1
|
Vachon A, Keeshan A, Galipeau Y, Crawley AM, Langlois MA, Cooper CL. Alcohol consumption does not influence SARS-CoV-2 vaccine immunogenicity: A stop the spread Ottawa cohort analysis. Vaccine 2025; 55:127034. [PMID: 40121732 DOI: 10.1016/j.vaccine.2025.127034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 03/12/2025] [Accepted: 03/13/2025] [Indexed: 03/25/2025]
Abstract
The effect of alcohol consumption on COVID-19 vaccine immunogenicity was evaluated. Participants from the Stop the Spread Ottawa cohort were categorized by alcohol consumption categorized as excessive or non-excessive based on the Canadian Centre on Substance Abuse and Addiction's (CCSA) 2023 guidelines on alcohol use. Our analyses showed that alcohol consumption did not influence SARS-CoV-2 antibody baseline levels, post vaccine increase or decay over time.
Collapse
Affiliation(s)
- Alicia Vachon
- Division of Infectious Diseases, Department of Medicine, University of Ottawa and the Ottawa Hospital Research Institute, Ottawa, Ontario, Canada; Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada; The Knowledge Synthesis and Application Unit (KSAU), University of Ottawa, Ottawa, Ontario, Canada
| | - Alexa Keeshan
- School of Epidemiology and Public Health, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada; Clinical Epidemiology, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Yannick Galipeau
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| | - Angela M Crawley
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada; Coronavirus Variants Rapid Response Network (CoVaRR-Net), Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada; Chronic Disease Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada; Centre for Infection, Immunity and Inflammation (CI3), University of Ottawa, Ottawa, Ontario, Canada
| | - Marc-André Langlois
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada; Coronavirus Variants Rapid Response Network (CoVaRR-Net), Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada; Centre for Infection, Immunity and Inflammation (CI3), University of Ottawa, Ottawa, Ontario, Canada
| | - Curtis L Cooper
- Division of Infectious Diseases, Department of Medicine, University of Ottawa and the Ottawa Hospital Research Institute, Ottawa, Ontario, Canada; Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada; Clinical Epidemiology, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada; Coronavirus Variants Rapid Response Network (CoVaRR-Net), Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada; Centre for Infection, Immunity and Inflammation (CI3), University of Ottawa, Ottawa, Ontario, Canada.
| |
Collapse
|
2
|
Bermejo-Gómez A, Tarancon-Diez L, Lazaro-Martin B, Santiago-Garcia B, Gil Villanueva N, Alonso R, Muñoz-Fernández MÁ, Camino López M, Hernanz-Lobo A, Navarro Gómez ML. Humoral and cellular response to SARS-CoV-2 mRNA vaccine in paediatric heart transplant recipients. Heliyon 2025; 11:e41584. [PMID: 39866443 PMCID: PMC11758410 DOI: 10.1016/j.heliyon.2024.e41584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 12/17/2024] [Accepted: 12/30/2024] [Indexed: 01/28/2025] Open
Abstract
Objective The aim of this prospective cohort study is to analyse the humoral and cellular vaccine responses in paediatric heart transplant recipients (HTR, n = 12), and compare it with the response in healthy controls (HC, n = 14). All participants were 5-18 years old and vaccinated with mRNA vaccine against SARS-CoV-2 between December 2021 and May 2022. Methods The humoral response was measured by quantifying antibody titers against SARS-CoV-2 spike protein (anti-S). The T-lymphocyte phenotype and SARS-CoV2-specific CD4+ and CD8+ T-cell response was studied by multiparametric flow cytometry through peripheral blood mononuclear cells by the quantification of degranulation markers (CD107a) and intracellular cytokines (IFN-γ, TNF-α and IL-2) after in vitro stimulation with SARS-CoV-2 peptides from structural proteins (S, M, N, E) and non-structural viral proteins. Results After vaccination, humoral response was found in all HTR, although they showed lower levels of anti-S IgG compared to HC (p = 0.003). However, in terms of cellular response, no significant differences were obtained in the prevalence of responders and magnitude of responses between groups. In addition, anti-S IgG levels directly correlated with a higher SARS-CoV-2 specific T-cell response (rho = 0.43; p = 0.027 and rho = 0.45; p = 0.02 for IFN-γ+ and TNF-α+ production of CD8+ T-cells, respectively). Activated T-cell phenotype in HTR was associated with a lower humoral response to SARS-CoV-2 vaccine. Conclusion HTR had humoral response after vaccination, although they showed lower levels of specific anti-S antibodies compared to HC. There were no significant differences in the SARS-CoV2-specific cellular response between the two groups. Obtaining satisfactory data on this type of response could potentially challenge the current vaccine guideline recommendations.
Collapse
Affiliation(s)
- Amanda Bermejo-Gómez
- Pediatric Infectious Diseases Unit, Department of Pediatrics, Gregorio Marañón University Hospital, Madrid, Spain
- Gregorio Marañón Research Health Institute (IiSGM), Madrid, Spain
| | - Laura Tarancon-Diez
- Pediatric Infectious Diseases Unit, Department of Pediatrics, Gregorio Marañón University Hospital, Madrid, Spain
- Gregorio Marañón Research Health Institute (IiSGM), Madrid, Spain
- Biomedical Research Centre Network for Infectious Diseases (CIBERINFEC), Carlos III Health Institute, Madrid, Spain
| | - Beatriz Lazaro-Martin
- Pediatric Infectious Diseases Unit, Department of Pediatrics, Gregorio Marañón University Hospital, Madrid, Spain
- Gregorio Marañón Research Health Institute (IiSGM), Madrid, Spain
- Biomedical Research Centre Network for Infectious Diseases (CIBERINFEC), Carlos III Health Institute, Madrid, Spain
| | - Begoña Santiago-Garcia
- Pediatric Infectious Diseases Unit, Department of Pediatrics, Gregorio Marañón University Hospital, Madrid, Spain
- Gregorio Marañón Research Health Institute (IiSGM), Madrid, Spain
- Biomedical Research Centre Network for Infectious Diseases (CIBERINFEC), Carlos III Health Institute, Madrid, Spain
| | | | - Roberto Alonso
- Gregorio Marañón Research Health Institute (IiSGM), Madrid, Spain
- Clinical Microbiology and Infectious Diseases Department, Gregorio Marañón University Hospital, Madrid, Spain
- Complutense University, Madrid, Spain
| | - Mª Ángeles Muñoz-Fernández
- Gregorio Marañón Research Health Institute (IiSGM), Madrid, Spain
- Molecular Immunology Laboratory, Hospital General Universitario Gregorio Marañón, Madrid, Spain
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | | | - Alicia Hernanz-Lobo
- Pediatric Infectious Diseases Unit, Department of Pediatrics, Gregorio Marañón University Hospital, Madrid, Spain
- Gregorio Marañón Research Health Institute (IiSGM), Madrid, Spain
- Biomedical Research Centre Network for Infectious Diseases (CIBERINFEC), Carlos III Health Institute, Madrid, Spain
| | - María Luisa Navarro Gómez
- Pediatric Infectious Diseases Unit, Department of Pediatrics, Gregorio Marañón University Hospital, Madrid, Spain
- Gregorio Marañón Research Health Institute (IiSGM), Madrid, Spain
- Biomedical Research Centre Network for Infectious Diseases (CIBERINFEC), Carlos III Health Institute, Madrid, Spain
- Complutense University, Madrid, Spain
| |
Collapse
|
3
|
Chen Y, Tian F, Hu S, Liu X. Development and Evaluation of a Newcastle Disease Virus-like Particle Vaccine Expressing SARS-CoV-2 Spike Protein with Protease-Resistant and Stability-Enhanced Modifications. Viruses 2024; 16:1932. [PMID: 39772238 PMCID: PMC11680274 DOI: 10.3390/v16121932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 12/04/2024] [Accepted: 12/17/2024] [Indexed: 01/11/2025] Open
Abstract
The ongoing global health crisis caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) necessitates the continuous development of innovative vaccine strategies, especially in light of emerging viral variants that could undermine the effectiveness of existing vaccines. In this study, we developed a recombinant virus-like particle (VLP) vaccine based on the Newcastle Disease Virus (NDV) platform, displaying a stabilized prefusion form of the SARS-CoV-2 spike (S) protein. This engineered S protein includes two proline substitutions (K986P, V987P) and a mutation at the cleavage site (RRAR to QQAQ), aimed at enhancing both its stability and immunogenicity. Using a prime-boost regimen, we administered NDV-VLP-S-3Q2P intramuscularly at different doses (2, 10, and 20 µg) to BALB/c mice. Robust humoral responses were observed, with high titers of S-protein-specific IgG and neutralizing antibodies against SARS-CoV-2 pseudovirus, reaching titers of 1:2200-1:2560 post-boost. The vaccine also induced balanced Th1/Th2 immune responses, evidenced by significant upregulation of cytokines (IFN-γ, IL-2, and IL-4) and S-protein-specific IgG1 and IgG2a. Furthermore, strong activation of CD4+ and CD8+ T cells in the spleen and lungs confirmed the vaccine's ability to promote cellular immunity. These findings demonstrate that NDV-S3Q2P-VLP is a potent immunogen capable of eliciting robust humoral and cellular immune responses, highlighting its potential as a promising candidate for further clinical development in combating COVID-19.
