1
|
Newton-Tanzer E, Can SN, Demmelmair H, Horak J, Holdt L, Koletzko B, Grote V. Apparent Saturation of Branched-Chain Amino Acid Catabolism After High Dietary Milk Protein Intake in Healthy Adults. J Clin Endocrinol Metab 2025; 110:e1793-e1801. [PMID: 39302872 DOI: 10.1210/clinem/dgae599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Indexed: 09/22/2024]
Abstract
CONTEXT Milk protein contains high concentrations of branched-chain amino acids (BCAA) that play a critical role in anabolism and are implicated in the onset of obesity and chronic disease. Characterizing BCAA catabolism in the postprandial phase could elucidate the impact of protein intake on obesity risk established in the "early protein hypothesis." OBJECTIVE To examine the acute effects of protein content of young child formulas as test meals on BCAA catabolism, observing postprandial plasma concentrations of BCAA in relation to their degradation products. METHODS The TOMI Add-On Study is a randomized, double-blind crossover study in which 27 healthy adults consumed 2 isocaloric young child formulas with alternating higher (HP) and lower (LP) protein and fat content as test meals during separate interventions, while 9 blood samples were obtained over 5 hours. BCAA, branched-chain α-keto acids (BCKA), and acylcarnitines were analyzed using a fully targeted HPLC-ESI-MS/MS approach. RESULTS Mean concentrations of BCAA, BCKA, and acylcarnitines were significantly higher after HP than LP over the 5 postprandial hours, except for the BCKA α-ketoisovalerate (KIVA). The latter metabolite showed higher postprandial concentrations after LP. With increasing mean concentrations of BCAA, concentrations of corresponding BCKA, acylcarnitines, and urea increased until a breakpoint was reached, after which concentrations of degradation products decreased (for all metabolites except valine and KIVA and Carn C4:0-iso). CONCLUSION BCAA catabolism is markedly influenced by protein content of the test meal. We present novel evidence for the apparent saturation of the BCAA degradation pathway in the acute postprandial phase up to 5 hours after consumption.
Collapse
Affiliation(s)
- Emily Newton-Tanzer
- Division of Metabolic and Nutritional Medicine, Department Paediatrics, Dr. von Hauner Children's Hospital, LMU University Hospital, LMU Munich, and the German Center for Child and Adolescent Health, site Munich, 80337 Munich, Germany
| | - Sultan Nilay Can
- Division of Metabolic and Nutritional Medicine, Department Paediatrics, Dr. von Hauner Children's Hospital, LMU University Hospital, LMU Munich, and the German Center for Child and Adolescent Health, site Munich, 80337 Munich, Germany
| | - Hans Demmelmair
- Division of Metabolic and Nutritional Medicine, Department Paediatrics, Dr. von Hauner Children's Hospital, LMU University Hospital, LMU Munich, and the German Center for Child and Adolescent Health, site Munich, 80337 Munich, Germany
| | - Jeannie Horak
- Division of Metabolic and Nutritional Medicine, Department Paediatrics, Dr. von Hauner Children's Hospital, LMU University Hospital, LMU Munich, and the German Center for Child and Adolescent Health, site Munich, 80337 Munich, Germany
| | - Lesca Holdt
- Institute of Laboratory Medicine, LMU University Hospital, LMU Munich, 80337 Munich, Germany
| | - Berthold Koletzko
- Division of Metabolic and Nutritional Medicine, Department Paediatrics, Dr. von Hauner Children's Hospital, LMU University Hospital, LMU Munich, and the German Center for Child and Adolescent Health, site Munich, 80337 Munich, Germany
| | - Veit Grote
- Division of Metabolic and Nutritional Medicine, Department Paediatrics, Dr. von Hauner Children's Hospital, LMU University Hospital, LMU Munich, and the German Center for Child and Adolescent Health, site Munich, 80337 Munich, Germany
| |
Collapse
|
2
|
Zhou Y, Kou J, Li W, Wang Y, Su X, Zhang H. BCAA metabolism in cancer progression and therapy resistance: The balance between fuel and cell signaling. Front Pharmacol 2025; 16:1595176. [PMID: 40438606 PMCID: PMC12116492 DOI: 10.3389/fphar.2025.1595176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2025] [Accepted: 05/01/2025] [Indexed: 06/01/2025] Open
Abstract
Branched-chain amino acids (BCAAs), including leucine, isoleucine, and valine, play a crucial role in cellular metabolism and signaling. Recent studies have demonstrated that BCAA metabolic reprogramming is a key driver of tumor progression and treatment resistance in various cancers. BCAA metabolism supports cancer cell growth, survival, and proliferation by modulating pathways such as mTOR signaling and oxidative stress responses. By promoting immunosuppressive conditions and increasing the survival rate of cancer stem cells (CSCs), BCAAs contribute to immune evasion and resistance to therapies such as chemotherapy and immune checkpoint inhibitors. This article explores the different metabolic reprogramming patterns of BCAAs in various tumors and introduces BCAA-related metabolic targets for overcoming tumor resistance, offering new directions for precision cancer treatment, reducing resistance, and improving patient outcomes.
Collapse
Affiliation(s)
- Yi Zhou
- Departments of Thoracic Surgery, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Jiahui Kou
- School of Basic Medicine, Shanxi Medical University, Taiyuan, China
| | - Wenjin Li
- School of Basic Medicine, Shanxi Medical University, Taiyuan, China
| | - Yuyao Wang
- School of Basic Medicine, Shanxi Medical University, Taiyuan, China
| | - Xingxing Su
- Shunyi Maternal and Children’s Hospital of Beijing Children’s Hospital, Beijing, China
| | - Hongguang Zhang
- Departments of Thoracic Surgery, First Hospital of Shanxi Medical University, Taiyuan, China
| |
Collapse
|
3
|
Zhao Y, Wu H, Zhao X, Jing M, Chairez-Jimenez C, Guo T, Lv T, Feng Z. Nutrient consumption patterns of Streptococcus thermophilus F7 under acid stress and their application in enhancing biomass production. J Dairy Sci 2025:S0022-0302(25)00279-6. [PMID: 40306427 DOI: 10.3168/jds.2024-26202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Accepted: 03/27/2025] [Indexed: 05/02/2025]
Abstract
The nutrient consumption patterns of Streptococcus thermophilus F7 under acid stress were investigated in this study. The strain was incubated at 42°C for 16 h in a chemically defined medium with different pH values (6.5, 5.8, and 5.5), and consumption of a variety of nutrients including amino acids, vitamins, purine/pyrimidine bases, and ions was observed. The results showed that Leu was the most consumed amino acid at all pH levels, and the consumption values were 2.5, 3.4, and 4.5 μmol/cfu × 10-5 at pH 6.5, 5.8, and 5.5, respectively. Consumption of biotin was the highest among vitamins, ranging from 48.3 nmol/cfu × 10-5 at pH 6.5 to 126.7 nmol/cfu × 10-5 at pH 5.5. At pH 6.5, adenine was the most consumed purine (78.3 nmol/cfu × 10-5), whereas uracil became the most consumed base under more acid stress, with values of 122.5 and 122.2 nmol/cfu × 10-5 at pH 5.8 and 5.5, respectively. Regarding ion consumption, Na+ was predominant at pH 6.5 (35.4 μmol/cfu × 10-5) and 5.8 (41.0 μmol/cfu × 10-5), whereas K+ was the most consumed ion when pH dropping to 5.5 (61.9 μmol/cfu × 10-5). Certain highly demanded nutrients were individually added to the medium under the same incubation conditions, and the results revealed that at pH 5.8, the optical density at 600 nm of S. thermophilus F7 supplemented with 1.5 times or 2 times of isoleucine increased by 1.13 folds compared with the initial medium. Similarly, at pH 5.5, supplementation with 3 times of proline or adenine resulted in a 1.15-fold or 1.12-fold increase in optical density at 600 nm, respectively. This study showed significant differences in the consumption of various nutrients when culturing S. thermophilus F7, which had the highest requirement for amino acids, followed by ions, vitamins, and pyrimidine bases. Furthermore, the individual addition of amino acids and pyrimidine bases showed improvement in biomass production of the strain. The findings of the present study provide a basis on the nutrient requirements of S. thermophilus F7 and contribute to the design of media for high-cell-density cultivation.
Collapse
Affiliation(s)
- Yu Zhao
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, 600 Changjiang Road, Harbin, 150030, Heilongjiang, China; College of Food and Biological Engineering, Qiqihar University, 42 Wenhua Road, Qiqihar, 160006, Heilongjiang, China
| | - Hao Wu
- College of Food and Biological Engineering, Qiqihar University, 42 Wenhua Road, Qiqihar, 160006, Heilongjiang, China
| | - Xingming Zhao
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, 600 Changjiang Road, Harbin, 150030, Heilongjiang, China
| | - Mingyan Jing
- Department of Food and Human Nutritional Sciences, Faculty of Agricultural and Food Science, University of Manitoba, R3T 2N2, Winnipeg, MB, Canada
| | - Cristina Chairez-Jimenez
- Department of Food and Human Nutritional Sciences, Faculty of Agricultural and Food Science, University of Manitoba, R3T 2N2, Winnipeg, MB, Canada; Richardson Centre for Functional Foods and Nutraceuticals, 196, Innovation Drive, Winnipeg, Manitoba, R3T 6C5, Canada
| | - Tong Guo
- College of Food and Biological Engineering, Qiqihar University, 42 Wenhua Road, Qiqihar, 160006, Heilongjiang, China
| | - Tingpeng Lv
- College of Food and Biological Engineering, Qiqihar University, 42 Wenhua Road, Qiqihar, 160006, Heilongjiang, China
| | - Zhen Feng
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, 600 Changjiang Road, Harbin, 150030, Heilongjiang, China; Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wanning, 571533, Hainan, China.
| |
Collapse
|
4
|
Goo D, Ko H, Choi J, Lee J, White DL, Sharma MK, Kim WK. Valine and isoleucine deficiency in necrotic enteritis challenge impact growth performance, intestinal health, and muscle growth in broilers. Poult Sci 2025; 104:105143. [PMID: 40222349 PMCID: PMC12018184 DOI: 10.1016/j.psj.2025.105143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 03/29/2025] [Accepted: 04/06/2025] [Indexed: 04/15/2025] Open
Abstract
Necrotic enteritis (NE), an enteric disease caused by Clostridium perfringens, and antagonistic effects due to dietary branched-chain amino acid (BCAA) imbalance are key factors that negatively affect chicken growth. The current study was conducted to investigate the effects of valine and isoleucine deficiency in NE challenged broilers. A total of 336 seven-d-old male Cobb 500 were allotted to four treatments with six replicates. The four treatments were as follows: (1) non-challenged control (NC; leucine:lysine = 1.31, valine:lysine = 0.73, and isoleucine:lysine = 0.63), (2) NE-challenged group (NE), (3) NE-challenged with 85 % valine deficiency group (NE-VAL; valine:lysine = 0.62), and (4) NE-challenged with 85 % isoleucine deficiency group (NE-ILE; isoleucine:lysine = 0.54). E. maxima and C. perfringens were administered on d 14 and 18, respectively, and the experiment lasted until d 21. The NE-VAL group had the lowest growth performance measurements compared to the other groups (P < 0.001). All NE-challenged groups had significantly reduced overall growth performance measurements compared to the NC group (P < 0.001). The NE-ILE group showed no difference in any of the measurements compared to the NE group. On d 21, the NE group had significantly increased intestinal permeability, jejunal lesion scores, C. perfringens colony counts, and jejunal chemokine and cytokine gene expression levels, along with decreased intestinal morphology compared to the NC group (P < 0.05). The NE-VAL group had significantly decreased breast muscle yield, reduced lean and total tissue weight, and increased expression levels of mechanistic target of rapamycin pathway and BCAA catabolism-related genes compared to the NE group (P < 0.05). This may explain why the NE-VAL group had the lowest growth performance, as the two negative effects of NE infection and valine deficiency are separated. In conclusion, the negative effects of NE challenge and valine deficiency were independent; valine deficiency showed a similar response to that exhibited by high leucine levels, despite reduced feed intake caused by NE challenge.
