose series of SARS-CoV-2 mRNA protects against infection with the ancestral strain, and limits the presentation of severe disease after re-infection by multiple variants of concern (VOC), including Omicron, despite the lack of a strong neutralizing response to these variants. We compared antibody responses in serum samples collected from mRNA-1273 (Moderna) vaccinated subjects to identify mechanisms of immune escape and cross-protection. Using pseudovirus constructs containing domain-specific amino acid changes representative of Omicron BA.1, combined with domain competition and RBD-antibody depletion, we showed that RBD antibodies were primarily responsible for virus neutralization and variant escape. Antibodies to NTD played a less significant role in antibody neutralization but acted along with RBD to enhance neutralization. S2 of Omicron BA.1 had no impact on neutralization escape, suggesting it is a less critical domain for antibody neutralization; however, it was as capable as S1 at eliciting IgG3 responses and NK-cell mediated, antibody-dependent cell cytotoxicity (ADCC). Antibody neutralization and ADCC activities to RBD, NTD, and S1 were all prone to BA.1 escape. In contrast, ADCC activities to S2 resisted BA.1 escape. In conclusion, S2 antibodies showed potent ADCC function and resisted Omicron BA.1 escape, suggesting that S2 contributes to cross-protection against Omicron BA.1. In line with its conserved nature, S2 may hold promise as a vaccine target against future variants of SARS-CoV-2.
Collapse
Affiliation(s)
- Corey A. Balinsky
- Henry Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, United States
| | - Le Jiang
- Henry Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, United States
| | - Vihasi Jani
- Henry Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, United States
| | | | - Zhiwen Zhang
- Henry Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, United States
| | - Tatyana Belinskaya
- Henry Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, United States
| | - Qi Qiu
- Henry Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, United States
| | | | - Megan A. Schilling
- Virology and Emerging Infectious Department, U.S. Naval Medical Research Unit SOUTH, Lima, Peru
| | - Sarah A. Jenkins
- Diagnostics and Surveillance Department, Naval Medical Research Command, Silver Spring, MD, United States
| | - Karen S. Corson
- US Naval Medical Research Unit-INDO PACIFIC, Singapore, Singapore
| | | | | | - Robert D. Hontz
- US Naval Medical Research Unit-INDO PACIFIC, Singapore, Singapore
| | - Peifang Sun
- Diagnostics and Surveillance Department, Naval Medical Research Command, Silver Spring, MD, United States
| |
Collapse
|
27
|
Keitany GJ, Rubin BER, Garrett ME, Musa A, Tracy J, Liang Y, Ebert P, Moore AJ, Guan J, Eggers E, Lescano N, Brown R, Carbo A, Al-Asadi H, Ching T, Day A, Harris R, Linkem C, Popov D, Wilkins C, Li L, Wang J, Liu C, Chen L, Dines JN, Atyeo C, Alter G, Baldo L, Sherwood A, Howie B, Klinger M, Yusko E, Robins HS, Benzeno S, Gilbert AE. Multimodal, broadly neutralizing antibodies against SARS-CoV-2 identified by high-throughput native pairing of BCRs from bulk B cells. Cell Chem Biol 2023; 30:1377-1389.e8. [PMID: 37586370 PMCID: PMC10659930 DOI: 10.1016/j.chembiol.2023.07.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 04/25/2023] [Accepted: 07/23/2023] [Indexed: 08/18/2023]
Abstract
TruAB Discovery is an approach that integrates cellular immunology, high-throughput immunosequencing, bioinformatics, and computational biology in order to discover naturally occurring human antibodies for prophylactic or therapeutic use. We adapted our previously described pairSEQ technology to pair B cell receptor heavy and light chains of SARS-CoV-2 spike protein-binding antibodies derived from enriched antigen-specific memory B cells and bulk antibody-secreting cells. We identified approximately 60,000 productive, in-frame, paired antibody sequences, from which 2,093 antibodies were selected for functional evaluation based on abundance, isotype and patterns of somatic hypermutation. The exceptionally diverse antibodies included RBD-binders with broad neutralizing activity against SARS-CoV-2 variants, and S2-binders with broad specificity against betacoronaviruses and the ability to block membrane fusion. A subset of these RBD- and S2-binding antibodies demonstrated robust protection against challenge in hamster and mouse models. This high-throughput approach can accelerate discovery of diverse, multifunctional antibodies against any target of interest.
Collapse
Affiliation(s)
| | | | | | - Andrea Musa
- Adaptive Biotechnologies, Seattle, WA 98109, USA
| | - Jeff Tracy
- Adaptive Biotechnologies, Seattle, WA 98109, USA
| | - Yu Liang
- Adaptive Biotechnologies, Seattle, WA 98109, USA
| | - Peter Ebert
- Adaptive Biotechnologies, Seattle, WA 98109, USA
| | | | | | - Erica Eggers
- Adaptive Biotechnologies, Seattle, WA 98109, USA
| | | | - Ryan Brown
- Adaptive Biotechnologies, Seattle, WA 98109, USA
| | - Adria Carbo
- Adaptive Biotechnologies, Seattle, WA 98109, USA
| | | | | | - Austin Day
- Adaptive Biotechnologies, Seattle, WA 98109, USA
| | | | | | | | | | - Lianqu Li
- GenScript ProBio Biotech, Nanjing, Jiangsu Province, China
| | - Jiao Wang
- GenScript ProBio Biotech, Nanjing, Jiangsu Province, China
| | - Chuanxin Liu
- GenScript ProBio Biotech, Nanjing, Jiangsu Province, China
| | - Li Chen
- GenScript ProBio Biotech, Nanjing, Jiangsu Province, China
| | | | - Caroline Atyeo
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA
| | - Galit Alter
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA
| | - Lance Baldo
- Adaptive Biotechnologies, Seattle, WA 98109, USA
| | | | - Bryan Howie
- Adaptive Biotechnologies, Seattle, WA 98109, USA
| | - Mark Klinger
- Adaptive Biotechnologies, Seattle, WA 98109, USA
| | - Erik Yusko
- Adaptive Biotechnologies, Seattle, WA 98109, USA
| | | | | | | |
Collapse
|
28
|
de Oliveira DF. In silico identification of five binding sites on the SARS-CoV-2 spike protein and selection of seven ligands for such sites. J Biomol Struct Dyn 2023; 42:13697-13715. [PMID: 37921757 DOI: 10.1080/07391102.2023.2278077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 10/26/2023] [Indexed: 11/04/2023]
Abstract
To contribute to the development of products capable of complexing with the SARS-CoV-2 spike protein, and thus preventing the virus from entering the host cell, this work aimed at discovering binding sites in the whole protein structure, as well as selecting substances capable of binding efficiently to such sites. Initially, the three-dimensional structure of the protein, with all receptor binding domains in the closed state, underwent blind docking with 38 substances potentially capable of binding to this protein according to the literature. This allowed the identification of five binding sites. Then, those substances with more affinities for these sites underwent pharmacophoric search in the ZINC15 database. The 14,329 substances selected from ZINC15 were subjected to docking to the five selected sites of the spike protein. The ligands with more affinities for the protein sites, as well as the selected sites themselves, were used in the de novo design of new ligands that were also docked to the binding sites of the protein. The best ligands, regardless of their origins, were used to form complexes with the spike protein, which were subsequently used in molecular dynamics simulations and calculations of ligands affinities to the protein through the molecular mechanics/Poisson-Boltzmann surface area method (MMPBSA). Seven substances with good affinities to the spike protein (-12.9 to -20.6 kcal/mol), satisfactory druggability (Bioavailability score: 0.17 to 0.55), and low acute toxicity to mice (LD50: 751 to 1421 mg/kg) were selected as potentially useful for the future development of new products to manage COVID-19 infections.Communicated by Ramaswamy H. Sarma.
Collapse
|
29
|
Boix-Besora A, Gòdia F, Cervera L. Gag Virus-like Particles Functionalized with SARS-CoV-2 Variants: Generation, Characterization and Recognition by COVID-19 Convalescent Patients' Sera. Vaccines (Basel) 2023; 11:1641. [PMID: 38005972 PMCID: PMC10675557 DOI: 10.3390/vaccines11111641] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/16/2023] [Accepted: 10/21/2023] [Indexed: 11/26/2023] Open
Abstract
The robustness, safety, versatility, and high immunogenicity of virus-like particles (VLPs) make them a promising approach for the generation of vaccines against a broad range of pathogens. VLPs are recombinant macromolecular structures that closely mimic the native conformation of viruses without carrying viral genetic material. Particularly, HIV-1 Gag-based VLPs are a suitable platform for the presentation of the SARS-CoV-2 Spike (S) protein on their surface. In this context, this work studies the effect of different rationally engineered mutations of the S protein to improve some of its characteristics. The studied variants harbored mutations such as proline substitutions for S stabilization, D614G from the early dominant pandemic form, the elimination of the S1/S2 furin cleavage site to improve S homogeneity, the suppression of a retention motif to favor its membrane localization, and cysteine substitutions to increase its immunogenicity and avoid potential undesired antibody-dependent enhancement (ADE) effects. The influence of the mutations on VLP expression was studied, as well as their immunogenic potential, by testing the recognition of the generated VLP variants by COVID-19 convalescent patients' sera. The results of this work are conceived to give insights on the selection of S protein candidates for their use as immunogens and to showcase the potential of VLPs as carriers for antigen presentation.