Collapse
MESH Headings
- Spike Glycoprotein, Coronavirus/immunology
- Spike Glycoprotein, Coronavirus/genetics
- Animals
- Newcastle disease virus/genetics
- Newcastle disease virus/immunology
- SARS-CoV-2/immunology
- SARS-CoV-2/genetics
- Mice
- Mice, Inbred BALB C
- Antibodies, Viral/immunology
- Antibodies, Viral/blood
- COVID-19 Vaccines/immunology
- COVID-19 Vaccines/administration & dosage
- COVID-19/prevention & control
- COVID-19/immunology
- Antibodies, Neutralizing/immunology
- Antibodies, Neutralizing/blood
- Female
- Vaccines, Virus-Like Particle/immunology
- Vaccines, Virus-Like Particle/genetics
- Vaccines, Virus-Like Particle/administration & dosage
- Humans
- Immunoglobulin G/blood
- Immunoglobulin G/immunology
- Immunogenicity, Vaccine
- CD8-Positive T-Lymphocytes/immunology
Collapse
Affiliation(s)
- Yu Chen
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou 225012, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou 225012, China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou 225012, China
| | - Fan Tian
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou 225012, China
| | - Shunlin Hu
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou 225012, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou 225012, China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou 225012, China
| | - Xiufan Liu
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou 225012, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou 225012, China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou 225012, China
| |
Collapse
|
4
|
Huang YS, Hsieh SM, Tsai FC, Tung CC, Yang HC, Chang SY, Wang JT, Liu CJ, Su TH, Kao JH. Serological responses to COVID-19 vaccination in patients with chronic liver diseases. J Formos Med Assoc 2024; 123:1194-1197. [PMID: 38906731 DOI: 10.1016/j.jfma.2024.06.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 06/14/2024] [Accepted: 06/16/2024] [Indexed: 06/23/2024] Open
Abstract
Longitudinal analysis of antibody responses following three-dose COVID-19 vaccination in patients with chronic liver disease (CLD) has been limited. From August 2021 to February 2023, sequential anti-SARS-CoV-2 spike IgG titers were determined in 45 patients with CLD who received two or three doses of COVID-19 vaccine. The geometric mean of anti-spike IgG at four weeks after the second and third doses were 1313.16 BAU/mL and 3042.29 BAU/mL, respectively, and it decreased significantly from four to 24 weeks after the second (1313.16 vs. 198.42 BAU/mL, p = 0.002) and the third (3042.29 vs. 636.71 BAU/mL, p < 0.001) dose. The anti-spike IgG titers in participants receiving prime-boost homologous mRNA vaccines (BNT162b2 or mRNA-1273) were comparable between participants with and those without significant liver fibrosis at each follow-up time point. This study demonstrated a notable decrease in anti-spike IgG after completion of the vaccination schedule in patients with CLD, highlighting the importance of additional booster doses.
Collapse
Affiliation(s)
- Yu-Shan Huang
- Division of Infectious Diseases, Department of Internal Medicine, National Taiwan University College of Medicine and National Taiwan University Hospital, Taipei, Taiwan
| | - Szu-Min Hsieh
- Division of Infectious Diseases, Department of Internal Medicine, National Taiwan University College of Medicine and National Taiwan University Hospital, Taipei, Taiwan
| | - Feng-Chiao Tsai
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, National Taiwan University College of Medicine and National Taiwan University Hospital, Taipei, Taiwan; Department of Pharmacology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Chien-Chih Tung
- Department of Integrated Diagnostics & Therapeutics, National Taiwan University College of Medicine and National Taiwan University Hospital, Taipei, Taiwan
| | - Hung-Chih Yang
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, National Taiwan University College of Medicine and National Taiwan University Hospital, Taipei, Taiwan; Department of Microbiology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Sui-Yuan Chang
- Department of Laboratory Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Jann-Tay Wang
- Division of Infectious Diseases, Department of Internal Medicine, National Taiwan University College of Medicine and National Taiwan University Hospital, Taipei, Taiwan
| | - Chun-Jen Liu
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, National Taiwan University College of Medicine and National Taiwan University Hospital, Taipei, Taiwan; Graduate Institute of Clinical Medicine, National Taiwan University College of Medicine, Taipei, Taiwan; Hepatitis Research Center, National Taiwan University Hospital, Taipei, Taiwan
| | - Tung-Hung Su
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, National Taiwan University College of Medicine and National Taiwan University Hospital, Taipei, Taiwan; Hepatitis Research Center, National Taiwan University Hospital, Taipei, Taiwan.
| | - Jia-Horng Kao
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, National Taiwan University College of Medicine and National Taiwan University Hospital, Taipei, Taiwan; Graduate Institute of Clinical Medicine, National Taiwan University College of Medicine, Taipei, Taiwan; Hepatitis Research Center, National Taiwan University Hospital, Taipei, Taiwan
| |
Collapse
|
5
|
Gao Z, Liu X, Lei Y, Shao J, Zhang G, Hou Z, Zhou G, Wu J, Guo H, Chang H, Liu W. Dendritic cell-based biomimetic nanoparticles for foot-and-mouth disease induce robust cellular immunity. Antiviral Res 2024; 231:106011. [PMID: 39332536 DOI: 10.1016/j.antiviral.2024.106011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 09/23/2024] [Accepted: 09/23/2024] [Indexed: 09/29/2024]
Abstract
Foot-and-mouth disease (FMD) is a highly contagious and economically devastating viral disease of ruminants and swine, badly affecting the livestock industry worldwide. In clinical practice, vaccination is a frequently employed strategy to prevent foot-and-mouth disease (FMDV). However, commercial inactivated vaccines for FMD mainly rely on humoral immunity, exhibiting poor cellular immune responses and causing adverse reactions. Here, we use the double emulsion method to prepare poly (lactic-co-glycolic acid) nanoparticles (PLGA-NP) encapsulated with IL-2 cytokines, wrap the dendritic cell (DC) membrane carrying FMDV antigen information on the surface of the nanoparticles, obtaining a biomimetic nanoparticle vaccine Biom@DC with uniform size. This vaccine can effortlessly move through lymph nodes due to its nanoscale size advantage. It also possesses DC ability to present antigens, and antigen presentation can be made more effective with high biocompatibility. The sustained release of IL-2 encapsulated in the core of PLGA-NP in vivo can effectively promote the body's cellular immune response. Immune tests on mice have shown that Biom@DC may greatly increase T cell activation and proliferation both in vivo and in vitro, while also significantly reducing the fraction of inhibitory Treg cells. Furthermore, in the micro serum neutralization assay for FMDV, it has been demonstrated that the group vaccinated with Biom@DC exhibits a clear neutralizing effect. Given its strong immunogenicity, Biom@DC has the potential to develop into a novel, potent anti-FMDV vaccination.
Collapse
Affiliation(s)
- Zhan Gao
- State Key Laboratory for Animal Disease Control and Prevention, Gansu Province Research Center for Basic Disciplines of Pathogen Biology, OIE/China National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, China; School of Materials Science and Engineering, Key Laboratory for Polymer Composite and Functional Materials of Ministry of Education, GD Research Center for Functional Biomaterials Engineering and Technology, Sun Yat-sen University, Guangzhou, 510275, China
| | - Xiaoqing Liu
- State Key Laboratory for Animal Disease Control and Prevention, Gansu Province Research Center for Basic Disciplines of Pathogen Biology, OIE/China National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, China
| | - Yao Lei
- State Key Laboratory for Animal Disease Control and Prevention, Gansu Province Research Center for Basic Disciplines of Pathogen Biology, OIE/China National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, China
| | - Junjun Shao
- State Key Laboratory for Animal Disease Control and Prevention, Gansu Province Research Center for Basic Disciplines of Pathogen Biology, OIE/China National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, China.
| | - Guanglei Zhang
- State Key Laboratory for Animal Disease Control and Prevention, Gansu Province Research Center for Basic Disciplines of Pathogen Biology, OIE/China National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, China
| | - Zhuo Hou
- State Key Laboratory for Animal Disease Control and Prevention, Gansu Province Research Center for Basic Disciplines of Pathogen Biology, OIE/China National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, China
| | - Guangqing Zhou
- State Key Laboratory for Animal Disease Control and Prevention, Gansu Province Research Center for Basic Disciplines of Pathogen Biology, OIE/China National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, China
| | - Jin'en Wu
- State Key Laboratory for Animal Disease Control and Prevention, Gansu Province Research Center for Basic Disciplines of Pathogen Biology, OIE/China National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, China
| | - Huichen Guo
- State Key Laboratory for Animal Disease Control and Prevention, Gansu Province Research Center for Basic Disciplines of Pathogen Biology, OIE/China National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, China
| | - Huiyun Chang
- State Key Laboratory for Animal Disease Control and Prevention, Gansu Province Research Center for Basic Disciplines of Pathogen Biology, OIE/China National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, China
| | - Wei Liu
- State Key Laboratory for Animal Disease Control and Prevention, Gansu Province Research Center for Basic Disciplines of Pathogen Biology, OIE/China National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, China.
| |
Collapse
|
6
|
Macchia I, La Sorsa V, Ciervo A, Ruspantini I, Negri D, Borghi M, De Angelis ML, Luciani F, Martina A, Taglieri S, Durastanti V, Altavista MC, Urbani F, Mancini F. T Cell Peptide Prediction, Immune Response, and Host-Pathogen Relationship in Vaccinated and Recovered from Mild COVID-19 Subjects. Biomolecules 2024; 14:1217. [PMID: 39456150 PMCID: PMC11505848 DOI: 10.3390/biom14101217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/12/2024] [Accepted: 09/18/2024] [Indexed: 10/28/2024] Open
Abstract
COVID-19 remains a significant threat, particularly to vulnerable populations. The emergence of new variants necessitates the development of treatments and vaccines that induce both humoral and cellular immunity. This study aimed to identify potentially immunogenic SARS-CoV-2 peptides and to explore the intricate host-pathogen interactions involving peripheral immune responses, memory profiles, and various demographic, clinical, and lifestyle factors. Using in silico and experimental methods, we identified several CD8-restricted SARS-CoV-2 peptides that are either poorly studied or have previously unreported immunogenicity: fifteen from the Spike and three each from non-structural proteins Nsp1-2-3-16. A Spike peptide, LA-9, demonstrated a 57% response rate in ELISpot assays using PBMCs from 14 HLA-A*02:01 positive, vaccinated, and mild-COVID-19 recovered subjects, indicating its potential for diagnostics, research, and multi-epitope vaccine platforms. We also found that younger individuals, with fewer vaccine doses and longer intervals since infection, showed lower anti-Spike (ELISA) and anti-Wuhan neutralizing antibodies (pseudovirus assay), higher naïve T cells, and lower central memory, effector memory, and CD4hiCD8low T cells (flow cytometry) compared to older subjects. In our cohort, a higher prevalence of Vδ2-γδ and DN T cells, and fewer naïve CD8 T cells, seemed to correlate with strong cellular and lower anti-NP antibody responses and to associate with Omicron infection, absence of confusional state, and habitual sporting activity.
