1
|
Kikwango EM, Akilimali PZ, Tran NT. Impact of most promising Ebola therapies on survival: a secondary analysis during the tenth outbreak in the Democratic Republic of Congo. Virol J 2025; 22:144. [PMID: 40375337 PMCID: PMC12079879 DOI: 10.1186/s12985-025-02766-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 04/28/2025] [Indexed: 05/18/2025] Open
Abstract
BACKGROUND MAb114, REGN-EB3, Remdesivir, and ZMapp, which are monoclonal antibody-based treatments, have been compared and shown to be promising therapies against the Ebola Virus Disease (EVD). There has been no comparison between these medications and standard treatment (without antiviral). Our study aimed to examine the contribution of each regimen compared to standard treatment on the survival of EVD patients and assess whether this association was modified by EVD vaccination (rVSV-ZEBOV Ebola vaccine) status. METHODOLOGY We performed a secondary analysis study using retrospective cohort data obtained from four EVD treatment centers located in Katwa, Mangina, Butembo, and Beni in the North Kivu region. The main outcome measure was mortality within a 28-day period among 781 included patients. A Cox model was used to identify predictors of survival in hospitalized EVD patients. RESULTS Vaccinated EVD patients were 1.7 times less likely to die compared to unvaccinated patients (3.70 days vs. 5.00 days; p = 0.0002). Delaying care and treatment at EVD treatment centres increased mortality risk by 5% for each day following symptom onset. Compared to the standard treatment group, adjusted mortality rates were significantly reduced in the groups receiving MAb114 (0.27, p < 0.001), REGN-EB3 (0.26, p < 0.001), and Remdesivir (0.38, p = 0.005). ZMapp also showed a reduction, though with borderline statistical significance (0.47, p = 0.032). CONCLUSIONS Prompt identification and treatment, along with enhanced supportive care (such as replenishing fluids and electrolytes and managing symptoms), significantly improve survival chances. Concurrently, administering vaccines and using mAb114, REGN-EB3, and, to some extent, Remdesivir further increase patient survival rates.
Collapse
Affiliation(s)
- Esther Mamu Kikwango
- Field Epidemiology training program, Kinshasa School of Public Health, University of Kinshasa, P.O. Box 11850, Kinshasa, Democratic Republic of Congo
| | - Pierre Z Akilimali
- Department of Nutrition, Kinshasa School of Public Health, University of Kinshasa, P.O. Box 11850, Kinshasa, Democratic Republic of Congo.
- Patrick Kayembe Research Center, Kinshasa School of Public Health, University of Kinshasa, P.O. Box 11850, Kinshasa, Democratic Republic of Congo.
| | - Nguyen Toan Tran
- Australian Center for Public and Population Health Research, Faculty of Health, University of Technology, P.O. Box 123, Sydney, NSW, 2007, Australia
- Faculty of Medicine, University of Geneva, Rue Michel-Servet 1, Genève, 1206, Switzerland
| |
Collapse
|
2
|
Bahadir Z, Narayan P, Wolters R, Permar SR, Fouda G, Hessell AJ, Haigwood NL. Monoclonal Antibodies for Pediatric Viral Disease Prevention and Treatment. Pediatrics 2025; 155:e2024068690. [PMID: 40174915 DOI: 10.1542/peds.2024-068690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 02/27/2025] [Indexed: 04/04/2025] Open
Abstract
Medical advancements over the last century have improved our ability to treat pediatric infectious diseases, significantly reducing associated morbidity and mortality worldwide. Although vaccines have been pivotal in this progress, many viral pathogens still do not currently have effective vaccines. The COVID-19 pandemic highlighted the need for rapid responses to emerging viral pathogens and introduced new tools to combat them. This review addresses human monoclonal antibodies (mAbs) as a strategy for treating and preventing viral infections in pediatric populations. We discuss previously used and currently available mAbs and advancements in mAb discovery. We address the future of mAb therapy by describing novel approaches in drug production and delivery platforms in addition to alternative antibody classes. Finally, we review the challenges and limitations of mAb therapy development for newborns and children.
Collapse
Affiliation(s)
- Zeynep Bahadir
- Department of Pediatrics, Weill Cornell Medicine, Cornell University, New York, New York
| | - Priyanka Narayan
- Department of Pediatrics, Weill Cornell Medicine, Cornell University, New York, New York
| | - Rachael Wolters
- Division of Pathobiology & Immunology, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon
| | - Sallie R Permar
- Department of Pediatrics, Weill Cornell Medicine, Cornell University, New York, New York
| | - Genevieve Fouda
- Department of Pediatrics, Weill Cornell Medicine, Cornell University, New York, New York
| | - Ann J Hessell
- Division of Pathobiology & Immunology, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon
| | - Nancy L Haigwood
- Division of Pathobiology & Immunology, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon
| |
Collapse
|
3
|
Huang H, Shi W, Yan H, Fan L, Lu J, Long Z, Li X, Li J, Wang J, Liu L, Qian J. Dual roles of CXCR4 (C-X-C motif chemokine receptor 4) in promoting entry of ebolavirus and targeting excessive glycoprotein for reticulophagic degradation to facilitate viral fitness. Autophagy 2025:1-20. [PMID: 40223186 DOI: 10.1080/15548627.2025.2492877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 04/02/2025] [Accepted: 04/09/2025] [Indexed: 04/15/2025] Open
Abstract
Ebola virus disease (EVD) caused by Zaire Ebolavirus (EBOV) infection is a major threat to public health in Africa and even worldwide, due to its extremely high mortality rate. However, there are still no effective antiviral therapies that can completely cure EVD. A comprehensive understanding of virus-host interactions would be beneficial for developing new antiviral agents. Here, we showed that CXCR4-induced macroautophagy/autophagy and was internalized to endosomes by interacting with glycoprotein (GP) on viral particles during EBOV infection; this promoted the EBOV attachment and entry, which was reduced by CXCR4 antagonist and neutralizing antibody. We also found that CXCR4 increased EBOV replication by downregulating cytotoxic GP to promote viral fitness instead of influencing the assembly of viral factory. Mechanistically, excessive EBOV GP could hijack CXCR4 sorting and transporting pathways by their interactions with HGS, one of the key components of the ESCRT machinery; subsequently GP could be carried back to the endoplasmic reticulum by CXCR4, where the E3 ubiquitin ligase RNF185 was recruited to polyubiquitinate GP in a K27- and K63-linked manner. Finally, polyubiquitinated GP was degraded in lysosomes via reticulophagy by interacting with RETREG1 (reticulophagy regulator 1), in an ATG3- and ATG5-dependent manner. Our findings revealed dual roles of CXCR4 in regulation of EBOV life cycle, either acting as an entry factor by interacting with GP on viral particles to facilitate viral entry or targeting excessive GP for reticulophagic degradation, providing new evidence that EBOV hijacked the host vesicular transportation system through efficient virus-host interactions to facilitate viral fitness.Abbreviations: Baf A1: bafilomycin A1; BDBV: Bundibugyo Ebolavirus; CHX: cycloheximide; CXCR4: C-X-C motif chemokine receptor 4; CLEC4M/DC-SIGNR: C type lectin domain family 4 member M; EBOV: Zaire Ebolavirus; EEA1: early endosome antigen 1; ER: endoplasmic reticulum; ERAD: ER-associated degradation; ESCRT: endosomal sorting complex required for transport; EVD: Ebolavirus disease; HAVCR1/TIM-1: hepatitis A virus cellular receptor 1; GP: glycoprotein; HGS: hepatocyte growth factor-regulated tyrosine kinase substrate; HIV: human immunodeficiency virus; IFL: internal fusion loop; ITCH/AIP4: itchy E3 ubiquitin protein ligase; LAMP: lysosomal associated membrane protein; LC-MS/MS: liquid chromatography mass spectrometry; PDIs: protein disulfide isomerases; RBD: receptor binding domain; RESTV: Reston Ebolavirus; RETREG1: reticulophagy regulator 1; RNF185: ring finger protein 185; SQSTM1/p62: sequestosome 1; SUDV: Sudan Ebolavirus; TAFV: Taï Forest Ebolavirus; TRIM21: tripartite motif containing 21; trVLPs: transcription- and replication-competent virus-like particles; Ub: ubiquitin.
Collapse
Affiliation(s)
- Hongxin Huang
- Department of Pathogen Biology and Biosecurity, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Wendi Shi
- Department of Pathogen Biology and Biosecurity, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Huijun Yan
- Department of Pathogen Biology and Biosecurity, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Linjin Fan
- Department of Pathogen Biology and Biosecurity, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Jiajun Lu
- Department of Pathogen Biology and Biosecurity, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Zhenyu Long
- Institute of Infectious Diseases, Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Xiaowei Li
- Department of Pathogen Biology and Biosecurity, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Jiao Li
- Department of Pathogen Biology and Biosecurity, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Jie Wang
- Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
- NHC Key Laboratory of Medical Immunology, Peking University, Beijing, China
| | - Linna Liu
- Institute of Infectious Diseases, Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Jun Qian
- Department of Pathogen Biology and Biosecurity, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong, China
- Shenzhen Key Laboratory of Pathogenic Microbes and Biosafety, Shenzhen, Guangdong, China
- Guangdong Provincial Highly Pathogenic Microorganism Science Data Center, Guangzhou, Guangdong, China
| |
Collapse
|
4
|
Lee YZ, Zhang YN, Newby ML, Ward G, Gomes KB, Auclair S, DesRoberts C, Allen JD, Ward AB, Stanfield RL, He L, Crispin M, Wilson IA, Zhu J. Rational design of next-generation filovirus vaccines with glycoprotein stabilization, nanoparticle display, and glycan modification. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.02.641072. [PMID: 40060701 PMCID: PMC11888476 DOI: 10.1101/2025.03.02.641072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/16/2025]
Abstract
Filoviruses pose a significant threat to human health with frequent outbreaks and high mortality. Although two vector-based vaccines are available for Ebola virus, a broadly protective filovirus vaccine remains elusive. In this study, we evaluate a general strategy for stabilizing glycoprotein (GP) structures of Ebola, Sudan, and Bundibugyo ebolaviruses and Ravn marburgvirus. A 3.2 Å-resolution crystal structure provides atomic details for the redesigned Ebola virus GP, and cryo-electron microscopy reveals how a pan-ebolavirus neutralizing antibody targets a conserved site on the Sudan virus GP (3.13 Å-resolution), in addition to a low-resolution model of antibody-bound Ravn virus GP. A self-assembling protein nanoparticle (SApNP), I3-01v9, is redesigned at the N-terminus to allow the optimal surface display of filovirus GP trimers. Following detailed in vitro characterization, the lymph node dynamics of Sudan virus GP and GP-presenting SApNPs are investigated in a mouse model. Compared with soluble GP trimer, SApNPs show ~112 times longer retention in lymph node follicles, up-to-28 times greater presentation on follicular dendritic cell dendrites, and up-to-3 times stronger germinal center reactions. Functional antibody responses induced by filovirus GP trimers and SApNPs bearing wildtype and modified glycans are assessed in mice. Our study provides a foundation for next-generation filovirus vaccine development.