Collapse
Affiliation(s)
- Arnau Boix-Besora
- Grup d’Enginyeria de Bioprocessos i Biocatàlisi Aplicada ENG4BIO, Escola d’Enginyeria, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, 08193 Barcelona, Spain
| | | | | |
Collapse
|
30
|
Nedaei F, Esmaeili Rastaghi AR, Goodarzi E, Haji Mullah Asadullah H, Mirhadi F, Fateh A. Introduction and effect of natural selection analysis at common mutations of SARS-CoV-2 spike gene in Iran. Virus Res 2023; 336:199202. [PMID: 37595664 PMCID: PMC10491845 DOI: 10.1016/j.virusres.2023.199202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/15/2023] [Accepted: 08/16/2023] [Indexed: 08/20/2023]
Abstract
The epidemic of coronavirus disease 2019 (COVID-19) was caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The spike (S) protein of SARS-Cov-2 is composed of two subunits, S1 and S2. This study aimed to describe SARS-CoV-2 haplotypes in Iranians based on the S gene, which plays a key role in the receptor recognition and cell membrane fusion proses. 95 positive saliva samples for SARS-CoV-2 were amplified and sequenced for the S gene. The sequences were classified into 35 haplotypes, which 11 haplotypes were new (H1, H2, H3, H4, H6, H7, H11, H13, H15, H16, H25) and have not been reported so far. Amino acid substitutions were found at 40 positions that 23 were located at S1 subunit and 16 were at S2 subunit and one was at cleavage loop (P681H/R), thus polymorphisms at S1 subunit were found to be higher than S2. The neutrality index (NI) analyses showed a negative departure from the neutral substitution patterns (NI > 1) for S1 and S2 subunit in the studied sequences. The co-occurrence of B-cell epitopes and mutation sites were found in seven positions with more probably to be exposed the immune system pressure. In conclusion, the results provide the significant data to design an effective vaccine based on this protein.
Collapse
Affiliation(s)
- Fatemeh Nedaei
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran
| | | | - Esmaeil Goodarzi
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | | | - Fatemeh Mirhadi
- Department of Medical science, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Abolfazl Fateh
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran; Microbiology Research Center (MRC), Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
31
|
Mykytyn AZ, Fouchier RA, Haagmans BL. Antigenic evolution of SARS coronavirus 2. Curr Opin Virol 2023; 62:101349. [PMID: 37647851 DOI: 10.1016/j.coviro.2023.101349] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 07/24/2023] [Accepted: 07/25/2023] [Indexed: 09/01/2023]
Abstract
SARS coronavirus 2 (SARS-CoV-2), the causative agent of COVID-19, emerged in China in December 2019. Vaccines developed were very effective initially, however, the virus has shown remarkable evolution with multiple variants spreading globally over the last three years. Nowadays, newly emerging Omicron lineages are gaining substitutions at a fast rate, resulting in escape from neutralization by antibodies that target the Spike protein. Tools to map the impact of substitutions on the further antigenic evolution of SARS-CoV-2, such as antigenic cartography, may be helpful to update SARS-CoV-2 vaccines. In this review, we focus on the antigenic evolution of SARS-CoV-2, highlighting the impact of Spike protein substitutions individually and in combination on immune escape.
Collapse
Affiliation(s)
- Anna Z Mykytyn
- Viroscience Department, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Ron Am Fouchier
- Viroscience Department, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Bart L Haagmans
- Viroscience Department, Erasmus Medical Center, Rotterdam, the Netherlands.
| |
Collapse
|
32
|
Nguyen H, Nguyen HL, Lan PD, Thai NQ, Sikora M, Li MS. Interaction of SARS-CoV-2 with host cells and antibodies: experiment and simulation. Chem Soc Rev 2023; 52:6497-6553. [PMID: 37650302 DOI: 10.1039/d1cs01170g] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of the devastating global COVID-19 pandemic announced by WHO in March 2020. Through unprecedented scientific effort, several vaccines, drugs and antibodies have been developed, saving millions of lives, but the fight against COVID-19 continues as immune escape variants of concern such as Delta and Omicron emerge. To develop more effective treatments and to elucidate the side effects caused by vaccines and therapeutic agents, a deeper understanding of the molecular interactions of SARS-CoV-2 with them and human cells is required. With special interest in computational approaches, we will focus on the structure of SARS-CoV-2 and the interaction of its spike protein with human angiotensin-converting enzyme-2 (ACE2) as a prime entry point of the virus into host cells. In addition, other possible viral receptors will be considered. The fusion of viral and human membranes and the interaction of the spike protein with antibodies and nanobodies will be discussed, as well as the effect of SARS-CoV-2 on protein synthesis in host cells.
Collapse
Affiliation(s)
- Hung Nguyen
- Institute of Physics, Polish Academy of Sciences, al. Lotnikow 32/46, 02-668 Warsaw, Poland.
| | - Hoang Linh Nguyen
- Institute of Fundamental and Applied Sciences, Duy Tan University, Ho Chi Minh City 700000, Vietnam
- Faculty of Environmental and Natural Sciences, Duy Tan University, Da Nang 550000, Vietnam
| | - Pham Dang Lan
- Life Science Lab, Institute for Computational Science and Technology, Quang Trung Software City, Tan Chanh Hiep Ward, District 12, 729110 Ho Chi Minh City, Vietnam
- Faculty of Physics and Engineering Physics, VNUHCM-University of Science, 227, Nguyen Van Cu Street, District 5, 749000 Ho Chi Minh City, Vietnam
| | - Nguyen Quoc Thai
- Dong Thap University, 783 Pham Huu Lau Street, Ward 6, Cao Lanh City, Dong Thap, Vietnam
| | - Mateusz Sikora
- Malopolska Centre of Biotechnology, Jagiellonian University, Kraków, Poland
- Department of Theoretical Biophysics, Max Planck Institute of Biophysics, Frankfurt am Main, Germany
| | - Mai Suan Li
- Institute of Physics, Polish Academy of Sciences, al. Lotnikow 32/46, 02-668 Warsaw, Poland.
| |
Collapse
|
33
|
Kapingidza B, Marston DJ, Harris C, Wrapp D, Winters K, Mielke D, Xiaozhi L, Yin Q, Foulger A, Parks R, Barr M, Newman A, Schäfer A, Eaton A, Flores JM, Harner A, Cantazaro NJ, Mallory ML, Mattocks MD, Beverly C, Rhodes B, Mansouri K, Itallie EV, Vure P, Manness B, Keyes T, Stanfield-Oakley S, Woods CW, Petzold EA, Walter EB, Wiehe K, Edwards RJ, Montefiori D, Ferrari G, Baric R, Cain DW, Saunders KO, Haynes BF, Azoitei ML. Engineered Immunogens to Elicit Antibodies Against Conserved Coronavirus Epitopes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.27.530277. [PMID: 36909627 PMCID: PMC10002628 DOI: 10.1101/2023.02.27.530277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
Abstract
Immune responses to SARS-CoV-2 primarily target the receptor binding domain of the spike protein, which continually mutates to escape acquired immunity. Other regions in the spike S2 subunit, such as the stem helix and the segment encompassing residues 815-823 adjacent to the fusion peptide, are highly conserved across sarbecoviruses and are recognized by broadly reactive antibodies, providing hope that vaccines targeting these epitopes could offer protection against both current and emergent viruses. Here we employed computational modeling to design scaffolded immunogens that display the spike 815-823 peptide and the stem helix epitopes without the distracting and immunodominant RBD. These engineered proteins bound with high affinity and specificity to the mature and germline versions of previously identified broadly protective human antibodies. Epitope scaffolds interacted with both sera and isolated monoclonal antibodies with broadly reactivity from individuals with pre-existing SARS-CoV-2 immunity. When used as immunogens, epitope scaffolds elicited sera with broad betacoronavirus reactivity and protected as "boosts" against live virus challenge in mice, illustrating their potential as components of a future pancoronavirus vaccine.
Collapse
|
34
|
Stincarelli MA, Quagliata M, Di Santo A, Pacini L, Fernandez FR, Arvia R, Rinaldi S, Papini AM, Rovero P, Giannecchini S. SARS-CoV-2 inhibitory activity of a short peptide derived from internal fusion peptide of S2 subunit of spike glycoprotein. Virus Res 2023; 334:199170. [PMID: 37422270 PMCID: PMC10384657 DOI: 10.1016/j.virusres.2023.199170] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 07/01/2023] [Accepted: 07/06/2023] [Indexed: 07/10/2023]
Abstract
Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) has posed a great concern in human population. To fight coronavirus emergence, we have dissected the conserved amino acid region of the internal fusion peptide in the S2 subunit of Spike glycoprotein of SARS-CoV-2 to design new inhibitory peptides. Among the 11 overlapping peptides (9-23-mer), PN19, a 19-mer peptide, exhibited a powerful inhibitory activity against different SARS-CoV-2 clinical isolate variants in absence of cytotoxicity. The PN19 inhibitory activity was found to be dependent on conservation of the central Phe and C-terminal Tyr residues in the peptide sequence. Circular dichroism spectra of the active peptide exhibited an alpha-helix propensity, confirmed by secondary structure prediction analysis. The PN19 inhibitory activity, exerted in the first step of virus infection, was reduced after peptide adsorption treatment with virus-cell substrate during fusion interaction. Additionally, PN19 inhibitory activity was reduced by adding S2 membrane-proximal region derived peptides. PN19 showed binding ability to the S2 membrane proximal region derived peptides, confirmed by molecular modelling, playing a role in the mechanism of action. Collectively, these results confirm that the internal fusion peptide region is a good candidate on which develop peptidomimetic anti SARS-CoV-2 antivirals.
