1
|
Weng M, Zhu X. Thrombospondin-2 induces M2 macrophage polarization through fatty acid metabolism to drive lung adenocarcinoma proliferation. Anticancer Drugs 2025; 36:459-467. [PMID: 40053399 DOI: 10.1097/cad.0000000000001713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2025]
Abstract
Tumor-associated macrophages play a critical role in regulating the progression of lung adenocarcinoma (LUAD). Platelet-derived protein thrombospondin-2 (THBS2) has been identified as a tumor marker and is known to be overexpressed in LUAD. However, the specific role of THBS2 in M2 macrophage polarization within LUAD remains unclear. We conducted bioinformatics analyses to assess the clinical significance of THBS2 expression in LUAD, which was subsequently validated using quantitative PCR. We examined the relationship between THBS2 expression and M2 macrophage infiltration. A coculture system of LUAD cells and M0 macrophages was established to investigate the influence of THBS2 on macrophage infiltration and polarization through immunofluorescence and ELISA. We explored the impact of THBS2 on fatty acid metabolism (FAM) using oil red O staining and relevant kits and elucidated the role of THBS2 in regulating M2 macrophage polarization and LUAD proliferation through cell counting kit-8 (CCK-8) and colony formation assays. Western blot was employed to assess expression changes of Bax and Bcl-2. THBS2 was highly expressed in LUAD and was associated with poor prognosis in patients. In-vitro experiments demonstrated that silencing THBS2 significantly inhibited macrophage infiltration and polarization. THBS2 primarily activated FAM pathways, inducing M2 macrophage polarization and promoting LUAD cell proliferation. THBS2 enhanced LUAD proliferation by regulating FAM to induce M2 macrophage polarization. These findings provide a theoretical basis for targeting THBS2 as a novel therapeutic strategy in LUAD.
Collapse
Affiliation(s)
| | - Xiaoping Zhu
- Radiation Oncology, Medical Oncology, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, China
| |
Collapse
|
2
|
Mezouar S, Mege J. Monitoring Macrophage Polarization in Infectious Disease, Lesson From SARS-CoV-2 Infection. Rev Med Virol 2025; 35:e70034. [PMID: 40148134 PMCID: PMC11976041 DOI: 10.1002/ird3.70006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2025] [Revised: 03/11/2025] [Accepted: 03/20/2025] [Indexed: 03/29/2025]
Abstract
The concept of macrophage polarization has been largely used in human diseases to define a typology of activation of myeloid cells reminiscent of lymphocyte functional subsets. In COVID-19, several studies have investigated myeloid compartment dysregulation and macrophage polarization as an indicator of disease prognosis and monitoring. SARS-CoV-2 induces an in vitro activation state in monocytes and macrophages that does not match the polarization categories in most studies. In COVID-19 patients, monocytes and macrophages are activated but they do not show a polarization profile. Therefore, the investigation of polarization under basic conditions was not relevant to assess monocyte and macrophage activation. The analysis of monocytes and macrophages with high-throughput methods has allowed the identification of new functional subsets in the context of COVID-19. This approach proposes an innovative stratification of myeloid cell activation. These new functional subsets of myeloid cells would be better biomarkers to assess the risk of complications in COVID-19, reserving the concept of polarization for pharmacological programme evaluation. This review reappraises the polarization of monocytes and macrophages in viral infections, particularly in COVID-19.
Collapse
Affiliation(s)
- Soraya Mezouar
- Centre National de la Recherche ScientifiqueÉtablissement Français du SangAnthropologie Bio‐Culturelle, Droit, Éthique et SantéAix‐Marseille UniversityMarseilleFrance
- Faculty of Medical and Paramedical SciencesAix‐Marseille UniversityHIPE Human LabMarseilleFrance
| | - Jean‐Louis Mege
- Centre National de la Recherche ScientifiqueÉtablissement Français du SangAnthropologie Bio‐Culturelle, Droit, Éthique et SantéAix‐Marseille UniversityMarseilleFrance
- Department of ImmunologyLa Timone HospitalMarseilleFrance
| |
Collapse
|
3
|
Zhong YL, Xu CQ, Li J, Liang ZQ, Wang MM, Ma C, Jia CL, Cao YB, Chen J. Mitochondrial dynamics and metabolism in macrophages for cardiovascular disease: A review. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 140:156620. [PMID: 40068296 DOI: 10.1016/j.phymed.2025.156620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 02/18/2025] [Accepted: 03/05/2025] [Indexed: 03/25/2025]
Abstract
BACKGROUND Mitochondria regulate macrophage function, affecting cardiovascular diseases like atherosclerosis and heart failure. Their dynamics interact with macrophage cell death mechanisms, including apoptosis and necroptosis. PURPOSE This review explores how mitochondrial dynamics and metabolism influence macrophage inflammation and cell death in CVDs, highlighting therapeutic targets for enhancing macrophage resilience and reducing CVD pathology, while examining molecular pathways and pharmacological agents involved. STUDY DESIGN This is a narrative review that integrates findings from various studies on mitochondrial dynamics and metabolism in macrophages, their interactions with the endoplasmic reticulum (ER) and Golgi apparatus, and their implications for CVDs. The review also considers the potential therapeutic effects of pharmacological agents on these pathways. METHODS The review utilizes a comprehensive literature search to identify relevant studies on mitochondrial dynamics and metabolism in macrophages, their role in CVDs, and the effects of pharmacological agents on these pathways. The selected studies are analyzed and synthesized to provide insights into the complex relationships between mitochondria, the ER, and Golgi apparatus, and their implications for macrophage function and fate. RESULTS The review reveals that mitochondrial metabolism intertwines with cellular architecture and function, particularly through its intricate interactions with the ER and Golgi apparatus. Mitochondrial-associated membranes (MAMs) facilitate Ca2+ transfer from the ER to mitochondria, maintaining mitochondrial homeostasis during ER stress. The Golgi apparatus transports proteins crucial for inflammatory signaling, contributing to immune responses. Inflammation-induced metabolic reprogramming in macrophages, characterized by a shift from oxidative phosphorylation to glycolysis, underscores the multifaceted role of mitochondrial metabolism in regulating immune cell polarization and inflammatory outcomes. Notably, mitochondrial dysfunction, marked by heightened reactive oxygen species generation, fuels inflammatory cascades and promotes cell death, exacerbating CVD pathology. However, pharmacological agents such as Metformin, Nitazoxanide, and Galanin emerge as potential therapeutic modulators of these pathways, offering avenues for mitigating CVD progression. CONCLUSION This review highlights mitochondrial dynamics and metabolism in macrophage inflammation and cell death in CVDs, suggesting therapeutic targets to improve macrophage resilience and reduce pathology, with new pharmacological agents offering treatment opportunities.
Collapse
Affiliation(s)
- Yi-Lang Zhong
- Institute of Vascular Anomalies, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200082, China
| | - Chen-Qin Xu
- Institute of Vascular Anomalies, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200082, China
| | - Ji Li
- Department of Vascular Disease, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200082, China
| | - Zhi-Qiang Liang
- Department of Vascular Disease, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200082, China
| | - Miao-Miao Wang
- Institute of Vascular Anomalies, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200082, China
| | - Chao Ma
- Institute of Vascular Anomalies, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200082, China
| | - Cheng-Lin Jia
- Institute of Vascular Anomalies, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200082, China
| | - Yong-Bing Cao
- Institute of Vascular Anomalies, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200082, China
| | - Jian Chen
- Institute of Vascular Anomalies, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200082, China; Anhui Province Rural Revitalization Collaborative Technical Service Center, Huangshan University, Huangshan 245041, China; Department of Public Health, International College, Krirk University, Bangkok, Thailand.
| |
Collapse
|
4
|
Xie Y, Cheng Q, Xu ML, Xue J, Wu H, Du Y. Itaconate: A Potential Therapeutic Strategy for Autoimmune Disease. Scand J Immunol 2025; 101:e70026. [PMID: 40289463 DOI: 10.1111/sji.70026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2025] [Revised: 03/04/2025] [Accepted: 04/07/2025] [Indexed: 04/30/2025]
Abstract
Itaconate is a metabolite of the Krebs cycle, and endogenous itaconate is driven by a variety of innate signals that inhibit the production of inflammatory cytokines. The key mechanism of action of itaconate was initially found to be the competitive inhibition of succinate dehydrogenase (SDH), which inhibits the production of inflammatory factors, as well as its antioxidant effects. With increasing research, it was discovered that it modifies cysteine residues of related proteins through the Michael addition, such as modifying the Kelch-like ECH-associated protein 1 (KEAP1) protein and activating the nuclear factor erythroid 2-related factor 2 (NRF2) signalling pathway, as well as glycolytic enzymes and cellular pathway-associated factors that attenuate inflammatory responses and oxidative stress. It also acts on a variety of immune cells, affecting their function and activity, and has been increasingly shown to play a therapeutic role in a variety of inflammatory and autoimmune diseases through a combination of these mechanisms. In conclusion, there has been a great breakthrough in the research of itaconate, from the initial industrial application to the redefinition of the biological functions of itaconate. However, with the deepening of the research, we also found that there are more questions: the mechanism of action of itaconate, more functions of itaconate, clinical application of itaconate, and the use of itaconate still needs to be solved.
Collapse
Affiliation(s)
- Yifan Xie
- Department of Rheumatology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
- Department of Clinic Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Qi Cheng
- Department of Rheumatology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Meng Li Xu
- Department of Nephrology, The Third Affiliate Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Jing Xue
- Department of Rheumatology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Huaxiang Wu
- Department of Rheumatology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Yan Du
- Department of Rheumatology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
5
|
Gauthier T, Lim YJ, Jin W, Liu N, Patiño LC, Chen W, Warren J, Martin D, Morell RJ, Dveksler G, Su GH, Chen W. Activin A activation of Smad3 mitigates innate inflammation in mouse models of psoriasis and sepsis. J Clin Invest 2025; 135:e187063. [PMID: 40067393 PMCID: PMC12043092 DOI: 10.1172/jci187063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 03/05/2025] [Indexed: 05/02/2025] Open
Abstract
Phosphorylation of Smad3 is a critical mediator of TGF-β signaling, which plays an important role in regulating innate immune responses. However, whether Smad3 activation can be regulated in innate immune cells in TGF-β-independent contexts remains poorly understood. Here, we show that Smad3 is activated through the phosphorylation of its C-terminal residues (pSmad3C) in murine and human macrophages in response to bacterial and viral ligands, and this activation is mediated by activin A in a TGF-β-independent manner. Specifically, infectious ligands, such as LPS, induced secretion of activin A through the transcription factor STAT5 in macrophages, and activin A signaling in turn activated pSmad3C. This activin A/Smad3 axis controlled mitochondrial ATP production and ATP conversion into adenosine by CD73 in macrophages, enforcing an antiinflammatory mechanism. Consequently, mice with a deletion of activin A receptor 1b specifically in macrophages (Acvr1bfl/fl-Lyz2cre) succumbed more to sepsis as a result of uncontrolled inflammation and exhibited exacerbated skin disease in a mouse model of imiquimod-induced psoriasis. Thus, we have revealed a previously unrecognized natural brake to inflammation in macrophages that occurs through the activation of Smad3 in an activin A-dependent manner.
Collapse
Affiliation(s)
- Thierry Gauthier
- Mucosal Immunology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland, USA
| | - Yun-Ji Lim
- Mucosal Immunology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland, USA
| | - Wenwen Jin
- Mucosal Immunology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland, USA
| | - Na Liu
- Mucosal Immunology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland, USA
| | - Liliana C. Patiño
- Mucosal Immunology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland, USA
| | - Weiwei Chen
- Mucosal Immunology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland, USA
| | - James Warren
- Department of Pathology, Uniformed Services University, Bethesda, Maryland, USA
| | - Daniel Martin
- Genomics and Computational Biology Core, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, Maryland, USA
| | - Robert J. Morell
- Genomics and Computational Biology Core, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, Maryland, USA
| | - Gabriela Dveksler
- Department of Pathology, Uniformed Services University, Bethesda, Maryland, USA
| | - Gloria H. Su
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, New York, USA
| | - WanJun Chen
- Mucosal Immunology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
6
|
Chermahini FA, Arvejeh PM, Marincola FM, Ahmad S, Naderian R, Pajand O, Eslami M, Hasannia M, Sanami S. Investigating how dengue virus-induced metabolic changes affect the host immune response and how to develop Immunomodulatory strategies. Virol J 2025; 22:117. [PMID: 40281578 PMCID: PMC12023479 DOI: 10.1186/s12985-025-02745-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Accepted: 04/16/2025] [Indexed: 04/29/2025] Open
Abstract
Dengue virus (DENV) infection imposes a significant global health burden, driven by its ability to manipulate host cellular processes to facilitate replication and evade immune defenses. This review explores the complex interplay between DENV, host immunometabolism, and signaling pathways. DENV induces metabolic reprogramming, including glycolytic upregulation, lipid droplet utilization through lipophagy, and alterations in amino acid metabolism, to fulfill its energy and biosynthetic needs. The virus also disrupts mitochondrial dynamics, leading to increased reactive oxygen species (ROS) production, which modulates immune responses but may also contribute to oxidative stress and severe pathology. Concurrently, DENV hijacks host signaling pathways, including PI3K/Akt, NF-κB, and JAK/STAT, to suppress apoptosis, evade type I interferon responses, and drive pro-inflammatory cytokine production. The interplay between these signaling and metabolic pathways highlights a dual role of host processes: enabling viral replication while activating antiviral immune responses. The review also examines potential therapeutic strategies targeting metabolic and signaling pathways to combat DENV infection, including glycolysis inhibitors, lipid metabolism modulators, and host-directed therapies. While significant progress has been made in understanding DENV-induced immunometabolism, further research is needed to elucidate the precise molecular mechanisms and translate these findings into clinical applications. This study underscores the importance of integrating metabolic and signaling insights to identify novel therapeutic targets against DENV and related flaviviruses, addressing the critical need for effective antiviral interventions.
Collapse
Affiliation(s)
- Fatemeh Amini Chermahini
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Pooria Mohammadi Arvejeh
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | | | - Sajjad Ahmad
- Department of Health and Biological Sciences, Abasyn University, Peshawar, 25000, Pakistan
| | - Ramtin Naderian
- Nervous System Stem Cells Research Center, Semnan University of Medical Sciences, Semnan, Iran
- Health Policy Research Center, Institute of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Omid Pajand
- Clinical Research Development Unit, Kowsar Educational, Research and Therapeutic Hospital, Semnan University of Medical Sciences, Semnan, Iran
| | - Majid Eslami
- Cancer Research Center, Semnan University of Medical Sciences, Semnan, Iran
- Department of Bacteriology and Virology, Semnan University of Medical Sciences, Semnan, Iran
| | - Maliheh Hasannia
- Cancer Research Center, Semnan University of Medical Sciences, Semnan, Iran
| | - Samira Sanami
- Abnormal Uterine Bleeding Research Center, Semnan University of Medical Sciences, Semnan, Iran.
| |
Collapse
|
7
|
Ge F, Tian F, Zhu Y, Yan Q, Sun Q, Lu J. Modified Xi-Jiao-Di-Huang Decoction Alleviates Sepsis via Regulating Macrophage Polarization by Inhibiting the PIM2/NF-κB Pathway. J Inflamm Res 2025; 18:5017-5030. [PMID: 40248592 PMCID: PMC12005212 DOI: 10.2147/jir.s509734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Accepted: 04/04/2025] [Indexed: 04/19/2025] Open
Abstract
Purpose Modified Xi-Jiao-Di-Huang decoction (MXJDH) has significant clinical efficacy for the treatment of sepsis; however, its mechanism of action remains unclear. The purpose of this study was to investigate the protective effects of MXJDH in septic mice and explore its mechanism of action. Methods Utilizing UPLC-Q-TOF-MS, we identified the primary constituents of the compound MXJDH. Subsequently, we created a mouse model for sepsis, observing their overall condition, including specific symptoms and behavior. We also monitored key inflammatory markers and pathological changes in their organs. Flow cytometry was then employed to assess the polarization of macrophages. Transcriptome sequencing was used to identify genes with altered expression patterns. We investigated the connection between MXJDH and the Pim2/NF-κB signaling pathway, a crucial regulatory mechanism in inflammation. Finally, we examined the expression and tissue distribution of macrophages in the sepsis-induced mice. Results MXJDH effectively reduces inflammation in sepsis mice, leading to a progressive recovery of organ functions. Moreover, MXJDH facilitates the conversion of macrophages from pro-inflammatory M1 phenotype to anti-inflammatory M2 phenotype. This transformation is potentially mediated through the Pim2/NF-κB signaling pathway. By suppressing Pim2 expression, MXJDH mitigates the nuclear translocation of NF-κB, thereby modulating the expression of downstream inflammatory mediators. The role of MXJDH in regulating macrophage polarization has also been confirmed in sepsis mouse tissues. Conclusion MXJDH regulates macrophage polarization, inhibits CRS, and alleviates sepsis by inhibiting the Pim2/NF-κB signaling pathway.
