1
|
Ong V, Mohamed MA, Ma H, Al-Shami A, Khazaee Nejad S, Amirghasemi F, Tabassum A, Lee MJ, Rohleder A, Zhu C, Tam C, Nowlen P, Mousavi MPS. Bilisense: An affordable sensor for on-site diagnosis of jaundice and prevention of kernicterus. Biosens Bioelectron 2025; 280:117386. [PMID: 40209646 DOI: 10.1016/j.bios.2025.117386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 03/07/2025] [Accepted: 03/15/2025] [Indexed: 04/12/2025]
Abstract
Bilirubin (BR) in blood serum is elevated during jaundice (a common complication among newborns). Accessible and frequent monitoring of BR is necessary for timely diagnosis and intervention. This work developed a low-cost electrochemical sensor for point-of-care and at-home measurement of BR. The sensor measures BR based on its oxidation at a laser-induced graphene electrode. A microfluidic channel for sample wicking is embedded on the electrodes to bifurcate the blood sample into two zones to allow measurement of different BR forms (conjugated and unconjugated). One zone remains bare, while the second zone is impregnated with caffeine sodium benzoate, which acts as an accelerant to release albumin-bound BR and makes it accessible for electrochemical oxidation. The sensors demonstrate linear response in the concentration range of 100 to 500 µmolL-1 total bilirubin (4:1 ratio of unconjugated to conjugated bilirubin) in undiluted blood serum. Physiologically relevant BR levels range from 170 µmolL-1 (healthy concentrations) to 460 µmolL-1 (elevated, unhealthy concentration). Recovery values at 150 and 250 µmolL-1 are 119 % and 104 %, which fall within the 20 % error required by the United States Food and Drug Administration. This device represents the first point-of-care bilirubin-sensor capable of distinguishing between different forms of bilirubin.
Collapse
Affiliation(s)
- Victor Ong
- Alfred E. Mann Department of Biomedical Engineering, University of Southern California, 1042 Downey Way, STE 140, Los Angeles, 90089, CA, USA
| | - Mona A Mohamed
- Alfred E. Mann Department of Biomedical Engineering, University of Southern California, 1042 Downey Way, STE 140, Los Angeles, 90089, CA, USA
| | - Haozheng Ma
- Alfred E. Mann Department of Biomedical Engineering, University of Southern California, 1042 Downey Way, STE 140, Los Angeles, 90089, CA, USA
| | - Abdulrahman Al-Shami
- Alfred E. Mann Department of Biomedical Engineering, University of Southern California, 1042 Downey Way, STE 140, Los Angeles, 90089, CA, USA
| | - Sina Khazaee Nejad
- Alfred E. Mann Department of Biomedical Engineering, University of Southern California, 1042 Downey Way, STE 140, Los Angeles, 90089, CA, USA
| | - Farbod Amirghasemi
- Alfred E. Mann Department of Biomedical Engineering, University of Southern California, 1042 Downey Way, STE 140, Los Angeles, 90089, CA, USA
| | - Asna Tabassum
- Alfred E. Mann Department of Biomedical Engineering, University of Southern California, 1042 Downey Way, STE 140, Los Angeles, 90089, CA, USA
| | - Michael Jayden Lee
- Alfred E. Mann Department of Biomedical Engineering, University of Southern California, 1042 Downey Way, STE 140, Los Angeles, 90089, CA, USA
| | - Alexander Rohleder
- Alfred E. Mann Department of Biomedical Engineering, University of Southern California, 1042 Downey Way, STE 140, Los Angeles, 90089, CA, USA
| | - Cathy Zhu
- Alfred E. Mann Department of Biomedical Engineering, University of Southern California, 1042 Downey Way, STE 140, Los Angeles, 90089, CA, USA
| | - Chur Tam
- Alfred E. Mann Department of Biomedical Engineering, University of Southern California, 1042 Downey Way, STE 140, Los Angeles, 90089, CA, USA
| | - Patrick Nowlen
- Alfred E. Mann Department of Biomedical Engineering, University of Southern California, 1042 Downey Way, STE 140, Los Angeles, 90089, CA, USA
| | - Maral P S Mousavi
- Alfred E. Mann Department of Biomedical Engineering, University of Southern California, 1042 Downey Way, STE 140, Los Angeles, 90089, CA, USA; Department of Chemistry, University of Southern California, 3620 McClintock Ave, Los Angeles 90089, CA, USA; Keck School of Medicine, University of Southern California, 1975 Zonal Ave, Los Angeles 90033, CA, USA; Alfred E. Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, 1985 Zonal Avenue, Los Angeles 90089, CA, USA.
| |
Collapse
|
2
|
de Oliveira MR. Pre-clinical evidence for mitochondria as a therapeutic target for luteolin: A mechanistic view. Chem Biol Interact 2025; 413:111492. [PMID: 40154935 DOI: 10.1016/j.cbi.2025.111492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 03/05/2025] [Accepted: 03/25/2025] [Indexed: 04/01/2025]
Abstract
Pre-clinical evidence indicates that mitochondria may be a therapeutic target for luteolin (3',4',5,7-tetrahydroxyflavone; LUT) in different conditions. LUT modulates mitochondrial physiology in in vitro, ex vivo, and in vivo experimental models. This flavone exerted mitochondria-related antioxidant and anti-apoptotic effects, stimulated mitochondrial fusion and fission, induced mitophagy, and promoted mitochondrial biogenesis in human and animal cells and tissues. Moreover, LUT modulated the activity of components of the oxidative phosphorylation (OXPHOS) system, improving the ability of mitochondria to produce adenosine triphosphate (ATP) in certain circumstances. The mechanism of action by which LUT promoted mitochondrial benefits and protection are not completely clear yet. Nonetheless, LUT is a potential candidate to be utilized in mitochondrial therapy in the future. In this work, it is explored the mechanisms of action by which LUT modulates mitochondrial physiology in different pre-clinical experimental models.
Collapse
Affiliation(s)
- Marcos Roberto de Oliveira
- Grupo de Estudos em Neuroquímica e Neurobiologia de Moléculas Bioativas, Departamento de Química, Universidade Federal de Mato Grosso (UFMT), CEP 78060-900, Cuiaba, Mato Grosso, Brazil; Grupo de Estudos em Terapia Mitocondrial, Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande do Sul (UFRGS), CEP 90035-003, Porto Alegre, Rio Grande do Sul, Brazil; Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Universidade Federal do Rio Grande do Sul (UFRGS), CEP 90035-003, Porto Alegre, Rio Grande do Sul, Brazil.
| |
Collapse
|
3
|
Poudyal N, Takemoto JY, Lin YY, Chang CWT. An Alternative to Biliverdin, Mesobiliverdin IXα and Mesobiliverdin-Enriched Microalgae: A Review on the Production and Applications of Mesobiliverdin-Related Products. Molecules 2025; 30:1379. [PMID: 40142154 PMCID: PMC11945237 DOI: 10.3390/molecules30061379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Revised: 03/06/2025] [Accepted: 03/18/2025] [Indexed: 03/28/2025] Open
Abstract
Despite attracting interest for decades due to its anti-inflammatory and antioxidant capabilities, the use of biliverdin IXα (BV) in medicine and agriculture is hampered by uncertain purity and limited availability. A significant amount of effort has been devoted to the production and application of BV, but with limited success. Mesobiliverdin IXα (MBV), a natural BV analog derived from microalgae, offers a path to overcome the limitations of BV. MBV production is scalable, and it can be obtained at high purity. MBV and BV share important structural features (e.g., bridging propionate groups) and both are substrates of biliverdin reductase A (BVRA), and thus exert the same mechanisms and pathways for anti-inflammatory action. To enable the use of MBV in industry, especially in agriculture, a cost-effective product, mesobiliverdin-enriched microalgae (MEM), was developed. In this review, we focus on recent developments and investigations of MBV and MEM, and compare their effectiveness with BV and Spirulina. This review article highlights cost-effective and scalable production of MEM, the therapeutic potential of MBV in cytoprotection and anti-inflammation, and MEM as an animal feed additive for improved gut health and amelioration of osteoporosis. More studies are ongoing to expand the potential applications of both MBV and MEM from fundamental research to industrial and agricultural practices.
Collapse
Affiliation(s)
- Naveena Poudyal
- Department of Chemistry and Biochemistry, Utah State University, 0300 Old Main Hill, Logan, UT 84322-0300, USA;
| | - Jon Y. Takemoto
- Department of Biology, Utah State University, 5305 Old Main Hill, Logan, UT 84322-5305, USA;
| | - Yuan-Yu Lin
- Department of Animal Science and Technology, National Taiwan University, Taipei City 106, Taiwan;
| | - Cheng-Wei T. Chang
- Department of Chemistry and Biochemistry, Utah State University, 0300 Old Main Hill, Logan, UT 84322-0300, USA;
| |
Collapse
|
4
|
Liu L, Zhao Y, Huang Z, Long Z, Qin H, Lin H, Zhou S, Kong L, Ma J, Lin Y, Li Z. Dietary supplementation of Lycium barbarum polysaccharides alleviates soybean meal-induced enteritis in spotted sea bass Lateolabrax maculatus. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2025; 20:1-22. [PMID: 39949731 PMCID: PMC11815959 DOI: 10.1016/j.aninu.2024.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 04/22/2024] [Accepted: 10/24/2024] [Indexed: 02/16/2025]
Abstract
The aim of this experiment was to investigate the effect of Lycium barbarum polysaccharides (LBP) on alleviating soybean meal-induced enteritis (SBMIE) in spotted sea bass Lateolabrax maculatus. The diet with 44% fishmeal (FM) content was used as a blank control, and soybean meal (SM) was used to replace 50% FM as an experimental control to induce enteritis. Then, on the basis of experimental control, 0.10%, 0.15%, and 0.20% LBP were added as experimental diets. A total of 225 spotted sea bass (44.52 ± 0.24 g) were randomly divided into 5 groups and fed the corresponding diets for 52 d. The results showed that 0.15% LBP decreased serum D-lactic acid (D-LA) content and diamine oxidase (DAO) activity (P < 0.05). In addition, in all LBP supplementation groups, the intestinal tissue morphology was significantly improved (P < 0.05); the intestinal microbial structure gradually recovered to a level close to that without adding SM; and the microbial species richness and diversity were significantly increased (P < 0.05). Through transcriptomic and metabolomic analysis, it was found that the expression of proinflammatory factors such as interleukin-1β (IL-1β), interleukin-12 (IL-12), nuclear factor kappa B subunit 2 (NF-κB2), and Toll-like receptor 2 (TLR2) were significantly down-regulated in the mitogen-activated protein kinase (MAPK) and Toll-like receptor signaling pathways (P < 0.05), and the important tight junction protein gene Occludin was up-regulated (P < 0.05). In addition, LBP down-regulated saponin metabolites and up-regulated amino acid metabolites (P < 0.05). In conclusion, LBP demonstrated a significant alleviating effect on SBMIE of spotted sea bass L. maculatus.
Collapse
Affiliation(s)
- Longhui Liu
- Fisheries College, Jimei University, Xiamen, China
- Fujian Provincial Key Laboratory of Marine Fishery Resources and Eco-environment, Xiamen, China
| | - Yanbo Zhao
- Fisheries College, Jimei University, Xiamen, China
- Fujian Provincial Key Laboratory of Marine Fishery Resources and Eco-environment, Xiamen, China
| | - Zhangfan Huang
- Fisheries College, Jimei University, Xiamen, China
- Fujian Provincial Key Laboratory of Marine Fishery Resources and Eco-environment, Xiamen, China
| | - Zhongying Long
- Fisheries College, Jimei University, Xiamen, China
- Fujian Provincial Key Laboratory of Marine Fishery Resources and Eco-environment, Xiamen, China
| | - Huihui Qin
- Fisheries College, Jimei University, Xiamen, China
- Fujian Provincial Key Laboratory of Marine Fishery Resources and Eco-environment, Xiamen, China
| | - Hao Lin
- Fisheries College, Jimei University, Xiamen, China
- Fujian Provincial Key Laboratory of Marine Fishery Resources and Eco-environment, Xiamen, China
| | - Sishun Zhou
- Fisheries College, Jimei University, Xiamen, China
- Fujian Provincial Key Laboratory of Marine Fishery Resources and Eco-environment, Xiamen, China
| | - Lumin Kong
- Fisheries College, Jimei University, Xiamen, China
- Fujian Provincial Key Laboratory of Marine Fishery Resources and Eco-environment, Xiamen, China
| | - Jianrong Ma
- Fisheries College, Jimei University, Xiamen, China
- Fujian Provincial Key Laboratory of Marine Fishery Resources and Eco-environment, Xiamen, China
| | - Yi Lin
- Fisheries College, Jimei University, Xiamen, China
- Fujian Provincial Key Laboratory of Marine Fishery Resources and Eco-environment, Xiamen, China
| | - Zhongbao Li
- Fisheries College, Jimei University, Xiamen, China
- Fujian Provincial Key Laboratory of Marine Fishery Resources and Eco-environment, Xiamen, China
| |
Collapse
|
5
|
Mancuso C. The Heme Oxygenase/Biliverdin Reductase System and Its Genetic Variants in Physiology and Diseases. Antioxidants (Basel) 2025; 14:187. [PMID: 40002374 PMCID: PMC11852105 DOI: 10.3390/antiox14020187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 01/29/2025] [Accepted: 01/31/2025] [Indexed: 02/27/2025] Open
Abstract
Heme oxygenase (HO) metabolizes heme into ferrous iron, carbon monoxide (CO), and biliverdin-IXα (BV), the latter being reduced into bilirubin-IXα (BR) by the biliverdin reductase-A (BVR). Heme oxygenase exists as two isoforms, HO-1, inducible and involved in the cell stress response, and HO-2, constitutive and committed to the physiologic turnover of heme and in the intracellular oxygen sensing. Many studies have identified genetic variants of the HO/BVR system and suggested their connection in free radical-induced diseases. The most common genetic variants include (GT)n dinucleotide length polymorphisms and single nucleotide polymorphisms. Gain-of-function mutations in the HO-1 and HO-2 genes foster the ventilator response to hypoxia and reduce the risk of coronary heart disease and age-related macular degeneration but increase the risk of neonatal jaundice, sickle cell disease, and Parkinson's disease. Conversely, loss-of-function mutations in the HO-1 gene increase the risk of type 2 diabetes mellitus, chronic obstructive pulmonary disease, and some types of cancers. Regarding BVR, the reported loss-of-function mutations increase the risk of green jaundice. Unfortunately, the physiological role of the HO/BVR system does not allow for the hypothesis gene silencing/induction strategies, but knowledge of these mutations can certainly facilitate a medical approach that enables early diagnoses and tailored treatments.