Collapse
Affiliation(s)
- Iole Macchia
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy; (I.M.); (M.L.D.A.); (S.T.)
| | - Valentina La Sorsa
- Research Promotion and Coordination Service, Istituto Superiore di Sanità, 00161 Rome, Italy;
| | - Alessandra Ciervo
- Department of Infectious Diseases, Istituto Superiore di Sanità, 00161 Rome, Italy; (A.C.); (D.N.); (M.B.); (F.M.)
| | - Irene Ruspantini
- Core Facilities, Istituto Superiore di Sanità, 00161 Rome, Italy;
| | - Donatella Negri
- Department of Infectious Diseases, Istituto Superiore di Sanità, 00161 Rome, Italy; (A.C.); (D.N.); (M.B.); (F.M.)
| | - Martina Borghi
- Department of Infectious Diseases, Istituto Superiore di Sanità, 00161 Rome, Italy; (A.C.); (D.N.); (M.B.); (F.M.)
| | - Maria Laura De Angelis
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy; (I.M.); (M.L.D.A.); (S.T.)
| | - Francesca Luciani
- National Center for the Control and Evaluation of Medicines, Istituto Superiore di Sanità, 00161 Rome, Italy; (F.L.); (A.M.)
| | - Antonio Martina
- National Center for the Control and Evaluation of Medicines, Istituto Superiore di Sanità, 00161 Rome, Italy; (F.L.); (A.M.)
| | - Silvia Taglieri
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy; (I.M.); (M.L.D.A.); (S.T.)
| | - Valentina Durastanti
- Neurology Unit, San Filippo Neri Hospital, ASL RM1, 00135 Rome, Italy; (V.D.); (M.C.A.)
| | | | - Francesca Urbani
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy; (I.M.); (M.L.D.A.); (S.T.)
| | - Fabiola Mancini
- Department of Infectious Diseases, Istituto Superiore di Sanità, 00161 Rome, Italy; (A.C.); (D.N.); (M.B.); (F.M.)
| |
Collapse
|
7
|
Matsumoto N, Sasaki A, Kadowaki T, Mitsuhashi T, Takao S, Yorifuji T. Kinetics of SARS-CoV-2 antibody titers after booster vaccinations during an Omicron surge in Japan. Vaccine 2024; 42:126156. [PMID: 39088986 DOI: 10.1016/j.vaccine.2024.126156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 06/28/2024] [Accepted: 07/17/2024] [Indexed: 08/03/2024]
Abstract
BACKGROUND Despite the emergence of SARS-CoV-2 variants and waning immunity after initial vaccination, data on antibody kinetics following booster doses, particularly those adapted to Omicron subvariants like XBB.1.5, remain limited. This study assesses the kinetics of anti-spike protein receptor-binding domain (S-RBD) IgG antibody titers post-booster vaccination in a Japanese population during the Omicron variant epidemic. METHODS A prospective cohort study was conducted in Bizen City, Japan, from November 2023 to January 2024. Participants included residents and workers aged ≥18 years, with at least three COVID-19 vaccinations. Antibody levels were measured from venous blood samples. The study analyzed 424 participants and 821 antibody measurements, adjusting for variables such as age, sex, underlying conditions, and prior infection status. Mixed-effects models were employed to describe the kinetics of log-transformed S-RBD antibody titers. RESULTS The study found that S-RBD antibody titers declined over time but increased with the number of booster vaccinations, particularly those adapted to Omicron and its subvariant XBB.1.5 (Pfizer-BioNTech Omicron-compatible: 0.156, 95%CI -0.032 to 0.344; Pfizer-BioNTech XBB-compatible: 0.226; 95%CI -0.051 to 0.504; Moderna Omicron-compatible: 0.279, 95%CI 0.012 to 0.546; and Moderna XBB-compatible: 0.338, 95%CI -0.052 to 0.728). Previously infected individuals maintained higher antibody titers, which declined more gradually compared to uninfected individuals (coefficient for interaction with time 0.006; 95%CI 0.001 to 0.011). Sensitivity analyses using Generalized Estimating Equations and interval-censored random intercept model confirmed the robustness of these findings. CONCLUSIONS The study provides specific data on antibody kinetics post-booster vaccination, including the XBB.1.5-adapted vaccine, in a highly vaccinated Japanese population. The results highlight the importance of considering individual demographics and prior infection history in optimizing vaccination strategies.
Collapse
Affiliation(s)
- Naomi Matsumoto
- Department of Epidemiology, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan.
| | - Ayako Sasaki
- Department of Epidemiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Tomoka Kadowaki
- Department of Epidemiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Toshiharu Mitsuhashi
- Center for Innovative Clinical Medicine, Okayama University Hospital, Okayama, Japan
| | - Soshi Takao
- Department of Epidemiology, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Takashi Yorifuji
- Department of Epidemiology, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| |
Collapse
|
8
|
Morlacchi LC, Alicandro G, Uceda Renteria S, Zignani N, Giacomel G, Rossetti V, Sagasta M, Citterio G, Lombardi A, Dibenedetto C, Antonelli B, Rosso L, Lampertico P, Ceriotti F, Blasi F, Donato MF. COVID-19 Vaccine in Lung and Liver Transplant Recipients Exceeds Expectations: An Italian Real-Life Experience on Immunogenicity and Clinical Efficacy of BNT162b2 Vaccine. Transpl Int 2024; 37:12729. [PMID: 39050189 PMCID: PMC11266016 DOI: 10.3389/ti.2024.12729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 06/24/2024] [Indexed: 07/27/2024]
Abstract
This study assessed humoral and T cell-mediated immune responses to the BNT162b2 vaccine in orthotopic liver transplant (OLT) and lung transplant (LUT) recipients who received three doses of the vaccine from March 2021 at our institution. Serum samples were collected 60 days post-second and third dose to quantify antibodies against the spike region of SARS-CoV-2 while whole blood samples were collected to analyze the SARS-CoV-2-specific T-cell response using an IFN-γ ELISpot assay. We enrolled 244 OLT and 120 LUT recipients. The third dose increased antibody titres in OLT recipients (from a median value of 131 after the second dose to 5523 IU/mL, p < 0.001) and LUT recipients (from 14.8 to 1729 IU/mL, p < 0.001). T-cell response also increased in OLT recipients (from 8.5 to 23 IFN-γ SFU per 250,000 PBMC, p < 0.001) and LUT recipients (from 8 to 15 IFN-γ SFU per 250,000 PBMC, p < 0.001). A total of 128 breakthrough infections were observed: two (0.8%) OLT recipients were hospitalized due to COVID-19 and one died (0.4%); among LUT recipients, seven were hospitalized (5.8%) and two patients died (1.7%). In conclusion, the three-dose schedule of the BNT162b2 vaccine elicited both humoral and T cell-mediated responses in solid organ transplant recipients. The risk of severe COVID-19 post-vaccination was low in this population.
Collapse
Affiliation(s)
- Letizia Corinna Morlacchi
- Respiratory Unit and Adult Cystic, Fibrosis Centre, Internal Medicine Department, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico di Milano, Milano, Italy
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milano, Italy
| | - Gianfranco Alicandro
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milano, Italy
- Department of Pediatrics, Cystic Fibrosis Centre, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Sara Uceda Renteria
- Division of Clinical Pathology, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico di Milano, Milano, Italy
| | - Nunzio Zignani
- Division of Gastroenterology and Hepatology, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico di Milano, Milano, Italy
| | - Giovanni Giacomel
- Division of Clinical Pathology, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico di Milano, Milano, Italy
| | - Valeria Rossetti
- Respiratory Unit and Adult Cystic, Fibrosis Centre, Internal Medicine Department, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico di Milano, Milano, Italy
| | - Michele Sagasta
- Division of Gastroenterology and Hepatology, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico di Milano, Milano, Italy
| | - Gaia Citterio
- Respiratory Unit and Adult Cystic, Fibrosis Centre, Internal Medicine Department, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico di Milano, Milano, Italy
| | - Andrea Lombardi
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milano, Italy
- Department of Pediatrics, Cystic Fibrosis Centre, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Clara Dibenedetto
- Division of Gastroenterology and Hepatology, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico di Milano, Milano, Italy
| | - Barbara Antonelli
- General Surgery—Liver Transplant Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milano, Italy
| | - Lorenzo Rosso
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milano, Italy
- Thoracic Surgery and Lung Transplant Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico di Milano, Milano, Italy
| | - Pietro Lampertico
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milano, Italy
- Division of Gastroenterology and Hepatology, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico di Milano, Milano, Italy
| | - Ferruccio Ceriotti
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milano, Italy
- Division of Clinical Pathology, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico di Milano, Milano, Italy
| | - Francesco Blasi
- Respiratory Unit and Adult Cystic, Fibrosis Centre, Internal Medicine Department, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico di Milano, Milano, Italy
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milano, Italy
| | - Maria Francesca Donato
- Division of Gastroenterology and Hepatology, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico di Milano, Milano, Italy
| |
Collapse
|
9
|
Benning L, Bartenschlager M, Kim H, Morath C, Zeier M, Schnitzler P, Bartenschlager R, Speer C. Durability of Humoral Responses after an Adapted SARS-CoV-2 mRNA Vaccine Dose in Hemodialysis Patients. Vaccines (Basel) 2024; 12:738. [PMID: 39066376 PMCID: PMC11281374 DOI: 10.3390/vaccines12070738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 06/24/2024] [Accepted: 06/29/2024] [Indexed: 07/28/2024] Open
Abstract
We recently showed that an adapted SARS-CoV-2 vaccine with wildtype and BA.4/BA.5 Omicron subtype epitopes induced a broad short-term immune response in hemodialysis patients. Antibodies with protective capacity were boosted significantly after a follow-up period of 3 weeks following a fifth vaccine dose. However, data on the longevity of the humoral response after bivalent vaccination are lacking but urgently needed to make recommendations for further booster vaccinations in this patient group. This study is an extension of our previously published data including 40 patients on hemodialysis with a follow-up period of 12 months after an adapted booster vaccine dose. We performed a detailed characterization of humoral immune responses and assessed breakthrough infections. In addition, the severity of breakthrough infections was assessed using an established grading system. Anti-S1 IgG and surrogate neutralizing antibodies significantly decreased during the period of 12 months (p < 0.01 and p < 0.001, respectively). Live-virus neutralizing antibodies against the wildtype and the BA.5 subtype also significantly decreased over time (p < 0.01 and p < 0.01, respectively). However, even 12 months after administration of the adapted vaccine dose, all 40/40 (100%) of hemodialysis patients showed detectable SARS-CoV-2 wildtype neutralization activity, with 35/40 (88%) also exhibiting detectable BA.5 subtype neutralization activity. During follow-up, 13/40 (33%) patients contracted a SARS-CoV-2 breakthrough infection, among which 12 cases were categorized as asymptomatic or mild, while only 1 case was classified as moderate disease activity. Thus, bivalent booster vaccination seems to induce a sustained immune response in hemodialysis patients over a period of 12 months with breakthrough infections occurring frequently but predominantly manifesting as asymptomatic or mild.