Collapse
Affiliation(s)
- Maria Alfreda Stincarelli
- Department of Experimental and Clinical Medicine, University of Florence, Viale Morgagni 48, Florence 50134, Italy
| | - Michael Quagliata
- Interdepartmental Research Unit of Peptide and Protein Chemistry and Biology, Department of Chemistry "Ugo Schiff", University of Florence, Sesto Fiorentino 50019, Italy
| | - Andrea Di Santo
- Interdepartmental Research Unit of Peptide and Protein Chemistry and Biology, Department of NeuroFarBa, University of Florence, Sesto Fiorentino 50019, Italy
| | - Lorenzo Pacini
- Interdepartmental Research Unit of Peptide and Protein Chemistry and Biology, Department of Chemistry "Ugo Schiff", University of Florence, Sesto Fiorentino 50019, Italy
| | - Feliciana Real Fernandez
- CNR - Istituto di Chimica dei Composti Organometallici (CNR-ICCOM), Via Madonna del Piano 10, Sesto Fiorentino I-50019, Italy
| | - Rosaria Arvia
- Department of Experimental and Clinical Medicine, University of Florence, Viale Morgagni 48, Florence 50134, Italy
| | - Silvia Rinaldi
- CNR - Istituto di Chimica dei Composti Organometallici (CNR-ICCOM), Via Madonna del Piano 10, Sesto Fiorentino I-50019, Italy
| | - Anna Maria Papini
- Interdepartmental Research Unit of Peptide and Protein Chemistry and Biology, Department of Chemistry "Ugo Schiff", University of Florence, Sesto Fiorentino 50019, Italy
| | - Paolo Rovero
- Interdepartmental Research Unit of Peptide and Protein Chemistry and Biology, Department of NeuroFarBa, University of Florence, Sesto Fiorentino 50019, Italy
| | - Simone Giannecchini
- Department of Experimental and Clinical Medicine, University of Florence, Viale Morgagni 48, Florence 50134, Italy.
| |
Collapse
|
35
|
Strizzi S, Bernardo L, D'Ursi P, Urbinati C, Bianco A, Limanaqi F, Manconi A, Milanesi M, Macchi A, Di Silvestre D, Cavalleri A, Pareschi G, Rusnati M, Clerici M, Mauri P, Biasin M. An innovative strategy to investigate microbial protein modifications in a reliable fast and sensitive way: A therapy oriented proof of concept based on UV-C irradiation of SARS-CoV-2 spike protein. Pharmacol Res 2023; 194:106862. [PMID: 37479104 DOI: 10.1016/j.phrs.2023.106862] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 07/04/2023] [Accepted: 07/18/2023] [Indexed: 07/23/2023]
Abstract
The characterization of modifications of microbial proteins is of primary importance to dissect pathogen lifecycle mechanisms and could be useful in identifying therapeutic targets. Attempts to solve this issue yielded only partial and non-exhaustive results. We developed a multidisciplinary approach by coupling in vitro infection assay, mass spectrometry (MS), protein 3D modelling, and surface plasma resonance (SPR). As a proof of concept, the effect of low UV-C (273 nm) irradiation on SARS-CoV-2 spike (S) protein was investigated. Following UV-C exposure, MS analysis identified, among other modifications, the disruption of a disulphide bond within the conserved S2 subunit of S protein. Computational analyses revealed that this bond breakage associates with an allosteric effect resulting in the generation of a closed conformation with a reduced ability to bind the ACE2 receptor. The UV-C-induced reduced affinity of S protein for ACE2 was further confirmed by SPR analyses and in vitro infection assays. This comprehensive approach pinpoints the S2 domain of S protein as a potential therapeutic target to prevent SARS-CoV-2 infection. Notably, this workflow could be used to screen a wide variety of microbial protein domains, resulting in a precise molecular fingerprint and providing new insights to adequately address future epidemics.
Collapse
Affiliation(s)
- Sergio Strizzi
- Department of Biomedical and Clinical Sciences, University of Milan, Via G.B. Grassi, 20122 Milan, Italy
| | - Letizia Bernardo
- Institute for Biomedical Technologies, National Research Council (ITB-CNR), 20054 Segrate, MI, Italy
| | - Pasqualina D'Ursi
- Institute for Biomedical Technologies, National Research Council (ITB-CNR), 20054 Segrate, MI, Italy
| | - Chiara Urbinati
- Unit of Macromolecular Interaction Analysis, Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
| | - Andrea Bianco
- Italian National Institute for Astrophysics (INAF) - Brera Astronomical Observatory, Via E. Bianchi, 46, Merate, 23807 Lecco, Italy
| | - Fiona Limanaqi
- Department of Biomedical and Clinical Sciences, University of Milan, Via G.B. Grassi, 20122 Milan, Italy; Department of Pathophysiology and Transplantation, University of Milan, Via Francesco Sforza, 20122 Milan, Italy
| | - Andrea Manconi
- Institute for Biomedical Technologies, National Research Council (ITB-CNR), 20054 Segrate, MI, Italy
| | - Maria Milanesi
- Institute for Biomedical Technologies, National Research Council (ITB-CNR), 20054 Segrate, MI, Italy; Unit of Macromolecular Interaction Analysis, Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
| | - Alberto Macchi
- Italian National Institute for Astrophysics (INAF) - Brera Astronomical Observatory, Via E. Bianchi, 46, Merate, 23807 Lecco, Italy
| | - Dario Di Silvestre
- Institute for Biomedical Technologies, National Research Council (ITB-CNR), 20054 Segrate, MI, Italy
| | - Adalberto Cavalleri
- Epidemiology and Prevention Unit, IRCCS Foundation, Istituto Nazionale dei Tumori, Via Giacomo Venezian, 1, 20133 Milan, Italy
| | - Giovanni Pareschi
- Italian National Institute for Astrophysics (INAF) - Brera Astronomical Observatory, Via E. Bianchi, 46, Merate, 23807 Lecco, Italy
| | - Marco Rusnati
- Unit of Macromolecular Interaction Analysis, Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
| | - Mario Clerici
- Department of Pathophysiology and Transplantation, University of Milan, Via Francesco Sforza, 20122 Milan, Italy; Don C. Gnocchi Foundation, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Foundation, Via A. Capecelatro 66, 20148 Milan, íItaly
| | - PierLuigi Mauri
- Institute for Biomedical Technologies, National Research Council (ITB-CNR), 20054 Segrate, MI, Italy; Interdisciplinary Research Center "Health Science", Sant'Anna School of Advanced Studies, 56127 Pisa, Italy.
| | - Mara Biasin
- Department of Biomedical and Clinical Sciences, University of Milan, Via G.B. Grassi, 20122 Milan, Italy
| |
Collapse
|
36
|
Serra N, Andriolo M, Butera I, Mazzola G, Sergi CM, Fasciana TMA, Giammanco A, Gagliano MC, Cascio A, Di Carlo P. A Serological Analysis of the Humoral Immune Responses of Anti-RBD IgG, Anti-S1 IgG, and Anti-S2 IgG Levels Correlated to Anti-N IgG Positivity and Negativity in Sicilian Healthcare Workers (HCWs) with Third Doses of the mRNA-Based SARS-CoV-2 Vaccine: A Retrospective Cohort Study. Vaccines (Basel) 2023; 11:1136. [PMID: 37514952 PMCID: PMC10384738 DOI: 10.3390/vaccines11071136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 06/07/2023] [Accepted: 06/20/2023] [Indexed: 07/30/2023] Open
Abstract
BACKGROUND With SARS-CoV-2 antibody tests on the market, healthcare providers must be confident that they can use the results to provide actionable information to understand the characteristics and dynamics of the humoral response and antibodies (abs) in SARS-CoV-2-vaccinated patients. In this way, the study of the antibody responses of healthcare workers (HCWs), a population that is immunocompetent, adherent to vaccination, and continuously exposed to different virus variants, can help us understand immune protection and determine vaccine design goals. METHODS We retrospectively evaluated antibody responses via multiplex assays in a sample of 538 asymptomatic HCWs with a documented complete vaccination cycle of 3 doses of mRNA vaccination and no previous history of infection. Our sample was composed of 49.44% males and 50.56% females, with an age ranging from 21 to 71 years, and a mean age of 46.73 years. All of the HCWs' sera were collected from April to July 2022 at the Sant'Elia Hospital of Caltanissetta to investigate the immunologic responses against anti-RBD, anti-S1, anti-S2, and anti-N IgG abs. RESULTS A significant difference in age between HCWs who were positive and negative for anti-N IgG was observed. For anti-S2 IgG, a significant difference between HCWs who were negative and positive compared to anti-N IgG was observed only for positive HCWs, with values including 10 (U/mL)-100 (U/mL); meanwhile, for anti-RBD IgG and anti-S1 IgG levels, there was only a significant difference observed for positive HCWs with diluted titers. For the negative values of anti-N IgG, among the titer dilution levels of anti-RBD, anti-S1, and anti-S2 IgG, the anti-S2 IgG levels were significantly lower than the anti-RBD and anti-S1 levels; in addition, the anti-S1 IgG levels were significantly lower than the anti-RBD IgG levels. For the anti-N IgG positive levels, only the anti-S2 IgG levels were significantly lower than the anti-RBD IgG and anti-S1 IgG levels. Finally, a logistic regression analysis showed that age and anti-S2 IgG were negative and positive predictors of anti-N IgG levels, respectively. The analysis between the vaccine type and mixed mRNA combination showed higher levels of antibodies in mixed vaccinated HCWs. This finding disappeared in the anti-N positive group. CONCLUSIONS Most anti-N positive HCWs showed antibodies against the S2 domain and were young subjects. Therefore, the authors suggest that including the anti-SARS-CoV-2-S2 in antibody profiles can serve as a complementary testing approach to qRT-PCR for the early identification of asymptomatic infections in order to reduce the impact of potential new SARS-CoV-2 variants. Our serological investigation on the type of mRNA vaccine and mixed mRNA vaccines shows that future investigations on the serological responses in vaccinated asymptomatic patients exposed to previous infection or reinfection are warranted for updated vaccine boosters.