Collapse
Affiliation(s)
- Cesare Mancuso
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo F. Vito, 1, 00168 Rome, Italy;
- Department of Healthcare Surveillance and Bioethics, Section of Pharmacology, Università Cattolica del Sacro Cuore, Largo F. Vito, 1, 00168 Rome, Italy
| |
Collapse
|
6
|
Sist P, Urbani R, Tramer F, Bandiera A, Passamonti S. The HELP-UnaG Fusion Protein as a Bilirubin Biosensor: From Theory to Mature Technological Development. Molecules 2025; 30:439. [PMID: 39942546 PMCID: PMC11820890 DOI: 10.3390/molecules30030439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 01/09/2025] [Accepted: 01/10/2025] [Indexed: 02/16/2025] Open
Abstract
HUG is the HELP-UnaG recombinant fusion protein featuring the typical functions of both HELP and UnaG. In HUG, the HELP domain is a thermoresponsive human elastin-like polypeptide. It forms a shield enwrapping the UnaG domain that emits bilirubin-dependent fluorescence. Here, we recapitulate the technological development of this bifunctional synthetic protein from the theoretical background of its distinct protein moieties to the detailed characterization of its macromolecular and functional properties. These pieces of knowledge are the foundations for HUG production and application in the fluorometric analysis of bilirubin and its congeners, biliverdin and bilirubin glucuronide. These bile pigments are metabolites that arise from the catabolism of heme, the prosthetic group of cytochromes, hemoglobin and several other intracellular enzymes engaged in electron transfer, oxygen transport and protection against oxygen free radicals. The HUG assay is a powerful, user-friendly and affordable analytical tool that alone supports research at each level of complexity or taxonomy of living entities, from enzymology, cell biology and pathophysiology to veterinary and clinical sciences.
Collapse
Affiliation(s)
- Paola Sist
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy; (P.S.); (F.T.); (A.B.)
| | - Ranieri Urbani
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, 34127 Trieste, Italy;
| | - Federica Tramer
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy; (P.S.); (F.T.); (A.B.)
| | - Antonella Bandiera
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy; (P.S.); (F.T.); (A.B.)
| | - Sabina Passamonti
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy; (P.S.); (F.T.); (A.B.)
| |
Collapse
|
7
|
Seneff S, Kyriakopoulos AM. Taurine prevents mitochondrial dysfunction and protects mitochondria from reactive oxygen species and deuterium toxicity. Amino Acids 2025; 57:6. [PMID: 39789296 PMCID: PMC11717795 DOI: 10.1007/s00726-024-03440-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Accepted: 12/28/2024] [Indexed: 01/12/2025]
Abstract
Taurine, although not a coding amino acid, is the most common free amino acid in the body. Taurine has multiple and complex functions in protecting mitochondria against oxidative-nitrosative stress. In this comprehensive review paper, we introduce a novel potential role for taurine in protecting from deuterium (heavy hydrogen) toxicity. This can be of crucial impact to either normal or cancer cells that have highly different mitochondrial redox status. Deuterium is an isotope of hydrogen with a neutron as well as a proton, making it about twice as heavy as hydrogen. We first explain the important role that the gut microbiome and the gut sulfomucin barrier play in deuterium management. We describe the synergistic effects of taurine in the gut to protect against the deleterious accumulation of deuterium in the mitochondria, which disrupts ATP synthesis by ATPase pumps. Moreover, taurine's derivatives, N-chlorotaurine (NCT) and N-bromotaurine (NBrT), produced through spontaneous reaction of taurine with hypochlorite and hypobromite, have fascinating regulatory roles to protect from oxidative stress and beyond. We describe how taurine could potentially alleviate deuterium stress, primarily through metabolic collaboration among various gut microflora to produce deuterium depleted nutrients and deuterium depleted water, and in this way protect against leaky gut barrier, inflammatory bowel disease, and colon cancer.
Collapse
Affiliation(s)
- Stephanie Seneff
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
| | - Anthony M Kyriakopoulos
- Laboratory of Molecular Biology and Immunology, Department of Pharmacy, University of Patras, 26500, Rio-Patras, Greece
| |
Collapse
|
8
|
Ceccherini E, Morlando A, Norelli F, Coco B, Bellini M, Brunetto MR, Cecchettini A, Rocchiccioli S. Cytoskeleton Remodeling-Related Proteins Represent a Specific Salivary Signature in PSC Patients. Molecules 2024; 29:5783. [PMID: 39683940 DOI: 10.3390/molecules29235783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 11/28/2024] [Accepted: 12/05/2024] [Indexed: 12/18/2024] Open
Abstract
Primary sclerosing cholangitis (PSC) and Primary biliary cholangitis (PBC) are chronic inflammatory biliary diseases characterized by progressive damage of the bile ducts, resulting in hepatobiliary fibrosis and cirrhosis. Currently, specific biomarkers that allow to distinguish between PSC and PBC do not exist. In this study, we examined the salivary proteome by carrying out a comprehensive and non-invasive screening aimed at highlighting possible quali-quantitative protein deregulations that could be the starting point for the identification of effective biomarkers in future. Saliva samples collected from 6 PBC patients were analyzed using a liquid chromatography-tandem mass spectrometry technique, and the results were compared with those previously obtained in the PSC group. We identified 40 proteins as significantly deregulated in PSC patients compared to the PBC group. The Gene Ontology and pathway analyses highlighted that several proteins (e.g., small integral membrane protein 22, cofilin-1, macrophage-capping protein, plastin-2, and biliverdin reductase A) were linked to innate immune responses and actin cytoskeleton remodeling, which is a critical event in liver fibrosis and cancer progression. These findings provide new foundations for a deeper understanding of the pathophysiology of PSC and demonstrate that saliva is a suitable biological sample for obtaining proteomic fingerprints useful in the search for biomarkers capable of discriminating between the two cholestatic diseases.
Collapse
Affiliation(s)
- Elisa Ceccherini
- Institute of Clinical Physiology, National Research Council, 56124 Pisa, Italy
| | - Antonio Morlando
- Institute of Clinical Physiology, National Research Council, 56124 Pisa, Italy
| | - Francesco Norelli
- Institute of Clinical Physiology, National Research Council, 56124 Pisa, Italy
| | - Barbara Coco
- Hepatology Unit, Reference Centre of the Tuscany Region for Chronic Liver Disease and Cancer, University Hospital of Pisa, 56124 Pisa, Italy
| | - Massimo Bellini
- Gastrointestinal Unit, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56124 Pisa, Italy
| | - Maurizia Rossana Brunetto
- Hepatology Unit, Reference Centre of the Tuscany Region for Chronic Liver Disease and Cancer, University Hospital of Pisa, 56124 Pisa, Italy
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy
| | - Antonella Cecchettini
- Institute of Clinical Physiology, National Research Council, 56124 Pisa, Italy
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy
| | - Silvia Rocchiccioli
- Institute of Clinical Physiology, National Research Council, 56124 Pisa, Italy
| |
Collapse
|
9
|
Singh S, Dwivedi M, Pawar A, Kori M, Yadav A, Porwal P. Therapeutic prospects and challenges in the human genetic disorder hyperbiliverdinemia. HUMAN GENE 2024; 42:201342. [DOI: 10.1016/j.humgen.2024.201342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
10
|
Lan W, Yang L, Tan X. Crosstalk between ferroptosis and macrophages: potential value for targeted treatment in diseases. Mol Cell Biochem 2024; 479:2523-2543. [PMID: 37880443 DOI: 10.1007/s11010-023-04871-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 10/05/2023] [Indexed: 10/27/2023]
Abstract
Ferroptosis is a newly identified form of programmed cell death that is connected to iron-dependent lipid peroxidization. It involves a variety of physiological processes involving iron metabolism, lipid metabolism, oxidative stress, and biosynthesis of nicotinamide adenine dinucleotide phosphate, glutathione, and coenzyme Q10. So far, it has been discovered to contribute to the pathological process of many diseases, such as myocardial infarction, acute kidney injury, atherosclerosis, and so on. Macrophages are innate immune system cells that regulate metabolism, phagocytize pathogens and dead cells, mediate inflammatory reactions, promote tissue repair, etc. Emerging evidence shows strong associations between macrophages and ferroptosis, which can provide us with a deeper comprehension of the pathological process of diseases and new targets for the treatments. In this review, we summarized the crosstalk between macrophages and ferroptosis and anatomized the application of this association in disease treatments, both non-neoplastic and neoplastic diseases. In addition, we have also addressed problems that remain to be investigated, in the hope of inspiring novel therapeutic strategies for diseases.
Collapse
Affiliation(s)
- Wanxin Lan
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Operative Dentistry and Endodontics West China Hospital of Stomatology, Sichuan University, 14# 3rd Section, Renmin South Road, Chengdu, 610041, Sichuan, China
| | - Lei Yang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Operative Dentistry and Endodontics West China Hospital of Stomatology, Sichuan University, 14# 3rd Section, Renmin South Road, Chengdu, 610041, Sichuan, China
| | - Xuelian Tan
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Operative Dentistry and Endodontics West China Hospital of Stomatology, Sichuan University, 14# 3rd Section, Renmin South Road, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
11
|
Hou DY, Lu JJ, Zhang X, Abudukeyoumu A, Li MQ, Zhu XY, Xie F. Heme metabolism and HO-1 in the pathogenesis and potential intervention of endometriosis. Am J Reprod Immunol 2024; 91:e13855. [PMID: 38745499 DOI: 10.1111/aji.13855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 03/22/2024] [Accepted: 04/15/2024] [Indexed: 05/16/2024] Open
Abstract
Endometriosis (EM) is one of the diseases related to retrograded menstruation and hemoglobin. Heme, released from hemoglobin, is degraded by heme oxygenase-1 (HO-1). In EM lesions, heme metabolites regulate processes such as inflammation, redox balance, autophagy, dysmenorrhea, malignancy, and invasion, where macrophages (Mø) play a fundamental role in their interactions. Regulation occurs at molecular, cellular, and pathological levels. Numerous studies suggest that heme is an indispensable component in EM and may contribute to its pathogenesis. The regulatory role of heme in EM encompasses cytokines, signaling pathways, and kinases that mediate cellular responses to external stimuli. HO-1, a catalytic enzyme in the catabolic phase of heme, mitigates heme's cytotoxicity in EM due to its antioxidant, anti-inflammatory, and anti-proliferative properties. Certain compounds may intervene in EM by targeting heme metabolism, guiding the development of appropriate treatments for all stages of endometriosis.
Collapse
Affiliation(s)
- Ding-Yu Hou
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, People's Republic of China
- Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, People's Republic of China
| | - Jia-Jing Lu
- Department of Gynecology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, People's Republic of China
| | - Xing Zhang
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, People's Republic of China
| | - Ayitila Abudukeyoumu
- Department of Obstetrics and Gynecology, Maternal and Child Health Hospital of Jiading District, Shanghai, People's Republic of China
| | - Ming-Qing Li
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, People's Republic of China
- Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, People's Republic of China
| | - Xiao-Yong Zhu
- Department of Gynecology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, People's Republic of China
| | - Feng Xie
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, People's Republic of China
- Medical Center of Diagnosis and Treatment for Cervical and Intrauterine Diseases, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, People's Republic of China
| |
Collapse
|
12
|
Pristner M, Wasinger D, Seki D, Klebermaß-Schrehof K, Berger A, Berry D, Wisgrill L, Warth B. Neuroactive metabolites and bile acids are altered in extremely premature infants with brain injury. Cell Rep Med 2024; 5:101480. [PMID: 38518769 PMCID: PMC11031385 DOI: 10.1016/j.xcrm.2024.101480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 10/02/2023] [Accepted: 02/27/2024] [Indexed: 03/24/2024]
Abstract
The gut microbiome is associated with pathological neurophysiological evolvement in extremely premature infants suffering from brain injury. The exact underlying mechanism and its associated metabolic signatures in infants are not fully understood. To decipher metabolite profiles linked to neonatal brain injury, we investigate the fecal and plasma metabolome of samples obtained from a cohort of 51 extremely premature infants at several time points, using liquid chromatography (LC)-high-resolution mass spectrometry (MS)-based untargeted metabolomics and LC-MS/MS-based targeted analysis for investigating bile acids and amidated bile acid conjugates. The data are integrated with 16S rRNA gene amplicon gut microbiome profiles as well as patient cytokine, growth factor, and T cell profiles. We find an early onset of differentiation in neuroactive metabolites between infants with and without brain injury. We detect several bacterially derived bile acid amino acid conjugates in plasma and feces. These results provide insights into the early-life metabolome of extremely premature infants.
Collapse
Affiliation(s)
- Manuel Pristner
- Department of Food Chemistry and Toxicology, University of Vienna, 1090 Vienna, Austria
| | - Daniel Wasinger
- Department of Food Chemistry and Toxicology, University of Vienna, 1090 Vienna, Austria
| | - David Seki
- Center for Microbiology and Environmental Systems Science, Department of Microbiology and Ecosystem Science, Division of Microbial Ecology, University of Vienna, 1090 Vienna, Austria; Joint Microbiome Facility of the Medical University of Vienna and the University of Vienna, 1090 Vienna, Austria
| | - Katrin Klebermaß-Schrehof
- Department of Pediatrics and Adolescent Medicine, Division of Neonatology, Pediatric Intensive Care and Neuropediatrics, Comprehensive Center for Pediatrics, Medical University of Vienna, 1090 Vienna, Austria
| | - Angelika Berger
- Department of Pediatrics and Adolescent Medicine, Division of Neonatology, Pediatric Intensive Care and Neuropediatrics, Comprehensive Center for Pediatrics, Medical University of Vienna, 1090 Vienna, Austria
| | - David Berry
- Center for Microbiology and Environmental Systems Science, Department of Microbiology and Ecosystem Science, Division of Microbial Ecology, University of Vienna, 1090 Vienna, Austria; Joint Microbiome Facility of the Medical University of Vienna and the University of Vienna, 1090 Vienna, Austria
| | - Lukas Wisgrill
- Department of Pediatrics and Adolescent Medicine, Division of Neonatology, Pediatric Intensive Care and Neuropediatrics, Comprehensive Center for Pediatrics, Medical University of Vienna, 1090 Vienna, Austria
| | - Benedikt Warth
- Department of Food Chemistry and Toxicology, University of Vienna, 1090 Vienna, Austria.
| |
Collapse
|
13
|
Dunaway LS, Loeb SA, Petrillo S, Tolosano E, Isakson BE. Heme metabolism in nonerythroid cells. J Biol Chem 2024; 300:107132. [PMID: 38432636 PMCID: PMC10988061 DOI: 10.1016/j.jbc.2024.107132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/31/2024] [Accepted: 02/23/2024] [Indexed: 03/05/2024] Open
Abstract
Heme is an iron-containing prosthetic group necessary for the function of several proteins termed "hemoproteins." Erythrocytes contain most of the body's heme in the form of hemoglobin and contain high concentrations of free heme. In nonerythroid cells, where cytosolic heme concentrations are 2 to 3 orders of magnitude lower, heme plays an essential and often overlooked role in a variety of cellular processes. Indeed, hemoproteins are found in almost every subcellular compartment and are integral in cellular operations such as oxidative phosphorylation, amino acid metabolism, xenobiotic metabolism, and transcriptional regulation. Growing evidence reveals the participation of heme in dynamic processes such as circadian rhythms, NO signaling, and the modulation of enzyme activity. This dynamic view of heme biology uncovers exciting possibilities as to how hemoproteins may participate in a range of physiologic systems. Here, we discuss how heme is regulated at the level of its synthesis, availability, redox state, transport, and degradation and highlight the implications for cellular function and whole organism physiology.