Collapse
Affiliation(s)
- Fan Ge
- Department of Intensive Care Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, People’s Republic of China
| | - Fang Tian
- Department of Central Laboratory, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, People’s Republic of China
| | - Yeyan Zhu
- Department of Intensive Care Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, People’s Republic of China
| | - Qixiang Yan
- Department of Intensive Care Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, People’s Republic of China
| | - Qimeng Sun
- Department of Intensive Care Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, People’s Republic of China
| | - Jun Lu
- Department of Intensive Care Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, People’s Republic of China
| |
Collapse
|
8
|
de Souza Marques AM, Soares SAE, do Carmo-Neto JR, Gomes CM, Vinaud MC, de Matos GG, de Oliveira MAP. Impact of a previous infection with Taenia crassiceps cysticerci on the susceptibility to Leishmania (L.) major or L. (V.) braziliensis. World J Microbiol Biotechnol 2025; 41:115. [PMID: 40148716 DOI: 10.1007/s11274-025-04327-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Accepted: 03/17/2025] [Indexed: 03/29/2025]
Abstract
The development of leishmaniasis depends on the ability of Leishmania to invade and survive within macrophages. Macrophages can either promote parasite elimination or support its survival, depending on whether they are classically (M1) or alternatively (M2) activated. Mice chronically infected with Taenia crassiceps cysticerci (TC) develop a predominantly Th2 immune response, which leads to an increased number of M2 macrophages. In this study, we assessed the susceptibility of BALB/c mice previously infected with TC to Leishmania (V.) braziliensis or Leishmania (L.) major. Mice were first inoculated intraperitoneally with TC and after eight weeks infected either L. (V.) braziliensis or L. (L.) major in the paw. We evaluated footpad swelling and parasite load in different organs. We also assessed parasite load in vitro at 3 h, 3, 6, and 9 days; nitric oxide (NO) production, and arginase activity. Macrophages obtained from TC-infected mice (TcMΦ) were more susceptible to L. (V.) braziliensis infection, maintaining a stable parasite load without significant proliferation, while the parasite was killed in thioglycolate-elicited macrophages (TgMΦ). In contrast, L. (L.) major proliferated intensely in TcMΦ, leading to a higher parasite load compared to TgMΦ. In vivo, infection with L. (V.) braziliensis in TC-coinfected mice did not alter the parasite load compared to the group without cysticerci. However, mice infected with L. (L.) major exhibited greater swelling and higher parasite burdens. These findings suggest that infection with TC modulates the immune response of mice but is unable to render resistant mice susceptible to L. (V.) braziliensis.
Collapse
Affiliation(s)
- André Murilo de Souza Marques
- Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Rua 235 S/N- Setor Universitário, Goiânia, GO, Brazil
| | - Santiago Aguiar Espellet Soares
- Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Rua 235 S/N- Setor Universitário, Goiânia, GO, Brazil
| | - José Rodrigues do Carmo-Neto
- Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Rua 235 S/N- Setor Universitário, Goiânia, GO, Brazil
| | - Clayson Moura Gomes
- Pontifícia Universidade Católica de Goiás, Escola de Ciências Médicas e da Vida, Av U, Goiânia, Brazil
| | - Marina Clare Vinaud
- Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Rua 235 S/N- Setor Universitário, Goiânia, GO, Brazil
| | - Grazzielle Guimarães de Matos
- Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Rua 235 S/N- Setor Universitário, Goiânia, GO, Brazil
| | - Milton Adriano Pelli de Oliveira
- Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Rua 235 S/N- Setor Universitário, Goiânia, GO, Brazil.
| |
Collapse
|
9
|
Arneth B. Molecular Mechanisms of Immune Regulation: A Review. Cells 2025; 14:283. [PMID: 39996755 PMCID: PMC11853995 DOI: 10.3390/cells14040283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 02/09/2025] [Accepted: 02/13/2025] [Indexed: 02/26/2025] Open
Abstract
BACKGROUND The immune system must carefully balance fighting pathogens with minimization of inflammation and avoidance of autoimmune responses. Over the past ten years, researchers have extensively studied the mechanisms regulating this delicate balance. Comprehending these mechanisms is essential for developing treatments for inflammatory conditions. AIM This review aims to synthesize knowledge of immunoregulatory processes published from 2014-2024 and to highlight discoveries that provide fresh perspectives on this complex balance. METHODS The keywords "molecular mechanisms", "immune regulation", "immune signaling pathways", and "immune homeostasis" were used to search PubMed for articles published between 2014 and 2024, with a preference for articles published in the past three years. RESULTS Recent research has pinpointed the impact of factors such as cytokine signaling, T-cell regulation, epigenetic regulation, and immunometabolism on immune function. DISCUSSION New research highlights the intricate interactions between the immune system and other molecular elements. A key area of interest is the impact of non-coding RNAs and metabolic pathways on the regulation of immune responses. CONCLUSIONS Exploring the mechanisms by which the immune system is regulated will provide new avenues for developing treatments to address autoimmune and inflammatory conditions.
Collapse
Affiliation(s)
- Borros Arneth
- Institute of Laboratory Medicine and Pathobiochemistry, Hospital of the Universities of Giessen and Marburg UKGM, Philipps University Marburg, Baldingerst 1, 35043 Marburg, Germany;
- Institute of Laboratory Medicine and Pathobiochemistry, Hospital of the Universities of Giessen and Marburg UKGM, Justus Liebig University Giessen, Feulgenstr. 12, 35392 Giessen, Germany
| |
Collapse
|
10
|
Feldstein SF, Rahbari KM, Leonardo TR, Alvernaz SA, Federle MJ. Suppressed macrophage response to quorum-sensing-active Streptococcus pyogenes occurs at the level of the nucleus. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.07.637189. [PMID: 39975246 PMCID: PMC11839041 DOI: 10.1101/2025.02.07.637189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Streptococcus pyogenes, or Group A Streptococus (GAS), a significant human pathogen, employs quorum sensing (QS) systems to coordinate its behavior and genetic regulation in order to enhance survival. Our previous research established that one such QS system, the Rgg2/3 system, can suppress macrophage NFκB activity and production of pro-inflammatory cytokines. Yet, the scope of suppression and the mechanism by which it occurs remains unknown. In this study, we used transcriptomic and phosphoproteomic approaches to address these unanswered questions. We found QS-ON GAS broadly suppressed most inflammatory transcriptional pathways including those of NFκB, type I and type II interferon responses, and intracellular stress responses. Yet, we found no alternative transcriptional programs were activated after QS-ON GAS infection. Additionally, phosphoproteomics showed no disruption in typical inflammatory pathways such as those related to NFκB and MAPK activation, which was confirmed by western blotting and translocation assays. Instead, the proteomic data highlighted a potential role for epigenetic mechanisms of inflammatory regulation. To determine if epigenetic regulation was involved in QS-mediated immunomodulation, DNA methylation was measured and studies were performed inhibiting various histone and chromatin modifiers. These studies also showed no dijerence between QS-ON compared with QS-OFF infected macrophages. These findings expand our understanding of QS-mediated suppression and of GAS virulence strategies that appear to employ unusual methods of restricting inflammation. Uncovering this mechanism will ojer invaluable insight into GAS, itself, as well as understudied immunological pathways.
Collapse
Affiliation(s)
- Sam F. Feldstein
- Department of Microbiology and Immunology, University of Illinois - Chicago, Chicago, Illinois, USA
| | - Kate M. Rahbari
- Department of Microbiology and Immunology, University of Illinois - Chicago, Chicago, Illinois, USA
| | - Trevor R. Leonardo
- Department of Microbiology and Immunology, University of Illinois - Chicago, Chicago, Illinois, USA
| | - Suzanne A. Alvernaz
- Department of Biomedical Engineering, University of Illinois – Chicago, Chicago, Illinois, USA
| | - Michael J. Federle
- Department of Pharmaceutical Sciences, University of Illinois – Chicago, Chicago, Illinois, USA
| |
Collapse
|
11
|
Zeng L, Wang Y, Huang Y, Yang W, Zhou P, Wan Y, Tao K, Li R. IRG1/itaconate enhances efferocytosis by activating Nrf2-TIM4 signaling pathway to alleviate con A induced autoimmune liver injury. Cell Commun Signal 2025; 23:63. [PMID: 39910615 PMCID: PMC11796036 DOI: 10.1186/s12964-025-02075-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Accepted: 01/30/2025] [Indexed: 02/07/2025] Open
Abstract
Immune response gene 1 (IRG1) is highly expressed in mitochondria of macrophages in a pro-inflammatory state. IRG1 and its metabolites play important roles in infection, immune-related diseases and tumor progression by exerting resistance of pathogens, attenuating inflammation and producing antioxidant substances through various pathways and mechanisms. IRG1 deficiency aggravates liver injury. Efferocytosis is a vital mechanism for preventing the progression of inflammatory tissue damage. However, the mechanism by how IRG1/itaconate regulates efferocytosis in autoimmune hepatitis has yet to be fully understood. Therefore, we explored the influence of IRG1-/- on efferocytosis and its effects on regulating the nuclear factor erythroid 2-associated factor 2 (Nrf2)-T-cell immunoglobulin domain and mucin domain 4 (TIM4) pathway and autoimmune liver injury. An autoimmune hepatitis model was established by injecting Con A into wild-type and IRG1-/- mice via the tail vein. Liver injury and inflammatory response were assessed. The efferocytosis role of IRG1-/- macrophages and its potential regulatory mechanisms were also analysed. Exogenous 4-octyl itaconate (OI) supplementation promoted the expression of Nrf2 and TIM4 and restored IRG1-/- bone marrow-derived macrophage (BMDM) efferocytosis, whereas inhibition of Nrf2 mediated by ML385 led to impaired efferocytosis of BMDMs, decreased expression of TIM4, and aggravated liver inflammation injury. Additionally, after supplementing Nrf2-/- BMDMs with exogenous OI, we evaluated the changes in its efferocytosis effect, efferocytosis did not change, and the protective effect of OI disappeared. However, when TIM4 was blocked, the efferocytotic effect of BMDMs was attenuated, inflammatory liver injury and oxidative stress were aggravated. OI promoted the transformation of macrophages into M2 macrophages, and this was inhibited when TIM4 was blocked. To our best understanding, this is the initial exploration to show that TIM4, a downstream molecule of the IRG1/itaconate-Nrf2 pathway, regulates macrophage efferocytosis. These findings suggest a new mechanism and potential treatment for promoting the resolution of inflammation and efferocytosis in autoimmune hepatitis.
Collapse
Affiliation(s)
- Liwu Zeng
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Avenue, Wuhan, 430022, Hubei Province, China
| | - Yaxin Wang
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Avenue, Wuhan, 430022, China
| | - Yongzhou Huang
- Department of General Surgery, First Affiliated Hospital of Shihezi University, Shihezi, 832000, Xinjiang, China
| | - Wenchang Yang
- Department of Gastroenterology Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Pei Zhou
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Avenue, Wuhan, 430022, Hubei Province, China
| | - Yaqi Wan
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Avenue, Wuhan, 430022, Hubei Province, China
| | - Kaixiong Tao
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Avenue, Wuhan, 430022, Hubei Province, China.
| | - Ruidong Li
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Avenue, Wuhan, 430022, Hubei Province, China.
| |
Collapse
|
12
|
Zhang J, Hao L, Li S, He Y, Zhang Y, Li N, Hu X. mTOR/HIF-1α pathway-mediated glucose reprogramming and macrophage polarization by Sini decoction plus ginseng soup in ALF. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 137:156374. [PMID: 39798342 DOI: 10.1016/j.phymed.2025.156374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 11/22/2024] [Accepted: 01/03/2025] [Indexed: 01/15/2025]
Abstract
BACKGROUND Acute liver failure (ALF) has a high mortality rate, and despite treatment advancements, long-term outcomes remain poor. PURPOSE This study explores the therapeutic targets and pathways of Sini Decoction plus Ginseng Soup (SNRS) in ALF using bioinformatics and network pharmacology, focusing on its impact on macrophage polarization through glucose metabolism reprogramming. The efficacy of SNRS was validated in an LPS/D-GalN-induced ALF model, and its optimal concentration was determined for in vitro macrophage intervention. STUDY DESIGN AND METHODS Differentially expressed genes (DEGs) in HBV-induced and acetaminophen-induced ALF were identified from GEO datasets. The correlation between target gene expression and immune cell infiltration in ALF liver tissue was analyzed. AST, ALT, TNF-α, HMGB1, IL-1β, IL-6, and IL-10 levels were measured, and liver histopathology was assessed. Macrophage polarization was analyzed via immunofluorescence, flow cytometry, and Western blot. Glycolysis-related enzymes and metabolites, including HK2, PFK-1, PKM2, and LDHA, were quantified. Cellular ultrastructure was examined by transmission electron microscopy. RESULTS Five key glycolysis-regulating genes (HK2, CDK1, SOD1, VEGFA, GOT1) were identified, with significant involvement in the HIF-1 signaling pathway. Immune infiltration was markedly higher in ALF liver tissue. SNRS improved survival, reduced ALT/AST levels, alleviated liver injury, and modulated macrophage polarization by decreasing CD86 and increasing CD163 expression. In vitro, SNRS inhibited LPS-induced inflammatory cytokine release, lactate production, p-mTOR/mTOR ratio, and HIF-1α expression. CONCLUSION SNRS modulates macrophage polarization and glucose metabolism reprogramming via the mTOR/HIF-1α pathway, showing promise as a treatment for ALF.
Collapse
Affiliation(s)
- Junli Zhang
- Chengdu University of Traditional Chinese Medicine, No. 37 Shi-er-qiao Road, Chengdu 610075, Sichuan Province, PR China; Department of Infectious Diseases, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, 155 Hanzhong Road, Qinghuai District, Nanjing, Jiangsu 210029, PR China
| | - Liyuan Hao
- Chengdu University of Traditional Chinese Medicine, No. 37 Shi-er-qiao Road, Chengdu 610075, Sichuan Province, PR China; Department of Infectious Diseases, Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-er-qiao Road, Chengdu 610072, Sichuan Province, PR China
| | - Shenghao Li
- Chengdu University of Traditional Chinese Medicine, No. 37 Shi-er-qiao Road, Chengdu 610075, Sichuan Province, PR China; Department of Infectious Diseases, Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-er-qiao Road, Chengdu 610072, Sichuan Province, PR China
| | - Ying He
- Chengdu University of Traditional Chinese Medicine, No. 37 Shi-er-qiao Road, Chengdu 610075, Sichuan Province, PR China; Department of Infectious Diseases, Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-er-qiao Road, Chengdu 610072, Sichuan Province, PR China
| | - Yang Zhang
- Department of Infectious Diseases, Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-er-qiao Road, Chengdu 610072, Sichuan Province, PR China
| | - Na Li
- Chengdu University of Traditional Chinese Medicine, No. 37 Shi-er-qiao Road, Chengdu 610075, Sichuan Province, PR China; Department of Infectious Diseases, Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-er-qiao Road, Chengdu 610072, Sichuan Province, PR China
| | - Xiaoyu Hu
- Department of Infectious Diseases, Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-er-qiao Road, Chengdu 610072, Sichuan Province, PR China.
| |
Collapse
|
13
|
Musimbi ZD, Kundik A, Krücken J, Hauser AE, Rausch S, Seeberger PH, Niesner R, Leben R, Hartmann S. Two-photon NAD(P)H-FLIM reveals unperturbed energy metabolism of Ascaris suum larvae, in contrast to host macrophages upon artemisinin derivatives exposure. Sci Rep 2025; 15:2056. [PMID: 39814779 PMCID: PMC11735674 DOI: 10.1038/s41598-025-85780-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 01/06/2025] [Indexed: 01/18/2025] Open
Abstract
Soil-transmitted helminths (STH) are widespread, with Ascaris lumbricoides infecting millions globally. Malaria and STH co-infections are common in co-endemic regions. Artemisinin derivatives (ARTs)-artesunate, artemether, and dihydroartemisinin-are standard malaria treatments and are also known to influence the energy metabolism of parasites, tumors, and immune cells. Herein, we explore the potential of ARTs to influence ascariasis either by directly targeting larvae or indirectly by modifying macrophage responses. Ascaris suum third-stage larvae and porcine IL-4 polarized (M2-like) macrophages were exposed to ARTs in vitro, and their metabolism was evaluated using two-photon NAD(P)H-FLIM. Both larvae and M2-like macrophages exhibited a steady-state bioenergetic profile of high oxidative phosphorylation and low anaerobic glycolysis. In A. suum larvae, two metabolically distinct regions were identified, with particularly high DUOX activity in the pharynx compared to the midgut; however, ARTs did not alter these profiles. In contrast, exposure of M2-like macrophages to ARTs induced a metabolic shift towards high anaerobic glycolysis and reduced metabolic activity, suggesting a possible indirect effect of ARTs on the helminth infection. Overall, two-photon NAD(P)H-FLIM proved to be a powerful tool for studying specific metabolic pathways in Ascaris larvae and host macrophages, offering valuable insights into the metabolic mechanisms of drug action on both parasite and host.
Collapse
Affiliation(s)
- Zaneta D Musimbi
- Institute of Immunology, Centre of Infection Medicine, Freie Universität Berlin, Berlin, Germany
| | - Arkadi Kundik
- Institute of Immunology, Centre of Infection Medicine, Freie Universität Berlin, Berlin, Germany
| | - Jürgen Krücken
- Institute for Parasitology and Tropical Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| | - Anja E Hauser
- Department of Rheumatology and Clinical Immunology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Immune Dynamics, Deutsches Rheuma-Forschungszentrum (DRFZ), A Leibniz Institute, Charitéplatz 1, Berlin, Germany
| | - Sebastian Rausch
- Institute of Immunology, Centre of Infection Medicine, Freie Universität Berlin, Berlin, Germany
| | | | - Raluca Niesner
- Biophysical Analytics, Deutsches Rheuma-Forschungszentrum (DRFZ), Berlin, Germany
- Dynamic and Functional in Vivo Imaging, Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| | - Ruth Leben
- Institute of Immunology, Centre of Infection Medicine, Freie Universität Berlin, Berlin, Germany
- Biophysical Analytics, Deutsches Rheuma-Forschungszentrum (DRFZ), Berlin, Germany
- Dynamic and Functional in Vivo Imaging, Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| | - Susanne Hartmann
- Institute of Immunology, Centre of Infection Medicine, Freie Universität Berlin, Berlin, Germany.
| |
Collapse
|
14
|
Fan Y, Wu YJ, Guo K, Zhou XQ, Abulaiti A, Olatunji OJ, Ji CL, Zuo J. Interaction with IGF1 overrides ANXA2-mediated anti-inflammatory functions of IGFBP5 in vivo. Front Immunol 2025; 15:1539317. [PMID: 39867883 PMCID: PMC11757107 DOI: 10.3389/fimmu.2024.1539317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Accepted: 12/24/2024] [Indexed: 01/28/2025] Open
Abstract
Background IGFBP5 is a differentially expressed gene (DEG) between M1 and M2 macrophages. This study explained why it causes opposite effects in different circumstances. Methods Gene expression profiles of various cell subsets were compared by mining a public database. THP-1 cells were treated by siRNAs, recombinant IGFBP5, lipopolysaccharide (LPS), picropodophyllin, IGF1 or the combinations. Clinical implication of IGFBP5 changes was investigated using rheumatoid arthritis (RA) and acute lung injury (ALI) models. IGFBP5-bound and differential proteins were identified by Liquid Chromatography Mass Spectrometry method. Results IGFBP5 situated in the center of a network constructed by the DEGs of M0 and M1/2 macrophages. Its expression negatively correlated to inflammation in vitro. When IGFBP5 was silenced, monocytes released more IL-1β and IL-6. NF-κB downstream proteins were overexpressed. IGFBP5 interacted with ANXA2 directly. In ANXA2-silenced cells, it showed no anti-inflammatory effect. Monocytes of adjuvant-induced arthritis rats and RA patients expressed less IGFBP5 than normal controls, but its blood levels increased significantly. Adipocytes secreted large amounts of IGFBP5. This secretion was reinforced by the above sera. IGFBP5 decreased in ALI mice's blood, while its supplement exacerbated inflammation. By binding to IGF1, IGFBP5 prevented its interaction with IGF1R. An IGF1R inhibitor picropodophyllin antagonized functions of IGF1/IGF1R too, but didn't reinforce the effects of IGFBP5. Conclusion IGFBP5 eases inflammation by interacting with ANXA2, an activator of NF-κB; as an antagonist of IGF1/IGF1R, IGFBP5 may disrupt immune homeostasis in vivo, due to impairment of the latter's anti-inflammatory functions; excessive IGFBP from adipocytes would be a pathogenic factor in certain diseases.