Collapse
Affiliation(s)
- Nicola Serra
- Department of Public Health, University Federico II of Naples, 80131 Napoli, Italy
| | - Maria Andriolo
- Clinical Pathology Laboratory, Provincial Health Authority of Caltanissetta, 93100 Caltanissetta, Italy
| | - Ignazio Butera
- Degree Course in Medicine and Surgery, Medical Scholl of Hypatia, University of Palermo, 93100 Caltanissetta, Italy
| | - Giovanni Mazzola
- Infectious Disease Unit, Provincial Health Authority of Caltanissetta, 93100 Caltanissetta, Italy
| | - Consolato Maria Sergi
- Department of Pathology and Laboratory Medicine, University of Ottawa, 401 Smyth Road, Ottawa, ON K1H 8L1, Canada
| | - Teresa Maria Assunta Fasciana
- Department of Health Promotion, Maternal-Childhood, Internal Medicine of Excellence “G. D’Alessandro”, University of Palermo, 90127 Palermo, Italy
| | - Anna Giammanco
- Department of Health Promotion, Maternal-Childhood, Internal Medicine of Excellence “G. D’Alessandro”, University of Palermo, 90127 Palermo, Italy
| | - Maria Chiara Gagliano
- Infectious Disease Unit, Department of Health Promotion, Maternal-Childhood, Internal Medicine of Excellence “G. D’Alessandro”, University of Palermo, 90127 Palermo, Italy
| | - Antonio Cascio
- Infectious Disease Unit, Department of Health Promotion, Maternal-Childhood, Internal Medicine of Excellence “G. D’Alessandro”, University of Palermo, 90127 Palermo, Italy
| | - Paola Di Carlo
- Infectious Disease Unit, Department of Health Promotion, Maternal-Childhood, Internal Medicine of Excellence “G. D’Alessandro”, University of Palermo, 90127 Palermo, Italy
| |
Collapse
|
37
|
Marcinkevics R, Silva PN, Hankele AK, Dörnte C, Kadelka S, Csik K, Godbersen S, Goga A, Hasenöhrl L, Hirschi P, Kabakci H, LaPierre MP, Mayrhofer J, Title AC, Shu X, Baiioud N, Bernal S, Dassisti L, Saenz-de-Juano MD, Schmidhauser M, Silvestrelli G, Ulbrich SZ, Ulbrich TJ, Wyss T, Stekhoven DJ, Al-Quaddoomi FS, Yu S, Binder M, Schultheiβ C, Zindel C, Kolling C, Goldhahn J, Seighalani BK, Zjablovskaja P, Hardung F, Schuster M, Richter A, Huang YJ, Lauer G, Baurmann H, Low JS, Vaqueirinho D, Jovic S, Piccoli L, Ciesek S, Vogt JE, Sallusto F, Stoffel M, Ulbrich SE. Machine learning analysis of humoral and cellular responses to SARS-CoV-2 infection in young adults. Front Immunol 2023; 14:1158905. [PMID: 37313411 PMCID: PMC10258347 DOI: 10.3389/fimmu.2023.1158905] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 05/09/2023] [Indexed: 06/15/2023] Open
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) induces B and T cell responses, contributing to virus neutralization. In a cohort of 2,911 young adults, we identified 65 individuals who had an asymptomatic or mildly symptomatic SARS-CoV-2 infection and characterized their humoral and T cell responses to the Spike (S), Nucleocapsid (N) and Membrane (M) proteins. We found that previous infection induced CD4 T cells that vigorously responded to pools of peptides derived from the S and N proteins. By using statistical and machine learning models, we observed that the T cell response highly correlated with a compound titer of antibodies against the Receptor Binding Domain (RBD), S and N. However, while serum antibodies decayed over time, the cellular phenotype of these individuals remained stable over four months. Our computational analysis demonstrates that in young adults, asymptomatic and paucisymptomatic SARS-CoV-2 infections can induce robust and long-lasting CD4 T cell responses that exhibit slower decays than antibody titers. These observations imply that next-generation COVID-19 vaccines should be designed to induce stronger cellular responses to sustain the generation of potent neutralizing antibodies.
Collapse
Affiliation(s)
| | | | | | - Charlyn Dörnte
- Miltenyi Biotec B.V. & Co. KG, Bergisch Gladbach, Germany
| | - Sarah Kadelka
- Institute of Integrative Biology, ETH Zurich, Zurich, Switzerland
| | - Katharina Csik
- Institute of Molecular Health Sciences, ETH Zurich, Zurich, Switzerland
| | - Svenja Godbersen
- Institute of Molecular Health Sciences, ETH Zurich, Zurich, Switzerland
| | - Algera Goga
- Institute of Molecular Health Sciences, ETH Zurich, Zurich, Switzerland
| | - Lynn Hasenöhrl
- Institute of Molecular Health Sciences, ETH Zurich, Zurich, Switzerland
| | - Pascale Hirschi
- Institute of Molecular Health Sciences, ETH Zurich, Zurich, Switzerland
| | - Hasan Kabakci
- Institute of Molecular Health Sciences, ETH Zurich, Zurich, Switzerland
| | - Mary P. LaPierre
- Institute of Molecular Health Sciences, ETH Zurich, Zurich, Switzerland
| | - Johanna Mayrhofer
- Institute of Molecular Health Sciences, ETH Zurich, Zurich, Switzerland
| | | | - Xuan Shu
- Institute of Molecular Health Sciences, ETH Zurich, Zurich, Switzerland
| | - Nouell Baiioud
- Animal Physiology, Institute of Agricultural Sciences, ETH Zurich, Zurich, Switzerland
| | - Sandra Bernal
- Animal Physiology, Institute of Agricultural Sciences, ETH Zurich, Zurich, Switzerland
| | - Laura Dassisti
- Animal Physiology, Institute of Agricultural Sciences, ETH Zurich, Zurich, Switzerland
| | | | - Meret Schmidhauser
- Animal Physiology, Institute of Agricultural Sciences, ETH Zurich, Zurich, Switzerland
| | - Giulia Silvestrelli
- Animal Physiology, Institute of Agricultural Sciences, ETH Zurich, Zurich, Switzerland
| | - Simon Z. Ulbrich
- Animal Physiology, Institute of Agricultural Sciences, ETH Zurich, Zurich, Switzerland
| | - Thea J. Ulbrich
- Animal Physiology, Institute of Agricultural Sciences, ETH Zurich, Zurich, Switzerland
| | - Tamara Wyss
- Animal Physiology, Institute of Agricultural Sciences, ETH Zurich, Zurich, Switzerland
| | - Daniel J. Stekhoven
- NEXUS Personalized Health Technologies, Zurich & SIB Swiss Institute of Bioinformatics, ETH Zurich, Lausanne, Switzerland
| | - Faisal S. Al-Quaddoomi
- NEXUS Personalized Health Technologies, Zurich & SIB Swiss Institute of Bioinformatics, ETH Zurich, Lausanne, Switzerland
| | - Shuqing Yu
- NEXUS Personalized Health Technologies, Zurich & SIB Swiss Institute of Bioinformatics, ETH Zurich, Lausanne, Switzerland
| | - Mascha Binder
- Department of Internal Medicine IV, Oncology/Hematology, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | - Christoph Schultheiβ
- Department of Internal Medicine IV, Oncology/Hematology, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | - Claudia Zindel
- Department of Health Science, Translational Medicine, ETH Zurich, Zurich, Switzerland
| | - Christoph Kolling
- Department of Health Science, Translational Medicine, ETH Zurich, Zurich, Switzerland
| | - Jörg Goldhahn
- Department of Health Science, Translational Medicine, ETH Zurich, Zurich, Switzerland
| | | | | | - Frank Hardung
- Miltenyi Biotec B.V. & Co. KG, Bergisch Gladbach, Germany
| | - Marc Schuster
- Miltenyi Biotec B.V. & Co. KG, Bergisch Gladbach, Germany
| | - Anne Richter
- Miltenyi Biotec B.V. & Co. KG, Bergisch Gladbach, Germany
| | - Yi-Ju Huang
- Miltenyi Biotec B.V. & Co. KG, Bergisch Gladbach, Germany
| | - Gereon Lauer
- Miltenyi Biotec B.V. & Co. KG, Bergisch Gladbach, Germany
| | | | - Jun Siong Low
- Institute for Research in Biomedicine, Università della Svizzera Italiana, Bellinzona, Switzerland
| | - Daniela Vaqueirinho
- Institute for Research in Biomedicine, Università della Svizzera Italiana, Bellinzona, Switzerland
| | - Sandra Jovic
- Institute for Research in Biomedicine, Università della Svizzera Italiana, Bellinzona, Switzerland
| | - Luca Piccoli
- Humabs BioMed SA, a Subsidiary of Vir Biotechnology, Bellinzona, Switzerland
| | - Sandra Ciesek
- Institute of Medical Virology, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Julia E. Vogt
- Department of Computer Science, ETH Zurich, Zurich, Switzerland
| | - Federica Sallusto
- Institute for Research in Biomedicine, Università della Svizzera Italiana, Bellinzona, Switzerland
- Medical Immunology, Institute of Microbiology, ETH Zurich, Zurich, Switzerland
| | - Markus Stoffel
- Institute of Molecular Health Sciences, ETH Zurich, Zurich, Switzerland
- University Hospital Zurich, Zurich, Switzerland
| | - Susanne E. Ulbrich
- Animal Physiology, Institute of Agricultural Sciences, ETH Zurich, Zurich, Switzerland
| |
Collapse
|
38
|
Kaplonek P, Deng Y, Shih-Lu Lee J, Zar HJ, Zavadska D, Johnson M, Lauffenburger DA, Goldblatt D, Alter G. Hybrid immunity expands the functional humoral footprint of both mRNA and vector-based SARS-CoV-2 vaccines. Cell Rep Med 2023; 4:101048. [PMID: 37182520 PMCID: PMC10126214 DOI: 10.1016/j.xcrm.2023.101048] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 12/13/2022] [Accepted: 04/20/2023] [Indexed: 05/16/2023]
Abstract
Despite the successes of current coronavirus disease 2019 (COVID-19) vaccines, waning immunity, the emergence of variants of concern, and breakthrough infections among vaccinees have begun to highlight opportunities to improve vaccine platforms. Real-world vaccine efficacy studies have highlighted the reduced risk of breakthrough infections and diseases among individuals infected and vaccinated, referred to as hybrid immunity. Thus, we sought to define whether hybrid immunity shapes the humoral immune response to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) following Pfizer/BNT162b2, Moderna mRNA-1273, ChadOx1/AZD1222, and Ad26.COV2.S vaccination. Each vaccine exhibits a unique functional humoral profile in vaccination only or hybrid immunity. However, hybrid immunity shows a unique augmentation of S2-domain-specific functional immunity that was poorly induced for the vaccination only. These data highlight the importance of natural infection in breaking the immunodominance away from the evolutionarily unstable S1 domain and potentially affording enhanced cross-variant protection by targeting the more highly conserved S2 domain of SARS-CoV-2.