Collapse
Affiliation(s)
- Luke S Dunaway
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Skylar A Loeb
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, Virginia, USA; Department of Molecular Physiology and Biophysics, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Sara Petrillo
- Deptartment Molecular Biotechnology and Health Sciences and Molecular Biotechnology Center "Guido Tarone", University of Torino, Torino, Italy
| | - Emanuela Tolosano
- Deptartment Molecular Biotechnology and Health Sciences and Molecular Biotechnology Center "Guido Tarone", University of Torino, Torino, Italy
| | - Brant E Isakson
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, Virginia, USA; Department of Molecular Physiology and Biophysics, University of Virginia School of Medicine, Charlottesville, Virginia, USA.
| |
Collapse
|
14
|
Keith AD, Sawyer EB, Choy DCY, Xie Y, Biggs GS, Klein OJ, Brear PD, Wales DJ, Barker PD. Combining experiment and energy landscapes to explore anaerobic heme breakdown in multifunctional hemoproteins. Phys Chem Chem Phys 2024; 26:695-712. [PMID: 38053511 DOI: 10.1039/d3cp03897a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
To survive, many pathogens extract heme from their host organism and break down the porphyrin scaffold to sequester the Fe2+ ion via a heme oxygenase. Recent studies have revealed that certain pathogens can anaerobically degrade heme. Our own research has shown that one such pathway proceeds via NADH-dependent heme degradation, which has been identified in a family of hemoproteins from a range of bacteria. HemS, from Yersinia enterocolitica, is the main focus of this work, along with HmuS (Yersinia pestis), ChuS (Escherichia coli) and ShuS (Shigella dysenteriae). We combine experiments, Energy Landscape Theory, and a bioinformatic investigation to place these homologues within a wider phylogenetic context. A subset of these hemoproteins are known to bind certain DNA promoter regions, suggesting not only that they can catalytically degrade heme, but that they are also involved in transcriptional modulation responding to heme flux. Many of the bacterial species responsible for these hemoproteins (including those that produce HemS, ChuS and ShuS) are known to specifically target oxygen-depleted regions of the gastrointestinal tract. A deeper understanding of anaerobic heme breakdown processes exploited by these pathogens could therefore prove useful in the development of future strategies for disease prevention.
Collapse
Affiliation(s)
- Alasdair D Keith
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK.
| | - Elizabeth B Sawyer
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK.
| | - Desmond C Y Choy
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK.
| | - Yuhang Xie
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK.
| | - George S Biggs
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK.
| | - Oskar James Klein
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK.
| | - Paul D Brear
- Department of Biochemistry, University of Cambridge, Sanger Building, Cambridge CB2 1GA, UK
| | - David J Wales
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK.
| | - Paul D Barker
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK.
| |
Collapse
|
15
|
Jayanti S, Vitek L, Verde CD, Llido JP, Sukowati C, Tiribelli C, Gazzin S. Role of Natural Compounds Modulating Heme Catabolic Pathway in Gut, Liver, Cardiovascular, and Brain Diseases. Biomolecules 2024; 14:63. [PMID: 38254662 PMCID: PMC10813662 DOI: 10.3390/biom14010063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 12/28/2023] [Accepted: 12/29/2023] [Indexed: 01/24/2024] Open
Abstract
The crucial physiological process of heme breakdown yields biliverdin (BV) and bilirubin (BR) as byproducts. BV, BR, and the enzymes involved in their production (the "yellow players-YP") are increasingly documented as endogenous modulators of human health. Mildly elevated serum bilirubin concentration has been correlated with a reduced risk of multiple chronic pro-oxidant and pro-inflammatory diseases, especially in the elderly. BR and BV per se have been demonstrated to protect against neurodegenerative diseases, in which heme oxygenase (HMOX), the main enzyme in the production of pigments, is almost always altered. HMOX upregulation has been interpreted as a tentative defense against the ongoing pathologic mechanisms. With the demonstration that multiple cells possess YP, their propensity to be modulated, and their broad spectrum of activity on multiple signaling pathways, the YP have assumed the role of an adjustable system that can promote health in adults. Based on that, there is an ongoing effort to induce their activity as a therapeutic option, and natural compounds are an attractive alternative to the goal, possibly requiring only minimal changes in the life style. We review the most recent evidence of the potential of natural compounds in targeting the YP in the context of the most common pathologic condition of adult and elderly life.
Collapse
Affiliation(s)
- Sri Jayanti
- Liver brain Unit “Rita Moretti”, Fondazione Italiana Fegato-Onlus, Bldg. Q, AREA Science Park, ss14, Km 163,5, Basovizza, 34149 Trieste, Italy or (S.J.); (C.D.V.); (J.P.L.); or (C.S.); (C.T.)
- Eijkman Research Centre for Molecular Biology, Research Organization for Health, National Research and Innovation Agency, Cibinong 16915, Indonesia
| | - Libor Vitek
- Institute of Medical Biochemistry and Laboratory Diagnostics, and 4th Department of Internal Medicine, General University Hospital and 1st Faculty of Medicine, Charles University, 12000 Prague, Czech Republic;
| | - Camilla Dalla Verde
- Liver brain Unit “Rita Moretti”, Fondazione Italiana Fegato-Onlus, Bldg. Q, AREA Science Park, ss14, Km 163,5, Basovizza, 34149 Trieste, Italy or (S.J.); (C.D.V.); (J.P.L.); or (C.S.); (C.T.)
- Department of Life Sciences, University of Trieste, 34139 Trieste, Italy
| | - John Paul Llido
- Liver brain Unit “Rita Moretti”, Fondazione Italiana Fegato-Onlus, Bldg. Q, AREA Science Park, ss14, Km 163,5, Basovizza, 34149 Trieste, Italy or (S.J.); (C.D.V.); (J.P.L.); or (C.S.); (C.T.)
- Department of Life Sciences, University of Trieste, 34139 Trieste, Italy
- Department of Science and Technology, Philippine Council for Health Research and Development, Bicutan, Taguig City 1631, Philippines
| | - Caecilia Sukowati
- Liver brain Unit “Rita Moretti”, Fondazione Italiana Fegato-Onlus, Bldg. Q, AREA Science Park, ss14, Km 163,5, Basovizza, 34149 Trieste, Italy or (S.J.); (C.D.V.); (J.P.L.); or (C.S.); (C.T.)
- Eijkman Research Centre for Molecular Biology, Research Organization for Health, National Research and Innovation Agency, Cibinong 16915, Indonesia
| | - Claudio Tiribelli
- Liver brain Unit “Rita Moretti”, Fondazione Italiana Fegato-Onlus, Bldg. Q, AREA Science Park, ss14, Km 163,5, Basovizza, 34149 Trieste, Italy or (S.J.); (C.D.V.); (J.P.L.); or (C.S.); (C.T.)
| | - Silvia Gazzin
- Liver brain Unit “Rita Moretti”, Fondazione Italiana Fegato-Onlus, Bldg. Q, AREA Science Park, ss14, Km 163,5, Basovizza, 34149 Trieste, Italy or (S.J.); (C.D.V.); (J.P.L.); or (C.S.); (C.T.)
| |
Collapse
|
16
|
Adil Ali M, Garabuczi É, Tarban N, Sarang Z. All-trans retinoic acid and dexamethasone regulate phagocytosis-related gene expression and enhance dead cell uptake in C2C12 myoblast cells. Sci Rep 2023; 13:21001. [PMID: 38017321 PMCID: PMC10684882 DOI: 10.1038/s41598-023-48492-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 11/27/2023] [Indexed: 11/30/2023] Open
Abstract
Extensive mechanical stress frequently causes micro-traumas in skeletal muscle, followed by a regeneration period. The effective removal of dead myofibers is a prerequisite for proper regeneration, and several cell types, including professional phagocytes, were reported to be active in this process. Myoblasts express several molecules of the phagocytic machinery, such as BAI1, stabilin-2, and TAM (Tyro3, Axl, Mertk) tyrosine kinase receptors, but these molecules were reported to serve primarily cell fusion and survival, and their role in the phagocytosis was not investigated. Therefore, we aimed to investigate the in vitro phagocytic capacity of the C2C12 mouse myoblast cell line. RNA sequencing data were analyzed to determine the level and changes of phagocytosis-related gene expression during the differentiation process of C2C12 cells. To study the phagocytic capacity of myoblasts and the effect of dexamethasone, all-trans retinoic acid, hemin, and TAM kinase inhibitor treatments on phagocytosis, C2C12 cells were fed dead thymocytes, and their phagocytic capacity was determined by flow cytometry. The effect of dexamethasone and all-trans retinoic acid on phagocytosis-related gene expression was determined by quantitative PCR. Both undifferentiated and differentiated cells engulfed dead cells being the undifferentiated cells more effective. In line with this, we observed that the expression of several phagocytosis-related genes was downregulated during the differentiation process. The phagocytosis could be increased by dexamethasone and all-trans retinoic acid and decreased by hemin and TAM kinase inhibitor treatments. Our results indicate that myoblasts not only express phagocytic machinery genes but are capable of efficient dead cell clearance as well, and this is regulated similarly, as reported in professional phagocytes.
Collapse
Affiliation(s)
- Maysaa Adil Ali
- Faculty of Medicine, Doctoral School of Molecular Cell and Immune Biology, University of Debrecen, Debrecen, Hungary
| | - Éva Garabuczi
- Department of Integrative Health Science, Faculty of Health Science, Institute of Health Science, University of Debrecen, Debrecen, Hungary
| | - Nastaran Tarban
- Faculty of Medicine, Doctoral School of Molecular Cell and Immune Biology, University of Debrecen, Debrecen, Hungary
| | - Zsolt Sarang
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary.
| |
Collapse
|
17
|
Liao TS, Chen CY, Lin CS, Chang CWT, Takemoto JY, Lin YY. Mesobiliverdin IXα-enriched microalgae feed additive eliminates reliance on antibiotic tylosin to promote intestinal health of weaning piglets. J Anim Physiol Anim Nutr (Berl) 2023; 107:1368-1375. [PMID: 37539819 DOI: 10.1111/jpn.13867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 06/23/2023] [Accepted: 07/24/2023] [Indexed: 08/05/2023]
Abstract
Weaning is a critical period in raising pigs. Novel animal feed additives that promote gut health and regulate immune function of piglets without antibiotics are needed. In this study, we aimed to test the ability of mesobiliverdin IXα-enriched microalgae (MBV IXα-enriched microalgae) to eliminate reliance on antibiotics to promote intestinal health in piglets. Eighty 28-day-old weaned piglets were randomly allocated to four groups each with four replicate pens and five piglets per pen. The dietary treatments were a basal diet as control (NC), basal diet plus 0.05% tylosin (PC), basal diet plus 0.1% or 0.5% MBV IXα-enriched microalgae as low (MBV-SP1) or high (MBV-SP2) dose respectively. All treated animals showed no significant differences in live weight, average daily gain and feed efficiency compared to control animals. Histological examination showed that MBV-SP1 and particularly MBV-SP2 increased the ratio of villus height to crypt depth in the jejunum and ileum compared to NC (p < 0.05). Similarly, tylosin treatment also increased villi lengths and the ratio of villus height to crypt depth in the jejunum and ileum compared to the NC (p < 0.05). MBV-SP1 and particularly MBV-SP2 reduced the levels of inflammatory cytokines interleukin-6 and tumour necrosis factor-alpha in the small intestine. MBV-SP2 and tylosin similarly reduced the lipid peroxidation marker (TBARS value) in the duodenum and ileum. In conclusion, feed supplementation with MBV IXα-enriched microalgae improved gut health by villus height and production of immunomodulators that correlated with down-regulated secretion of inflammatory cytokines.
Collapse
Affiliation(s)
- Tz-Shian Liao
- Department of Animal Science and Technology, National Taiwan University, Taipei City, Taiwan
| | - Ching-Yi Chen
- Department of Animal Science and Technology, National Taiwan University, Taipei City, Taiwan
| | - Chuan-Shun Lin
- Animal Technology Research Center, Agricultural Technology Research Institute, Miaoli County, Taiwan
| | - Cheng-Wei T Chang
- Department of Chemistry and Biochemistry, Utah State University, Logan, Utah, USA
| | - Jon Y Takemoto
- Department of Biology, Utah State University, Logan, Utah, USA
| | - Yuan-Yu Lin
- Department of Animal Science and Technology, National Taiwan University, Taipei City, Taiwan
| |
Collapse
|
18
|
Mancuso C. Biliverdin as a disease-modifying agent: An integrated viewpoint. Free Radic Biol Med 2023; 207:133-143. [PMID: 37459935 DOI: 10.1016/j.freeradbiomed.2023.07.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/27/2023] [Accepted: 07/14/2023] [Indexed: 07/24/2023]
Abstract
Biliverdin is one of the three by-products of heme oxygenase (HO) activity, the others being ferrous iron and carbon monoxide. Under physiological conditions, once formed in the cell, BV is reduced to bilirubin (BR) by the biliverdin reductase (BVR). However, if BVR is inhibited by either genetic variants, as occurs in the Inuit ethnicity, or dioxin intoxication, BV accumulates in cells giving rise to a clinical syndrome known as green jaundice. Preclinical studies have demonstrated that BV not only has a direct antioxidant effect by scavenging free radicals, but also targets many signal transduction pathways, such as BVR, soluble guanylyl cyclase, and the aryl hydrocarbon receptor. Through these direct and indirect mechanisms, BV has shown beneficial roles in ischemia/reperfusion-related diseases, inflammatory diseases, graft-versus-host disease, viral infections and cancer. Unfortunately, no clinical data are available to confirm these potential therapeutic effects and the kinetics of exogenous BV in humans is unknown. These limitations have so far excluded the possibility of transforming BV from a mere by-product of heme degradation into a disease-modifying agent. A closer collaboration between basic and clinical researchers would be advantageous to overcome these issues and promote translational research on BV in free radical-induced diseases.
Collapse
Affiliation(s)
- Cesare Mancuso
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy; Department of Healthcare Surveillance and Bioethics, Section of Pharmacology, Università Cattolica Del Sacro Cuore, Largo F. Vito, 1, 00168, Rome, Italy.
| |
Collapse
|
19
|
Feng T, Lai C, Yuan Q, Yang W, Yao Y, Du M, Zhong D, Wang S, Yang Q, Shang J, Shi Y, Huang X. Non-invasive assessment of liver fibrosis by serum metabolites in non-human primates and human patients. iScience 2023; 26:107538. [PMID: 37636059 PMCID: PMC10448158 DOI: 10.1016/j.isci.2023.107538] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/30/2023] [Accepted: 07/28/2023] [Indexed: 08/29/2023] Open
Abstract
Liver fibrosis, a rising cause of chronic liver diseases, could eventually develop into cirrhosis and liver failure. Current diagnosis of liver fibrosis relies on pathological examination of hepatic tissues acquired from percutaneous biopsy, which may produce invasive injuries. Here, for non-invasive assessment of liver fibrosis, we applied comparative multi-omics in non-human primates (rhesus macaques) and subsequent serum biopsy in human patients. Global transcriptomics showed significant gene enrichment of metabolism process, in parallel with oxidative stress and immune responses in fibrotic primates. Targeted metabolomics were concordant with transcriptomic patterns, identifying elevated lipids and porphyrin metabolites during hepatic fibrosis. Importantly, liquid biopsy results validated that specific metabolites in the serum (e.g., biliverdin) were highly diagnostic to distinguish human patients from healthy controls. Findings describe the interconnected transcriptional and metabolic network in primate liver fibrosis and provide potential indices for non-invasive detection of liver fibrosis in humans.
