1
|
Huang S, Yan F, Qiu Y, Liu T, Zhang W, Yang Y, Zhong R, Yang Y, Peng X. Exosomes in inflammation and cancer: from bench to bedside applications. MOLECULAR BIOMEDICINE 2025; 6:41. [PMID: 40490663 DOI: 10.1186/s43556-025-00280-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 05/23/2025] [Accepted: 05/28/2025] [Indexed: 06/11/2025] Open
Abstract
Exosomes, lipid bilayer nanovesicles secreted by nearly all cell types, play pivotal roles in intercellular communication by transferring proteins, nucleic acids, and lipids. This review comprehensively summarizes their multiple functions in inflammation and cancer. In inflammation, exosomes exhibit context-dependent pro- or anti-inflammatory effects: they promote acute responses by delivering cytokines and miRNAs to activate immune cells, yet suppress chronic inflammation via immunoregulatory molecules. Two representative inflammatory diseases, namely sepsis and inflammatory bowel disease, were highlighted to elucidate their roles in the acute and chronic inflammatory diseases. In cancer, exosomes orchestrate tumor microenvironment (TME) remodeling by facilitating angiogenesis, metastasis, and immune evasion through interactions with cancer-associated fibroblasts, tumor-associated macrophages, and extracellular matrix components. Furthermore, exosomes can facilitate the transition from inflammation to cancer by impacting pertinent signaling pathways via their transported oncogenic and inflammatory molecules. Tumor-derived exosomes also serve as non-invasive biomarkers correlating with disease progression. Clinically, exosomes demonstrate promise as therapeutic agents and drug carriers, evidenced by ongoing trials targeting inflammatory diseases and cancers. However, challenges in isolation standardization, scalable production, and understanding functional heterogeneity hinder clinical translation. Future research should prioritize elucidating cargo-specific mechanisms, optimizing engineering strategies, and advancing personalized exosome-based therapies. By bridging molecular insights with clinical applications, exosomes hold great potential in precision medicine for inflammation and oncology.
Collapse
Affiliation(s)
- Shiyuan Huang
- Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, No. 2025, Chengluo Avenue, Chengdu, 610106, China
| | - Fang Yan
- Geriatric Diseases Institute of Chengdu, Department of Geriatrics, Center for Medicine Research and Translation, Department of Critical Care Medicine,, Chengdu Fifth People's Hospital, The Second Clinical Medical College, Affiliated Fifth People's Hospital of Chengdu University of Traditional Chinese Medicine,, Chengdu, China
| | - Yi Qiu
- Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, No. 2025, Chengluo Avenue, Chengdu, 610106, China
| | - Tao Liu
- Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, No. 2025, Chengluo Avenue, Chengdu, 610106, China
| | - Wenjin Zhang
- Chongqing Municipality Clinical Research Center for Endocrinology and Metabolic Diseases, Chongqing University Three Gorges Hospital, School of Medicine, Chongqing University, Chongqing, China
| | - Yige Yang
- Department of Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Rao Zhong
- Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, No. 2025, Chengluo Avenue, Chengdu, 610106, China
| | - Yang Yang
- Department of Gastroenterology, Sir Run Run Hospital, Nanjing Medical University, Nanjing, China.
| | - Xi Peng
- Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, No. 2025, Chengluo Avenue, Chengdu, 610106, China.
| |
Collapse
|
2
|
de Lima BP, Ferraz LS, Devalle S, Borges HL. Liquid Biopsy-Derived Tumor Biomarkers for Clinical Applications in Glioblastoma. Biomolecules 2025; 15:658. [PMID: 40427551 PMCID: PMC12108610 DOI: 10.3390/biom15050658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2025] [Revised: 04/25/2025] [Accepted: 04/30/2025] [Indexed: 05/29/2025] Open
Abstract
Glioblastoma (GBM) is the most aggressive primary brain tumor in adults, characterized by rapid growth and resistance to chemotherapy. Conventional treatments remain largely ineffective, with patient survival averaging around 18 months after diagnosis. Current diagnostic methods rely on invasive tissue biopsies and imaging tests. While traditional biopsies involve extracting tissue samples, their routine use is often limited by surgical risks and the challenge of accessing sensitive brain regions. Liquid biopsy has emerged as a promising noninvasive alternative, analyzing circulating tumor components-such as DNA, RNA, extracellular vesicles, and microRNAs-found in body fluids. This approach enables initial diagnosis and continuous disease monitoring, offering a significant advantage over traditional biopsies, which are impractical for frequent repetition during treatment follow-up. This review highlights recent advances in liquid biopsy-derived biomarkers for the clinical management of GBM. The discussion includes the advantages, limitations, and potential of these biomarkers as tools for early diagnosis and disease monitoring. A narrative review of the literature published over the last decade (2014-2024) was conducted using major health-focused scientific databases. The analysis focuses on evaluating the clinical relevance and applicability of liquid biopsy in GBM, offering insights into its potential as a minimally invasive and effective tool for improving glioblastoma management.
Collapse
Affiliation(s)
- Bruna Pereira de Lima
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro (UFRJ), Av. Carlos Chagas Filho, 373, Rio de Janeiro 21941–902, RJ, Brazil;
| | - Leticia Silva Ferraz
- Centro de Ciências Naturais e Humanas (CCNH), Universidade Federal do ABC (UFABC), Av. dos Estados, 5001, Santo André 09280-560, SP, Brazil;
| | - Sylvie Devalle
- Instituto Estadual do Cérebro Paulo Niemeyer (IECPN), Rua do Rezende, 156-Centro, Rio de Janeiro 20231-092, RJ, Brazil;
| | - Helena Lobo Borges
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro (UFRJ), Av. Carlos Chagas Filho, 373, Rio de Janeiro 21941–902, RJ, Brazil;
| |
Collapse
|
3
|
Delshad M, Sanaei MJ, Mohammadi MH, Sadeghi A, Bashash D. Exosomal Biomarkers: A Comprehensive Overview of Diagnostic and Prognostic Applications in Malignant and Non-Malignant Disorders. Biomolecules 2025; 15:587. [PMID: 40305328 PMCID: PMC12024574 DOI: 10.3390/biom15040587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Revised: 04/07/2025] [Accepted: 04/09/2025] [Indexed: 05/02/2025] Open
Abstract
Exosomes are small extracellular vesicles, ranging from 30 to 150 nm, that are essential in cell biology, mediating intercellular communication and serving as biomarkers due to their origin from cells. Exosomes as biomarkers for diagnosing various illnesses have gained significant investigation due to the high cost and invasive nature of current diagnostic procedures. Exosomes have a clear advantage in the diagnosis of diseases because they include certain signals that are indicative of the genetic and proteomic profile of the ailment. This feature gives them the potential to be useful liquid biopsies for real-time, noninvasive monitoring, enabling early cancer identification for the creation of individualized treatment plans. According to our analysis, the trend toward utilizing exosomes as diagnostic and prognostic tools has raised since 2012. In this regard, the proportion of malignant indications is higher compared with non-malignant ones. To be precise, exosomes have been used the most in gastrointestinal, thoracic, and urogenital cancers, along with cardiovascular, diabetic, breathing, infectious, and brain disorders. To the best of our knowledge, this is the first research to examine all registered clinical trials that look at exosomes as a diagnostic and prognostic biomarker.
Collapse
Affiliation(s)
- Mahda Delshad
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran 1985717443, Iran; (M.D.); (M.-J.S.); (M.H.M.)
- Department of Laboratory Sciences, School of Allied Medical Sciences, Zanjan University of Medical Sciences, Zanjan 1411718541, Iran
| | - Mohammad-Javad Sanaei
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran 1985717443, Iran; (M.D.); (M.-J.S.); (M.H.M.)
| | - Mohammad Hossein Mohammadi
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran 1985717443, Iran; (M.D.); (M.-J.S.); (M.H.M.)
| | - Amir Sadeghi
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran 1985717411, Iran;
| | - Davood Bashash
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran 1985717443, Iran; (M.D.); (M.-J.S.); (M.H.M.)
| |
Collapse
|
4
|
Dong Q, Sun X, Wang Y, Zhang W, Feng F, Li D, Wang J, Wang E. Enabling Sensitive Quantification of Exosomes Combining Aptamer-Based Rolling Circle Amplification and Silver Nanoparticles. Anal Chem 2025; 97:7212-7220. [PMID: 40153314 DOI: 10.1021/acs.analchem.4c06656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2025]
Abstract
Exosomes carry various biological information and are abundant in body fluids, making them a promising noninvasive biomarker for disease diagnosis and prognosis. However, current detection methods have limitations in sensitivity, specificity, and cost effectiveness, hindering their clinical application. To address these challenges, we have developed a fast, accurate, and cost-effective method for detecting exosomes with high sensitivity and specificity, making it ideal for clinical applications. Clusters of differentiation 63 (CD63) aptamer with its complementary DNA (CD63 aptamer/cDNA) linked to streptavidin-coated magnetic beads (SA-MBs) are used as a capture probe. Exosomes with CD63 proteins can bind to the aptamer and release the cDNA, which initiates rolling circle amplification (RCA) to magnify the cDNA copies. The negatively charged RCA products induce the aggregation of positively charged spermine-modified silver nanoparticles (AgNPs) through electrostatic attraction. The aggregation of AgNPs can be observed visually with the naked eye or quantitatively analyzed using ultraviolet-visible (UV-vis) spectroscopy to determine the concentration of exosomes, with limits of detection of 4.0 × 104 particles/mL for visual observation and 800 particles/mL for UV-vis spectroscopy, respectively. The method has also been demonstrated for detecting the exosomes in serum samples, indicating its potential for clinical use in liquid biopsy.
Collapse
Affiliation(s)
- Qing Dong
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Science, Changchun, Jilin 130022, P. R. China
- College of Pharmacy, Shandong Second Medical University, Weifang, Shandong 261053, P. R. China
| | - Xu Sun
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Science, Changchun, Jilin 130022, P. R. China
| | - Yuling Wang
- School of Natural Sciences, Faculty of Science and Engineering, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Wei Zhang
- School of Natural Sciences, Faculty of Science and Engineering, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Fan Feng
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Science, Changchun, Jilin 130022, P. R. China
| | - Dan Li
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Science, Changchun, Jilin 130022, P. R. China
| | - Jin Wang
- Department of Chemistry of Physics & Astronomy, State University of New York at Stony Brook, Stony Brook, New York 11794-3400, United States
| | - Erkang Wang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Science, Changchun, Jilin 130022, P. R. China
| |
Collapse
|
5
|
Zhou M, Peng C, Zhang Q, Tong Y. Hypoxic Cancer Cells-Derived Exosomes Strengthen the Development of Cancer Stem Cell-Like Properties Through Delivering LINC00665 in Thyroid Cancer Cells. Cell Biol Int 2025; 49:384-396. [PMID: 39831459 DOI: 10.1002/cbin.12274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 12/16/2024] [Accepted: 01/04/2025] [Indexed: 01/22/2025]
Abstract
Hypoxia is a common phenomenon for solid tumors due to a lack of effective vascular system, and has been deemed as an important factor that drives the progression of thyroid cancer (TC) via altering the characteristics of tumor cells. The present study suggested that hypoxic TC cells enhanced cancer stem cell properties and progression of TC by delivering long intergenic non-protein coding RNA 665 (LINC00665)-containing exosomes. Specifically, TPC1 cells were exposed to normoxic or hypoxic environment, and it was found that hypoxic TPC1 cells-secreted exosomes (H-exo) were enriched with LINC00665, compared to normoxic TPC1 cells-derived exosomes (N-exo). In addition, by establishing the in vitro exosomes-TC cells coculture system, we found that in contrast to N-exo, H-exo apparently promoted cell proliferation, epithelial mesenchymal transition (EMT) and cancer stem cell properties via delivering LINC00665. This was supported by the in vivo results that H-exo transferred LINC00665 to promote tumorigenesis and the expression of EMT and stemness-associated markers in xenograft tumor-bearing mice models. Further mechanical experiments validated that LINC00665 combined with EPHB4 mRNA to sustain its stability to enhance cancer aggressiveness of TC. Altogether, our findings verified that hypoxic TC cells-secreted exosomes regulated the LINC00665/EPHB4 axis to enhance cancer stem cell properties of TC, providing novel signatures for TC diagnosis and therapy.