Collapse
Affiliation(s)
- Yi-Zong Lee
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Yi-Nan Zhang
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Maddy L. Newby
- School of Biological Sciences, Highfield Campus, University of Southampton, Southampton, SO17 1BJ, UK
| | - Garrett Ward
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | | - Sarah Auclair
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Connor DesRoberts
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Joel D. Allen
- School of Biological Sciences, Highfield Campus, University of Southampton, Southampton, SO17 1BJ, UK
| | - Andrew B. Ward
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Robyn L. Stanfield
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Linling He
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Max Crispin
- School of Biological Sciences, Highfield Campus, University of Southampton, Southampton, SO17 1BJ, UK
| | - Ian A. Wilson
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
- Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Jiang Zhu
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
- Uvax Bio, LLC, Newark, DE 19702, USA
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| |
Collapse
|
5
|
Ostrowsky JT, Katzelnick LC, Bourne N, Barrett ADT, Thomas SJ, Diamond MS, Beasley DWC, Harris E, Wilder-Smith A, Leighton T, Mehr AJ, Moua NM, Ulrich AK, Cehovin A, Fay PC, Golding JP, Moore KA, Osterholm MT, Lackritz EM. Zika virus vaccines and monoclonal antibodies: a priority agenda for research and development. THE LANCET. INFECTIOUS DISEASES 2025:S1473-3099(24)00750-3. [PMID: 40024262 DOI: 10.1016/s1473-3099(24)00750-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 11/06/2024] [Accepted: 11/08/2024] [Indexed: 03/04/2025]
Abstract
The 2015-16 Zika virus epidemic in the Americas drew global attention to Zika virus infection as a cause of microcephaly and Guillain-Barré syndrome. The epidemic highlighted the urgent need for preventive measures, including vaccines and monoclonal antibodies (mAbs). However, nearly 9 years later, no licensed Zika virus vaccines or mAbs are available, leaving the world's populations unprotected from ongoing disease transmission and future epidemics. The current low Zika virus incidence and unpredictability of future outbreaks complicates prospects for evaluation, licensure, and commercial viability of Zika virus vaccines and mAbs. We conducted an extensive review of Zika virus vaccines and mAbs in development, identifying 16 vaccines in phase 1 or phase 2 trials and three mAbs in phase 1 trials, and convened a 2-day meeting of 130 global Zika virus experts to discuss research priorities to advance their development. This Series paper summarises a priority research agenda to address key knowledge gaps and accelerate the licensure of Zika virus vaccines and mAbs for global use.
Collapse
Affiliation(s)
- Julia T Ostrowsky
- Center for Infectious Disease Research and Policy, University of Minnesota, Minneapolis, MN, USA
| | - Leah C Katzelnick
- Viral Epidemiology and Immunity Unit, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Nigel Bourne
- Sealy Institute for Vaccine Sciences, University of Texas Medical Branch, Galveston, TX, USA; Department of Pediatrics, University of Texas Medical Branch, Galveston, TX, USA
| | - Alan D T Barrett
- Sealy Institute for Vaccine Sciences, University of Texas Medical Branch, Galveston, TX, USA; Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA
| | - Stephen J Thomas
- Department of Microbiology and Immunology, State University of New York (SUNY) Upstate Medical University, Syracuse, NY, USA; Institute for Global Health and Translational Sciences, State University of New York (SUNY) Upstate Medical University, Syracuse, NY, USA
| | - Michael S Diamond
- Department of Pathology and Immunology and Center for Genome Sciences, Lab and Genomic Medicine, Washington University School of Medicine, St Louis, MO, USA
| | - David W C Beasley
- Sealy Institute for Vaccine Sciences, University of Texas Medical Branch, Galveston, TX, USA; Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | - Eva Harris
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California Berkeley, Berkeley, CA, USA
| | - Annelies Wilder-Smith
- Immunization, Vaccines, and Biologicals, World Health Organization, Geneva, Switzerland
| | - Tabitha Leighton
- Center for Infectious Disease Research and Policy, University of Minnesota, Minneapolis, MN, USA
| | - Angela J Mehr
- Center for Infectious Disease Research and Policy, University of Minnesota, Minneapolis, MN, USA
| | - Nicolina M Moua
- Center for Infectious Disease Research and Policy, University of Minnesota, Minneapolis, MN, USA
| | - Angela K Ulrich
- Center for Infectious Disease Research and Policy, University of Minnesota, Minneapolis, MN, USA
| | - Ana Cehovin
- Infectious Disease Strategic Programme, Wellcome Trust, London, UK
| | - Petra C Fay
- Infectious Disease Strategic Programme, Wellcome Trust, London, UK
| | | | - Kristine A Moore
- Center for Infectious Disease Research and Policy, University of Minnesota, Minneapolis, MN, USA
| | - Michael T Osterholm
- Center for Infectious Disease Research and Policy, University of Minnesota, Minneapolis, MN, USA
| | - Eve M Lackritz
- Center for Infectious Disease Research and Policy, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
6
|
Wang LL, Alfson K, Eaton B, Mattix ME, Goez-Gazi Y, Holbrook MR, Carrion R, Xiang SH. Algal Lectin Griffithsin Inhibits Ebola Virus Infection. Molecules 2025; 30:892. [PMID: 40005201 PMCID: PMC11858388 DOI: 10.3390/molecules30040892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Revised: 02/10/2025] [Accepted: 02/10/2025] [Indexed: 02/27/2025] Open
Abstract
Algal lectin Griffithsin (GRFT) is a well-known mannose-binding protein which has broad-spectrum antiviral activity against several important infectious viruses including HIV, HCV, and SARS-CoV-2. Therefore, GRFT has been brought great attention to antiviral therapeutic development. In this report, we have tested GRFT's activity against the lethal Ebola virus in vitro and in vivo. Our data have shown that the IC50 value is about 42 nM for inhibiting Zaire Ebola virus (EBOV) infection in vitro. The preliminary in vivo mice model using mouse-adapted EBOV has also shown a certain efficacy for delayed mortality compared to the control animals. A GRFT pull-down experiment using viral particles demonstrates that GRFT can bind to N-glycans of EBOV. Thus, it can be concluded that GRFT, through binding to viral glycans, may block Ebola virus infection and has potential for the treatment of Ebola virus disease (EVD).
Collapse
Affiliation(s)
- Leah Liu Wang
- Nebraska Center for Virology, School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68588, USA;
| | - Kendra Alfson
- Texas Biomedical Research Institute, 8715 W. Military Drive, San Antonio, TX 78227, USA (Y.G.-G.)
| | - Brett Eaton
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, Frederick, MD 21702, USA
| | - Marc E. Mattix
- Nonclinical Pathology Services, LLC, 5920 Clubhouse Pointe Dr., Medina 44256, OH, USA
| | - Yenny Goez-Gazi
- Texas Biomedical Research Institute, 8715 W. Military Drive, San Antonio, TX 78227, USA (Y.G.-G.)
| | - Michael R. Holbrook
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, Frederick, MD 21702, USA
| | - Ricardo Carrion
- Texas Biomedical Research Institute, 8715 W. Military Drive, San Antonio, TX 78227, USA (Y.G.-G.)
| | - Shi-Hua Xiang
- Nebraska Center for Virology, School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68588, USA;
| |
Collapse
|
7
|
Rghei AD, van Lieshout LP, Cao W, He S, Tierney K, Lopes JA, Zielinska N, Baracuhy EM, Campbell ESB, Minott JA, Guilleman MM, Hasson PC, Thompson B, Karimi K, Bridle BW, Susta L, Qiu X, Banadyga L, Wootton SK. Adeno-associated virus mediated expression of monoclonal antibody MR191 protects mice against Marburg virus and provides long-term expression in sheep. Gene Ther 2025; 32:50-59. [PMID: 36050451 DOI: 10.1038/s41434-022-00361-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 08/09/2022] [Accepted: 08/19/2022] [Indexed: 11/08/2022]
Abstract
Vectored monoclonal antibody (mAb) expression mediated by adeno-associated virus (AAV) gene delivery leads to sustained therapeutic mAb expression and protection against a wide range of infectious diseases in both small and large animal models, including nonhuman primates. Using our rationally engineered AAV6 triple mutant capsid, termed AAV6.2FF, we demonstrate rapid and robust expression of two potent human antibodies against Marburg virus, MR78 and MR191, following intramuscular (IM) administration. IM injection of mice with 1 × 1011 vector genomes (vg) of AAV6.2FF-MR78 and AAV6.2FF-MR191 resulted in serum concentrations of approximately 141 μg/mL and 195 μg/mL of human IgG, respectively, within the first four weeks. Mice receiving 1 × 1011 vg (high) and 1 × 1010 vg (medium) doses of AAV6.2FF-MR191 were completely protected against lethal Marburg virus challenge. No sex-based differences in serum human IgG concentrations were observed; however, administering the AAV-mAb over multiple injection sites significantly increased serum human IgG concentrations. IM administration of three two-week-old lambs with 5 × 1012 vg/kg of AAV6.2FF-MR191 resulted in serum human IgG expression that was sustained for more than 460 days, concomitant with low levels of anti-capsid and anti-drug antibodies. AAV-mAb expression is a viable method for prolonging the therapeutic effect of recombinant mAbs and represents a potential alternative "vaccine" strategy for those with compromised immune systems or in possible outbreak response scenarios.
Collapse
Affiliation(s)
- Amira D Rghei
- Department of Pathobiology, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | | | - Wenguang Cao
- Special Pathogens Program, Public Health Agency of Canada, Winnipeg, MB, R3E 3R2, Canada
| | - Shihua He
- Special Pathogens Program, Public Health Agency of Canada, Winnipeg, MB, R3E 3R2, Canada
| | - Kevin Tierney
- Special Pathogens Program, Public Health Agency of Canada, Winnipeg, MB, R3E 3R2, Canada
| | - Jordyn A Lopes
- Department of Pathobiology, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Nicole Zielinska
- Department of Pathobiology, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Enzo M Baracuhy
- Department of Pathobiology, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Elena S B Campbell
- Department of Pathobiology, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Jessica A Minott
- Department of Pathobiology, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Matthew M Guilleman
- Department of Pathobiology, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Pamela C Hasson
- Department of Pathobiology, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | | | - Khalil Karimi
- Department of Pathobiology, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Byram W Bridle
- Department of Pathobiology, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Leonardo Susta
- Department of Pathobiology, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Xiangguo Qiu
- Special Pathogens Program, Public Health Agency of Canada, Winnipeg, MB, R3E 3R2, Canada
| | - Logan Banadyga
- Special Pathogens Program, Public Health Agency of Canada, Winnipeg, MB, R3E 3R2, Canada
| | - Sarah K Wootton
- Department of Pathobiology, University of Guelph, Guelph, ON, N1G 2W1, Canada.
| |
Collapse
|
8
|
Warner BM, Safronetz D, Stein DR. Current perspectives on vaccines and therapeutics for Lassa Fever. Virol J 2024; 21:320. [PMID: 39702419 PMCID: PMC11657583 DOI: 10.1186/s12985-024-02585-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 11/21/2024] [Indexed: 12/21/2024] Open
Abstract
Lassa virus, the cause of deadly Lassa fever, is endemic in West Africa, where thousands of cases occur on an annual basis. Nigeria continues to report increasingly severe outbreaks of Lassa Fever each year and there are currently no approved vaccines or therapeutics for the prevention or treatment of Lassa Fever. Given the high burden of disease coupled with the potential for further escalation due to climate change the WHO has listed Lassa virus as a priority pathogen with the potential to cause widespread outbreaks. Several candidate vaccines have received support and have entered clinical trials with promising early results. This review focuses on the current state of vaccine and therapeutic development for LASV disease and the potential of these interventions to advance through clinical trials. The growing burden of LASV disease in Africa highlights the importance of advancing preclinical and clinical testing of vaccines and therapeutics to respond to the growing threat of LASV disease.
Collapse
Affiliation(s)
- Bryce M Warner
- Vaccine and Infectious Disease Organization, University of Saskatchewan, Saskatoon, Canada.
- Department of Biochemistry, Microbiology, and Immunology, University of Saskatchewan, Saskatoon, Canada.
| | - David Safronetz
- Special Pathogens Program, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Canada
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, Canada
| | - Derek R Stein
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, Canada
- Cadham Provincial Laboratory, Winnipeg, Canada
| |
Collapse
|
9
|
Li W, Yang W, Liu X, Zhou W, Wang S, Wang Z, Zhao Y, Feng N, Wang T, Wu M, Ge L, Xia X, Yan F. Fully human monoclonal antibodies against Ebola virus possess complete protection in a hamster model. Emerg Microbes Infect 2024; 13:2392651. [PMID: 39155772 PMCID: PMC11348817 DOI: 10.1080/22221751.2024.2392651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 07/14/2024] [Accepted: 08/11/2024] [Indexed: 08/20/2024]
Abstract
Ebola disease is a lethal viral hemorrhagic fever caused by ebolaviruses within the Filoviridae family with mortality rates of up to 90%. Monoclonal antibody (mAb) based therapies have shown great potential for the treatment of EVD. However, the potential emerging ebolavirus isolates and the negative effect of decoy protein on the therapeutic efficacy of antibodies highlight the necessity of developing novel antibodies to counter the threat of Ebola. Here, 11 fully human mAbs were isolated from transgenic mice immunized with GP protein and recombinant vesicular stomatitis virus-bearing GP (rVSV-EBOV GP). These mAbs were divided into five groups according to their germline genes and exhibited differential binding activities and neutralization capabilities. In particular, mAbs 8G6, 2A4, and 5H4 were cross-reactive and bound at least three ebolavirus glycoproteins. mAb 4C1 not only exhibited neutralizing activity but no cross-reaction with sGP. mAb 7D8 exhibited the strongest neutralizing capacity. Further analysis on the critical residues for the bindings of 4C1 and 8G6 to GPs was conducted using antibodies complementarity-determining regions (CDRs) alanine scanning. It has been shown that light chain CDR3 played a crucial role in binding and neutralization and that any mutation in CDRs could not improve the binding of 4C1 to sGP. Importantly, mAbs 7D8, 8G6, and 4C1 provided complete protections against EBOV infection in a hamster lethal challenge model when administered 12 h post-infection. These results support mAbs 7D8, 8G6, and 4C1 as potent antibody candidates for further investigations and pave the way for further developments of therapies and vaccines.