Collapse
Affiliation(s)
- Doyun Goo
- Department of Poultry Science, University of Georgia, 120 D.W. Brooks Drive, Athens, GA 30602, United States
| | - Hanseo Ko
- Department of Poultry Science, University of Georgia, 120 D.W. Brooks Drive, Athens, GA 30602, United States
| | - Janghan Choi
- Department of Poultry Science, University of Georgia, 120 D.W. Brooks Drive, Athens, GA 30602, United States
| | - Jihwan Lee
- Department of Poultry Science, University of Georgia, 120 D.W. Brooks Drive, Athens, GA 30602, United States
| | - Dima L White
- Department of Poultry Science, University of Georgia, 120 D.W. Brooks Drive, Athens, GA 30602, United States
| | - Milan K Sharma
- Department of Poultry Science, University of Georgia, 120 D.W. Brooks Drive, Athens, GA 30602, United States
| | - Woo K Kim
- Department of Poultry Science, University of Georgia, 120 D.W. Brooks Drive, Athens, GA 30602, United States.
| |
Collapse
|
5
|
Wong A, Sun Q, Latif II, Karwi QG. Macrophage energy metabolism in cardiometabolic disease. Mol Cell Biochem 2025; 480:1763-1783. [PMID: 39198360 PMCID: PMC11842501 DOI: 10.1007/s11010-024-05099-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 08/19/2024] [Indexed: 09/01/2024]
Abstract
In a rapidly expanding body of literature, the major role of energy metabolism in determining the response and polarization status of macrophages has been examined, and it is currently a very active area of research. The metabolic flux through different metabolic pathways in the macrophage is interconnected and complex and could influence the polarization of macrophages. Earlier studies suggested glucose flux through cytosolic glycolysis is a prerequisite to trigger the pro-inflammatory phenotypes of macrophages while proposing that fatty acid oxidation is essential to support anti-inflammatory responses by macrophages. However, recent studies have shown that this understanding is oversimplified and that the metabolic control of macrophage polarization is highly complex and not fully defined yet. In this review, we systematically reviewed and summarized the literature regarding the role of energy metabolism in controlling macrophage activity and how that might be altered in cardiometabolic diseases, namely heart failure, obesity, and diabetes. We critically appraised the experimental studies and methodologies in the published studies. We also highlighted the challenging concepts in macrophage metabolism and identified several research questions yet to be addressed in future investigations.
Collapse
Affiliation(s)
- Angela Wong
- Division of BioMedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, A1B 3V6, Canada
- Cardiovascular Research Centre, University of Alberta, Edmonton, Alberta, Canada
| | - Qiuyu Sun
- Division of BioMedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, A1B 3V6, Canada
- Cardiovascular Research Centre, University of Alberta, Edmonton, Alberta, Canada
| | - Ismail I Latif
- Department of Microbiology, College of Medicine, University of Diyala, Baqubaa, Diyala, Iraq
| | - Qutuba G Karwi
- Division of BioMedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, A1B 3V6, Canada.
| |
Collapse
|
6
|
Ji W, Dang D, Zhou G, Tao L, Sun T, Li D, Cheng C, Feng H, Long J, Chen S, Yang H, Duan G, Jin Y. Metabolomic analysis reveals an important role of sphingosine 1-phosphate in the development of HFMD due to EV-A71 infection. Antimicrob Agents Chemother 2025; 69:e0127224. [PMID: 39692504 PMCID: PMC11823611 DOI: 10.1128/aac.01272-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 12/03/2024] [Indexed: 12/19/2024] Open
Abstract
Hand, foot, and mouth disease (HFMD) is a serious pediatric infectious disease that causes immeasurable physical and mental health burdens. Currently, there is a lack of information on the mechanisms of HFMD severity and early diagnosis. We performed metabolomic profiling of sera from 84 Enterovirus A71 (EV-A71) infections and 45 control individuals. Targeted metabolomics assays were employed to further validate some of the differential metabolic molecules. We identified significant molecular changes in the sera of HFMD patients compared to healthy controls (HCs). A total of 54, 60, 35, and 62 differential metabolites were screened between mild cases and HCs, severe cases and HCs, severe cases and mild cases, and among the three groups, respectively. These differential metabolites implicated dysregulation of the tricarboxylic acid cycle, alanine, aspartate, and glutamate metabolism, and valine, leucine, and isoleucine biosynthesis. The diagnostic panel based on some overlapped differential metabolites could effectively discriminate severe cases from mild cases with an AUC of 0.912 (95% CI: 0.85-0.97) using the logistic regression model. Next, we found the elevation of serum sphingosine 1-phosphate (S1P) level in EV-A71 infection mice, which was similar to clinical observation. Importantly, after blocking the release of S1P by MK571, the clinical symptoms and survival of mice were significantly improved, involving the reduction of leukocyte infiltration in infected brain tissues. Collectively, our data provided a landscape view of metabolic alterations in EV-A71 infected children and revealed regulating S1P metabolism was an exploitable therapeutic target against EV-A71 infection.
Collapse
Affiliation(s)
- Wangquan Ji
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Dejian Dang
- Department of Infection Control, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Guangyuan Zhou
- School of Public Health, Xinxiang Medical University, Xinxiang, Henan, China
| | - Ling Tao
- School of Public Health, Xinxiang Medical University, Xinxiang, Henan, China
| | - Tiantian Sun
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Dong Li
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Cheng Cheng
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Huifen Feng
- Department of Infection Control, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Jinzhao Long
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Shuaiyin Chen
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Haiyan Yang
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Guangcai Duan
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Yuefei Jin
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
- Pingyuan Laboratory, Xinxiang, China
| |
Collapse
|
7
|
Ruiz-Pozo VA, Guevara-Ramírez P, Paz-Cruz E, Tamayo-Trujillo R, Cadena-Ullauri S, Frias-Toral E, Simancas-Racines D, Altuna-Roshkova Y, Reytor-González C, Zambrano AK. The role of the Mediterranean diet in prediabetes management and prevention: a review of molecular mechanisms and clinical outcomes. FOOD AGR IMMUNOL 2024; 35. [DOI: 10.1080/09540105.2024.2398042] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 08/23/2024] [Indexed: 01/04/2025] Open
Affiliation(s)
- Viviana A. Ruiz-Pozo
- Centro de Investigación Genética y Genómica, Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito, Ecuador
| | - Patricia Guevara-Ramírez
- Centro de Investigación Genética y Genómica, Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito, Ecuador
| | - Elius Paz-Cruz
- Centro de Investigación Genética y Genómica, Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito, Ecuador
| | - Rafael Tamayo-Trujillo
- Centro de Investigación Genética y Genómica, Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito, Ecuador
| | - Santiago Cadena-Ullauri
- Centro de Investigación Genética y Genómica, Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito, Ecuador
| | | | - Daniel Simancas-Racines
- Centro de Investigación de Salud Pública y Epidemiología Clínica (CISPEC), Universidad UTE, Quito, Ecuador
| | - Yekaterina Altuna-Roshkova
- Centro de Investigación de Salud Pública y Epidemiología Clínica (CISPEC), Universidad UTE, Quito, Ecuador
| | - Claudia Reytor-González
- Centro de Investigación de Salud Pública y Epidemiología Clínica (CISPEC), Universidad UTE, Quito, Ecuador
| | - Ana Karina Zambrano
- Centro de Investigación Genética y Genómica, Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito, Ecuador
| |
Collapse
|
8
|
Bo T, Fujii J. Primary Roles of Branched Chain Amino Acids (BCAAs) and Their Metabolism in Physiology and Metabolic Disorders. Molecules 2024; 30:56. [PMID: 39795113 PMCID: PMC11721030 DOI: 10.3390/molecules30010056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 12/25/2024] [Accepted: 12/25/2024] [Indexed: 01/13/2025] Open
Abstract
Leucine, isoleucine, and valine are collectively known as branched chain amino acids (BCAAs) and are often discussed in the same physiological and pathological situations. The two consecutive initial reactions of BCAA catabolism are catalyzed by the common enzymes referred to as branched chain aminotransferase (BCAT) and branched chain α-keto acid dehydrogenase (BCKDH). BCAT transfers the amino group of BCAAs to 2-ketoglutarate, which results in corresponding branched chain 2-keto acids (BCKAs) and glutamate. BCKDH performs an oxidative decarboxylation of BCKAs, which produces their coenzyme A-conjugates and NADH. BCAT2 in skeletal muscle dominantly catalyzes the transamination of BCAAs. Low BCAT activity in the liver reduces the metabolization of BCAAs, but the abundant presence of BCKDH promotes the metabolism of muscle-derived BCKAs, which leads to the production of glucose and ketone bodies. While mutations in the genes responsible for BCAA catabolism are involved in rare inherited disorders, an aberrant regulation of their enzymatic activities is associated with major metabolic disorders such as diabetes, cardiovascular disease, and cancer. Therefore, an understanding of the regulatory process of metabolic enzymes, as well as the functions of the BCAAs and their metabolites, make a significant contribution to our health.
Collapse
Affiliation(s)
- Tomoki Bo
- Laboratory Animal Center, Institute for Promotion of Medical Science Research, Faculty of Medicine, Yamagata University, Yamagata 990-9585, Japan
| | - Junichi Fujii
- Department of Biochemistry and Molecular Biology, Graduate School of Medical Science, Yamagata University, Yamagata 990-9585, Japan
| |
Collapse
|
9
|
Li C, Yang Q, Zhang L. Identification of putative allosteric inhibitors of BCKDK via virtual screening and biological evaluation. J Enzyme Inhib Med Chem 2024; 39:2290458. [PMID: 38059302 PMCID: PMC11721764 DOI: 10.1080/14756366.2023.2290458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 11/16/2023] [Accepted: 11/21/2023] [Indexed: 12/08/2023] Open
Abstract
Abnormal accumulation of branched-chain amino acids (BCAAs) can lead to metabolic diseases and cancers. Branched-chain α-keto acid dehydrogenase kinase (BCKDK) is a key negative regulator of BCAA catabolism, and targeting BCKDK provides a promising therapeutic approach for diseases caused by BCAA accumulation. Here, we screened PPHN and POAB as novel putative allosteric inhibitors by integrating allosteric binding site prediction, large-scale ligand database virtual screening, and bioactivity evaluation assays. Both of them showed a high binding affinity to BCKDK, with Kd values of 3.9 μM and 1.86 μM, respectively. In vivo experiments, the inhibitors demonstrated superior kinase inhibitory activity and notable antiproliferative and proapoptotic effects on diverse cancer cells. Finally, bulk RNA-seq analysis revealed that PPHN and POAB suppressed cell growth through a range of signalling pathways. Taken together, our findings highlight two novel BCKDK inhibitors as potent therapeutic candidates for metabolic diseases and cancers associated with BCAA dysfunctional metabolism.