Collapse
Affiliation(s)
- Paulina Kaplonek
- Ragon Institute of Mass General, MIT, and Harvard, Cambridge, MA, USA
| | - Yixiang Deng
- Ragon Institute of Mass General, MIT, and Harvard, Cambridge, MA, USA; Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | | | - Heather J Zar
- Department of Pediatrics and Child Health, Red Cross War Memorial Children's Hospital, University of Cape Town, Cape Town, South Africa; SA MRC Unit on Child and Adolescent Health, University of Cape Town, Cape Town, South Africa
| | - Dace Zavadska
- Children's Clinical University Hospital, Riga, Latvia
| | - Marina Johnson
- Great Ormond Street Institute of Child Health Biomedical Research Centre, University College London, London, UK
| | - Douglas A Lauffenburger
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - David Goldblatt
- Great Ormond Street Institute of Child Health Biomedical Research Centre, University College London, London, UK.
| | - Galit Alter
- Ragon Institute of Mass General, MIT, and Harvard, Cambridge, MA, USA.
| |
Collapse
|
39
|
Smit WL, van Tol S, Haas LEM, Limonard GJM, Bossink A, Reusken C, Heron M, Thijsen SFT. Differential abundance of IgG antibodies against the spike protein of SARS-CoV-2 and seasonal coronaviruses in patients with fatal COVID-19. Virol J 2023; 20:85. [PMID: 37138352 PMCID: PMC10156070 DOI: 10.1186/s12985-023-02050-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 04/23/2023] [Indexed: 05/05/2023] Open
Abstract
Infection with the novel pandemic SARS-CoV-2 virus has been shown to elicit a cross-reactive immune response that could lead to a back-boost of memory recall to previously encountered seasonal (endemic) coronaviruses (eCoVs). Whether this response is associated with a fatal clinical outcome in patients with severe COVID-19 remains unclear. In a cohort of hospitalized patients, we have previously shown that heterologous immune responses to eCoVs can be detected in severe COVID-19. Here, we report that COVID-19 patients with fatal disease have decreased SARS-CoV-2 neutralizing antibody titers at hospital admission, which correlated with lower SARS-CoV-2 spike-specific IgG and was paralleled by a relative abundance of IgG against spike protein of eCoVs of the genus Betacoronavirus. Additional research is needed to assess if eCoV-specific back-boosted IgG is a bystander phenomenon in severe COVID-19, or a factor that influences the development of an efficient anti-viral immune response.
Collapse
Affiliation(s)
- Wouter L Smit
- Department of Medical Microbiology and Immunology, Diakonessenhuis Utrecht, Bosboomstraat 1, 3582 KE, Utrecht, The Netherlands.
- Department of Medical Microbiology, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX, Utrecht, The Netherlands.
| | - Sophie van Tol
- Centre for Infectious Disease Control, WHO Reference Laboratory for COVID-19, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Lenneke E M Haas
- Department of Intensive Care, Diakonessenhuis Utrecht, Utrecht, The Netherlands
| | - Gijs J M Limonard
- Department of Pulmonary Diseases, Diakonessenhuis Utrecht, Utrecht, The Netherlands
| | - Ailko Bossink
- Department of Pulmonary Diseases, Diakonessenhuis Utrecht, Utrecht, The Netherlands
| | - Chantal Reusken
- Centre for Infectious Disease Control, WHO Reference Laboratory for COVID-19, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Michiel Heron
- Department of Medical Microbiology and Immunology, Diakonessenhuis Utrecht, Bosboomstraat 1, 3582 KE, Utrecht, The Netherlands
| | - Steven F T Thijsen
- Department of Medical Microbiology and Immunology, Diakonessenhuis Utrecht, Bosboomstraat 1, 3582 KE, Utrecht, The Netherlands
| |
Collapse
|
40
|
Allen JD, Ivory DP, Song SG, He WT, Capozzola T, Yong P, Burton DR, Andrabi R, Crispin M. The diversity of the glycan shield of sarbecoviruses related to SARS-CoV-2. Cell Rep 2023; 42:112307. [PMID: 36972173 PMCID: PMC10015101 DOI: 10.1016/j.celrep.2023.112307] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 01/16/2023] [Accepted: 03/08/2023] [Indexed: 03/17/2023] Open
Abstract
Animal reservoirs of sarbecoviruses represent a significant risk of emergent pandemics, as evidenced by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic. Vaccines remain successful at limiting severe disease and death, but the potential for further coronavirus zoonosis motivates the search for pan-coronavirus vaccines. This necessitates a better understanding of the glycan shields of coronaviruses, which can occlude potential antibody epitopes on spike glycoproteins. Here, we compare the structure of 12 sarbecovirus glycan shields. Of the 22 N-linked glycan attachment sites present on SARS-CoV-2, 15 are shared by all 12 sarbecoviruses. However, there are significant differences in the processing state at glycan sites in the N-terminal domain, such as N165. Conversely, glycosylation sites in the S2 domain are highly conserved and contain a low abundance of oligomannose-type glycans, suggesting a low glycan shield density. The S2 domain may therefore provide a more attractive target for immunogen design efforts aiming to generate a pan-coronavirus antibody response.
Collapse
Affiliation(s)
- Joel D Allen
- School of Biological Sciences, University of Southampton, Southampton SO17 1BJ, UK.
| | - Dylan P Ivory
- School of Biological Sciences, University of Southampton, Southampton SO17 1BJ, UK
| | - Sophie Ge Song
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 13 92037, USA; IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA; Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Wan-Ting He
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 13 92037, USA; IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA; Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Tazio Capozzola
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 13 92037, USA; IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA; Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Peter Yong
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 13 92037, USA; IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA; Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Dennis R Burton
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 13 92037, USA; IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA; Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA; Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard University, Cambridge, MA 02139, USA
| | - Raiees Andrabi
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 13 92037, USA; IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA; Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Max Crispin
- School of Biological Sciences, University of Southampton, Southampton SO17 1BJ, UK.
| |
Collapse
|
41
|
Ellis J, Sniatynski M, Rapin N, Lacoste S, Erickson N, Haines D. SARS coronavirus 2-reactive antibodies in bovine colostrum. THE CANADIAN VETERINARY JOURNAL = LA REVUE VETERINAIRE CANADIENNE 2023; 64:337-343. [PMID: 37008643 PMCID: PMC10031788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 04/04/2023]
Abstract
Objective To determine if bovine colostrum and sera have antibodies that react with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Animals Dairy and beef cattle from North America and Europe, sampled before and after the SARS-CoV-2 pandemic. Procedures Indirect ELISAs using whole bovine coronavirus (BCoV) and SARS-CoV-2; whole SARS-CoV-2 Spike 1, Spike 2, and nucleocapsid proteins; and SARS-CoV-2-specific nucleocapsid peptide as antigens. Virus neutralization assay for BCoV. Surrogate virus neutralization assay for SARS-CoV-2. Results Antibodies reactive to BCoV were highly prevalent in samples collected from cattle before and after the SARS-CoV-2 pandemic. Antibodies reactive with SARS-CoV-2 were present in the same samples, and apparently increased in prevalence after the SARS-CoV-2 pandemic. These antibodies had variable reactivity with the spike and nucleocapsid proteins of SARS-CoV-2 but were apparently not specific for SARS-CoV-2. Conclusions Bovine coronavirus continues to be endemic in cattle populations, as indicated by the high prevalence of antibodies to the virus in colostrum and serum samples. Also, the prevalent antibodies to SARS-CoV-2 in bovine samples, before and after the pandemic, are likely the result of responses to epitopes on the spike and nucleocapsid proteins that are shared between the 2 betacoronaviruses. Cross-reactive antibodies in bovine colostrum could be examined for prophylactic or therapeutic effects on SARS-CoV-2 infections in humans.