Collapse
Affiliation(s)
- Louise Benning
- Department of Nephrology, Heidelberg University, 69120 Heidelberg, Germany (C.M.); (M.Z.)
| | - Marie Bartenschlager
- Medical Faculty Heidelberg, Department of Infectious Diseases, Molecular Virology, Heidelberg University, 69120 Heidelberg, Germany; (M.B.); (H.K.); (R.B.)
| | - Heeyoung Kim
- Medical Faculty Heidelberg, Department of Infectious Diseases, Molecular Virology, Heidelberg University, 69120 Heidelberg, Germany; (M.B.); (H.K.); (R.B.)
| | - Christian Morath
- Department of Nephrology, Heidelberg University, 69120 Heidelberg, Germany (C.M.); (M.Z.)
| | - Martin Zeier
- Department of Nephrology, Heidelberg University, 69120 Heidelberg, Germany (C.M.); (M.Z.)
| | - Paul Schnitzler
- Medical Faculty Heidelberg, Department of Infectious Diseases, Virology, Heidelberg University, 69120 Heidelberg, Germany;
| | - Ralf Bartenschlager
- Medical Faculty Heidelberg, Department of Infectious Diseases, Molecular Virology, Heidelberg University, 69120 Heidelberg, Germany; (M.B.); (H.K.); (R.B.)
- German Center for Infection Research (DZIF), 69120 Heidelberg, Germany
- Division Virus-Associated Carcinogenesis, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Claudius Speer
- Department of Nephrology, Heidelberg University, 69120 Heidelberg, Germany (C.M.); (M.Z.)
- Medical Faculty Heidelberg, Department of Internal Medicine III (Cardiology, Angiology, and Pneumology), Heidelberg University, 69120 Heidelberg, Germany
| |
Collapse
|
10
|
Li M, Yao Z, Wang H, Ma Y, Yang W, Guo Y, Yu G, Shi W, Zhang N, Xu M, Li X, Zhao J, Zhang Y, Xue C, Sun B. Silicon or Calcium Doping Coordinates the Immunostimulatory Effects of Aluminum Oxyhydroxide Nanoadjuvants in Prophylactic Vaccines. ACS NANO 2024; 18:16878-16894. [PMID: 38899978 DOI: 10.1021/acsnano.4c02685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Aluminum salts still remain as the most popular adjuvants in marketed human prophylactic vaccines due to their capability to trigger humoral immune responses with a good safety record. However, insufficient induction of cellular immune responses limits their further applications. In this study, we prepare a library of silicon (Si)- or calcium (Ca)-doped aluminum oxyhydroxide (AlOOH) nanoadjuvants. They exhibit well-controlled physicochemical properties, and the dopants are homogeneously distributed in nanoadjuvants. By using Hepatitis B surface antigen (HBsAg) as the model antigen, doped AlOOH nanoadjuvants mediate higher antigen uptake and promote lysosome escape of HBsAg through lysosomal rupture induced by the dissolution of the dopant in the lysosomes in bone marrow-derived dendritic cells (BMDCs). Additionally, doped nanoadjuvants trigger higher antigen accumulation and immune cell activation in draining lymph nodes. In HBsAg and varicella-zoster virus glycoprotein E (gE) vaccination models, doped nanoadjuvants induce high IgG titer, activations of CD4+ and CD8+ T cells, cytotoxic T lymphocytes, and generations of effector memory T cells. Doping of aluminum salt-based adjuvants with biological safety profiles and immunostimulating capability is a potential strategy to mediate robust humoral and cellular immunity. It potentiates the applications of engineered adjuvants in the development of vaccines with coordinated immune responses.
Collapse
Affiliation(s)
- Min Li
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China
- School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China
- Frontiers Science Center for Smart Materials Oriented Chemical Engineering, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China
| | - Zhiying Yao
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China
- School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China
- Frontiers Science Center for Smart Materials Oriented Chemical Engineering, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China
| | - Huiyang Wang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China
- School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China
- Frontiers Science Center for Smart Materials Oriented Chemical Engineering, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China
| | - Yubin Ma
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China
- School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China
- Frontiers Science Center for Smart Materials Oriented Chemical Engineering, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China
| | - Wenqi Yang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China
- School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China
- Frontiers Science Center for Smart Materials Oriented Chemical Engineering, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China
| | - Yiyang Guo
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China
- School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China
- Frontiers Science Center for Smart Materials Oriented Chemical Engineering, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China
| | - Ge Yu
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China
- School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China
- Frontiers Science Center for Smart Materials Oriented Chemical Engineering, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China
| | - Wendi Shi
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China
- School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China
- Frontiers Science Center for Smart Materials Oriented Chemical Engineering, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China
| | - Ning Zhang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China
- School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China
- Frontiers Science Center for Smart Materials Oriented Chemical Engineering, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China
| | - Muzhe Xu
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China
- School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China
- Frontiers Science Center for Smart Materials Oriented Chemical Engineering, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China
| | - Xin Li
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China
- School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China
- Frontiers Science Center for Smart Materials Oriented Chemical Engineering, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China
| | - Jiashu Zhao
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China
- School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China
- Frontiers Science Center for Smart Materials Oriented Chemical Engineering, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China
| | - Yue Zhang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China
- School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China
- Frontiers Science Center for Smart Materials Oriented Chemical Engineering, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China
| | - Changying Xue
- School of Bioengineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China
| | - Bingbing Sun
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China
- School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China
- Frontiers Science Center for Smart Materials Oriented Chemical Engineering, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China
| |
Collapse
|
11
|
Haq MA, Roy AK, Ahmed R, Kuddusi RU, Sinha M, Hossain MS, Vandenent M, Islam MZ, Zaman RU, Kibria MG, Razzaque A, Raqib R, Sarker P. Antibody longevity and waning following COVID-19 vaccination in a 1-year longitudinal cohort in Bangladesh. Sci Rep 2024; 14:11467. [PMID: 38769324 PMCID: PMC11106241 DOI: 10.1038/s41598-024-61922-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Accepted: 05/10/2024] [Indexed: 05/22/2024] Open
Abstract
COVID-19 vaccines have been effective in preventing severe illness, hospitalization and death, however, the effectiveness diminishes with time. Here, we evaluated the longevity of antibodies generated by COIVD-19 vaccines and the risk of (re)infection in Bangladeshi population. Adults receiving two doses of AstraZeneca, Pfizer, Moderna or Sinopharm vaccines were enrolled at 2-4 weeks after second dosing and followed-up at 4-monthly interval for 1 year. Data on COVID-like symptoms, confirmed COVID-19 infection, co-morbidities, and receipt of booster dose were collected; blood was collected for measuring spike (S)- and nucleocapsid (N)-specific antibodies. S-specific antibody titers reduced by ~ 50% at 1st follow-up visit and continued to decline unless re-stimulated by booster vaccine dose or (re)infection. Individuals infected between follow-up visits showed significantly lower S-antibody titers at preceding visits compared to the uninfected individuals. Pre-enrolment infection between primary vaccination dosing exhibited 60% and 50% protection against reinfection at 5 and 9 months, respectively. mRNA vaccines provided highest odds of protection from (re)infection up to 5 months (Odds Ratio (OR) = 0.08), however, protection persisted for 9 months in AstraZeneca vaccine recipients (OR = 0.06). In conclusion, vaccine-mediated protection from (re)infection is partially linked to elevated levels of S-specific antibodies. AstraZeneca vaccine provided the longest protection.
Collapse
Affiliation(s)
- Md Ahsanul Haq
- Immunobiology, Nutrition and Toxicology Laboratory, Nutrition Research Division, International Center for Diarrhoeal Disease Research, Bangladesh (icddr, b), Dhaka, 1212, Bangladesh
| | - Anjan Kumar Roy
- Immunobiology, Nutrition and Toxicology Laboratory, Nutrition Research Division, International Center for Diarrhoeal Disease Research, Bangladesh (icddr, b), Dhaka, 1212, Bangladesh
| | - Razu Ahmed
- Immunobiology, Nutrition and Toxicology Laboratory, Nutrition Research Division, International Center for Diarrhoeal Disease Research, Bangladesh (icddr, b), Dhaka, 1212, Bangladesh
| | - Rakib Ullah Kuddusi
- Immunobiology, Nutrition and Toxicology Laboratory, Nutrition Research Division, International Center for Diarrhoeal Disease Research, Bangladesh (icddr, b), Dhaka, 1212, Bangladesh
| | - Monika Sinha
- Immunobiology, Nutrition and Toxicology Laboratory, Nutrition Research Division, International Center for Diarrhoeal Disease Research, Bangladesh (icddr, b), Dhaka, 1212, Bangladesh
| | - Md Shamim Hossain
- Immunobiology, Nutrition and Toxicology Laboratory, Nutrition Research Division, International Center for Diarrhoeal Disease Research, Bangladesh (icddr, b), Dhaka, 1212, Bangladesh
| | | | | | | | - Md Golam Kibria
- Sheikh Russel Gastroliver Institute and Hospital, Dhaka, 1212, Bangladesh
| | - Abdur Razzaque
- Immunobiology, Nutrition and Toxicology Laboratory, Nutrition Research Division, International Center for Diarrhoeal Disease Research, Bangladesh (icddr, b), Dhaka, 1212, Bangladesh
| | - Rubhana Raqib
- Immunobiology, Nutrition and Toxicology Laboratory, Nutrition Research Division, International Center for Diarrhoeal Disease Research, Bangladesh (icddr, b), Dhaka, 1212, Bangladesh
| | - Protim Sarker
- Immunobiology, Nutrition and Toxicology Laboratory, Nutrition Research Division, International Center for Diarrhoeal Disease Research, Bangladesh (icddr, b), Dhaka, 1212, Bangladesh.