Collapse
Affiliation(s)
- Chunqiong Li
- Genomics Center, Chinese Institute for Brain Research, Beijing, China
| | - Quanjun Yang
- Department of Pharmacy, Shanghai Sixth People’s Hospital Affiliated Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Li Zhang
- Genomics Center, Chinese Institute for Brain Research, Beijing, China
| |
Collapse
|
10
|
Goo D, Lee J, Paneru D, Sharma MK, Rafieian-Naeini HR, Mahdavi FS, Gyawali I, Gudidoddi SR, Han G, Kim WK. Effects of branched-chain amino acid imbalance and dietary valine and isoleucine supplementation in modified corn-soybean meal diets with corn distillers dried grains with solubles on growth performance, carcass quality, intestinal health, and cecal microbiome in Cobb 500. Poult Sci 2024; 103:104483. [PMID: 39510006 PMCID: PMC11577229 DOI: 10.1016/j.psj.2024.104483] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 10/29/2024] [Accepted: 10/30/2024] [Indexed: 11/15/2024] Open
Abstract
One important feature of corn distillers dried grains with solubles (DDGS) is its high leucine:lysine ratio, which can inhibit chicken growth by causing branched-chain amino acid (BCAA) antagonism. The current study was conducted to investigate the effects of BCAA imbalance of inclusion of DDGS and whether additional dietary valine and isoleucine could alleviate the negative effects in broilers. A total of 640 0-d-old male Cobb 500 broilers were allocated into 4 treatments with 8 replicates and reared until d 42. The four different dietary groups were as follows: 1) control (CON) group (corn-soybean meal-based diet); 2) 30% DDGS (30D) group (replacing soybean meal with 30% DDGS); 3) 30D + additional valine and isoleucine (30DB) group; and 4) the group of 30DB + additional valine and isoleucine to provide the same leucine:valine and leucine:isoleucine ratios as the CON group (30DBB). The analyzed leucine:lysine ratios of the CON group were 1.36/1.41/1.46 (starter/grower/finisher phase), whereas the average leucine:lysine ratios of the 30% DDGS groups were 1.61/1.70/1.78 (starter/grower/finisher phase). The 30% DDGS groups (30D, 30DB, and 30DBB) negatively affected body weight (BW) from d 7 to 42 and BW gain (BWG), feed intake, carcass weight, breast muscle weight, and jejunal and ileal villus height:crypt depth during the overall period (d 0 to 42) (P < 0.05). Furthermore, the 30% DDGS groups significantly altered expression levels of jejunal tight junction proteins, breast muscle mechanistic target of rapamycin (mTOR) pathway-related genes, BCAA catabolism genes, and AA transporters compared to the CON (P < 0.01). The 30% DDGS groups showed differences in beta-diversity indices compared to the CON group (P < 0.05). The 30DBB group showing the lowest d 21 and 42 BW and overall BWG had the largest differences compared to the CON group in most measurements. In conclusion, excessive replacement of soybean meal with DDGS can significantly increase leucine levels, which may negatively affect chicken growth. Additionally, inappropriate ratios of valine and isoleucine can further decrease growth performance.
Collapse
Affiliation(s)
- Doyun Goo
- Department of Poultry Science, University of Georgia, Athens, GA, United States
| | - Jihwan Lee
- Department of Poultry Science, University of Georgia, Athens, GA, United States
| | - Deependra Paneru
- Department of Poultry Science, University of Georgia, Athens, GA, United States
| | - Milan K Sharma
- Department of Poultry Science, University of Georgia, Athens, GA, United States
| | | | - Fatemeh S Mahdavi
- Department of Poultry Science, University of Georgia, Athens, GA, United States
| | - Ishwari Gyawali
- Department of Poultry Science, University of Georgia, Athens, GA, United States
| | | | - Gippeum Han
- Department of Poultry Science, University of Georgia, Athens, GA, United States
| | - Woo Kyun Kim
- Department of Poultry Science, University of Georgia, Athens, GA, United States.
| |
Collapse
|
11
|
Singh D, Menghini P, Rodriguez-Palacios A, Martino LD, Cominelli F, Basson AR. Leucine-Enriched Diet Reduces Fecal MPO but Does Not Protect Against DSS Colitis in a Mouse Model of Crohn's Disease-like Ileitis. Int J Mol Sci 2024; 25:11748. [PMID: 39519299 PMCID: PMC11545852 DOI: 10.3390/ijms252111748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 10/24/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024] Open
Abstract
Understanding the complex link between inflammation, gut health, and dietary amino acids is becoming increasingly important in the pathophysiology of inflammatory bowel disease (IBD). This study tested the hypothesis that a leucine-rich diet could attenuate inflammation and improve gut health in a mouse model of IBD. Specifically, we investigated the effects of a leucine-rich diet on dextran sulfate sodium (DSS)-induced colitis in germ-free (GF) SAMP1/YitFC (SAMP) mice colonized with human gut microbiota (hGF-SAMP). hGF-SAMP mice were fed one of four different diets: standard mouse diet (CHOW), American diet (AD), leucine-rich AD (AD + AA), or leucine-rich CHOW diet (CH + AA). Body weight, myeloperoxidase (MPO) activity, gut permeability, colonoscopy scores, and histological analysis were measured. Mice on a leucine-rich CHOW diet showed a decrease in fecal MPO prior to DSS treatment as compared to those on a regular diet (p > 0.05); however, after week five, prior to DSS, this effect had diminished. Following DSS treatment, there was no significant difference in gut permeability, fecal MPO activity, or body weight changes between the leucine-supplemented and control groups. These findings suggest that while a leucine-rich diet may transiently affect fecal MPO levels in hGF-SAMP mice, it does not confer protection against DSS-induced colitis symptoms or mitigate inflammation in the long term.
Collapse
Affiliation(s)
- Drishtant Singh
- Department of Nutrition, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA;
- Division of Gastroenterology & Liver Diseases, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA; (P.M.); (A.R.-P.); (F.C.)
| | - Paola Menghini
- Division of Gastroenterology & Liver Diseases, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA; (P.M.); (A.R.-P.); (F.C.)
- Digestive Health Research Institute, University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA
| | - Alexander Rodriguez-Palacios
- Division of Gastroenterology & Liver Diseases, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA; (P.M.); (A.R.-P.); (F.C.)
- Digestive Health Research Institute, University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA
- Mouse Models Core, Silvio O’Conte Cleveland Digestive Diseases Research Core Center, Cleveland, OH 44106, USA
- Germ-Free and Gut Microbiome Core, Digestive Health Research Institute, Case Western Reserve University, Cleveland, OH 44106, USA
- Department of Molecular Biology and Microbiology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Luca Di Martino
- Case Digestive Health Research Institute, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA;
- Department of Medicine, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Fabio Cominelli
- Division of Gastroenterology & Liver Diseases, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA; (P.M.); (A.R.-P.); (F.C.)
- Digestive Health Research Institute, University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA
- Mouse Models Core, Silvio O’Conte Cleveland Digestive Diseases Research Core Center, Cleveland, OH 44106, USA
- Germ-Free and Gut Microbiome Core, Digestive Health Research Institute, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Abigail Raffner Basson
- Department of Nutrition, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA;
- Division of Gastroenterology & Liver Diseases, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA; (P.M.); (A.R.-P.); (F.C.)
- Digestive Health Research Institute, University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA
| |
Collapse
|
12
|
Reifenberg P, Zimmer A. Branched-chain amino acids: physico-chemical properties, industrial synthesis and role in signaling, metabolism and energy production. Amino Acids 2024; 56:51. [PMID: 39198298 PMCID: PMC11358235 DOI: 10.1007/s00726-024-03417-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 08/20/2024] [Indexed: 09/01/2024]
Abstract
Branched-chain amino acids (BCAAs)-leucine (Leu), isoleucine (Ile), and valine (Val)-are essential nutrients with significant roles in protein synthesis, metabolic regulation, and energy production. This review paper offers a detailed examination of the physico-chemical properties of BCAAs, their industrial synthesis, and their critical functions in various biological processes. The unique isomerism of BCAAs is presented, focusing on analytical challenges in their separation and quantification as well as their solubility characteristics, which are crucial for formulation and purification applications. The industrial synthesis of BCAAs, particularly using bacterial strains like Corynebacterium glutamicum, is explored, alongside methods such as genetic engineering aimed at enhancing production, detailing the enzymatic processes and specific precursors. The dietary uptake, distribution, and catabolism of BCAAs are reviewed as fundamental components of their physiological functions. Ultimately, their multifaceted impact on signaling pathways, immune function, and disease progression is discussed, providing insights into their profound influence on muscle protein synthesis and metabolic health. This comprehensive analysis serves as a resource for understanding both the basic and complex roles of BCAAs in biological systems and their industrial application.
Collapse
Affiliation(s)
- Philipp Reifenberg
- Merck Life Science KGaA, Upstream R&D, Frankfurter Strasse 250, 64293, Darmstadt, Germany
- Institute for Organic Chemistry and Biochemistry, Technische Universität Darmstadt, Alarich‑Weiss‑Strasse 4, 64287, Darmstadt, Germany
| | - Aline Zimmer
- Merck Life Science KGaA, Upstream R&D, Frankfurter Strasse 250, 64293, Darmstadt, Germany.
| |
Collapse
|
13
|
Gao Q, Bi D, Li B, Ni M, Pang D, Li X, Zhang X, Xu Y, Zhao Q, Zhu C. The Association Between Branched-Chain Amino Acid Concentrations and the Risk of Autism Spectrum Disorder in Preschool-Aged Children. Mol Neurobiol 2024; 61:6031-6044. [PMID: 38265552 PMCID: PMC11249470 DOI: 10.1007/s12035-024-03965-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 01/15/2024] [Indexed: 01/25/2024]
Abstract
Several studies have linked branched-chain amino acid (BCAA) metabolism disorders with autism spectrum disorder (ASD), but the results have been inconsistent. The purpose of this study was to explore the association between BCAA concentrations and the risk of ASD. A total of 313 participants were recruited from two tertiary referral hospitals from May 2018 to July 2021. Concentrations of BCAAs in dried blood spots were analyzed using liquid chromatography-tandem mass spectrometry-based analysis. Multivariate analyses and restricted cubic spline models were used to identify the association between BCAAs and the risk of ASD, and a nomogram was developed by using multivariate logistic regression and the risk was determined by receiver operating characteristic curve analysis and calibration curve analysis. Concentrations of total BCAA, valine, and leucine/isoleucine were higher in the ASD group, and all of them were positively and non-linearly associated with the risk of ASD even after adjusting for potential confounding factors such as age, gender, body mass index, and concentrations of BCAAs (P < 0.05). The nomogram integrating total BCAA and valine showed a good discriminant AUC value of 0.756 (95% CI 0.676-0.835). The model could yield net benefits across a reasonable range of risk thresholds. In the stratified analysis, the diagnostic ability of the model was more pronounced in children older than 3 years. We provide evidence that increased levels of BCAAs are associated with the risk of ASD, and the nomogram model of BCAAs presented here can serve as a marker for the early diagnosis of ASD.
Collapse
Affiliation(s)
- Qi Gao
- Key Clinical Laboratory of Henan Province, Department of Clinical Laboratory, First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Dan Bi
- Department of Pediatrics, Qilu Hospital of Shandong University, No. 107, Wen Hua Xi Road, Jinan, 250012, Shandong, China
| | - Bingbing Li
- Henan Key Laboratory of Child Brain Injury and Henan Pediatric Clinical Research Center, Third Affiliated Hospital and Institute of Neuroscience of Zhengzhou University, Zhengzhou, 450052, China
| | - Min Ni
- Department of Henan Newborn Screening Center, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, 450054, China
| | - Dizhou Pang
- Center for Child Behavioral Development, Third Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Xian Li
- Henan Key Laboratory of Children's Genetics and Metabolic Diseases, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou, China
| | - Xiaoli Zhang
- Henan Key Laboratory of Child Brain Injury and Henan Pediatric Clinical Research Center, Third Affiliated Hospital and Institute of Neuroscience of Zhengzhou University, Zhengzhou, 450052, China
| | - Yiran Xu
- Henan Key Laboratory of Child Brain Injury and Henan Pediatric Clinical Research Center, Third Affiliated Hospital and Institute of Neuroscience of Zhengzhou University, Zhengzhou, 450052, China
| | - Qiang Zhao
- Key Clinical Laboratory of Henan Province, Department of Clinical Laboratory, First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| | - Changlian Zhu
- Henan Key Laboratory of Child Brain Injury and Henan Pediatric Clinical Research Center, Third Affiliated Hospital and Institute of Neuroscience of Zhengzhou University, Zhengzhou, 450052, China.