Collapse
Affiliation(s)
- Ming Zhou
- Department of Thyroid Vascular Surgery, Jingzhou Central Hospital, Jingzhou Hospital Affiliated to Yangtze University, Jingzhou, China
| | - Chengcheng Peng
- Department of Breast and Thyroid Surgery, Huanggang Central Hospital, Huangzhou District, Huanggang, China
| | - Qiong Zhang
- Department of Dermatology, Jingzhou Central Hospital, Jingzhou Hospital Affiliated to Yangtze University, Jingzhou, China
| | - Yanchu Tong
- Department of Thyroid Vascular Surgery, Jingzhou Central Hospital, Jingzhou Hospital Affiliated to Yangtze University, Jingzhou, China
| |
Collapse
|
6
|
Chi H, Shi L, Gan S, Fan G, Dong Y. Innovative Applications of Nanopore Technology in Tumor Screening: An Exosome-Centric Approach. BIOSENSORS 2025; 15:199. [PMID: 40277513 PMCID: PMC12024935 DOI: 10.3390/bios15040199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 02/28/2025] [Accepted: 03/05/2025] [Indexed: 04/26/2025]
Abstract
Cancer remains one of the leading causes of death worldwide. Its complex pathogenesis and metastasis pose significant challenges for early diagnosis, underscoring the urgent need for innovative and non-invasive tumor screening methods. Exosomes, small extracellular vesicles that reflect the physiological and pathological states of their parent cells, are uniquely suited for cancer liquid biopsy due to their molecular cargo, including RNA, DNA, and proteins. However, traditional methods for exosome isolation and detection are often limited by inadequate sensitivity, specificity, and efficiency. Nanopore technology, characterized by high sensitivity and single-molecule resolution, offers powerful tools for exosome analysis. This review highlights its diverse applications in tumor screening, such as magnetic nanopores for high-throughput sorting, electrochemical sensing for real-time detection, nanomaterial-based assemblies for efficient capture, and plasmon resonance for ultrasensitive analysis. These advancements have enabled precise exosome detection and demonstrated promising potential in the early diagnosis of breast, pancreatic, and prostate cancers, while also supporting personalized treatment strategies. Additionally, this review summarizes commercialized products for exosome-based cancer diagnostics and examines the technical and translational challenges in clinical applications. Finally, it discusses the future prospects of nanopore technology in advancing liquid biopsy toward clinical implementation. The continued progress of nanopore technology not only accelerates exosome-based precision medicine but also represents a significant step forward in next-generation liquid biopsy and tumor screening.
Collapse
Affiliation(s)
- Heng Chi
- BGI Research, Shenzhen 518083, China; (H.C.); (L.S.)
| | - Liuxin Shi
- BGI Research, Shenzhen 518083, China; (H.C.); (L.S.)
| | | | | | - Yuliang Dong
- BGI Research, Shenzhen 518083, China; (H.C.); (L.S.)
- BGI Research, Hangzhou 310030, China;
| |
Collapse
|
7
|
Youssef E, Palmer D, Fletcher B, Vaughn R. Exosomes in Precision Oncology and Beyond: From Bench to Bedside in Diagnostics and Therapeutics. Cancers (Basel) 2025; 17:940. [PMID: 40149276 PMCID: PMC11940788 DOI: 10.3390/cancers17060940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 02/28/2025] [Accepted: 03/07/2025] [Indexed: 03/29/2025] Open
Abstract
Exosomes have emerged as pivotal players in precision oncology, offering innovative solutions to longstanding challenges such as metastasis, therapeutic resistance, and immune evasion. These nanoscale extracellular vesicles facilitate intercellular communication by transferring bioactive molecules that mirror the biological state of their parent cells, positioning them as transformative tools for cancer diagnostics and therapeutics. Recent advancements in exosome engineering, artificial intelligence (AI)-driven analytics, and isolation technologies are breaking barriers in scalability, reproducibility, and clinical application. Bioengineered exosomes are being leveraged for CRISPR-Cas9 delivery, while AI models are enhancing biomarker discovery and liquid biopsy accuracy. Despite these advancements, key obstacles such as heterogeneity in exosome populations and the lack of standardized isolation protocols persist. This review synthesizes pioneering research on exosome biology, molecular engineering, and clinical translation, emphasizing their dual roles as both mediators of tumor progression and tools for intervention. It also explores emerging areas, including microbiome-exosome interactions and the integration of machine learning in exosome-based precision medicine. By bridging innovation with translational strategies, this work charts a forward-looking path for integrating exosomes into next-generation cancer care, setting it apart as a comprehensive guide to overcoming clinical and technological hurdles in this rapidly evolving field.
Collapse
|
8
|
Khine AA, Chen PC, Chen YH, Chu SC, Chen YS, Huang HS, Chu TY. A simple, economical, and high-yield method for polyethylene glycol-based extraction of follicular and serum-derived extracellular vesicles. Tzu Chi Med J 2025; 37:49-57. [PMID: 39850391 PMCID: PMC11753524 DOI: 10.4103/tcmj.tcmj_160_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/31/2024] [Accepted: 08/22/2024] [Indexed: 01/25/2025] Open
Abstract
Objectives The optimization of polyethylene glycol (PEG)-based extracellular vesicles (EVs) extraction from human follicular fluid (FF) and serum was investigated, and their functional analysis was confirmed. The PEG-based EV results were compared to the ExoQuick (ExoQ)-based EV. Materials and Methods FF-EVs and serum-EVs were extracted by using different concentrations of PEG (8000). Nanoparticle tracking analysis was used to count the particles, and electron microscopy of EVs was performed for visualization. Exosomes were confirmed by the western blot analysis with exosome-specific markers. RNA and microRNA were extracted from exosomes and quantitative polymerase chain reaction analysis was performed. Fallopian tube epithelial (FTE) cells were used for the EV uptake experiment and an anchorage-independent growth test to confirm that extracted EVs harbor transformation activity. Results The PEG 8% enriched method produced the highest yield and the lowest carry-over protein. Salt containing PEG 8% produced a higher yield than nonsalted PEG 8%. Overnight enrichment increased four times and 18 times for PEG 8% and ExoQ-based EV extraction from FF. For serum EV, the same overnight enrichment moderately increased yield for both PEG 8% and ExoQ methods. Less carry-over protein resulted in more EV-promoted transformation activity. Conclusion This study overcomes the time-consuming, expensive, laborious, and complicated machine-dependent EV extraction methods. The study highlights that longer incubation time is needed for EV extraction from FF. PEG 8000-based EV extraction provided a higher yield and less carry-over protein than ExoQ-based EV extraction.
Collapse
Affiliation(s)
- Aye Aye Khine
- Center for Prevention and Therapy of Gynecological Cancers, Department of Research, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Pao-Chu Chen
- Department of Obstetrics and Gynecology, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Ying-Hsi Chen
- Department of Obstetrics and Gynecology, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Sung-Chao Chu
- Department of Hematology and Oncology, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
- School of Medicine, College of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Yu-Shuan Chen
- Department of Medical Research, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
- Bioinnovation Center, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
- Center for General Education, Tzu Chi University, Hualien, Taiwan
| | - Hsuan-Shun Huang
- Center for Prevention and Therapy of Gynecological Cancers, Department of Research, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Tang-Yuan Chu
- Center for Prevention and Therapy of Gynecological Cancers, Department of Research, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
- Department of Obstetrics and Gynecology, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
- School of Medicine, College of Medicine, Tzu Chi University, Hualien, Taiwan
- Institute of Medical Sciences, Tzu Chi University, Hualien, Taiwan
| |
Collapse
|
9
|
Liang J, Zhu Y, Liu S, Kuang B, Tian Z, Zhang L, Yang S, Lin M, Chen N, Liu X, Ai Q, Yang Y. Progress of Exosomal MicroRNAs and Traditional Chinese Medicine Monomers in Neurodegenerative Diseases. Phytother Res 2024; 38:5323-5349. [PMID: 39225243 DOI: 10.1002/ptr.8322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 07/14/2024] [Accepted: 08/10/2024] [Indexed: 09/04/2024]
Abstract
Exosomes, extracellular vesicles secreted by various cells, actively participate in intercellular communication by facilitating the exchange of crucial molecular information such as DNA, RNA, and lipids. Within this intricate network, microRNAs, endogenous non-coding small RNAs, emerge as pivotal regulators of post-transcriptional gene expression, significantly influencing the development of neurodegenerative diseases. The historical prominence of traditional Chinese medicine (TCM) in clinical practice in China underscores its enduring significance. Notably, TCM monomers, serving as active constituents within herbal medicine, assume a critical role in the treatment of neurodegenerative diseases, particularly in mitigating oxidative stress, inhibiting apoptosis, and reducing inflammation. This comprehensive review aims to delineate the specific involvement of exosomal microRNAs in various neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease, Huntington's disease, stroke, and amyotrophic lateral sclerosis. Furthermore, the exploration extends to the application of TCM monomers, elucidating their efficacy as therapeutic agents in these conditions. Additionally, the review examines the utilization of exosomes as drug delivery carriers in the context of neurodegenerative diseases, providing a nuanced understanding of the potential synergies between TCM and modern therapeutic approaches. This synthesis of knowledge aims to contribute to the advancement of our comprehension of the intricate molecular mechanisms underlying neurodegeneration and the potential therapeutic avenues offered by TCcom interventions.
Collapse
Affiliation(s)
- Jinping Liang
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, College of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Yuchen Zhu
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, College of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Shasha Liu
- Department of Pharmacy, Changsha Hospital for Maternal & Child Health Care Affiliated to Hunan Normal University, Changsha, China
| | - Boyu Kuang
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, College of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Zhifeng Tian
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, College of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Ling Zhang
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, College of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Songwei Yang
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, College of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Meiyu Lin
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, College of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Naihong Chen
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, College of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xuan Liu
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, College of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Qidi Ai
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, College of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Yantao Yang
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, College of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| |
Collapse
|
10
|
Zhu M, Gao Y, Zhu K, Yuan Y, Bai H, Meng L. Exosomal miRNA as biomarker in cancer diagnosis and prognosis: A review. Medicine (Baltimore) 2024; 103:e40082. [PMID: 39432619 PMCID: PMC11495718 DOI: 10.1097/md.0000000000040082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Accepted: 09/26/2024] [Indexed: 10/23/2024] Open
Abstract
Exosomes, which are extracellular vesicles with a diameter ranging from 40 to 160 nm, are abundantly present in various body fluids. Exosomal microRNA (ex-miR), due to its exceptional sensitivity and specificity, has garnered significant attention. Notably, ex-miR is consistently detected in almost all bodily fluids, highlighting its potential as a reliable biomarker. This attribute of ex-miR has piqued considerable interest in its application as a diagnostic tool for the early detection, continuous monitoring, and prognosis evaluation of cancer. Given the critical role of exosomes and their cargo in cancer biology, this review explores the intricate processes of exosome biogenesis and uptake, their multifaceted roles in cancer development and progression, and the potential of ex-miRs as biomarkers for tumor diagnosis and prognosis.
Collapse
Affiliation(s)
- Mingliao Zhu
- Medical School of Shaoxing University, Yuecheng, Shaoxing, Zhejiang Province, People’s Republic of China
| | - Yuan Gao
- Department of Breast and Thyroid Surgery, Shaoxing People’s Hospital, The First Affiliated Hospital of Shaoxing University, Shaoxing, Zhejiang Province, People’s Republic of China
| | - Kaijun Zhu
- Medical School of Shaoxing University, Yuecheng, Shaoxing, Zhejiang Province, People’s Republic of China
| | - Ying Yuan
- Medical School of Shaoxing University, Yuecheng, Shaoxing, Zhejiang Province, People’s Republic of China
| | - Haoyang Bai
- Medical School of Shaoxing University, Yuecheng, Shaoxing, Zhejiang Province, People’s Republic of China
| | - Liwei Meng
- Department of Breast and Thyroid Surgery, Shaoxing People’s Hospital, The First Affiliated Hospital of Shaoxing University, Shaoxing, Zhejiang Province, People’s Republic of China
| |
Collapse
|
11
|
Hüser L, Chhabra Y, Gololobova O, Wang V, Liu G, Dixit A, Rocha MR, Harper EI, Fane ME, Marino-Bravante GE, Zabransky DJ, Cai KQ, Utikal J, Slusher BS, Walston J, Lipson EJ, Witwer KW, Weeraratna AT. Aged fibroblast-derived extracellular vesicles promote angiogenesis in melanoma. Cell Rep 2024; 43:114721. [PMID: 39255061 PMCID: PMC11835374 DOI: 10.1016/j.celrep.2024.114721] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 07/09/2024] [Accepted: 08/20/2024] [Indexed: 09/12/2024] Open
Abstract
Advancing age is a negative prognostic factor for cutaneous melanoma. However, the role of extracellular vesicles (EVs) within the melanoma tumor microenvironment (TME) has remained unexplored in the context of aging. While the size and morphology of the EVs isolated from young vs. aged fibroblasts remained unaltered, the contents of the protein cargo were changed. Aging reduced the expression of the tetraspanin CD9 in both the dermal fibroblasts and released EVs. CD9 is a crucial regulator of EV cargo sorting. Modulating the CD9 expression in fibroblasts was sufficient to alter its levels in EVs. Mass spectrometry analysis of EVs released by CD9 knockdown (KD) vs. control cells revealed a significant increase in angiopoietin-like protein 2 (ANGPTL2), an angiogenesis promoter. Analysis of primary endothelial cells confirmed increased sprouting under CD9 KD conditions. Together, our data indicate that aged EVs play an important role in promoting a tumor-permissive microenvironment.