Collapse
Affiliation(s)
- Tianhang Feng
- Department of Hepatobiliary and Pancreatic Surgery, Sichuan Academy of Medical Sciences, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Chunyou Lai
- Department of Hepatobiliary and Pancreatic Surgery, Sichuan Academy of Medical Sciences, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Qiuyun Yuan
- State Key Laboratory of Oral Diseases, National Center of Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Wanchun Yang
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, China
| | - Yutong Yao
- Department of Hepatobiliary and Pancreatic Surgery, Sichuan Academy of Medical Sciences, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Mengze Du
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, China
| | - Deyuan Zhong
- Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Sijia Wang
- Department of Hepatobiliary and Pancreatic Surgery, Sichuan Academy of Medical Sciences, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Qinyan Yang
- Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Jin Shang
- Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Ying Shi
- Department of Hepatobiliary and Pancreatic Surgery, Sichuan Academy of Medical Sciences, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Xiaolun Huang
- Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
20
|
Butler MW, Cullen ZE, Garti CM, Howard DE, Corpus BA, McNish BA, Hines JK. Physiologically Relevant Levels of Biliverdin Do Not Significantly Oppose Oxidative Damage in Plasma In Vitro. Physiol Biochem Zool 2023; 96:294-303. [PMID: 37418605 DOI: 10.1086/725402] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/09/2023]
Abstract
AbstractAntioxidants have important physiological roles in limiting the amount of oxidative damage that an organism experiences. One putative antioxidant is biliverdin, a pigment that is most commonly associated with the blue or green colors of avian eggshells. However, despite claims that biliverdin functions as an antioxidant, neither the typical physiological concentrations of biliverdin in most species nor the ability of biliverdin to oppose oxidative damage at these concentrations has been examined. Therefore, we quantified biliverdin in the plasma of six bird species and found that they circulated levels of biliverdin between 0.02 and 0.5 μM. We then used a pool of plasma from northern bobwhite quail (Colinus virginianus) and spiked it with one of seven different concentrations of biliverdin, creating plasma-based solutions ranging from 0.09 to 231 μM biliverdin. We then compared each solution's ability to oppose oxidative damage in response to hydrogen peroxide relative to a control addition of water. We found that hydrogen peroxide consistently induced moderate amounts of oxidative damage (quantified as reactive oxygen metabolites) but that no concentration of biliverdin ameliorated this damage. However, biliverdin and hydrogen peroxide interacted, as the amount of biliverdin in hydrogen peroxide-treated samples was reduced to approximately zero, unless the initial concentration was over 100 μM biliverdin. These preliminary findings based on in vitro work indicate that while biliverdin may have important links to metabolism and immune function, at physiologically relevant concentrations it does not detectably oppose hydrogen peroxide-induced oxidative damage in plasma.
Collapse
|
21
|
Voltarelli VA, Alves de Souza RW, Miyauchi K, Hauser CJ, Otterbein LE. Heme: The Lord of the Iron Ring. Antioxidants (Basel) 2023; 12:antiox12051074. [PMID: 37237940 DOI: 10.3390/antiox12051074] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/26/2023] [Accepted: 05/03/2023] [Indexed: 05/28/2023] Open
Abstract
Heme is an iron-protoporphyrin complex with an essential physiologic function for all cells, especially for those in which heme is a key prosthetic group of proteins such as hemoglobin, myoglobin, and cytochromes of the mitochondria. However, it is also known that heme can participate in pro-oxidant and pro-inflammatory responses, leading to cytotoxicity in various tissues and organs such as the kidney, brain, heart, liver, and in immune cells. Indeed, heme, released as a result of tissue damage, can stimulate local and remote inflammatory reactions. These can initiate innate immune responses that, if left uncontrolled, can compound primary injuries and promote organ failure. In contrast, a cadre of heme receptors are arrayed on the plasma membrane that is designed either for heme import into the cell, or for the purpose of activating specific signaling pathways. Thus, free heme can serve either as a deleterious molecule, or one that can traffic and initiate highly specific cellular responses that are teleologically important for survival. Herein, we review heme metabolism and signaling pathways, including heme synthesis, degradation, and scavenging. We will focus on trauma and inflammatory diseases, including traumatic brain injury, trauma-related sepsis, cancer, and cardiovascular diseases where current work suggests that heme may be most important.
Collapse
Affiliation(s)
- Vanessa Azevedo Voltarelli
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Rodrigo W Alves de Souza
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Kenji Miyauchi
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Carl J Hauser
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Leo Edmond Otterbein
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| |
Collapse
|
22
|
Bahou WF, Marchenko N, Nesbitt NM. Metabolic Functions of Biliverdin IXβ Reductase in Redox-Regulated Hematopoietic Cell Fate. Antioxidants (Basel) 2023; 12:antiox12051058. [PMID: 37237924 DOI: 10.3390/antiox12051058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 04/19/2023] [Accepted: 04/27/2023] [Indexed: 05/28/2023] Open
Abstract
Cytoprotective heme oxygenases derivatize heme to generate carbon monoxide, ferrous iron, and isomeric biliverdins, followed by rapid NAD(P)H-dependent biliverdin reduction to the antioxidant bilirubin. Recent studies have implicated biliverdin IXβ reductase (BLVRB) in a redox-regulated mechanism of hematopoietic lineage fate restricted to megakaryocyte and erythroid development, a function distinct and non-overlapping from the BLVRA (biliverdin IXα reductase) homologue. In this review, we focus on recent progress in BLVRB biochemistry and genetics, highlighting human, murine, and cell-based studies that position BLVRB-regulated redox function (or ROS accumulation) as a developmentally tuned trigger that governs megakaryocyte/erythroid lineage fate arising from hematopoietic stem cells. BLVRB crystallographic and thermodynamic studies have elucidated critical determinants of substrate utilization, redox coupling and cytoprotection, and have established that inhibitors and substrates bind within the single-Rossmann fold. These advances provide unique opportunities for the development of BLVRB-selective redox inhibitors as novel cellular targets that retain potential for therapeutic applicability in hematopoietic (and other) disorders.
Collapse
Affiliation(s)
- Wadie F Bahou
- Department of Medicine, School of Medicine, Stony Brook University, Stony Brook, NY 11794, USA
| | - Natalia Marchenko
- Department of Pathology, Stony Brook University, Stony Brook, NY 11794, USA
| | - Natasha M Nesbitt
- Blood Cell Technologies, 25 Health Sciences Drive, Stony Brook, NY 11790, USA
| |
Collapse
|
23
|
Wang Y, Ma J, Jiang Y. Transcription factor Nrf2 as a potential therapeutic target for COVID-19. Cell Stress Chaperones 2023; 28:11-20. [PMID: 36417098 PMCID: PMC9685020 DOI: 10.1007/s12192-022-01296-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 08/08/2022] [Accepted: 09/09/2022] [Indexed: 11/24/2022] Open
Abstract
The coronavirus disease 2019 (COVID-19) is caused by a novel severe acute respiratory syndrome (SARS)-like coronavirus (SARS-CoV-2). Critically ill patients with SARS-COV-2 infection frequently exhibit signs of high oxidative stress and systemic inflammation, which accounts for most of the mortality. Antiviral strategies to inhibit the pathogenic consequences of COVID-19 are urgently required. The nuclear factor erythroid 2-related transcription factor (Nrf2) is a transcription factor that is involved in antioxidant and anti-inflammatory defense in several tissues and cells. This review tries to present an overview of the role of Nrf2 in the treatment of COVID-19.
Collapse
Affiliation(s)
- Yifan Wang
- Department of Infectious Diseases, The Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Jing Ma
- Department of Infectious Diseases, The Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Yongfang Jiang
- Department of Infectious Diseases, The Second Xiangya Hospital, Central South University, Changsha, 410011, China.
| |
Collapse
|
24
|
Zaongo SD, Chen Y. Gut microbiota: a potential key player in boosting immune reconstitution of immunological nonresponders. Future Microbiol 2023; 18:83-85. [PMID: 36727529 DOI: 10.2217/fmb-2022-0215] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Affiliation(s)
- Silvere D Zaongo
- Department of Infectious Diseases, Chongqing Public Health Medical Center, Chongqing, 400036, China
| | - Yaokai Chen
- Department of Infectious Diseases, Chongqing Public Health Medical Center, Chongqing, 400036, China
| |
Collapse
|
25
|
Rakshit S, Sahu N, Nirala SK, Bhadauria M. Protective activity of purpurin against d-galactosamine and lipopolysaccharide-induced hepatorenal injury by upregulation of heme oxygenase-1 in the RBC degradation cycle. J Biochem Mol Toxicol 2022; 36:e23168. [PMID: 35838105 DOI: 10.1002/jbt.23168] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 05/09/2022] [Accepted: 07/01/2022] [Indexed: 11/11/2022]
Abstract
Acute liver failure, associated with oxidative stress and sustained inflammation is the major clinical manifestation of liver diseases with a high mortality rate due to limited therapeutic options. Purpurin is a bioactive compound of Rubia cordifolia that has been used in textile staining, as a food additive, and as a treatment of multiple chronic and metabolic diseases associated with inflammation and oxidative stress. The present work aimed to investigate the protective efficacy of purpurin against hepatorenal damage. Thirty-six female albino rats were equally assigned into six groups. Purpurin was administered orally once a day for 6 days at doses of 05, 10, and 20 mg/kg, respectively. Intraperitoneal injection of lipopolysaccharide (50 μg/kg) was administered to the animals on 6th day evening, 1 h after d-galactosamine (300 mg/kg) administration to induce hepatorenal injury. The results revealed that purpurin alleviated alterations in serological and hematological parameters as well as restored histoarchitectural and cellular integrity of the liver and kidney. Purpurin restored superoxide dismutase, catalase, glutathione reductase, glutathione peroxidase, and glutathione content in hepatorenal tissues. Accompanied by the diminution of increased bilirubin and biliverdin, purpurin also diminished total cholesterol, triglyceride, and lipid peroxidation in hepatorenal tissues. Purpurin markedly attenuated the elevation of CYP2E1, restored glutathione-S-transferase, and prevented DNA damage in hepatorenal tissues. Purpurin reduced iron overload by reducing heme depletion and recycling of ferritin and hemosiderin. It also reinforced biliverdin reductase, heme oxygenase-1 to employ hepatorenal protection by regulating antioxidant enzymes and other pathways that produced NADPH. Thus, it may be concluded that purpurin has protective potential against acute hepatorenal injury.
Collapse
Affiliation(s)
- Samrat Rakshit
- Toxicology and Pharmacology Laboratory, Department of Zoology, Guru Ghasidas Vishwavidyalaya, Bilaspur, Chhattisgarh, India
| | - Nisha Sahu
- Toxicology and Pharmacology Laboratory, Department of Zoology, Guru Ghasidas Vishwavidyalaya, Bilaspur, Chhattisgarh, India
| | - Satendra Kumar Nirala
- Laboratory of Natural Products, Department of Rural Technology and Social Development, Guru Ghasidas Vishwavidyalaya, Bilaspur, Chhattisgarh, India
| | - Monika Bhadauria
- Toxicology and Pharmacology Laboratory, Department of Zoology, Guru Ghasidas Vishwavidyalaya, Bilaspur, Chhattisgarh, India
| |
Collapse
|
26
|
The Combined Escherichia coli Nissle 1917 and Tryptophan Treatment Modulates Immune and Metabolome Responses to Human Rotavirus Infection in a Human Infant Fecal Microbiota-Transplanted Malnourished Gnotobiotic Pig Model. mSphere 2022; 7:e0027022. [PMID: 36073800 PMCID: PMC9599269 DOI: 10.1128/msphere.00270-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Human rotavirus (HRV) is a major cause of childhood diarrhea in developing countries where widespread malnutrition contributes to the decreased oral vaccine efficacy and increased prevalence of other enteric infections, which are major concerns for global health. Neonatal gnotobiotic (Gn) piglets closely resemble human infants in their anatomy, physiology, and outbred status, providing a unique model to investigate malnutrition, supplementations, and HRV infection. To understand the molecular signatures associated with immune enhancement and reduced diarrheal severity by Escherichia coli Nissle 1917 (EcN) and tryptophan (TRP), immunological responses and global nontargeted metabolomics and lipidomics approaches were investigated on the plasma and fecal contents of malnourished pigs transplanted with human infant fecal microbiota and infected with virulent (Vir) HRV. Overall, EcN + TRP combined (rather than individual supplement action) promoted greater and balanced immunoregulatory/immunostimulatory responses associated with greater protection against HRV infection and disease in malnourished humanized piglets. Moreover, EcN + TRP treatment upregulated the production of several metabolites with immunoregulatory/immunostimulatory properties: amino acids (N-acetylserotonin, methylacetoacetyl-CoA), lipids (gamma-butyrobetaine, eicosanoids, cholesterol-sulfate, sphinganine/phytosphingosine, leukotriene), organic compound (biliverdin), benzenoids (gentisic acid, aminobenzoic acid), and nucleotides (hypoxathine/inosine/xanthine, cytidine-5'-monophosphate). Additionally, the levels of several proinflammatory metabolites of organic compounds (adenosylhomocysteine, phenylacetylglycine, urobilinogen/coproporphyrinogen) and amino acid (phenylalanine) were reduced following EcN + TRP treatment. These results suggest that the EcN + TRP effects on reducing HRV diarrhea in neonatal Gn pigs were at least in part due to altered metabolites, those involved in lipid, amino acid, benzenoids, organic compounds, and nucleotide metabolism. Identification of these important mechanisms of EcN/TRP prevention of HRV diarrhea provides novel targets for therapeutics development. IMPORTANCE Human rotavirus (HRV) is the most common cause of viral gastroenteritis in children, especially in developing countries, where the efficacy of oral HRV vaccines is reduced. Escherichia coli Nissle 1917 (EcN) is used to treat enteric infections and ulcerative colitis while tryptophan (TRP) is a biomarker of malnutrition, and its supplementation can alleviate intestinal inflammation and normalize intestinal microbiota in malnourished hosts. Supplementation of EcN + TRP to malnourished humanized gnotobiotic piglets enhanced immune responses and resulted in greater protection against HRV infection and diarrhea. Moreover, EcN + TRP supplementation increased the levels of immunoregulatory/immunostimulatory metabolites while decreasing the production of proinflammatory metabolites in plasma and fecal samples. Profiling of immunoregulatory and proinflammatory biomarkers associated with HRV perturbations will aid in the identification of treatments against HRV and other enteric diseases in malnourished children.