- Center for Brain Repair and Rehabilitation, Institute of Neuroscience and Physiology, University of Gothenburg, 40530, Gothenburg, Sweden.
| |
Collapse
|
14
|
Lin CH, Chin Y, Zhou M, Sobol RW, Hung MC, Tan M. Protein lipoylation: mitochondria, cuproptosis, and beyond. Trends Biochem Sci 2024; 49:729-744. [PMID: 38714376 DOI: 10.1016/j.tibs.2024.04.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 04/09/2024] [Accepted: 04/10/2024] [Indexed: 05/09/2024]
Abstract
Protein lipoylation, a crucial post-translational modification (PTM), plays a pivotal role in mitochondrial function and emerges as a key player in cell death through cuproptosis. This novel copper-driven cell death pathway is activated by excessive copper ions binding to lipoylated mitochondrial proteins, disrupting energy production and causing lethal protein aggregation and cell death. The intricate relationship among protein lipoylation, cellular energy metabolism, and cuproptosis offers a promising avenue for regulating essential cellular functions. This review focuses on the mechanisms of lipoylation and its significant impact on cell metabolism and cuproptosis, emphasizing the key genes involved and their implications for human diseases. It offers valuable insights into targeting dysregulated cellular metabolism for therapeutic purposes.
Collapse
Affiliation(s)
- Cheng-Han Lin
- Institute of Biochemistry and Molecular Biology, China Medical University, Taichung, Taiwan; Cancer Biology and Precision Therapeutics Center, China Medical University, Taichung, Taiwan; Graduate Institute of Biomedical Sciences and Research Center for Cancer Biology, China Medical University, Taichung, Taiwan
| | - Yeh Chin
- Institute of Biochemistry and Molecular Biology, China Medical University, Taichung, Taiwan; Cancer Biology and Precision Therapeutics Center, China Medical University, Taichung, Taiwan; Graduate Institute of Biomedical Sciences and Research Center for Cancer Biology, China Medical University, Taichung, Taiwan
| | - Ming Zhou
- Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha, China
| | - Robert W Sobol
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School and Legorreta Cancer Center, Brown University, Providence, RI 02912, USA
| | - Mien-Chie Hung
- Institute of Biochemistry and Molecular Biology, China Medical University, Taichung, Taiwan; Cancer Biology and Precision Therapeutics Center, China Medical University, Taichung, Taiwan; Graduate Institute of Biomedical Sciences and Research Center for Cancer Biology, China Medical University, Taichung, Taiwan.
| | - Ming Tan
- Institute of Biochemistry and Molecular Biology, China Medical University, Taichung, Taiwan; Cancer Biology and Precision Therapeutics Center, China Medical University, Taichung, Taiwan; Graduate Institute of Biomedical Sciences and Research Center for Cancer Biology, China Medical University, Taichung, Taiwan.
| |
Collapse
|
15
|
Yang J, Chen L, Zhao SS, Du C, Fan YZ, Liu HX, Li Y, Li YZ. FGF21-dependent alleviation of cholestasis-induced liver fibrosis by sodium butyrate. Front Pharmacol 2024; 15:1422770. [PMID: 39040469 PMCID: PMC11260614 DOI: 10.3389/fphar.2024.1422770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 05/28/2024] [Indexed: 07/24/2024] Open
Abstract
Background The beneficial effects of fibroblast growth factor 21 (FGF21) and sodium butyrate (NaB) on protection against cholestasis-induced liver fibrosis are not well known. This study aimed to explore the effects of FGF21 and NaB on bile duct ligation (BDL)-induced liver fibrosis. Methods Wild-type (WT) and FGF21 knockout (KO) mice received BDL surgery for 14 days. Liver fibrosis was assessed by Masson's staining for fibrosis marker expressions at the mRNA or protein levels. Adenovirus-mediated FGF21 overexpression in the WT mice was assessed against BDL damage. BDL surgeries were performed in WT and FGF21 KO mice that were administered either phosphate-buffered saline or NaB. The effects of NaB on the energy metabolism and gut microbiota were assessed using stable metabolism detection and 16S rRNA gene sequencing. Results BDL-induced liver fibrosis in the WT mice was accompanied by high induction of FGF21. Compared to the WT mice, the FGF21 KO mice showed more severe liver fibrosis induced by BDL. FGF21 overexpression protected against BDL-induced liver fibrosis, as proved by the decreasing α-SMA at both the mRNA and protein levels. NaB administration enhanced the glucose and energy metabolisms as well as remodeled the gut microbiota. NaB alleviated BDL-induced liver fibrosis in the WT mice but aggravated the same in FGF21 KO mice. Conclusion FGF21 plays a key role in alleviating cholestasis-induced liver damage and fibrosis. NaB has beneficial effects on cholestasis in an FGF21-dependent manner. NaB administration can thus be a novel nutritional therapy for treating cholestasis via boosting FGF21 signaling and regulating the gut microbiota.
Collapse
Affiliation(s)
- Jing Yang
- Institute of Life Sciences, China Medical University, Shenyang, China
| | - Lei Chen
- Institute of Life Sciences, China Medical University, Shenyang, China
| | - Shan-Shan Zhao
- Institute of Life Sciences, China Medical University, Shenyang, China
| | - Chuang Du
- Institute of Life Sciences, China Medical University, Shenyang, China
| | - Yi-Zhe Fan
- Institute of Life Sciences, China Medical University, Shenyang, China
| | - Hui-Xin Liu
- Institute of Life Sciences, China Medical University, Shenyang, China
| | - Yongchun Li
- The Sixth Affiliated Hospital of South China University of Technology, Foshan, Guangdong, China
| | - Yong-Zhi Li
- Department of Urology, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
- Liaoning Key Laboratory of Bladder Disease Gene Research, Institute of Health Science, China Medical University, Shenyang, China
| |
Collapse
|
16
|
Rafi’i MR, Ja’afar MH, Abd Wahil MS, Md Hanif SA. Urine manganese, cadmium, lead, arsenic, and selenium among autism spectrum disorder children in Kuala Lumpur. PeerJ 2024; 12:e17660. [PMID: 38974411 PMCID: PMC11227810 DOI: 10.7717/peerj.17660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 06/08/2024] [Indexed: 07/09/2024] Open
Abstract
Background The development of autism spectrum disorder (ASD) may stem from exposure to environmental pollutants such as heavy metals. The primary objective of this study is to determine the role of heavy metals of concern such as manganese (Mn), cadmium (Cd), lead (Pb), arsenic (As), and essential trace element selenium (Se) among ASD children in Kuala Lumpur, Malaysia. Method A total of 155 preschoolers in Kuala Lumpur between the ages 3 to 6 participated in an unmatched case-control study, comprising ASD children (n = 81) recruited from an early intervention program for autism, and 74 children without autism who were recruited from public preschools. Urine samples were collected at home, delivered to the study site, and transported to the environmental lab within 24 hours. Inductively coupled plasma mass spectrometry (ICP-MS) was applied to measure the concentration of heavy metals in the samples. Data were analysed using bivariate statistical tests (Chi-square and T-test) and logistic regression models. Result This study demonstrated that Cd, Pb, and As urine levels were significantly greater in children without autism relative to those affected with ASD (p < 0.05). No significant difference was in the levels of Se (p = 0.659) and Mn (p = 0.875) between children with ASD and the control group. The majority of children in both groups have urine As, Pb, and Cd values lower than 15.1 µg/dL, 1.0 µg/dL, and 1.0 µg/dL, respectively which are the minimal risk values for noncarcinogenic detrimental human health effect due to the heavy metal's exposure . Factors associated with having an ASD child included being a firstborn, male, and higher parental education levels (adjusted odds ratios (aOR) > 1, p < 0.05). Conclusion Preschoolers in this study demonstrated low levels of heavy metals in their urine samples, which was relatively lower in ASD children compared to the healthy matched controls. These findings may arise from the diminished capacity to excrete heavy metals, especially among ASD children, thereby causing further accumulation of heavy metals in the body. These findings, including the factors associated with having an ASD child, may be considered by healthcare professionals involved in child development care, for early ASD detection. Further assessment of heavy metals among ASD children in the country and interventional studies to develop effective methods of addressing exposure to heavy metals will be beneficial for future reference.
Collapse
Affiliation(s)
- Muhammad Ridzwan Rafi’i
- Department of Public Health Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur, Malaysia
| | - Mohd Hasni Ja’afar
- Department of Public Health Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur, Malaysia
| | - Mohd Shahrol Abd Wahil
- Disease Control Division, Ministry of Health Malaysia, Putrajaya, Wilayah Persekutuan Putrajaya, Malaysia
| | - Shahrul Azhar Md Hanif
- Department of Public Health Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur, Malaysia
| |
Collapse
|
17
|
Wong A, Sun Q, Latif II, Karwi QG. Metabolic flux in macrophages in obesity and type-2 diabetes. JOURNAL OF PHARMACY & PHARMACEUTICAL SCIENCES : A PUBLICATION OF THE CANADIAN SOCIETY FOR PHARMACEUTICAL SCIENCES, SOCIETE CANADIENNE DES SCIENCES PHARMACEUTIQUES 2024; 27:13210. [PMID: 38988822 PMCID: PMC11233469 DOI: 10.3389/jpps.2024.13210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 06/14/2024] [Indexed: 07/12/2024]
Abstract
Recent literature extensively investigates the crucial role of energy metabolism in determining the inflammatory response and polarization status of macrophages. This rapidly expanding area of research highlights the importance of understanding the link between energy metabolism and macrophage function. The metabolic pathways in macrophages are intricate and interdependent, and they can affect the polarization of macrophages. Previous studies suggested that glucose flux through cytosolic glycolysis is necessary to trigger pro-inflammatory phenotypes of macrophages, and fatty acid oxidation is crucial to support anti-inflammatory responses. However, recent studies demonstrated that this understanding is oversimplified and that the metabolic control of macrophage polarization is highly complex and not fully understood yet. How the metabolic flux through different metabolic pathways (glycolysis, glucose oxidation, fatty acid oxidation, ketone oxidation, and amino acid oxidation) is altered by obesity- and type 2 diabetes (T2D)-associated insulin resistance is also not fully defined. This mini-review focuses on the impact of insulin resistance in obesity and T2D on the metabolic flux through the main metabolic pathways in macrophages, which might be linked to changes in their inflammatory responses. We closely evaluated the experimental studies and methodologies used in the published research and highlighted priority research areas for future investigations.
Collapse
Affiliation(s)
- Angela Wong
- Department of Pediatrics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Qiuyu Sun
- Department of Pediatrics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Ismail Ibrahim Latif
- Department of Microbiology, College of Medicine, University of Diyala, Baqubaa, Diyala, Iraq
| | - Qutuba G Karwi
- Division of BioMedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, Saint John's, NL, Canada
| |
Collapse
|
18
|
Tanase DM, Valasciuc E, Costea CF, Scripcariu DV, Ouatu A, Hurjui LL, Tarniceriu CC, Floria DE, Ciocoiu M, Baroi LG, Floria M. Duality of Branched-Chain Amino Acids in Chronic Cardiovascular Disease: Potential Biomarkers versus Active Pathophysiological Promoters. Nutrients 2024; 16:1972. [PMID: 38931325 PMCID: PMC11206939 DOI: 10.3390/nu16121972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 06/13/2024] [Accepted: 06/18/2024] [Indexed: 06/28/2024] Open
Abstract
Branched-chain amino acids (BCAAs), comprising leucine (Leu), isoleucine (Ile), and valine (Val), are essential nutrients vital for protein synthesis and metabolic regulation via specialized signaling networks. Their association with cardiovascular diseases (CVDs) has become a focal point of scientific debate, with emerging evidence suggesting both beneficial and detrimental roles. This review aims to dissect the multifaceted relationship between BCAAs and cardiovascular health, exploring the molecular mechanisms and clinical implications. Elevated BCAA levels have also been linked to insulin resistance (IR), type 2 diabetes mellitus (T2DM), inflammation, and dyslipidemia, which are well-established risk factors for CVD. Central to these processes are key pathways such as mammalian target of rapamycin (mTOR) signaling, nuclear factor kappa-light-chain-enhancer of activate B cells (NF-κB)-mediated inflammation, and oxidative stress. Additionally, the interplay between BCAA metabolism and gut microbiota, particularly the production of metabolites like trimethylamine-N-oxide (TMAO), adds another layer of complexity. Contrarily, some studies propose that BCAAs may have cardioprotective effects under certain conditions, contributing to muscle maintenance and metabolic health. This review critically evaluates the evidence, addressing the biological basis and signal transduction mechanism, and also discusses the potential for BCAAs to act as biomarkers versus active mediators of cardiovascular pathology. By presenting a balanced analysis, this review seeks to clarify the contentious roles of BCAAs in CVD, providing a foundation for future research and therapeutic strategies required because of the rising prevalence, incidence, and total burden of CVDs.