Collapse
Affiliation(s)
- Laura Hüser
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA; Department of Oncology, Sidney Kimmel Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD, USA; Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany; Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karl University of Heidelberg, Mannheim, Germany; DKFZ Hector Cancer Institute at the University Medical Center Mannheim, Mannheim, Germany
| | - Yash Chhabra
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA; Department of Oncology, Sidney Kimmel Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD, USA; Research Program Cancer Signaling and Microenvironment, Fox Chase Institute for Cancer Research, Philadelphia, PA, USA
| | - Olesia Gololobova
- Department of Molecular and Comparative Pathobiology, Johns Hopkins Medicine, Baltimore, MD, USA
| | - Vania Wang
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA; Department of Oncology, Sidney Kimmel Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Guanshu Liu
- Department of Radiology and Radiological Science, Johns Hopkins Medicine, Baltimore, MD, USA
| | - Agrani Dixit
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Murilo Ramos Rocha
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA; Department of Oncology, Sidney Kimmel Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Elizabeth I Harper
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA; Department of Oncology, Sidney Kimmel Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Mitchell E Fane
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA; Department of Oncology, Sidney Kimmel Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD, USA; Research Program Cancer Signaling and Microenvironment, Fox Chase Institute for Cancer Research, Philadelphia, PA, USA
| | - Gloria E Marino-Bravante
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA; Department of Oncology, Sidney Kimmel Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Daniel J Zabransky
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA; Department of Oncology, Sidney Kimmel Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Kathy Q Cai
- Research Program Cancer Signaling and Microenvironment, Fox Chase Institute for Cancer Research, Philadelphia, PA, USA
| | - Jochen Utikal
- Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany; Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karl University of Heidelberg, Mannheim, Germany; DKFZ Hector Cancer Institute at the University Medical Center Mannheim, Mannheim, Germany
| | - Barbara S Slusher
- Johns Hopkins Drug Discovery, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Psychiatry and Behavioral Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Pharmacology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jeremy Walston
- Department of Medicine - Geriatric Medicine and Gerontology, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Oncology - Hematologic Malignancies, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Evan J Lipson
- Department of Oncology, Sidney Kimmel Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD, USA; Bloomberg Kimmel Institute for Cancer Immunotherapy, Baltimore, MD, USA
| | - Kenneth W Witwer
- Department of Molecular and Comparative Pathobiology, Johns Hopkins Medicine, Baltimore, MD, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ashani T Weeraratna
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA; Department of Oncology, Sidney Kimmel Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
12
|
Kim J, Ro J, Cho YK. Vascularized platforms for investigating cell communication via extracellular vesicles. BIOMICROFLUIDICS 2024; 18:051504. [PMID: 39323481 PMCID: PMC11421861 DOI: 10.1063/5.0220840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 09/03/2024] [Indexed: 09/27/2024]
Abstract
The vascular network plays an essential role in the maintenance of all organs in the body via the regulated delivery of oxygen and nutrients, as well as tissue communication via the transfer of various biological signaling molecules. It also serves as a route for drug administration and affects pharmacokinetics. Due to this importance, engineers have sought to create physiologically relevant and reproducible vascular systems in tissue, considering cell-cell and extracellular matrix interaction with structural and physical conditions in the microenvironment. Extracellular vesicles (EVs) have recently emerged as important carriers for transferring proteins and genetic material between cells and organs, as well as for drug delivery. Vascularized platforms can be an ideal system for studying interactions between blood vessels and EVs, which are crucial for understanding EV-mediated substance transfer in various biological situations. This review summarizes recent advances in vascularized platforms, standard and microfluidic-based techniques for EV isolation and characterization, and studies of EVs in vascularized platforms. It provides insights into EV-related (patho)physiological regulations and facilitates the development of EV-based therapeutics.
Collapse
|
13
|
Slusher N, Jones N, Nonaka T. Liquid biopsy for diagnostic and prognostic evaluation of melanoma. Front Cell Dev Biol 2024; 12:1420360. [PMID: 39156972 PMCID: PMC11327088 DOI: 10.3389/fcell.2024.1420360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Accepted: 07/03/2024] [Indexed: 08/20/2024] Open
Abstract
Melanoma is the most aggressive form of skin cancer, and the majority of cases are associated with chronic or intermittent sun exposure. The incidence of melanoma has grown exponentially over the last 50 years, especially in populations of fairer skin, at lower altitudes and in geriatric populations. The gold standard for diagnosis of melanoma is performing an excisional biopsy with full resection or an incisional tissue biopsy. However, due to their invasiveness, conventional biopsy techniques are not suitable for continuous disease monitoring. Utilization of liquid biopsy techniques represent substantial promise in early detection of melanoma. Through this procedure, tumor-specific components shed into circulation can be analyzed for not only diagnosis but also treatment selection and risk assessment. Additionally, liquid biopsy is significantly less invasive than tissue biopsy and offers a novel way to monitor the treatment response and disease relapse, predicting metastasis.
Collapse
Affiliation(s)
- Nicholas Slusher
- School of Medicine, Louisiana State University Health Shreveport, Shreveport, LA, United States
| | - Nicholas Jones
- School of Medicine, Louisiana State University Health Shreveport, Shreveport, LA, United States
| | - Taichiro Nonaka
- Department of Cellular Biology and Anatomy, Louisiana State University Health Sciences Center, Shreveport, LA, United States
- Feist-Weiller Cancer Center, Louisiana State University Health Shreveport, Shreveport, LA, United States
| |
Collapse
|
14
|
Wang Z, Zhou X, Kong Q, He H, Sun J, Qiu W, Zhang L, Yang M. Extracellular Vesicle Preparation and Analysis: A State-of-the-Art Review. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2401069. [PMID: 38874129 PMCID: PMC11321646 DOI: 10.1002/advs.202401069] [Citation(s) in RCA: 33] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/11/2024] [Indexed: 06/15/2024]
Abstract
In recent decades, research on Extracellular Vesicles (EVs) has gained prominence in the life sciences due to their critical roles in both health and disease states, offering promising applications in disease diagnosis, drug delivery, and therapy. However, their inherent heterogeneity and complex origins pose significant challenges to their preparation, analysis, and subsequent clinical application. This review is structured to provide an overview of the biogenesis, composition, and various sources of EVs, thereby laying the groundwork for a detailed discussion of contemporary techniques for their preparation and analysis. Particular focus is given to state-of-the-art technologies that employ both microfluidic and non-microfluidic platforms for EV processing. Furthermore, this discourse extends into innovative approaches that incorporate artificial intelligence and cutting-edge electrochemical sensors, with a particular emphasis on single EV analysis. This review proposes current challenges and outlines prospective avenues for future research. The objective is to motivate researchers to innovate and expand methods for the preparation and analysis of EVs, fully unlocking their biomedical potential.
Collapse
Affiliation(s)
- Zesheng Wang
- Department of Precision Diagnostic and Therapeutic TechnologyCity University of Hong Kong Shenzhen Futian Research InstituteShenzhenGuangdong518000P. R. China
- Department of Biomedical Sciencesand Tung Biomedical Sciences CentreCity University of Hong KongHong Kong999077P. R. China
- Key Laboratory of Biochip TechnologyBiotech and Health CentreShenzhen Research Institute of City University of Hong KongShenzhen518057P. R. China
| | - Xiaoyu Zhou
- Department of Precision Diagnostic and Therapeutic TechnologyCity University of Hong Kong Shenzhen Futian Research InstituteShenzhenGuangdong518000P. R. China
- Department of Biomedical Sciencesand Tung Biomedical Sciences CentreCity University of Hong KongHong Kong999077P. R. China
- Key Laboratory of Biochip TechnologyBiotech and Health CentreShenzhen Research Institute of City University of Hong KongShenzhen518057P. R. China
| | - Qinglong Kong
- The Second Department of Thoracic SurgeryDalian Municipal Central HospitalDalian116033P. R. China
| | - Huimin He
- Department of Precision Diagnostic and Therapeutic TechnologyCity University of Hong Kong Shenzhen Futian Research InstituteShenzhenGuangdong518000P. R. China
- Department of Biomedical Sciencesand Tung Biomedical Sciences CentreCity University of Hong KongHong Kong999077P. R. China
- Key Laboratory of Biochip TechnologyBiotech and Health CentreShenzhen Research Institute of City University of Hong KongShenzhen518057P. R. China
| | - Jiayu Sun
- Department of Precision Diagnostic and Therapeutic TechnologyCity University of Hong Kong Shenzhen Futian Research InstituteShenzhenGuangdong518000P. R. China
- Department of Biomedical Sciencesand Tung Biomedical Sciences CentreCity University of Hong KongHong Kong999077P. R. China
| | - Wenting Qiu
- Department of Precision Diagnostic and Therapeutic TechnologyCity University of Hong Kong Shenzhen Futian Research InstituteShenzhenGuangdong518000P. R. China
- Department of Biomedical Sciencesand Tung Biomedical Sciences CentreCity University of Hong KongHong Kong999077P. R. China
| | - Liang Zhang
- Department of Precision Diagnostic and Therapeutic TechnologyCity University of Hong Kong Shenzhen Futian Research InstituteShenzhenGuangdong518000P. R. China
- Department of Biomedical Sciencesand Tung Biomedical Sciences CentreCity University of Hong KongHong Kong999077P. R. China
- Key Laboratory of Biochip TechnologyBiotech and Health CentreShenzhen Research Institute of City University of Hong KongShenzhen518057P. R. China
| | - Mengsu Yang
- Department of Precision Diagnostic and Therapeutic TechnologyCity University of Hong Kong Shenzhen Futian Research InstituteShenzhenGuangdong518000P. R. China
- Department of Biomedical Sciencesand Tung Biomedical Sciences CentreCity University of Hong KongHong Kong999077P. R. China
- Key Laboratory of Biochip TechnologyBiotech and Health CentreShenzhen Research Institute of City University of Hong KongShenzhen518057P. R. China
| |
Collapse
|
15
|
Skryabin GO, Beliaeva AA, Enikeev AD, Tchevkina EM. Extracellular Vesicle miRNAs in Diagnostics of Gastric Cancer. BIOCHEMISTRY. BIOKHIMIIA 2024; 89:1211-1238. [PMID: 39218020 DOI: 10.1134/s0006297924070058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/24/2024] [Accepted: 05/30/2024] [Indexed: 09/04/2024]
Abstract
Gastric cancer (GC) poses a significant global health challenge because of its high mortality rate attributed to the late-stage diagnosis and lack of early symptoms. Early cancer diagnostics is crucial for improving the survival rates in GC patients, which emphasizes the importance of identifying GC markers for liquid biopsy. The review discusses a potential use of extracellular vesicle microRNAs (EV miRNAs) as biomarkers for the diagnostics and prognostics of GC. Methods. Original articles on the identification of EV miRNA as GC markers published in the Web of Science and Scopus indexed issues were selected from the PubMed and Google Scholar databases. We focused on the methodological aspects of EV analysis, including the choice of body fluid, methods for EV isolation and validation, and approaches for EV miRNA analysis. Conclusions. Out of 33 found articles, the majority of authors investigated blood-derived extracellular vesicles (EVs); only a few utilized EVs from other body fluids, including tissue-specific local biofluids (washing the tumor growth areas), which may be a promising source of EVs in the context of cancer diagnostics. GC-associated miRNAs identified in different studies using different methods of EV isolation and analysis varied considerably. However, three miRNAs (miR-10b, miR-21, and miR-92a) have been found in several independent studies and shown to be associated with GC in experimental models. Further studies are needed to determine the optimal miRNA marker panel. Another essential step necessary to improve the reliability and reproducibility of EV-based diagnostics is standardization of methodologies for EV handling and analysis of EV miRNA.
Collapse
Affiliation(s)
- Gleb O Skryabin
- Blokhin National Medical Research Center of Oncology, Ministry of Health of the Russian Federation, Moscow, 115522, Russia.
| | - Anastasiya A Beliaeva
- Blokhin National Medical Research Center of Oncology, Ministry of Health of the Russian Federation, Moscow, 115522, Russia
| | - Adel D Enikeev
- Blokhin National Medical Research Center of Oncology, Ministry of Health of the Russian Federation, Moscow, 115522, Russia
| | - Elena M Tchevkina
- Blokhin National Medical Research Center of Oncology, Ministry of Health of the Russian Federation, Moscow, 115522, Russia
| |
Collapse
|
16
|
Wang H, Zhang Y, Zhang H, Cao H, Mao J, Chen X, Wang L, Zhang N, Luo P, Xue J, Qi X, Dong X, Liu G, Cheng Q. Liquid biopsy for human cancer: cancer screening, monitoring, and treatment. MedComm (Beijing) 2024; 5:e564. [PMID: 38807975 PMCID: PMC11130638 DOI: 10.1002/mco2.564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 04/16/2024] [Accepted: 04/23/2024] [Indexed: 05/30/2024] Open
Abstract
Currently, tumor treatment modalities such as immunotherapy and targeted therapy have more stringent requirements for obtaining tumor growth information and require more accurate and easy-to-operate tumor information detection methods. Compared with traditional tissue biopsy, liquid biopsy is a novel, minimally invasive, real-time detection tool for detecting information directly or indirectly released by tumors in human body fluids, which is more suitable for the requirements of new tumor treatment modalities. Liquid biopsy has not been widely used in clinical practice, and there are fewer reviews of related clinical applications. This review summarizes the clinical applications of liquid biopsy components (e.g., circulating tumor cells, circulating tumor DNA, extracellular vesicles, etc.) in tumorigenesis and progression. This includes the development process and detection techniques of liquid biopsies, early screening of tumors, tumor growth detection, and guiding therapeutic strategies (liquid biopsy-based personalized medicine and prediction of treatment response). Finally, the current challenges and future directions for clinical applications of liquid biopsy are proposed. In sum, this review will inspire more researchers to use liquid biopsy technology to promote the realization of individualized therapy, improve the efficacy of tumor therapy, and provide better therapeutic options for tumor patients.