Collapse
|
27
|
Lin YY, Takemoto JY, Chang CWT, Peng CA. Mesobiliverdin IXα ameliorates osteoporosis via promoting osteogenic differentiation of mesenchymal stem cells. Biochem Biophys Res Commun 2022; 619:56-61. [PMID: 35738065 DOI: 10.1016/j.bbrc.2022.06.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/10/2022] [Accepted: 06/14/2022] [Indexed: 11/16/2022]
Abstract
Heme oxygenase-1 (HO-1) expression promotes osteogenesis, but the mechanisms remain unclear and therapeutic strategies using it to target bone disorders such as osteoporosis have not progressed. Mesobiliverdin IXα is a naturally occurring bilin analog of HO-1 catalytic product biliverdin IXα. Inclusion of mesobiliverdin IXα in the feed diet of ovariectomized osteoporotic mice was observed to increase femur bone volume, trabecular thickness and osteogenesis serum markers osteoprotegrin and osteocalcin and to decrease bone resorption serum markers cross-linked N-teleopeptide and tartrate-resistant acid phosphatase 5b. Moreover, in vitro exposure of human bone marrow mesenchymal stem cells to mesobiliverdin IXα enhanced osteogenic differentiation efficiency by two-fold over non-exposed controls. Our results imply that mesobiliverdin IXα promotes osteogenesis in ways that reflect the potential therapeutic effects of induced HO-1 expression in alleviating osteoporosis.
Collapse
Affiliation(s)
- Yuan-Yu Lin
- Department of Animal Science and Technology, National Taiwan University, Taipei City, Taiwan
| | - Jon Y Takemoto
- Department of Biology, Utah State University, Logan, UT, United States
| | - Cheng-Wei T Chang
- Department of Chemistry and Biochemistry, Utah State University, Logan, UT, United States
| | - Ching-An Peng
- Department of Chemical and Biological Engineering, University of Idaho, Moscow, ID, United States.
| |
Collapse
|
28
|
Cimini FA, Perluigi M, Barchetta I, Cavallo MG, Barone E. Role of Biliverdin Reductase A in the Regulation of Insulin Signaling in Metabolic and Neurodegenerative Diseases: An Update. Int J Mol Sci 2022; 23:5574. [PMID: 35628384 PMCID: PMC9141761 DOI: 10.3390/ijms23105574] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 05/13/2022] [Accepted: 05/14/2022] [Indexed: 11/16/2022] Open
Abstract
Insulin signaling is a conserved pathway that orchestrates glucose and lipid metabolism, energy balance, and inflammation, and its dysregulation compromises the homeostasis of multiple systems. Insulin resistance is a shared hallmark of several metabolic diseases, including obesity, metabolic syndrome, and type 2 diabetes, and has been associated with cognitive decline during aging and dementia. Numerous mechanisms promoting the development of peripheral and central insulin resistance have been described, although most of them were not completely clarified. In the last decades, several studies have highlighted that biliverdin reductase-A (BVR-A), over its canonical role in the degradation of heme, acts as a regulator of insulin signaling. Evidence from human and animal studies show that BVR-A alterations are associated with the aberrant activation of insulin signaling, metabolic syndrome, liver steatosis, and visceral adipose tissue inflammation in obese and diabetic individuals. In addition, recent findings demonstrated that reduced BVR-A levels or impaired BVR-A activation contribute to the development of brain insulin resistance and metabolic alterations in Alzheimer's disease. In this narrative review, we will provide an overview on the literature by focusing on the role of BVR-A in the regulation of insulin signaling and how BVR-A alterations impact on cell dysfunctions in both metabolic and neurodegenerative disorders.
Collapse
Affiliation(s)
- Flavia Agata Cimini
- Department of Experimental Medicine, Sapienza University of Rome, 00185 Rome, Italy; (F.A.C.); (I.B.)
| | - Marzia Perluigi
- Department of Biochemical Sciences “A. Rossi-Fanelli”, Sapienza University of Rome, 00185 Rome, Italy; (M.P.); (E.B.)
| | - Ilaria Barchetta
- Department of Experimental Medicine, Sapienza University of Rome, 00185 Rome, Italy; (F.A.C.); (I.B.)
| | - Maria Gisella Cavallo
- Department of Experimental Medicine, Sapienza University of Rome, 00185 Rome, Italy; (F.A.C.); (I.B.)
| | - Eugenio Barone
- Department of Biochemical Sciences “A. Rossi-Fanelli”, Sapienza University of Rome, 00185 Rome, Italy; (M.P.); (E.B.)
| |
Collapse
|
29
|
Abstract
PURPOSE OF REVIEW This review highlights the key studies investigating various types of biomarkers in Duchenne muscular dystrophy (DMD). RECENT FINDINGS Several proteomic and metabolomic studies have been undertaken in both human DMD patients and animal models of DMD that have identified potential biomarkers in DMD. Although there have been a number of proteomic and metabolomic studies that have identified various potential biomarkers in DMD, more definitive studies still need to be undertaken in DMD patients to firmly correlate these biomarkers with diagnosis, disease progression, and monitoring the effects of novel treatment strategies being developed.
Collapse
Affiliation(s)
- Theo Lee-Gannon
- Division of Cardiology, UT Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX, 75390, USA
- Department of Internal Medicine, UT Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX, 75390, USA
| | - Xuan Jiang
- Division of Cardiology, UT Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX, 75390, USA
- Department of Internal Medicine, UT Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX, 75390, USA
- UT Southwestern Senator Paul D. Wellstone Muscular Dystrophy Specialized Research Center, UT Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Tara C Tassin
- Division of Cardiology, UT Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX, 75390, USA
- Department of Internal Medicine, UT Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX, 75390, USA
- UT Southwestern Senator Paul D. Wellstone Muscular Dystrophy Specialized Research Center, UT Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Pradeep P A Mammen
- Division of Cardiology, UT Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX, 75390, USA.
- Department of Internal Medicine, UT Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX, 75390, USA.
- UT Southwestern Senator Paul D. Wellstone Muscular Dystrophy Specialized Research Center, UT Southwestern Medical Center, Dallas, TX, 75390, USA.
- Heart Failure, Ventricular Assist Device & Heart Transplant Program, UT Southwestern Medical Center, Dallas, TX, 75390, USA.
- Hamon Center for Regenerative Science and Medicine, UT Southwestern Medical Center, Dallas, TX, 75390, USA.
| |
Collapse
|
30
|
Yang S, Ouyang J, Lu Y, Harypursat V, Chen Y. A Dual Role of Heme Oxygenase-1 in Tuberculosis. Front Immunol 2022; 13:842858. [PMID: 35281042 PMCID: PMC8913507 DOI: 10.3389/fimmu.2022.842858] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 02/08/2022] [Indexed: 12/19/2022] Open
Abstract
Iron metabolism is vital for the survival of both humans and microorganisms. Heme oxygenase-1 (HO-1) is an essential stress-response enzyme highly expressed in the lungs, and catabolizes heme into ferrous iron, carbon monoxide (CO), and biliverdin (BV)/bilirubin (BR), especially in pathological conditions which cause oxidative stress and inflammation. Ferrous iron (Fe2+) is an important raw material for the synthesis of hemoglobin in red blood cells, and patients with iron deficiency are often associated with decreased cellular immunity. CO and BR can inhibit oxidative stress and inflammation. Thus, HO-1 is regarded as a cytoprotective molecule during the infection process. However, recent study has unveiled new information regarding HO-1. Being a highly infectious pathogenic bacterium, Mycobacterium tuberculosis (MTB) infection causes acute oxidative stress, and increases the expression of HO-1, which may in turn facilitate MTB survival and growth due to increased iron availability. Moreover, in severe cases of MTB infection, excessive reactive oxygen species (ROS) and free iron (Fe2+) due to high levels of HO-1 can lead to lipid peroxidation and ferroptosis, which may promote further MTB dissemination from cells undergoing ferroptosis. Therefore, it is important to understand and illustrate the dual role of HO-1 in tuberculosis. Herein, we critically review the interplay among HO-1, tuberculosis, and the host, thus paving the way for development of potential strategies for modulating HO-1 and iron metabolism.
Collapse
|
31
|
Hanna DA, Moore CM, Liu L, Yuan X, Dominic IM, Fleischhacker AS, Hamza I, Ragsdale SW, Reddi AR. Heme oxygenase-2 (HO-2) binds and buffers labile ferric heme in human embryonic kidney cells. J Biol Chem 2021; 298:101549. [PMID: 34973332 PMCID: PMC8808069 DOI: 10.1016/j.jbc.2021.101549] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/22/2021] [Accepted: 12/23/2021] [Indexed: 01/13/2023] Open
Abstract
Heme oxygenases (HOs) detoxify heme by oxidatively degrading it into carbon monoxide, iron, and biliverdin, which is reduced to bilirubin and excreted. Humans express two isoforms of HO: the inducible HO-1, which is upregulated in response to excess heme and other stressors, and the constitutive HO-2. Much is known about the regulation and physiological function of HO-1, whereas comparatively little is known about the role of HO-2 in regulating heme homeostasis. The biochemical necessity for expressing constitutive HO-2 is dependent on whether heme is sufficiently abundant and accessible as a substrate under conditions in which HO-1 is not induced. By measuring labile heme, total heme, and bilirubin in human embryonic kidney HEK293 cells with silenced or overexpressed HO-2, as well as various HO-2 mutant alleles, we found that endogenous heme is too limiting a substrate to observe HO-2-dependent heme degradation. Rather, we discovered a novel role for HO-2 in the binding and buffering of heme. Taken together, in the absence of excess heme, we propose that HO-2 regulates heme homeostasis by acting as a heme buffering factor that controls heme bioavailability. When heme is in excess, HO-1 is induced, and both HO-2 and HO-1 can provide protection from heme toxicity via enzymatic degradation. Our results explain why catalytically inactive mutants of HO-2 are cytoprotective against oxidative stress. Moreover, the change in bioavailable heme due to HO-2 overexpression, which selectively binds ferric over ferrous heme, is consistent with labile heme being oxidized, thereby providing new insights into heme trafficking and signaling.
Collapse
Affiliation(s)
- David A. Hanna
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Courtney M. Moore
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Liu Liu
- Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan, USA
| | - Xiaojing Yuan
- Department of Animal and Avian Sciences, Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland, USA
| | - Iramofu M. Dominic
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia, USA
| | | | - Iqbal Hamza
- Department of Animal and Avian Sciences, Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland, USA
| | - Stephen W. Ragsdale
- Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan, USA
| | - Amit R. Reddi
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia, USA,School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA,Parker Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, Georgia, USA,For correspondence: Amit R. Reddi
| |
Collapse
|
32
|
Shahrokhi SZ, Karami Tehrani FS, Salami S. Induction of cell apoptosis by biliverdin reductase inhibitor in MCF-7 and MDA-MB-468 breast cancer cell lines: Experimental and in silico studies. EXCLI JOURNAL 2021; 20:1502-1516. [PMID: 34924900 PMCID: PMC8678058 DOI: 10.17179/excli2021-4069] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 10/15/2021] [Indexed: 01/03/2023]
Abstract
Biliverdin reductase, biliverdin and bilirubin are known as important components of cellular signaling pathways that play major roles in cell proliferation and apoptosis, although their physiological relevance is still under evaluation. This study was designed to investigate the expression and activity of BVR-A and its apoptotic effect in the breast cancer cell lines, MCF-7 and MDA-MB-468. The expression of BVR-A was examined by real-time PCR and western blot analysis. Bilirubin concentration was measured by HPLC and molecular docking was performed to identify an appropriate inhibitor for BVR-A. To detect cell apoptosis, annexin V-PI staining, caspase-3, -8, and -9 activities were evaluated. Cell viability was reduced by biliverdin, in a dose-dependent manner, and an intrinsic apoptotic response occurred which was evidenced by caspase-3 and -9 activities. The intra- and extracellular concentrations of bilirubin were higher in MCF-7 cells than those of MDA-MB-468 cells. The expression of BVR-A, at mRNA and protein levels, in MCF-7 was also higher than that of MDA-MB-468 cells. Treatment of both cell lines with biliverdin plus DTNB, a BVR-A inhibitor, increased the cell death significantly when compared with biliverdin alone. Using annexin V-PI staining and assessment of caspase-3 activity, it was confirmed that biliverdin together with DTNB increases apoptosis in breast cancer cells. In conclusion, biliverdin has an important role in cell apoptosis and inhibition of biliverdin reductase increases the apoptotic effect of biliverdin.
Collapse
Affiliation(s)
- Seyedeh Zahra Shahrokhi
- Department of Clinical Biochemistry, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | | | - Siamak Salami
- Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
33
|
Cimini FA, Barchetta I, Zuliani I, Pagnotta S, Bertoccini L, Dule S, Zampieri M, Reale A, Baroni MG, Cavallo MG, Barone E. Biliverdin reductase-A protein levels are reduced in type 2 diabetes and are associated with poor glycometabolic control. Life Sci 2021; 284:119913. [PMID: 34453944 DOI: 10.1016/j.lfs.2021.119913] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 08/09/2021] [Accepted: 08/09/2021] [Indexed: 12/14/2022]
Abstract
AIM Biliverdin reductase-A (BVR-A) other than its canonical role in the degradation pathway of heme as partner of heme oxygenase-1 (HO1), has recently drawn attention as a protein with pleiotropic functions involved in insulin-glucose homeostasis. However, whether BVR-A expression is altered in type 2 diabetes (T2D) has never been evaluated. MAIN METHODS BVR-A protein levels were evaluated in T2D (n = 44) and non-T2D (n = 29) subjects, who underwent complete clinical workup and routine biochemistry. In parallel, levels HO1, whose expression is regulated by BVR-A as well as levels of tumor necrosis factor α (TNFα), which is a known repressor for BVR-A with pro-inflammatory properties, were also assessed. KEY FINDINGS BVR-A levels were significantly lower in T2D subjects than in non-T2D subjects. Reduced BVR-A levels were associated with greater body mass, systolic blood pressure, fasting blood glucose (FBG), glycated hemoglobin (HbA1c), triglycerides, transaminases and TNFα, and with lower high-density lipoprotein (HDL) levels. Lower BVR-A levels are associated with reduced HO1 protein levels and the multivariate analysis showed that BVR-A represented the main determinant of HO1 levels in T2D after adjustment. In addition, reduced BVR-A levels were able to predict the presence of T2D with AUROC = 0.69. for potential confounders. SIGNIFICANCE Our results demonstrate for the first time that BVR-A protein levels are reduced in T2D individuals, and that this alteration strictly correlates with poor glycometabolic control and a pro-inflammatory state. Hence, these observations reinforce the hypothesis that reduced BVR-A protein levels may represent a key event in the dysregulation of intracellular pathways finally leading to metabolic disorders.