Collapse
Affiliation(s)
- Daniela Maria Tanase
- Department of Internal Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (D.M.T.); (A.O.); (D.E.F.); (M.F.)
- Internal Medicine Clinic, “St. Spiridon” County Clinical Emergency Hospital, Iasi 700111, Romania
| | - Emilia Valasciuc
- Department of Internal Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (D.M.T.); (A.O.); (D.E.F.); (M.F.)
- Internal Medicine Clinic, “St. Spiridon” County Clinical Emergency Hospital, Iasi 700111, Romania
| | - Claudia Florida Costea
- Department of Ophthalmology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania;
- 2nd Ophthalmology Clinic, “Prof. Dr. Nicolae Oblu” Emergency Clinical Hospital, 700309 Iași, Romania
| | - Dragos Viorel Scripcariu
- Department of General Surgery, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania;
- Regional Institute of Oncology, 700483 Iasi, Romania
| | - Anca Ouatu
- Department of Internal Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (D.M.T.); (A.O.); (D.E.F.); (M.F.)
- Internal Medicine Clinic, “St. Spiridon” County Clinical Emergency Hospital, Iasi 700111, Romania
| | - Loredana Liliana Hurjui
- Department of Morpho-Functional Sciences II, Physiology Discipline, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania;
- Hematology Laboratory, “St. Spiridon” County Clinical Emergency Hospital, 700111 Iasi, Romania
| | - Claudia Cristina Tarniceriu
- Department of Morpho-Functional Sciences I, Discipline of Anatomy, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania;
- Hematology Clinic, “Sf. Spiridon” County Clinical Emergency Hospital, 700111 Iasi, Romania
| | - Diana Elena Floria
- Department of Internal Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (D.M.T.); (A.O.); (D.E.F.); (M.F.)
- Institute of Gastroenterology and Hepatology, “St. Spiridon” County Clinical Emergency Hospital, 700111 Iasi, Romania
| | - Manuela Ciocoiu
- Department of Pathophysiology, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania;
| | - Livia Genoveva Baroi
- Department of Surgery, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania;
- Department of Vascular Surgery, “St. Spiridon” County Clinical Emergency Hospital, 700111 Iasi, Romania
| | - Mariana Floria
- Department of Internal Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (D.M.T.); (A.O.); (D.E.F.); (M.F.)
- Internal Medicine Clinic, “St. Spiridon” County Clinical Emergency Hospital, Iasi 700111, Romania
| |
Collapse
|
19
|
Xu YJ, He Y, Chen C, Shi J, He M, Liu Y, Zhang Y, Liu Y, Zhang Y. Multiomics Analysis Revealed Colorectal Cancer Pathogenesis. J Proteome Res 2024; 23:2100-2111. [PMID: 38634357 DOI: 10.1021/acs.jproteome.3c00894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2024]
Abstract
Gut microbiota-derived microbial compounds may link to the pathogenesis of colorectal cancer (CRC). However, the role of the host-microbiome in the incidence and progression of CRC remains elusive. We performed 16S rRNA sequencing, metabolomics, and proteomic studies on samples from 85 CRC patients who underwent colonoscopy examination and found two distinct changed patterns of microbiome in CRC patients. The relative abundances of Catabacter and Mogibacterium continuously increased from intramucosal carcinoma to advanced stages, whereas Clostridium, Anaerostipes, Vibrio, Flavonifractor, Holdemanella, and Hungatella were significantly altered only in intermediate lesions. Fecal metabolomics analysis exhibited consistent increases in bile acids, indoles, and urobilin as well as a decrease in heme. Serum metabolomics uncovered the highest levels of bilin, glycerides, and nucleosides together with the lowest levels of bile acids and amino acids in the stage of intermediate lesions. Three fecal and one serum dipeptides were elevated in the intermediate lesions. Proteomics analysis of colorectal tissues showed that oxidation and autophagy through the PI3K/Akt-mTOR signaling pathway contribute to the development of CRC. Diagnostic analysis showed multiomics features have good predictive capability, with AUC greater than 0.85. Our overall findings revealed new candidate biomarkers for CRC, with potentially significant diagnostic and prognostic capabilities.
Collapse
Affiliation(s)
- Yong-Jiang Xu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China
| | - Yuan He
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China
| | - Cong Chen
- Department of Colorectal Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing 211166, China
| | - Jiachen Shi
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China
| | - Mengxue He
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China
| | - Yanjun Liu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China
| | - Yu Zhang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China
| | - Yuanfa Liu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China
| | - Yi Zhang
- Department of Colorectal Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing 211166, China
| |
Collapse
|
20
|
Mailloux RJ. The emerging importance of the α-keto acid dehydrogenase complexes in serving as intracellular and intercellular signaling platforms for the regulation of metabolism. Redox Biol 2024; 72:103155. [PMID: 38615490 PMCID: PMC11021975 DOI: 10.1016/j.redox.2024.103155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/04/2024] [Accepted: 04/09/2024] [Indexed: 04/16/2024] Open
Abstract
The α-keto acid dehydrogenase complex (KDHc) class of mitochondrial enzymes is composed of four members: pyruvate dehydrogenase (PDHc), α-ketoglutarate dehydrogenase (KGDHc), branched-chain keto acid dehydrogenase (BCKDHc), and 2-oxoadipate dehydrogenase (OADHc). These enzyme complexes occupy critical metabolic intersections that connect monosaccharide, amino acid, and fatty acid metabolism to Krebs cycle flux and oxidative phosphorylation (OxPhos). This feature also imbues KDHc enzymes with the heightened capacity to serve as platforms for propagation of intracellular and intercellular signaling. KDHc enzymes serve as a source and sink for mitochondrial hydrogen peroxide (mtH2O2), a vital second messenger used to trigger oxidative eustress pathways. Notably, deactivation of KDHc enzymes through reversible oxidation by mtH2O2 and other electrophiles modulates the availability of several Krebs cycle intermediates and related metabolites which serve as powerful intracellular and intercellular messengers. The KDHc enzymes also play important roles in the modulation of mitochondrial metabolism and epigenetic programming in the nucleus through the provision of various acyl-CoAs, which are used to acylate proteinaceous lysine residues. Intriguingly, nucleosomal control by acylation is also achieved through PDHc and KGDHc localization to the nuclear lumen. In this review, I discuss emerging concepts in the signaling roles fulfilled by the KDHc complexes. I highlight their vital function in serving as mitochondrial redox sensors and how this function can be used by cells to regulate the availability of critical metabolites required in cell signaling. Coupled with this, I describe in detail how defects in KDHc function can cause disease states through the disruption of cell redox homeodynamics and the deregulation of metabolic signaling. Finally, I propose that the intracellular and intercellular signaling functions of the KDHc enzymes are controlled through the reversible redox modification of the vicinal lipoic acid thiols in the E2 subunit of the complexes.
Collapse
Affiliation(s)
- Ryan J Mailloux
- School of Human Nutrition, Faculty of Agricultural and Environmental Sciences, McGill University, Ste-Anne-de-Bellevue, Quebec, Canada.
| |
Collapse
|
21
|
Das S, Devi Rajeswari V, Venkatraman G, Elumalai R, Dhanasekaran S, Ramanathan G. Current updates on metabolites and its interlinked pathways as biomarkers for diabetic kidney disease: A systematic review. Transl Res 2024; 265:71-87. [PMID: 37952771 DOI: 10.1016/j.trsl.2023.11.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 11/09/2023] [Accepted: 11/09/2023] [Indexed: 11/14/2023]
Abstract
Diabetic kidney disease (DKD) is a major microvascular complication of diabetes mellitus (DM) that poses a serious risk as it can lead to end-stage renal disease (ESRD). DKD is linked to changes in the diversity, composition, and functionality of the microbiota present in the gastrointestinal tract. The interplay between the gut microbiota and the host organism is primarily facilitated by metabolites generated by microbial metabolic processes from both dietary substrates and endogenous host compounds. The production of numerous metabolites by the gut microbiota is a crucial factor in the pathogenesis of DKD. However, a comprehensive understanding of the precise mechanisms by which gut microbiota and its metabolites contribute to the onset and progression of DKD remains incomplete. This review will provide a summary of the current scenario of metabolites in DKD and the impact of these metabolites on DKD progression. We will discuss in detail the primary and gut-derived metabolites in DKD, and the mechanisms of the metabolites involved in DKD progression. Further, we will address the importance of metabolomics in helping identify potential DKD markers. Furthermore, the possible therapeutic interventions and research gaps will be highlighted.
Collapse
Affiliation(s)
- Soumik Das
- School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu 632014, India
| | - V Devi Rajeswari
- School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu 632014, India
| | - Ganesh Venkatraman
- School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu 632014, India
| | - Ramprasad Elumalai
- Department of Nephrology, Sri Ramachandra Institute of Higher Education and Research, Porur, Chennai, Tamil Nadu 600116, India
| | - Sivaraman Dhanasekaran
- School of Energy Technology, Pandit Deendayal Energy University, Knowledge Corridor, Raisan Village, PDPU Road, Gandhinagar, Gujarat 382426, India
| | - Gnanasambandan Ramanathan
- School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu 632014, India.
| |
Collapse
|
22
|
Yu J, Ren J, Ren Y, Wu Y, Zeng Y, Zhang Q, Xiao X. Using metabolomics and proteomics to identify the potential urine biomarkers for prediction and diagnosis of gestational diabetes. EBioMedicine 2024; 101:105008. [PMID: 38368766 PMCID: PMC10882130 DOI: 10.1016/j.ebiom.2024.105008] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/22/2024] [Accepted: 01/30/2024] [Indexed: 02/20/2024] Open
Abstract
Gestational diabetes mellitus (GDM) is one of the most common metabolic complications during pregnancy, threatening both maternal and fetal health. Prediction and diagnosis of GDM is not unified. Finding effective biomarkers for GDM is particularly important for achieving early prediction, accurate diagnosis and timely intervention. Urine, due to its accessibility in large quantities, noninvasive collection and easy preparation, has become a good sample for biomarker identification. In recent years, a number of studies using metabolomics and proteomics approaches have identified differential expressed urine metabolites and proteins in GDM patients. In this review, we summarized these potential urine biomarkers for GDM prediction and diagnosis and elucidated their role in development of GDM.