Collapse
Affiliation(s)
- Hao Wang
- Department of NeurosurgeryThe Second Affiliated Hospital, Chongqing Medical UniversityChongqingChina
| | - Yi Zhang
- Department of NeurosurgeryThe Second Affiliated Hospital, Chongqing Medical UniversityChongqingChina
| | - Hao Zhang
- Department of NeurosurgeryThe Second Affiliated Hospital, Chongqing Medical UniversityChongqingChina
| | - Hui Cao
- Department of PsychiatryThe School of Clinical Medicine, Hunan University of Chinese MedicineChangshaChina
- Department of PsychiatryBrain Hospital of Hunan Province (The Second People’s Hospital of Hunan Province)ChangshaChina
| | - Jinning Mao
- Health Management CenterThe Second Affiliated Hospital, Chongqing Medical UniversityChongqingChina
| | - Xinxin Chen
- Department of NeurosurgeryThe Second Affiliated Hospital, Chongqing Medical UniversityChongqingChina
| | - Liangchi Wang
- Department of NeurosurgeryFengdu People's Hospital, ChongqingChongqingChina
| | - Nan Zhang
- College of Life Science and TechnologyHuazhong University of Science and TechnologyWuhanChina
| | - Peng Luo
- Department of OncologyZhujiang Hospital, Southern Medical UniversityGuangzhouChina
| | - Ji Xue
- Department of NeurosurgeryTraditional Chinese Medicine Hospital Dianjiang ChongqingChongqingChina
| | - Xiaoya Qi
- Health Management CenterThe Second Affiliated Hospital, Chongqing Medical UniversityChongqingChina
| | - Xiancheng Dong
- Department of Cerebrovascular DiseasesDazhou Central HospitalSichuanChina
| | - Guodong Liu
- Department of NeurosurgeryThe Second Affiliated Hospital, Chongqing Medical UniversityChongqingChina
| | - Quan Cheng
- Department of NeurosurgeryXiangya Hospital, Central South UniversityChangshaChina
- National Clinical Research Center for Geriatric DisordersXiangya Hospital, Central South UniversityChangshaChina
| |
Collapse
|
17
|
Paschoal Barbosa LM, Gomes ER, de Barros ALB, Cassali GD, de Carvalho AT, Silva JDO, Pádua AL, Oliveira MC. Hybrid Nanosystem Formed by DOX-Loaded Liposomes and Extracellular Vesicles from MDA-MB-231 Is Effective against Breast Cancer Cells with Different Molecular Profiles. Pharmaceutics 2024; 16:739. [PMID: 38931861 PMCID: PMC11206866 DOI: 10.3390/pharmaceutics16060739] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 05/24/2024] [Accepted: 05/29/2024] [Indexed: 06/28/2024] Open
Abstract
Drug delivery selectivity is a challenge for cancer treatment. A hybrid pegylated pH-sensitive liposome-extracellular vesicle isolated from human breast cancer cell MDA-MB-231 was developed to investigate its in vitro activity against breast cancer cells of different molecular profiles to overcome this inconvenience. The hybrid nanosystem was produced by film hydration, and doxorubicin (DOX) was encapsulated in this system using the ammonium sulfate gradient method. The characterization of this hybrid nanosystem revealed a mean diameter of 140.20 ± 2.70 nm, a polydispersity index of 0.102 ± 0.033, an encapsulation efficiency of doxorubicin of 88.9% ± 2.4, and a great storage stability for 90 days at 4 °C. The fusion of extracellular vesicles with liposomes was confirmed by nanoflow cytometry using PE-conjugated human anti-CD63. This hybrid nanosystem demonstrated cytotoxicity against human breast cancer cell lines with different molecular subtypes, enhanced anti-migration properties, and exhibited similar cellular uptake to the free DOX treatment. Preliminary acute toxicity assessments using Balb/C female mice indicated a median lethal dose of 15-17.5 mg/kg, with no evidence of splenic, liver, heart, bone marrow, and renal damage at a dose of 15 mg/kg. These findings suggest the hybrid formulation as a versatile nanocarrier for the treatment of various breast cancer subtypes.
Collapse
Affiliation(s)
- Luiza Marques Paschoal Barbosa
- Department of Pharmaceutical Products, Faculty of Pharmacy, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Belo Horizonte 31270-901, MG, Brazil; (E.R.G.)
| | - Eliza Rocha Gomes
- Department of Pharmaceutical Products, Faculty of Pharmacy, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Belo Horizonte 31270-901, MG, Brazil; (E.R.G.)
- Institute of Regenerative Medicine and Biotherapies (IRMB), Hôpital Saint-Eloi, 34295 Montpellier, France
| | - André Luis Branco de Barros
- Department of Pharmaceutical Products, Faculty of Pharmacy, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Belo Horizonte 31270-901, MG, Brazil; (E.R.G.)
- Department of Clinical and Toxicological Analysis, Faculty of Pharmacy, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Belo Horizonte 31270-901, MG, Brazil
| | - Geovanni Dantas Cassali
- Department of General Pathology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Belo Horizonte 31270-901, MG, Brazil
| | - Andréa Teixeira de Carvalho
- Instituto René Rachou, Fiocruz Minas, Av. Augusto de Lima, 1715, Barro Preto, Belo Horizonte 30190-002, MG, Brazil
| | - Juliana de Oliveira Silva
- Department of Pharmaceutical Products, Faculty of Pharmacy, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Belo Horizonte 31270-901, MG, Brazil; (E.R.G.)
| | - Ana Luiza Pádua
- Department of Pharmaceutical Products, Faculty of Pharmacy, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Belo Horizonte 31270-901, MG, Brazil; (E.R.G.)
| | - Mônica Cristina Oliveira
- Department of Pharmaceutical Products, Faculty of Pharmacy, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Belo Horizonte 31270-901, MG, Brazil; (E.R.G.)
| |
Collapse
|
18
|
Javed A, Kong N, Mathesh M, Duan W, Yang W. Nanoarchitectonics-based electrochemical aptasensors for highly efficient exosome detection. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 2024; 25:2345041. [PMID: 38742153 PMCID: PMC11089931 DOI: 10.1080/14686996.2024.2345041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 04/15/2024] [Indexed: 05/16/2024]
Abstract
Exosomes, a type of extracellular vesicles, have attracted considerable attention due to their ability to provide valuable insights into the pathophysiological microenvironment of the cells from which they originate. This characteristic implicates their potential use as diagnostic disease biomarkers clinically, including cancer, infectious diseases, neurodegenerative disorders, and cardiovascular diseases. Aptasensors, which are electrochemical aptamers based biosensing devices, have emerged as a new class of powerful detection technology to conventional methods like ELISA and Western analysis, primarily because of their capability for high-performance bioanalysis. This review covers the current research landscape on the detection of exosomes utilizing nanoarchitectonics strategy for the development of electrochemical aptasensors. Strategies involving signal amplification and biofouling prevention are discussed, with an emphasis on nanoarchitectonics-based bio-interfaces, showcasing their potential to enhance sensitivity and selectivity through optimal conduction and mass transport properties. The ongoing challenges to broaden the clinical applications of these biosensors are also highlighted.
Collapse
Affiliation(s)
- Aisha Javed
- School of Life and Environmental Science, Centre for Sustainable Bioproducts, Deakin University, Geelong, VIC, Australia
| | - Na Kong
- School of Life and Environmental Science, Centre for Sustainable Bioproducts, Deakin University, Geelong, VIC, Australia
| | - Motilal Mathesh
- School of Life and Environmental Science, Centre for Sustainable Bioproducts, Deakin University, Geelong, VIC, Australia
| | - Wei Duan
- School of Medicine, Faculty of Health, Deakin University, Geelong, VIC, Australia
| | - Wenrong Yang
- School of Life and Environmental Science, Centre for Sustainable Bioproducts, Deakin University, Geelong, VIC, Australia
| |
Collapse
|
19
|
Penna F, Garcia-Castillo L, Costelli P. Extracellular Vesicles and Exosomes in the Control of the Musculoskeletal Health. Curr Osteoporos Rep 2024; 22:257-265. [PMID: 38424339 PMCID: PMC11061004 DOI: 10.1007/s11914-024-00866-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/21/2024] [Indexed: 03/02/2024]
Abstract
PURPOSE OF REVIEW The present review will highlight recent reports supporting the relevance of extracellular vesicles to the musculoskeletal system in health and disease. RECENT FINDINGS Preserving the health of the musculoskeletal system is important to maintain a good quality of life, and the bone-muscle crosstalk is crucial in this regard. This latter is largely mediated by extracellular vesicles released by the different cell populations residing in muscle and bone, which deliver cargoes, microRNAs, and proteins being the most relevant ones, to target cells. Extracellular vesicles could be exploited as therapeutic tools, in view of their resistance to destruction in the biological fluid and of the possibility to be functionalized according to the need. Extracellular vesicles are recognized as crucial players in the bone-muscle cross-talk. Additional studies however are required to refine their use as biomarkers of early alterations of the musculoskeletal system, and as potential therapeutic tools.
Collapse
Affiliation(s)
- Fabio Penna
- Department of Clinical and Biological Sciences, University of Turin, Corso Raffaello 30, 10125, Turin, Italy
| | - Lorena Garcia-Castillo
- Department of Clinical and Biological Sciences, University of Turin, Corso Raffaello 30, 10125, Turin, Italy
| | - Paola Costelli
- Department of Clinical and Biological Sciences, University of Turin, Corso Raffaello 30, 10125, Turin, Italy.
| |
Collapse
|
20
|
Soong WJ, Wang CH, Chen C, Lee GB. Nanoscale sorting of extracellular vesicles via optically-induced dielectrophoresis on an integrated microfluidic system. LAB ON A CHIP 2024; 24:1965-1976. [PMID: 38357980 DOI: 10.1039/d3lc01007d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2024]
Abstract
We reported a microfluidic system for sorting of extracellular vesicles (EVs), which can house DNAs, RNAs, lipids, proteins, and metabolites that are important in intercellular communication. Their presence within bodily fluids has demonstrated potential in both clinical diagnostic and therapeutic applications. Furthermore, EVs exhibit distinct subtypes categorized by their sizes, each endowed with unique biophysical properties. Despite several existing techniques for EV isolation and purification, diminished purity and prolonged processing times still hamper clinical utility; comprehensive capture of EVs remains an ongoing pursuit. To address these challenges, we devised an innovative method for automated sorting of nano-scale EVs employing optically-induced dielectrophoresis on an integrated microfluidic chip. With this approach, EVs of three distinct size categories (small: 100-150 nm, medium-sized: 150-225 nm, and large: 225-350 nm) could be isolated at a purity of 86%. This new method has substantial potential in expediting EV research and diagnostics.
Collapse
Affiliation(s)
- Wei-Jen Soong
- Department of Power Mechanical Engineering, National Tsing Hua University, Hsinchu, Taiwan.
| | - Chih-Hung Wang
- Department of Power Mechanical Engineering, National Tsing Hua University, Hsinchu, Taiwan.
| | - Chihchen Chen
- Department of Power Mechanical Engineering, National Tsing Hua University, Hsinchu, Taiwan.
- Institute of NanoEngineering and MicroSystems, National Tsing Hua University, Hsinchu, Taiwan
| | - Gwo-Bin Lee
- Department of Power Mechanical Engineering, National Tsing Hua University, Hsinchu, Taiwan.
- Institute of NanoEngineering and MicroSystems, National Tsing Hua University, Hsinchu, Taiwan
| |
Collapse
|
21
|
Ziemiński R, Stupak A, Kwiatek M, Gęca T, Warowicka A, Hejne K, Kwaśniewska A, Goździcka-Józefiak A, Kwaśniewski W. Analysis of the Expression of LSF Transcription Factor in the Regulation of Transcription and TSG101 during the Neoplastic Transformation of Endometrial Cells. Cells 2024; 13:580. [PMID: 38607019 PMCID: PMC11011417 DOI: 10.3390/cells13070580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 03/23/2024] [Accepted: 03/23/2024] [Indexed: 04/13/2024] Open
Abstract
Previous research indicates that carcinogenesis involves disrupting the functions of numerous genes, including factors involved in the regulation of transcription and cell proliferation. For these reasons, in endometrial carcinogenesis, we decided to investigate the expression of TSG101 (a suppressor of tumor transformation) and LSF (a transcription factor involved in numerous cellular processes, such as cell cycle regulation, cell growth, development, and apoptosis). LSF may be involved in the regulation of TSG101 expression. The research material consisted of endometrial cancer samples from 60 patients. The control group consisted of normal endometrium samples donated by 60 women undergoing surgery for benign diseases of the female reproductive organs. The samples were subjected to immunohistochemical staining with antibodies specific to TSG101 and LSF. Specific antibodies were used to identify TSG101 and LSF in the examined histopathological preparations. An approximately 14-fold lower risk of endometrial cancer development was observed in patients with TSG expression in more than 75% of the assessed cells (4% vs. 36%; OR = 0.07; p = 0.0182). There was a four-fold lower risk of endometrial cancer development in patients with LSF expression in more than 50% of the assessed cells (32% vs. 64%; OR = 0.26; p = 0.0262). A more than three-fold lower risk of endometrial cancer development was observed in patients with LSF expression in more than 75% of the assessed cells (24% vs. 52%; OR = 0.29; p = 0.0454). Endometrial cancer was diagnosed in those with a lower level of TSG101 expression than in those with a cancer-free endometrium. Decreased expression of TSG101 may be a marker of endometrial cancer, and increased expression of LSF when diagnosed with endometrial cancer may indicate greater advancement of the disease. These markers might be used as diagnostic and prognostic markers-however, there is a lack of a correlation between them.
