1
|
Fakih TM, Rizkita AD, Dewi SA, Muchtaridi M. In silico approaches for developing sesquiterpene derivatives as antagonists of human nicotinic acetylcholine receptors (nAChRs) for nicotine addiction treatment. Curr Res Struct Biol 2025; 9:100162. [PMID: 39867106 PMCID: PMC11753972 DOI: 10.1016/j.crstbi.2024.100162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 12/07/2024] [Accepted: 12/23/2024] [Indexed: 01/28/2025] Open
Abstract
Cinnamomum, a genus within the Lauraceae family, has gained global recognition due to its wide-ranging utility. Extensive research has been dedicated to exploring its phytochemical composition and pharmacological effects. Notably, the uniqueness of Cinnamomum lies in its terpenoid content, characterized by distinctive structures and significant biological implications. An intriguing discovery is that sesquiterpene compounds originating from Cinnamomum possess the capacity to function as antagonists for human nicotinic acetylcholine receptors (nAChRs), specifically the nAChRÿ3 subtype, rendering them potential candidates for nicotine replacement therapy (NRT) to aid active smokers. This investigation employed molecular docking and molecular dynamics simulations to assess the inhibitory effects of these compounds on nAChRÿ3. Among the 55 compounds examined, Dihydroxyeudesmene, Gibberodione, and Germacrene-E exhibited the highest binding affinities. These compounds demonstrated robust interactions with the nAChRÿ3 receptor, as evidenced by elevated molecular mechanics general surface area (MM/GBSA) values (ΔG Bind = Dihydroxyeudesmene: -36.45 kcal/mol, Gibberodione: -36.51 kcal/mol, and Germacrene-E: -36.51 kcal/mol). Molecular dynamics simulations further confirmed the stability of these three compounds, indicating their potential to effectively compete with native ligands. However, comprehensive in vitro, in vivo, and clinical investigations are imperative to ascertain the efficacy of these promising therapeutic candidates.
Collapse
Affiliation(s)
- Taufik Muhammad Fakih
- Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, Jalan Raya Bandung-Sumedang KM 21, Sumedang, 45363, Indonesia
- Department of Pharmacy, Faculty of Mathematics and Natural Sciences, Universitas Islam Bandung, Jl. Ranggagading No.8, Bandung, 40116, Indonesia
| | - Aden Dhana Rizkita
- Department of Pharmacy, Sekolah Tinggi Ilmu Kesehatan (STIKES) Bogor Husada, Jl. Sholeh Iskandar No.4, Bogor, 16164, Indonesia
| | - Sintia Ayu Dewi
- Graduate Institute of Pharmacognosy, College of Pharmacy, Taipei Medical University, No. 250 Wu-Xing Street, Taipei, 11031, Taiwan
| | - Muchtaridi Muchtaridi
- Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, Jalan Raya Bandung-Sumedang KM 21, Sumedang, 45363, Indonesia
- Research Collaboration Centre for Radiopharmaceuticals Theranostic, National Research and Innovation Agency (BRIN), Jalan Raya Bandung-Sumedang KM 21, Sumedang, 45363, Indonesia
| |
Collapse
|
2
|
Akter S, Ahmad SU, Bhuiyan MA, Dewan I, Reza R, Morshed N, Samdani MN, Reza MS, Kumer A, Naina Mohamed I. Network Pharmacology, Molecular Docking and Experimental Validation on Potential Application of Diabetic Wound Healing of Cinnamomum zeylanicum Through Matrix Metalloproteinases-8 And 9 (MMP-8 And MMP-9). Drug Des Devel Ther 2025; 19:1753-1782. [PMID: 40093644 PMCID: PMC11910940 DOI: 10.2147/dddt.s489113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Accepted: 02/08/2025] [Indexed: 03/19/2025] Open
Abstract
Background Diabetic wounds are a significant clinical challenge due to impaired healing processes often exacerbated by elevated matrix metalloproteinases (MMPs). Cinnamomum zeylanicum, known for its anti-inflammatory and antioxidant properties, has shown potential in promoting wound healing. This study investigates the molecular docking and experimental validation of Cinnamomum zeylanicum's effects on diabetic wound healing, focusing on its interaction with matrix metalloproteinases-8 (MMP-8) and 9 (MMP-9). Methods Molecular docking studies were performed to predict the binding affinity of Cinnamomum zeylanicum compounds to MMP-8 and MMP-9. Diabetic wound healing was evaluated using in vivo models where wounds were induced and treated with Cinnamomum zeylanicum extract. Various parameters were measured, including wound contraction, hydroxyproline content, superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), and malondialdehyde (MDA) levels. Biochemical analyses included glucose levels, fasting blood glucose (FBG), oral glucose tolerance test (OGTT), and histomorphological examination of skin tissues. Results Molecular docking results indicated a high binding affinity of Cinnamomum zeylanicum's bioactive compounds with MMP-8 and MMP-9, suggesting potential inhibition. Experimental validation showed significant improvement in wound contraction and increased hydroxyproline content, indicating enhanced collagen synthesis. Antioxidant enzyme activities (SOD, GPx, CAT) were significantly elevated, while MDA levels were reduced, reflecting decreased oxidative stress. Biochemical analysis demonstrated improved glucose homeostasis with reduced FBG and enhanced OGTT responses. Histomorphological studies revealed improved tissue architecture and re-epithelialization in treated wounds. Conclusion Cinnamomum zeylanicum exhibits promising potential in diabetic wound healing by modulating MMP-8 and MMP-9 activities, enhancing antioxidant defenses, and improving glucose regulation. These findings support its therapeutic application for diabetic wounds, providing a foundation for further clinical investigations.