Collapse
Affiliation(s)
| | - Ilaria Barchetta
- Department of Experimental Medicine, Sapienza University of Rome, Italy
| | - Ilaria Zuliani
- Department of Biochemical Sciences "A. Rossi-Fanelli", Sapienza University of Rome, Piazzale A. Moro 5, 00185 Roma, Italy
| | - Sara Pagnotta
- Department of Biochemical Sciences "A. Rossi-Fanelli", Sapienza University of Rome, Piazzale A. Moro 5, 00185 Roma, Italy
| | - Laura Bertoccini
- Department of Experimental Medicine, Sapienza University of Rome, Italy
| | - Sara Dule
- Department of Experimental Medicine, Sapienza University of Rome, Italy
| | - Michele Zampieri
- Department of Experimental Medicine, Sapienza University of Rome, Italy
| | - Anna Reale
- Department of Experimental Medicine, Sapienza University of Rome, Italy
| | - Marco Giorgio Baroni
- Department of Clinical Medicine, Public Health, Life and Environmental Sciences (MeSVA), University of L'Aquila, Italy; Neuroendocrinology and Metabolic Diseases, IRCCS Neuromed, Pozzilli, Is, Italy
| | | | - Eugenio Barone
- Department of Biochemical Sciences "A. Rossi-Fanelli", Sapienza University of Rome, Piazzale A. Moro 5, 00185 Roma, Italy.
| |
Collapse
|
34
|
Piotrowski ER, Tift MS, Crocker DE, Pearson AB, Vázquez-Medina JP, Keith AD, Khudyakov JI. Ontogeny of Carbon Monoxide-Related Gene Expression in a Deep-Diving Marine Mammal. Front Physiol 2021; 12:762102. [PMID: 34744798 PMCID: PMC8567018 DOI: 10.3389/fphys.2021.762102] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Accepted: 09/28/2021] [Indexed: 11/13/2022] Open
Abstract
Marine mammals such as northern elephant seals (NES) routinely experience hypoxemia and ischemia-reperfusion events to many tissues during deep dives with no apparent adverse effects. Adaptations to diving include increased antioxidants and elevated oxygen storage capacity associated with high hemoprotein content in blood and muscle. The natural turnover of heme by heme oxygenase enzymes (encoded by HMOX1 and HMOX2) produces endogenous carbon monoxide (CO), which is present at high levels in NES blood and has been shown to have cytoprotective effects in laboratory systems exposed to hypoxia. To understand how pathways associated with endogenous CO production and signaling change across ontogeny in diving mammals, we measured muscle CO and baseline expression of 17 CO-related genes in skeletal muscle and whole blood of three age classes of NES. Muscle CO levels approached those of animals exposed to high exogenous CO, increased with age, and were significantly correlated with gene expression levels. Muscle expression of genes associated with CO production and antioxidant defenses (HMOX1, BVR, GPX3, PRDX1) increased with age and was highest in adult females, while that of genes associated with protection from lipid peroxidation (GPX4, PRDX6, PRDX1, SIRT1) was highest in adult males. In contrast, muscle expression of mitochondrial biogenesis regulators (PGC1A, ESRRA, ESRRG) was highest in pups, while genes associated with inflammation (HMOX2, NRF2, IL1B) did not vary with age or sex. Blood expression of genes involved in regulation of inflammation (IL1B, NRF2, BVR, IL10) was highest in pups, while HMOX1, HMOX2 and pro-inflammatory markers (TLR4, CCL4, PRDX1, TNFA) did not vary with age. We propose that ontogenetic upregulation of baseline HMOX1 expression in skeletal muscle of NES may, in part, underlie increases in CO levels and expression of genes encoding antioxidant enzymes. HMOX2, in turn, may play a role in regulating inflammation related to ischemia and reperfusion in muscle and circulating immune cells. Our data suggest putative ontogenetic mechanisms that may enable phocid pups to transition to a deep-diving lifestyle, including high baseline expression of genes associated with mitochondrial biogenesis and immune system activation during postnatal development and increased expression of genes associated with protection from lipid peroxidation in adulthood.
Collapse
Affiliation(s)
| | - Michael S. Tift
- Department of Biology and Marine Biology, University of North Carolina Wilmington, Wilmington, NC, United States
| | - Daniel E. Crocker
- Biology Department, Sonoma State University, Rohnert Park, CA, United States
| | - Anna B. Pearson
- Department of Biology and Marine Biology, University of North Carolina Wilmington, Wilmington, NC, United States
| | - José P. Vázquez-Medina
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA, United States
| | - Anna D. Keith
- Department of Biological Sciences, University of the Pacific, Stockton, CA, United States
| | - Jane I. Khudyakov
- Department of Biological Sciences, University of the Pacific, Stockton, CA, United States
| |
Collapse
|
35
|
Mancuso C. Biliverdin reductase as a target in drug research and development: Facts and hypotheses. Free Radic Biol Med 2021; 172:521-529. [PMID: 34224815 DOI: 10.1016/j.freeradbiomed.2021.06.034] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 06/14/2021] [Accepted: 06/30/2021] [Indexed: 12/26/2022]
Abstract
Biliverdin reductase-A (BVR) catalyzes the reduction of heme-derived biliverdin into bilirubin, this latter being a powerful endogenous free radical scavenger. Furthermore, BVR is also endowed with both serine/threonine/tyrosine kinase and scaffold activities, through which it interacts with the insulin receptor kinase, conventional and atypical protein kinase C isoforms, mitogen-activated protein kinases as well as the phosphatidylinositol-3 kinase/Akt system. By regulating this complex array of signal transduction pathways, BVR is involved in the pathogenesis of neurodegenerative, metabolic, cardiovascular and immune-inflammatory diseases as well as in cancer. In addition, both BVR and BVR-B, this latter being an alternate isozyme predominant during fetal development but sometimes detectable through adulthood, have been studied as peripheral biomarkers for an early detection of Alzheimer's disease, atherosclerosis and some types of cancer. However, despite these interesting lines of evidence, to date BVR has not been considered as an appealing drug target. Only limited evidence supports the neuroprotective effects of atorvastatin and ferulic acid through BVR regulation in the aged canine brain and human neuroblastoma cells, whereas interesting results have been reported regarding the use of BVR-based peptides in preclinical models of cardiac diseases and cancer.
Collapse
Affiliation(s)
- Cesare Mancuso
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy; Department of Healthcare Surveillance and Bioethics, Section of Pharmacology, Università Cattolica del Sacro Cuore, Largo F. Vito, 1, 00168, Rome, Italy.
| |
Collapse
|
36
|
Hur B, Gupta VK, Huang H, Wright KA, Warrington KJ, Taneja V, Davis JM, Sung J. Plasma metabolomic profiling in patients with rheumatoid arthritis identifies biochemical features predictive of quantitative disease activity. Arthritis Res Ther 2021; 23:164. [PMID: 34103083 PMCID: PMC8185925 DOI: 10.1186/s13075-021-02537-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 05/19/2021] [Indexed: 02/06/2023] Open
Abstract
Background Rheumatoid arthritis (RA) is a chronic, autoimmune disorder characterized by joint inflammation and pain. In patients with RA, metabolomic approaches, i.e., high-throughput profiling of small-molecule metabolites, on plasma or serum has thus far enabled the discovery of biomarkers for clinical subgroups, risk factors, and predictors of treatment response. Despite these recent advancements, the identification of blood metabolites that reflect quantitative disease activity remains an important challenge in precision medicine for RA. Herein, we use global plasma metabolomic profiling analyses to detect metabolites associated with, and predictive of, quantitative disease activity in patients with RA. Methods Ultra-high-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) was performed on a discovery cohort consisting of 128 plasma samples from 64 RA patients and on a validation cohort of 12 samples from 12 patients. The resulting metabolomic profiles were analyzed with two different strategies to find metabolites associated with RA disease activity defined by the Disease Activity Score-28 using C-reactive protein (DAS28-CRP). More specifically, mixed-effects regression models were used to identify metabolites differentially abundant between two disease activity groups (“lower”, DAS28-CRP ≤ 3.2; and “higher”, DAS28-CRP > 3.2) and to identify metabolites significantly associated with DAS28-CRP scores. A generalized linear model (GLM) was then constructed for estimating DAS28-CRP using plasma metabolite abundances. Finally, for associating metabolites with CRP (an indicator of inflammation), metabolites differentially abundant between two patient groups (“low-CRP”, CRP ≤ 3.0 mg/L; “high-CRP”, CRP > 3.0 mg/L) were investigated. Results We identified 33 metabolites differentially abundant between the lower and higher disease activity groups (P < 0.05). Additionally, we identified 51 metabolites associated with DAS28-CRP (P < 0.05). A GLM based upon these 51 metabolites resulted in higher prediction accuracy (mean absolute error [MAE] ± SD: 1.51 ± 1.77) compared to a GLM without feature selection (MAE ± SD: 2.02 ± 2.21). The predictive value of this feature set was further demonstrated on a validation cohort of twelve plasma samples, wherein we observed a stronger correlation between predicted and actual DAS28-CRP (with feature selection: Spearman’s ρ = 0.69, 95% CI: [0.18, 0.90]; without feature selection: Spearman’s ρ = 0.18, 95% CI: [−0.44, 0.68]). Lastly, among all identified metabolites, the abundances of eight were significantly associated with the CRP patient groups while controlling for potential confounders (P < 0.05). Conclusions We demonstrate for the first time the prediction of quantitative disease activity in RA using plasma metabolomes. The metabolites identified herein provide insight into circulating pro-/anti-inflammatory metabolic signatures that reflect disease activity and inflammatory status in RA patients. Supplementary Information The online version contains supplementary material available at 10.1186/s13075-021-02537-4.
Collapse
Affiliation(s)
- Benjamin Hur
- Microbiome Program, Center for Individualized Medicine, Mayo Clinic, Rochester, MN, USA.,Division of Surgery Research, Department of Surgery, Mayo Clinic, Rochester, MN, USA
| | - Vinod K Gupta
- Microbiome Program, Center for Individualized Medicine, Mayo Clinic, Rochester, MN, USA.,Division of Surgery Research, Department of Surgery, Mayo Clinic, Rochester, MN, USA
| | - Harvey Huang
- Mayo Clinic Medical Scientist Training Program, Mayo Clinic, Rochester, MN, USA
| | - Kerry A Wright
- Division of Rheumatology, Department of Medicine, Mayo Clinic, Rochester, MN, USA
| | - Kenneth J Warrington
- Division of Rheumatology, Department of Medicine, Mayo Clinic, Rochester, MN, USA
| | - Veena Taneja
- Department of Immunology, Mayo Clinic, Rochester, MN, USA
| | - John M Davis
- Division of Rheumatology, Department of Medicine, Mayo Clinic, Rochester, MN, USA
| | - Jaeyun Sung
- Microbiome Program, Center for Individualized Medicine, Mayo Clinic, Rochester, MN, USA. .,Division of Surgery Research, Department of Surgery, Mayo Clinic, Rochester, MN, USA. .,Division of Rheumatology, Department of Medicine, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
37
|
Zhu X, Feng S, Jiang Z, Zhang H, Wang Y, Yang H, Wang Z. An ultra-red fluorescent biosensor for highly sensitive and rapid detection of biliverdin. Anal Chim Acta 2021; 1174:338709. [PMID: 34247733 DOI: 10.1016/j.aca.2021.338709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Revised: 05/20/2021] [Accepted: 05/27/2021] [Indexed: 10/21/2022]
Abstract
The important role of BV in clinical diagnostics of liver-related diseases has been established in veterinary medicine. However, the sensitivity and selectivity of the current BV assays remain relatively low compromising its wider application in clinical diagnosis. Herein, we developed a rapid and sensitive BV-detecting biosensor based on a novel far-red fluorescent protein smURFP, which produced fluorescence only through specific interaction with its cofactor BV. In our study, the binding of BV to smURFP was then systematically optimized based on the structures of the smURFP + BV complex to increase the sensitivity of our biosensor. A wide linear range from 0 μM to 25 μM was obtained in both chicken and human serum. The limit of detection (LOD) and limit of quantification (LOQ) for BV was as low as 0.4 nM and 1.5 nM in human serum, and 0.4 nM and 1.2 nM in chicken serum. To our knowledge, this is the lowest LOD that has ever been reported for a BV biosensor. Our study sheds light on the biological and clinical analysis of BV.
Collapse
Affiliation(s)
- Xiaqing Zhu
- School of Life Sciences, Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, College of Precision Instrument and Opto-electronics Engineering, Tianjin University, Tianjin, 300072, China
| | - Shuren Feng
- Tianjin Women's and Children's Health Centre (TWCHC), Tianjin, 300051, China
| | - Zhongyi Jiang
- Cleveland Clinic Lerner Research Institute, Cleveland, OH 44195, USA
| | - Huayue Zhang
- School of Life Sciences, Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, College of Precision Instrument and Opto-electronics Engineering, Tianjin University, Tianjin, 300072, China
| | - Yanyan Wang
- School of Life Sciences, Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, College of Precision Instrument and Opto-electronics Engineering, Tianjin University, Tianjin, 300072, China.
| | - Haitao Yang
- School of Life Sciences, Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, College of Precision Instrument and Opto-electronics Engineering, Tianjin University, Tianjin, 300072, China; Tianjin International Joint Academy of Biotechnology and Medicine, Tianjin, 300457, China
| | - Zefang Wang
- School of Life Sciences, Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, College of Precision Instrument and Opto-electronics Engineering, Tianjin University, Tianjin, 300072, China; Tianjin International Joint Academy of Biotechnology and Medicine, Tianjin, 300457, China.
| |
Collapse
|
38
|
Ryter SW. Significance of Heme and Heme Degradation in the Pathogenesis of Acute Lung and Inflammatory Disorders. Int J Mol Sci 2021; 22:ijms22115509. [PMID: 34073678 PMCID: PMC8197128 DOI: 10.3390/ijms22115509] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 05/19/2021] [Accepted: 05/20/2021] [Indexed: 02/07/2023] Open
Abstract
The heme molecule serves as an essential prosthetic group for oxygen transport and storage proteins, as well for cellular metabolic enzyme activities, including those involved in mitochondrial respiration, xenobiotic metabolism, and antioxidant responses. Dysfunction in both heme synthesis and degradation pathways can promote human disease. Heme is a pro-oxidant via iron catalysis that can induce cytotoxicity and injury to the vascular endothelium. Additionally, heme can modulate inflammatory and immune system functions. Thus, the synthesis, utilization and turnover of heme are by necessity tightly regulated. The microsomal heme oxygenase (HO) system degrades heme to carbon monoxide (CO), iron, and biliverdin-IXα, that latter which is converted to bilirubin-IXα by biliverdin reductase. Heme degradation by heme oxygenase-1 (HO-1) is linked to cytoprotection via heme removal, as well as by activity-dependent end-product generation (i.e., bile pigments and CO), and other potential mechanisms. Therapeutic strategies targeting the heme/HO-1 pathway, including therapeutic modulation of heme levels, elevation (or inhibition) of HO-1 protein and activity, and application of CO donor compounds or gas show potential in inflammatory conditions including sepsis and pulmonary diseases.