Collapse
Affiliation(s)
- Rafał Ziemiński
- Department of Obstetrics and Pathology of Pregnancy, Medical University of Lublin, 20-059 Lublin, Poland; (R.Z.); (M.K.); (T.G.); (A.K.)
| | - Aleksandra Stupak
- Department of Obstetrics and Pathology of Pregnancy, Medical University of Lublin, 20-059 Lublin, Poland; (R.Z.); (M.K.); (T.G.); (A.K.)
| | - Maciej Kwiatek
- Department of Obstetrics and Pathology of Pregnancy, Medical University of Lublin, 20-059 Lublin, Poland; (R.Z.); (M.K.); (T.G.); (A.K.)
| | - Tomasz Gęca
- Department of Obstetrics and Pathology of Pregnancy, Medical University of Lublin, 20-059 Lublin, Poland; (R.Z.); (M.K.); (T.G.); (A.K.)
| | - Alicja Warowicka
- Department of Molecular Virology, Institute of Experimental Biology, Adam Mickiewicz University in Poznan, 61-712 Poznań, Poland; (A.W.)
| | - Karolina Hejne
- Department of Pathomorphology and Forensic Medicine, School of Medicine, Collegium Medicum, University of Warmia and Mazury, 11-082 Olsztyn, Poland
| | - Anna Kwaśniewska
- Department of Obstetrics and Pathology of Pregnancy, Medical University of Lublin, 20-059 Lublin, Poland; (R.Z.); (M.K.); (T.G.); (A.K.)
| | - Anna Goździcka-Józefiak
- Department of Molecular Virology, Institute of Experimental Biology, Adam Mickiewicz University in Poznan, 61-712 Poznań, Poland; (A.W.)
| | - Wojciech Kwaśniewski
- Department of Gynecology Oncology and Gynecology, Medical University of Lublin, 20-059 Lublin, Poland
| |
Collapse
|
22
|
Li B, Kugeratski FG, Kalluri R. A novel machine learning algorithm selects proteome signature to specifically identify cancer exosomes. eLife 2024; 12:RP90390. [PMID: 38529947 PMCID: PMC10965221 DOI: 10.7554/elife.90390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2024] Open
Abstract
Non-invasive early cancer diagnosis remains challenging due to the low sensitivity and specificity of current diagnostic approaches. Exosomes are membrane-bound nanovesicles secreted by all cells that contain DNA, RNA, and proteins that are representative of the parent cells. This property, along with the abundance of exosomes in biological fluids makes them compelling candidates as biomarkers. However, a rapid and flexible exosome-based diagnostic method to distinguish human cancers across cancer types in diverse biological fluids is yet to be defined. Here, we describe a novel machine learning-based computational method to distinguish cancers using a panel of proteins associated with exosomes. Employing datasets of exosome proteins from human cell lines, tissue, plasma, serum, and urine samples from a variety of cancers, we identify Clathrin Heavy Chain (CLTC), Ezrin, (EZR), Talin-1 (TLN1), Adenylyl cyclase-associated protein 1 (CAP1), and Moesin (MSN) as highly abundant universal biomarkers for exosomes and define three panels of pan-cancer exosome proteins that distinguish cancer exosomes from other exosomes and aid in classifying cancer subtypes employing random forest models. All the models using proteins from plasma, serum, or urine-derived exosomes yield AUROC scores higher than 0.91 and demonstrate superior performance compared to Support Vector Machine, K Nearest Neighbor Classifier and Gaussian Naive Bayes. This study provides a reliable protein biomarker signature associated with cancer exosomes with scalable machine learning capability for a sensitive and specific non-invasive method of cancer diagnosis.
Collapse
Affiliation(s)
- Bingrui Li
- Department of Cancer Biology, University of Texas MD Anderson Cancer CenterHoustonUnited States
| | - Fernanda G Kugeratski
- Department of Cancer Biology, University of Texas MD Anderson Cancer CenterHoustonUnited States
| | - Raghu Kalluri
- Department of Cancer Biology, University of Texas MD Anderson Cancer CenterHoustonUnited States
- Department of Bioengineering, Rice UniversityHoustonUnited States
- Department of Molecular and Cellular Biology, Baylor College of MedicineHoustonUnited States
| |
Collapse
|
23
|
Arora A, Patiyal S, Sharma N, Devi NL, Kaur D, Raghava GPS. A random forest model for predicting exosomal proteins using evolutionary information and motifs. Proteomics 2024; 24:e2300231. [PMID: 37525341 DOI: 10.1002/pmic.202300231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 07/20/2023] [Accepted: 07/21/2023] [Indexed: 08/02/2023]
Abstract
Non-invasive diagnostics and therapies are crucial to prevent patients from undergoing painful procedures. Exosomal proteins can serve as important biomarkers for such advancements. In this study, we attempted to build a model to predict exosomal proteins. All models are trained, tested, and evaluated on a non-redundant dataset comprising 2831 exosomal and 2831 non-exosomal proteins, where no two proteins have more than 40% similarity. Initially, the standard similarity-based method Basic Local Alignment Search Tool (BLAST) was used to predict exosomal proteins, which failed due to low-level similarity in the dataset. To overcome this challenge, machine learning (ML) based models were developed using compositional and evolutionary features of proteins achieving an area under the receiver operating characteristics (AUROC) of 0.73. Our analysis also indicated that exosomal proteins have a variety of sequence-based motifs which can be used to predict exosomal proteins. Hence, we developed a hybrid method combining motif-based and ML-based approaches for predicting exosomal proteins, achieving a maximum AUROC of 0.85 and MCC of 0.56 on an independent dataset. This hybrid model performs better than presently available methods when assessed on an independent dataset. A web server and a standalone software ExoProPred (https://webs.iiitd.edu.in/raghava/exopropred/) have been created to help scientists predict and discover exosomal proteins and find functional motifs present in them.
Collapse
Affiliation(s)
- Akanksha Arora
- Department of Computational Biology, Indraprastha Institute of Information Technology, New Delhi, India
| | - Sumeet Patiyal
- Department of Computational Biology, Indraprastha Institute of Information Technology, New Delhi, India
| | - Neelam Sharma
- Department of Computational Biology, Indraprastha Institute of Information Technology, New Delhi, India
| | - Naorem Leimarembi Devi
- Department of Computational Biology, Indraprastha Institute of Information Technology, New Delhi, India
| | - Dashleen Kaur
- Department of Computational Biology, Indraprastha Institute of Information Technology, New Delhi, India
| | - Gajendra P S Raghava
- Department of Computational Biology, Indraprastha Institute of Information Technology, New Delhi, India
| |
Collapse
|
24
|
Wang Z, Wang Q, Qin F, Chen J. Exosomes: a promising avenue for cancer diagnosis beyond treatment. Front Cell Dev Biol 2024; 12:1344705. [PMID: 38419843 PMCID: PMC10900531 DOI: 10.3389/fcell.2024.1344705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 01/31/2024] [Indexed: 03/02/2024] Open
Abstract
Exosomes, extracellular vesicles secreted by cells, have garnered significant attention in recent years for their remarkable therapeutic potential. These nanoscale carriers can be harnessed for the targeted delivery of therapeutic agents, such as pharmaceuticals, proteins, and nucleic acids, across biological barriers. This versatile attribute of exosomes is a promising modality for precision medicine applications, notably in the realm of cancer therapy. However, despite their substantial therapeutic potential, exosomes still confront challenges tied to standardization and scalability that impede their practice in clinical applications. Moreover, heterogeneity in isolation methodologies and limited cargo loading mechanisms pose obstacles to ensuring consistent outcomes, thereby constraining their therapeutic utility. In contrast, exosomes exhibit a distinct advantage in cancer diagnosis, as they harbor specific signatures reflective of the tumor's genetic and proteomic profile. This characteristic endows them with the potential to serve as valuable liquid biopsies for non-invasive and real-time monitoring, making possible early cancer detection for the development of personalized treatment strategies. In this review, we provide an extensive evaluation of the advancements in exosome research, critically examining their advantages and limitations in the context of cancer therapy and early diagnosis. Furthermore, we present a curated overview of the most recent technological innovations utilizing exosomes, with a focus on enhancing the efficacy of early cancer detection.
Collapse
Affiliation(s)
- Zhu Wang
- Breast Center, West China Hospital, Sichuan University, Chengdu, China
- Department of General Surgery, West China Hospital, Sichuan University, Chengdu, China
- Institute for Breast Health Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Qianqian Wang
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Feng Qin
- School of Basic Medicine, Dali University, Dali, Yunnan, China
| | - Jie Chen
- Breast Center, West China Hospital, Sichuan University, Chengdu, China
- Department of General Surgery, West China Hospital, Sichuan University, Chengdu, China
- Institute for Breast Health Medicine, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
25
|
Greenberg ZF, Ali S, Schmittgen TD, Han S, Hughes SJ, Graim KS, He M. Peptide-based capture-and-release purification of extracellular vesicles and statistical algorithm enabled quality assessment. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.06.578050. [PMID: 38370748 PMCID: PMC10871196 DOI: 10.1101/2024.02.06.578050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Circulating extracellular vesicles (EVs) have gained significant attention for discovering tumor biomarkers. However, isolating EVs with well-defined homogeneous populations from complex biological samples is challenging. Different isolation methods have been found to derive different EV populations carrying different molecular contents, which confounds current investigations and hinders subsequent clinical translation. Therefore, standardizing and building a rigorous assessment of isolated EV quality associated with downstream molecular analysis is essential. To address this need, we introduce a statistical algorithm (ExoQuality Index, EQI) by integrating multiple EV characterizations (size, particle concentration, zeta potential, total protein, and RNA), enabling direct EV quality assessment and comparisons between different isolation methods. We also introduced a novel capture-release isolation approach using a pH-responsive peptide conjugated with NanoPom magnetic beads (ExCy) for simple, fast, and homogeneous EV isolation from various biological fluids. Bioinformatic analysis of next-generation sequencing (NGS) data of EV total RNAs from pancreatic cancer patient plasma samples using our novel EV isolation approach and quality index strategy illuminates how this approach improves the identification of tumor associated molecular markers. Results showed higher human mRNA coverage compared to existing isolation approaches in terms of both pancreatic cancer pathways and EV cellular component pathways using gProfiler pathway analysis. This study provides a valuable resource for researchers, establishing a workflow to prepare and analyze EV samples carefully and contributing to the advancement of reliable and rigorous EV quality assessment and clinical translation.
Collapse
Affiliation(s)
- Zachary F. Greenberg
- Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, Florida 32610, United States
| | - Samantha Ali
- Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, Florida 32610, United States
| | - Thomas D. Schmittgen
- Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, Florida 32610, United States
| | - Song Han
- Department of Surgery, College of Medicine, University of Florida, Gainesville, Florida 32610, United States
| | - Steven J. Hughes
- Department of Surgery, College of Medicine, University of Florida, Gainesville, Florida 32610, United States
| | - Kiley S. Graim
- Department of Computer & Information Science & Engineering, Herbert Wertheim College of Engineering, University of Florida, Gainesville, Florida, 32610, USA
| | - Mei He
- Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, Florida 32610, United States
| |
Collapse
|
26
|
Hánělová K, Raudenská M, Masařík M, Balvan J. Protein cargo in extracellular vesicles as the key mediator in the progression of cancer. Cell Commun Signal 2024; 22:25. [PMID: 38200509 PMCID: PMC10777590 DOI: 10.1186/s12964-023-01408-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 11/24/2023] [Indexed: 01/12/2024] Open
Abstract
Exosomes are small vesicles of endosomal origin that are released by almost all cell types, even those that are pathologically altered. Exosomes widely participate in cell-to-cell communication via transferring cargo, including nucleic acids, proteins, and other metabolites, into recipient cells. Tumour-derived exosomes (TDEs) participate in many important molecular pathways and affect various hallmarks of cancer, including fibroblasts activation, modification of the tumour microenvironment (TME), modulation of immune responses, angiogenesis promotion, setting the pre-metastatic niche, enhancing metastatic potential, and affecting therapy sensitivity and resistance. The unique exosome biogenesis, composition, nontoxicity, and ability to target specific tumour cells bring up their use as promising drug carriers and cancer biomarkers. In this review, we focus on the role of exosomes, with an emphasis on their protein cargo, in the key mechanisms promoting cancer progression. We also briefly summarise the mechanism of exosome biogenesis, its structure, protein composition, and potential as a signalling hub in both normal and pathological conditions. Video Abstract.