| |
Collapse
|
12
|
Nagra D, Bechman K, Russell MD, Yang Z, Adas M, Subesinghe S, Rutherford A, Alveyn E, Patel S, Wincup C, Mahto A, Baldwin C, Karafotias I, Cope A, Norton S, Galloway J. No Waning of Pneumococcal Vaccine Responses over Time in People with Inflammatory Arthritis: Findings from a Single Centre Cohort. Vaccines (Basel) 2024; 12:69. [PMID: 38250882 PMCID: PMC10818273 DOI: 10.3390/vaccines12010069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/03/2024] [Accepted: 01/08/2024] [Indexed: 01/23/2024] Open
Abstract
BACKGROUND Vaccination against pneumococcus reduces the risk of infective events, hospitalisation, and death in individual with inflammatory arthritis, particularly in those on immunomodulating therapy who are at risk of worse outcomes from pneumococcal disease. The objective of this study was to investigate the serological protection following vaccination against pneumococcal serovars over time. Methods: This was a single centre, retrospective cohort study of individuals with rheumatoid arthritis, psoriatic arthritis, or axial spondylarthritis who had previously received the PPSV23 polysaccharide pneumococcal vaccine (Pneumovax). Data were retrieved between January 2021 to August 2023. Dates of previous pneumococcal vaccination were identified using linked primary care records. Serum serotype levels were collected. The primary outcome was serological response defined as a titre ≥0.35 mcg/mL in at least five from a total of 12 evaluated pneumococcal serovars, examined using a Luminex platform. Multivariate logistic regression models adjusting for age, gender, ethnicity, co-morbidities, and the use of prednisolone, conventional synthetic and biological DMARDs were used to determine the odds of a sustained serological response according to time categorised into ≤5 years, 5-10 years, and ≥10 years since vaccination. Results: Serological response was measured in 296 individuals with inflammatory arthritis, with rheumatoid arthritis the most common diagnosis (74% of patients). The median time between pneumococcal vaccine administration and serological assessment was 6 years (interquartile range 2.4 to 9.9). A positive serological response to at least 5 serovars was present in 195/296 (66%) of patients. Time since vaccination did not significantly associate with serological protection compared with those vaccinated <5 years, the adjusted ORs of vaccine response was 1.15 (95% CI 0.64 to 2.07) in those 5-10 years and 1.26 (95% CI: 0.64 to 2.48) in those vaccinated over 10 years ago. No individual variable from the multivariate model reached statistical significance as an independent predictor of vaccine response, although steroid use at the time of vaccine had a consistent detrimental impact on serological immunity. Conclusions: We demonstrated that antibody titres following vaccination against pneumococcal serovars do not appear to wane over time. It appears more critical to focus on maximising the initial vaccine response, which is known to be diminished in this patient population.
Collapse
Affiliation(s)
- Deepak Nagra
- Centre for Rheumatic Disease, King’s College London, London WC2R 2LS, UK (S.S.); (J.G.)
| | - Katie Bechman
- Centre for Rheumatic Disease, King’s College London, London WC2R 2LS, UK (S.S.); (J.G.)
| | - Mark D. Russell
- Centre for Rheumatic Disease, King’s College London, London WC2R 2LS, UK (S.S.); (J.G.)
| | - Zijing Yang
- Centre for Rheumatic Disease, King’s College London, London WC2R 2LS, UK (S.S.); (J.G.)
| | - Maryam Adas
- Centre for Rheumatic Disease, King’s College London, London WC2R 2LS, UK (S.S.); (J.G.)
| | - Sujith Subesinghe
- Centre for Rheumatic Disease, King’s College London, London WC2R 2LS, UK (S.S.); (J.G.)
| | - Andrew Rutherford
- Centre for Rheumatic Disease, King’s College London, London WC2R 2LS, UK (S.S.); (J.G.)
| | - Edward Alveyn
- Centre for Rheumatic Disease, King’s College London, London WC2R 2LS, UK (S.S.); (J.G.)
| | - Samir Patel
- Centre for Rheumatic Disease, King’s College London, London WC2R 2LS, UK (S.S.); (J.G.)
| | - Chris Wincup
- King’s College Hospital NHS Trust, London SE5 9RS, UK
| | - Arti Mahto
- King’s College Hospital NHS Trust, London SE5 9RS, UK
| | - Christopher Baldwin
- Centre for Rheumatic Disease, King’s College London, London WC2R 2LS, UK (S.S.); (J.G.)
| | - Ioasaf Karafotias
- Centre for Rheumatic Disease, King’s College London, London WC2R 2LS, UK (S.S.); (J.G.)
| | - Andrew Cope
- Centre for Rheumatic Disease, King’s College London, London WC2R 2LS, UK (S.S.); (J.G.)
| | - Sam Norton
- Centre for Rheumatic Disease, King’s College London, London WC2R 2LS, UK (S.S.); (J.G.)
| | - James Galloway
- Centre for Rheumatic Disease, King’s College London, London WC2R 2LS, UK (S.S.); (J.G.)
| |
Collapse
|
13
|
Hoek RAS, Liu S, GeurtsvanKessel CH, Verschuuren EAM, Vonk JM, Hellemons ME, Kool M, Wijbenga N, Bogers S, Scherbeijn S, Rugebregt S, van Gemert JP, Steenhuis WN, Niesters HGM, van Baarle D, de Vries RD, Van Leer Buter C. Humoral and cellular immune responses after COVID-19 vaccination of lung transplant recipients and patients on the waiting list: a 6-month follow-up. Front Immunol 2024; 14:1254659. [PMID: 38239369 PMCID: PMC10794507 DOI: 10.3389/fimmu.2023.1254659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 12/01/2023] [Indexed: 01/22/2024] Open
Abstract
Background Data on cellular response and the decay of antibodies and T cells in time are scarce in lung transplant recipients (LTRs). Additionally, the development and durability of humoral and cellular immune responses have not been investigated in patients on the waitlist for lung transplantation (WLs). Here, we report our 6-month follow-up of humoral and cellular immune responses of LTRs and WLs, compared with controls. Methods Humoral responses to two doses of the mRNA-1273 vaccination were assessed by determining spike (S)-specific IgG antibodies and neutralizing antibodies. Cellular responses were investigated by interferon gamma (IFN-γ) release assay (IGRA) and IFN-γ ELISpot assay at 28 days and 6 months after the second vaccination. Results In LTRs, the level of antibodies and T-cell responses was significantly lower at 28 days after the second vaccination. Also, WLs had lower antibody titers and lower T-cell responses compared with controls. Six months after the second vaccination, all groups showed a decrease in antibody titers and T-cell responses. In WLs, the rate of decline of neutralizing antibodies and T-cell responses was significantly higher than in controls. Conclusion Our results show that humoral and cellular responses in LTRs, if they develop, decrease at rates comparable with controls. In contrast, the inferior cellular responses and the rapid decay of both humoral and cellular responses in the WL groups imply that WLs may not be protected adequately by two vaccinations and repeat boostering may be necessary to induce protection that lasts beyond the months immediately post-transplantation.
Collapse
Affiliation(s)
- Rogier A. S. Hoek
- Department of Pulmonary Medicine, Erasmus Medical Center (MC) Transplant Institute, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Siqi Liu
- Department of Rheumatology and Clinical Immunology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | | | - Erik A. M. Verschuuren
- Department of Pulmonary Diseases, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Judith M. Vonk
- Department of Epidemiology and Groningen Research Institute for Asthma and Chronic Obstructive Pulmonary Disease (COPD) (GRIAC), University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Merel E. Hellemons
- Department of Pulmonary Medicine, Erasmus Medical Center (MC) Transplant Institute, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Mirjam Kool
- Department of Pulmonary Medicine, Erasmus Medical Center (MC) Transplant Institute, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Nynke Wijbenga
- Department of Pulmonary Medicine, Erasmus Medical Center (MC) Transplant Institute, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Susanne Bogers
- Department of Viroscience, Erasmus Medical Center, Rotterdam, Netherlands
| | - Sandra Scherbeijn
- Department of Viroscience, Erasmus Medical Center, Rotterdam, Netherlands
| | - Sharona Rugebregt
- Department of Viroscience, Erasmus Medical Center, Rotterdam, Netherlands
| | - Johanna P. van Gemert
- Department of Pulmonary Diseases, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Willie N. Steenhuis
- Department of Pulmonary Diseases, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Hubert G. M. Niesters
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Debbie van Baarle
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
- Center for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, Netherlands
| | - Rory D. de Vries
- Department of Viroscience, Erasmus Medical Center, Rotterdam, Netherlands
| | - Coretta Van Leer Buter
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| |
Collapse
|
14
|
Das R, Hyer RN, Burton P, Miller JM, Kuter BJ. Emerging heterologous mRNA-based booster strategies within the COVID-19 vaccine landscape. Hum Vaccin Immunother 2023; 19:2153532. [PMID: 36629006 PMCID: PMC9980456 DOI: 10.1080/21645515.2022.2153532] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Messenger RNA (mRNA)-based vaccine platforms used for the development of mRNA-1273 and BNT162b2 have provided a robust adaptable approach to offer protection against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). However, as variants of concern (VoCs), such as omicron and associated sub-variants, emerge, boosting strategies must also adapt to keep pace with the changing landscape. Heterologous vaccination regimens involving the administration of booster vaccines different than the primary vaccination series offer a practical, effective, and safe approach to continue to reduce the global burden of coronavirus disease 2019 (COVID-19). To understand the immunogenicity, effectiveness, and safety of heterologous mRNA-based vaccination strategies, relevant clinical and real-world observational studies were identified and summarized. Overall, heterologous boosting strategies with mRNA-based vaccines that are currently available and those in development will play an important global role in protecting individuals from COVID-19 caused by emerging VoCs.