Collapse
Affiliation(s)
- John Ellis
- Departments of Veterinary Microbiology (Ellis, Sniatynski, Rapin, Lacoste, Haines) and Large Animal Clinical Sciences (Erickson), Western College of Veterinary Medicine, University of Saskatchewan, 52 Campus Drive, Saskatoon, Saskatchewan S7N 5B4
| | - Michelle Sniatynski
- Departments of Veterinary Microbiology (Ellis, Sniatynski, Rapin, Lacoste, Haines) and Large Animal Clinical Sciences (Erickson), Western College of Veterinary Medicine, University of Saskatchewan, 52 Campus Drive, Saskatoon, Saskatchewan S7N 5B4
| | - Noreen Rapin
- Departments of Veterinary Microbiology (Ellis, Sniatynski, Rapin, Lacoste, Haines) and Large Animal Clinical Sciences (Erickson), Western College of Veterinary Medicine, University of Saskatchewan, 52 Campus Drive, Saskatoon, Saskatchewan S7N 5B4
| | - Stacey Lacoste
- Departments of Veterinary Microbiology (Ellis, Sniatynski, Rapin, Lacoste, Haines) and Large Animal Clinical Sciences (Erickson), Western College of Veterinary Medicine, University of Saskatchewan, 52 Campus Drive, Saskatoon, Saskatchewan S7N 5B4
| | - Nathan Erickson
- Departments of Veterinary Microbiology (Ellis, Sniatynski, Rapin, Lacoste, Haines) and Large Animal Clinical Sciences (Erickson), Western College of Veterinary Medicine, University of Saskatchewan, 52 Campus Drive, Saskatoon, Saskatchewan S7N 5B4
| | - Deborah Haines
- Departments of Veterinary Microbiology (Ellis, Sniatynski, Rapin, Lacoste, Haines) and Large Animal Clinical Sciences (Erickson), Western College of Veterinary Medicine, University of Saskatchewan, 52 Campus Drive, Saskatoon, Saskatchewan S7N 5B4
| |
Collapse
|
42
|
Yurina V, Rahayu Adianingsih O, Widodo N. Oral and intranasal immunization with food-grade recombinant Lactococcus lactis expressing high conserved region of SARS-CoV-2 spike protein triggers mice's immunity responses. Vaccine X 2023; 13:100265. [PMID: 36712897 PMCID: PMC9869617 DOI: 10.1016/j.jvacx.2023.100265] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 01/19/2023] [Accepted: 01/19/2023] [Indexed: 01/25/2023] Open
Abstract
The COVID-19 pandemic began at the end of 2019 in Wuhan, China, and has spread throughout the world. Vaccination is still the most effective method of prevention of pathogenic infections, including viral infections. However, there is little evidence that vaccination can protect against SARS-CoV-2 virus for a long time. Thus, regular re-vaccination is necessary to control COVID-19. Vaccination by injection is invasive, and is one of the reasons people refuse to get re-vaccinated. Therefore, we developed a less invasive vaccine based on oral or nasal administration. The gene encoding the high conserved region (HCR) spike protein was inserted into pNZ8149 and expressed in L.lactis NZ3900. Mice were immunized at 3-week intervals with oral or nasal routes. Anti-SARS-CoV2 spike antibody (IgG and IgA) level were measured using ELISA method before and after treatment. Plasma cells population in lymph were analyzed using flowcytometry and the CD4 + and CD8 + cells in lymph and intestine were analyzed using immunofluorescence method. The results of nasal and oral administration in experimental animals showed that L.lactis carrying the HCR gene could induce a humoral immune response, as indicated by increased levels of IgG and IgA against SARS-CoV-2 (IgG/IgA-SARS-CoV-2). The plasma cell population after nasal and oral vaccination in mice were significantly different with control group (p < 0.05). The CD4 + and CD8 + cells in intestine were significantly higher in orally immunized group mice than control group. The CD8 + cells in lymph were significantly higher in intranasal immunized group mice than control group. Our data demonstrate L.lactis expressing spike protein can be developed into a less invasive alternative to nasal and oral vaccination.
Collapse
Affiliation(s)
- Valentina Yurina
- Department of Pharmacy, Faculty of Medicine, Universitas Brawijaya, Malang, East Java, Indonesia,Corresponding author at: Department of Pharmacy, Faculty of Medicine, Universitas Brawijaya, Jalan Veteran, Malang 65145, East Java, Indonesia
| | | | - Nashi Widodo
- Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Brawijaya, Malang, East Java, Indonesia
| |
Collapse
|
43
|
Study of the Effects of Several SARS-CoV-2 Structural Proteins on Antiviral Immunity. Vaccines (Basel) 2023; 11:vaccines11030524. [PMID: 36992107 DOI: 10.3390/vaccines11030524] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 02/21/2023] [Accepted: 02/22/2023] [Indexed: 02/25/2023] Open
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Spike (S) protein is a critical viral antigenic protein that enables the production of neutralizing antibodies, while other structural proteins, including the membrane (M), nucleocapsid (N) and envelope (E) proteins, have unclear roles in antiviral immunity. In this study, S1, S2, M, N and E proteins were expressed in 16HBE cells to explore the characteristics of the resultant innate immune response. Furthermore, peripheral blood mononuclear cells (PBMCs) from mice immunized with two doses of inactivated SARS-CoV-2 vaccine or two doses of mRNA vaccine were isolated and stimulated by these five proteins to evaluate the corresponding specific T-cell immune response. In addition, the levels of humoral immunity induced by two-dose inactivated vaccine priming followed by mRNA vaccine boosting, two homologous inactivated vaccine doses and two homologous mRNA vaccine doses in immunized mice were compared. Our results suggested that viral structural proteins can activate the innate immune response and elicit a specific T-cell response in mice immunized with the inactivated vaccine. However, the existence of the specific T-cell response against M, N and E is seemingly insufficient to improve the level of humoral immunity.
Collapse
|
44
|
Immunogenicity and Safety of a Combined Intramuscular/Intranasal Recombinant Spike Protein COVID-19 Vaccine (RCP) in Healthy Adults Aged 18 to 55 Years Old: A Randomized, Double-Blind, Placebo-Controlled, Phase I Trial. Vaccines (Basel) 2023; 11:vaccines11020455. [PMID: 36851334 PMCID: PMC9961243 DOI: 10.3390/vaccines11020455] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 02/02/2023] [Accepted: 02/10/2023] [Indexed: 02/18/2023] Open
Abstract
Objectives: This study aimed to determine the safety and immunogenicity of a combined intramuscular/intranasal recombinant spike protein COVID-19 vaccine (RCP). Methods: We conducted a randomized, double-blind, placebo-controlled, phase I trial. Three vaccine strengths were compared with an adjuvant-only preparation. It included two intramuscular and a third intranasal dose. Eligible participants were followed for adverse reactions. Specific IgG, secretory IgA, neutralizing antibodies, and cell-mediated immunity were assessed. Results: A total of 153 participants were enrolled (13 sentinels, 120 randomized, 20 non-randomized open-labeled for IgA assessment). No related serious adverse event was observed. The geometric mean ratios (GMRs) and 95% CI for serum neutralizing antibodies compared with placebo two weeks after the second injection were 5.82 (1.46-23.13), 11.12 (2.74-45.09), and 20.70 (5.05-84.76) in 5, 10, and 20 µg vaccine groups, respectively. The GMR for anti-RBD IgA in mucosal fluid two weeks after the intranasal dose was 23.27 (21.27-25.45) in the 10 µg vaccine group. The humoral responses were sustained for up to five months. All vaccine strengths indicated a strong T-helper 1 response. Conclusion: RCP is safe and creates strong and durable humoral and cellular immunity and good mucosal immune response in its 10 µg /200 µL vaccine strengths. Trial registration: IRCT20201214049709N1.