Collapse
Affiliation(s)
- Klára Hánělová
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, Brno, CZ-625 00, Czech Republic
| | - Martina Raudenská
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, Brno, CZ-625 00, Czech Republic
- Department of Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, Brno, CZ-625 00, Czech Republic
| | - Michal Masařík
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, Brno, CZ-625 00, Czech Republic
- Department of Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, Brno, CZ-625 00, Czech Republic
- BIOCEV, First Faculty of Medicine, Charles University, Prumyslova 595, Vestec, CZ-252 50, Czech Republic
| | - Jan Balvan
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, Brno, CZ-625 00, Czech Republic.
| |
Collapse
|
27
|
Li M, Zhou T, Han M, Wang H, Bao P, Tao Y, Chen X, Wu G, Liu T, Wang X, Lu Q, Zhu Y, Lu ZJ. cfOmics: a cell-free multi-Omics database for diseases. Nucleic Acids Res 2024; 52:D607-D621. [PMID: 37757861 PMCID: PMC10767897 DOI: 10.1093/nar/gkad777] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/01/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
Liquid biopsy has emerged as a promising non-invasive approach for detecting, monitoring diseases, and predicting their recurrence. However, the effective utilization of liquid biopsy data to identify reliable biomarkers for various cancers and other diseases requires further exploration. Here, we present cfOmics, a web-accessible database (https://cfomics.ncRNAlab.org/) that integrates comprehensive multi-omics liquid biopsy data, including cfDNA, cfRNA based on next-generation sequencing, and proteome, metabolome based on mass-spectrometry data. As the first multi-omics database in the field, cfOmics encompasses a total of 17 distinct data types and 13 specimen variations across 69 disease conditions, with a collection of 11345 samples. Moreover, cfOmics includes reported potential biomarkers for reference. To facilitate effective analysis and visualization of multi-omics data, cfOmics offers powerful functionalities to its users. These functionalities include browsing, profile visualization, the Integrative Genomic Viewer, and correlation analysis, all centered around genes, microbes, or end-motifs. The primary objective of cfOmics is to assist researchers in the field of liquid biopsy by providing comprehensive multi-omics data. This enables them to explore cell-free data and extract profound insights that can significantly impact disease diagnosis, treatment monitoring, and management.
Collapse
Affiliation(s)
- Mingyang Li
- MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
- Institute for Precision Medicine, Tsinghua University, Beijing 100084, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100084, China
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Tianxiu Zhou
- MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
- Institute for Precision Medicine, Tsinghua University, Beijing 100084, China
| | - Mingfei Han
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, 38 Life Science Park, Changping District, Beijing 102206, China
| | - Hongke Wang
- MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
- Institute for Precision Medicine, Tsinghua University, Beijing 100084, China
| | - Pengfei Bao
- MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
- Institute for Precision Medicine, Tsinghua University, Beijing 100084, China
| | - Yuhuan Tao
- MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
- Institute for Precision Medicine, Tsinghua University, Beijing 100084, China
| | - Xiaoqing Chen
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, 38 Life Science Park, Changping District, Beijing 102206, China
| | - Guansheng Wu
- MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Tianyou Liu
- MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Xiaojuan Wang
- Institute for Precision Medicine, Tsinghua University, Beijing 100084, China
- Hepatopancreatobiliary Center, Beijing Tsinghua Changgung Hospital, Tsinghua University, No. 168, Litang Road, Changping District, Beijing 102218, China
| | - Qian Lu
- Institute for Precision Medicine, Tsinghua University, Beijing 100084, China
- Hepatopancreatobiliary Center, Beijing Tsinghua Changgung Hospital, Tsinghua University, No. 168, Litang Road, Changping District, Beijing 102218, China
| | - Yunping Zhu
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, 38 Life Science Park, Changping District, Beijing 102206, China
| | - Zhi John Lu
- MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
- Institute for Precision Medicine, Tsinghua University, Beijing 100084, China
| |
Collapse
|
28
|
Keyvani V, Ghale-Noie ZN, Mollazadeh S, Mahmoudian RA, Ghorbani E, Naderi H, Khazaei M, Hassanian SM, Ferns GA, Avan A, Anvari K. Recent Progress in the Application of Exosome Analysis in Ovarian Cancer Management. Curr Cancer Drug Targets 2024; 24:920-929. [PMID: 38284712 DOI: 10.2174/0115680096281906231213055422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/22/2023] [Accepted: 10/25/2023] [Indexed: 01/30/2024]
Abstract
Exosomes are very small (nano-sized) vesicles participating in tumor development by involvement in intercellular communication mediated by transferring biocomponents. Exosomes appear to play vital roles in various cancer development, such as ovarian cancer, a common malignancy in women. Several hallmarks of ovarian cancer are reported to be affected by the exosomemediated cellular cross-talk, including modulating peritoneal dissemination and chemoresistance. Since the expression of some biomolecules, such as miRNAs and mRNA, is changed in ovarian cancer, these exo-biomolecules can be applied as prognostic, diagnostic, and therapeutic biomarkers. Also, the selective loading of specific chemotherapeutic agents into exosomes highlights these biocarries as potential delivery devices. Exosomes could be artificially provided and engineered to better target the site of interest in ovarian cancer. In the present review, we summarize the notable achievement of exosome application in ovarian cancer management to gain applicable transitional insight against this cancer.
Collapse
Affiliation(s)
- Vahideh Keyvani
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zari Naderi Ghale-Noie
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Samaneh Mollazadeh
- Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Reihaneh Alsadat Mahmoudian
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Basic Sciences Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Cancer Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Elnaz Ghorbani
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- College of Medicine, University of Warith Al-Anbiyaa, Karbala, Iraq
| | - Hamid Naderi
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Majid Khazaei
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Mahdi Hassanian
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Gordon A Ferns
- Brighton & Sussex Medical School, Division of Medical Education, Falmer, Brighton, Sussex, BN1 9PH, UK
| | - Amir Avan
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Faculty of Health, School of Biomedical Sciences, Queensland University of Technology (QUT), Brisbane, 4059, Australia
- College of Medicine and Health Sciences, National University of Science and Technology, Sultanate of Oman
| | - Kazem Anvari
- Cancer Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
29
|
Li B, Kugeratski FG, Kalluri R. A novel machine learning algorithm selects proteome signature to specifically identify cancer exosomes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.18.549557. [PMID: 37503071 PMCID: PMC10370082 DOI: 10.1101/2023.07.18.549557] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Non-invasive early cancer diagnosis remains challenging due to the low sensitivity and specificity of current diagnostic approaches. Exosomes are membrane-bound nanovesicles secreted by all cells that contain DNA, RNA, and proteins that are representative of the parent cells. This property, along with the abundance of exosomes in biological fluids makes them compelling candidates as biomarkers. However, a rapid and flexible exosome-based diagnostic method to distinguish human cancers across cancer types in diverse biological fluids is yet to be defined. Here, we describe a novel machine learning-based computational method to distinguish cancers using a panel of proteins associated with exosomes. Employing datasets of exosome proteins from human cell lines, tissue, plasma, serum and urine samples from a variety of cancers, we identify Clathrin Heavy Chain (CLTC), Ezrin, (EZR), Talin-1 (TLN1), Adenylyl cyclase-associated protein 1 (CAP1) and Moesin (MSN) as highly abundant universal biomarkers for exosomes and define three panels of pan-cancer exosome proteins that distinguish cancer exosomes from other exosomes and aid in classifying cancer subtypes employing random forest models. All the models using proteins from plasma, serum, or urine-derived exosomes yield AUROC scores higher than 0.91 and demonstrate superior performance compared to Support Vector Machine, K Nearest Neighbor Classifier and Gaussian Naive Bayes. This study provides a reliable protein biomarker signature associated with cancer exosomes with scalable machine learning capability for a sensitive and specific non-invasive method of cancer diagnosis.
Collapse
|
30
|
Wang N, Yao Y, Qian Y, Qiu D, Cao H, Xiang H, Wang J. Cargoes of exosomes function as potential biomarkers for Mycobacterium tuberculosis infection. Front Immunol 2023; 14:1254347. [PMID: 37928531 PMCID: PMC10622749 DOI: 10.3389/fimmu.2023.1254347] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 10/02/2023] [Indexed: 11/07/2023] Open
Abstract
Exosomes as double-membrane vesicles contain various contents of lipids, proteins, mRNAs and non-coding RNAs, and involve in multiple physiological processes, for instance intercellular communication and immunomodulation. Currently, numerous studies found that the components of exosomal proteins, nucleic acids or lipids released from host cells are altered following infection with Mycobacterium tuberculosis. Exosomal contents provide excellent biomarkers for the auxiliary diagnosis, efficacy evaluation, and prognosis of tuberculosis. This study aimed to review the current literatures detailing the functions of exosomes in the procedure of M. tuberculosis infection, and determine the potential values of exosomes as biomarkers to assist in the diagnosis and monitoring of tuberculosis.
Collapse
Affiliation(s)
- Nan Wang
- Department of Clinical Laboratory, Kunshan Hospital Affiliated to Jiangsu University, Suzhou, Jiangsu, China
| | - Yongliang Yao
- Department of Clinical Laboratory, Kunshan Hospital Affiliated to Jiangsu University, Suzhou, Jiangsu, China
| | - Yingfen Qian
- Department of Clinical Laboratory, Kunshan Fourth People’s Hospital, Suzhou, Jiangsu, China
| | - Dewen Qiu
- Department of Clinical Laboratory, Jiangxi Maternal and Child Health Hospital Maternal and Child Heath Hospital of Nanchang College, Nanchang, China
| | - Hui Cao
- Department of Food and Nutrition Safety, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, Jiangsu, China
| | - Huayuan Xiang
- Department of Clinical Laboratory, Kunshan Hospital Affiliated to Jiangsu University, Suzhou, Jiangsu, China
| | - Jianjun Wang
- Department of Clinical Laboratory, Kunshan Hospital Affiliated to Jiangsu University, Suzhou, Jiangsu, China
| |
Collapse
|
31
|
Wu J, Zheng D, Wang H, Zhou Z, Yang Q, Wu J, Tian H, Ji Z, Chen L, Cai J, Chen Y, Li Z. Trends in research of exosomes associated with breast cancer over the past decade: a scientometric analysis. Front Oncol 2023; 13:1273555. [PMID: 37854676 PMCID: PMC10579892 DOI: 10.3389/fonc.2023.1273555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 09/18/2023] [Indexed: 10/20/2023] Open
Abstract
Introduction Breast cancer remains a significant global health challenge, accounting for 2.3 million new cases in 2020 and ranking as the most prevalent cancer by incidence and the fourth in cancer-related mortality worldwide. In China, breast cancer also rapidly increases incidence and burden. The research of exosomes in breast cancer has attracted more and more attention and has a rapid development. Recognizing the pivotal role of exosomes in breast cancer research, we have undertaken a comprehensive scientometric analysis of pertinent scholarly articles published over the past decade to elucidate the current research landscape for researchers. Methods In this study, we gathered all pertinent publications from the Web of Science. Biblioshiny (a web interface for Bibliometrix), VOSviewer software, and CiteSpace software were used to analyze the information on publications, including global trends, countries, institutions, journals, authors, keywords, and citations. Results A total of 1,239 articles and 625 review articles were retrieved. The annual global publication output has an increased trend in recent decades overall. China contributed the most articles. The publications of the USA had the most total link strength. Nanjing Medical University had the most total link strength. The most relevant source was the International Journal of Molecular Sciences. Tang JH contributed the most articles and had the highest H-index, G-index, and total link strength. The most cited document was "Tumor exosome integrins determine organotropic metastasis", with 2730 citations. The basic themes included "exosomes", "expression", "cells", "identification", "biomarkers", and "serum". The keyword "membrane vesicle" had the strongest bursts. The keywords "target", "biology", "suppressor cell", "molecular mechanism", "tumor progression", "inhibitor", and "model" appeared as prominent focal points in current research and active areas of exploration. Conclusion Over the past decade, exosome research in breast cancer has undergone a discernible evolution, shifting from broader investigations of exosome roles to focused exploration of specific pathways relevant to breast cancer. Notably, the emphasis has extended to the clinical application of exosomes as biomarkers and potential therapeutic agents in breast cancer treatment.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Yexi Chen
- Department of Thyroid, Breast and Hernia Surgery, General Surgery, The Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Zhiyang Li
- Department of Thyroid, Breast and Hernia Surgery, General Surgery, The Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| |
Collapse
|
32
|
Yang H, Xun Y, Ke C, Tateishi K, You H. Extranodal lymphoma: pathogenesis, diagnosis and treatment. MOLECULAR BIOMEDICINE 2023; 4:29. [PMID: 37718386 PMCID: PMC10505605 DOI: 10.1186/s43556-023-00141-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 08/18/2023] [Indexed: 09/19/2023] Open
Abstract
Approximately 30% of lymphomas occur outside the lymph nodes, spleen, or bone marrow, and the incidence of extranodal lymphoma has been rising in the past decade. While traditional chemotherapy and radiation therapy can improve survival outcomes for certain patients, the prognosis for extranodal lymphoma patients remains unsatisfactory. Extranodal lymphomas in different anatomical sites often have distinct cellular origins, pathogenic mechanisms, and clinical manifestations, significantly influencing their diagnosis and treatment. Therefore, it is necessary to provide a comprehensive summary of the pathogenesis, diagnosis, and treatment progress of extranodal lymphoma overall and specifically for different anatomical sites. This review summarizes the current progress in the common key signaling pathways in the development of extranodal lymphomas and intervention therapy. Furthermore, it provides insights into the pathogenesis, diagnosis, and treatment strategies of common extranodal lymphomas, including gastric mucosa-associated lymphoid tissue (MALT) lymphoma, mycosis fungoides (MF), natural killer/T-cell lymphoma (nasal type, NKTCL-NT), and primary central nervous system lymphoma (PCNSL). Additionally, as PCNSL is one of the extranodal lymphomas with the worst prognosis, this review specifically summarizes prognostic indicators and discusses the challenges and opportunities related to its clinical applications. The aim of this review is to assist clinical physicians and researchers in understanding the current status of extranodal lymphomas, enabling them to make informed clinical decisions that contribute to improving patient prognosis.