Collapse
Affiliation(s)
- Rituparna Das
- Infectious Diseases, Moderna, Inc., Cambridge, MA, USA,CONTACT Rituparna Das Moderna, Inc., 200 Technology Square, Cambridge, MA02139, USA
| | - Randall N. Hyer
- Experimental Therapeutics, Baruch S. Blumberg Institute, Doylestown, PA, USA
| | - Paul Burton
- Infectious Diseases, Moderna, Inc., Cambridge, MA, USA
| | | | | |
Collapse
|
15
|
Kim CG, Kim WK, Kim N, Pyung YJ, Park DJ, Lee JC, Cho CS, Chu H, Yun CH. Intranasal Immunization With Nanoparticles Containing an Orientia tsutsugamushi Protein Vaccine Candidate and a Polysorbitol Transporter Adjuvant Enhances Both Humoral and Cellular Immune Responses. Immune Netw 2023; 23:e47. [PMID: 38188601 PMCID: PMC10767547 DOI: 10.4110/in.2023.23.e47] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 12/08/2023] [Accepted: 12/10/2023] [Indexed: 01/09/2024] Open
Abstract
Scrub typhus, a mite-borne infectious disease, is caused by Orientia tsutsugamushi. Despite many attempts to develop a protective strategy, an effective preventive vaccine has not been developed. The identification of appropriate Ags that cover diverse antigenic strains and provide long-lasting immunity is a fundamental challenge in the development of a scrub typhus vaccine. We investigated whether this limitation could be overcome by harnessing the nanoparticle-forming polysorbitol transporter (PST) for an O. tsutsugamushi vaccine strategy. Two target proteins, 56-kDa type-specific Ag (TSA56) and surface cell Ag A (ScaA) were used as vaccine candidates. PST formed stable nano-size complexes with TSA56 (TSA56-PST) and ScaA (ScaA-PST); neither exhibited cytotoxicity. The formation of Ag-specific IgG2a, IgG2b, and IgA in mice was enhanced by intranasal vaccination with TSA56-PST or ScaA-PST. The vaccines containing PST induced Ag-specific proliferation of CD8+ and CD4+ T cells. Furthermore, the vaccines containing PST improved the mouse survival against O. tsutsugamushi infection. Collectively, the present study indicated that PST could enhance both Ag-specific humoral immunity and T cell response, which are essential to effectively confer protective immunity against O. tsutsugamushi infection. These findings suggest that PST has potential for use in an intranasal vaccination strategy.
Collapse
Affiliation(s)
- Cheol Gyun Kim
- Department of Agricultural Biotechnology, and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea
- Bio-MAX/N-Bio, Seoul National University, Seoul 08826, Korea
| | - Won Kyong Kim
- Division of Zoonotic and Vector Borne Disease Research, Center for Infectious Disease Research, National Institute of Health, Cheongju 28159, Korea
| | - Narae Kim
- Department of Agricultural Biotechnology, and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea
| | - Young Jin Pyung
- Department of Agricultural Biotechnology, and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea
| | - Da-Jeong Park
- Department of Agricultural Biotechnology, and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea
| | - Jeong-Cheol Lee
- Department of Agricultural Biotechnology, and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea
| | - Chong-Su Cho
- Department of Agricultural Biotechnology, and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea
| | - Hyuk Chu
- Division of Zoonotic and Vector Borne Disease Research, Center for Infectious Disease Research, National Institute of Health, Cheongju 28159, Korea
| | - Cheol-Heui Yun
- Department of Agricultural Biotechnology, and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea
- Center for Food and Bioconvergence, Seoul National University, Seoul 08826, Korea
- Institutes of Green-bio Science and Technology, Seoul National University, Pyeongchang 25354, Korea
- Interdisciplinary Programs in Agricultural Genomics, Seoul National University, Seoul 08826, Korea
| |
Collapse
|
16
|
Paramithiotis E, Varaklis C, Pillet S, Shafiani S, Lancelotta MP, Steinhubl S, Sugden S, Clutter M, Montamat-Sicotte D, Chermak T, Crawford SY, Lambert BL, Mattison J, Murphy RL. Integrated antibody and cellular immunity monitoring are required for assessment of the long term protection that will be essential for effective next generation vaccine development. Front Immunol 2023; 14:1166059. [PMID: 38077383 PMCID: PMC10701527 DOI: 10.3389/fimmu.2023.1166059] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 11/06/2023] [Indexed: 12/18/2023] Open
Abstract
The COVID pandemic exposed the critical role T cells play in initial immunity, the establishment and maintenance of long term protection, and of durable responsiveness against novel viral variants. A growing body of evidence indicates that adding measures of cellular immunity will fill an important knowledge gap in vaccine clinical trials, likely leading to improvements in the effectiveness of the next generation vaccines against current and emerging variants. In depth cellular immune monitoring in Phase II trials, particularly for high risk populations such as the elderly or immune compromised, should result in better understanding of the dynamics and requirements for establishing effective long term protection. Such analyses can result in cellular immunity correlates that can then be deployed in Phase III studies using appropriate, scalable technologies. Measures of cellular immunity are less established than antibodies as correlates of clinical immunity, and some misconceptions persist about cellular immune monitoring usefulness, cost, complexity, feasibility, and scalability. We outline the currently available cellular immunity assays, review their readiness for use in clinical trials, their logistical requirements, and the type of information each assay generates. The objective is to provide a reliable source of information that could be leveraged to develop a rational approach for comprehensive immune monitoring during vaccine development.
Collapse
Affiliation(s)
| | | | | | | | | | - Steve Steinhubl
- Purdue University, West Lafayette, IN, United States
- PhysIQ, Chicago, IL, United States
| | - Scott Sugden
- Medical and Scientific Affairs, Infectious Diseases, Cepheid, Sunnyvale, CA, United States
| | - Matt Clutter
- Research and Development, CellCarta, Montreal, QC, Canada
| | | | - Todd Chermak
- Regulatory and Government Affairs, CellCarta, Montreal, QC, Canada
| | - Stephanie Y. Crawford
- Department of Pharmacy Systems, Outcomes and Policy, University of Illinois Chicago, Chicago, IL, United States
| | - Bruce L. Lambert
- Department of Communication Studies, Institute for Global Health, Northwestern University, Evanston, IL, United States
| | - John Mattison
- Health Technology Advisory Board, Arsenal Capital, New York, NY, United States
| | - Robert L. Murphy
- Robert J. Havey, MD Institute for Global Health, Northwestern University, Chicago, IL, United States
| |
Collapse
|
17
|
Udomkarnjananun S, Gatechompol S, Leelahavanichkul A, Kerr SJ. Cellular immune response of SARS-CoV-2 vaccination in kidney transplant recipients: a systematic review and meta-analysis. Front Immunol 2023; 14:1220148. [PMID: 37575225 PMCID: PMC10415203 DOI: 10.3389/fimmu.2023.1220148] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 07/05/2023] [Indexed: 08/15/2023] Open
Abstract
Background Evidence has demonstrated inferior humoral immune responses after SARS-CoV-2 vaccination in kidney transplant recipients compared to the general population. However, data on cellular immune responses in this population have not been established. Methods We searched the MEDLINE, Scopus, and Cochrane databases and included studies reporting cellular immune response rates in kidney transplant recipients after receiving SARS-CoV-2 vaccines. Studies that reported factors associated with cellular immune responders or non-responders were also included (PROSPERO: CRD42022375544). Results From a total of 1,494 articles searched, 53 articles were included in the meta-analysis. In all, 21 studies assessed cellular immune response by interferon-γ enzyme-linked immunosorbent spot (IFN-γ ELISPOT), 22 studies used interferon-γ release assay (IGRA), and 10 studies used flow cytometric analysis. The pooled response rate after two doses (standard regimen) and three doses of vaccination was 47.5% (95%CI 38.4-56.7%) and 69.1% (95%CI 56.3-80.6%) from IFN-γ ELISPOT, 25.8% (95%CI 19.7-32.4%) and 14.7% (95%CI 8.5-22.2%) from IGRA, and 73.7% (95%CI 55.2-88.8%) and 86.5% (95%CI 75.3-94.9%) from flow cytometry, respectively. Recipients with seroconversion were associated with a higher chance of having cellular immune response (OR 2.58; 95%CI 1.89-3.54). Cellular immune response in kidney transplant recipients was lower than in dialysis patients (OR 0.24; 95%CI 0.16-0.34) and the general population (OR 0.10; 95%CI 0.07-0.14). Age and immunosuppressants containing tacrolimus or corticosteroid were associated with inferior cellular immune response. Conclusion Cellular immune response after SARS-CoV-2 vaccination in kidney transplant recipients was lower than in dialysis patients and the general population. Age, tacrolimus, and corticosteroid were associated with poor response. Cellular immune response should also be prioritized in vaccination studies. Systematic review registration https://www.crd.york.ac.uk/prospero/, identifier CRD42022375544.