Collapse
Affiliation(s)
- Yan Fan
- Xin’an Medicine Research Center, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital), Wuhu, China
| | - Yi-Jin Wu
- Department of Pharmacy, The Second Affiliated Hospital of Wannan Medical College, Wuhu, China
- Department of Pharmacology, West China School of Pharmacy, Sichuan University, Chengdu, China
| | - Kai Guo
- Xin’an Medicine Research Center, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital), Wuhu, China
| | - Xia-Qing Zhou
- Xin’an Medicine Research Center, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital), Wuhu, China
| | - Abulizi Abulaiti
- Institute of Traditional Chinese Medicine and Ethnic Medicine, Uyghur Medicine Hospital of Akesu Prefecture, Akesu, Xinjiang, China
| | | | - Cong-Lan Ji
- School of Pharmacy, Anhui College of Traditional Chinese Medicine, Wuhu, China
| | - Jian Zuo
- Xin’an Medicine Research Center, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital), Wuhu, China
- Department of Pharmacy, The Second Affiliated Hospital of Wannan Medical College, Wuhu, China
| |
Collapse
|
15
|
Sovar A, Patrick MD, Annamalai RT. Substrate curvature influences cytoskeletal rearrangement and modulates macrophage phenotype. Front Immunol 2025; 15:1478464. [PMID: 39835126 PMCID: PMC11743265 DOI: 10.3389/fimmu.2024.1478464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 12/04/2024] [Indexed: 01/22/2025] Open
Abstract
Introduction Inflammation is a vital immune response, tightly orchestrated through both biochemical and biophysical cues. Dysregulated inflammation contributes to chronic diseases, highlighting the need for novel therapies that modulate immune responses with minimal side effects. While several biochemical pathways of inflammation are well understood, the influence of physical properties such as substrate curvature on immune cell behavior remains underexplored. This study investigates how substrate curvature impacts macrophage cytoskeletal dynamics, gene expression, and immunophenotype through mechanosensitive pathways. Methods Gelatin-based microgels with tunable surface curvatures were fabricated via water-in-oil emulsification and crosslinked with genipin. Microgels were sorted into three size ranges, yielding high (40-50 µm), intermediate (150-250 µm), and low (350-400 µm) curvature profiles. Macrophages were seeded onto these microgels, and cytoskeletal dynamics were examined using confocal microscopy, SEM, and actin-specific staining. Gene expression of pro- and anti-inflammatory markers was quantified using qPCR. The role of actin polymerization was assessed using Latrunculin-A (Lat-A) treatment. Results Macrophages adhered effectively to both high- and low-curvature microgels, displaying curvature-dependent morphological changes. Confocal imaging revealed that macrophages on low-curvature microgels exhibited significantly higher F-actin density than those on high-curvature microgels. Correspondingly, qPCR analysis showed upregulation of pro-inflammatory markers (e.g., Tnf, Nos2) in high-curvature conditions, while anti-inflammatory markers (e.g., Arg1) were elevated in low-curvature conditions. Lat-A treatment reduced F-actin density and modulated gene expression patterns, confirming the cytoskeletal regulation of macrophage phenotype. Discussion These findings demonstrate that substrate curvature influences macrophage behavior by modulating cytoskeletal dynamics and associated immunophenotypic markers through actin-mediated transcriptional pathways. By controlling curvature, therapeutic biomaterials may direct immune responses, offering a new avenue for treating inflammatory diseases. This mechanobiological approach presents a promising strategy for precision immunomodulation in regenerative medicine.
Collapse
Affiliation(s)
- Austin Sovar
- Department of Biomedical Engineering, University of Kentucky, Lexington, KY, United States
| | - Matthew D. Patrick
- Department of Biomedical Engineering, University at Buffalo, Buffalo, NY, United States
| | - Ramkumar T. Annamalai
- Department of Biomedical Engineering, University at Buffalo, Buffalo, NY, United States
| |
Collapse
|
16
|
Li N, Gong Y, Zhu Y, Li B, Wang C, Wang Z, Wang J, Huang J, Bian J, Zhang Y. Exogenous acetate attenuates inflammatory responses through HIF-1α-dependent glycolysis regulation in macrophage. Cell Mol Life Sci 2024; 82:21. [PMID: 39725781 DOI: 10.1007/s00018-024-05521-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 10/15/2024] [Accepted: 11/18/2024] [Indexed: 12/28/2024]
Abstract
Cytokine storm is a hallmark for acute systemic inflammatory disease like sepsis. Intrinsic microbiome-derived short-chain fatty acid (SCFAs) like acetate modulates immune cell function and metabolism has been well studied. However, it remains poorly investigated about the effects and the underlying mechanism of exogenous acetate in acute inflammation like sepsis. Here, we observed that serum acetate accumulates in patients undergoing abdominal gastrointestinal surgery and in septic mice. Short exposure to high-dose exogenous acetate protects mice from sepsis by inhibiting glycolysis in macrophages, both in vivo and in vitro. Hypoxia-inducible factor 1 subunit alpha (HIF-1α) stabilization or overexpression reverses the decreased glycolysis and pro-inflammatory cytokine production in macrophages and abrogates acetate's protective effect in septic mice. Meanwhile, we also found acetyl-CoA synthetase-2, but not GPR41 or GPR43, plays a key role in acetate's immunosuppressive effect. Acetate transiently increases acetyl-coenzyme A production, promoting histone acetylation and decreasing acetyl-transfer to NF-κB p65. These findings suggest that short exposure to mM-level acetate inhibits macrophage immune response linked to HIF-1α-dependent glycolysis. Taken together, we demonstrate short-term exposure of exogenous acetate could regulate inflammatory responses through attenuating HIF-1α-dependent glycolysis.
Collapse
Affiliation(s)
- Na Li
- Faculty of Anesthesiology, Changhai Hospital (First Affiliated Hospital of Naval Medical University), Naval Medical University, Shanghai, 200433, China
| | - Yi Gong
- Department of Respiratory Diseases and Critical Medicine, Quzhou Hospital Affiliated to Wenzhou Medical University, Quzhou, Zhejiang, 324000, China
- Department of Respiratory Diseases and Critical Medicine, Huashan Hospital Affiliated to Fudan University, Shanghai, 200040, China
| | - Yalin Zhu
- Faculty of Anesthesiology, Changhai Hospital (First Affiliated Hospital of Naval Medical University), Naval Medical University, Shanghai, 200433, China
- Department of Anesthesiology, Naval Hospital of Eastern Theater, Zhoushan, China
| | - Bo Li
- Faculty of Anesthesiology, Changhai Hospital (First Affiliated Hospital of Naval Medical University), Naval Medical University, Shanghai, 200433, China
| | - Changli Wang
- Faculty of Anesthesiology, Changhai Hospital (First Affiliated Hospital of Naval Medical University), Naval Medical University, Shanghai, 200433, China
| | - Zhefan Wang
- Senior High School of Yangpu District, Shanghai, 200433, China
| | - Jun Wang
- Faculty of Anesthesiology, Changhai Hospital (First Affiliated Hospital of Naval Medical University), Naval Medical University, Shanghai, 200433, China
| | - Jie Huang
- Faculty of Anesthesiology, Changhai Hospital (First Affiliated Hospital of Naval Medical University), Naval Medical University, Shanghai, 200433, China
| | - Jinjun Bian
- Faculty of Anesthesiology, Changhai Hospital (First Affiliated Hospital of Naval Medical University), Naval Medical University, Shanghai, 200433, China.
| | - Yan Zhang
- Faculty of Anesthesiology, Changhai Hospital (First Affiliated Hospital of Naval Medical University), Naval Medical University, Shanghai, 200433, China.
| |
Collapse
|
17
|
Zhang J, Li N, Hu X. Metabolic Reprograming of Macrophages: A New Direction in Traditional Chinese Medicine for Treating Liver Failure. J Immunol Res 2024; 2024:5891381. [PMID: 39741958 PMCID: PMC11688140 DOI: 10.1155/jimr/5891381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 09/03/2024] [Accepted: 11/28/2024] [Indexed: 01/03/2025] Open
Abstract
Acute liver failure (ALF) is a fulminant clinical syndrome that usually leads to multiple organ failure and high mortality. Macrophages play a crucial role in the initiation, development, and recovery of ALF. Targeting macrophages through immunotherapy holds significant promise as a therapeutic strategy. These cells exhibit remarkable plasticity, enabling them to differentiate into various subtypes based on changes in their surrounding microenvironment. M1-type macrophages are associated with a pro-inflammatory phenotype and primarily rely predominantly on glycolysis. In contrast, M2-type macrophages, which are characterized by anti-inflammatory phenotype, predominantly obtain their energy from oxidative phosphorylation (OXPHOS) and fatty acid oxidation (FAO). Shifting macrophage metabolism from glycolysis to OXPHOS inhibits M1 macrophage activation and promotes M2 macrophage activation, thereby exerting anti-inflammatory and reparative effects. This study elucidates the relationship between macrophage activation and glucose metabolism reprograming from an immunometabolism perspective. A comprehensive literature review revealed that several signaling pathways may regulate macrophage polarization through energy metabolism, including phosphatidyl-inositol 3-kinase/protein kinase B (PI3K/AKT), mammalian target of rapamycin (mTOR)/hypoxia-inducible factor 1α (HIF-1α), nuclear factor-κB (NF-κB), and AMP-activated protein kinase (AMPK), which exhibit crosstalk with one another. Additionally, we systematically reviewed several traditional Chinese medicine (TCM) monomers that can modulate glucose metabolism reprograming and influence the polarization states of M1 and M2 macrophages. This review aimed to provide valuable insights that could contribute to the development of new therapies or drugs for ALF.
Collapse
Affiliation(s)
- Junli Zhang
- Department of Infectious Diseases, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Department of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Na Li
- Department of Infectious Diseases, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Department of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaoyu Hu
- Department of Infectious Diseases, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
18
|
Cheng S, Li Y, Sun X, Liu Z, Guo L, Wu J, Yang X, Wei S, Wu G, Xu S, Yang F, Wu J. The impact of glucose metabolism on inflammatory processes in sepsis-induced acute lung injury. Front Immunol 2024; 15:1508985. [PMID: 39712019 PMCID: PMC11659153 DOI: 10.3389/fimmu.2024.1508985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 11/18/2024] [Indexed: 12/24/2024] Open
Abstract
Acute lung injury (ALI) is a prevalent and critical complication of sepsis, marked by high incidence and mortality rates, with its pathogenesis still not being fully elucidated. Recent research has revealed a significant correlation between the metabolic reprogramming of glucose and sepsis-associated ALI (S-ALI). Throughout the course of S-ALI, immune cells, including macrophages and dendritic cells, undergo metabolic shifts to accommodate the intricate demands of immune function that emerge as sepsis advances. Indeed, glucose metabolic reprogramming in S-ALI serves as a double-edged sword, fueling inflammatory immune responses in the initial stages and subsequently initiating anti-inflammatory responses as the disease evolves. In this review, we delineate the current research progress concerning the pathogenic mechanisms linked to glucose metabolic reprogramming in S-ALI, with a focus on the pertinent immune cells implicated. We encapsulate the impact of glucose metabolic reprogramming on the onset, progression, and prognosis of S-ALI. Ultimately, by examining key regulatory factors within metabolic intermediates and enzymes, We have identified potential therapeutic targets linked to metabolic reprogramming, striving to tackle the inherent challenges in diagnosing and treating Severe Acute Lung Injury (S-ALI) with greater efficacy.
Collapse
Affiliation(s)
- Shilei Cheng
- School of Anesthesiology, Shandong Second Medical University, Weifang, China
| | - Yufei Li
- Department of Anesthesiology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
- Shandong Institute of Anesthesia and Respiratory Critical Medicine, Jinan, China
- Shandong Provincial Clinical Research Center for Anesthesiology, Jinan, China
- School of Pharmacy, Shandong University of Traditional Chinese Medicine (TCM), Jinan, China
| | - Xiaoliang Sun
- Department of Urology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Zhirui Liu
- Brain and Mind Centre, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Liang Guo
- Department of Anesthesiology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
- Shandong Institute of Anesthesia and Respiratory Critical Medicine, Jinan, China
- Shandong Provincial Clinical Research Center for Anesthesiology, Jinan, China
| | - Jueheng Wu
- Department of Anesthesiology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Xiaohan Yang
- Department of Anesthesiology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Sisi Wei
- Department of Anesthesiology, Qilu Hospital of Shandong University Dezhou Hospital, Dezhou, China
| | - Guanghan Wu
- Department of Anesthesiology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
- Shandong Institute of Anesthesia and Respiratory Critical Medicine, Jinan, China
- Shandong Provincial Clinical Research Center for Anesthesiology, Jinan, China
| | - Shilong Xu
- School of Anesthesiology, Shandong Second Medical University, Weifang, China
| | - Fan Yang
- Department of Anesthesiology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
- Shandong Institute of Anesthesia and Respiratory Critical Medicine, Jinan, China
- Shandong Provincial Clinical Research Center for Anesthesiology, Jinan, China
| | - Jianbo Wu
- Department of Anesthesiology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
- Shandong Institute of Anesthesia and Respiratory Critical Medicine, Jinan, China
- Shandong Provincial Clinical Research Center for Anesthesiology, Jinan, China
| |
Collapse
|
19
|
Yan Q, Liu H, Zhu R, Zhang Z. Contribution of macrophage polarization in bone metabolism: A literature review. Cytokine 2024; 184:156768. [PMID: 39340960 DOI: 10.1016/j.cyto.2024.156768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 09/11/2024] [Accepted: 09/20/2024] [Indexed: 09/30/2024]
Abstract
Macrophage polarization divides macrophages into two main cell subpopulations, classically and alternatively activated macrophages (M1 and M2, respectively). M1 polarization promotes osteoclastogenesis, while M2 polarization promotes osteogenesis. The physiological homeostasis of bone metabolism involves a high dynamic balance between osteoclastic-mediated bone resorption and formation. Reportedly, M1/M2 imbalance causes the onset and persistence of inflammation-related bone diseases. Therefore, understanding the research advances in functions and roles of macrophages in such diseases will provide substantial guidance for improved treatment of bone diseases. In this review, we underscore and summarize the research advances in macrophage polarization, and bone-related diseases, such as rheumatoid arthritis, osteoarthritis, and osteoporosis, over the last 5 years. Our findings showed that targeting macrophages and balancing macrophage polarization can effectively reduce inflammation and decrease bone destruction while promoting bone formation and vascular repair. These results indicate that regulating macrophage and macrophage polarization to restore homeostasis is a prospective approach for curing bone-related diseases.
Collapse
Affiliation(s)
- Qiqi Yan
- Institute of Basic Theory, China Academy of Chinese Medical Sciences, Beijing, China.
| | - Haixia Liu
- Institute of Basic Theory, China Academy of Chinese Medical Sciences, Beijing, China.
| | - Ruyuan Zhu
- Institute of Basic Theory, China Academy of Chinese Medical Sciences, Beijing, China.
| | - Zhiguo Zhang
- Institute of Basic Theory, China Academy of Chinese Medical Sciences, Beijing, China.
| |
Collapse
|
20
|
Liu X, Wang T, Xiang R, Sun H, Zhao M, Ye X, Zhou Y, Wang G, Zhou Y. Anti-inflammatory effects of 1,7-dihydroxy-3,4-dimethoxyxanthone through inhibition of M1-phenotype macrophages via arginine/mitochondrial axis. Immunol Res 2024; 72:1404-1416. [PMID: 39349673 DOI: 10.1007/s12026-024-09538-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 09/02/2024] [Indexed: 02/06/2025]
Abstract
It is known that 1,7-dihydroxy-3,4-dimethoxyxanthone (XAN), derived from Securidaca inappendiculata Hassk., exhibits anti-inflammatory and analgesic activities and inhibits M1 polarization of macrophages. However, its ability to alleviate inflammation induced by pro-inflammatory cytokines in THP-1 cells and its anti-inflammatory mechanisms remain unclear. THP-1 cells were treated with phorbol 12-myristate-13-acetate to differentiate and divided into three groups. They were stimulated with lipopolysaccharide (LPS) and interferon-γ (IFN-γ). The toxicity of XAN was assessed using Cell Counting Kit-8, and the expression of various genes and proteins was analyzed using real-time quantitative polymerase chain reaction, flow cytometry, and western blotting. Transmission electron microscopy was used to observe changes in mitochondrial structure. XAN at concentrations ≤ 10 µg/mL did not affect THP-1 cell viability and reduced the mRNA expression of pro-inflammatory factors, including interleukin (IL)-1β, inducible nitric oxide synthase (iNOS), NOD-like receptor thermal protein domain protein 3 (NLRP3), and tumor necrosis factor-α (TNF-α). XAN also increased the levels of anti-inflammatory factors, including chemokine ligand 22, mannose receptor (CD206), IL-10, peroxisome proliferator-activated receptor-γ, and transglutaminase 2. Additionally, XAN downregulated the expression of inflammation-related proteins iNOS, NLRP3, and IL-1β; significantly increased the expression of arginase 1, ornithine decarboxylase, and arginine metabolism-related proteins and genes; inhibited mitochondrial damage; and reduced reactive oxygen species (ROS) generation. XAN enhanced the arginine metabolism pathway, prevented mitochondrial damage, reduced ROS levels, and provided an effective defensive response against LPS/IFN-γ-induced inflammation.