Collapse
Affiliation(s)
- Wujian Li
- College of Veterinary Medicine, Jilin University, Changchun, People’s Republic of China
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, People’s Republic of China
| | - Wanying Yang
- Department of Laboratory Animal Science, Hebei Medical University, Shijiazhuang, People’s Republic of China
| | - Xueqin Liu
- Chongqing Academy of Animal Sciences, Chongqing, People’s Republic of China
| | - Wujie Zhou
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, People’s Republic of China
| | - Shen Wang
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, People’s Republic of China
| | - Zhenshan Wang
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, People’s Republic of China
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, People’s Republic of China
| | - Yongkun Zhao
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, People’s Republic of China
| | - Na Feng
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, People’s Republic of China
| | - Tiecheng Wang
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, People’s Republic of China
| | - Meng Wu
- Chongqing Academy of Animal Sciences, Chongqing, People’s Republic of China
| | - Liangpeng Ge
- Chongqing Academy of Animal Sciences, Chongqing, People’s Republic of China
| | - Xianzhu Xia
- College of Veterinary Medicine, Jilin University, Changchun, People’s Republic of China
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, People’s Republic of China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, People’s Republic of China
| | - Feihu Yan
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, People’s Republic of China
| |
Collapse
|
10
|
Bu F, Ye G, Morsheimer K, Mendoza A, Turner-Hubbard H, Herbst M, Spiller B, Wadzinski BE, Eaton B, Anantpadma M, Yang G, Liu B, Davey R, Li F. Discovery of Nanosota-EB1 and -EB2 as Novel Nanobody Inhibitors Against Ebola Virus Infection. PLoS Pathog 2024; 20:e1012817. [PMID: 39715280 PMCID: PMC11723632 DOI: 10.1371/journal.ppat.1012817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 01/10/2025] [Accepted: 12/09/2024] [Indexed: 12/25/2024] Open
Abstract
The Ebola filovirus (EBOV) poses a serious threat to global health and national security. Nanobodies, a type of single-domain antibody, have demonstrated promising therapeutic potential. We identified two anti-EBOV nanobodies, Nanosota-EB1 and Nanosota-EB2, which specifically target the EBOV glycoprotein (GP). Cryo-EM and biochemical data revealed that Nanosota-EB1 binds to the glycan cap of GP1, preventing its protease cleavage, while Nanosota-EB2 binds to critical membrane-fusion elements in GP2, stabilizing it in the pre-fusion state. Nanosota-EB2 is a potent neutralizer of EBOV infection in vitro and offers excellent protection in a mouse model of EBOV challenge, while Nanosota-EB1 provides moderate neutralization and protection. Nanosota-EB1 and Nanosota-EB2 are the first nanobodies shown to inhibit authentic EBOV. Combined with our newly developed structure-guided in vitro evolution approach, they lay the foundation for nanobody-based therapies against EBOV and other viruses within the ebolavirus genus.
Collapse
Affiliation(s)
- Fan Bu
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, Minnesota, United States of America
- Center for Emerging Viruses, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Gang Ye
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, Minnesota, United States of America
- Center for Emerging Viruses, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Kimberly Morsheimer
- National Emerging Infectious Diseases Laboratories, Boston University, Boston, Massachusetts, United States of America
- Department of Virology, Immunology, and Microbiology, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Alise Mendoza
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, Minnesota, United States of America
- Center for Emerging Viruses, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Hailey Turner-Hubbard
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, Minnesota, United States of America
- Center for Emerging Viruses, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Morgan Herbst
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, Minnesota, United States of America
- Center for Emerging Viruses, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Benjamin Spiller
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| | - Brian E. Wadzinski
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| | - Brett Eaton
- Integrated Research Facility at Fort Detrick, Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, Maryland, United States of America
| | - Manu Anantpadma
- Integrated Research Facility at Fort Detrick, Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, Maryland, United States of America
| | - Ge Yang
- Hormel Institute, University of Minnesota, Austin, Minnesota, United States of America
| | - Bin Liu
- Hormel Institute, University of Minnesota, Austin, Minnesota, United States of America
| | - Robert Davey
- National Emerging Infectious Diseases Laboratories, Boston University, Boston, Massachusetts, United States of America
- Department of Virology, Immunology, and Microbiology, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Fang Li
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, Minnesota, United States of America
- Center for Emerging Viruses, University of Minnesota, Minneapolis, Minnesota, United States of America
| |
Collapse
|
11
|
Zhang HQ, Zhang YN, Deng CL, Zhu QX, Zhang ZR, Li XD, Yuan ZM, Zhang B. Rational design of self-amplifying virus-like vesicles with Ebola virus glycoprotein as vaccines. Mol Ther 2024; 32:3695-3711. [PMID: 39217415 PMCID: PMC11489537 DOI: 10.1016/j.ymthe.2024.08.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 07/13/2024] [Accepted: 08/29/2024] [Indexed: 09/04/2024] Open
Abstract
As emerging and re-emerging pathogens, filoviruses, especially Ebola virus (EBOV), pose a great threat to public health and require sustained attention and ongoing surveillance. More vaccines and antiviral drugs are imperative to be developed and stockpiled to respond to unpredictable outbreaks. Virus-like vesicles, generated by alphavirus replicons expressing homogeneous or heterogeneous glycoproteins (GPs), have demonstrated the capacity of self-propagation and shown great potential in vaccine development. Here, we describe a novel class of EBOV-like vesicles (eVLVs) incorporating both EBOV GP and VP40. The eVLVs exhibited similar antigenicity as EBOV. In murine models, eVLVs were highly attenuated and elicited robust GP-specific antibodies with neutralizing activities. Importantly, a single dose of eVLVs conferred complete protection in a surrogate EBOV lethal mouse model. Furthermore, our VLVs strategy was also successfully applied to Marburg virus (MARV), the representative member of the genus Marburgvirus. Taken together, our findings indicate the feasibility of an alphavirus-derived VLVs strategy in combating infection of filoviruses represented by EBOV and MARV, which provides further evidence of the potential of this platform for universal live-attenuated vaccine development.
Collapse
Affiliation(s)
- Hong-Qing Zhang
- Key Laboratory of Virology and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430062, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ya-Nan Zhang
- Key Laboratory of Virology and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430062, China; Hubei Jiangxia Laboratory, Wuhan 430200, China
| | - Cheng-Lin Deng
- Key Laboratory of Virology and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430062, China
| | - Qin-Xuan Zhu
- Hunan Normal University, School of Medicine, Changsha 410081, China
| | - Zhe-Rui Zhang
- Key Laboratory of Virology and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430062, China
| | - Xiao-Dan Li
- Hunan Normal University, School of Medicine, Changsha 410081, China
| | - Zhi-Ming Yuan
- Key Laboratory of Virology and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430062, China; University of Chinese Academy of Sciences, Beijing 100049, China; Hubei Jiangxia Laboratory, Wuhan 430200, China
| | - Bo Zhang
- Key Laboratory of Virology and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430062, China; University of Chinese Academy of Sciences, Beijing 100049, China; Hubei Jiangxia Laboratory, Wuhan 430200, China.
| |
Collapse
|
12
|
Holmes EC, Krammer F, Goodrum FD. Virology-The next fifty years. Cell 2024; 187:5128-5145. [PMID: 39303682 PMCID: PMC11467463 DOI: 10.1016/j.cell.2024.07.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 07/08/2024] [Accepted: 07/15/2024] [Indexed: 09/22/2024]
Abstract
Virology has made enormous advances in the last 50 years but has never faced such scrutiny as it does today. Herein, we outline some of the major advances made in virology during this period, particularly in light of the COVID-19 pandemic, and suggest some areas that may be of research importance in the next 50 years. We focus on several linked themes: cataloging the genomic and phenotypic diversity of the virosphere; understanding disease emergence; future directions in viral disease therapies, vaccines, and interventions; host-virus interactions; the role of viruses in chronic diseases; and viruses as tools for cell biology. We highlight the challenges that virology will face moving forward-not just the scientific and technical but also the social and political. Although there are inherent limitations in trying to outline the virology of the future, we hope this article will help inspire the next generation of virologists.
Collapse
Affiliation(s)
- Edward C. Holmes
- School of Medical Sciences, The University of Sydney, Sydney, NSW 2006, Australia
- Laboratory of Data Discovery for Health Limited, Hong Kong SAR, China
| | - Florian Krammer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Center for Vaccine Research and Pandemic Preparedness (C-VaRPP), Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Pathology, Molecular and Cell Based Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Felicia D. Goodrum
- Department of Immunobiology, BIO5 Institute, University of Arizona, Tucson, Arizona, USA
| |
Collapse
|
13
|
Zhang Y, Zhang M, Wu H, Wu X, Zheng H, Feng J, Wang M, Wang J, Luo L, Xiao H, Qiao C, Li X, Zheng Y, Huang W, Wang Y, Wang Y, Feng J, Chen G. Afucosylated anti-EBOV antibody MIL77-3 engages sGP to elicit NK cytotoxicity. J Virol 2024; 98:e0068524. [PMID: 39162435 PMCID: PMC11406966 DOI: 10.1128/jvi.00685-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Accepted: 06/24/2024] [Indexed: 08/21/2024] Open
Abstract
MIL77-3 is one component of antibody cocktail that is produced in our lab and represents an effective regimen for animals suffering from Zaire Ebolavirus (EBOV) infection. MIL77-3 is engineered to increase its affinity for the FcγRIIIa (CD16a) by deleting the fucose in the framework region. The potential effects of this modification on host immune responses, however, remain largely unknown. Herein, we demonstrated that MIL77-3 recognized secreted glycoproptein (sGP), produced by EBOV, and formed the immunocomplex to potently augment antibody-dependent cytotoxicity of human peripheral blood-derived natural killer cells (pNKs), including CD56dim and CD56bright subpopulations, in contrast to the counterparts (Mab114, rEBOV548, fucosylated MIL77-3). Intriguingly, this effect was not observed when NK92-CD16a cell line was utilized and restored by the addition of beads-coupled or membrane-anchored sGP in combination with MIL77-3. Furthermore, sGP bound to unrecognized receptors on T cells contaminated in pNKs rather than NK92-CD16a cells. Administration of beads-coupled sGP/MIL77-3 complex in mice elicited NK activation. Overall, this work reveals an immune-stimulating function of sGP/MIL77-3 complex by triggering cytotoxic activity of NK cells, highlighting the necessity to evaluate the potential impact of MIL77-3 on host immune reaction in clinical trials. IMPORTANCE Zaire Ebolavirus (EBOV) is highly lethal and causes sporadic outbreaks. The passive administration of monoclonal antibodies (mAbs) represents a promising treatment regimen against EBOV. Mounting evidence has shown that the efficacy of a subset of therapeutic mAbs in vivo is intimately associated with its capacity to trigger NK activity, supporting glycomodification of Fc region of anti-EBOV mAbs as a putative strategy to enhance Fc-mediated immune effector function as well as protection in vivo. Our work here uncovers the potential harmful influence of this modification on host immune responses, especially for mAbs with cross-reactivity to secreted glycoproptein (sGP) (e.g., MIL77-3), and highlights it is necessary to evaluate the NK-stimulating activity of a fucosylated mAb engaged with sGP when a new candidate is developed.