Collapse
Affiliation(s)
- Suwasin Udomkarnjananun
- Division of Nephrology, Department of Medicine, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Bangkok, Thailand
- Excellence Center for Organ Transplantation (ECOT), King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, Thailand
- Renal Immunology and Transplantation Research Unit, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | | | - Asada Leelahavanichkul
- Center of Excellence on Translational Research in Inflammation and Immunology (CETRII), Department of Microbiology, Chulalongkorn University, Bangkok, Thailand
- Immunology Unit, Department of Microbiology, Chulalongkorn University, Bangkok, Thailand
| | - Stephen J. Kerr
- HIV-NAT, Thai Red Cross AIDS Research Centre, Bangkok, Thailand
- Biostatistics Excellence Centre, Research Affairs, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- The Kirby Institute, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
18
|
Szabó E, Modok S, Rónaszéki B, Faragó A, Gémes N, Nagy LI, Hackler L, Farkas K, Neuperger P, Balog JÁ, Balog A, Puskás LG, Szebeni GJ. Comparison of humoral and cellular immune responses in hematologic diseases following completed vaccination protocol with BBIBP-CorV, or AZD1222, or BNT162b2 vaccines against SARS-CoV-2. Front Med (Lausanne) 2023; 10:1176168. [PMID: 37529238 PMCID: PMC10389666 DOI: 10.3389/fmed.2023.1176168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 06/23/2023] [Indexed: 08/03/2023] Open
Abstract
Background Vaccination has proven the potential to control the COVID-19 pandemic worldwide. Although recent evidence suggests a poor humoral response against SARS-CoV-2 in vaccinated hematological disease (HD) patients, data on vaccination in these patients is limited with the comparison of mRNA-based, vector-based or inactivated virus-based vaccines. Methods Forty-nine HD patients and 46 healthy controls (HCs) were enrolled who received two-doses complete vaccination with BNT162b2, or AZD1222, or BBIBP-CorV, respectively. The antibodies reactive to the receptor binding domain of spike protein of SARS-CoV-2 were assayed by Siemens ADVIA Centaur assay. The reactive cellular immunity was assayed by flow cytometry. The PBMCs were reactivated with SARS-CoV-2 antigens and the production of activation-induced markers (TNF-α, IFN-γ, CD40L) was measured in CD4+ or CD8+ T-cells ex vivo. Results The anti-RBD IgG level was the highest upon BNT162b2 vaccination in HDs (1264 BAU/mL) vs. HCs (1325 BAU/mL) among the studied groups. The BBIBP-CorV vaccination in HDs (339.8 BAU/mL ***p < 0.001) and AZD1222 in HDs (669.9 BAU/mL *p < 0.05) resulted in weaker antibody response vs. BNT162b2 in HCs. The response rate of IgG production of HC vs. HD patients above the diagnostic cut-off value was 100% vs. 72% for the mRNA-based BNT162b2 vaccine; 93% vs. 56% for the vector-based AZD1222, or 69% vs. 33% for the inactivated vaccine BBIBP-CorV, respectively. Cases that underwent the anti-CD20 therapy resulted in significantly weaker (**p < 0.01) anti-RBD IgG level (302 BAU/mL) than without CD20 blocking in the HD group (928 BAU/mL). The response rates of CD4+ TNF-α+, CD4+ IFN-γ+, or CD4+ CD40L+ cases were lower in HDs vs. HCs in all vaccine groups. However, the BBIBP-CorV vaccine resulted the highest CD4+ TNF-α and CD4+ IFN-γ+ T-cell mediated immunity in the HD group. Conclusion We have demonstrated a significant weaker overall response to vaccines in the immunologically impaired HD population vs. HCs regardless of vaccine type. Although, the humoral immune activity against SARS-CoV-2 can be highly evoked by mRNA-based BNT162b2 vaccination compared to vector-based AZD1222 vaccine, or inactivated virus vaccine BBIBP-CorV, whereas the CD4+ T-cell mediated cellular activity was highest in HDs vaccinated with BBIBP-CorV.
Collapse
Affiliation(s)
- Enikő Szabó
- Laboratory of Functional Genomics, Biological Research Centre, Szeged, Hungary
| | - Szabolcs Modok
- Department of Medicine, Szent-Györgyi Albert Medical School-University of Szeged, Szeged, Hungary
| | - Benedek Rónaszéki
- Department of Medicine, Szent-Györgyi Albert Medical School-University of Szeged, Szeged, Hungary
| | - Anna Faragó
- Avidin Ltd., Szeged, Hungary
- Doctoral School in Biology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - Nikolett Gémes
- Laboratory of Functional Genomics, Biological Research Centre, Szeged, Hungary
- Doctoral School in Biology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | | | | | | | - Patrícia Neuperger
- Laboratory of Functional Genomics, Biological Research Centre, Szeged, Hungary
- Doctoral School in Biology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - József Á. Balog
- Laboratory of Functional Genomics, Biological Research Centre, Szeged, Hungary
| | - Attila Balog
- Department of Rheumatology and Immunology, Faculty of Medicine, Albert Szent-Gyorgyi Health Centre, University of Szeged, Szeged, Hungary
| | - László G. Puskás
- Laboratory of Functional Genomics, Biological Research Centre, Szeged, Hungary
- Avidin Ltd., Szeged, Hungary
- Avicor Ltd., Szeged, Hungary
| | - Gabor J. Szebeni
- Laboratory of Functional Genomics, Biological Research Centre, Szeged, Hungary
- Department of Physiology, Anatomy and Neuroscience, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
- CS-Smartlab Devices, Kozarmisleny, Hungary
| |
Collapse
|
19
|
Salvagno GL, Pighi L, Henry BM, Valentini M, Tonin B, Bragantini D, Gianfilippi G, De Nitto S, Plebani M, Lippi G. Assessment of humoral and cellular immunity after bivalent BNT162b2 vaccination and potential association with reactogenicity. Clin Chem Lab Med 2023; 61:1343-1348. [PMID: 36722026 DOI: 10.1515/cclm-2023-0055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 01/20/2023] [Indexed: 02/02/2023]
Abstract
OBJECTIVES This study investigated the feasibility and clinical value of using a novel, automated and high-throughput SARS-CoV-2 Interferon Gamma Release Assay (IGRA), combined with total anti-SARS-CoV-2 antibodies assessment, for evaluating the immune response after bivalent BNT162b2 vaccination. METHODS A cohort of healthcare workers, who already underwent primary vaccination and boosting with monovalent BNT162b2 vaccine, received a booster dose of the new BNT162b2 bivalent formulation. Blood samples were taken immediately before vaccination (T0) and 1 month afterwards (T1). Humoral and cellular immunity were assayed with Roche Elecsys Anti-SARS-CoV-2 and Roche Elecsys IGRA SARS-CoV-2, respectively. RESULTS The study population consisted of 51 subjects (median age: 43 years; 51% females). Total anti-SARS-CoV-2 antibodies and IGRA SARS-CoV-2 values increased at T1 from 9,050 to 25,000 BAU/mL (p<0.001), and from 0.44 to 0.78 IU/mL (p=0.385), accounting for median increase of 2.0 and 1.6 folds, respectively. Increased T1 values of total anti-SARS-CoV-2 antibodies and IGRA SARS-CoV-2 were recorded in 100% and 68.6% subjects, respectively. In those with baseline values below the median, post-vaccine levels displayed larger increases of 3.3 and 5.1 folds for anti-SARS-CoV-2 total antibodies and IGRA SARS-CoV-2, respectively. The variation of total anti-SARS-CoV-2 antibodies was inversely associated with their T0 values (r=-0.97; p<0.001), whilst that of IGRA SARS-CoV-2 was inversely associated with its T0 value (r=-0.58; p<0.001). No other signifcant associations were found with demographical or clinical variables, including side effects. CONCLUSIONS The bivalent BNT162b2 vaccine booster enhances humoral and cellular immunity against SARS-CoV-2, especially in recipients with lower baseline biological protection.
Collapse
Affiliation(s)
- Gian Luca Salvagno
- Section of Clinical Biochemistry, University of Verona, Verona, Italy
- Service of Laboratory Medicine, Pederzoli Hospital, Peschiera del Garda, Italy
| | - Laura Pighi
- Section of Clinical Biochemistry, University of Verona, Verona, Italy
- Service of Laboratory Medicine, Pederzoli Hospital, Peschiera del Garda, Italy
| | - Brandon M Henry
- Clinical Laboratory, Division of Nephrology and Hypertension, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Myriam Valentini
- Service of Laboratory Medicine, Pederzoli Hospital, Peschiera del Garda, Italy
| | - Beatrice Tonin
- Medical Direction, Pederzoli Hospital, Peschiera del Garda, Italy
| | - Damiano Bragantini
- Infectious Diseases Unit, Pederzoli Hospital, Peschiera del Garda, Italy
| | | | - Simone De Nitto
- Section of Clinical Biochemistry, University of Verona, Verona, Italy
- Service of Laboratory Medicine, Pederzoli Hospital, Peschiera del Garda, Italy
| | - Mario Plebani
- Department of Medicine, University of Padova, Padova, Italy
| | - Giuseppe Lippi
- Section of Clinical Biochemistry, University of Verona, Verona, Italy
| |
Collapse
|
20
|
Alfouzan W, Altawalah H, AlSarraf A, Alali W, Al-Fadalah T, Al-Ghimlas F, Alajmi S, Alajmi M, AlRoomi E, Jeragh A, Dhar R. Changing Patterns of SARS-CoV-2 Seroprevalence: A Snapshot among the General Population in Kuwait. Vaccines (Basel) 2023; 11:vaccines11020336. [PMID: 36851214 PMCID: PMC9963614 DOI: 10.3390/vaccines11020336] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 01/26/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023] Open
Abstract
We sought to assess pre-vaccination and post-vaccination seroprevalences of anti-SARS-CoV-2 antibodies in Kuwait and to compare antibody levels between vaccine types. In phase 1 (pre-vaccination period, n = 19,363), blood samples were collected before the launch of COVID-19 vaccination in Kuwait between 1 September and 31 December 2020. Blood samples for phase 2 (post-vaccination period, n = 4973) were collected between 1 September and 30 November 2021. We tested subjects for anti-SARS-CoV-2 antibodies using the DiaSorin LIAISON® SARS-CoV-2 IgM and Trimeric S IgG tests. In the pre-vaccination period, the prevalence of SARS-CoV-2 IgM and IgG was 14.50% (95% CI: 14.01-15.00) and 24.89% (95% CI: 24.29-25.50), respectively. The trend of seropositivity increased with age and was higher for females and non-Kuwaiti participants (p < 0.0001). Interestingly, seroprevalence was significantly higher for those who had received one dose of BNT162b2 (95.21%) than those who had received one dose of ChAdOx1-nCov-19 (92.86%). In addition, those who reported receiving two doses had higher seroprevalence, 96.25%, 95.86%, and 94.93% for ChA-dOx1-nCov-19/AstraZeneca, mix-and-match, and BNT162b2 recipients, respectively. After the second dose, median spike-specific responses showed no significant difference between ChAdOx1-nCov-19 and BNT162b2. Furthermore, statistical analysis showed no significant difference between median anti-trimeric S antibody levels of vaccinated individuals according to sex, age, or nationality (p > 0.05). In contrast, a negative correlation between age and anti-trimeric S IgG titers of BNT162b2-vaccinated subjects was observed (r = -0.062, p = 0.0009). Antibody levels decreased with time after vaccination with both vaccines. Our findings indicate that seroprevalence was very low during the pre-vaccination period (25%) in the general population and was greater than 95% in the vaccinated population in Kuwait. Furthermore, ChAdOx1-nCov-19 and BNT162b2 are effective in generating a similar humoral response.