Collapse
Affiliation(s)
- Jie Yu
- Key Laboratory of Endocrinology, Ministry of Health, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Jing Ren
- Key Laboratory of Endocrinology, Ministry of Health, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Yaolin Ren
- Key Laboratory of Endocrinology, Ministry of Health, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Yifan Wu
- Key Laboratory of Endocrinology, Ministry of Health, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Yuan Zeng
- Key Laboratory of Endocrinology, Ministry of Health, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Qian Zhang
- Key Laboratory of Endocrinology, Ministry of Health, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100730, China.
| | - Xinhua Xiao
- Key Laboratory of Endocrinology, Ministry of Health, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100730, China.
| |
Collapse
|
23
|
Huang TQ, Chen YX, Zeng SL, Lin Y, Li F, Jiang ZM, Liu EH. Bergenin Alleviates Ulcerative Colitis By Decreasing Gut Commensal Bacteroides vulgatus-Mediated Elevated Branched-Chain Amino Acids. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:3606-3621. [PMID: 38324392 DOI: 10.1021/acs.jafc.3c09448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Ulcerative colitis is closely associated with the dysregulation of gut microbiota. There is growing evidence that natural products may improve ulcerative colitis by regulating the gut microbiota. In this research, we demonstrated that bergenin, a naturally occurring isocoumarin, significantly ameliorates colitis symptoms in dextran sulfate sodium (DSS)-induced mice. Transcriptomic analysis and Caco-2 cell assays revealed that bergenin could ameliorate ulcerative colitis by inhibiting TLR4 and regulating NF-κB and mTOR phosphorylation. 16S rRNA sequencing and metabolomics analyses revealed that bergenin could improve gut microbiota dysbiosis by decreasing branched-chain amino acid (BCAA) levels. BCAA intervention mediated the mTOR/p70S6K signaling pathway to exacerbate the symptoms of ulcerative colitis in mice. Notably, bergenin greatly decreased the symbiotic bacteria Bacteroides vulgatus (B. vulgatus), and the gavage of B. vulgatus increased BCAA concentrations and aggravated the symptoms of ulcerative colitis in mice. Our findings suggest that gut microbiota-mediated BCAA metabolism plays a vital role in the protective effect of bergenin on ulcerative colitis, providing novel insights for ulcerative colitis prevention through manipulation of the gut microbiota.
Collapse
Affiliation(s)
- Tian-Qing Huang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, No. 24 Tongjia Lane, Nanjing 210009, China
| | - Yu-Xin Chen
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, No. 24 Tongjia Lane, Nanjing 210009, China
| | - Su-Ling Zeng
- Institute of Health and Medicine, Hefei Comprehensive National Science Center, Hefei 230601, China
| | - Yang Lin
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, No. 24 Tongjia Lane, Nanjing 210009, China
| | - Fei Li
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, No. 24 Tongjia Lane, Nanjing 210009, China
| | - Zheng-Meng Jiang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, No. 24 Tongjia Lane, Nanjing 210009, China
- College of Pharmacy, Nanjing University of Chinese Medicine, No. 138 Xianlin Road, Nanjing 210023, China
| | - E-Hu Liu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, No. 24 Tongjia Lane, Nanjing 210009, China
- College of Pharmacy, Nanjing University of Chinese Medicine, No. 138 Xianlin Road, Nanjing 210023, China
| |
Collapse
|
24
|
Chen C, Wang J, Zhu X, Hu J, Liu C, Liu L. Energy metabolism and redox balance: How phytochemicals influence heart failure treatment. Biomed Pharmacother 2024; 171:116136. [PMID: 38215694 DOI: 10.1016/j.biopha.2024.116136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 12/31/2023] [Accepted: 01/04/2024] [Indexed: 01/14/2024] Open
Abstract
Heart Failure (HF) epitomizes a formidable global health quandary characterized by marked morbidity and mortality. It has been established that severe derangements in energy metabolism are central to the pathogenesis of HF, culminating in an inadequate cardiac energy milieu, which, in turn, precipitates cardiac pump dysfunction and systemic energy metabolic failure, thereby steering the trajectory and potential recuperation of HF. The conventional therapeutic paradigms for HF predominantly target amelioration of heart rate, and cardiac preload and afterload, proffering symptomatic palliation or decelerating the disease progression. However, the realm of therapeutics targeting the cardiac energy metabolism remains largely uncharted. This review delineates the quintessential characteristics of cardiac energy metabolism in healthy hearts, and the metabolic aberrations observed during HF, alongside the associated metabolic pathways and targets. Furthermore, we delve into the potential of phytochemicals in rectifying the redox disequilibrium and the perturbations in energy metabolism observed in HF. Through an exhaustive analysis of recent advancements, we underscore the promise of phytochemicals in modulating these pathways, thereby unfurling a novel vista on HF therapeutics. Given their potential in orchestrating cardiac energy metabolism, phytochemicals are emerging as a burgeoning frontier for HF treatment. The review accentuates the imperative for deeper exploration into how these phytochemicals specifically intervene in cardiac energy metabolism, and the subsequent translation of these findings into clinical applications, thereby broadening the horizon for HF treatment modalities.
Collapse
Affiliation(s)
- Cong Chen
- Guang'anmen Hospital, China Academy of Chinese Medicine Sciences, Beijing 100053, China
| | - Jie Wang
- Guang'anmen Hospital, China Academy of Chinese Medicine Sciences, Beijing 100053, China.
| | - Xueying Zhu
- Department of Anatomy, School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Jun Hu
- Guang'anmen Hospital, China Academy of Chinese Medicine Sciences, Beijing 100053, China
| | - Chao Liu
- Guang'anmen Hospital, China Academy of Chinese Medicine Sciences, Beijing 100053, China
| | - Lanchun Liu
- Guang'anmen Hospital, China Academy of Chinese Medicine Sciences, Beijing 100053, China
| |
Collapse
|
25
|
Rezaie N, Ghazanfari SS, Khosravi T, Vaghefi F, Oladnabi M. A comprehensive in silico analysis of mutation spectrum of maple syrup urine disease (MSUD) genes in Iranian population. MOLECULAR BIOLOGY RESEARCH COMMUNICATIONS 2024; 13:235-246. [PMID: 39315288 PMCID: PMC11416852 DOI: 10.22099/mbrc.2024.49847.1958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Maple syrup urine disease (MSUD) represents an infrequent metabolic disease precipitated by an insufficiency of the enzymatic complex known as branched-chain alpha-keto acid dehydrogenase. MSUD can be classified as classic (severe), intermediate, or intermittent based on the severity of the condition. The disease is associated with mutations in several genes, including BCKDHA, BCKDHB, DBT, and DLD. This study aimed to investigate the genetic landscape of MSUD in Iranian patients and explore the clinical implications of identified gene variants. A comprehensive analysis was conducted using various molecular techniques and bioinformatics tools to predict protein stability, pathogenicity, amino acid conservation, and secondary/tertiary structure. The in silico analysis highlighted high-risk pathogenic variants and provided insights into their potential impact on protein structure and function. Furthermore, the predicted 3D structures of wild-type and mutant proteins elucidated structural differences. Protein-protein interaction analysis shed light on the network of interactions involving MSUD-related proteins. The Iranome database uncovered a potential pathogenic variant (c.554C>T) in the Persian population. This research contributes to a better understanding of MSUD genetics in the Iranian population and outlines potential avenues for further clinical investigations. The findings have implications for genetic testing, prognosis, and genetic counseling in affected families.
Collapse
Affiliation(s)
- Nahid Rezaie
- Student Research Committee, Golestan University of Medical Sciences, Gorgan, Iran
| | | | - Teymoor Khosravi
- Student Research Committee, Golestan University of Medical Sciences, Gorgan, Iran
| | - Fatemeh Vaghefi
- Student Research Committee, Golestan University of Medical Sciences, Gorgan, Iran
| | - Morteza Oladnabi
- Gorgan Congenital Malformations Research Center, Golestan University of Medical Sciences, Gorgan, Iran
- Department of Medical Genetics, School of Advanced Technologies in Medicine, Golestan University of Medical Sciences, Gorgan, Iran
- Ischemic Disorders Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| |
Collapse
|
26
|
Kreiser T, Sogolovsky-Bard I, Zaguri D, Shaham-Niv S, Laor Bar-Yosef D, Gazit E. Branched-Chain Amino Acid Assembly into Amyloid-like Fibrils Provides a New Paradigm for Maple Syrup Urine Disease Pathology. Int J Mol Sci 2023; 24:15999. [PMID: 37958982 PMCID: PMC10650742 DOI: 10.3390/ijms242115999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 10/24/2023] [Accepted: 10/27/2023] [Indexed: 11/15/2023] Open
Abstract
Inborn error of metabolism disorders (IEMs) are a family of diseases resulting from single-gene mutations that lead to the accumulation of metabolites that are usually toxic or interfere with normal cell function. The etiological link between metabolic alteration and the symptoms of IEMs is still elusive. Several metabolites, which accumulate in IEMs, were shown to self-assemble to form ordered structures. These structures display the same biophysical, biochemical, and biological characteristics as proteinaceous amyloid fibrils. Here, we have demonstrated, for the first time, the ability of each of the branched-chain amino acids (BCAAs) that accumulate in maple syrup urine disease (MSUD) to self-assemble into amyloid-like fibrils depicted by characteristic morphology, binding to indicative amyloid-specific dyes and dose-dependent cytotoxicity by a late apoptosis mechanism. We could also detect the presence of the assemblies in living cells. In addition, by employing several in vitro techniques, we demonstrated the ability of known polyphenols to inhibit the formation of the BCAA fibrils. Our study implies that BCAAs possess a pathological role in MSUD, extends the paradigm-shifting concept regarding the toxicity of metabolite amyloid-like structures, and suggests new pathological targets that may lead to highly needed novel therapeutic opportunities for this orphan disease.
Collapse
Affiliation(s)
- Topaz Kreiser
- The Shmunis School of Biomedicine and Cancer Research, Tel Aviv University, Tel Aviv 6997801, Israel; (T.K.); (I.S.-B.); (D.Z.); (S.S.-N.); (D.L.B.-Y.)
| | - Ilana Sogolovsky-Bard
- The Shmunis School of Biomedicine and Cancer Research, Tel Aviv University, Tel Aviv 6997801, Israel; (T.K.); (I.S.-B.); (D.Z.); (S.S.-N.); (D.L.B.-Y.)
- Department of Cell and Developmental Biology, Sackler School of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Dor Zaguri
- The Shmunis School of Biomedicine and Cancer Research, Tel Aviv University, Tel Aviv 6997801, Israel; (T.K.); (I.S.-B.); (D.Z.); (S.S.-N.); (D.L.B.-Y.)
| | - Shira Shaham-Niv
- The Shmunis School of Biomedicine and Cancer Research, Tel Aviv University, Tel Aviv 6997801, Israel; (T.K.); (I.S.-B.); (D.Z.); (S.S.-N.); (D.L.B.-Y.)
| | - Dana Laor Bar-Yosef
- The Shmunis School of Biomedicine and Cancer Research, Tel Aviv University, Tel Aviv 6997801, Israel; (T.K.); (I.S.-B.); (D.Z.); (S.S.-N.); (D.L.B.-Y.)
| | - Ehud Gazit
- The Shmunis School of Biomedicine and Cancer Research, Tel Aviv University, Tel Aviv 6997801, Israel; (T.K.); (I.S.-B.); (D.Z.); (S.S.-N.); (D.L.B.-Y.)
- Blavatnik Center for Drug Discovery, Tel Aviv University, Tel Aviv 6997801, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 6997801, Israel
| |
Collapse
|
27
|
Tanase DM, Gosav EM, Botoc T, Floria M, Tarniceriu CC, Maranduca MA, Haisan A, Cucu AI, Rezus C, Costea CF. Depiction of Branched-Chain Amino Acids (BCAAs) in Diabetes with a Focus on Diabetic Microvascular Complications. J Clin Med 2023; 12:6053. [PMID: 37762992 PMCID: PMC10531730 DOI: 10.3390/jcm12186053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/10/2023] [Accepted: 09/17/2023] [Indexed: 09/29/2023] Open
Abstract
Type 2 diabetes mellitus (T2DM) still holds the title as one of the most debilitating chronic diseases with rising prevalence and incidence, including its complications such as retinal, renal, and peripheral nerve disease. In order to develop novel molecules for diagnosis and treatment, a deep understanding of the complex molecular pathways is imperative. Currently, the existing agents for T2DM treatment target only blood glucose levels. Over the past decades, specific building blocks of proteins-branched-chain amino acids (BCAAs) including leucine, isoleucine, and valine-have gained attention because they are linked with insulin resistance, pre-diabetes, and diabetes development. In this review, we discuss the hypothetical link between BCAA metabolism, insulin resistance, T2DM, and its microvascular complications including diabetic retinopathy and diabetic nephropathy. Further research on these amino acids and their derivates may eventually pave the way to novel biomarkers or therapeutic concepts for the treatment of diabetes and its accompanied complications.