Collapse
Affiliation(s)
- Hua Yang
- Department of Basic Medicine and Biomedical Engineering, School of Medicine, Foshan University, Foshan, 528000, China
| | - Yang Xun
- Department of Basic Medicine and Biomedical Engineering, School of Medicine, Foshan University, Foshan, 528000, China
| | - Chao Ke
- Department of Neurosurgery and Neuro-Oncology, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, China
| | - Kensuke Tateishi
- Department of Neurosurgery, Graduate School of Medicine, Yokohama City University, Yokohama, 2360004, Japan
| | - Hua You
- Laboratory for Excellence in Systems Biomedicine of Pediatric Oncology, Department of Pediatric Hematology and Oncology, Chongqing Key Laboratory of Pediatrics, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation base of Child development and Critical Disorders, National Clinical Research Center for Child Health and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 401122, China.
| |
Collapse
|
33
|
Yin T, Xu L, Gil B, Merali N, Sokolikova MS, Gaboriau DCA, Liu DSK, Muhammad Mustafa AN, Alodan S, Chen M, Txoperena O, Arrastua M, Gomez JM, Ontoso N, Elicegui M, Torres E, Li D, Mattevi C, Frampton AE, Jiao LR, Ramadan S, Klein N. Graphene Sensor Arrays for Rapid and Accurate Detection of Pancreatic Cancer Exosomes in Patients' Blood Plasma Samples. ACS NANO 2023; 17:14619-14631. [PMID: 37470391 PMCID: PMC10416564 DOI: 10.1021/acsnano.3c01812] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 07/17/2023] [Indexed: 07/21/2023]
Abstract
Biosensors based on graphene field effect transistors (GFETs) have the potential to enable the development of point-of-care diagnostic tools for early stage disease detection. However, issues with reproducibility and manufacturing yields of graphene sensors, but also with Debye screening and unwanted detection of nonspecific species, have prevented the wider clinical use of graphene technology. Here, we demonstrate that our wafer-scalable GFETs array platform enables meaningful clinical results. As a case study of high clinical relevance, we demonstrate an accurate and robust portable GFET array biosensor platform for the detection of pancreatic ductal adenocarcinoma (PDAC) in patients' plasma through specific exosomes (GPC-1 expression) within 45 min. In order to facilitate reproducible detection in blood plasma, we optimized the analytical performance of GFET biosensors via the application of an internal control channel and the development of an optimized test protocol. Based on samples from 18 PDAC patients and 8 healthy controls, the GFET biosensor arrays could accurately discriminate between the two groups while being able to detect early cancer stages including stages 1 and 2. Furthermore, we confirmed the higher expression of GPC-1 and found that the concentration in PDAC plasma was on average more than 1 order of magnitude higher than in healthy samples. We found that these characteristics of GPC-1 cancerous exosomes are responsible for an increase in the number of target exosomes on the surface of graphene, leading to an improved signal response of the GFET biosensors. This GFET biosensor platform holds great promise for the development of an accurate tool for the rapid diagnosis of pancreatic cancer.
Collapse
Affiliation(s)
- Tianyi Yin
- Department
of Materials, Imperial College London, London SW7 2AZ, U.K.
| | - Lizhou Xu
- Department
of Materials, Imperial College London, London SW7 2AZ, U.K.
- ZJU-Hangzhou
Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311200, China
| | - Bruno Gil
- Hamlyn
Centre, Imperial College London, London SW7 2AZ, U.K.
| | - Nabeel Merali
- Oncology
Section, Surrey Cancer Research Institute, Department of Clinical
and Experimental Medicine, FHMS, University
of Surrey, The Leggett Building, Daphne Jackson Road, Guildford GU2 7WG, U.K.
- HPB
Surgical Unit, Royal Surrey NHS Foundation Trust, Guildford, Surrey GU2 7XX, U.K.
- Minimal Access
Therapy Training Unit (MATTU), University
of Surrey, The Leggett
Building, Daphne Jackson Road, Guildford GU2 7WG, U.K.
| | | | - David C. A. Gaboriau
- Facility
for Imaging By Light Microscopy, Imperial
College London, London SW7 2AZ, U.K.
| | - Daniel S. K. Liu
- Department
of Surgery & Cancer, Imperial College
London, Hammersmith Hospital
Campus, London W12 0NN, U.K.
- HPB
Surgical Unit, Imperial College Healthcare NHS Trust, Hammersmith
Hospital, London W12 0HS, U.K.
| | - Ahmad Nizamuddin Muhammad Mustafa
- Department
of Materials, Imperial College London, London SW7 2AZ, U.K.
- FTKEE,
Universiti Teknikal Malaysia Melaka, 76100 Durian Tunggal, Melaka, Malaysia
| | - Sarah Alodan
- Department
of Materials, Imperial College London, London SW7 2AZ, U.K.
| | - Michael Chen
- Department
of Materials, Imperial College London, London SW7 2AZ, U.K.
| | - Oihana Txoperena
- Graphenea Semiconductor, Paseo Mikeletegi 83, San Sebastián ES 20009, Spain
| | - María Arrastua
- Graphenea Semiconductor, Paseo Mikeletegi 83, San Sebastián ES 20009, Spain
| | - Juan Manuel Gomez
- Graphenea Semiconductor, Paseo Mikeletegi 83, San Sebastián ES 20009, Spain
| | - Nerea Ontoso
- Graphenea Semiconductor, Paseo Mikeletegi 83, San Sebastián ES 20009, Spain
| | - Marta Elicegui
- Graphenea Semiconductor, Paseo Mikeletegi 83, San Sebastián ES 20009, Spain
| | - Elias Torres
- Graphenea Semiconductor, Paseo Mikeletegi 83, San Sebastián ES 20009, Spain
| | - Danyang Li
- Research
Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China
| | - Cecilia Mattevi
- Department
of Materials, Imperial College London, London SW7 2AZ, U.K.
| | - Adam E. Frampton
- Oncology
Section, Surrey Cancer Research Institute, Department of Clinical
and Experimental Medicine, FHMS, University
of Surrey, The Leggett Building, Daphne Jackson Road, Guildford GU2 7WG, U.K.
- HPB
Surgical Unit, Royal Surrey NHS Foundation Trust, Guildford, Surrey GU2 7XX, U.K.
- Minimal Access
Therapy Training Unit (MATTU), University
of Surrey, The Leggett
Building, Daphne Jackson Road, Guildford GU2 7WG, U.K.
- Department
of Surgery & Cancer, Imperial College
London, Hammersmith Hospital
Campus, London W12 0NN, U.K.
| | - Long R. Jiao
- Department
of Surgery & Cancer, Imperial College
London, Hammersmith Hospital
Campus, London W12 0NN, U.K.
| | - Sami Ramadan
- Department
of Materials, Imperial College London, London SW7 2AZ, U.K.
| | - Norbert Klein
- Department
of Materials, Imperial College London, London SW7 2AZ, U.K.
| |
Collapse
|
34
|
Park SH, Lee EK, Yim J, Lee MH, Lee E, Lee YS, Seo W. Exosomes: Nomenclature, Isolation, and Biological Roles in Liver Diseases. Biomol Ther (Seoul) 2023; 31:253-263. [PMID: 37095734 PMCID: PMC10129856 DOI: 10.4062/biomolther.2022.161] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 03/09/2023] [Accepted: 03/10/2023] [Indexed: 04/26/2023] Open
Abstract
The biogenesis and biological roles of extracellular vesicles (EVs) in the progression of liver diseases have attracted considerable attention in recent years. EVs are membrane-bound nanosized vesicles found in different types of body fluids and contain various bioactive materials, including proteins, lipids, nucleic acids, and mitochondrial DNA. Based on their origin and biogenesis, EVs can be classified as apoptotic bodies, microvesicles, and exosomes. Among these, exosomes are the smallest EVs (30-150 nm in diameter), which play a significant role in cell-to-cell communication and epigenetic regulation. Moreover, exosomal content analysis can reveal the functional state of the parental cell. Therefore, exosomes can be applied to various purposes, including disease diagnosis and treatment, drug delivery, cell-free vaccines, and regenerative medicine. However, exosome-related research faces two major limitations: isolation of exosomes with high yield and purity and distinction of exosomes from other EVs (especially microvesicles). No standardized exosome isolation method has been established to date; however, various exosome isolation strategies have been proposed to investigate their biological roles. Exosome-mediated intercellular communications are known to be involved in alcoholic liver disease and nonalcoholic fatty liver disease development. Damaged hepatocytes or nonparenchymal cells release large numbers of exosomes that promote the progression of inflammation and fibrogenesis through interactions with neighboring cells. Exosomes are expected to provide insight on the progression of liver disease. Here, we review the biogenesis of exosomes, exosome isolation techniques, and biological roles of exosomes in alcoholic liver disease and nonalcoholic fatty liver disease.
Collapse
Affiliation(s)
- Seol Hee Park
- College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul 08826, Republic of Korea
| | - Eun Kyeong Lee
- College of Pharmacy, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Joowon Yim
- College of Pharmacy, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Min Hoo Lee
- College of Pharmacy, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Eojin Lee
- College of Pharmacy, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Young-Sun Lee
- Department of Internal Medicine, Korea University Medical Center, Seoul 08308, Republic of Korea
| | - Wonhyo Seo
- College of Pharmacy, Ewha Womans University, Seoul 03760, Republic of Korea
| |
Collapse
|
35
|
Contreras H, Alarcón-Zapata P, Nova-Lamperti E, Ormazabal V, Varas-Godoy M, Salomon C, Zuniga FA. Comparative study of size exclusion chromatography for isolation of small extracellular vesicle from cell-conditioned media, plasma, urine, and saliva. FRONTIERS IN NANOTECHNOLOGY 2023. [DOI: 10.3389/fnano.2023.1146772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023] Open
Abstract
Introduction: Extracellular vesicles (EVs) are secreted from all types of cells and are involved in the trafficking of proteins, metabolites, and genetic material from cell to cell. According to their biogenesis and physical properties, EVs are often classified as small EVs (including exosomes) or large EVs, and large oncosomes. A variety of methods are used for isolated EVs; however, they have several limitations, including vesicle deformation, reduced particle yield, and co-isolate protein contaminants. Here we present an optimized fast and low-cost methodology to isolate small EVs (30–150 nm) from biological fluids comparing two SEC stationary phases, G200/120 and G200/140 columns.Methods: The optimization parameters considered were a) the selection of the stationary phase, b) the eluate volume per fraction, and c) the selection of the enriched 30–150 nm EVs-fractions. The efficiency and separation profile of each UF/SEC fraction was evaluated by Nanoparticle tracking analysis (NTA), flow cytometry, total protein quantification, and Western blot.Results: Both columns can isolate predominantly small EVs with low protein contaminants from plasma, urine, saliva, and HEK293-derived EV from collection medium. Column G200/ 40 offers a more homogeneous enrichment of vesicles between 30 and 150 nm than G200/120 [76.1 ± 4.4% with an average size of 85.9 ± 3.6 nm (Mode: 72.8 nm)] in the EV collection medium. The enrichment, estimated as the vesicle-to-protein ratio, was 1.3 × 1010 particles/mg protein for G200/40, obtaining a more significant EVs enrichment compared to G200/120. The optimized method delivers 0.8 ml of an EVs-enriched-outcome, taking only 30 min per sample. Using plasma, the enrichment of small EVs from the optimized method was 70.5 ± 0.18%, with an average size of 119.4 ± 6.9 nm (Mode: 120.3 nm), and the enrichment of the vesicle isolation was 4.8 × 1011 particles/mg protein. The average size of urine and saliva -EVs samples was 147.5 ± 3.4 and 111.9 ± 2.5 nm, respectively. All the small EVs isolated from the samples exhibit the characteristic cup-shaped morphology observed by Transmission electron microscopy (TEM).Discussion: This study suggests that the combination of methods is a robust, fast, and improved strategy for isolating small EVs.
Collapse
|
36
|
Wu T, Liu Y, Ali NM, Zhang B, Cui X. Effects of Exosomes on Tumor Bioregulation and Diagnosis. ACS OMEGA 2023; 8:5157-5168. [PMID: 36816660 PMCID: PMC9933233 DOI: 10.1021/acsomega.2c06567] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 12/21/2022] [Indexed: 06/18/2023]
Abstract
Exosomes are lipid bilayer vesicles in biological fluids, which can participate in biological processes by mediating intercellular communication and activating intracellular signaling pathways, especially cancerogenic processes, such as proliferation, metastasis, invasion, and immune regulation of cancer cells. Besides, cancer-derived exosomes are also involved in tumor diagnosis and therapy as biomarkers and nanotransport devices. This article reviews the latest research progress on the biological regulation and disease diagnosis of exosomes in tumors, with the aim of providing new ideas for the clinical treatment of cancers.