Collapse
Affiliation(s)
- Xin Liu
- Center for Xin'an Medicine and Modernization of Traditional Chinese Medicine of IHM, Wannan Medical College, Wuhu, 241002, China
- Anhui Provincial Engineering Research Center for Polysaccharide Drugs, Wannan Medical College, Wuhu, 241002, China
| | - Ting Wang
- Center for Xin'an Medicine and Modernization of Traditional Chinese Medicine of IHM, Wannan Medical College, Wuhu, 241002, China
- Anhui Provincial Engineering Research Center for Polysaccharide Drugs, Wannan Medical College, Wuhu, 241002, China
| | - Ruoxuan Xiang
- Center for Xin'an Medicine and Modernization of Traditional Chinese Medicine of IHM, Wannan Medical College, Wuhu, 241002, China
- Anhui Provincial Engineering Research Center for Polysaccharide Drugs, Wannan Medical College, Wuhu, 241002, China
| | - Huazhan Sun
- Center for Xin'an Medicine and Modernization of Traditional Chinese Medicine of IHM, Wannan Medical College, Wuhu, 241002, China
- Anhui Provincial Engineering Research Center for Polysaccharide Drugs, Wannan Medical College, Wuhu, 241002, China
| | - Mengyan Zhao
- Center for Xin'an Medicine and Modernization of Traditional Chinese Medicine of IHM, Wannan Medical College, Wuhu, 241002, China
- Anhui Provincial Engineering Research Center for Polysaccharide Drugs, Wannan Medical College, Wuhu, 241002, China
| | - Xiaojuan Ye
- Center for Xin'an Medicine and Modernization of Traditional Chinese Medicine of IHM, Wannan Medical College, Wuhu, 241002, China
- Anhui Provincial Engineering Research Center for Polysaccharide Drugs, Wannan Medical College, Wuhu, 241002, China
| | - Yuyun Zhou
- Center for Xin'an Medicine and Modernization of Traditional Chinese Medicine of IHM, Wannan Medical College, Wuhu, 241002, China
- Anhui Provincial Engineering Research Center for Polysaccharide Drugs, Wannan Medical College, Wuhu, 241002, China
| | - Guodong Wang
- Center for Xin'an Medicine and Modernization of Traditional Chinese Medicine of IHM, Wannan Medical College, Wuhu, 241002, China.
- Anhui Provincial Engineering Research Center for Polysaccharide Drugs, Wannan Medical College, Wuhu, 241002, China.
- Anhui Provincial Engineering Laboratory for Screening and Re-Evaluation of Active Compounds of Herbal Medicines in Southern Anhui, Wannan Medical College, Wuhu, 241002, China.
- Anhui Provincial Key Laboratory of Active Biological Macromolecules, Wannan Medical College, Wuhu, 241002, China.
| | - Yuyan Zhou
- Center for Xin'an Medicine and Modernization of Traditional Chinese Medicine of IHM, Wannan Medical College, Wuhu, 241002, China.
- Anhui Provincial Engineering Research Center for Polysaccharide Drugs, Wannan Medical College, Wuhu, 241002, China.
- Anhui Provincial Engineering Laboratory for Screening and Re-Evaluation of Active Compounds of Herbal Medicines in Southern Anhui, Wannan Medical College, Wuhu, 241002, China.
- Anhui Provincial Key Laboratory of Active Biological Macromolecules, Wannan Medical College, Wuhu, 241002, China.
| |
Collapse
|
21
|
Yang H, Sun P, Zhou S, Tang Y, Li S, Li W, Yu X, Liu H, Wu Y. Chlamydia psittaci infection induces IFN-I and IL-1β through the cGAS-STING-IRF3/NLRP3 pathway via mitochondrial oxidative stress in human macrophages. Vet Microbiol 2024; 299:110292. [PMID: 39581075 DOI: 10.1016/j.vetmic.2024.110292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 10/05/2024] [Accepted: 10/26/2024] [Indexed: 11/26/2024]
Abstract
Chlamydia psittaci (C. psittaci) is a multi-host pathogen that elicits robust innate immune responses in macrophages. Chlamydiae target host mitochondria to manipulate the cellular fate and metabolic functions. However, the effect of C. psittaci on the host mitochondria remains obscure. This study investigated how C. psittaci, post-infection in human macrophages, induces mitochondrial oxidative stress and damage to activate the cGAS-STING-IRF3/NLRP3 pathway for IFN-I and IL-1β production. Results demonstrate that C. psittaci increased mitochondrial ROS (mtROS) production. This induced the release of oxidized mitochondrial DNA (mtDNA) into the cytoplasm of macrophages. It also augmented IFN-I and IL-1β production dependent on the cGAS-STING pathway. Macrophages pre-treated with mtROS inhibitor mito-TEMPO displayed reduced oxidized mtDNA. This consequently lowered IFN-I and IL-1β production via the cGAS-STING pathway induced by C. psittaci. Additionally, we found that mtROS production may inhibit C. psittaci proliferation through the synergistic action of IFN-I and IL-1β. In conclusion, our study reveals that C. psittaci induces mtROS production leading to mtDNA release. This activates the cGAS-STING-IRF3/NLRP3 pathway to increase IFN-I and IL-1β production. This study elucidates a novel mechanism of bacterial pathogen activation in the cGAS-STING pathway. This reveals the molecular mechanisms underlying the immune response to C. psittaci infection and proposes potential targets for the treatment of C. psittaci related diseases.
Collapse
Affiliation(s)
- Hongyu Yang
- Institute of Pathogenic Biology, Hengyang Medical College, University of South China, Hengyang, China
| | - Peiyuan Sun
- Institute of Pathogenic Biology, Hengyang Medical College, University of South China, Hengyang, China
| | - Shi Zhou
- Institute of Pathogenic Biology, Hengyang Medical College, University of South China, Hengyang, China
| | - Yuanyuan Tang
- Institute of Pathogenic Biology, Hengyang Medical College, University of South China, Hengyang, China
| | - Sijia Li
- Institute of Pathogenic Biology, Hengyang Medical College, University of South China, Hengyang, China
| | - Weiwei Li
- Department of Clinical Laboratory, The Second People's Hospital of Foshan, China
| | - Xiang Yu
- Institute of Pathogenic Biology, Hengyang Medical College, University of South China, Hengyang, China
| | - Hanying Liu
- Health Management Medicine Center, the Third Xiangya Hospital, Central South University, Changsha, China.
| | - Yimou Wu
- Institute of Pathogenic Biology, Hengyang Medical College, University of South China, Hengyang, China.
| |
Collapse
|
22
|
Hou N, Zhou H, Li J, Xiong X, Deng H, Xiong S. Macrophage polarization and metabolic reprogramming in abdominal aortic aneurysm. Immun Inflamm Dis 2024; 12:e1268. [PMID: 39530309 PMCID: PMC11555488 DOI: 10.1002/iid3.1268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 04/03/2024] [Accepted: 04/22/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND Abdominal aortic aneurysm (AAA) is a macrovascular disease with high morbidity and mortality in the elderly. The limitation of the current management is that most patients can only be followed up until the AAA diameter increases to a threshold, and surgical intervention is recommended. The development of preventive and curative drugs for AAA is urgently needed. Macrophage-mediated immune inflammation is one of the key pathological links in the occurrence and development of AAA. AIMS This review article aims to evaluate the impact of immunometabolism on macrophage biology and its role in AAA. METHODS We analyze publications focusing on the polarization and metabolic reprogramming in macrophages as well as their potential impact on AAA, and summarize the potential interventions that are currently available to regulate these processes. RESULTS The phenotypic and functional changes in macrophages are accompanied by significant alterations in metabolic pathways. The interaction between macrophage polarization and metabolic pathways significantly influences the progression of AAA. CONCLUSION Macrophage polarization is a manifestation of the gross dichotomy of macrophage function into pro-inflammatory killing and tissue repair, that is, classically activated M1 macrophages and alternatively activated M2 macrophages. Macrophage functions are closely linked to metabolic changes, and the emerging field of immunometabolism is providing unique insights into the role of macrophages in AAA. It is essential to further investigate the precise metabolic changes and their functional consequences in AAA-associated macrophages.
Collapse
Affiliation(s)
- Ningxin Hou
- Division of Cardiovascular Surgery, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Hongmin Zhou
- Division of Cardiovascular Surgery, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Jun Li
- Division of Cardiovascular Surgery, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Xiaoxing Xiong
- Department of NeurosurgeryRenmin Hospital of Wuhan UniversityWuhanChina
| | - Hongping Deng
- Department of Vascular SurgeryRenmin Hospital of Wuhan UniversityWuhanChina
| | - Sizheng Xiong
- Department of Vascular SurgeryRenmin Hospital of Wuhan UniversityWuhanChina
| |
Collapse
|
23
|
Ortiz D, Guajardo F, Talamilla-Espinoza A, Vera-Tamargo F, Pérez-Valenzuela J, Mejías M, Pino-Quezada L, Galdames-Contreras F, Mandakovic D, Wacyk J, Urra FA, Pulgar R. Metabolic energetic adaptation of Atlantic salmon phagocytes to changes in carbon sources and exposure to PAMPs. FISH & SHELLFISH IMMUNOLOGY 2024; 154:109926. [PMID: 39370021 DOI: 10.1016/j.fsi.2024.109926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 08/26/2024] [Accepted: 09/24/2024] [Indexed: 10/08/2024]
Abstract
Phagocytic cells are pivotal for host homeostasis and infection defense, necessitating metabolic adaptations in glycolysis, the tricarboxylic acid (TCA) cycle, and oxidative phosphorylation (OXPHOS). While mammalian phagocytes shift towards glycolysis and glutaminolysis during polarization, research on fish phagocyte metabolic reprogramming is limited. To address this, the Atlantic salmon phagocytic cell line, SHK-1, serves as a valuable model. Using the Seahorse XFe96 Flux Analyzer, this study compares SHK-1 bioenergetics under glucose-restricted (L-15 medium) and glucose-supplemented (PM) conditions, providing insights into metabolic characteristics and responses to Piscirickettsia salmonis bacterium Pathogen-associated molecular patterns (PAMPs). A standardized protocol for the study of real-time changes in the metabolism study of SHK-1 in PM and L-15 media, determining oxygen consumption rate (OCR) and extracellular acidification rate (ECAR) is shown. Exhibiting metabolic adaptations, SHK-1 cells in the PM medium have higher basal and maximal OCR and spare capacity (SRC), while those grown in the L-15 medium favor OXPHOS, showing minimal glycolytic function. Despite metabolic differences, intracellular ATP levels are comparable, highlighting the metabolic plasticity and adaptability of SHK-1 cells to various carbon sources. Exposure to PAMPs from Piscirickettsia salmonis induces a metabolic shift, increasing glycolysis and OXPHOS, influencing ATP, lactate, glutamine, and glutamate levels. These findings highlight the role of mitochondrial bioenergetics and metabolic plasticity in salmon phagocytes, offering novel nutritional strategies for host-pathogen interventions based on energy metabolism.
Collapse
Affiliation(s)
- Daniela Ortiz
- Laboratory of Genetics and Genomics and Biological Interactions, Institute of Nutrition and Food Technology (INTA), University of Chile, El Líbano 5524, Macul, Santiago, 7830490, Chile; Laboratory of Animal Nutrition, Faculty of Agronomy, University of Chile, Avenida Santa Rosa 11315, La Pintana, Santiago, 8820808, Chile; Center for Research and Innovation in Aquaculture (CRIA), Universidad de Chile, Santiago, Chile
| | - Francisco Guajardo
- Laboratory of Metabolic Plasticity and Bioenergetics, Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, University of Chile, Independencia 1027, PO Box 7, Santiago, 8380453, Chile; Interdisciplinary Group on Mitochondrial Targeting and Bioenergetics (MIBI), Santiago, 8380453, Chile; Network for Snake Venom Research and Drug Discovery, Santiago, 7810000, Chile
| | - Andrea Talamilla-Espinoza
- Laboratory of Genetics and Genomics and Biological Interactions, Institute of Nutrition and Food Technology (INTA), University of Chile, El Líbano 5524, Macul, Santiago, 7830490, Chile; Center for Research and Innovation in Aquaculture (CRIA), Universidad de Chile, Santiago, Chile
| | - Francisca Vera-Tamargo
- Laboratory of Genetics and Genomics and Biological Interactions, Institute of Nutrition and Food Technology (INTA), University of Chile, El Líbano 5524, Macul, Santiago, 7830490, Chile; Center for Research and Innovation in Aquaculture (CRIA), Universidad de Chile, Santiago, Chile
| | - Javiera Pérez-Valenzuela
- Laboratory of Genetics and Genomics and Biological Interactions, Institute of Nutrition and Food Technology (INTA), University of Chile, El Líbano 5524, Macul, Santiago, 7830490, Chile; Center for Research and Innovation in Aquaculture (CRIA), Universidad de Chile, Santiago, Chile
| | - Madelaine Mejías
- Laboratory of Genetics and Genomics and Biological Interactions, Institute of Nutrition and Food Technology (INTA), University of Chile, El Líbano 5524, Macul, Santiago, 7830490, Chile; GEMA Center for Genomics, Ecology and Environment, Universidad Mayor, Camino La Pirámide 5750, Huechuraba, Santiago, Chile; Center for Research and Innovation in Aquaculture (CRIA), Universidad de Chile, Santiago, Chile
| | - Lucas Pino-Quezada
- Laboratory of Genetics and Genomics and Biological Interactions, Institute of Nutrition and Food Technology (INTA), University of Chile, El Líbano 5524, Macul, Santiago, 7830490, Chile; Center for Research and Innovation in Aquaculture (CRIA), Universidad de Chile, Santiago, Chile
| | - Felipe Galdames-Contreras
- Laboratory of Genetics and Genomics and Biological Interactions, Institute of Nutrition and Food Technology (INTA), University of Chile, El Líbano 5524, Macul, Santiago, 7830490, Chile; Center for Research and Innovation in Aquaculture (CRIA), Universidad de Chile, Santiago, Chile
| | - Dinka Mandakovic
- GEMA Center for Genomics, Ecology and Environment, Universidad Mayor, Camino La Pirámide 5750, Huechuraba, Santiago, Chile
| | - Jurij Wacyk
- Laboratory of Animal Nutrition, Faculty of Agronomy, University of Chile, Avenida Santa Rosa 11315, La Pintana, Santiago, 8820808, Chile; Center for Research and Innovation in Aquaculture (CRIA), Universidad de Chile, Santiago, Chile
| | - Félix A Urra
- Laboratory of Metabolic Plasticity and Bioenergetics, Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, University of Chile, Independencia 1027, PO Box 7, Santiago, 8380453, Chile; Interdisciplinary Group on Mitochondrial Targeting and Bioenergetics (MIBI), Santiago, 8380453, Chile; Network for Snake Venom Research and Drug Discovery, Santiago, 7810000, Chile.
| | - Rodrigo Pulgar
- Laboratory of Genetics and Genomics and Biological Interactions, Institute of Nutrition and Food Technology (INTA), University of Chile, El Líbano 5524, Macul, Santiago, 7830490, Chile; Center for Research and Innovation in Aquaculture (CRIA), Universidad de Chile, Santiago, Chile.
| |
Collapse
|
24
|
Liu AB, Tan B, Yang P, Tian N, Li JK, Wang SC, Yang LS, Ma L, Zhang JF. The role of inflammatory response and metabolic reprogramming in sepsis-associated acute kidney injury: mechanistic insights and therapeutic potential. Front Immunol 2024; 15:1487576. [PMID: 39544947 PMCID: PMC11560457 DOI: 10.3389/fimmu.2024.1487576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 10/11/2024] [Indexed: 11/17/2024] Open
Abstract
Sepsis represents a severe condition characterized by organ dysfunction resulting from a dysregulated host response to infection. Among the organs affected, the kidneys are particularly vulnerable, with significant functional impairment that markedly elevates mortality rates. Previous researches have highlighted that both inflammatory response dysregulation and metabolic reprogramming are crucial in the onset and progression of sepsis associated acute kidney injury (SA-AKI), making these processes potential targets for innovative therapies. This study aims to elucidate the pathophysiological mechanisms of renal injury in sepsis by perspective of inflammatory response dysregulation, with particular emphasis on pyroptosis, necroptosis, autophagy, and ferroptosis. Furthermore, it will incorporate insights into metabolic reprogramming to provide a detailed analysis of the mechanisms driving SA-AKI and explore potential targeted therapeutic strategies, providing solid theoretical framework for the development of targeted therapies for SA-AKI.
Collapse
Affiliation(s)
- An-Bu Liu
- Department of Emergency Medical, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
- Ningxia Key Laboratory of Clinical and Pathogenic Microbiology, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Bin Tan
- Department of Emergency Medical, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| | - Ping Yang
- Department of Emergency Medical, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| | - Na Tian
- Department of Emergency Medical, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
- School of Clinical Medicine, Ningxia Medical University, Yinchuan, Ningxia, China
| | - Jin-Kui Li
- Department of Emergency Medical, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| | - Si-Cong Wang
- Department of Emergency Medical, Yanchi County People’s Hospital, Wuzhong, Ningxia, China
| | - Li-Shan Yang
- Department of Emergency Medical, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| | - Lei Ma
- Department of Emergency Medical, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| | - Jun-Fei Zhang
- Department of Emergency Medical, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
- Ningxia Key Laboratory of Clinical and Pathogenic Microbiology, General Hospital of Ningxia Medical University, Yinchuan, China
| |
Collapse
|
25
|
Yuan Y, Li R, Zhang Y, Zhao Y, Liu Q, Wang J, Yan X, Su J. Attenuating mitochondrial dysfunction-derived reactive oxygen species and reducing inflammation: the potential of Daphnetin in the viral pneumonia crisis. Front Pharmacol 2024; 15:1477680. [PMID: 39494349 PMCID: PMC11527716 DOI: 10.3389/fphar.2024.1477680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 09/25/2024] [Indexed: 11/05/2024] Open
Abstract
Amidst the global burden of viral pneumonia, mitigating the excessive inflammatory response induced by viral pneumonia has emerged as a significant challenge. Pneumovirus infections can lead to the persistent activation of M1 macrophages, culminating in cytokine storms that exacerbate pulmonary inflammation and contribute to the development of pulmonary fibrosis. Mitochondria, beyond their role as cellular powerhouses, are pivotal in integrating inflammatory signals and regulating macrophage polarization. Mitochondrial damage in alveolar macrophages is postulated to trigger excessive release of reactive oxygen species (ROS), thereby amplifying macrophage-mediated inflammatory pathways. Recent investigations have highlighted the anti-inflammatory potential of Daphnetin, particularly in the context of cardiovascular and renal disorders. This review elucidates the mechanisms by which viral infection-induced mitochondrial damage promotes ROS generation, leading to the phenotypic shift of alveolar macrophages towards a pro-inflammatory state. Furthermore, we propose a mechanism whereby Daphnetin attenuates inflammatory signaling by inhibiting excessive release of mitochondrial ROS, thus offering mitochondrial protection. Daphnetin may represent a promising pharmacological intervention for viral pneumonia and could play a crucial role in addressing future pandemics.