Collapse
Affiliation(s)
- Yuting Zhang
- Institute of Pharmacology and Toxicology, Beijing, China
| | - Min Zhang
- Institute of Pharmacology and Toxicology, Beijing, China
| | - Haiyan Wu
- Institute of Pharmacology and Toxicology, Beijing, China
| | - Xiaonan Wu
- Joint National Laboratory for Antibody Drug Engineering, Henan University, Kaifeng, China
| | - Hang Zheng
- Institute of Pharmacology and Toxicology, Beijing, China
- Inner Mongolia Key Lab of Molecular Biology, School of Basic Medical Sciences, Inner Mongolia Medical University, Hohhot, China
| | - Junjuan Feng
- Institute of Pharmacology and Toxicology, Beijing, China
- Inner Mongolia Key Lab of Molecular Biology, School of Basic Medical Sciences, Inner Mongolia Medical University, Hohhot, China
| | - Mianjing Wang
- Institute of Pharmacology and Toxicology, Beijing, China
- Inner Mongolia Key Lab of Molecular Biology, School of Basic Medical Sciences, Inner Mongolia Medical University, Hohhot, China
| | - Jing Wang
- Institute of Pharmacology and Toxicology, Beijing, China
| | - Longlong Luo
- Institute of Pharmacology and Toxicology, Beijing, China
| | - He Xiao
- Institute of Pharmacology and Toxicology, Beijing, China
| | - Chunxia Qiao
- Institute of Pharmacology and Toxicology, Beijing, China
| | - Xinying Li
- Institute of Pharmacology and Toxicology, Beijing, China
| | - Yuanqiang Zheng
- Inner Mongolia Key Lab of Molecular Biology, School of Basic Medical Sciences, Inner Mongolia Medical University, Hohhot, China
| | - Weijin Huang
- Division of HIV/AIDS and Sex-transmitted Virus Vaccines, National Institutes for Food and Drug Control, Beijing, China
| | - Youchun Wang
- Division of HIV/AIDS and Sex-transmitted Virus Vaccines, National Institutes for Food and Drug Control, Beijing, China
| | - Yi Wang
- Department of Hematology, The Fifth Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Jiannan Feng
- Institute of Pharmacology and Toxicology, Beijing, China
| | - Guojiang Chen
- Institute of Pharmacology and Toxicology, Beijing, China
| |
Collapse
|
14
|
Casadevall A, McConnell S, Focosi D. Considerations for the development of monoclonal antibodies to address new viral variants in COVID-19. Expert Opin Biol Ther 2024; 24:787-797. [PMID: 39088242 DOI: 10.1080/14712598.2024.2388186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 07/25/2024] [Accepted: 07/31/2024] [Indexed: 08/02/2024]
Abstract
INTRODUCTION Monoclonal antibody (mAb) therapies proved safe and effective in preventing progression of COVID-19 to hospitalization, but most were eventually defeated by continued viral evolution. mAb combinations and those mAbs that were deliberatively selected to target conserved regions of the SARS-CoV-2 spike protein proved more resilient to viral escape variants as evident by longer clinical useful lives. AREAS COVERED We searched PubMed for literature covering the need, development, and use of mAb therapies for COVID-19. As much of humanity now has immunity to SARS-CoV-2, the population at most risk is that of immunocompromised individuals. Hence, there continues to be a need for mAb therapies for immunocompromised patients. However, mAb use in this population carries the risk for selecting mAb-resistant variants, which could pose a public health concern if they disseminate to the general population. EXPERT OPINION Going forward, structural knowledge of the interactions of Spike with its cellular receptor has identified several regions that may be good targets for future mAb therapeutics. A focus on designing variant-resistant mAbs together with cocktails that target several epitopes and the use of other variant mitigating strategies such as the concomitant use of small molecule antivirals and polyclonal preparations could extend the clinical usefulness of future preparations.
Collapse
Affiliation(s)
- Arturo Casadevall
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Scott McConnell
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Daniele Focosi
- North-Western Tuscany Blood Bank, Pisa University Hospital, Pisa, Italy
| |
Collapse
|
15
|
Werner AD, Krapoth N, Norris MJ, Heine A, Klebe G, Saphire EO, Becker S. Development of a Crystallographic Screening to Identify Sudan Virus VP40 Ligands. ACS OMEGA 2024; 9:33193-33203. [PMID: 39100314 PMCID: PMC11292656 DOI: 10.1021/acsomega.4c04829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/05/2024] [Accepted: 07/05/2024] [Indexed: 08/06/2024]
Abstract
The matrix protein VP40 of the highly pathogenic Sudan virus (genus Orthoebolavirus) is a multifunctional protein responsible for the recruitment of viral nucleocapsids to the plasma membrane and the budding of infectious virions. In addition to its role in assembly, VP40 also downregulates viral genome replication and transcription. VP40's existence in various homo-oligomeric states is presumed to underpin its diverse functional capabilities during the viral life cycle. Given the absence of licensed therapeutics targeting the Sudan virus, our study focused on inhibiting VP40 dimers, the structural precursors to critical higher-order oligomers, as a novel antiviral strategy. We have established a crystallographic screening pipeline for the identification of small-molecule fragments capable of binding to VP40. Dimeric VP40 of the Sudan virus was recombinantly expressed in bacteria, purified, crystallized, and soaked in a solution of 96 different preselected fragments. Salicylic acid was identified as a crystallographic hit with clear electron density in the pocket between the N- and the C-termini of the VP40 dimer. The binding interaction is predominantly coordinated by amino acid residues leucine 158 (L158) and arginine 214 (R214), which are key in stabilizing salicylic acid within the binding pocket. While salicylic acid displayed minimal impact on the functional aspects of VP40, we delved deeper into characterizing the druggability of the identified binding pocket. We analyzed the influence of residues L158 and R214 on the formation of virus-like particles and viral RNA synthesis. Site-directed mutagenesis of these residues to alanine markedly affected both VP40's budding activity and its effect on viral RNA synthesis, underscoring the potential of the salicylic acid binding pocket as a drug target. In summary, our findings lay the foundation for structure-guided drug design to provide lead compounds against Sudan virus VP40.
Collapse
Affiliation(s)
| | - Nils Krapoth
- Institute
for Virology, University of Marburg, D-35043 Marburg, Hessen, Germany
- Institut
für Molekulare Biologie gGmbH, D-55128 Mainz, Rheinland-Pfalz, Germany
| | - Michael J. Norris
- Department
of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A1, Canada
| | - Andreas Heine
- Institute
of Pharmaceutical Chemistry, University
of Marburg, D-35032 Marburg, Hessen, Germany
| | - Gerhard Klebe
- Institute
of Pharmaceutical Chemistry, University
of Marburg, D-35032 Marburg, Hessen, Germany
| | | | - Stephan Becker
- Institute
for Virology, University of Marburg, D-35043 Marburg, Hessen, Germany
- Partnersite
Giessen-Marburg-Langen, German Centre for
Infection Research, D-35043 Marburg, Hessen, Germany
| |
Collapse
|
16
|
Lopes JA, Garnier NE, Pei Y, Yates JGE, Campbell ESB, Goens MM, Hughes ME, Rghei AD, Stevens BAY, Guilleman MM, Thompson B, Khursigara CM, Susta L, Wootton SK. AAV-vectored expression of monospecific or bispecific monoclonal antibodies protects mice from lethal Pseudomonas aeruginosa pneumonia. Gene Ther 2024; 31:400-412. [PMID: 38678160 DOI: 10.1038/s41434-024-00453-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 04/08/2024] [Accepted: 04/12/2024] [Indexed: 04/29/2024]
Abstract
Pseudomonas aeruginosa poses a significant threat to immunocompromised individuals and those with cystic fibrosis. Treatment relies on antibiotics, but persistent infections occur due to intrinsic and acquired resistance of P. aeruginosa towards multiple classes of antibiotics. To date, there are no licensed vaccines for this pathogen, prompting the urgent need for novel treatment approaches to combat P. aeruginosa infection and persistence. Here we validated AAV vectored immunoprophylaxis as a strategy to generate long-term plasma and mucosal expression of highly protective monoclonal antibodies (mAbs) targeting the exopolysaccharide Psl (Cam-003) and the PcrV (V2L2MD) component of the type-III secretion system injectosome either as single mAbs or together as a bispecific mAb (MEDI3902) in a mouse model. When administered intramuscularly, AAV-αPcrV, AAV-αPsl, and AAV-MEDI3902 significantly protected mice challenged intranasally with a lethal dose of P. aeruginosa strains PAO1 and PA14 and reduced bacterial burden and dissemination to other organs. While all AAV-mAbs provided protection, AAV-αPcrV and AAV-MEDI3902 provided 100% and 87.5% protection from a lethal challenge with 4.47 × 107 CFU PAO1 and 87.5% and 75% protection from a lethal challenge with 3 × 107 CFU PA14, respectively. Serum concentrations of MEDI3902 were ~10× lower than that of αPcrV, but mice treated with this vector showed a greater reduction in bacterial dissemination to the liver, lung, spleen, and blood compared to other AAV-mAbs. These results support further investigation into the use of AAV vectored immunoprophylaxis to prevent and treat P. aeruginosa infections and other bacterial pathogens of public health concern for which current treatment strategies are limited.
Collapse
Affiliation(s)
- Jordyn A Lopes
- Department of Pathobiology, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Nicole E Garnier
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Yanlong Pei
- Department of Pathobiology, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Jacob G E Yates
- Department of Pathobiology, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Elena S B Campbell
- Department of Pathobiology, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Melanie M Goens
- Department of Pathobiology, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Madison E Hughes
- Department of Pathobiology, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Amira D Rghei
- Department of Pathobiology, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Brenna A Y Stevens
- Department of Pathobiology, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Matthew M Guilleman
- Department of Pathobiology, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Brad Thompson
- Avamab Pharma Inc., 120, 4838 Richard Road SW, Calgary, AB, T3E 6L1, Canada
| | - Cezar M Khursigara
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Leonardo Susta
- Department of Pathobiology, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Sarah K Wootton
- Department of Pathobiology, University of Guelph, Guelph, ON, N1G 2W1, Canada.
| |
Collapse
|
17
|
Casadevall A, Paneth N. Monoclonal Antibody Therapies for Infectious Diseases. Curr Top Microbiol Immunol 2024. [PMID: 38869844 DOI: 10.1007/82_2024_265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2024]
Abstract
In contrast to therapy in oncology and immune-related diseases, where dozens of monoclonal antibodies (mAbs) have been introduced, often in transformative fashion, the use of mAbs for infectious diseases is generally underdeveloped, with fewer than a dozen mAbs currently licensed for the treatment of microbial diseases. This situation is paradoxical given that antibodies are major products of the immune system for protecting against infectious diseases. The underdevelopment of mAbs for infectious diseases has several causes including the availability of effective therapy against many microbial diseases, the fact that many pathogenic microbes are antigenically diverse and thus all strains are not covered by a single mAb, and the high expense of mAb therapies. Despite these hurdles the number of mAbs licensed for infectious disease indications is slowly increasing and there are numerous opportunities for the development of mAbs in the prevention and treatment of microbial diseases.
Collapse
Affiliation(s)
- Arturo Casadevall
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA.
| | - Nigel Paneth
- Departments of Epidemiology & Biostatistics and Pediatrics & Human Development, College of Human Medicine, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
18
|
Wong G, Bienes KM, Xiii A, Fausther-Bovendo H, Kobinger GP. Ebola-specific therapeutic antibodies from lab to clinic: The example of ZMapp. Antiviral Res 2024; 226:105873. [PMID: 38580170 DOI: 10.1016/j.antiviral.2024.105873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/22/2024] [Accepted: 03/25/2024] [Indexed: 04/07/2024]
Abstract
In the 1990s, monoclonal antibodies (mAbs) progressed from scientific tools to advanced therapeutics, particularly for the treatment of cancers and autoimmune and inflammatory disorders. In the arena of infectious disease, the inauguration of mAbs as a post-exposure treatment in humans against Ebola virus (EBOV) occurred in response to the 2013-2016 West Africa outbreak. This review recounts the history of a candidate mAb treatment, ZMapp, beginning with its emergency use in the 2013-2016 outbreak and advancing to randomized controlled trials into the 2018-2020 African outbreak. We end with a brief discussion of the hurdles and promise toward mAb therapeutic use against infectious disease.