Collapse
Affiliation(s)
- Daniela Maria Tanase
- Department of Internal Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (D.M.T.); (E.M.G.)
- Internal Medicine Clinic, “St. Spiridon” County Clinical Emergency Hospital Iasi, 700111 Iasi, Romania;
| | - Evelina Maria Gosav
- Department of Internal Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (D.M.T.); (E.M.G.)
- Internal Medicine Clinic, “St. Spiridon” County Clinical Emergency Hospital Iasi, 700111 Iasi, Romania;
| | - Tina Botoc
- Department of Ophthalmology, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (T.B.); (C.F.C.)
- 2nd Ophthalmology Clinic, “Prof. Dr. Nicolae Oblu” Emergency Clinical Hospital, 700309 Iasi, Romania
| | - Mariana Floria
- Department of Internal Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (D.M.T.); (E.M.G.)
- Internal Medicine Clinic, “St. Spiridon” County Clinical Emergency Hospital Iasi, 700111 Iasi, Romania;
| | - Claudia Cristina Tarniceriu
- Department of Morpho-Functional Sciences I, Discipline of Anatomy, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania;
- Hematology Clinic, “St. Spiridon” County Clinical Emergency Hospital, 700111 Iasi, Romania
| | - Minela Aida Maranduca
- Internal Medicine Clinic, “St. Spiridon” County Clinical Emergency Hospital Iasi, 700111 Iasi, Romania;
- Department of Morpho-Functional Sciences II, Discipline of Physiology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Anca Haisan
- Department of Emergency Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania;
- Emergency Department, “St. Spiridon” County Clinical Emergency Hospital, 700111 Iasi, Romania
| | - Andrei Ionut Cucu
- Department of Biomedical Sciences, Faculty of Medicine and Biological Sciences, “Ștefan cel Mare” University, 720229 Suceava, Romania;
- Department of Neurosurgery, “Prof. Dr. Nicolae Oblu” Emergency Clinical Hospital, 700309 Iasi, Romania
| | - Ciprian Rezus
- Department of Internal Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (D.M.T.); (E.M.G.)
- Internal Medicine Clinic, “St. Spiridon” County Clinical Emergency Hospital Iasi, 700111 Iasi, Romania;
| | - Claudia Florida Costea
- Department of Ophthalmology, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (T.B.); (C.F.C.)
- 2nd Ophthalmology Clinic, “Prof. Dr. Nicolae Oblu” Emergency Clinical Hospital, 700309 Iasi, Romania
| |
Collapse
|
28
|
Masenga SK, Povia JP, Lwiindi PC, Kirabo A. Recent Advances in Microbiota-Associated Metabolites in Heart Failure. Biomedicines 2023; 11:2313. [PMID: 37626809 PMCID: PMC10452327 DOI: 10.3390/biomedicines11082313] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/16/2023] [Accepted: 08/19/2023] [Indexed: 08/27/2023] Open
Abstract
Heart failure is a risk factor for adverse events such as sudden cardiac arrest, liver and kidney failure and death. The gut microbiota and its metabolites are directly linked to the pathogenesis of heart failure. As emerging studies have increased in the literature on the role of specific gut microbiota metabolites in heart failure development, this review highlights and summarizes the current evidence and underlying mechanisms associated with the pathogenesis of heart failure. We found that gut microbiota-derived metabolites such as short chain fatty acids, bile acids, branched-chain amino acids, tryptophan and indole derivatives as well as trimethylamine-derived metabolite, trimethylamine N-oxide, play critical roles in promoting heart failure through various mechanisms. Mainly, they modulate complex signaling pathways such as nuclear factor kappa-light-chain-enhancer of activated B cells, Bcl-2 interacting protein 3, NLR Family Pyrin Domain Containing inflammasome, and Protein kinase RNA-like endoplasmic reticulum kinase. We have also highlighted the beneficial role of other gut metabolites in heart failure and other cardiovascular and metabolic diseases.
Collapse
Affiliation(s)
- Sepiso K. Masenga
- HAND Research Group, School of Medicine and Health Sciences, Mulungushi University, Livingstone Campus, Livingstone 10101, Zambia; (J.P.P.); (P.C.L.)
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232-6602, USA
| | - Joreen P. Povia
- HAND Research Group, School of Medicine and Health Sciences, Mulungushi University, Livingstone Campus, Livingstone 10101, Zambia; (J.P.P.); (P.C.L.)
| | - Propheria C. Lwiindi
- HAND Research Group, School of Medicine and Health Sciences, Mulungushi University, Livingstone Campus, Livingstone 10101, Zambia; (J.P.P.); (P.C.L.)
| | - Annet Kirabo
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232-6602, USA
| |
Collapse
|
29
|
Xu E, Ji B, Jin K, Chen Y. Branched-chain amino acids catabolism and cancer progression: focus on therapeutic interventions. Front Oncol 2023; 13:1220638. [PMID: 37637065 PMCID: PMC10448767 DOI: 10.3389/fonc.2023.1220638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 07/24/2023] [Indexed: 08/29/2023] Open
Abstract
Branched-chain amino acids (BCAAs), including valine, leucine, and isoleucine, are crucial amino acids with significant implications in tumorigenesis across various human malignancies. Studies have demonstrated that altered BCAA metabolism can influence tumor growth and progression. Increased levels of BCAAs have been associated with tumor growth inhibition, indicating their potential as anti-cancer agents. Conversely, a deficiency in BCAAs can promote tumor metastasis to different organs due to the disruptive effects of high BCAA concentrations on tumor cell migration and invasion. This disruption is associated with tumor cell adhesion, angiogenesis, metastasis, and invasion. Furthermore, BCAAs serve as nitrogen donors, contributing to synthesizing macromolecules such as proteins and nucleotides crucial for cancer cell growth. Consequently, BCAAs exhibit a dual role in cancer, and their effects on tumor growth or inhibition are contingent upon various conditions and concentrations. This review discusses these contrasting findings, providing valuable insights into BCAA-related therapeutic interventions and ultimately contributing to a better understanding of their potential role in cancer treatment.
Collapse
Affiliation(s)
- Er Xu
- Department of Hospital Infection Management, Affiliated Hospital of Shaoxing University, Shaoxing, Zhejiang, China
| | - Bangju Ji
- Department of Colorectal Surgery, Shaoxing People’s Hospital, Shaoxing, Zhejiang, China
| | - Ketao Jin
- Department of Colorectal Surgery, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang, China
| | - Yefeng Chen
- Department of Respiratory Medicine, Shaoxing People’s Hospital, Shaoxing, Zhejiang, China
| |
Collapse
|
30
|
Ding M, Shi S, Qie S, Li J, Xi X. Association between heavy metals exposure (cadmium, lead, arsenic, mercury) and child autistic disorder: a systematic review and meta-analysis. Front Pediatr 2023; 11:1169733. [PMID: 37469682 PMCID: PMC10353844 DOI: 10.3389/fped.2023.1169733] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 06/23/2023] [Indexed: 07/21/2023] Open
Abstract
Background Studies have found that toxic heavy metals exposure could induce the generation of reactive oxygen species (ROS), and is of epigenetic effect, which might be associated with the occurrence of Autistic Disorder (ASD). This systematic review and meta-analysis aims to elucidate the association between exposure to 4 heavy metals, cadmium (Cd), lead (Pb), arsenic(As), and mercury (Hg), and the occurrence of ASD in children. Methods We searched PubMed, Web of Science, Embase, and Cochrane Library, from their inception to October 2022, for epidemiological investigations that explore the association between exposure to Cd, Pb, As, or Hg and the occurrence of child ASD. Results A total of 53 studies were included, involving 5,054 individuals aged less than 18 (2,533 ASD patients and 2,521 healthy controls). Compared with the healthy controls, in hair and blood tests, concentrations of the 4 heavy metals were significantly higher in the ASD group than in the healthy control group, and the differences in Pb, arsenic and Hg were statistically significant (P < 0.05). In the urine test, concentrations of arsenic and Hg were significantly higher in the ASD group than in the healthy control group (P < 0.05), while the results of Cd and Pb were opposite to those of arsenic and Hg (P > 0.05). Subgroup analysis for geographic regions showed that ASD patients in Asia and Europe had higher concentrations of the 4 heavy metals, compared with the healthy controls, in which the differences in Pb, arsenic, and Hg were statistically significant (P < 0.05), while in North America, the healthy controls had higher Cd, arsenic, and Hg concentrations (P > 0.05). Conclusion Compared with the healthy control group, the ASD group had higher concentrations of Cd, Pb, arsenic, and Hg. These 4 heavy metals play different roles in the occurrence and progression of ASD. Moreover, there is significant heterogeneity among the included studies due to controversies about the study results among different countries and regions and different sources of detection materials. The results of this study firmly support the policies to limit heavy metals exposure, especially among pregnant women and young children, so as to help reduce the incidence of ASD.
Collapse
Affiliation(s)
- Mengmeng Ding
- Correspondence: Mengmeng Ding Shanshan Shi Shuyan Qie
| | - Shanshan Shi
- Correspondence: Mengmeng Ding Shanshan Shi Shuyan Qie
| | - Shuyan Qie
- Correspondence: Mengmeng Ding Shanshan Shi Shuyan Qie
| | | | | |
Collapse
|
31
|
Gonzalez-Garcia P, Fiorillo Moreno O, Zarate Peñata E, Calderon-Villalba A, Pacheco Lugo L, Acosta Hoyos A, Villarreal Camacho JL, Navarro Quiroz R, Pacheco Londoño L, Aroca Martinez G, Moares N, Gabucio A, Fernandez-Ponce C, Garcia-Cozar F, Navarro Quiroz E. From Cell to Symptoms: The Role of SARS-CoV-2 Cytopathic Effects in the Pathogenesis of COVID-19 and Long COVID. Int J Mol Sci 2023; 24:ijms24098290. [PMID: 37175995 PMCID: PMC10179575 DOI: 10.3390/ijms24098290] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/23/2023] [Accepted: 04/26/2023] [Indexed: 05/15/2023] Open
Abstract
Severe Acute Respiratory Syndrome CoronaVirus 2 (SARS-CoV-2) infection triggers various events from molecular to tissue level, which in turn is given by the intrinsic characteristics of each patient. Given the molecular diversity characteristic of each cellular phenotype, the possible cytopathic, tissue and clinical effects are difficult to predict, which determines the heterogeneity of COVID-19 symptoms. The purpose of this article is to provide a comprehensive review of the cytopathic effects of SARS-CoV-2 on various cell types, focusing on the development of COVID-19, which in turn may lead, in some patients, to a persistence of symptoms after recovery from the disease, a condition known as long COVID. We describe the molecular mechanisms underlying virus-host interactions, including alterations in protein expression, intracellular signaling pathways, and immune responses. In particular, the article highlights the potential impact of these cytopathies on cellular function and clinical outcomes, such as immune dysregulation, neuropsychiatric disorders, and organ damage. The article concludes by discussing future directions for research and implications for the management and treatment of COVID-19 and long COVID.