Collapse
Affiliation(s)
- Yuan Yuan
- Key Laboratory of Pathobiology, Department of Pathophysiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Runyuan Li
- Key Laboratory of Pathobiology, Department of Pathophysiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Yinji Zhang
- Jilin Province Xidian Pharmaceutical Sci-Tech Development Co.,Ltd, Panshi, Jilin, China
| | - Yuanxin Zhao
- Key Laboratory of Pathobiology, Department of Pathophysiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Qingqing Liu
- Key Laboratory of Pathobiology, Department of Pathophysiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Jian Wang
- Key Laboratory of Pathobiology, Department of Pathophysiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Xiaoyu Yan
- Key Laboratory of Pathobiology, Department of Pathophysiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Jing Su
- Key Laboratory of Pathobiology, Department of Pathophysiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, China
| |
Collapse
|
26
|
Yan L, Wang W, Qiu Y, Yu C, Wang R, Li C. Role of glucose metabolism reprogramming in keratinocytes in the link between psoriasis and metabolic syndrome. Int Immunopharmacol 2024; 139:112704. [PMID: 39032466 DOI: 10.1016/j.intimp.2024.112704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/01/2024] [Accepted: 07/14/2024] [Indexed: 07/23/2024]
Abstract
The mechanism linking psoriasis to metabolic syndrome (MetS) remains poorly understood. Recent reports indicate upregulation of glycolysis-related proteins in psoriatic keratinocytes (KCs). However, the role of glucose metabolism reprogramming in psoriatic KCs, psoriasis, and psoriasis with MetS remains unclear. In this study, we confirmed glucose metabolism reprogramming in psoriatic KCs by examining glycolysis-related genes, proteins, and metabolites. We found that inhibiting glucose metabolism reprogramming in psoriasiform KCs led to improvements in psoriasiform features. Notably, we observed enhanced glucose metabolism reprogramming in KCs within psoriatic skin lesions of patients with MetS. In vitro, high-glucose and high-fat culture intensified glucose metabolism reprogramming in psoriasiform KCs partially via the AKT/mTOR pathway. These findings highlight a strong link between the glycolytic switch and KC function and suggest that glucose metabolism reprogramming in KCs contributes to heightened psoriatic inflammation in MetS.
Collapse
Affiliation(s)
- Liang Yan
- Department of Dermatology, General Hospital of Central Theater Command of PLA, Wuhan, Hubei, China; Department of Dermatology, First Medical Center of Chinese PLA General Hospital, Beijing, China.
| | - Wenqiu Wang
- Department of Dermatology, First Medical Center of Chinese PLA General Hospital, Beijing, China.
| | - Yuxin Qiu
- Department of Dermatology, First Medical Center of Chinese PLA General Hospital, Beijing, China; School of Medicine, Nankai University, Tianjin, China.
| | - Chongli Yu
- Department of Dermatology, First Medical Center of Chinese PLA General Hospital, Beijing, China; School of Medicine, Nankai University, Tianjin, China.
| | - Rui Wang
- Department of Dermatology, First Medical Center of Chinese PLA General Hospital, Beijing, China.
| | - Chengxin Li
- Department of Dermatology, First Medical Center of Chinese PLA General Hospital, Beijing, China.
| |
Collapse
|
27
|
Fang C, Ren P, He Y, Wang Y, Yao S, Zhao C, Li X, Zhang X, Li J, Li M. Spinster homolog 2/S1P signaling ameliorates macrophage inflammatory response to bacterial infections by balancing PGE 2 production. Cell Commun Signal 2024; 22:463. [PMID: 39350143 PMCID: PMC11440679 DOI: 10.1186/s12964-024-01851-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Accepted: 09/23/2024] [Indexed: 10/04/2024] Open
Abstract
BACKGROUND Mitochondria play a crucial role in shaping the macrophage inflammatory response during bacterial infections. Spinster homolog 2 (Spns2), responsible for sphingosine-1-phosphate (S1P) secretion, acts as a key regulator of mitochondrial dynamics in macrophages. However, the link between Spns2/S1P signaling and mitochondrial functions remains unclear. METHODS Peritoneal macrophages were isolated from both wild-type and Spns2 knockout rats, followed by non-targeted metabolomics and RNA sequencing analysis to identify the potential mediators through which Spns2/S1P signaling influences the mitochondrial functions in macrophages. Various agonists and antagonists were used to modulate the activation of Spns2/S1P signaling and its downstream pathways, with the underlying mechanisms elucidated through western blotting. Mitochondrial functions were assessed using flow cytometry and oxygen consumption assays, as well as morphological analysis. The impact on inflammatory response was validated through both in vitro and in vivo sepsis models, with the specific role of macrophage-expressed Spns2 in sepsis evaluated using Spns2flox/floxLyz2-Cre mice. Additionally, the regulation of mitochondrial functions by Spns2/S1P signaling was confirmed using THP-1 cells, a human monocyte-derived macrophage model. RESULTS In this study, we unveil prostaglandin E2 (PGE2) as a pivotal mediator involved in Spns2/S1P-mitochondrial communication. Spns2/S1P signaling suppresses PGE2 production to support malate-aspartate shuttle activity. Conversely, excessive PGE2 resulting from Spns2 deficiency impairs mitochondrial respiration, leading to intracellular lactate accumulation and increased reactive oxygen species (ROS) generation through E-type prostanoid receptor 4 activation. The overactive lactate-ROS axis contributes to the early-phase hyperinflammation during infections. Prolonged exposure to elevated PGE2 due to Spns2 deficiency culminates in subsequent immunosuppression, underscoring the dual roles of PGE2 in inflammation throughout infections. The regulation of PGE2 production by Spns2/S1P signaling appears to depend on the coordinated activation of multiple S1P receptors rather than any single one. CONCLUSIONS These findings emphasize PGE2 as a key effector of Spns2/S1P signaling on mitochondrial dynamics in macrophages, elucidating the mechanisms through which Spns2/S1P signaling balances both early hyperinflammation and subsequent immunosuppression during bacterial infections.
Collapse
Affiliation(s)
- Chao Fang
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an, China
| | - Pan Ren
- Department of Burns and Plastic Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Yejun He
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an, China
| | - Yitian Wang
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an, China
| | - Shuting Yao
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an, China
| | - Congying Zhao
- Department of Burns and Plastic Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Xueyong Li
- Department of Burns and Plastic Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Xi Zhang
- Department of Plastic Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China.
| | - Jinqing Li
- Department of Burns, Plastic and Wound Repair Surgery, the Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China.
| | - Mingkai Li
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an, China.
| |
Collapse
|
28
|
Chen HJ, Sévin DC, Griffith GR, Vappiani J, Booty LM, van Roomen CPAA, Kuiper J, Dunnen JD, de Jonge WJ, Prinjha RK, Mander PK, Grandi P, Wyspianska BS, de Winther MPJ. Integrated metabolic-transcriptomic network identifies immunometabolic modulations in human macrophages. Cell Rep 2024; 43:114741. [PMID: 39276347 DOI: 10.1016/j.celrep.2024.114741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 06/08/2024] [Accepted: 08/26/2024] [Indexed: 09/17/2024] Open
Abstract
Macrophages exhibit diverse phenotypes and respond flexibly to environmental cues through metabolic remodeling. In this study, we present a comprehensive multi-omics dataset integrating intra- and extracellular metabolomes with transcriptomic data to investigate the metabolic impact on human macrophage function. Our analysis establishes a metabolite-gene correlation network that characterizes macrophage activation. We find that the concurrent inhibition of tryptophan catabolism by IDO1 and IL4I1 inhibitors suppresses the macrophage pro-inflammatory response, whereas single inhibition leads to pro-inflammatory activation. We find that a subset of anti-inflammatory macrophages activated by Fc receptor signaling promotes glycolysis, challenging the conventional concept of reduced glycolysis preference in anti-inflammatory macrophages. We demonstrate that cholesterol accumulation suppresses macrophage IFN-γ responses. Our integrated network enables the discovery of immunometabolic features, provides insights into macrophage functional metabolic reprogramming, and offers valuable resources for researchers exploring macrophage immunometabolic characteristics and potential therapeutic targets for immune-related disorders.
Collapse
Affiliation(s)
- Hung-Jen Chen
- Department of Medical Biochemistry, Experimental Vascular Biology, Atherosclerosis and Ischemic Syndromes, Amsterdam Cardiovascular Sciences, Amsterdam Institute for Immunology and Infectious Diseases, Amsterdam University Medical Center, Location AMC, University of Amsterdam, 1105 AZ Amsterdam, the Netherlands
| | | | - Guillermo R Griffith
- Department of Medical Biochemistry, Experimental Vascular Biology, Atherosclerosis and Ischemic Syndromes, Amsterdam Cardiovascular Sciences, Amsterdam Institute for Immunology and Infectious Diseases, Amsterdam University Medical Center, Location AMC, University of Amsterdam, 1105 AZ Amsterdam, the Netherlands
| | | | - Lee M Booty
- Immunology Network, Immunology Research Unit, GSK, SG1 2NY Stevenage, UK
| | - Cindy P A A van Roomen
- Department of Medical Biochemistry, Experimental Vascular Biology, Atherosclerosis and Ischemic Syndromes, Amsterdam Cardiovascular Sciences, Amsterdam Institute for Immunology and Infectious Diseases, Amsterdam University Medical Center, Location AMC, University of Amsterdam, 1105 AZ Amsterdam, the Netherlands
| | - Johan Kuiper
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, 2333 CL Leiden, the Netherlands
| | - Jeroen den Dunnen
- Center for Experimental and Molecular Medicine, Amsterdam Institute for Immunology and Infectious Diseases, Amsterdam University Medical Center, Location AMC, University of Amsterdam, 1105 AZ Amsterdam, the Netherlands
| | - Wouter J de Jonge
- Tytgat Institute for Liver and Intestinal Research, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam University Medical Center, Location AMC, University of Amsterdam, 1105 BK Amsterdam, the Netherlands
| | - Rab K Prinjha
- Immunology Research Unit, GSK Medicines Research Centre, SG1 2NY Stevenage, UK
| | - Palwinder K Mander
- Immunology Research Unit, GSK Medicines Research Centre, SG1 2NY Stevenage, UK
| | | | - Beata S Wyspianska
- Immunology Research Unit, GSK Medicines Research Centre, SG1 2NY Stevenage, UK
| | - Menno P J de Winther
- Department of Medical Biochemistry, Experimental Vascular Biology, Atherosclerosis and Ischemic Syndromes, Amsterdam Cardiovascular Sciences, Amsterdam Institute for Immunology and Infectious Diseases, Amsterdam University Medical Center, Location AMC, University of Amsterdam, 1105 AZ Amsterdam, the Netherlands.
| |
Collapse
|
29
|
Jiang R, Ren WJ, Wang LY, Zhang W, Jiang ZH, Zhu GY. Targeting Lactate: An Emerging Strategy for Macrophage Regulation in Chronic Inflammation and Cancer. Biomolecules 2024; 14:1202. [PMID: 39456135 PMCID: PMC11505598 DOI: 10.3390/biom14101202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 09/16/2024] [Accepted: 09/20/2024] [Indexed: 10/28/2024] Open
Abstract
Lactate accumulation and macrophage infiltration are pivotal features of both chronic inflammation and cancer. Lactate, once regarded merely as an aftereffect of glucose metabolism, is now gaining recognition for its burgeoning spectrum of biological roles and immunomodulatory significance. Recent studies have evidenced that macrophages display divergent immunophenotypes in different diseases, which play a pivotal role in disease management by modulating macrophage polarization within the disease microenvironment. The specific polarization patterns of macrophages in a high-lactate environment and their contribution to the progression of chronic inflammation and cancer remain contentious. This review presents current evidence on the crosstalk of lactate and macrophage in chronic inflammation and cancer. Additionally, we provide an in-depth exploration of the pivotal yet enigmatic mechanisms through which lactate orchestrates disease pathogenesis, thereby offering novel perspectives to the development of targeted therapeutic interventions for chronic inflammation and cancer.
Collapse
Affiliation(s)
| | | | | | | | - Zhi-Hong Jiang
- State Key Laboratory of Quality Research in Chinese Medicine, Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Disease, Macau Institute for Applied Research in Medicine and Health, Faculty of Chinese Medicine, Macau University of Science and Technology, Macau 999078, China; (R.J.); (W.-J.R.); (L.-Y.W.); (W.Z.)
| | - Guo-Yuan Zhu
- State Key Laboratory of Quality Research in Chinese Medicine, Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Disease, Macau Institute for Applied Research in Medicine and Health, Faculty of Chinese Medicine, Macau University of Science and Technology, Macau 999078, China; (R.J.); (W.-J.R.); (L.-Y.W.); (W.Z.)
| |
Collapse
|
30
|
Santarsiero A, Todisco S, Convertini P, De Leonibus C, Infantino V. Transcriptional Regulation and Function of Malic Enzyme 1 in Human Macrophage Activation. Biomedicines 2024; 12:2089. [PMID: 39335602 PMCID: PMC11428690 DOI: 10.3390/biomedicines12092089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/04/2024] [Accepted: 09/10/2024] [Indexed: 09/30/2024] Open
Abstract
Macrophages represent primary players of the innate immune system. Macrophage activation triggers several signaling pathways and is tightly associated with metabolic changes, which drive different immune subsets. Recent studies unveil the role of various metabolic enzymes in macrophage activation. Here, we show that malic enzyme 1 (ME1) is overexpressed in LPS-induced macrophages. Through chromatin immunoprecipitation, we demonstrate that ME1 transcriptional regulation is under control of NF-κB. Furthermore, ME1 activity is also increased in activated human PBMC-derived macrophages. Notably, ME1 gene silencing decreases nitric oxide as well as reactive oxygen species and prostaglandin E2 inflammatory mediators. Therefore, modulating ME1 provides a potential approach for immunometabolic regulation and in turn macrophage function.
Collapse
Affiliation(s)
- Anna Santarsiero
- Department of Science, University of Basilicata, 85100 Potenza, Italy; (A.S.); (S.T.); (P.C.)
| | - Simona Todisco
- Department of Science, University of Basilicata, 85100 Potenza, Italy; (A.S.); (S.T.); (P.C.)
| | - Paolo Convertini
- Department of Science, University of Basilicata, 85100 Potenza, Italy; (A.S.); (S.T.); (P.C.)
| | - Chiara De Leonibus
- Department of Health Sciences, University of Basilicata, 85100 Potenza, Italy;
- Telethon Institute of Genetics and Medicine (TIGEM), 80078 Pozzuoli, Italy
| | - Vittoria Infantino
- Department of Health Sciences, University of Basilicata, 85100 Potenza, Italy;
| |
Collapse
|
31
|
Qiu S, Cao L, Xiang D, Wang S, Wang D, Qian Y, Li X, Zhou X. Enhanced osteogenic differentiation in 3D hydrogel scaffold via macrophage mitochondrial transfer. J Nanobiotechnology 2024; 22:540. [PMID: 39237942 PMCID: PMC11375923 DOI: 10.1186/s12951-024-02757-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 08/05/2024] [Indexed: 09/07/2024] Open
Abstract
To assess the efficacy of a novel 3D biomimetic hydrogel scaffold with immunomodulatory properties in promoting fracture healing. Immunomodulatory scaffolds were used in cell experiments, osteotomy mice treatment, and single-cell transcriptomic sequencing. In vitro, fluorescence tracing examined macrophage mitochondrial transfer and osteogenic differentiation of bone marrow-derived mesenchymal stem cells (BMSCs). Scaffold efficacy was assessed through alkaline phosphatase (ALP), Alizarin Red S (ARS) staining, and in vivo experiments. The scaffold demonstrated excellent biocompatibility and antioxidant-immune regulation. Single-cell sequencing revealed a shift in macrophage distribution towards the M2 phenotype. In vitro experiments showed that macrophage mitochondria promoted BMSCs' osteogenic differentiation. In vivo experiments confirmed accelerated fracture healing. The GAD/Ag-pIO scaffold enhances osteogenic differentiation and fracture healing through immunomodulation and promotion of macrophage mitochondrial transfer.