Collapse
|
45
|
Al-Tamimi M, Tarifi AA, Qaqish A, Abbas MM, Albalawi H, Abu-Raideh J, Salameh M, Khasawneh AI. Immunoglobulins response of COVID-19 patients, COVID-19 vaccine recipients, and random individuals. PLoS One 2023; 18:e0281689. [PMID: 36787317 PMCID: PMC9928079 DOI: 10.1371/journal.pone.0281689] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 01/29/2023] [Indexed: 02/15/2023] Open
Abstract
BACKGROUND The development of specific immunoglobulins to COVID-19 after natural infection or vaccination has been proposed. The efficacy and dynamics of this response are not clear yet. AIM This study aims to analyze the immunoglobulins response among COVID-19 patients, COVID-19 vaccine recipients and random individuals. METHODS A total of 665 participants including 233 COVID-19 patients, 288 COVID-19 vaccine recipients, and 144 random individuals were investigated for anti-COVID-19 immunoglobulins (IgA, IgG, IgM). RESULTS Among COVID-19 patients, 22.7% had detectable IgA antibodies with a mean of 27.3±57.1 ng/ml, 29.6% had IgM antibodies with a mean of 188.4±666.0 BAU/ml, while 59.2% had IgG antibodies with a mean of 101.7±139.7 BAU/ml. Pfizer-BioNTech vaccine recipients had positive IgG in 99.3% with a mean of 515.5±1143.5 BAU/ml while 85.7% of Sinopharm vaccine recipients had positive IgG with a mean of 170.0±230.0 BAU/ml. Regarding random individuals, 54.9% had positive IgG with a mean of 164.3±214 BAU/ml. The peak IgM response in COVID-19 patients was detected early at 15-22 days, followed by IgG peak at 16-30 days, and IgA peak at 0-60 days. IgM antibodies disappeared at 61-90 days, while IgG and IgA antibodies decreased slowly after the peak and remained detectable up to 300 days. The frequency of IgG positivity among patients was significantly affected by increased age, admission department (inpatient or outpatient), symptoms, need for oxygen therapy, and increased duration between positive COVID-19 RT PCR test and serum sampling (p˂0.05). Positive correlations were noted between different types of immunoglobulins (IgG, IgM, and IgA) among patients. CONCLUSIONS Natural infection and COIVD-19 vaccines provide IgG-mediated immunity. The class, positivity, mean, efficacy, and duration of immunoglobulins response are affected by the mechanism of immunity and host related variables. Random community individuals had detectable COVID-19 IgG at ~55%, far from reaching herd immunity levels.
Collapse
Affiliation(s)
- Mohammad Al-Tamimi
- Department of Basic Medical Sciences, Faculty of Medicine, The Hashemite University, Zarqa, Jordan
| | - Amjed A. Tarifi
- Department of Specialized Surgery, Faculty of Medicine, The Hashemite University, Zarqa, Jordan
| | - Arwa Qaqish
- Department of Biology and Biotechnology, Faculty of Science, The Hashemite University, Zarqa, Jordan
| | - Manal M. Abbas
- Department of Medical Laboratory Sciences, Faculty of Allied Medical Sciences, Al-Ahliyya Amman University, Amman, Jordan
- Pharmacological and Diagnostic Research Lab, Al-Ahliyya Amman University, Amman, Jordan
| | - Hadeel Albalawi
- Department of Basic Medical Sciences, Faculty of Medicine, The Hashemite University, Zarqa, Jordan
| | - Jumanah Abu-Raideh
- Department of Basic Medical Sciences, Faculty of Medicine, The Hashemite University, Zarqa, Jordan
| | - Muna Salameh
- Department of Basic Medical Sciences, Faculty of Medicine, AlBalqa Applied University, Alsalt, Jordan
| | - Ashraf I. Khasawneh
- Department of Basic Medical Sciences, Faculty of Medicine, The Hashemite University, Zarqa, Jordan
| |
Collapse
|
46
|
Klose AM, Kosoy G, Miller BL. Arrayed Imaging Reflectometry monitoring of anti-viral antibody production throughout vaccination and breakthrough Covid-19. PLoS One 2023; 18:e0277846. [PMID: 36749755 PMCID: PMC9904502 DOI: 10.1371/journal.pone.0277846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 01/26/2023] [Indexed: 02/08/2023] Open
Abstract
Immune responses to COVID-19 infection and vaccination are individual and varied. There is a need to understand the timeline of vaccination efficacy against current and yet to be discovered viral mutations. Assessing immunity to SARS-CoV-2 in the context of immunity to other respiratory viruses is also valuable. Here we demonstrate the capability of a fully automated prototype Arrayed Imaging Reflectometry system to perform reliable longitudinal serology against a 34-plex respiratory array. The array contains antigens for respiratory syncytial virus, seasonal influenza, common human coronaviruses, MERS, SARS-CoV-1, and SARS-CoV-2. AIR measures a change in reflectivity due to the binding of serum antibodies to the antigens on the array. Samples were collected from convalescent COVID-19 donors and individuals vaccinated with a two-dose mRNA vaccine regimen. Vaccinated samples were collected prior to the first dose, one week after the first dose, one week after the second dose, and monthly thereafter. Information following booster dose and/or breakthrough infection is included for a subset of subjects. Longitudinal samples of vaccinated individuals demonstrate a rise and fall of SARS-CoV-2 spike antibodies in agreement with general knowledge of the adaptive immune response and other studies. Linear Regression analysis was performed to understand the relationship between antibodies binding to different antigens on the array. Our analysis identified strong correlations between closely related influenza virus strains as well as correlations between SARS-CoV-2, SARS-CoV-1, and human coronavirus 229E. A small test of using diluted whole blood from a fingerstick provided clean arrays with antibody binding comparable to serum. Potential applications include assessing immunity in the context of exposure to multiple respiratory viruses, clinical serology, population monitoring to facilitate public health recommendations, and vaccine development against new viruses and virus mutations.
Collapse
Affiliation(s)
- Alanna M. Klose
- Department of Dermatology, University of Rochester, Rochester, New York, United States of America
- Program in Materials Science, University of Rochester, Rochester, New York, United States of America
| | - Gabrielle Kosoy
- Department of Dermatology, University of Rochester, Rochester, New York, United States of America
- Department of Biophysics and Biochemistry, University of Rochester, Rochester, New York, United States of America
| | - Benjamin L. Miller
- Department of Dermatology, University of Rochester, Rochester, New York, United States of America
- Program in Materials Science, University of Rochester, Rochester, New York, United States of America
- Department of Biophysics and Biochemistry, University of Rochester, Rochester, New York, United States of America
- Department of Biomedical Engineering, University of Rochester, Rochester, New York, United States of America
- Institute of Optics, University of Rochester, Rochester, New York, United States of America
| |
Collapse
|
47
|
Salimian J, Ahmadi A, Amani J, Olad G, Halabian R, Saffaei A, Arabfard M, Nasiri M, Nazarian S, Abolghasemi H, Alishiri G. Safety and immunogenicity of a recombinant receptor-binding domain-based protein subunit vaccine (Noora vaccine™) against COVID-19 in adults: A randomized, double-blind, placebo-controlled, Phase 1 trial. J Med Virol 2023; 95:10.1002/jmv.28097. [PMID: 36029105 PMCID: PMC9539327 DOI: 10.1002/jmv.28097] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 08/01/2022] [Accepted: 08/25/2022] [Indexed: 11/11/2022]
Abstract
The development of a safe and effective vaccine is essential to protect populations against coronavirus disease 2019 (COVID-19). There are several vaccine candidates under investigation with different mechanisms of action. In the present study, we have evaluated the safety and immunogenicity of a recombinant receptor-binding domain (RBD)-based protein subunit vaccine (Noora vaccine) against COVID-19 in adults. This Phase 1 trial is a randomized, double-blind, placebo-controlled study to evaluate the safety and immunogenicity of the recombinant RBD-based protein subunit vaccine (Noora vaccine) against COVID-19 in healthy adults volunteers. Eligible participants were included in this study after evaluating their health status and considering the exclusion criteria. They were then randomized into three groups and received three doses of vaccine (80 µg, 120 µg, and placebo) on Days 0, 21, and 35. Primary outcomes including solicited, unsolicited, and medically attended adverse events were recorded during this study. Secondary outcomes including the humoral and cellular immunity (including anti-RBD IgG antibody and neutralizing antibody) were measured on Days 0, 21, 28, 35, 42, and 49 by using the ELISA kit and the Virus Neutralization Test (VNT) was performed on day 49. Totally 70 cases were included in this Phase 1 trial and 60 of them completed the study. Safety assessments showed no severe adverse events. Local pain at the vaccine injection site occurred in 80% of the vaccinated volunteers. Induration and redness at the injection site were the other adverse reactions of this vaccine. There was no significant difference between the studied groups regarding adverse reactions. Anti-RBD IgG antibody and neutralizing antibody assessment showed significant seroconversion in comparison to the placebo group (80%, and 100% respectively, p < 0.001). The cellular immunity panel also showed mild to moderate induction of TH1 responses and the VNT showed 78% of seroprotection. The results of this Phase 1 trial showed acceptable safety without serious adverse events and significant seroconversions in the humoral and cellular immunity panel. The dose of 80 µg is an appropriate dose for injection in the next phases of the trial.