Collapse
Affiliation(s)
- Wadha Alfouzan
- Department of Microbiology, Faculty of Medicine, Kuwait University, Kuwait City 46300, Kuwait
- Microbiology Unit, Department of Laboratory Medicine, Farwania Hospital, Ministry of Health, Kuwait City 85000, Kuwait
- Correspondence:
| | - Haya Altawalah
- Department of Microbiology, Faculty of Medicine, Kuwait University, Kuwait City 46300, Kuwait
- Virology Unit, Department of Laboratory Medicine, Kuwait Cancer Control Center, Ministry of Health, Kuwait City 20001, Kuwait
| | - Ahmad AlSarraf
- Biochemitry Unit, Department of Laboratory Medicine, Kuwait Cancer Control Center, Ministry of Health, Kuwait City 20001, Kuwait
| | - Walid Alali
- Department of Epidemiology and Biostatistics, Faculty of Public Health, Kuwait University, Kuwait City 13110, Kuwait
| | - Talal Al-Fadalah
- Quality and Accreditation Directorate, Ministry of Health, Kuwait City 13001, Kuwait
| | - Fahad Al-Ghimlas
- Public Health Directorate, Ministry of Health, Kuwait City 20001, Kuwait
| | - Saud Alajmi
- Ahmadi Hospital, Administration Chief Clinical Services and Chief Supportive Clinical Services, Kuwait City 13126, Kuwait
| | - Mubarak Alajmi
- Ahmadi Hospital, Administration Chief Clinical Services and Chief Supportive Clinical Services, Kuwait City 13126, Kuwait
| | - Ebtehal AlRoomi
- Microbiology Unit, Department of Laboratory Medicine, Jahra Hospital, Ministry of Health, Jahra 00020, Kuwait
| | - Ahlam Jeragh
- Microbiology Unit, Department of Laboratory Medicine, Adan Hospital, Ministry of Health, Kuwait City 46969, Kuwait
| | - Rita Dhar
- Microbiology Unit, Department of Laboratory Medicine, Farwania Hospital, Ministry of Health, Kuwait City 85000, Kuwait
| |
Collapse
|
21
|
Kodali L, Budhiraja P, Gea-Banacloche J. COVID-19 in kidney transplantation-implications for immunosuppression and vaccination. Front Med (Lausanne) 2022; 9:1060265. [PMID: 36507509 PMCID: PMC9727141 DOI: 10.3389/fmed.2022.1060265] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 11/09/2022] [Indexed: 11/24/2022] Open
Abstract
COVID-19 pandemic continues to challenge the transplant community, given increased morbidity and mortality associated with the disease and poor response to prevention measures such as vaccination. Transplant recipients have a diminished response to both mRNA and vector-based vaccines compared to dialysis and the general population. The currently available assays to measure response to vaccination includes commercially available antibody assays for anti-Spike Ab, or anti- Receptor Binding Domain Ab. Positive antibody testing on the assays does not always correlate with neutralizing antibodies unless the antibody levels are high. Vaccinations help with boosting polyfunctional CD4+ T cell response, which continues to improve with subsequent booster doses. Ongoing efforts to improve vaccine response by using additional booster doses and heterologous vaccine combinations are underway. There is improved antibody response in moderate responders; however, the ones with poor response to initial vaccination doses, continue to have a poor response to sequential boosters. Factors associated with poor vaccine response include diabetes, older age, specific immunosuppressants such as belatacept, and high dose mycophenolate. In poor responders, a decrease in immunosuppression can increase response to vaccination. COVID infection or vaccination has not been associated with an increased risk of rejection. Pre- and Post-exposure monoclonal antibodies are available to provide further protection against COVID infection, especially in poor vaccine responders. However, the efficacy is challenged by the emergence of new viral strains. A recently approved bivalent vaccine offers better protection against the Omicron variant.
Collapse
Affiliation(s)
- Lavanya Kodali
- Department of Internal Medicine, Mayo Clinic, Phoenix, AZ, United States
- Division of Nephrology, Transplant Center, Mayo Clinic, Phoenix, AZ, United States
| | - Pooja Budhiraja
- Department of Internal Medicine, Mayo Clinic, Phoenix, AZ, United States
- Division of Nephrology, Transplant Center, Mayo Clinic, Phoenix, AZ, United States
| | - Juan Gea-Banacloche
- Division of Clinical Research, National Institute of Allergy and Infectious Diseases, Bethesda, MD, United States
| |
Collapse
|
22
|
Murphy RL, Paramithiotis E, Sugden S, Chermak T, Lambert B, Montamat-Sicotte D, Mattison J, Steinhubl S. The need for more holistic immune profiling in next-generation SARS-CoV-2 vaccine trials. Front Immunol 2022; 13:923106. [PMID: 36211354 PMCID: PMC9533322 DOI: 10.3389/fimmu.2022.923106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 08/26/2022] [Indexed: 11/14/2022] Open
Abstract
First-generation anit-SARS-CoV-2 vaccines were highly successful. They rapidly met an unforeseen emergency need, saved millions of lives, and simultaneously eased the burden on healthcare systems worldwide. The first-generation vaccines, however, focused too narrowly on antibody-based immunity as the sole marker of vaccine trial success, resulting in large knowledge gaps about waning vaccine protection, lack of vaccine robustness to viral mutation, and lack of efficacy in immunocompromised populations. Detailed reviews of first-generation vaccines, including their mode of action and geographical distribution, have been published elsewhere. Second-generation clinical trials must address these gaps by evaluating a broader range of immune markers, including those representing cell-mediated immunity, to ensure the most protective and long-lasting vaccines are brought to market.
Collapse
Affiliation(s)
- Robert L. Murphy
- Northwestern University, Evanston, IL, United States
- Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
- *Correspondence: Robert L. Murphy,
| | | | | | | | - Bruce Lambert
- Northwestern University, Evanston, IL, United States
| | | | | | | |
Collapse
|
23
|
Chen L, Qi X, Liang D, Li G, Peng X, Li X, Ke B, Zheng H, Liu Z, Ke C, Liao G, Liu L, Feng Q. Human Fc-Conjugated Receptor Binding Domain-Based Recombinant Subunit Vaccines with Short Linker Induce Potent Neutralizing Antibodies against Multiple SARS-CoV-2 Variants. Vaccines (Basel) 2022; 10:vaccines10091502. [PMID: 36146579 PMCID: PMC9505662 DOI: 10.3390/vaccines10091502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/02/2022] [Accepted: 09/05/2022] [Indexed: 11/24/2022] Open
Abstract
The coronavirus disease-19 (COVID-19) pandemic has been ongoing since December 2019, with more than 6.3 million deaths reported globally as of August 2022. Despite the success of several SARS-CoV-2 vaccines, the rise in variants, some of which are resistant to the effects of vaccination, highlights the need for a so-called pan-coronavirus (universal) vaccine. Here, we performed an immunogenicity comparison of prototype vaccines containing spike protein receptor-binding domain (RBD) residues 319–541, or spike protein regions S1, S2 and S fused to a histidine-tagged or human IgG1 Fc (hFC) fragment with either a longer (six residues) or shorter (three residues) linker. While all recombinant protein vaccines developed were effective in eliciting humoral immunity, the RBD-hFc vaccine was able to generate a potent neutralizing antibody response as well as a cellular immune response. We then compared the effects of recombinant protein length and linker size on immunogenicity in vivo. We found that a longer recombinant RBD protein (residues 319–583; RBD-Plus-hFc) containing a small alanine linker (AAA) was able to trigger long-lasting, high-titer neutralizing antibodies in mice. Finally, we evaluated cross-neutralization of wild-type and mutant RBD-Plus-hFc vaccines against wild-type, Alpha, Beta, Delta and Omicron SARS-CoV-2 variants. Significantly, at the same antigen dose, wild-type RBD-Plus-hFc immune sera induced broadly neutralizing antibodies against wild-type, Alpha, Beta, Delta and Omicron variants. Taken together, our findings provide valuable information for the continued development of recombinant protein-based SARS-CoV-2 vaccines and a basic foundation for booster vaccinations to avoid reinfection with SARS-CoV-2 variants.
Collapse
Affiliation(s)
- Liqing Chen
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People’s Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Xiaoxiao Qi
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People’s Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Dan Liang
- Guangdong Provincial Center for Disease Control and Prevention, Guangzhou 510006, China
| | - Guiqi Li
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People’s Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Xiaofang Peng
- Guangdong Provincial Center for Disease Control and Prevention, Guangzhou 510006, China
| | - Xiaohui Li
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People’s Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Bixia Ke
- Guangdong Provincial Center for Disease Control and Prevention, Guangzhou 510006, China
| | - Huanying Zheng
- Guangdong Provincial Center for Disease Control and Prevention, Guangzhou 510006, China
| | - Zhongqiu Liu
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People’s Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Changwen Ke
- Guangdong Provincial Center for Disease Control and Prevention, Guangzhou 510006, China
| | - Guochao Liao
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People’s Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
- Guangdong Hengda Biomedical Technology Co., Ltd., Guangzhou 510006, China
- Correspondence: (G.L.); (L.L.); (Q.F.)
| | - Liang Liu
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510006, China
- Guangdong Hengda Biomedical Technology Co., Ltd., Guangzhou 510006, China
- Guangzhou Laboratory, Guangzhou International Bio Island, Guangzhou 510006, China
- Correspondence: (G.L.); (L.L.); (Q.F.)
| | - Qian Feng
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People’s Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
- Correspondence: (G.L.); (L.L.); (Q.F.)
| |
Collapse
|