Collapse
Affiliation(s)
- Shui Qiu
- Department of Orthopedics, First Hospital of China Medical University, No. 155 Nanjing North Street, Shenyang, Liaoning Province, China
| | - Lili Cao
- Department of Medical Oncology, First Hospital of China Medical University, No. 155 Nanjing North Street, Shenyang, China
| | - Dingding Xiang
- School of Mechanical Engineering and Automation, Foshan Graduate School of Innovation, Northeastern University, Shenyang, 110819, China
| | - Shu Wang
- School of Mechanical Engineering and Automation, Foshan Graduate School of Innovation, Northeastern University, Shenyang, 110819, China
| | - Di Wang
- School of Mechanical Engineering and Automation, Foshan Graduate School of Innovation, Northeastern University, Shenyang, 110819, China
| | - Yiyi Qian
- School of Mechanical Engineering and Automation, Foshan Graduate School of Innovation, Northeastern University, Shenyang, 110819, China
| | - Xiaohua Li
- Department of Orthopedics, Zhongmeng Hospital, Arong Banner, Hulunbuir City, Inner, Mongolia
| | - Xiaoshu Zhou
- Department of Orthopedics, First Hospital of China Medical University, No. 155 Nanjing North Street, Shenyang, Liaoning Province, China.
| |
Collapse
|
32
|
Zuo S, Wang Y, Bao H, Zhang Z, Yang N, Jia M, Zhang Q, Jian A, Ji R, Zhang L, Lu Y, Huang Y, Shen P. Lipid synthesis, triggered by PPARγ T166 dephosphorylation, sustains reparative function of macrophages during tissue repair. Nat Commun 2024; 15:7269. [PMID: 39179603 PMCID: PMC11343878 DOI: 10.1038/s41467-024-51736-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 08/16/2024] [Indexed: 08/26/2024] Open
Abstract
Macrophages may acquire a reparative phenotype that supports tissue repair and remodeling in response to tissue injury. However, the metabolic requirements underpinning this process are incompletely understood. Here, we show that posttranslational modification (PTM) of PPARγ regulates lipid synthesis in response to wound microenvironmental cues and that metabolic rewiring orchestrates function of reparative macrophages. In injured tissues, repair signaling leads to decreased macrophage PPARγ threonine 166 (T166) phosphorylation, which results in a partially active PPARγ transcriptional program comprised of increased binding activity to the regulator regions of lipid synthesis-associated genes, thereby increased lipogenesis. The accumulated lipids serve as signaling molecules, triggering STAT3-mediated growth factor expression, and supporting the synthesis of phospholipids for the expansion of the endoplasmic reticulum (ER), which is required for protein secretion. Genetic or pharmacological inhibition of PPARγ T166 phosphorylation promotes the reparative function of macrophages and facilitates tissue regeneration. In summary, our work identifies PPARγ T166-regulated lipid biosynthesis as an essential pathway for meeting the anabolic demands of the activation and function of macrophages and provides a rationale for potential therapeutic targeting of tissue repair.
Collapse
Affiliation(s)
- Shiman Zuo
- State Key Laboratory of Pharmaceutical Biotechnology and Department of Urology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Yuxin Wang
- State Key Laboratory of Pharmaceutical Biotechnology and Department of Urology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Hanjing Bao
- State Key Laboratory of Pharmaceutical Biotechnology and Department of Urology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Zehui Zhang
- State Key Laboratory of Pharmaceutical Biotechnology and Department of Urology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Nanfei Yang
- State Key Laboratory of Pharmaceutical Biotechnology and Department of Urology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Meng Jia
- State Key Laboratory of Pharmaceutical Biotechnology and Department of Urology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Qing Zhang
- Department of Urology, Drum Tower Hospital, Medical School of Nanjing University, Institute of Urology, Nanjing University, Nanjing, 210008, China
| | - Ani Jian
- State Key Laboratory of Pharmaceutical Biotechnology and Department of Urology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Rong Ji
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Lidan Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Yan Lu
- State Key Laboratory of Pharmaceutical Biotechnology and Department of Urology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Yahong Huang
- State Key Laboratory of Pharmaceutical Biotechnology and Department of Urology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Pingping Shen
- State Key Laboratory of Pharmaceutical Biotechnology and Department of Urology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, School of Life Sciences, Nanjing University, Nanjing, 210023, China.
- Shenzhen Research Institute of Nanjing University, Shenzhen, 518000, China.
| |
Collapse
|
33
|
Sovar A, Patrick M, Annamalai RT. Substrate Curvature Influences Cytoskeletal Rearrangement and Modulates Macrophage Phenotype. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.12.607593. [PMID: 39211272 PMCID: PMC11361075 DOI: 10.1101/2024.08.12.607593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Inflammation serves as a critical defense mechanism against pathogens and tissue damage but can lead to chronic diseases, such as cardiovascular disease and diabetes, when dysregulated. Macrophages play a pivotal role in orchestrating inflammatory responses, transitioning from pro-inflammatory M1 to anti-inflammatory M2 phenotypes to resolve inflammation and promote tissue repair. Current approaches to modulate macrophage phenotype predominantly rely on biochemical cues, which may induce systemic side effects. Given the mechanosensitivity of macrophages, this study investigates biophysical cues, specifically substrate curvature, as a localized strategy to regulate macrophage phenotype and minimize systemic repercussions. We hypothesized that substrate curvature influences macrophage immunophenotype by modulating F-actin polymerization. To test this hypothesis, we fabricated spherical microgels with tunable curvatures and characterized their biophysical properties. Our findings indicate that macrophages adhere to microgel surfaces irrespective of curvature, but the curvature significantly alters F-actin dynamics. Furthermore, manipulating cytoskeletal dynamics via selective actin inhibition partially reversed curvature-induced changes in macrophage phenotype. These results underscore the pivotal role of substrate curvature in modulating macrophage behavior and immunophenotype. Overall, our study demonstrates that substrate curvature significantly influences macrophage cytoskeletal dynamics and resulting immunophenotype. This simple approach can be utilized as a localized immunomodulatory treatment for inflammatory diseases.
Collapse
|
34
|
Hong Q, Zhang W, Liu Z, Li B, Liu X, Wang Z, Wang R, Yang J, Nie B, Yue B. Infection microenvironment-triggered nanoparticles eradicate MRSA by thermally amplified chemodynamic therapy and M1 macrophage. J Nanobiotechnology 2024; 22:448. [PMID: 39080692 PMCID: PMC11287980 DOI: 10.1186/s12951-024-02706-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 07/05/2024] [Indexed: 08/03/2024] Open
Abstract
It is of great significance to develop a novel approach to treat bacterial infections, as the frequent misuse of antibiotics leads to the serious problem of bacterial resistance. This study proposed antibiotic-free antibacterial nanoparticles for eliminating methicillin-resistant Staphylococcus aureus (MRSA) based on a multi-model synergistic antibacterial ability of chemodynamic therapy (CDT), photothermal effect, and innate immunomodulation. Specifically, a polydopamine (PDA) layer coated and Ag nanoparticles loaded core-shell structure Fe3O4 nanoparticles (Fe3O4@PDA-Ag) is prepared. The Fe3O4 catalyzes H2O2 present in acidic microenvironment of bacterial infection into more toxic reactive oxygen species (ROS) and synergizes with the released Ag ions to exert a stronger bactericidal capacity, which can be augmented by photothermal action of PDA triggered by near-infrared light and loosen the biofilm by photothermal action to promote the penetration of ROS and Ag ion into the biofilm, result in disrupting biofilm structure along with killing encapsulated bacteria. Furthermore, Fe3O4@PDA-Ag exerts indirect antibacterial effects by promoting M1 macrophage polarizing. Animal models demonstrated that Fe3O4@PDA-Ag effectively controlled MRSA-induced infections through photothermal enhanced CDT, Ag+ releasing, and macrophage-mediated bactericidal properties. The acid-triggered antibacterial nanoparticles are expected to combat drug-resistant bacteria infection.
Collapse
Affiliation(s)
- Qimin Hong
- Department of Bone and Joint Surgery, Department of Orthopedics, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200127, China
| | - Wei Zhang
- Department of Bone and Joint Surgery, Department of Orthopedics, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200127, China
| | - Zhen Liu
- Department of Bone and Joint Surgery, Department of Orthopedics, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200127, China
| | - Bo Li
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Xi Liu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Radiology, Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Zhinan Wang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Radiology, Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Rui Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Jianping Yang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China.
| | - Bin'en Nie
- Department of Bone and Joint Surgery, Department of Orthopedics, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200127, China.
| | - Bing Yue
- Department of Bone and Joint Surgery, Department of Orthopedics, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200127, China.
| |
Collapse
|
35
|
An L, Zhai Q, Tao K, Xiong Y, Ou W, Yu Z, Yang X, Ji J, Lu M. Quercetin induces itaconic acid-mediated M1/M2 alveolar macrophages polarization in respiratory syncytial virus infection. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 130:155761. [PMID: 38797031 DOI: 10.1016/j.phymed.2024.155761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 04/17/2024] [Accepted: 05/17/2024] [Indexed: 05/29/2024]
Abstract
BACKGROUND Quercetin has received extensive attention for its therapeutic potential treating respiratory syncytial virus (RSV) infection diseases. Recent studies have highlighted quercetin's ability of suppressing alveolar macrophages (AMs)-derived lung inflammation. However, the anti-inflammatory mechanism of quercetin against RSV infection still remains elusive. PURPOSE This study aims to elucidate the mechanism about quercetin anti-inflammatory effect on RSV infection. METHODS BALB/c mice were intranasally infected with RSV and received quercetin (30, 60, 120 mg/kg/d) orally for 3 days. Additionally, an in vitro infection model utilizing mouse alveolar macrophages (MH-S cells) was employed to validate the proposed mechanism. RESULTS Quercetin exhibited a downregulatory effect on glycolysis and tricarboxylic acid (TCA) cycle metabolism in RSV-infected AMs. However, it increased itaconic acid production, a metabolite derived from citrate through activating immune responsive gene 1 (IRG1), and further inhibiting succinate dehydrogenase (SDH) activity. While the suppression of SDH activity orchestrated a cascading downregulation of Hif-1α/NLRP3 signaling, ultimately causing AMs polarization from M1 to M2 phenotypes. CONCLUSION Our study demonstrated quercetin stimulated IRG1-mediated itaconic acid anabolism and further inhibited SDH/Hif-1α/NLRP3 signaling pathway, which led to M1 to M2 polarization of AMs so as to ameliorate RSV-induced lung inflammation.
Collapse
Affiliation(s)
- Li An
- School of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Qianwen Zhai
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, China
| | - Keyu Tao
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, Institute of Pediatrics, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yingcai Xiong
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, Institute of Pediatrics, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Weiying Ou
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, Institute of Pediatrics, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Ziwei Yu
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Xingyu Yang
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Jianjian Ji
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, Institute of Pediatrics, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Mengjiang Lu
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| |
Collapse
|
36
|
Zhang Z, Wang Y, Xia L, Zhang Y. Roles of Critical Amino Acids Metabolism in The Interactions Between Intracellular Bacterial Infection and Macrophage Function. Curr Microbiol 2024; 81:280. [PMID: 39031203 DOI: 10.1007/s00284-024-03801-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 07/10/2024] [Indexed: 07/22/2024]
Abstract
Macrophages, as crucial participants in the innate immune system, respond to pathogenic challenges through their dynamic metabolic adjustments, demonstrating the intimate interplay between cellular metabolism and immune function. Bacterial infection of macrophages causes changes in macrophage metabolism, affecting both macrophage function and bacterial virulence and intracellular survival. This review explores the reprogramming of amino acid metabolism in macrophages in response to bacterial infection, with a particular focus on the influence of critical amino acids such as serine, glutamine, and arginine on the immune functions of macrophages; highlights the roles of these metabolic pathways in macrophage functions such as phagocytosis, inflammatory response, immune regulation, and pathogen clearance; reveals how pathogens exploit and manipulate the amino acid metabolism within macrophages to support their own growth and replication, thereby showcasing the intricate interplay between macrophages and pathogens. It provides a foundation for understanding the interactions between macrophages amino acid metabolism and pathogens, offering potential strategies and therapeutic targets for the development of novel anti-infection therapies.
Collapse
Affiliation(s)
- Zuowei Zhang
- Department of Biochemistry and Molecular Biology, Jiangsu University School of Medicine, Zhenjiang, 212013, Jiangsu, China
- International Genome Center, Jiangsu University, Zhenjiang, 212013, China
| | - Yurou Wang
- International Genome Center, Jiangsu University, Zhenjiang, 212013, China
| | - Lin Xia
- Department of Laboratory Medicine, Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, China
| | - Ying Zhang
- Department of Biochemistry and Molecular Biology, Jiangsu University School of Medicine, Zhenjiang, 212013, Jiangsu, China.
| |
Collapse
|
37
|
Szczepanski JM, Lieberman JA, Lamps LW, Gonzalez RS, Xue Y, Zhang X, Yilmaz OH, Hart J, Krausz T, Mantilla JG, McHugh JB, Westerhoff M. Histologic Features of Mycobacterial Spindle Cell Pseudotumors: A Multi-institutional Clinicopathologic Analysis of 14 Cases. Am J Surg Pathol 2024; 48:890-900. [PMID: 38726848 DOI: 10.1097/pas.0000000000002234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Mycobacterial spindle cell pseudotumors (MSPs) are a rare and diagnostically challenging manifestation of non-tuberculous mycobacterial (NTM) infections. Proper recognition of these pseudotumors is important because they are treatable and benign. In this study, we evaluated the morphologic patterns of MSPs to improve their pathologic identification. Clinical and morphologic features of 14 MSPs were analyzed. Histologic factors evaluated included the architectural growth pattern of spindled or epithelioid macrophages, granulomas and their location within the lesion, neutrophilic microabscesses, multinucleated giant cells, necrosis, and effacement of background tissue. The composition of inflammatory infiltrates, organism density by acid-fast staining, and stromal changes were also assessed. In addition, 8 of 14 cases underwent molecular microbiology identification by a clinical amplicon-sequencing assay for non-tuberculous mycobacteria. MSP sites included 2 bowel, 10 lymph nodes, 1 liver, and 1 extremity. Cases with available clinical history (n=10) all occurred in immunocompromised patients. All demonstrated effacement of normal structures with spindled cells arranged in a storiform or fascicular architectural pattern. In addition, all cases showed lymphocytic inflammation, with prominent concurrent neutrophilic inflammation in 50% (7/14) of cases. Other morphologic findings included foamy histiocytes (64%, 9/14), peripherally situated granulomas (21%, 3/14), and neutrophilic microabscesses (21%, 3/14). All tested cases were positive for NTM by PCR methods. Mycobacterium avium was the most commonly isolated pathogen (6/8). Mycobacterial spindle cell pseudotumors show predominantly spindled morphology that may be mistaken as a neoplasm. Surgical pathologists who evaluate lymph nodes, soft tissue, and gastrointestinal tissues should be aware of this spindled tumefactive phenomenon in the setting of immunocompromised patients. Recognition of key morphologic features of neutrophilic inflammation, peripheral granulomas, or foamy histiocytes within a spindled lesion can help guide the pathologist to a correct diagnosis of an inflammatory process secondary to infection rather than a spindle cell neoplasm. Accurate diagnosis to facilitate appropriate antimicrobial and/or surgical therapy requires a comprehensive evaluation combining clinical, histopathologic, and microbiological findings.
Collapse
Affiliation(s)
| | - Joshua A Lieberman
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, WA
| | - Laura W Lamps
- Department of Pathology, University of Michigan, Ann Arbor, MI
| | - Raul S Gonzalez
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, GA
| | - Yue Xue
- Department of Pathology, Northwestern University
| | - Xuchen Zhang
- Department of Pathology, Yale School of Medicine, New Haven, CT
| | - Osman H Yilmaz
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| | - John Hart
- Department of Pathology, University of Chicago, Chicago, IL
| | - Thomas Krausz
- Department of Pathology, University of Chicago, Chicago, IL
| | - Jose G Mantilla
- Department of Pathology, NYU Grossman School of Medicine, New York City, NY
| | | | | |
Collapse
|
38
|
Gjøen T, Ruyter B, Østbye TK. Effects of eicosapentaneoic acid on innate immune responses in an Atlantic salmon kidney cell line in vitro. PLoS One 2024; 19:e0302286. [PMID: 38805503 PMCID: PMC11132502 DOI: 10.1371/journal.pone.0302286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 04/02/2024] [Indexed: 05/30/2024] Open
Abstract
Studies of the interplay between metabolism and immunity, known as immunometabolism, is steadily transforming immunological research into new understandings of how environmental cues like diet are affecting innate and adaptive immune responses. The aim of this study was to explore antiviral transcriptomic responses under various levels of polyunsaturated fatty acid. Atlantic salmon kidney cells (ASK cell line) were incubated for one week in different levels of the unsaturated n-3 eicosapentaneoic acid (EPA) resulting in cellular levels ranging from 2-20% of total fatty acid. These cells were then stimulated with the viral mimic and interferon inducer poly I:C (30 ug/ml) for 24 hours before total RNA was isolated and sequenced for transcriptomic analyses. Up to 200 uM EPA had no detrimental effects on cell viability and induced very few transcriptional changes in these cells. However, in combination with poly I:C, our results shows that the level of EPA in the cellular membranes exert profound dose dependent effects of the transcriptional profiles induced by this treatment. Metabolic pathways like autophagy, apelin and VEGF signaling were attenuated by EPA whereas transcripts related to fatty acid metabolism, ferroptosis and the PPAR signaling pathways were upregulated. These results suggests that innate antiviral responses are heavily influenced by the fatty acid profile of salmonid cells and constitute another example of the strong linkage between general metabolic pathways and inflammatory responses.