Collapse
|
39
|
Szade A, Szade K, Mahdi M, Józkowicz A. The role of heme oxygenase-1 in hematopoietic system and its microenvironment. Cell Mol Life Sci 2021; 78:4639-4651. [PMID: 33787980 PMCID: PMC8195762 DOI: 10.1007/s00018-021-03803-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 02/09/2021] [Accepted: 02/24/2021] [Indexed: 12/22/2022]
Abstract
Hematopoietic system transports all necessary nutrients to the whole organism and provides the immunological protection. Blood cells have high turnover, therefore, this system must be dynamically controlled and must have broad regeneration potential. In this review, we summarize how this complex system is regulated by the heme oxygenase-1 (HO-1)-an enzyme, which degrades heme to biliverdin, ferrous ion and carbon monoxide. First, we discuss how HO-1 influences hematopoietic stem cells (HSC) self-renewal, aging and differentiation. We also describe a critical role of HO-1 in endothelial cells and mesenchymal stromal cells that constitute the specialized bone marrow niche of HSC. We further discuss the molecular and cellular mechanisms by which HO-1 modulates innate and adaptive immune responses. Finally, we highlight how modulation of HO-1 activity regulates the mobilization of bone marrow hematopoietic cells to peripheral blood. We critically discuss the issue of metalloporphyrins, commonly used pharmacological modulators of HO-1 activity, and raise the issue of their important HO-1-independent activities.
Collapse
Affiliation(s)
- Agata Szade
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Krakow, Poland.
| | - Krzysztof Szade
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Krakow, Poland
| | - Mahdi Mahdi
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Krakow, Poland
| | - Alicja Józkowicz
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Krakow, Poland
| |
Collapse
|
40
|
A brief history of carbon monoxide and its therapeutic origins. Nitric Oxide 2021; 111-112:45-63. [PMID: 33838343 DOI: 10.1016/j.niox.2021.04.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 02/03/2021] [Accepted: 04/01/2021] [Indexed: 02/06/2023]
Abstract
It is estimated that 10% of carbon throughout the cosmos is in the form of carbon monoxide (CO). Earth's earliest prebiotic atmosphere included the trinity of gasotransmitters CO, nitric oxide (NO), and hydrogen sulfide (H2S), for which all of life has co-evolved with. The history of CO can be loosely traced to mythological and prehistoric origins with rudimentary understanding emerging in the middle ages. Ancient literature is focused on CO's deadly toxicity which is understandable in the context of our primitive relationship with coal and fire. Scientific inquiry into CO appears to have emerged throughout the 1700s followed by chemical and toxicological profiling throughout the 1800s. Despite CO's ghastly reputation, several of the 18th and 19th century scientists suggested a therapeutic application of CO. Since 2000, the fundamental understanding of CO as a deadly nuisance has undergone a paradigm shift such that CO is now recognized as a neurotransmitter and viable pharmaceutical candidate. This review is intended to provide a brief history on the trace origins pertaining to endogenous formation and therapeutic application of CO.
Collapse
|
41
|
Fathi P, Roslend A, Mehta K, Moitra P, Zhang K, Pan D. UV-trained and metal-enhanced fluorescence of biliverdin and biliverdin nanoparticles. NANOSCALE 2021; 13:4785-4798. [PMID: 33434263 PMCID: PMC9297654 DOI: 10.1039/d0nr08485a] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Increasing the fluorescence quantum yield of fluorophores is of great interest for in vitro and in vivo biomedical imaging applications. At the same time, photobleaching and photodegradation resulting from continuous exposure to light are major considerations in the translation of fluorophores from research applications to industrial or healthcare applications. A number of tetrapyrrolic compounds, such as heme and its derivatives, are known to provide fluorescence contrast. In this work, we found that biliverdin (BV), a naturally-occurring tetrapyrrolic fluorophore, exhibits an increase in fluorescence quantum yield, without exhibiting photobleaching or degradation, in response to continuous ultraviolet (UV) irradiation. We attribute this increased fluorescence quantum yield to photoisomerization and conformational changes in BV in response to UV irradiation. This enhanced fluorescence can be further altered by chelating BV with metals. UV irradiation of BV led to an approximately 10-fold increase in its 365 nm fluorescence quantum yield, and the most favorable combination of UV irradiation and metal chelation led to an approximately 18.5-fold increase in its 365 nm fluorescence quantum yield. We also evaluated these stimuli-responsive behaviors in biliverdin nanoparticles (BVNPs) at the bulk-state and single-particle level. We determined that UV irradiation led to an approximately 2.4-fold increase in BVNP 365 nm quantum yield, and the combination of UV irradiation and metal chelation led to up to a 6.75-fold increase in BVNP 365 nm quantum yield. Altogether, these findings suggest that UV irradiation and metal chelation can be utilized alone or in combination to tailor the fluorescence behavior of imaging probes such as BV and BVNPs at selected wavelengths.
Collapse
Affiliation(s)
- Parinaz Fathi
- Departments of Bioengineering, Materials Science and Engineering, and Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA.
| | - Ayman Roslend
- Departments of Bioengineering, Materials Science and Engineering, and Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA.
| | - Kritika Mehta
- Department of Biochemistry, School of Molecular and Cellular Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Parikshit Moitra
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Kai Zhang
- Department of Biochemistry, School of Molecular and Cellular Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Dipanjan Pan
- Departments of Bioengineering, Materials Science and Engineering, and Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA. and Departments of Diagnostic Radiology Nuclear Medicine, Pediatrics, and Chemical and Biomolecular Engineering, University of Maryland School of Medicine and University of Maryland Baltimore County, Baltimore, MD 21201, USA
| |
Collapse
|
42
|
Panwar B, Schmiedel BJ, Liang S, White B, Rodriguez E, Kalunian K, McKnight AJ, Soloff R, Seumois G, Vijayanand P, Ay F. Multi-cell type gene coexpression network analysis reveals coordinated interferon response and cross-cell type correlations in systemic lupus erythematosus. Genome Res 2021; 31:659-676. [PMID: 33674349 PMCID: PMC8015858 DOI: 10.1101/gr.265249.120] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 02/22/2021] [Indexed: 12/13/2022]
Abstract
Systemic lupus erythematosus (SLE) is an incurable autoimmune disease disproportionately affecting women. A major obstacle in finding targeted therapies for SLE is its remarkable heterogeneity in clinical manifestations as well as in the involvement of distinct cell types. To identify cell-specific targets as well as cross-correlation relationships among expression programs of different cell types, we here analyze six major circulating immune cell types from SLE patient blood. Our results show that presence of an interferon response signature stratifies patients into two distinct groups (IFNneg vs. IFNpos). Comparing these two groups using differential gene expression and differential gene coexpression analysis, we prioritize a relatively small list of genes from classical monocytes including two known immune modulators: TNFSF13B/BAFF (target of belimumab, an approved therapeutic for SLE) and IL1RN (the basis of anakinra, a therapeutic for rheumatoid arthritis). We then develop a multi-cell type extension of the weighted gene coexpression network analysis (WGCNA) framework, termed mWGCNA. Applying mWGCNA to RNA-seq data from six sorted immune cell populations (15 SLE, 10 healthy donors), we identify a coexpression module with interferon-stimulated genes (ISGs) among all cell types and a cross-cell type correlation linking expression of specific T helper cell markers to B cell response as well as to TNFSF13B expression from myeloid cells, all of which in turn correlates with disease severity of IFNpos patients. Our results demonstrate the power of a hypothesis-free and data-driven approach to discover drug targets and to reveal novel cross-correlation across cell types in SLE with implications for other autoimmune diseases.
Collapse
Affiliation(s)
- Bharat Panwar
- La Jolla Institute for Immunology, La Jolla, California 92037, USA
| | | | - Shu Liang
- La Jolla Institute for Immunology, La Jolla, California 92037, USA
| | - Brandie White
- La Jolla Institute for Immunology, La Jolla, California 92037, USA
| | - Enrique Rodriguez
- Kyowa Kirin Pharmaceutical Research, Incorporated, La Jolla, California 92037, USA
| | - Kenneth Kalunian
- School of Medicine, University of California San Diego, La Jolla, California 92093, USA
| | - Andrew J McKnight
- Kyowa Kirin Pharmaceutical Research, Incorporated, La Jolla, California 92037, USA
| | - Rachel Soloff
- Kyowa Kirin Pharmaceutical Research, Incorporated, La Jolla, California 92037, USA
| | - Gregory Seumois
- La Jolla Institute for Immunology, La Jolla, California 92037, USA
| | - Pandurangan Vijayanand
- La Jolla Institute for Immunology, La Jolla, California 92037, USA.,School of Medicine, University of California San Diego, La Jolla, California 92093, USA
| | - Ferhat Ay
- La Jolla Institute for Immunology, La Jolla, California 92037, USA.,School of Medicine, University of California San Diego, La Jolla, California 92093, USA
| |
Collapse
|
43
|
Creeden JF, Gordon DM, Stec DE, Hinds TD. Bilirubin as a metabolic hormone: the physiological relevance of low levels. Am J Physiol Endocrinol Metab 2021; 320:E191-E207. [PMID: 33284088 PMCID: PMC8260361 DOI: 10.1152/ajpendo.00405.2020] [Citation(s) in RCA: 131] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Recent research on bilirubin, a historically well-known waste product of heme catabolism, suggests an entirely new function as a metabolic hormone that drives gene transcription by nuclear receptors. Studies are now revealing that low plasma bilirubin levels, defined as "hypobilirubinemia," are a possible new pathology analogous to the other end of the spectrum of extreme hyperbilirubinemia seen in patients with jaundice and liver dysfunction. Hypobilirubinemia is most commonly seen in patients with metabolic dysfunction, which may lead to cardiovascular complications and possibly stroke. We address the clinical significance of low bilirubin levels. A better understanding of bilirubin's hormonal function may explain why hypobilirubinemia might be deleterious. We present mechanisms by which bilirubin may be protective at mildly elevated levels and research directions that could generate treatment possibilities for patients with hypobilirubinemia, such as targeting of pathways that regulate its production or turnover or the newly designed bilirubin nanoparticles. Our review here calls for a shift in the perspective of an old molecule that could benefit millions of patients with hypobilirubinemia.
Collapse
Affiliation(s)
- Justin F Creeden
- Department of Neurosciences, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio
| | - Darren M Gordon
- Department of Neurosciences, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio
| | - David E Stec
- Department of Physiology & Biophysics, Cardiorenal and Metabolic Diseases Research Center, University of Mississippi Medical Center, Jackson, Mississippi
| | - Terry D Hinds
- Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, Kentucky
| |
Collapse
|
44
|
Chang CWT, Takemoto JY, Chang PE, AlFindee MN, Lin YY. Effects of Mesobiliverdin IXα-Enriched Microalgae Feed on Gut Health and Microbiota of Broilers. Front Vet Sci 2021; 7:586813. [PMID: 33553275 PMCID: PMC7854538 DOI: 10.3389/fvets.2020.586813] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 12/22/2020] [Indexed: 11/13/2022] Open
Abstract
Gut inflammatory bowel diseases (IBDs) links to animal medicinal feed and antibiotic-resistance are fueling major economic impacts in the agricultural livestock industry. New animal feeds that promote livestock gut health and control of IBDs without antibiotics are needed. This study investigates the effects of mesobiliverdin IXα (MBV)-enriched microalgae spirulina extracts on the growth performance, blood parameters, intestinal morphology, and gut microbiota of broilers. A total of 288 1-day-old broiler chicks (Arbor Acres) were randomly allotted to six dietary treatments (4 pens/treatment and 12 birds/pen). The dietary treatments comprised a basal diet as control (CON), basal diet plus 0.05 and 0.1% microalgae extract as low and high dose, respectively (SP1 and SP2), basal diet plus 0.05 and 0.1% MBV-enriched microalgae extract as low and high dose, respectively (MBV-SP1 and MBV-SP2), and basal diet plus 0.1% amoxicillin (AMX). All treated animals showed no significant differences in live weight, average daily gain, and feed efficiency compared to control animals. Histological examination showed that AMX treatment decreased the villi lengths of the duodenum and ileum below control villi length (P < 0.05) while MBV-SP1 and particularly MBV-SP2 increased villi lengths in the duodenum, jejunum, and ileum above AMX -treatment lengths (P < 0.05). The Firmicutes/Bacteroidetes ratio increased in the cecum of broilers fed AMX (P < 0.05) while SP2, MBV-SP1, and MBV-SP2-fed animals showed (in order) increasing ratios up to the AMX level. The abundance of bacterial species of the genus Lactobacillus increased in MBV-SP1 and MBV-SP2-fed groups including a striking increase in Lactobacillus salivarius abundance with MBV-SP2 (P < 0.05). Feeding MBV-SP1 and MBV-SP2 decreased the level of pro-inflammatory cytokine IL-6 in plasma of broilers to a greater extent than SP1 and SP2. These results reveal that MBV-enriched microalgae extracts improve the intestinal health and beneficial microflora composition of broilers.
Collapse
Affiliation(s)
- Cheng-Wei T Chang
- Department of Chemistry and Biochemistry, Utah State University, Logan, UT, United States
| | - Jon Y Takemoto
- Department of Biology, Utah State University, Logan, UT, United States
| | - Pei-En Chang
- Institute of Biotechnology, National Taiwan University, Taipei City, Taiwan
| | - Madher N AlFindee
- Department of Chemistry and Biochemistry, Utah State University, Logan, UT, United States
| | - Yuan-Yu Lin
- Department of Animal Science and Technology, National Taiwan University, Taipei City, Taiwan
| |
Collapse
|
45
|
Solár P, Brázda V, Levin S, Zamani A, Jančálek R, Dubový P, Joukal M. Subarachnoid Hemorrhage Increases Level of Heme Oxygenase-1 and Biliverdin Reductase in the Choroid Plexus. Front Cell Neurosci 2020; 14:593305. [PMID: 33328892 PMCID: PMC7732689 DOI: 10.3389/fncel.2020.593305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 11/04/2020] [Indexed: 11/18/2022] Open
Abstract
Subarachnoid hemorrhage is a specific, life-threatening form of hemorrhagic stroke linked to high morbidity and mortality. It has been found that the choroid plexus of the brain ventricles forming the blood-cerebrospinal fluid barrier plays an important role in subarachnoid hemorrhage pathophysiology. Heme oxygenase-1 and biliverdin reductase are two of the key enzymes of the hemoglobin degradation cascade. Therefore, the aim of present study was to investigate changes in protein levels of heme oxygenase-1 and biliverdin reductase in the rat choroid plexus after experimental subarachnoid hemorrhage induced by injection of non-heparinized autologous blood to the cisterna magna. Artificial cerebrospinal fluid of the same volume as autologous blood was injected to mimic increased intracranial pressure in control rats. Immunohistochemical and Western blot analyses were used to monitor changes in the of heme oxygenase-1 and biliverdin reductase levels in the rat choroid plexus after induction of subarachnoid hemorrhage or artificial cerebrospinal fluid application for 1, 3, and 7 days. We found increased levels of heme oxygenase-1 and biliverdin reductase protein in the choroid plexus over the entire period following subarachnoid hemorrhage induction. The level of heme oxygenase-1 was the highest early (1 and 3 days) after subarachnoid hemorrhage indicating its importance in hemoglobin degradation. Increased levels of heme oxygenase-1 were also observed in the choroid plexus epithelial cells at all time points after application of artificial cerebrospinal fluid. Biliverdin reductase protein was detected mainly in the choroid plexus epithelial cells, with levels gradually increasing during subarachnoid hemorrhage. Our results suggest that heme oxygenase-1 and biliverdin reductase are involved not only in hemoglobin degradation but probably also in protecting choroid plexus epithelial cells and the blood-cerebrospinal fluid barrier from the negative effects of subarachnoid hemorrhage.