Collapse
Affiliation(s)
- Jafar Salimian
- Applied Microbiology Research Center, Systems Biology and Poisonings InstituteBaqiyatallah University of Medical SciencesTehranIran
- Chemical Injuries Research CenterBaqiyatallah University of Medical SciencesTehranIran
| | - Ali Ahmadi
- Molecular Biology Research Center, Systems Biology and Poisonings InstituteBaqiyatallah University of Medical SciencesTehranIran
| | - Jafar Amani
- Applied Microbiology Research Center, Systems Biology and Poisonings InstituteBaqiyatallah University of Medical SciencesTehranIran
| | - Gholamreza Olad
- Applied Biotechnology Research CenterBaqiyatallah University of Medical SciencesTehranIran
| | - Raheleh Halabian
- Applied Microbiology Research Center, Systems Biology and Poisonings InstituteBaqiyatallah University of Medical SciencesTehranIran
| | - Ali Saffaei
- Department of Clinical Pharmacy, School of PharmacyShahid Beheshti University of Medical SciencesTehranIran
- Student Research CommitteeShahid Beheshti University of Medical SciencesTehranIran
- Skull Base Research Center, Loghman Hakim HospitalShahid Beheshti University of Medical SciencesTehranIran
| | - Masoud Arabfard
- Chemical Injuries Research CenterBaqiyatallah University of Medical SciencesTehranIran
| | - Mojtaba Nasiri
- Clinical Trial CenterTehran University of Medical SciencesTehranIran
| | - Shahram Nazarian
- Department of Biology, Faculty of ScienceImam Hossein UniversityTehranIran
| | - Hassan Abolghasemi
- Applied Microbiology Research Center, Systems Biology and Poisonings InstituteBaqiyatallah University of Medical SciencesTehranIran
| | | |
Collapse
|
48
|
Nejat R, Torshizi MF, Najafi DJ. S Protein, ACE2 and Host Cell Proteases in SARS-CoV-2 Cell Entry and Infectivity; Is Soluble ACE2 a Two Blade Sword? A Narrative Review. Vaccines (Basel) 2023; 11:204. [PMID: 36851081 PMCID: PMC9968219 DOI: 10.3390/vaccines11020204] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/07/2023] [Accepted: 01/12/2023] [Indexed: 01/19/2023] Open
Abstract
Since the spread of the deadly virus SARS-CoV-2 in late 2019, researchers have restlessly sought to unravel how the virus enters the host cells. Some proteins on each side of the interaction between the virus and the host cells are involved as the major contributors to this process: (1) the nano-machine spike protein on behalf of the virus, (2) angiotensin converting enzyme II, the mono-carboxypeptidase and the key component of renin angiotensin system on behalf of the host cell, (3) some host proteases and proteins exploited by SARS-CoV-2. In this review, the complex process of SARS-CoV-2 entrance into the host cells with the contribution of the involved host proteins as well as the sequential conformational changes in the spike protein tending to increase the probability of complexification of the latter with angiotensin converting enzyme II, the receptor of the virus on the host cells, are discussed. Moreover, the release of the catalytic ectodomain of angiotensin converting enzyme II as its soluble form in the extracellular space and its positive or negative impact on the infectivity of the virus are considered.
Collapse
Affiliation(s)
- Reza Nejat
- Department of Anesthesiology and Critical Care Medicine, Laleh Hospital, Tehran 1467684595, Iran
| | | | | |
Collapse
|
49
|
Acharjee A, Ray A, Salkar A, Bihani S, Tuckley C, Shastri J, Agrawal S, Duttagupta S, Srivastava S. Humoral Immune Response Profile of COVID-19 Reveals Severity and Variant-Specific Epitopes: Lessons from SARS-CoV-2 Peptide Microarray. Viruses 2023; 15:248. [PMID: 36680289 PMCID: PMC9866125 DOI: 10.3390/v15010248] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 01/12/2023] [Accepted: 01/14/2023] [Indexed: 01/18/2023] Open
Abstract
The amaranthine scale of the COVID-19 pandemic and unpredictable disease severity is of grave concern. Serological diagnostic aids are an excellent choice for clinicians for rapid and easy prognosis of the disease. To this end, we studied the humoral immune response to SARS-CoV-2 infection to map immunogenic regions in the SARS-CoV-2 proteome at amino acid resolution using a high-density SARS-CoV-2 proteome peptide microarray. The microarray has 4932 overlapping peptides printed in duplicates spanning the entire SARS-CoV-2 proteome. We found 204 and 676 immunogenic peptides against IgA and IgG, corresponding to 137 and 412 IgA and IgG epitopes, respectively. Of these, 6 and 307 epitopes could discriminate between disease severity. The emergence of variants has added to the complexity of the disease. Using the mutation panel available, we could detect 5 and 10 immunogenic peptides against IgA and IgG with mutations belonging to SAR-CoV-2 variants. The study revealed severity-based epitopes that could be presented as potential prognostic serological markers. Further, the mutant epitope immunogenicity could indicate the putative use of these markers for diagnosing variants responsible for the infection.
Collapse
Affiliation(s)
- Arup Acharjee
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Arka Ray
- Centre for Research in Nanotechnology and Science, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Akanksha Salkar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Surbhi Bihani
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Chaitanya Tuckley
- Centre for Research in Nanotechnology and Science, Indian Institute of Technology Bombay, Mumbai 400076, India
| | | | - Sachee Agrawal
- Kasturba Hospital for Infectious Diseases, Mumbai 400011, India
| | - Siddhartha Duttagupta
- Department of Electrical Engineering, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Sanjeeva Srivastava
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076, India
| |
Collapse
|
50
|
Dacon C, Peng L, Lin TH, Tucker C, Lee CCD, Cong Y, Wang L, Purser L, Cooper AJR, Williams JK, Pyo CW, Yuan M, Kosik I, Hu Z, Zhao M, Mohan D, Peterson M, Skinner J, Dixit S, Kollins E, Huzella L, Perry D, Byrum R, Lembirik S, Murphy M, Zhang Y, Yang ES, Chen M, Leung K, Weinberg RS, Pegu A, Geraghty DE, Davidson E, Doranz BJ, Douagi I, Moir S, Yewdell JW, Schmaljohn C, Crompton PD, Mascola JR, Holbrook MR, Nemazee D, Wilson IA, Tan J. Rare, convergent antibodies targeting the stem helix broadly neutralize diverse betacoronaviruses. Cell Host Microbe 2023; 31:97-111.e12. [PMID: 36347257 PMCID: PMC9639329 DOI: 10.1016/j.chom.2022.10.010] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 09/04/2022] [Accepted: 10/13/2022] [Indexed: 11/09/2022]
Abstract
Humanity has faced three recent outbreaks of novel betacoronaviruses, emphasizing the need to develop approaches that broadly target coronaviruses. Here, we identify 55 monoclonal antibodies from COVID-19 convalescent donors that bind diverse betacoronavirus spike proteins. Most antibodies targeted an S2 epitope that included the K814 residue and were non-neutralizing. However, 11 antibodies targeting the stem helix neutralized betacoronaviruses from different lineages. Eight antibodies in this group, including the six broadest and most potent neutralizers, were encoded by IGHV1-46 and IGKV3-20. Crystal structures of three antibodies of this class at 1.5-1.75-Å resolution revealed a conserved mode of binding. COV89-22 neutralized SARS-CoV-2 variants of concern including Omicron BA.4/5 and limited disease in Syrian hamsters. Collectively, these findings identify a class of IGHV1-46/IGKV3-20 antibodies that broadly neutralize betacoronaviruses by targeting the stem helix but indicate these antibodies constitute a small fraction of the broadly reactive antibody response to betacoronaviruses after SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Cherrelle Dacon
- Antibody Biology Unit, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| | - Linghang Peng
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Ting-Hui Lin
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Courtney Tucker
- Antibody Biology Unit, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA; Department of Biology, The Catholic University of America, Washington, DC 20064, USA
| | - Chang-Chun D Lee
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Yu Cong
- Integrated Research Facility, Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, MD 21702, USA
| | - Lingshu Wang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Lauren Purser
- Antibody Biology Unit, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| | - Andrew J R Cooper
- Antibody Biology Unit, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| | | | - Chul-Woo Pyo
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Meng Yuan
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Ivan Kosik
- Cellular Biology Section, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Zhe Hu
- Cellular Biology Section, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ming Zhao
- Protein Chemistry Section, Research Technologies Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| | - Divya Mohan
- Antibody Biology Unit, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| | - Mary Peterson
- Malaria Infection Biology and Immunity Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| | - Jeff Skinner
- Malaria Infection Biology and Immunity Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| | - Saurabh Dixit
- Integrated Research Facility, Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, MD 21702, USA
| | - Erin Kollins
- Integrated Research Facility, Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, MD 21702, USA
| | - Louis Huzella
- Integrated Research Facility, Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, MD 21702, USA
| | - Donna Perry
- Integrated Research Facility, Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, MD 21702, USA
| | - Russell Byrum
- Integrated Research Facility, Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, MD 21702, USA
| | - Sanae Lembirik
- Integrated Research Facility, Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, MD 21702, USA
| | - Michael Murphy
- Integrated Research Facility, Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, MD 21702, USA
| | - Yi Zhang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Eun Sung Yang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Man Chen
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Kwanyee Leung
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Rona S Weinberg
- New York Blood Center, Lindsley F. Kimball Research Institute, New York, NY 10065, USA
| | - Amarendra Pegu
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Daniel E Geraghty
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | | | | | - Iyadh Douagi
- Flow Cytometry Section, Research Technologies Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Susan Moir
- B Cell Immunology Section, Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jonathan W Yewdell
- Cellular Biology Section, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Connie Schmaljohn
- Integrated Research Facility, Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, MD 21702, USA
| | - Peter D Crompton
- Malaria Infection Biology and Immunity Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| | - John R Mascola
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Michael R Holbrook
- Integrated Research Facility, Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, MD 21702, USA
| | - David Nemazee
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Ian A Wilson
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA; The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Joshua Tan
- Antibody Biology Unit, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA.
| |
Collapse
|