Collapse
Affiliation(s)
- Tor Gjøen
- Department of Pharmacy, Section for Pharmacology and Pharmaceutical Biosciences, University of Oslo, Oslo, Norway
| | - Bente Ruyter
- Nofima (Norwegian Institute of Food, Fisheries and Aquaculture Research), Ås, Norway
| | - Tone Kari Østbye
- Nofima (Norwegian Institute of Food, Fisheries and Aquaculture Research), Ås, Norway
| |
Collapse
|
39
|
Ahator SD, Hegstad K, Lentz CS, Johannessen M. Deciphering Staphylococcus aureus-host dynamics using dual activity-based protein profiling of ATP-interacting proteins. mSystems 2024; 9:e0017924. [PMID: 38656122 PMCID: PMC11097646 DOI: 10.1128/msystems.00179-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 03/26/2024] [Indexed: 04/26/2024] Open
Abstract
The utilization of ATP within cells plays a fundamental role in cellular processes that are essential for the regulation of host-pathogen dynamics and the subsequent immune response. This study focuses on ATP-binding proteins to dissect the complex interplay between Staphylococcus aureus and human cells, particularly macrophages (THP-1) and keratinocytes (HaCaT), during an intracellular infection. A snapshot of the various protein activity and function is provided using a desthiobiotin-ATP probe, which targets ATP-interacting proteins. In S. aureus, we observe enrichment in pathways required for nutrient acquisition, biosynthesis and metabolism of amino acids, and energy metabolism when located inside human cells. Additionally, the direct profiling of the protein activity revealed specific adaptations of S. aureus to the keratinocytes and macrophages. Mapping the differentially activated proteins to biochemical pathways in the human cells with intracellular bacteria revealed cell-type-specific adaptations to bacterial challenges where THP-1 cells prioritized immune defenses, autophagic cell death, and inflammation. In contrast, HaCaT cells emphasized barrier integrity and immune activation. We also observe bacterial modulation of host processes and metabolic shifts. These findings offer valuable insights into the dynamics of S. aureus-host cell interactions, shedding light on modulating host immune responses to S. aureus, which could involve developing immunomodulatory therapies. IMPORTANCE This study uses a chemoproteomic approach to target active ATP-interacting proteins and examines the dynamic proteomic interactions between Staphylococcus aureus and human cell lines THP-1 and HaCaT. It uncovers the distinct responses of macrophages and keratinocytes during bacterial infection. S. aureus demonstrated a tailored response to the intracellular environment of each cell type and adaptation during exposure to professional and non-professional phagocytes. It also highlights strategies employed by S. aureus to persist within host cells. This study offers significant insights into the human cell response to S. aureus infection, illuminating the complex proteomic shifts that underlie the defense mechanisms of macrophages and keratinocytes. Notably, the study underscores the nuanced interplay between the host's metabolic reprogramming and immune strategy, suggesting potential therapeutic targets for enhancing host defense and inhibiting bacterial survival. The findings enhance our understanding of host-pathogen interactions and can inform the development of targeted therapies against S. aureus infections.
Collapse
Affiliation(s)
- Stephen Dela Ahator
- Centre for New Antibacterial Strategies (CANS) & Research Group for Host-Microbe Interactions, Department of Medical Biology, Faculty of Health Sciences, UiT–The Arctic University of Norway, Tromsø, Norway
| | - Kristin Hegstad
- Centre for New Antibacterial Strategies (CANS) & Research Group for Host-Microbe Interactions, Department of Medical Biology, Faculty of Health Sciences, UiT–The Arctic University of Norway, Tromsø, Norway
- Norwegian National Advisory Unit on Detection of Antimicrobial Resistance, Department of Microbiology and Infection Control, University Hospital of North Norway, Tromsø, Norway
| | - Christian S. Lentz
- Centre for New Antibacterial Strategies (CANS) & Research Group for Host-Microbe Interactions, Department of Medical Biology, Faculty of Health Sciences, UiT–The Arctic University of Norway, Tromsø, Norway
| | - Mona Johannessen
- Centre for New Antibacterial Strategies (CANS) & Research Group for Host-Microbe Interactions, Department of Medical Biology, Faculty of Health Sciences, UiT–The Arctic University of Norway, Tromsø, Norway
| |
Collapse
|
40
|
Liu Z, Wang H, Zhang Z, Ma Y, Jing Q, Zhang S, Han J, Chen J, Xiang Y, Kou Y, Wei Y, Wang L, Wang Y. Fam96a is essential for the host control of Toxoplasma gondii infection by fine-tuning macrophage polarization via an iron-dependent mechanism. PLoS Negl Trop Dis 2024; 18:e0012163. [PMID: 38713713 PMCID: PMC11101080 DOI: 10.1371/journal.pntd.0012163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 05/17/2024] [Accepted: 04/22/2024] [Indexed: 05/09/2024] Open
Abstract
BACKGROUND Toxoplasmosis affects a quarter of the world's population. Toxoplasma gondii (T.gondii) is an intracellular parasitic protozoa. Macrophages are necessary for proliferation and spread of T.gondii by regulating immunity and metabolism. Family with sequence similarity 96A (Fam96a; formally named Ciao2a) is an evolutionarily conserved protein that is highly expressed in macrophages, but whether it play a role in control of T. gondii infection is unknown. METHODOLOGY/PRINCIPAL FINDINGS In this study, we utilized myeloid cell-specific knockout mice to test its role in anti-T. gondii immunity. The results showed that myeloid cell-specific deletion of Fam96a led to exacerbate both acute and chronic toxoplasmosis after exposure to T. gondii. This was related to a defectively reprogrammed polarization in Fam96a-deficient macrophages inhibited the induction of immune effector molecules, including iNOS, by suppressing interferon/STAT1 signaling. Fam96a regulated macrophage polarization process was in part dependent on its ability to fine-tuning intracellular iron (Fe) homeostasis in response to inflammatory stimuli. In addition, Fam96a regulated the mitochondrial oxidative phosphorylation or related events that involved in control of T. gondii. CONCLUSIONS/SIGNIFICANCE All these findings suggest that Fam96a ablation in macrophages disrupts iron homeostasis and inhibits immune effector molecules, which may aggravate both acute and chronic toxoplasmosis. It highlights that Fam96a may autonomously act as a critical gatekeeper of T. gondii control in macrophages.
Collapse
Affiliation(s)
- Zhuanzhuan Liu
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Hanying Wang
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Zhiwei Zhang
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Yulu Ma
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Qiyue Jing
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Shenghai Zhang
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Jinzhi Han
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Junru Chen
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Yaoyao Xiang
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Yanbo Kou
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Yanxia Wei
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Lu Wang
- Peking University Center for Human Disease Genomics, Beijing, China
- Department of Immunology, School of Basic Medical Sciences, Peking University, Beijing, China
- NHC Key Laboratory of Medical Immunology, Peking University, Beijing, China
| | - Yugang Wang
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| |
Collapse
|
41
|
Liu Y, Lu M, Sun Q, Guo Z, Lin Y, Li S, Huang Y, Li Y, Fu Q. Magnolol attenuates macrophage pyroptosis triggered by Streptococcus equi subsp. zooepidemicus. Int Immunopharmacol 2024; 131:111922. [PMID: 38522137 DOI: 10.1016/j.intimp.2024.111922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 12/11/2023] [Accepted: 03/21/2024] [Indexed: 03/26/2024]
Abstract
Streptococcus equi subsp. zooepidemicus (SEZ) is a zoonotic bacterial pathogen that causes life-threatening infections and various diseases such as meningitis, endocarditis and pneumonia. With the use of antibiotics being severely restricted in the international community, an alternative to antibiotics is urgently needed against bacterial. In the present study, the herbal extract magnolol protected mice against SEZ infection, reflected by increased survival rate and reduced bacterial burden. A pro-inflammatory form of cell death occurred in SEZ-infected macrophage. Magnolol downregulated the expression of pyroptosis-related proteins and reduced the formation of cell membrane pores in infected macrophages to suppress the development of subsequent inflammation. We further demonstrated that magnolol directly suppressed SEZ-induced macrophage pyroptosis, which partially protected macrophages from SEZ infection. Our study revealed that magnolol suppressed inflammation and protected mice against SEZ infection, providing a possible treatment for SEZ infection.
Collapse
Affiliation(s)
- Yuxuan Liu
- School of Life Science and Engineering, Foshan University, Foshan, China
| | - Meijun Lu
- School of Life Science and Engineering, Foshan University, Foshan, China
| | - Qian Sun
- School of Life Science and Engineering, Foshan University, Foshan, China
| | - Zheng Guo
- School of Life Science and Engineering, Foshan University, Foshan, China
| | - Yongjin Lin
- School of Life Science and Engineering, Foshan University, Foshan, China
| | - Shun Li
- School of Life Science and Engineering, Foshan University, Foshan, China; Foshan University Veterinary Teaching Hospital, Foshan University, Foshan, China
| | - Yunfei Huang
- School of Life Science and Engineering, Foshan University, Foshan, China; Foshan University Veterinary Teaching Hospital, Foshan University, Foshan, China
| | - Yajuan Li
- School of Life Science and Engineering, Foshan University, Foshan, China; Foshan University Veterinary Teaching Hospital, Foshan University, Foshan, China.
| | - Qiang Fu
- School of Life Science and Engineering, Foshan University, Foshan, China; Foshan University Veterinary Teaching Hospital, Foshan University, Foshan, China.
| |
Collapse
|
42
|
Bhargavi G, Subbian S. The causes and consequences of trained immunity in myeloid cells. Front Immunol 2024; 15:1365127. [PMID: 38665915 PMCID: PMC11043514 DOI: 10.3389/fimmu.2024.1365127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 03/28/2024] [Indexed: 04/28/2024] Open
Abstract
Conventionally, immunity in humans has been classified as innate and adaptive, with the concept that only the latter type has an immunological memory/recall response against specific antigens or pathogens. Recently, a new concept of trained immunity (a.k.a. innate memory response) has emerged. According to this concept, innate immune cells can exhibit enhanced responsiveness to subsequent challenges, after initial stimulation with antigen/pathogen. Thus, trained immunity enables the innate immune cells to respond robustly and non-specifically through exposure or re-exposure to antigens/infections or vaccines, providing enhanced resistance to unrelated pathogens or reduced infection severity. For example, individuals vaccinated with BCG to protect against tuberculosis were also protected from malaria and SARS-CoV-2 infections. Epigenetic modifications such as histone acetylation and metabolic reprogramming (e.g. shift towards glycolysis) and their inter-linked regulations are the key factors underpinning the immune activation of trained cells. The integrated metabolic and epigenetic rewiring generates sufficient metabolic intermediates, which is crucial to meet the energy demand required to produce proinflammatory and antimicrobial responses by the trained cells. These factors also determine the efficacy and durability of trained immunity. Importantly, the signaling pathways and regulatory molecules of trained immunity can be harnessed as potential targets for developing novel intervention strategies, such as better vaccines and immunotherapies against infectious (e.g., sepsis) and non-infectious (e.g., cancer) diseases. However, aberrant inflammation caused by inappropriate onset of trained immunity can lead to severe autoimmune pathological consequences, (e.g., systemic sclerosis and granulomatosis). In this review, we provide an overview of conventional innate and adaptive immunity and summarize various mechanistic factors associated with the onset and regulation of trained immunity, focusing on immunologic, metabolic, and epigenetic changes in myeloid cells. This review underscores the transformative potential of trained immunity in immunology, paving the way for developing novel therapeutic strategies for various infectious and non-infectious diseases that leverage innate immune memory.
Collapse
Affiliation(s)
| | - Selvakumar Subbian
- Public Health Research Institute, New Jersey Medical School, Rutgers University, Newark, NJ, United States
| |
Collapse
|
43
|
Liu X, Xiang R, Fang X, Wang G, Zhou Y. Advances in Metabolic Regulation of Macrophage Polarization State. Immunol Invest 2024; 53:416-436. [PMID: 38206296 DOI: 10.1080/08820139.2024.2302828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
Macrophages are significant immune-related cells that are essential for tissue growth, homeostasis maintenance, pathogen resistance, and damage healing. The studies on the metabolic control of macrophage polarization state in recent years and the influence of polarization status on the development and incidence of associated disorders are expounded upon in this article. Firstly, we reviewed the origin and classification of macrophages, with particular attention paid to how the tricarboxylic acid cycle and the three primary metabolites affect macrophage polarization. The primary metabolic hub that controls macrophage polarization is the tricarboxylic acid cycle. Finally, we reviewed the polarization state of macrophages influences the onset and progression of cancers, inflammatory disorders, and other illnesses.
Collapse
Affiliation(s)
- Xin Liu
- School of Pharmacy, Drug Research & Development Center, Wannan Medical College, Wuhu, Anhui, China
- Anhui Provincial Engineering Research Center for Polysaccharide Drugs, Anhui Provincial Engineering Laboratory for Screening and Re-evaluation of Active Compounds of Herbal Medicines in Southern Anhui, Anhui Province Key Laboratory of Active Biological Macromolecules, Wuhu, China
| | - Ruoxuan Xiang
- School of Pharmacy, Drug Research & Development Center, Wannan Medical College, Wuhu, Anhui, China
- Anhui Provincial Engineering Research Center for Polysaccharide Drugs, Anhui Provincial Engineering Laboratory for Screening and Re-evaluation of Active Compounds of Herbal Medicines in Southern Anhui, Anhui Province Key Laboratory of Active Biological Macromolecules, Wuhu, China
| | - Xue Fang
- School of Pharmacy, Drug Research & Development Center, Wannan Medical College, Wuhu, Anhui, China
- Anhui Provincial Engineering Research Center for Polysaccharide Drugs, Anhui Provincial Engineering Laboratory for Screening and Re-evaluation of Active Compounds of Herbal Medicines in Southern Anhui, Anhui Province Key Laboratory of Active Biological Macromolecules, Wuhu, China
| | - Guodong Wang
- School of Pharmacy, Drug Research & Development Center, Wannan Medical College, Wuhu, Anhui, China
- Anhui Provincial Engineering Research Center for Polysaccharide Drugs, Anhui Provincial Engineering Laboratory for Screening and Re-evaluation of Active Compounds of Herbal Medicines in Southern Anhui, Anhui Province Key Laboratory of Active Biological Macromolecules, Wuhu, China
| | - Yuyan Zhou
- School of Pharmacy, Drug Research & Development Center, Wannan Medical College, Wuhu, Anhui, China
- Anhui Provincial Engineering Research Center for Polysaccharide Drugs, Anhui Provincial Engineering Laboratory for Screening and Re-evaluation of Active Compounds of Herbal Medicines in Southern Anhui, Anhui Province Key Laboratory of Active Biological Macromolecules, Wuhu, China
| |
Collapse
|
44
|
Malemnganba T, Rattan A, Prajapati VK. Decoding macrophage immunometabolism in human viral infection. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2024; 140:493-523. [PMID: 38762278 DOI: 10.1016/bs.apcsb.2023.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2024]
Abstract
Immune-metabolic interactions play a pivotal role in both host defense and susceptibility to various diseases. Immunometabolism, an interdisciplinary field, seeks to elucidate how metabolic processes impact the immune system. In the context of viral infections, macrophages are often exploited by viruses for their replication and propagation. These infections trigger significant metabolic reprogramming within macrophages and polarization of distinct M1 and M2 phenotypes. This metabolic reprogramming involves alterations in standard- pathways such as the Krebs cycle, glycolysis, lipid metabolism, the pentose phosphate pathway, and amino acid metabolism. Disruptions in the balance of key intermediates like spermidine, itaconate, and citrate within these pathways contribute to the severity of viral diseases. In this chapter, we describe the manipulation of metabolic pathways by viruses and how they crosstalk between signaling pathways to evade the immune system. This intricate interplay often involves the upregulation or downregulation of specific metabolites, making these molecules potential biomarkers for diseases like HIV, HCV, and SARS-CoV. Techniques such as Nuclear Magnetic Resonance (NMR) and Mass Spectrometry, are the evaluative ways to analyze these metabolites. Considering the importance of macrophages in the inflammatory response, addressing their metabolome holds great promise for the creating future therapeutic targets aimed at combating a wide spectrum of viral infections.
Collapse
Affiliation(s)
- Takhellambam Malemnganba
- Department of Biochemistry, University of Delhi South Campus, Benito Juarez Road, Dhaula Kuan, New Delhi, India
| | - Aditi Rattan
- Department of Biochemistry, University of Delhi South Campus, Benito Juarez Road, Dhaula Kuan, New Delhi, India
| | - Vijay Kumar Prajapati
- Department of Biochemistry, University of Delhi South Campus, Benito Juarez Road, Dhaula Kuan, New Delhi, India.
| |
Collapse
|
45
|
Papotti B, Dessena M, Adorni MP, Paleari D, Rinaldi L, Bernini F. In vitro evaluation of the immunomodulatory activity of the nutraceutical formulation AminoDefence. Int J Food Sci Nutr 2024; 75:173-184. [PMID: 38030612 DOI: 10.1080/09637486.2023.2283688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 11/10/2023] [Indexed: 12/01/2023]
Abstract
Immune system (IS) functionality is warranted by inter-dependent processes that balance body defences without exceeding in inflammation. An ideal nutraceutical approach should sustain the protective IS activity while controlling inflammation. The potential immunomodulatory activity of the food supplement (FS) AminoDefence was studied in resting macrophages RAW264.7 and following stimulation of bacterial- and viral-associated inflammation trough LPS and PolyI:C treatments, respectively. In unstimulated macrophages, the formulation exerted a dose-dependent immunostimulant activity by up-regulating NO, IL-6, TNF-α and MCP-1 release, while it dampened the aberrant release of these factors induced by pro-inflammatory stimuli. Exploring the contribution of single components Echinacea purpurea (E. purpurea) extract and quercetin, used at proportional concentrations than in whole formulation, a more pronounced immunostimulant effect was observed for E. purpurea, and an anti-inflammatory activity for quercetin. Hence, AminoDefence exerts an immunomodulatory activity in macrophages by effectively stimulating a protective inflammatory response and limiting it in cases of excessive inflammation.
Collapse
Affiliation(s)
- Bianca Papotti
- Department of Food and Drug, University of Parma, Parma, Italy
| | - Mattia Dessena
- Department of Medicine and Surgery, Unit of Neuroscience, University of Parma, Parma, Italy
| | - Maria Pia Adorni
- Department of Medicine and Surgery, Unit of Neuroscience, University of Parma, Parma, Italy
| | | | | | - Franco Bernini
- Department of Food and Drug, University of Parma, Parma, Italy
| |
Collapse
|
46
|
Carvell T, Burgoyne P, Milne L, Campbell JDM, Fraser AR, Bridle H. Human leucocytes processed by fast-rate inertial microfluidics retain conventional functional characteristics. J R Soc Interface 2024; 21:20230572. [PMID: 38442860 PMCID: PMC10914517 DOI: 10.1098/rsif.2023.0572] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 02/01/2024] [Indexed: 03/07/2024] Open
Abstract
The manufacturing of clinical cellular therapies is a complex process frequently requiring manipulation of cells, exchange of buffers and volume reduction. Current manufacturing processes rely on either low throughput open centrifugation-based devices, or expensive closed-process alternatives. Inertial focusing (IF) microfluidic devices offer the potential for high-throughput, inexpensive equipment which can be integrated into a closed system, but to date no IF devices have been approved for use in cell therapy manufacturing, and there is limited evidence for the effects that IF processing has on human cells. The IF device described in this study was designed to simultaneously separate leucocytes, perform buffer exchange and provide a volume reduction to the cell suspension, using high flow rates with high Reynolds numbers. The performance and effects of the IF device were characterized using peripheral blood mononuclear cells and isolated monocytes. Post-processing cell effects were investigated using multi-parameter flow cytometry to track cell viability, functional changes and fate. The IF device was highly efficient at separating CD14+ monocytes (approx. 97% to one outlet, approx. 60% buffer exchange, 15 ml min-1) and leucocyte processing was well tolerated with no significant differences in downstream viability, immunophenotype or metabolic activity when compared with leucocytes processed with conventional processing techniques. This detailed approach provides robust evidence that IF devices could offer significant benefits to clinical cell therapy manufacture.