Collapse
Affiliation(s)
- Tong Wu
- Department
of Oncology, First Affiliated Hospital of
Dalian Medical University, Dalian 116011, P.R. China
| | - Ying Liu
- Department
of Oncology, First Affiliated Hospital of
Dalian Medical University, Dalian 116011, P.R. China
- Department
of Oncology, Affiliated Zhongshan Hospital
of Dalian University, Dalian 116011, P.R. China
| | - Nasra Mohamoud Ali
- Department
of Oncology, First Affiliated Hospital of
Dalian Medical University, Dalian 116011, P.R. China
| | - Bin Zhang
- Department
of Oncology, First Affiliated Hospital of
Dalian Medical University, Dalian 116011, P.R. China
| | - Xiaonan Cui
- Department
of Oncology, First Affiliated Hospital of
Dalian Medical University, Dalian 116011, P.R. China
| |
Collapse
|
37
|
Gong X, Chi H, Strohmer DF, Teichmann AT, Xia Z, Wang Q. Exosomes: A potential tool for immunotherapy of ovarian cancer. Front Immunol 2023; 13:1089410. [PMID: 36741380 PMCID: PMC9889675 DOI: 10.3389/fimmu.2022.1089410] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 12/30/2022] [Indexed: 01/19/2023] Open
Abstract
Ovarian cancer is a malignant tumor of the female reproductive system, with a very poor prognosis and high mortality rates. Chemotherapy and radiotherapy are the most common treatments for ovarian cancer, with unsatisfactory results. Exosomes are a subpopulation of extracellular vesicles, which have a diameter of approximately 30-100 nm and are secreted by many different types of cells in various body fluids. Exosomes are highly stable and are effective carriers of immunotherapeutic drugs. Recent studies have shown that exosomes are involved in various cellular responses in the tumor microenvironment, influencing the development and therapeutic efficacy of ovarian cancer, and exhibiting dual roles in inhibiting and promoting tumor development. Exosomes also contain a variety of genes related to ovarian cancer immunotherapy that could be potential biomarkers for ovarian cancer diagnosis and prognosis. Undoubtedly, exosomes have great therapeutic potential in the field of ovarian cancer immunotherapy. However, translation of this idea to the clinic has not occurred. Therefore, it is important to understand how exosomes could be used in ovarian cancer immunotherapy to regulate tumor progression. In this review, we summarize the biomarkers of exosomes in different body fluids related to immunotherapy in ovarian cancer and the potential mechanisms by which exosomes influence immunotherapeutic response. We also discuss the prospects for clinical application of exosome-based immunotherapy in ovarian cancer.
Collapse
Affiliation(s)
| | - Hao Chi
- Clinical Medical College, Southwest Medical University, Luzhou, China
| | - Dorothee Franziska Strohmer
- Department of General, Visceral, and Transplant Surgery, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Alexander Tobias Teichmann
- Sichuan Provincial Center for Gynecology and Breast Diseases (Gynecology), Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Zhijia Xia
- Department of General, Visceral, and Transplant Surgery, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Qin Wang
- Sichuan Provincial Center for Gynecology and Breast Diseases (Gynecology), Affiliated Hospital of Southwest Medical University, Luzhou, China
| |
Collapse
|
38
|
Comparative application of microfluidic systems in circulating tumor cells and extracellular vesicles isolation; a review. Biomed Microdevices 2022; 25:4. [PMID: 36574057 DOI: 10.1007/s10544-022-00644-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/14/2022] [Indexed: 12/28/2022]
Abstract
Cancer is a prevalent cause of mortality globally, where early diagnosis leads to a reduced death rate. Many researchers' common strategies are based on personalized diagnostic methods with rapid response and high accuracy. This technology was developed by applying liquid biopsy instead of tissue biopsies in the case of tumor cell analysis that facilitates point-of-care testing for cancer diagnosis and treatment. In recent years, significant progress in microfluidic technology led to the successful isolation, analysis, and monitoring of cancer biomarkers in body liquid biopsy with merits like high sensitivity and flexibility, low sample usage, cost effective, and the ability of automation. The most critical and informative markers in body liquid refer to circulating tumor cells (CTCs) and extracellular vesicles derived from tumors (EVs) that carry various biomarkers in their structure (DNAs, proteins, and RNAs) as compared to ctDNA. The released ctDNA has a low half-life and decreased sensitivity due to large amounts of nucleic acid in serum. This review intends to highlight different cancer screening tests with a particular focus on the details regarding the only FDA-approved and awaiting technologies for FDA clearance to isolate CTCs and EVs based on microfluidics systems.
Collapse
|
39
|
Fang H, Liu M, Jiang W. Nickel-Doped Microfluidic Chip for Rapid and Efficient Immunomagnetic Separation and Detection of Breast Cancer Cell-Derived Exosomes. Appl Biochem Biotechnol 2022; 195:3109-3121. [PMID: 36542270 DOI: 10.1007/s12010-022-04272-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/16/2022] [Indexed: 12/24/2022]
Abstract
Breast cancer cell-derived exosomes have high potential as biomarkers for continuous biopsies and longitudinal monitoring in breast cancer. However, it is extremely difficult to separate exosomes with high recovery and high purity from complex media, such as urine, plasma, saliva and cell culture supernatants. Here, we designed a flexible and simple microfluidic chip for exosome separation. The capture zone of the chip is a three-dimensional structure of interlaced cylinders doped with nickel powder. Exosomes were separated from cell culture supernatant by the immunomagnetic separation method in continuous flow mode and were detected by fluorescence imaging with high sensitivity. The chip achieved a high exosome recovery rate (> 74%) and purity (> 67%) at an injection rate of 3.6 mL/h. Thus, this chip was demonstrated to be a cutting-edge platform for the separation and detection of exosomes. It could also be applied to separate and detect other types of exosomes, microbubbles and cells.
Collapse
Affiliation(s)
- Huiying Fang
- Department of Breast Diseases, Chongqing Key Laboratory for Intelligent Oncology in Breast Cancer (iCQBC), Chongqing University Cancer Hospital, No. 181 Hanyu Rd, Shapingba District, 400030, Chongqing, China
| | - Mei Liu
- Department of Breast Diseases, Chongqing Key Laboratory for Intelligent Oncology in Breast Cancer (iCQBC), Chongqing University Cancer Hospital, No. 181 Hanyu Rd, Shapingba District, 400030, Chongqing, China
| | - Wei Jiang
- Department of Radiology, The Second Affiliated Hospital of Chongqing Medical University, No. 74 Linjiang Rd, Yuzhong District, 400010, Chongqing, China.
| |
Collapse
|
40
|
Optimization Protocol of the PEG-Based Method for OSCC-Derived Exosome Isolation and Downstream Applications. SEPARATIONS 2022. [DOI: 10.3390/separations9120435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The exosome precipitation method affects the purity of the exosome and the quality of the downstream application. Polymer-based precipitation is a cost-effective method widely used in different research fields. The percentage of the polymer should be modified in different cell types or liquid biopsy before precipitation. This study aimed to optimize the protocol of the poly(ethylene glycol) (PEG)-based approach for extracting oral squamous cell carcinoma (OSCC)-derived exosomes, and its downstream applications. We used 8%, 10%, and 12% PEG to isolate the exosomes from the culture medium and compared the purity with that of the ultracentrifugation method. In addition, we extracted exosomal protein, DNA, and RNA, and tested the cell transfection efficiency for downstream application. The results reveal that 8% PEG and the medium mixture incubated at 4 °C overnight effectively precipitated exosomes of higher purity and more proper size and particle numbers compared with the ultracentrifuge method. PEG-precipitated exosomes cocultured with fibroblasts showed better transfection efficiency compared to exosomes alone. Therefore, 8% PEG is ideal for OSCC-derived exosome isolation and downstream applications. We recommend that the cost-effective PEG precipitation method be used for precipitating exosomes from OSCC cell experiments.
Collapse
|
41
|
Tenchov R, Sasso JM, Wang X, Liaw WS, Chen CA, Zhou QA. Exosomes─Nature's Lipid Nanoparticles, a Rising Star in Drug Delivery and Diagnostics. ACS NANO 2022; 16:17802-17846. [PMID: 36354238 PMCID: PMC9706680 DOI: 10.1021/acsnano.2c08774] [Citation(s) in RCA: 262] [Impact Index Per Article: 87.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 10/21/2022] [Indexed: 05/03/2023]
Abstract
Exosomes are a subgroup of nanosized extracellular vesicles enclosed by a lipid bilayer membrane and secreted by most eukaryotic cells. They represent a route of intercellular communication and participate in a wide variety of physiological and pathological processes. The biological roles of exosomes rely on their bioactive cargos, including proteins, nucleic acids, and lipids, which are delivered to target cells. Their distinctive properties─innate stability, low immunogenicity, biocompatibility, and good biomembrane penetration capacity─allow them to function as superior natural nanocarriers for efficient drug delivery. Another notably favorable clinical application of exosomes is in diagnostics. They hold various biomolecules from host cells, which are indicative of pathophysiological conditions; therefore, they are considered vital for biomarker discovery in clinical diagnostics. Here, we use data from the CAS Content Collection and provide a landscape overview of the current state and delineate trends in research advancement on exosome applications in therapeutics and diagnostics across time, geography, composition, cargo loading, and development pipelines. We discuss exosome composition and pathway, from their biogenesis and secretion from host cells to recipient cell uptake. We assess methods for exosome isolation and purification, their clinical applications in therapy and diagnostics, their development pipelines, the exploration goals of the companies, the assortment of diseases they aim to treat, development stages of their research, and publication trends. We hope this review will be useful for understanding the current knowledge in the field of medical applications of exosomes, in an effort to further solve the remaining challenges in fulfilling their potential.
Collapse
Affiliation(s)
- Rumiana Tenchov
- CAS, a Division of the American Chemical
Society, 2540 Olentangy River Rd, Columbus, Ohio 43202, United
States
| | - Janet M. Sasso
- CAS, a Division of the American Chemical
Society, 2540 Olentangy River Rd, Columbus, Ohio 43202, United
States
| | - Xinmei Wang
- CAS, a Division of the American Chemical
Society, 2540 Olentangy River Rd, Columbus, Ohio 43202, United
States
| | - Wen-Shing Liaw
- CAS, a Division of the American Chemical
Society, 2540 Olentangy River Rd, Columbus, Ohio 43202, United
States
| | - Chun-An Chen
- CAS, a Division of the American Chemical
Society, 2540 Olentangy River Rd, Columbus, Ohio 43202, United
States
| | - Qiongqiong Angela Zhou
- CAS, a Division of the American Chemical
Society, 2540 Olentangy River Rd, Columbus, Ohio 43202, United
States
| |
Collapse
|
42
|
Hadizadeh N, Bagheri D, Shamsara M, Hamblin MR, Farmany A, Xu M, Liang Z, Razi F, Hashemi E. Extracellular vesicles biogenesis, isolation, manipulation and genetic engineering for potential in vitro and in vivo therapeutics: An overview. Front Bioeng Biotechnol 2022; 10:1019821. [PMID: 36406206 PMCID: PMC9672340 DOI: 10.3389/fbioe.2022.1019821] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 10/18/2022] [Indexed: 08/16/2023] Open
Abstract
The main goals of medicine consist of early detection and effective treatment of different diseases. In this regard, the rise of exosomes as carriers of natural biomarkers has recently attracted a lot of attention and managed to shed more light on the future of early disease diagnosis methods. Here, exosome biogenesis, its role as a biomarker in metabolic disorders, and recent advances in state-of-art technologies for exosome detection and isolation will be reviewed along with future research directions and challenges regarding the manipulation and genetic engineering of exosomes for potential in vitro and in vivo disease diagnosis approaches.
Collapse
Affiliation(s)
- Nastaran Hadizadeh
- Diabetes Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Diba Bagheri
- Department of Molecular Genetics, Tarbiat Modares University, Tehran, Iran
| | - Mehdi Shamsara
- Department of Animal Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Michael R. Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Abbas Farmany
- Dental Research Centre and Dental Implant Research Centre, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mengdi Xu
- Shenzhen Bay Laboratory, Institute of Molecular Physiology, Shenzhen, China
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Zhuobin Liang
- Shenzhen Bay Laboratory, Institute of Molecular Physiology, Shenzhen, China
| | - Farideh Razi
- Metabolic Disorders Research Center, Endocrinology and Metabolism Molecular—Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Ehsan Hashemi
- Department of Animal Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
- Shenzhen Bay Laboratory, Institute of Molecular Physiology, Shenzhen, China
- Metabolic Disorders Research Center, Endocrinology and Metabolism Molecular—Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
43
|
Molecular Docking and Intracellular Translocation of Extracellular Vesicles for Efficient Drug Delivery. Int J Mol Sci 2022; 23:ijms232112971. [PMID: 36361760 PMCID: PMC9659046 DOI: 10.3390/ijms232112971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 10/07/2022] [Accepted: 10/21/2022] [Indexed: 12/12/2022] Open
Abstract
Extracellular vesicles (EVs), including exosomes, mediate intercellular communication by delivering their contents, such as nucleic acids, proteins, and lipids, to distant target cells. EVs play a role in the progression of several diseases. In particular, programmed death-ligand 1 (PD-L1) levels in exosomes are associated with cancer progression. Furthermore, exosomes are being used for new drug-delivery systems by modifying their membrane peptides to promote their intracellular transduction via micropinocytosis. In this review, we aim to show that an efficient drug-delivery system and a useful therapeutic strategy can be established by controlling the molecular docking and intracellular translocation of exosomes. We summarise the mechanisms of molecular docking of exosomes, the biological effects of exosomes transmitted into target cells, and the current state of exosomes as drug delivery systems.
Collapse
|