Collapse
Affiliation(s)
- Gary Wong
- Virology Unit, Institut Pasteur Du Cambodge, Pasteur Network, Phnom Penh, Cambodia
| | - Kathrina Mae Bienes
- Virology Unit, Institut Pasteur Du Cambodge, Pasteur Network, Phnom Penh, Cambodia
| | - Ara Xiii
- Department of Immunology and Microbiology, The Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX, USA.
| | - Hugues Fausther-Bovendo
- Department of Immunology and Microbiology, The Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX, USA
| | - Gary P Kobinger
- Department of Immunology and Microbiology, The Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX, USA
| |
Collapse
|
19
|
Sprecher A, Van Herp M. An oral antiviral for Ebola disease. Science 2024; 383:1181-1182. [PMID: 38484073 DOI: 10.1126/science.ado6257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
For those exposed to filovirus, such as Sudan virus and Ebola virus, a new study offers hope.
Collapse
|
20
|
El Ayoubi LW, Mahmoud O, Zakhour J, Kanj SS. Recent advances in the treatment of Ebola disease: A brief overview. PLoS Pathog 2024; 20:e1012038. [PMID: 38489257 PMCID: PMC10942026 DOI: 10.1371/journal.ppat.1012038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2024] Open
Abstract
Ebola disease (EBOD) remains a significant and ongoing threat to African countries, characterized by a mortality rate of 25% to 90% in patients with high viral load and significant transmissibility. The most recent outbreak, reported in Uganda in September 2022, was declared officially over in January 2023. However, it was caused by the Sudan Ebola virus (SUDV), a culprit species not previously reported for a decade. Since its discovery in 1976, the management of EBOD has primarily relied on supportive care. Following the devastating outbreak in West Africa from 2014 to 2016 secondary to the Zaire Ebola virus (EBOV), where over 28,000 lives were lost, dedicated efforts to find effective therapeutic agents have resulted in considerable progress in treating and preventing disease secondary to EBOV. Notably, 2 monoclonal antibodies-Ebanga and a cocktail of monoclonal antibodies, called Inmazeb-received Food and Drug Administration (FDA) approval in 2020. Additionally, multiple vaccines have been approved for EBOD prevention by various regulatory bodies, with Ervebo, a recombinant vesicular stomatitis virus-vectored vaccine against EBOV being the first vaccine to receive approval by the FDA in 2019. This review covers the key signs and symptoms of EBOD, its modes of transmission, and the principles guiding supportive care. Furthermore, it explores recent advancements in treating and preventing EBOD, highlighting the unique properties of each therapeutic agent and the ongoing progress in discovering new treatments.
Collapse
Affiliation(s)
- L’Emir Wassim El Ayoubi
- Division of Infectious Diseases, Department of Internal Medicine, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Omar Mahmoud
- Division of Public Health, Infectious Diseases and Occupational Medicine, Department of Medicine, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Johnny Zakhour
- Internal Medicine Department, Henry Ford Hospital, Detroit, Michigan, United States of America
| | - Souha S. Kanj
- Division of Infectious Diseases, Department of Internal Medicine, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
- Center for Infectious Diseases Research, American University of Beirut, Beirut, Lebanon
| |
Collapse
|
21
|
Ntoumi F, Veas F. Preparedness for future outbreaks: strengthening surveillance of survivors of Ebola virus disease. THE LANCET. INFECTIOUS DISEASES 2024; 24:221-223. [PMID: 38043557 DOI: 10.1016/s1473-3099(23)00567-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 09/06/2023] [Indexed: 12/05/2023]
Affiliation(s)
- Francine Ntoumi
- Institute of Tropical Medicine, University of Tübingen, Tübingen, Germany; Congolese Foundation for Medical Research, Brazzaville, Republic of the Congo.
| | - Francisco Veas
- French Research Institute for Sustainable Development, Montpellier University, HydroSciences Montpellier, Montpellier, France; Copernicus Integrated Biosafety and Environmental Risk Solutions, CIBERS, Montpellier, France
| |
Collapse
|
22
|
Wang Z, Huang AS, Tang L, Wang J, Wang G. Microfluidic-assisted single-cell RNA sequencing facilitates the development of neutralizing monoclonal antibodies against SARS-CoV-2. LAB ON A CHIP 2024; 24:642-657. [PMID: 38165771 DOI: 10.1039/d3lc00749a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2024]
Abstract
As a class of antibodies that specifically bind to a virus and block its entry, neutralizing monoclonal antibodies (neutralizing mAbs) have been recognized as a top choice for combating COVID-19 due to their high specificity and efficacy in treating serious infections. Although conventional approaches for neutralizing mAb development have been optimized for decades, there is an urgent need for workflows with higher efficiency due to time-sensitive concerns, including the high mutation rate of SARS-CoV-2. One promising approach is the identification of neutralizing mAb candidates via single-cell RNA sequencing (RNA-seq), as each B cell has a unique transcript sequence corresponding to its secreted antibody. The state-of-the-art high-throughput single-cell sequencing technologies, which have been greatly facilitated by advances in microfluidics, have greatly accelerated the process of neutralizing mAb development. Here, we provide an overview of the general procedures for high-throughput single-cell RNA-seq enabled by breakthroughs in droplet microfluidics, introduce revolutionary approaches that combine single-cell RNA-seq to facilitate the development of neutralizing mAbs against SARS-CoV-2, and outline future steps that need to be taken to further improve development strategies for effective treatments against infectious diseases.
Collapse
Affiliation(s)
- Ziwei Wang
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Amelia Siqi Huang
- Dalton Academy, The Affiliated High School of Peking University, Beijing, 100190, China
| | - Lingfang Tang
- Dalton Academy, The Affiliated High School of Peking University, Beijing, 100190, China
| | - Jianbin Wang
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Guanbo Wang
- Institute for Cell Analysis, Shenzhen Bay Laboratory, Shenzhen, 518132, China.
| |
Collapse
|
23
|
Moso MA, Lim CK, Williams E, Marshall C, McCarthy J, Williamson DA. Prevention and post-exposure management of occupational exposure to Ebola virus. THE LANCET. INFECTIOUS DISEASES 2024; 24:e93-e105. [PMID: 37722397 DOI: 10.1016/s1473-3099(23)00376-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/04/2023] [Accepted: 06/09/2023] [Indexed: 09/20/2023]
Abstract
There have been significant advances in the prevention and management of Ebola virus disease (EVD) caused by Zaire Ebola virus (ZEBOV), including the development of two effective vaccines, rVSV-ZEBOV and Ad26.ZEBOV/MVA-BN-Filo. In addition, ZEBOV monoclonal antibodies have become first-line therapy for EVD. However, the 2022-23 outbreak of Sudan Ebola virus (SUDV) in Uganda has highlighted the gap in current therapies and vaccines, whose efficacy is uncertain against non-ZEBOV species. Health-care and laboratory staff working in EVD treatment centres or Ebola virus diagnostic and research laboratories face unique risks relating to potential occupational exposure to Ebola viruses. Given the substantial morbidity and mortality associated with EVD, facilities should have strategies in place to manage occupational exposures, including consideration of post-exposure therapies. In this Review, we discuss currently available evidence for prevention and post-exposure prophylaxis of EVD, including therapies currently under evaluation for SUDV.
Collapse
Affiliation(s)
- Michael A Moso
- Victorian Infectious Diseases Reference Laboratory, The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia; Department of Infectious Diseases, The University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia; Victorian Infectious Diseases Service, The Royal Melbourne Hospital, The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia.
| | - Chuan K Lim
- Victorian Infectious Diseases Reference Laboratory, The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Eloise Williams
- Victorian Infectious Diseases Reference Laboratory, The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Caroline Marshall
- Department of Infectious Diseases, The University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia; Victorian Infectious Diseases Service, The Royal Melbourne Hospital, The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - James McCarthy
- Department of Infectious Diseases, The University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia; Victorian Infectious Diseases Service, The Royal Melbourne Hospital, The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Deborah A Williamson
- Victorian Infectious Diseases Reference Laboratory, The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia; Department of Infectious Diseases, The University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| |
Collapse
|
24
|
Almeida-Pinto F, Pinto R, Rocha J. Navigating the Complex Landscape of Ebola Infection Treatment: A Review of Emerging Pharmacological Approaches. Infect Dis Ther 2024; 13:21-55. [PMID: 38240994 PMCID: PMC10828234 DOI: 10.1007/s40121-023-00913-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 12/20/2023] [Indexed: 01/31/2024] Open
Abstract
In 1976 Ebola revealed itself to the world, marking the beginning of a series of localized outbreaks. However, it was the Ebola outbreak that began in 2013 that incited fear and anxiety around the globe. Since then, our comprehension of the virus has been steadily expanding. Ebola virus (EBOV), belonging to the Orthoebolavirus genus of the Filoviridae family, possesses a non-segmented, negative single-stranded RNA genome comprising seven genes that encode multiple proteins. These proteins collectively orchestrate the intricate process of infecting host cells. It is not possible to view each protein as monofunctional. Instead, they synergistically contribute to the pathogenicity of the virus. Understanding this multifaceted replication cycle is crucial for the development of effective antiviral strategies. Currently, two antibody-based therapeutics have received approval for treating Ebola virus disease (EVD). In 2022, the first evidence-based clinical practice guideline dedicated to specific therapies for EVD was published. Although notable progress has been made in recent years, deaths still occur. Consequently, there is an urgent need to enhance the therapeutic options available to improve the outcomes of the disease. Emerging therapeutics can target viral proteins as direct-acting antivirals or host factors as host-directed antivirals. They both have advantages and disadvantages. One way to bypass some disadvantages is to repurpose already approved drugs for non-EVD indications to treat EVD. This review offers detailed insight into the role of each viral protein in the replication cycle of the virus, as understanding how the virus interacts with host cells is critical to understanding how emerging therapeutics exert their activity. Using this knowledge, this review delves into the intricate mechanisms of action of current and emerging therapeutics.
Collapse
Affiliation(s)
| | - Rui Pinto
- Faculdade de Farmácia, Universidade de Lisboa, 1649-003, Lisbon, Portugal
- Laboratory of Systems Integration Pharmacology, Clinical and Regulatory Science, Research Institute for Medicines (iMED.ULisboa), 1649-003, Lisbon, Portugal
- Dr. Joaquim Chaves, Medicine Laboratory, Joaquim Chaves Saúde (JCS), Carnaxide, Portugal
| | - João Rocha
- Faculdade de Farmácia, Universidade de Lisboa, 1649-003, Lisbon, Portugal
- Laboratory of Systems Integration Pharmacology, Clinical and Regulatory Science, Research Institute for Medicines (iMED.ULisboa), 1649-003, Lisbon, Portugal
| |
Collapse
|
25
|
Bodmer BS, Vallbracht M, Ushakov DS, Wendt L, Chlanda P, Hoenen T. Ebola virus inclusion bodies are liquid organelles whose formation is facilitated by nucleoprotein oligomerization. Emerg Microbes Infect 2023; 12:2223727. [PMID: 37306660 PMCID: PMC10288931 DOI: 10.1080/22221751.2023.2223727] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 05/16/2023] [Accepted: 06/06/2023] [Indexed: 06/13/2023]
Abstract
Viral RNA synthesis of several non-segmented, negative-sense RNA viruses (NNSVs) takes place in inclusion bodies (IBs) that show properties of liquid organelles, which are formed by liquid-liquid phase separation of scaffold proteins. It is believed that this is driven by intrinsically disordered regions (IDRs) and/or multiple copies of interaction domains, which for NNSVs are usually located in their nucleo - and phosphoproteins. In contrast to other NNSVs, the Ebola virus (EBOV) nucleoprotein NP alone is sufficient to form IBs without the need for a phosphoprotein, and to facilitate the recruitment of other viral proteins into these structures. While it has been proposed that also EBOV IBs are liquid organelles, this has so far not been formally demonstrated. Here we used a combination of live cell microscopy, fluorescence recovery after photobleaching assays, and mutagenesis approaches together with reverse genetics-based generation of recombinant viruses to study the formation of EBOV IBs. Our results demonstrate that EBOV IBs are indeed liquid organelles, and that oligomerization but not IDRs of the EBOV nucleoprotein plays a key role in their formation. Additionally, VP35 (often considered the phosphoprotein-equivalent of EBOV) is not essential for IB formation, but alters their liquid behaviour. These findings define the molecular mechanism for the formation of EBOV IBs, which play a central role in the life cycle of this deadly virus.