Collapse
Affiliation(s)
- Tom Carvell
- Institute of Biological Chemistry, Biophysics and Bioengineering, School of Engineering and Physical Sciences, Heriot-Watt University, Heriot-Watt Research Park, Edinburgh EH14 4AS, UK
| | - Paul Burgoyne
- Tissues, Cells and Advanced Therapeutics, Jack Copland Centre, Scottish National Blood Transfusion Service, Research Avenue North, Heriot-Watt Research Park, Edinburgh EH14 4BE, UK
| | - Laura Milne
- Tissues, Cells and Advanced Therapeutics, Jack Copland Centre, Scottish National Blood Transfusion Service, Research Avenue North, Heriot-Watt Research Park, Edinburgh EH14 4BE, UK
| | - John D. M. Campbell
- Tissues, Cells and Advanced Therapeutics, Jack Copland Centre, Scottish National Blood Transfusion Service, Research Avenue North, Heriot-Watt Research Park, Edinburgh EH14 4BE, UK
| | - Alasdair R. Fraser
- Tissues, Cells and Advanced Therapeutics, Jack Copland Centre, Scottish National Blood Transfusion Service, Research Avenue North, Heriot-Watt Research Park, Edinburgh EH14 4BE, UK
| | - Helen Bridle
- Institute of Biological Chemistry, Biophysics and Bioengineering, School of Engineering and Physical Sciences, Heriot-Watt University, Heriot-Watt Research Park, Edinburgh EH14 4AS, UK
| |
Collapse
|
47
|
Harber KJ, Nguyen TA, Schomakers BV, Heister DAF, de Vries HE, van Weeghel M, Van den Bossche J, de Winther MPJ. Adenine is an anti-inflammatory metabolite found to be more abundant in M-CSF over GM-CSF-differentiated human macrophages. Immunol Lett 2024; 265:23-30. [PMID: 38142781 DOI: 10.1016/j.imlet.2023.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/13/2023] [Accepted: 12/21/2023] [Indexed: 12/26/2023]
Abstract
Immunometabolism has been unveiled in the last decade to play a major role in controlling macrophage metabolism and inflammation. There has been a constant effort to understand the immunomodulating properties of regulated metabolites during inflammation with the aim of controlling and re-wiring aberrant macrophages in inflammatory diseases. M-CSF and GM-CSF-differentiated macrophages play a key role in mounting successful innate immune responses. When a resolution phase is not achieved however, GM-CSF macrophages contribute substantially more towards an adverse inflammatory milieu than M-CSF macrophages, consequently driving disease progression. Whether there are specific immunometabolites that determine the homoeostatic or inflammatory nature of M-CSF and GM-CSF-differentiated macrophages is still unknown. As such, we performed metabolomics analysis on LPS and IL-4-stimulated M-CSF and GM-CSF-differentiated human macrophages to identify differentially accumulating metabolites. Adenine was distinguished as a metabolite significantly higher in M-CSF-differentiated macrophages after both LPS or IL-4 stimulation. Human macrophages treated with adenine before LPS stimulation showed a reduction in inflammatory gene expression, cytokine secretion and surface marker expression. Adenine caused macrophages to become more quiescent by lowering glycolysis and OXPHOS which resulted in reduced ATP production. Moreover, typical metabolite changes seen during LPS-induced macrophage metabolic reprogramming were absent in the presence of adenine. Phosphorylation of metabolic signalling proteins AMPK, p38 MAPK and AKT were not responsible for the suppressed metabolic activity of adenine-treated macrophages. Altogether, in this study we highlight the immunomodulating capacity of adenine in human macrophages and its function in driving cellular quiescence.
Collapse
Affiliation(s)
- Karl J Harber
- Department of Medical Biochemistry, Amsterdam UMC, University of Amsterdam, 1105 AZ, Amsterdam, Netherlands; Amsterdam Cardiovascular Sciences (ACS), Atherosclerosis & ischemic syndromes, Amsterdam, UMC, Netherlands; Amsterdam institute for Infection and Immunity (AII), Inflammatory diseases, Amsterdam, UMC, Netherlands; Department of Molecular Cell Biology and Immunology, Amsterdam UMC, Vrije Universiteit Amsterdam, 1081 HV, Amsterdam, Netherlands
| | - Thuc-Anh Nguyen
- Department of Medical Biochemistry, Amsterdam UMC, University of Amsterdam, 1105 AZ, Amsterdam, Netherlands
| | - Bauke V Schomakers
- Department of Genetic Metabolic Diseases, Amsterdam UMC, University of Amsterdam, 1105 AZ, Amsterdam, Netherlands; Core Facility Metabolomics, Amsterdam UMC, University of Amsterdam, 1105 AZ, Amsterdam, Netherlands
| | - Daan A F Heister
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC, Vrije Universiteit Amsterdam, 1081 HV, Amsterdam, Netherlands
| | - Helga E de Vries
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC, Vrije Universiteit Amsterdam, 1081 HV, Amsterdam, Netherlands; Amsterdam Neuroscience, Amsterdam, Netherlands
| | - Michel van Weeghel
- Department of Genetic Metabolic Diseases, Amsterdam UMC, University of Amsterdam, 1105 AZ, Amsterdam, Netherlands; Core Facility Metabolomics, Amsterdam UMC, University of Amsterdam, 1105 AZ, Amsterdam, Netherlands.
| | - Jan Van den Bossche
- Amsterdam Cardiovascular Sciences (ACS), Atherosclerosis & ischemic syndromes, Amsterdam, UMC, Netherlands; Amsterdam institute for Infection and Immunity (AII), Inflammatory diseases, Amsterdam, UMC, Netherlands; Department of Molecular Cell Biology and Immunology, Amsterdam UMC, Vrije Universiteit Amsterdam, 1081 HV, Amsterdam, Netherlands; Amsterdam Gastroenterology Endocrinology Metabolism (AGEM), Amsterdam, UMC, Netherlands.
| | - Menno P J de Winther
- Department of Medical Biochemistry, Amsterdam UMC, University of Amsterdam, 1105 AZ, Amsterdam, Netherlands; Amsterdam Cardiovascular Sciences (ACS), Atherosclerosis & ischemic syndromes, Amsterdam, UMC, Netherlands; Amsterdam institute for Infection and Immunity (AII), Inflammatory diseases, Amsterdam, UMC, Netherlands.
| |
Collapse
|
48
|
Xue H, Xiao Z, Zhao X, Li S, Wang Z, Zhao J, Zhu F. A comprehensive analysis of immune features and construction of an immune gene diagnostic model for sepsis. BMC Genomics 2023; 24:794. [PMID: 38124071 PMCID: PMC10734174 DOI: 10.1186/s12864-023-09896-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Accepted: 12/12/2023] [Indexed: 12/23/2023] Open
Abstract
Sepsis is a life-threatening syndrome resulting from immune system dysfunction that is caused by infection. It is of great importance to analyze the immune characteristics of sepsis, identify the key immune system related genes, and construct diagnostic models for sepsis. In this study, the sepsis transcriptome and expression profiling data were merged into an integrated dataset containing 277 sepsis samples and 117 non-sepsis control samples. Single-sample gene set enrichment analysis (ssGSEA) was used to assess the immune cell infiltration. Two sepsis immune subtypes were identified based on the 22 differential immune cells between the sepsis and the healthy control groups. Weighted gene co-expression network analysis (WCGNA) was used to identify the key module genes. Then, 36 differentially expressed immune-related genes were identified, based on which a robust diagnostic model was constructed with 11 diagnostic genes. The expression of 11 diagnostic genes was finally assessed in the training and validation datasets respectively. In this study, we provide comprehensive insight into the immune features of sepsis and establish a robust diagnostic model for sepsis. These findings may provide new strategies for the early diagnosis of sepsis in the future.
Collapse
Affiliation(s)
- Haiyan Xue
- Department of Critical Care Medicine, Peking University People's Hospital, No. 11 Xizhimen South Street, Beijing, 100044, China
- National Center for Trauma Medicine of China, Beijing, China
| | - Ziyan Xiao
- Department of Critical Care Medicine, Peking University People's Hospital, No. 11 Xizhimen South Street, Beijing, 100044, China
| | - Xiujuan Zhao
- Department of Critical Care Medicine, Peking University People's Hospital, No. 11 Xizhimen South Street, Beijing, 100044, China
- National Center for Trauma Medicine of China, Beijing, China
| | - Shu Li
- Department of Critical Care Medicine, Peking University People's Hospital, No. 11 Xizhimen South Street, Beijing, 100044, China
- National Center for Trauma Medicine of China, Beijing, China
| | - Zhenzhou Wang
- Department of Critical Care Medicine, Peking University People's Hospital, No. 11 Xizhimen South Street, Beijing, 100044, China
- National Center for Trauma Medicine of China, Beijing, China
| | - Jie Zhao
- Department of Critical Care Medicine, Peking University People's Hospital, No. 11 Xizhimen South Street, Beijing, 100044, China
| | - Fengxue Zhu
- Department of Critical Care Medicine, Peking University People's Hospital, No. 11 Xizhimen South Street, Beijing, 100044, China.
- National Center for Trauma Medicine of China, Beijing, China.
| |
Collapse
|
49
|
Peckert-Maier K, Wild AB, Sprißler L, Fuchs M, Beck P, Auger JP, Sinner P, Strack A, Mühl-Zürbes P, Ramadan N, Kunz M, Krönke G, Stich L, Steinkasserer A, Royzman D. Soluble CD83 modulates human-monocyte-derived macrophages toward alternative phenotype, function, and metabolism. Front Immunol 2023; 14:1293828. [PMID: 38162675 PMCID: PMC10755915 DOI: 10.3389/fimmu.2023.1293828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 11/24/2023] [Indexed: 01/03/2024] Open
Abstract
Alterations in macrophage (Mφ) polarization, function, and metabolic signature can foster development of chronic diseases, such as autoimmunity or fibrotic tissue remodeling. Thus, identification of novel therapeutic agents that modulate human Mφ biology is crucial for treatment of such conditions. Herein, we demonstrate that the soluble CD83 (sCD83) protein induces pro-resolving features in human monocyte-derived Mφ biology. We show that sCD83 strikingly increases the expression of inhibitory molecules including ILT-2 (immunoglobulin-like transcript 2), ILT-4, ILT-5, and CD163, whereas activation markers, such as MHC-II and MSR-1, were significantly downregulated. This goes along with a decreased capacity to stimulate alloreactive T cells in mixed lymphocyte reaction (MLR) assays. Bulk RNA sequencing and pathway analyses revealed that sCD83 downregulates pathways associated with pro-inflammatory, classically activated Mφ (CAM) differentiation including HIF-1A, IL-6, and cytokine storm, whereas pathways related to alternative Mφ activation and liver X receptor were significantly induced. By using the LXR pathway antagonist GSK2033, we show that transcription of specific genes (e.g., PPARG, ABCA1, ABCG1, CD36) induced by sCD83 is dependent on LXR activation. In summary, we herein reveal for the first time mechanistic insights into the modulation of human Mφ biology by sCD83, which is a further crucial preclinical study for the establishment of sCD83 as a new therapeutical agent to treat inflammatory conditions.
Collapse
Affiliation(s)
- Katrin Peckert-Maier
- Department of Immune Modulation, Universitätsklinikum Erlangen, Friedrich– Alexander Universität Erlangen–Nürnberg, Erlangen, Germany
| | - Andreas B. Wild
- Department of Immune Modulation, Universitätsklinikum Erlangen, Friedrich– Alexander Universität Erlangen–Nürnberg, Erlangen, Germany
| | - Laura Sprißler
- Department of Immune Modulation, Universitätsklinikum Erlangen, Friedrich– Alexander Universität Erlangen–Nürnberg, Erlangen, Germany
| | - Maximilian Fuchs
- Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM), Hannover, Germany
| | - Philipp Beck
- Department of Immune Modulation, Universitätsklinikum Erlangen, Friedrich– Alexander Universität Erlangen–Nürnberg, Erlangen, Germany
| | - Jean-Philippe Auger
- Department of Internal Medicine 3 – Rheumatology and Immunology, Friedrich-Alexander University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Pia Sinner
- Department of Immune Modulation, Universitätsklinikum Erlangen, Friedrich– Alexander Universität Erlangen–Nürnberg, Erlangen, Germany
| | - Astrid Strack
- Department of Immune Modulation, Universitätsklinikum Erlangen, Friedrich– Alexander Universität Erlangen–Nürnberg, Erlangen, Germany
| | - Petra Mühl-Zürbes
- Department of Immune Modulation, Universitätsklinikum Erlangen, Friedrich– Alexander Universität Erlangen–Nürnberg, Erlangen, Germany
| | - Ntilek Ramadan
- Department of Immune Modulation, Universitätsklinikum Erlangen, Friedrich– Alexander Universität Erlangen–Nürnberg, Erlangen, Germany
| | - Meik Kunz
- Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM), Hannover, Germany
- Chair of Medical Informatics, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Bavaria, Germany
| | - Gerhard Krönke
- Department of Internal Medicine 3 – Rheumatology and Immunology, Friedrich-Alexander University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Lena Stich
- Department of Immune Modulation, Universitätsklinikum Erlangen, Friedrich– Alexander Universität Erlangen–Nürnberg, Erlangen, Germany
| | - Alexander Steinkasserer
- Department of Immune Modulation, Universitätsklinikum Erlangen, Friedrich– Alexander Universität Erlangen–Nürnberg, Erlangen, Germany
| | - Dmytro Royzman
- Department of Immune Modulation, Universitätsklinikum Erlangen, Friedrich– Alexander Universität Erlangen–Nürnberg, Erlangen, Germany
| |
Collapse
|
50
|
Lee JW, Kim HW, Yu AR, Yoon HS, Kang M, Park HW, Lee SK, Whang J, Kim JS. Differential Immune Responses and Underlying Mechanisms of Metabolic Reprogramming in Smooth and Rough Variants of Mycobacterium peregrinum Infections. Pathogens 2023; 12:1446. [PMID: 38133329 PMCID: PMC10747217 DOI: 10.3390/pathogens12121446] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/04/2023] [Accepted: 12/11/2023] [Indexed: 12/23/2023] Open
Abstract
Mycobacterium peregrinum (Mpgm) is a rapidly growing mycobacteria that is classified as a nontuberculous mycobacterium (NTM) and is commonly found in environmental sources such as soil, water, and animals. Mpgm is considered an opportunistic pathogen that causes infection in immunocompromised individuals or those with underlying medical conditions. Although there have been clinical reports on Mpgm, reports of the immune response and metabolic reprogramming have not been published. Thus, we studied standard Mpgm-ATCC and two clinical strains (Mpgm-S and Mpgm-R) using macrophages and mouse bone marrow-derived cells. Mpgm has two types of colony morphologies: smooth and rough. We grew all strains on the 7H10 agar medium to visually validate the morphology. Cytokine levels were measured via ELISA and real-time PCR. The changes in mitochondrial function and glycolysis in Mpgm-infected macrophages were measured using an extracellular flux analyzer. Mpgm-S-infected macrophages showed elevated levels of inflammatory cytokines, including interleukin (IL)-6, IL-12p40, and tumor necrosis factor (TNF)-α, compared to Mpgm-ATCC- and Mpgm-R-infected macrophages. Additionally, our findings revealed metabolic changes in Mpgm-ATCC and two clinical strains (Mpgm-S and Mpgm-R) during infection; significant changes were observed in the mitochondrial respiration, extracellular acidification, and the oxygen consumption of BMDMs upon Mpgm-S infection. In summary, within the strains examined, Mpgm-S displayed greater virulence, triggered a heightened immune response, and induced more profound shifts in bioenergetic metabolism than Mpgm-ATCC and Mpgm-R. This study is the first to document distinct immune responses and metabolic reorganization following Mpgm infection. These findings lay a crucial foundation for further investigations into the pathogenesis of Mpgm.
Collapse
Affiliation(s)
- Ji Won Lee
- Myunggok Medical Research Institute, College of Medicine, Konyang University, Daejeon 35365, Republic of Korea; (J.W.L.); (H.W.K.); (A.-R.Y.); (H.S.Y.)
| | - Ho Won Kim
- Myunggok Medical Research Institute, College of Medicine, Konyang University, Daejeon 35365, Republic of Korea; (J.W.L.); (H.W.K.); (A.-R.Y.); (H.S.Y.)
| | - A-Reum Yu
- Myunggok Medical Research Institute, College of Medicine, Konyang University, Daejeon 35365, Republic of Korea; (J.W.L.); (H.W.K.); (A.-R.Y.); (H.S.Y.)
| | - Hoe Sun Yoon
- Myunggok Medical Research Institute, College of Medicine, Konyang University, Daejeon 35365, Republic of Korea; (J.W.L.); (H.W.K.); (A.-R.Y.); (H.S.Y.)
| | - Minji Kang
- Korea Mycobacterium Resource Center (KMRC), Department of Research and Development, The Korean Institute of Tuberculosis, Osong 28158, Republic of Korea;
| | - Hwan-Woo Park
- Department of Cell Biology, College of Medicine, Konyang University, Daejeon 35365, Republic of Korea;
| | - Sung Ki Lee
- Department of Obstetrics and Gynecology, Konyang University Hospital, Daejeon 35365, Republic of Korea;
| | - Jake Whang
- Korea Mycobacterium Resource Center (KMRC), Department of Research and Development, The Korean Institute of Tuberculosis, Osong 28158, Republic of Korea;
| | - Jong-Seok Kim
- Myunggok Medical Research Institute, College of Medicine, Konyang University, Daejeon 35365, Republic of Korea; (J.W.L.); (H.W.K.); (A.-R.Y.); (H.S.Y.)
| |
Collapse
|