Collapse
Affiliation(s)
| | - Ornella Fiorillo Moreno
- Clínica Iberoamerica, Barranquilla 080001, Colombia
- Life Science Research Center, Universidad Simon Bolívar, Barranquilla 080001, Colombia
| | - Eloina Zarate Peñata
- Life Science Research Center, Universidad Simon Bolívar, Barranquilla 080001, Colombia
| | | | - Lisandro Pacheco Lugo
- Life Science Research Center, Universidad Simon Bolívar, Barranquilla 080001, Colombia
| | - Antonio Acosta Hoyos
- Life Science Research Center, Universidad Simon Bolívar, Barranquilla 080001, Colombia
| | | | - Roberto Navarro Quiroz
- Department of Structural and Molecular Biology, Molecular Biology Institute of Barcelona, Spanish National Research Council, 08028 Barcelona, Spain
| | | | - Gustavo Aroca Martinez
- Life Science Research Center, Universidad Simon Bolívar, Barranquilla 080001, Colombia
- School of Medicine, Universidad del Norte, Barranquilla 080001, Colombia
| | - Noelia Moares
- Department of Biomedicine, Biotechnology and Public Health, Faculty of Medicine, University of Cadiz, 11003 Cádiz, Spain
| | - Antonio Gabucio
- Department of Biomedicine, Biotechnology and Public Health, Faculty of Medicine, University of Cadiz, 11003 Cádiz, Spain
| | - Cecilia Fernandez-Ponce
- Institute of Biomedical Research Cadiz (INIBICA), 11009 Cádiz, Spain
- Department of Biomedicine, Biotechnology and Public Health, Faculty of Medicine, University of Cadiz, 11003 Cádiz, Spain
| | - Francisco Garcia-Cozar
- Institute of Biomedical Research Cadiz (INIBICA), 11009 Cádiz, Spain
- Department of Biomedicine, Biotechnology and Public Health, Faculty of Medicine, University of Cadiz, 11003 Cádiz, Spain
| | - Elkin Navarro Quiroz
- Life Science Research Center, Universidad Simon Bolívar, Barranquilla 080001, Colombia
| |
Collapse
|
32
|
Branched chain amino acids catabolism as a source of new drug targets in pathogenic protists. Exp Parasitol 2023; 249:108499. [PMID: 36898495 DOI: 10.1016/j.exppara.2023.108499] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 03/02/2023] [Accepted: 03/05/2023] [Indexed: 03/11/2023]
Abstract
Leucine, isoleucine, and valine, collectively termed Branched Chain Amino Acids (BCAA), are hydrophobic amino acids (AAs) and are essential for most eukaryotes since in these organisms they cannot be biosynthesized and must be supplied by the diet. These AAs are structurally relevant for muscle cells and, of course, important for the protein synthesis process. The metabolism of BCAA and its participation in different biological processes in mammals have been relatively well described. However, for other organisms as pathogenic parasites, the literature is really scarce. Here we review the BCAA catabolism, compile evidence on their relevance for pathogenic eukaryotes with special emphasis on kinetoplastids and highlight unique aspects of this underrated pathway.
Collapse
|
33
|
Neuroactive Amino Acid Profile in Autism Spectrum Disorder: Results from a Clinical Sample. CHILDREN (BASEL, SWITZERLAND) 2023; 10:children10020412. [PMID: 36832540 PMCID: PMC9955282 DOI: 10.3390/children10020412] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/10/2023] [Accepted: 02/17/2023] [Indexed: 02/23/2023]
Abstract
Biological bases of autism spectrum disorder (ASD) include both genetic and epigenetic causes. Patients with ASD show anomalies in the profile of certain plasma amino acids, including neuroactive amino acids. Monitoring plasma amino acids may be relevant for patient care and interventions. We evaluated the plasma amino acid profile in samples extracted from dry blood spots by electrospray ionization-tandem mass spectrometry. Fourteen amino acids and eleven amino acid ratios were examined in patients with ASD and intellectual disability (ID), and neurotypical control subjects (TD). The amino acid profile in the ASD group showed reduced levels of ornithine (p = 0.008), phenylalanine (p = 0.042) and tyrosine (p = 0.013). The statistically significant amino acid ratios were Leu+Val/Phe+Tyr (p = 0.002), Tyr/Leu (p = 0.007) and Val/Phe (p = 0.028), such differences remaining significant only in the comparison between ASD and TD. Finally, a positive correlation emerged between the score of the restricted and repetitive behavior on ADOS-2 and the citrulline levels in the ASD group (p = 0.0047). To conclude, patients with ASD may show a distinguishable metabolic profile useful for studying their metabolic pathways in order to develop screening tests and targeted therapies.
Collapse
|
34
|
Liu L, Xu J, Zhang Z, Ren D, Wu Y, Wang D, Zhang Y, Zhao S, Chen Q, Wang T. Metabolic Homeostasis of Amino Acids and Diabetic Kidney Disease. Nutrients 2022; 15:nu15010184. [PMID: 36615841 PMCID: PMC9823842 DOI: 10.3390/nu15010184] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/16/2022] [Accepted: 12/27/2022] [Indexed: 01/03/2023] Open
Abstract
Diabetic kidney disease (DKD) occurs in 25-40% of patients with diabetes. Individuals with DKD are at a significant risk of progression to end-stage kidney disease morbidity and mortality. At present, although renal function-decline can be retarded by intensive glucose lowering and strict blood pressure control, these current treatments have shown no beneficial impact on preventing progression to kidney failure. Recently, in addition to control of blood sugar and pressure, a dietary approach has been recommended for management of DKD. Amino acids (AAs) are both biomarkers and causal factors of DKD progression. AA homeostasis contributes to renal hemodynamic response and glomerular hyperfiltration alteration in diabetic patients. This review discusses the links between progressive kidney dysfunction and the metabolic homeostasis of histidine, tryptophan, methionine, glutamine, tyrosine, and branched-chain AAs. In addition, we emphasize the regulation effects of special metabolites on DKD progression, with a focus on causality and potential mechanisms. This paper may offer an optimized protein diet strategy with concomitant management of AA homeostasis to reduce the risks of DKD in a setting of hyperglycemia.
Collapse
Affiliation(s)
- Luokun Liu
- State Key Laboratory of Component Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District, Tianjin 301617, China
| | - Jingge Xu
- Haihe Laboratory of Modern Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District, Tianjin 301617, China
| | - Zhiyu Zhang
- State Key Laboratory of Component Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District, Tianjin 301617, China
| | - Dongwen Ren
- Haihe Laboratory of Modern Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District, Tianjin 301617, China
| | - Yuzheng Wu
- State Key Laboratory of Component Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District, Tianjin 301617, China
| | - Dan Wang
- State Key Laboratory of Component Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District, Tianjin 301617, China
| | - Yi Zhang
- Haihe Laboratory of Modern Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District, Tianjin 301617, China
| | - Shuwu Zhao
- School of Intergrative Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District, Tianjin 301617, China
| | - Qian Chen
- State Key Laboratory of Component Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District, Tianjin 301617, China
- Correspondence: (Q.C.); (T.W.); Tel.: +86-22-59596164 (Q.C.); +86-22-59596185 (T.W.)
| | - Tao Wang
- Haihe Laboratory of Modern Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District, Tianjin 301617, China
- Correspondence: (Q.C.); (T.W.); Tel.: +86-22-59596164 (Q.C.); +86-22-59596185 (T.W.)
| |
Collapse
|
35
|
Bao Y, Han X, Liu D, Tan Z, Deng Y. Gut microbiota: The key to the treatment of metabolic syndrome in traditional Chinese medicine - a case study of diabetes and nonalcoholic fatty liver disease. Front Immunol 2022; 13:1072376. [PMID: 36618372 PMCID: PMC9816483 DOI: 10.3389/fimmu.2022.1072376] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 12/09/2022] [Indexed: 12/25/2022] Open
Abstract
Metabolic syndrome mainly includes obesity, type 2 diabetes (T2DM), alcoholic fatty liver (NAFLD) and cardiovascular diseases. According to the ancient experience philosophy of Yin-Yang, monarch-minister compatibility of traditional Chinese medicine, prescription is given to treat diseases, which has the advantages of small toxic and side effects and quick effect. However, due to the diversity of traditional Chinese medicine ingredients and doubts about the treatment theory of traditional Chinese medicine, the mechanism of traditional Chinese medicine is still in doubt. Gastrointestinal tract is an important part of human environment, and participates in the occurrence and development of diseases. In recent years, more and more TCM researches have made intestinal microbiome a new frontier for understanding and treating diseases. Clinically, nonalcoholic fatty liver disease (NAFLD) and diabetes mellitus (DM) often co-occur. Our aim is to explain the mechanism of interaction between gastrointestinal microbiome and traditional Chinese medicine (TCM) or traditional Chinese medicine formula to treat DM and NAFLD. Traditional Chinese medicine may treat these two diseases by influencing the composition of intestinal microorganisms, regulating the metabolism of intestinal microorganisms and transforming Chinese medicinal compounds.
Collapse
Affiliation(s)
- Yang Bao
- Department of Endosecretory Metabolic Diseases, Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Xiao Han
- Department of Endosecretory Metabolic Diseases, Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Da Liu
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun, Jilin, China,*Correspondence: Yongzhi Deng, ; Zhaolin Tan, ; Da Liu,
| | - Zhaolin Tan
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun, Jilin, China,*Correspondence: Yongzhi Deng, ; Zhaolin Tan, ; Da Liu,
| | - Yongzhi Deng
- Department of Acupuncture and Massage, The Third Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, Jilin, China,*Correspondence: Yongzhi Deng, ; Zhaolin Tan, ; Da Liu,
| |
Collapse
|
36
|
Fermented soybean meal modified the rumen microbiome to enhance the yield of milk components in Holstein cows. Appl Microbiol Biotechnol 2022; 106:7627-7642. [PMID: 36264306 DOI: 10.1007/s00253-022-12240-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 09/27/2022] [Accepted: 10/03/2022] [Indexed: 11/02/2022]
Abstract
The study was conducted to evaluate the rumen microbiota as well as the milk composition and milk component yields of Holstein cows supplemented with fermented soybean meal (FSBM). Eighteen Holstein cows in their 2nd parity with 54.38 ± 11.12 SD days in milking (DIM) were divided into two dietary groups (CON and TRT) of nine cows per group. The cows in the TRT group received 300 g of FSBM per cow per day in addition to the conventional diet, while each cow in the CON group was supplemented with 350 g of soybean meal (SBM) in their diet daily throughout the 28-day feeding trial. Rumen bacterial composition was detected via 16S rRNA sequencing, and the functional profiles of bacterial communities were predicted. Milk composition, milk yield, as well as rumen fermentation parameters, and serum biochemistry were also recorded. The inclusion of FSBM into the diets of Holstein cows increased the milk urea nitrogen (MUN), milk protein yield, fat corrected milk (FCM), and milk fat yield while the milk somatic cell count (SCC) was decreased. In the rumen, the relative abundances of Fibrobacterota, and Spirochaetota phyla were increased in the TRT group, while the percentage of Proteobacteria was lower. In addition, the supplementation of FSBM to Holstein cows increased the acetate percentage, rumen pH, and acetate to propionate ratio, while the proportion of propionate and propionate % was observed to decrease in the TRT group. The KEGG pathway and functional prediction revealed an upregulation in the functional genes associated with the biosynthesis of amino acids in the TRT group. This enrichment in functional genes resulted in an improved synthesis of several essential amino acids including lysine, methionine, and branch chain amino acids (BCAA) which might be responsible for the increased milk protein yield. Future studies should employ shotgun metagenomics, transcriptomics, and metabolomics technology to investigate the effects of FSBM on other rumen microbiomes and milk protein synthesis in the mammary gland in Holstein cows. KEY POINTS: • The supplementation of fermented soybean meal (FSBM) to Holstein cows modified the proportion of rumen bacteria. • Predicted metabolic pathways and functional genes of rumen bacteria revealed an enrichment in pathway and genes associated with biosynthesis of amino acids in the group fed FSBM. • The cows supplemented with FSBM record an improved rumen fermentation. • Cows supplemented with FSBM recorded an increased yield of milk protein and milk fat.
Collapse
|