Collapse
Affiliation(s)
- Bianca S. Bodmer
- Institute for Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Greifswald - Insel Riems, Germany
| | - Melina Vallbracht
- Schaller Research Groups, Department of Infectious Diseases, Virology, Heidelberg University Hospital, Heidelberg, Germany
| | - Dmitry S. Ushakov
- Institute for Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Greifswald - Insel Riems, Germany
| | - Lisa Wendt
- Institute for Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Greifswald - Insel Riems, Germany
| | - Petr Chlanda
- Schaller Research Groups, Department of Infectious Diseases, Virology, Heidelberg University Hospital, Heidelberg, Germany
| | - Thomas Hoenen
- Institute for Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Greifswald - Insel Riems, Germany
| |
Collapse
|
26
|
Odongo L, Habtegebrael BH, Kiessling V, White JM, Tamm LK. A novel in vitro system of supported planar endosomal membranes (SPEMs) reveals an enhancing role for cathepsin B in the final stage of Ebola virus fusion and entry. Microbiol Spectr 2023; 11:e0190823. [PMID: 37728342 PMCID: PMC10581071 DOI: 10.1128/spectrum.01908-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 07/17/2023] [Indexed: 09/21/2023] Open
Abstract
Ebola virus (EBOV) causes a hemorrhagic fever with fatality rates up to 90%. The EBOV entry process is complex and incompletely understood. Following attachment to host cells, EBOV is trafficked to late endosomes/lysosomes where its glycoprotein (GP) is processed to a 19-kDa form, which binds to the EBOV intracellular receptor Niemann-Pick type C1. We previously showed that the cathepsin protease inhibitor, E-64d, blocks infection by pseudovirus particles bearing 19-kDa GP, suggesting that further cathepsin action is needed to trigger fusion. This, however, has not been demonstrated directly. Since 19-kDa Ebola GP fusion occurs in late endosomes, we devised a system in which enriched late endosomes are used to prepare supported planar endosomal membranes (SPEMs), and fusion of fluorescent (pseudo)virus particles is monitored by total internal reflection fluorescence microscopy. We validated the system by demonstrating the pH dependencies of influenza virus hemagglutinin (HA)-mediated and Lassa virus (LASV) GP-mediated fusion. Using SPEMs, we showed that fusion mediated by 19-kDa Ebola GP is dependent on low pH, enhanced by Ca2+, and augmented by the addition of cathepsins. Subsequently, we found that E-64d inhibits full fusion, but not lipid mixing, mediated by 19-kDa GP, which we corroborated with the reversible cathepsin inhibitor VBY-825. Hence, we provide both gain- and loss-of-function evidence that further cathepsin action enhances the fusion activity of 19-kDa Ebola GP. In addition to providing new insights into how Ebola GP mediates fusion, the approach we developed employing SPEMs can now be broadly used for studies of virus and toxin entry through endosomes. IMPORTANCE Ebola virus is the causative agent of Ebola virus disease, which is severe and frequently lethal. EBOV gains entry into cells via late endosomes/lysosomes. The events immediately preceding fusion of the viral and endosomal membranes are incompletely understood. In this study, we report a novel in vitro system for studying virus fusion with endosomal membranes. We validated the system by demonstrating the low pH dependencies of influenza and Lassa virus fusion. Moreover, we show that further cathepsin B action enhances the fusion activity of the primed Ebola virus glycoprotein. Finally, this model endosomal membrane system should be useful in studying the mechanisms of bilayer breaching by other enveloped viruses, by non-enveloped viruses, and by acid-activated bacterial toxins.
Collapse
Affiliation(s)
- Laura Odongo
- Center for Membrane and Cell Physiology, University of Virginia, Charlottesville, Virginia, USA
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, Virginia, USA
| | - Betelihem H. Habtegebrael
- Center for Membrane and Cell Physiology, University of Virginia, Charlottesville, Virginia, USA
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, Virginia, USA
| | - Volker Kiessling
- Center for Membrane and Cell Physiology, University of Virginia, Charlottesville, Virginia, USA
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, Virginia, USA
| | - Judith M. White
- Center for Membrane and Cell Physiology, University of Virginia, Charlottesville, Virginia, USA
- Department of Cell Biology, University of Virginia, Charlottesville, Virginia, USA
| | - Lukas K. Tamm
- Center for Membrane and Cell Physiology, University of Virginia, Charlottesville, Virginia, USA
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, Virginia, USA
| |
Collapse
|
27
|
Abdul-Rahman T, Lawal L, Meale E, Ajetunmobi OA, Toluwalashe S, Alao UH, Ghosh S, Garg N, Aborode AT, Wireko AA, Mehta A, Sikora K. Inequitable access to Ebola vaccines and the resurgence of Ebola in Africa: A state of arts review. J Med Virol 2023; 95:e28986. [PMID: 37534818 DOI: 10.1002/jmv.28986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 05/29/2023] [Accepted: 07/13/2023] [Indexed: 08/04/2023]
Abstract
The Ebola virus, a member of the filoviridae family of viruses, is responsible for causing Ebola Virus Disease (EVD) with a case fatality rate as high as 50%. The largest EVD outbreak was recorded in West Africa from March 2013 to June 2016, leading to over 28 000 cases and 11 000 deaths. It affected several countries, including Nigeria, Senegal, Guinea, Liberia, and Sierra Leone. Until then, EVD was predominantly reported in remote villages in central and west Africa close to tropical rainforests. Human mobility, behavioral and cultural norms, the use of bushmeat, burial customs, preference for traditional remedies and treatments, and resistance to health interventions are just a few of the social factors that considerably aid and amplify the risk of transmission. The scale and persistence of recent ebola outbreaks, as well as the risk of widespread global transmission and its ability for bioterrorism, have led to a rethinking of public health strategies to curb the disease, such as the expedition of Ebola vaccine production. However, as vaccine production lags in the subcontinent, among other challenges, the risk of another ebola outbreak is likely and feared by public health authorities in the region. This review describes the inequality of vaccine production in Africa and the resurgence of EVD, emphasizing the significance of health equality.
Collapse
Affiliation(s)
- Toufik Abdul-Rahman
- Medical Institute, Sumy State University, Sumy, Ukraine
- ICORMed Collaborative, Sumy, Ukraine
| | - Lukman Lawal
- Faculty of Clinical Sciences, University of Ilorin, Ilorin, Nigeria
| | - Emily Meale
- Rowan University School of Osteopathic Medicine, Stratford, New Jersey, USA
| | | | - Soyemi Toluwalashe
- Lagos State University of College of Medicine, Faculty of Clinical Sciences, Ikeja, Nigeria
| | - Uthman Hassan Alao
- Department of Biomedical Laboratory Science, Faculty of Basic Medical Sciences, University of Ibadan, Ibadan, Nigeria
| | - Shankhaneel Ghosh
- Institute of Medical Sciences and SUM Hospital, Siksha 'O' Anusandhan, Bhubaneswar, India
| | - Neil Garg
- Rowan University School of Osteopathic Medicine, Stratford, New Jersey, USA
| | | | - Andrew Awuah Wireko
- Medical Institute, Sumy State University, Sumy, Ukraine
- ICORMed Collaborative, Sumy, Ukraine
| | - Aashna Mehta
- Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | | |
Collapse
|
28
|
Hussein HA. Brief review on ebola virus disease and one health approach. Heliyon 2023; 9:e19036. [PMID: 37600424 PMCID: PMC10432691 DOI: 10.1016/j.heliyon.2023.e19036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 07/31/2023] [Accepted: 08/07/2023] [Indexed: 08/22/2023] Open
Abstract
Ebola virus disease (EVD) is a severe and highly fatal zoonotic disease caused by viruses in the family Filoviridae and genus Ebolavirus. The disease first appeared in Zaire near the Ebola River in 1976, now in the Democratic Republic of the Congo. Since then, several outbreaks have been reported in different parts of the world, mainly in Africa, leading to the identification of six distinct viral strains that cause disease in humans and other primates. Bats are assumed to be the main reservoir hosts of the virus, and the initial incidence of human epidemics invariably follows exposure to infected forest animals through contact or consumption of bush meat and body fluids of forest animals harboring the disease. Human-to-human transmission occurs when contaminated body fluids, utensils, and equipment come in contact with broken or abraded skin and mucous membranes. EVD is characterized by sudden onset of 'flu-like' symptoms (fever, myalgia, chills), vomiting and diarrhea, then disease rapidly evolves into a severe state with a rapid clinical decline which may lead potential hemorrhagic complications and multiple organ failure. Effective EVD prevention, detection, and response necessitate strong coordination across the animal, human, and environmental health sectors, as well as well-defined roles and responsibilities evidencing the significance of one health approach; the natural history, epidemiology, pathogenesis, and diagnostic procedures of the Ebola virus, as well as prevention and control efforts in light of one health approach, are discussed in this article.
Collapse
Affiliation(s)
- Hassan Abdi Hussein
- College of Veterinary Medicine, Department of One Health Tropical Infectious Disease, Jigjiga University, P.O. Box: 1020, Jigjiga, Ethiopia
| |
Collapse
|
29
|
Struble EB, Rawson JMO, Stantchev T, Scott D, Shapiro MA. Uses and Challenges of Antiviral Polyclonal and Monoclonal Antibody Therapies. Pharmaceutics 2023; 15:pharmaceutics15051538. [PMID: 37242780 DOI: 10.3390/pharmaceutics15051538] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/04/2023] [Accepted: 05/10/2023] [Indexed: 05/28/2023] Open
Abstract
Viral diseases represent a major public health concerns and ever-present risks for developing into future pandemics. Antiviral antibody therapeutics, either alone or in combination with other therapies, emerged as valuable preventative and treatment options, including during global emergencies. Here we will discuss polyclonal and monoclonal antiviral antibody therapies, focusing on the unique biochemical and physiological properties that make them well-suited as therapeutic agents. We will describe the methods of antibody characterization and potency assessment throughout development, highlighting similarities and differences between polyclonal and monoclonal products as appropriate. In addition, we will consider the benefits and challenges of antiviral antibodies when used in combination with other antibodies or other types of antiviral therapeutics. Lastly, we will discuss novel approaches to the characterization and development of antiviral antibodies and identify areas that would benefit from additional research.