Collapse
Affiliation(s)
- Peter Solár
- Department of Anatomy, Faculty of Medicine, Cellular and Molecular Neurobiology Research Group, Masaryk University, Brno, Czechia.,Department of Neurosurgery - St. Anne's University Hospital Brno, Faculty of Medicine, Masaryk University, Brno, Czechia.,Department of Neurosurgery, St. Anne's University Hospital Brno, Brno, Czechia
| | - Václav Brázda
- Department of Anatomy, Faculty of Medicine, Cellular and Molecular Neurobiology Research Group, Masaryk University, Brno, Czechia.,Institute of Biophysics of the Czech Academy of Sciences, Brno, Czechia
| | - Shahaf Levin
- Department of Anatomy, Faculty of Medicine, Cellular and Molecular Neurobiology Research Group, Masaryk University, Brno, Czechia
| | - Alemeh Zamani
- Department of Anatomy, Faculty of Medicine, Cellular and Molecular Neurobiology Research Group, Masaryk University, Brno, Czechia
| | - Radim Jančálek
- Department of Neurosurgery - St. Anne's University Hospital Brno, Faculty of Medicine, Masaryk University, Brno, Czechia.,Department of Neurosurgery, St. Anne's University Hospital Brno, Brno, Czechia
| | - Petr Dubový
- Department of Anatomy, Faculty of Medicine, Cellular and Molecular Neurobiology Research Group, Masaryk University, Brno, Czechia
| | - Marek Joukal
- Department of Anatomy, Faculty of Medicine, Cellular and Molecular Neurobiology Research Group, Masaryk University, Brno, Czechia
| |
Collapse
|
46
|
Costa DL, Amaral EP, Andrade BB, Sher A. Modulation of Inflammation and Immune Responses by Heme Oxygenase-1: Implications for Infection with Intracellular Pathogens. Antioxidants (Basel) 2020; 9:antiox9121205. [PMID: 33266044 PMCID: PMC7761188 DOI: 10.3390/antiox9121205] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/25/2020] [Accepted: 11/26/2020] [Indexed: 02/07/2023] Open
Abstract
Heme oxygenase-1 (HO-1) catalyzes the degradation of heme molecules releasing equimolar amounts of biliverdin, iron and carbon monoxide. Its expression is induced in response to stress signals such as reactive oxygen species and inflammatory mediators with antioxidant, anti-inflammatory and immunosuppressive consequences for the host. Interestingly, several intracellular pathogens responsible for major human diseases have been shown to be powerful inducers of HO-1 expression in both host cells and in vivo. Studies have shown that this HO-1 response can be either host detrimental by impairing pathogen control or host beneficial by limiting infection induced inflammation and tissue pathology. These properties make HO-1 an attractive target for host-directed therapy (HDT) of the diseases in question, many of which have been difficult to control using conventional antibiotic approaches. Here we review the mechanisms by which HO-1 expression is induced and how the enzyme regulates inflammatory and immune responses during infection with a number of different intracellular bacterial and protozoan pathogens highlighting mechanistic commonalities and differences with the goal of identifying targets for disease intervention.
Collapse
Affiliation(s)
- Diego L. Costa
- Departamento de Bioquímica e Imunologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto 14049-900, São Paulo, Brazil
- Correspondence: ; Tel.: +55-16-3315-3061
| | - Eduardo P. Amaral
- Immunobiology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; (E.P.A.); (A.S.)
| | - Bruno B. Andrade
- Wellcome Centre for Infectious Disease Research in Africa, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town 7925, South Africa;
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador 40296-710, Bahia, Brazil
- Multinational Organization Network Sponsoring Translational and Epidemiological Research (MONSTER) Initiative, Salvador 40210-320, Bahia, Brazil
- Curso de Medicina, Faculdade de Tecnologia e Ciências (UniFTC), Salvador 41741-590, Bahia, Brazil
- Curso de Medicina, Universidade Salvador (UNIFACS), Laureate International Universities, Salvador 41770-235, Bahia, Brazil
- Escola Bahiana de Medicina e Saúde Pública (EBMSP), Salvador 40290-000, Bahia, Brazil
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Alan Sher
- Immunobiology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; (E.P.A.); (A.S.)
| |
Collapse
|
47
|
Yao Q, Lan QH, Jiang X, Du CC, Zhai YY, Shen X, Xu HL, Xiao J, Kou L, Zhao YZ. Bioinspired biliverdin/silk fibroin hydrogel for antiglioma photothermal therapy and wound healing. Theranostics 2020; 10:11719-11736. [PMID: 33052243 PMCID: PMC7545989 DOI: 10.7150/thno.47682] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 09/13/2020] [Indexed: 12/11/2022] Open
Abstract
Rationale: Photothermal therapy employs the photoabsorbers to generate heat under the near-infrared (NIR) irradiation for thermal tumor ablation. However, NIR irradiation might damage the adjacent tissue due to the leakage of the photoabsorbers and the residual materials after treatment might hinder the local healing process. A bifunctional hydrogel that holds both photothermal property and potent pro-healing ability provides a viable option to resolve this issue. Methods: In this study, we developed a bioinspired green hydrogel (BVSF) with the integration of bioproduct biliverdin into natural derived silk fibroin matrix for antiglioma photothermal therapy and wound healing. Results: The BVSF hydrogel possessed excellent and controllable photothermal activity under NIR irradiation and resulted in effective tumor ablation both in vitro and in vivo. Additionally, the BVSF hydrogel exerted anti-inflammatory effects both in vitro and in vivo, and stimulated angiogenesis and wound healing in a full-thickness defect rat model. Conclusion: Overall, this proof-of-concept study was aimed to determine the feasibility and reliability of using an all-natural green formulation for photothermal therapy and post-treatment care.
Collapse
|
48
|
Hansen TWR, Wong RJ, Stevenson DK. Molecular Physiology and Pathophysiology of Bilirubin Handling by the Blood, Liver, Intestine, and Brain in the Newborn. Physiol Rev 2020; 100:1291-1346. [PMID: 32401177 DOI: 10.1152/physrev.00004.2019] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Bilirubin is the end product of heme catabolism formed during a process that involves oxidation-reduction reactions and conserves iron body stores. Unconjugated hyperbilirubinemia is common in newborn infants, but rare later in life. The basic physiology of bilirubin metabolism, such as production, transport, and excretion, has been well described. However, in the neonate, numerous variables related to nutrition, ethnicity, and genetic variants at several metabolic steps may be superimposed on the normal physiological hyperbilirubinemia that occurs in the first week of life and results in bilirubin levels that may be toxic to the brain. Bilirubin exists in several isomeric forms that differ in their polarities and is considered a physiologically important antioxidant. Here we review the chemistry of the bilirubin molecule and its metabolism in the body with a particular focus on the processes that impact the newborn infant, and how differences relative to older children and adults contribute to the risk of developing both acute and long-term neurological sequelae in the newborn infant. The final section deals with the interplay between the brain and bilirubin and its entry, clearance, and accumulation. We conclude with a discussion of the current state of knowledge regarding the mechanism(s) of bilirubin neurotoxicity.
Collapse
Affiliation(s)
- Thor W R Hansen
- Division of Paediatric and Adolescent Medicine, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway; and Department of Pediatrics, Stanford University School of Medicine, Stanford, California
| | - Ronald J Wong
- Division of Paediatric and Adolescent Medicine, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway; and Department of Pediatrics, Stanford University School of Medicine, Stanford, California
| | - David K Stevenson
- Division of Paediatric and Adolescent Medicine, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway; and Department of Pediatrics, Stanford University School of Medicine, Stanford, California
| |
Collapse
|
49
|
Tun S, Spainhower CJ, Cottrill CL, Lakhani HV, Pillai SS, Dilip A, Chaudhry H, Shapiro JI, Sodhi K. Therapeutic Efficacy of Antioxidants in Ameliorating Obesity Phenotype and Associated Comorbidities. Front Pharmacol 2020; 11:1234. [PMID: 32903449 PMCID: PMC7438597 DOI: 10.3389/fphar.2020.01234] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 07/28/2020] [Indexed: 12/13/2022] Open
Abstract
Obesity has been a worldwide epidemic for decades. Despite the abundant increase in knowledge regarding the etiology and pathogenesis of obesity, the prevalence continues to rise with estimates predicting considerably higher numbers by the year 2030. Obesity is characterized by an abnormal lipid accumulation, however, the physiological consequences of obesity are far more concerning. The development of the obesity phenotype constitutes dramatic alterations in adipocytes, along with several other cellular mechanisms which causes substantial increase in systemic oxidative stress mediated by reactive oxygen species (ROS). These alterations promote a chronic state of inflammation in the body caused by the redox imbalance. Together, the systemic oxidative stress and chronic inflammation plays a vital role in maintaining the obese state and exacerbating onset of cardiovascular complications, Type II diabetes mellitus, dyslipidemia, non-alcoholic steatohepatitis, and other conditions where obesity has been linked as a significant risk factor. Because of the apparent role of oxidative stress in the pathogenesis of obesity, there has been a growing interest in attenuating the pro-oxidant state in obesity. Hence, this review aims to highlight the therapeutic role of antioxidants, agents that negate pro-oxidant state of cells, in ameliorating obesity and associated comorbidities. More specifically, this review will explore how various antioxidants target unique and diverse pathways to exhibit an antioxidant defense mechanism.
Collapse
Affiliation(s)
- Steven Tun
- Departments of Medicine, Surgery and Biomedical Sciences, Marshall University Joan C. Edwards School of Medicine, Huntington, WV, United States
| | - Caleb James Spainhower
- Departments of Medicine, Surgery and Biomedical Sciences, Marshall University Joan C. Edwards School of Medicine, Huntington, WV, United States
| | - Cameron Lee Cottrill
- Departments of Medicine, Surgery and Biomedical Sciences, Marshall University Joan C. Edwards School of Medicine, Huntington, WV, United States
| | - Hari Vishal Lakhani
- Departments of Medicine, Surgery and Biomedical Sciences, Marshall University Joan C. Edwards School of Medicine, Huntington, WV, United States
| | - Sneha S Pillai
- Departments of Medicine, Surgery and Biomedical Sciences, Marshall University Joan C. Edwards School of Medicine, Huntington, WV, United States
| | - Anum Dilip
- Departments of Medicine, Surgery and Biomedical Sciences, Marshall University Joan C. Edwards School of Medicine, Huntington, WV, United States
| | - Hibba Chaudhry
- Departments of Medicine, Surgery and Biomedical Sciences, Marshall University Joan C. Edwards School of Medicine, Huntington, WV, United States
| | - Joseph I Shapiro
- Departments of Medicine, Surgery and Biomedical Sciences, Marshall University Joan C. Edwards School of Medicine, Huntington, WV, United States
| | - Komal Sodhi
- Departments of Medicine, Surgery and Biomedical Sciences, Marshall University Joan C. Edwards School of Medicine, Huntington, WV, United States
| |
Collapse
|
50
|
Contrepois K, Wu S, Moneghetti KJ, Hornburg D, Ahadi S, Tsai MS, Metwally AA, Wei E, Lee-McMullen B, Quijada JV, Chen S, Christle JW, Ellenberger M, Balliu B, Taylor S, Durrant MG, Knowles DA, Choudhry H, Ashland M, Bahmani A, Enslen B, Amsallem M, Kobayashi Y, Avina M, Perelman D, Schüssler-Fiorenza Rose SM, Zhou W, Ashley EA, Montgomery SB, Chaib H, Haddad F, Snyder MP. Molecular Choreography of Acute Exercise. Cell 2020; 181:1112-1130.e16. [PMID: 32470399 PMCID: PMC7299174 DOI: 10.1016/j.cell.2020.04.043] [Citation(s) in RCA: 288] [Impact Index Per Article: 57.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 12/10/2019] [Accepted: 04/21/2020] [Indexed: 02/07/2023]
Abstract
Acute physical activity leads to several changes in metabolic, cardiovascular, and immune pathways. Although studies have examined selected changes in these pathways, the system-wide molecular response to an acute bout of exercise has not been fully characterized. We performed longitudinal multi-omic profiling of plasma and peripheral blood mononuclear cells including metabolome, lipidome, immunome, proteome, and transcriptome from 36 well-characterized volunteers, before and after a controlled bout of symptom-limited exercise. Time-series analysis revealed thousands of molecular changes and an orchestrated choreography of biological processes involving energy metabolism, oxidative stress, inflammation, tissue repair, and growth factor response, as well as regulatory pathways. Most of these processes were dampened and some were reversed in insulin-resistant participants. Finally, we discovered biological pathways involved in cardiopulmonary exercise response and developed prediction models revealing potential resting blood-based biomarkers of peak oxygen consumption.
Collapse
Affiliation(s)
- Kévin Contrepois
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA; Stanford Cardiovascular Institute, Stanford University, Stanford, CA, USA
| | - Si Wu
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Kegan J Moneghetti
- Stanford Cardiovascular Institute, Stanford University, Stanford, CA, USA; Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA, USA; Department of Medicine, St. Vincent's Hospital, University of Melbourne, Melbourne, VIC, Australia; Stanford Sports Cardiology, Department of Medicine, Stanford University, Stanford, CA, USA
| | - Daniel Hornburg
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Sara Ahadi
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Ming-Shian Tsai
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Ahmed A Metwally
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Eric Wei
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | | | - Jeniffer V Quijada
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Songjie Chen
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Jeffrey W Christle
- Stanford Cardiovascular Institute, Stanford University, Stanford, CA, USA; Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA, USA; Stanford Sports Cardiology, Department of Medicine, Stanford University, Stanford, CA, USA
| | - Mathew Ellenberger
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Brunilda Balliu
- Department of Pathology, Stanford University, Stanford, CA, USA
| | - Shalina Taylor
- Pediatrics Department, Stanford University School of Medicine, Stanford, CA, USA
| | - Matthew G Durrant
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - David A Knowles
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA; Department of Radiology, Stanford University, Stanford, CA, USA
| | - Hani Choudhry
- Department of Biochemistry, Faculty of Science, Cancer and Mutagenesis Unit, King Fahd Center for Medical Research, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Melanie Ashland
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Amir Bahmani
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Brooke Enslen
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Myriam Amsallem
- Stanford Cardiovascular Institute, Stanford University, Stanford, CA, USA; Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Yukari Kobayashi
- Stanford Cardiovascular Institute, Stanford University, Stanford, CA, USA; Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Monika Avina
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Dalia Perelman
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | | | - Wenyu Zhou
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Euan A Ashley
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA; Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA, USA; Center for Undiagnosed Diseases, Stanford University, Stanford, CA, USA
| | - Stephen B Montgomery
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA; Department of Pathology, Stanford University, Stanford, CA, USA
| | - Hassan Chaib
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Francois Haddad
- Stanford Cardiovascular Institute, Stanford University, Stanford, CA, USA; Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA, USA; Stanford Diabetes Research Center, Stanford University, Stanford, CA, USA.
| | - Michael P Snyder
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA; Stanford Cardiovascular Institute, Stanford University, Stanford, CA, USA; Stanford Diabetes Research Center, Stanford University, Stanford, CA, USA.
| |
Collapse
|