Collapse
Affiliation(s)
- Evi B Struble
- Division of Plasma Derivatives, Office of Plasma Protein Therapeutics CMC, Office of Therapeutic Products, Center for Biologics Evaluation and Research, United States Food and Drug Administration, Silver Spring, MD 20993, USA
| | - Jonathan M O Rawson
- Division of Antivirals, Office of Infectious Diseases, Office of New Drugs, Center for Drug Evaluation and Research, United States Food and Drug Administration, Silver Spring, MD 20993, USA
| | - Tzanko Stantchev
- Division of Biotechnology Review and Research 1, Office of Biotechnology Products, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, United States Food and Drug Administration, Silver Spring, MD 20993, USA
| | - Dorothy Scott
- Division of Plasma Derivatives, Office of Plasma Protein Therapeutics CMC, Office of Therapeutic Products, Center for Biologics Evaluation and Research, United States Food and Drug Administration, Silver Spring, MD 20993, USA
| | - Marjorie A Shapiro
- Division of Biotechnology Review and Research 1, Office of Biotechnology Products, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, United States Food and Drug Administration, Silver Spring, MD 20993, USA
| |
Collapse
|
30
|
Xu S, Li W, Jiao C, Cao Z, Wu F, Yan F, Wang H, Feng N, Zhao Y, Yang S, Wang J, Xia X. A Bivalent Bacterium-like Particles-Based Vaccine Induced Potent Immune Responses against the Sudan Virus and Ebola Virus in Mice. Transbound Emerg Dis 2023; 2023:9248581. [PMID: 40303775 PMCID: PMC12017122 DOI: 10.1155/2023/9248581] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 03/04/2023] [Accepted: 03/06/2023] [Indexed: 05/02/2025]
Abstract
Ebola virus disease (EVD) is an acute viral hemorrhagic fever disease causing thousands of deaths. The large Ebola outbreak in 2014-2016 posed significant threats to global public health, requiring the development of multiple medical measures for disease control. Sudan virus (SUDV) and Zaire virus (EBOV) are responsible for severe disease and occasional deadly outbreaks in West Africa and Middle Africa. This study shows that bivalent bacterium-like particles (BLPs)-based vaccine, SUDV-EBOV BLPs (S/ZBLP + 2 + P), generated by mixing SUDV-BLPs and EBOV-BLPs at a 1 : 1 ratio, is immunogenic in mice. The SUDV-EBOV BLPs induced potent immune responses against SUDV and EBOV and elicited both T-helper 1 (Th1) and T-helper 2 (Th2) immune responses. The results indicated that SUDV-EBOV BLPs-based vaccine has the potential to be a promising candidate against SUDV and EBOV infections and provide a strategy to develop universal vaccines for EVD.
Collapse
Affiliation(s)
- Shengnan Xu
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
- Shandong Agricultural University, Taian, China
| | - Wujian Li
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
- College of Veterinary Medicine, Jilin University, Changchun, China
| | - Cuicui Jiao
- College of Veterinary Medicine, Jilin University, Changchun, China
| | - Zengguo Cao
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Fangfang Wu
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Feihu Yan
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Hualei Wang
- College of Veterinary Medicine, Jilin University, Changchun, China
| | - Na Feng
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Yongkun Zhao
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Songtao Yang
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Jianzhong Wang
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China
| | - Xianzhu Xia
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
- Collaborative Innovation Center for Healthy Sheep Breeding and Zoonoses Prevention and Control, Shihezi University, Shihezi, Xinjiang, China
| |
Collapse
|
31
|
Inhibiting the transcription and replication of Ebola viruses by disrupting the nucleoprotein and VP30 protein interaction with small molecules. Acta Pharmacol Sin 2023:10.1038/s41401-023-01055-0. [PMID: 36759643 PMCID: PMC9909651 DOI: 10.1038/s41401-023-01055-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 01/10/2023] [Indexed: 02/11/2023]
Abstract
Ebola virus (EBOV) causes hemorrhagic fever in humans with high morbidity and fatality. Although over 45 years have passed since the first EBOV outbreak, small molecule drugs are not yet available. Ebola viral protein VP30 is a unique RNA synthesis cofactor, and the VP30/NP interaction plays a critical role in initiating the transcription and propagation of EBOV. Here, we designed a high-throughput screening technique based on a competitive binding assay to bind VP30 between an NP-derived peptide and a chemical compound. By screening a library of 8004 compounds, we obtained two lead compounds, Embelin and Kobe2602. The binding of these compounds to the VP30-NP interface was validated by dose-dependent competitive binding assay, surface plasmon resonance, and thermal shift assay. Moreover, the compounds were confirmed to inhibit the transcription and replication of the Ebola genome by a minigenome assay. Similar results were obtained for their two respective analogs (8-gingerol and Kobe0065). Interestingly, these two structurally different molecules exhibit synergistic binding to the VP30/NP interface. The antiviral efficacy (EC50) increased from 1 μM by Kobe0065 alone to 351 nM when Kobe0065 and Embelin were combined in a 4:1 ratio. The synergistic anti-EBOV effect provides a strong incentive for further developing these lead compounds in future studies.
Collapse
|
32
|
Wang W, Yu C, Cui Y, Liu C, Yang Y, Xu G, Wu G, Du J, Fu Z, Guo L, Long C, Xia X, Li Y, Wang L, Wang Y. Development of a reporter gene assay for antibody dependent cellular cytotoxicity activity determination of anti-rabies virus glycoprotein antibodies. Microbiol Immunol 2023; 67:69-78. [PMID: 36346082 DOI: 10.1111/1348-0421.13036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 10/09/2022] [Accepted: 11/06/2022] [Indexed: 11/11/2022]
Abstract
Rabies is a viral disease that is nearly 100% fatal once clinical signs and symptoms develop. Post-exposure prophylaxis can efficiently prevent rabies, and antibody (Ab) induction by vaccination or passive immunization of human rabies immunoglobulin (HRIG) or monoclonal antibodies (mAbs) play an integral role in prevention against rabies. In addition to their capacity to neutralize viruses, antibodies exert their antiviral effects by antibody-dependent cellular cytotoxicity (ADCC), which plays an important role in antiviral immunity and clearance of viral infections. For antibodies against rabies virus (RABV), evaluation of ADCC activity was neglected. Here, we developed a robust cell-based reporter gene assay (RGA) for the determination of the ADCC activity of anti-RABV antibodies using CVS-N2c-293 cells, which stably express the glycoprotein (G) of RABV strain CVS-N2c as target cells, and Jurkat cells, which stably express FcγRⅢa and nuclear factor of activated T cells (NFAT) reporter gene as effector cells (Jurkat/NFAT-luc/FcγRⅢa cells). The experimental parameters were carefully optimized, and the established ADCC assay was systematically validated according to the International Council for Harmonisation of Technical Requirements for Pharmaceuticals for Human Use (ICH) Q2 guideline. We also evaluated the ADCC activity of anti-RABV antibodies, including mAbs, HRIG, and vaccine induced antisera, and found that all test antibodies exhibited ADCC activity with varied strengths. The established RGA provides a novel method for evaluating the ADCC of anti-RABV antibodies.
Collapse
Affiliation(s)
- Wenbo Wang
- Division of Monoclonal Antibody Products, National Institutes for Food and Drug Control (NIFDC), Beijing, China
| | - Chuanfei Yu
- Division of Monoclonal Antibody Products, National Institutes for Food and Drug Control (NIFDC), Beijing, China
| | - Yongfei Cui
- Division of Monoclonal Antibody Products, National Institutes for Food and Drug Control (NIFDC), Beijing, China
| | - Chunyu Liu
- Division of Monoclonal Antibody Products, National Institutes for Food and Drug Control (NIFDC), Beijing, China
| | - Yalan Yang
- Division of Monoclonal Antibody Products, National Institutes for Food and Drug Control (NIFDC), Beijing, China
| | - Gangling Xu
- Division of Monoclonal Antibody Products, National Institutes for Food and Drug Control (NIFDC), Beijing, China
| | - Gang Wu
- Division of Monoclonal Antibody Products, National Institutes for Food and Drug Control (NIFDC), Beijing, China
| | - Jialiang Du
- Division of Monoclonal Antibody Products, National Institutes for Food and Drug Control (NIFDC), Beijing, China
| | - Zhihao Fu
- Division of Monoclonal Antibody Products, National Institutes for Food and Drug Control (NIFDC), Beijing, China
| | - Luyong Guo
- Division of Monoclonal Antibody Products, National Institutes for Food and Drug Control (NIFDC), Beijing, China
| | - Caifeng Long
- Division of Monoclonal Antibody Products, National Institutes for Food and Drug Control (NIFDC), Beijing, China
| | - Xijie Xia
- China Pharmaceutical University, Nanjing, China
| | - Yuhua Li
- Division of Arboviral Vaccine, National Institutes for Food and Drug Control (NIFDC), Beijing, China
| | - Lan Wang
- Division of Monoclonal Antibody Products, National Institutes for Food and Drug Control (NIFDC), Beijing, China
| | - Youchun Wang
- Division of HIV/AIDS and Sex-Transmitted Virus Vaccines, National Institutes for Food and Drug Control (NIFDC), Beijing, China
| |
Collapse
|
33
|
Zhang W, Xiang Y, Wang L, Wang F, Li G, Zhuang X. Translational pharmacokinetics of a novel bispecific antibody against Ebola virus (MBS77E) from animal to human by PBPK modeling & simulation. Int J Pharm 2022; 626:122160. [PMID: 36089211 DOI: 10.1016/j.ijpharm.2022.122160] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 08/11/2022] [Accepted: 08/28/2022] [Indexed: 11/17/2022]
Abstract
The goal of this study was to construct a PBPK model to accelerate the translation of MBS77E, a humanized bispecific antibody against the Ebola virus. In-depth nonclinical pharmacokinetic studies in rats, monkeys, wild-type mice and transgenic mice were conducted. The pH-dependent affinities (KD) of MBS77E to recombinant FcRn of different species were determined by surface plasmon resonance analysis. A mechanistic whole-body PBPK model of MBS77E was developed and validated in the assessment of PK profiles and tissue distributions in preclinical models. This PBPK model was finally used to predict human PK behaviors of MBS77E. Simulations from the PBPK model with measured and fitted parameters were able to yield good predictions of the serum and tissue pharmacokinetic parameters of MBS77E within 2-fold errors. The predicted serum concentration in humans was able to maintain a sufficiently high level for more than 14 days after 50 mg/kg i.v. administrating. This achievement unlocks that PBPK modeling is a powerful tool to gain insights into the properties of antibody drugs. It guided experimental efforts to obtain necessary information before entry into humans.
Collapse
Affiliation(s)
- Wenpeng Zhang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Yanan Xiang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Lingchao Wang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Furun Wang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Guanglu Li
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Xiaomei Zhuang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China.
| |
Collapse
|
34
|
van Lieshout LP, Rghei AD, Cao W, He S, Soule G, Zhu W, Thomas SP, Sorensen D, Frost K, Tierney K, Thompson B, Booth S, Safronetz D, Kulkarni RR, Bridle BW, Qiu X, Banadyga L, Wootton SK. AAV-monoclonal antibody expression protects mice from Ebola virus without impeding the endogenous antibody response to heterologous challenge. Mol Ther Methods Clin Dev 2022; 26:505-518. [PMID: 36092367 PMCID: PMC9436706 DOI: 10.1016/j.omtm.2022.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 08/09/2022] [Indexed: 11/12/2022]
Abstract
Filoviruses cause severe hemorrhagic fever with case fatality rates as high as 90%. Filovirus-specific monoclonal antibodies (mAbs) confer protection in nonhuman primates as late as 5 days after challenge, and FDA-approved mAbs REGN-EB3 and mAb114 have demonstrated efficacy against Ebola virus (EBOV) infection in humans. Vectorized antibody expression mediated by adeno-associated virus (AAV) can generate protective and sustained concentrations of therapeutic mAbs in animal models for a variety of infectious diseases, including EBOV. Here we demonstrate that AAV6.2FF-mediated expression of murine IgG2a EBOV mAbs, 2G4 and 5D2, protects from mouse-adapted (MA)-EBOV infection with none of the surviving mice developing anti-VP40 antibodies above background. Protective serum concentrations of AAV6.2FF-2G4/AAV6.2FF-5D2 did not alter endogenous antibody responses to heterologous virus infection. AAV-mediated expression of EBOV mAbs 100 and 114, and pan-ebolavirus mAbs, FVM04, ADI-15878, and CA45, as human IgG1 antibodies conferred protection against MA-EBOV at low serum concentrations, with minimum protective serum levels as low as 2 μg/mL. Vectorized expression of murine IgG2a or human IgG1 mAbs led to sustained expression in the serum of mice for >400 days or for the lifetime of the animal, respectively. AAV6.2FF-mediated mAb expression offers an alternative to recombinant antibody administration in scenarios where long-term protection is preferable to passive immunization.
Collapse
|
35
|
Sun W, Luan F, Wang J, Ma L, Li X, Yang G, Hao C, Qin X, Dong S. Structural insights into the interactions between lloviu virus VP30 and nucleoprotein. Biochem Biophys Res Commun 2022; 616:82-88. [PMID: 35649303 DOI: 10.1016/j.bbrc.2022.05.059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Accepted: 05/17/2022] [Indexed: 11/19/2022]
Abstract
The family Filoviridae comprises many notorious viruses, such as Ebola virus (EBOV) and Marburg virus (MARV), that can infect humans and nonhuman primates. Lloviu virus (LLOV), a less well studied filovirus, is considered a potential pathogen for humans. The VP30 C-terminal domain (CTD) of these filoviruses exhibits nucleoprotein (NP) binding and plays an essential role in viral transcription, replication and assembly. In this study, we confirmed the interactions between LLOV VP30 CTD and its NP fragment, and also determined the crystal structure of the chimeric dimeric LLOV NP-VP30 CTD at 2.50 Å resolution. The structure is highly conserved across the family Filoviridae. While in the dimer structure, only one VP30 CTD binds the NP fragment, which indicates that the interaction between LLOV VP30 CTD and NP is not strong. Our work provides a preliminary model to investigate the interactions between LLOV VP30 and NP and suggests a potential target for anti-filovirus drug development.
Collapse
Affiliation(s)
- Weiyan Sun
- School of Biological Science and Technology, University of Jinan, Jinan, China
| | - Fuchen Luan
- School of Biological Science and Technology, University of Jinan, Jinan, China
| | - Jiajia Wang
- School of Biological Science and Technology, University of Jinan, Jinan, China
| | - Lin Ma
- School of Biological Science and Technology, University of Jinan, Jinan, China
| | - Xiuxiu Li
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, China
| | - Gongxian Yang
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, China
| | - Chenyang Hao
- School of Biological Science and Technology, University of Jinan, Jinan, China
| | - Xiaochun Qin
- School of Biological Science and Technology, University of Jinan, Jinan, China; School of Chemistry and Chemical Engineering, University of Jinan, Jinan, China.
| | - Shishang Dong
- School of Biological Science and Technology, University of Jinan, Jinan, China.
| |
Collapse
|
36
|
Crozier I, Britson KA, Wolfe DN, Klena JD, Hensley LE, Lee JS, Wolfraim LA, Taylor KL, Higgs ES, Montgomery JM, Martins KA. The Evolution of Medical Countermeasures for Ebola Virus Disease: Lessons Learned and Next Steps. Vaccines (Basel) 2022; 10:1213. [PMID: 36016101 PMCID: PMC9415766 DOI: 10.3390/vaccines10081213] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/27/2022] [Accepted: 07/27/2022] [Indexed: 11/26/2022] Open
Abstract
The Ebola virus disease outbreak that occurred in Western Africa from 2013-2016, and subsequent smaller but increasingly frequent outbreaks of Ebola virus disease in recent years, spurred an unprecedented effort to develop and deploy effective vaccines, therapeutics, and diagnostics. This effort led to the U.S. regulatory approval of a diagnostic test, two vaccines, and two therapeutics for Ebola virus disease indications. Moreover, the establishment of fieldable diagnostic tests improved the speed with which patients can be diagnosed and public health resources mobilized. The United States government has played and continues to play a key role in funding and coordinating these medical countermeasure efforts. Here, we describe the coordinated U.S. government response to develop medical countermeasures for Ebola virus disease and we identify lessons learned that may improve future efforts to develop and deploy effective countermeasures against other filoviruses, such as Sudan virus and Marburg virus.
Collapse
Affiliation(s)
- Ian Crozier
- Clinical Monitoring Research Program Directorate, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA;
| | - Kyla A. Britson
- U.S. Department of Health and Human Services (DHHS), Assistant Secretary for Preparedness and Response (ASPR), Biomedical Advanced Research and Development Authority (BARDA), Washington, DC 20201, USA; (K.A.B.); (D.N.W.); (J.S.L.)
- U.S. Department of Health and Human Services (DHHS), Assistant Secretary for Preparedness and Response (ASPR), Biomedical Advanced Research and Development Authority (BARDA), Oak Ridge Institute for Science and Education (ORISE) Postdoctoral Fellow, Oak Ridge, TN 37831, USA
| | - Daniel N. Wolfe
- U.S. Department of Health and Human Services (DHHS), Assistant Secretary for Preparedness and Response (ASPR), Biomedical Advanced Research and Development Authority (BARDA), Washington, DC 20201, USA; (K.A.B.); (D.N.W.); (J.S.L.)
| | - John D. Klena
- Viral Special Pathogens Branch, Division of High Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, GA 30333, USA; (J.D.K.); (J.M.M.)
| | - Lisa E. Hensley
- Integrated Research Facility, National Institute of Allergy and Infectious Diseases, Fort Detrick, MD 12116, USA;
| | - John S. Lee
- U.S. Department of Health and Human Services (DHHS), Assistant Secretary for Preparedness and Response (ASPR), Biomedical Advanced Research and Development Authority (BARDA), Washington, DC 20201, USA; (K.A.B.); (D.N.W.); (J.S.L.)
| | - Larry A. Wolfraim
- U.S. Department of Health and Human Services (DHHS), National Institutes of Health (NIH), National Institute of Allergy and Infectious Diseases (NIAID), Rockville, MD 20852, USA; (L.A.W.); (K.L.T.); (E.S.H.)
| | - Kimberly L. Taylor
- U.S. Department of Health and Human Services (DHHS), National Institutes of Health (NIH), National Institute of Allergy and Infectious Diseases (NIAID), Rockville, MD 20852, USA; (L.A.W.); (K.L.T.); (E.S.H.)
| | - Elizabeth S. Higgs
- U.S. Department of Health and Human Services (DHHS), National Institutes of Health (NIH), National Institute of Allergy and Infectious Diseases (NIAID), Rockville, MD 20852, USA; (L.A.W.); (K.L.T.); (E.S.H.)
| | - Joel M. Montgomery
- Viral Special Pathogens Branch, Division of High Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, GA 30333, USA; (J.D.K.); (J.M.M.)
| | - Karen A. Martins
- U.S. Department of Health and Human Services (DHHS), Assistant Secretary for Preparedness and Response (ASPR), Biomedical Advanced Research and Development Authority (BARDA), Washington, DC 20201, USA; (K.A.B.); (D.N.W.); (J.S.L.)
| |
Collapse
|
37
|
Reversion of Ebolavirus Disease from a Single Intramuscular Injection of a Pan-Ebolavirus Immunotherapeutic. Pathogens 2022; 11:pathogens11060655. [PMID: 35745509 PMCID: PMC9228268 DOI: 10.3390/pathogens11060655] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 06/03/2022] [Accepted: 06/04/2022] [Indexed: 02/04/2023] Open
Abstract
Intravenous (IV) administration of antiviral monoclonal antibodies (mAbs) can be challenging, particularly during an ongoing epidemic, due to the considerable resources required for performing infusions. An ebolavirus therapeutic administered via intramuscular (IM) injection would reduce the burdens associated with IV infusion and allow rapid treatment of exposed individuals during an outbreak. Here, we demonstrate how MBP134, a cocktail of two pan-ebolavirus mAbs, reverses the course of Sudan ebolavirus disease (Gulu variant) with a single IV or IM dose in non-human primates (NHPs) as late as five days post-exposure. We also investigate the utility of adding half-life extension mutations to the MBP134 mAbs, ultimately creating a half-life extended cocktail designated MBP431. When delivered as a post-exposure prophylactic or therapeutic, a single IM dose of MBP431 offered complete or significant protection in NHPs challenged with Zaire ebolavirus. In conjunction with previous studies, these results support the use of MBP431 as a rapidly deployable IM medical countermeasure against every known species of ebolavirus.
Collapse
|
38
|
Rupani N, Ngole ME, Lee JA, Aluisio AR, Gainey M, Perera SM, Ntamwinja LK, Matafali RM, Muhayangabo RF, Makoyi FN, Laghari R, Levine AC, Kearney AS. Effect of Recombinant Vesicular Stomatitis Virus–Zaire Ebola Virus Vaccination on Ebola Virus Disease Illness and Death, Democratic Republic of the Congo. Emerg Infect Dis 2022; 28:1180-1188. [PMID: 35608607 PMCID: PMC9155898 DOI: 10.3201/eid2806.212223] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
We conducted a retrospective cohort study to assess the effect vaccination with the live-attenuated recombinant vesicular stomatitis virus–Zaire Ebola virus vaccine had on deaths among patients who had laboratory-confirmed Ebola virus disease (EVD). We included EVD-positive patients coming to an Ebola Treatment Center in eastern Democratic Republic of the Congo during 2018–2020. Overall, 25% of patients vaccinated before symptom onset died compared with 63% of unvaccinated patients. Vaccinated patients reported fewer EVD-associated symptoms, had reduced time to clearance of viral load, and had reduced length of stay at the Ebola Treatment Center. After controlling for confounders, vaccination was strongly associated with decreased deaths. Reduction in deaths was not affected by timing of vaccination before or after EVD exposure. These findings support use of preexposure and postexposure recombinant vesicular stomatitis virus–Zaire Ebola virus vaccine as an intervention associated with improved death rates, illness, and recovery time among patients with EVD.
Collapse
|
39
|
Protein Folding Interdiction Strategy for Therapeutic Drug Development in Viral Diseases: Ebola VP40 and Influenza A M1. Int J Mol Sci 2022; 23:ijms23073906. [PMID: 35409264 PMCID: PMC8998936 DOI: 10.3390/ijms23073906] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 03/29/2022] [Accepted: 03/29/2022] [Indexed: 02/01/2023] Open
Abstract
In a recent paper, we proposed the folding interdiction target region (FITR) strategy for therapeutic drug design in SARS-CoV-2. This paper expands the application of the FITR strategy by proposing therapeutic drug design approaches against Ebola virus disease and influenza A. We predict target regions for folding interdicting drugs on correspondingly relevant structural proteins of both pathogenic viruses: VP40 of Ebola, and matrix protein M1 of influenza A. Identification of the protein targets employs the sequential collapse model (SCM) for protein folding. It is explained that the model predicts natural peptide candidates in each case from which to start the search for therapeutic drugs. The paper also discusses how these predictions could be tested, as well as some challenges likely to be found when designing effective therapeutic drugs from the proposed peptide candidates. The FITR strategy opens a potential new avenue for the design of therapeutic drugs that promises to be effective against infectious diseases.
Collapse
|
40
|
Mbikay M, Chrétien M. Isoquercetin as an Anti-Covid-19 Medication: A Potential to Realize. Front Pharmacol 2022; 13:830205. [PMID: 35308240 PMCID: PMC8924057 DOI: 10.3389/fphar.2022.830205] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 01/26/2022] [Indexed: 12/30/2022] Open
Abstract
Isoquercetin and quercetin are secondary metabolites found in a variety of plants, including edible ones. Isoquercetin is a monoglycosylated derivative of quercetin. When ingested, isoquercetin accumulates more than quercetin in the intestinal mucosa where it is converted to quercetin; the latter is absorbed into enterocytes, transported to the liver, released in circulation, and distributed to tissues, mostly as metabolic conjugates. Physiologically, isoquercetin and quercetin exhibit antioxidant, anti-inflammatory, immuno-modulatory, and anticoagulant activities. Generally isoquercetin is less active than quercetin in vitro and ex vivo, whereas it is equally or more active in vivo, suggesting that it is primarily a more absorbable precursor to quercetin, providing more favorable pharmacokinetics to the latter. Isoquercetin, like quercetin, has shown broad-spectrum antiviral activities, significantly reducing cell infection by influenza, Zika, Ebola, dengue viruses among others. This ability, together with their other physiological properties and their safety profile, has led to the proposition that administration of these flavonols could prevent infection by severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2), or arrest the progression to severity and lethality of resulting coronavirus disease of 2019 (Covid-19). In silico screening of small molecules for binding affinity to proteins involved SARS-CoV-2 life cycle has repeatedly situated quercetin and isoquercetin near to top of the list of likely effectors. If experiments in cells and animals confirm these predictions, this will provide additional justifications for the conduct of clinical trials to evaluate the prophylactic and therapeutic efficacy of these flavonols in Covid-19.
Collapse
Affiliation(s)
- Majambu Mbikay
- Functional Endoproteolysis Laboratory, Montreal Clinical Research Institute, Montreal, QC, Canada
| | - Michel Chrétien
- Functional Endoproteolysis Laboratory, Montreal Clinical Research Institute, Montreal, QC, Canada
| |
Collapse
|