Collapse
Affiliation(s)
- Sharmin Akter
- Department of Pharmacy, School of Medicine, University of Asia Pacific, Dhaka, 1215, Bangladesh
| | - Shihab Uddin Ahmad
- Department of Pharmacy, School of Medicine, University of Asia Pacific, Dhaka, 1215, Bangladesh
| | - Mohiuddin Ahmed Bhuiyan
- Department of Pharmacy, School of Medicine, University of Asia Pacific, Dhaka, 1215, Bangladesh
| | - Irin Dewan
- Department of Pharmacy, School of Medicine, University of Asia Pacific, Dhaka, 1215, Bangladesh
| | - Rumman Reza
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Dhaka, Dhaka, 1000, Bangladesh
| | - Niaz Morshed
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Dhaka, Dhaka, 1000, Bangladesh
| | - Md Nazmus Samdani
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Dhaka, Dhaka, 1000, Bangladesh
| | - Md Selim Reza
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Dhaka, Dhaka, 1000, Bangladesh
| | - Ajoy Kumer
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Chennai, TN, 602105, India
- Department of Chemistry, College of Arts and Sciences, International University of Business Agriculture and Technology, Dhaka, 1230, Bangladesh
| | - Isa Naina Mohamed
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, 56000, Malaysia
| |
Collapse
|
3
|
Portillo-Rentería G, Del Toro-Equihua M, Sánchez-Meza K, Ríos-Silva M, Siqueiros JA, Uribarren J, Cárdenas Y. Cinnamon ( Cinnamomum zeylanicum) Aqueous Extract Regulates the Parameters of Metabolic Syndrome in a Model of Wistar Rats with a Diet High in Fat and Fructose. J Med Food 2025; 28:299-303. [PMID: 39692609 DOI: 10.1089/jmf.2024.0227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2024] Open
Abstract
To identify the effect of Cinnamomum zeylanicum (CZ) aqueous extract on glucose, triglycerides, high-density lipoprotein (HDL) cholesterol, and blood pressure in male Wistar rats, fed with a high-fat and high-fructose diet (HFFD). Twenty-four male Wistar rats were randomized into four groups: Healthy (fed with standard diet), Healthy + CZ (fed with standard diet + CZ extract), HFFD (fed with HFFD), HFFD+CZ, (fed with HFFD + CZ extract). The CZ aqueous extract was administered 100 mg/kg/day by oral gavage to each rat for 8 weeks. Blood samples, blood pressure, and weight were taken at the beginning and end of the experiment. The rats were euthanized after the experiment, according to the Mexican Official Standard NOM-062-ZOOO-1999. The administration of CZ aqueous extract significantly decreased glucose levels (F[1,18]=46.458, P < .001). The interaction between the type of diet and the extract had an effect on triglycerides (F[1,18]=14.93, P = .001), and systolic (F[1,18]=127, P < .001) and diastolic blood pressure levels (F[1,18]=146.13, P < .001) in male Wistar rats. HFFD, plus the administration of CZ aqueous extract over 8 weeks, significantly improved glucose, triglyceride, and systolic and diastolic blood pressure levels, regulating metabolic parameters in male Wistar rats.
Collapse
Affiliation(s)
| | | | | | - Mónica Ríos-Silva
- Biomedical Research University Center, University of Colima, Colima, Mexico
| | | | - Javier Uribarren
- Biomedical Research University Center, University of Colima, Colima, Mexico
| | - Yolitzy Cárdenas
- Biomedical Research University Center, University of Colima, Colima, Mexico
| |
Collapse
|
4
|
Elmitwalli OSMMS, Kassim DAK, Algahiny AT, Henari FZ. Green Synthesis of Metal Nanoparticles Using Cinnamomum-Based Extracts and Their Applications. Nanotechnol Sci Appl 2025; 18:93-114. [PMID: 40027987 PMCID: PMC11871920 DOI: 10.2147/nsa.s489274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 12/15/2024] [Indexed: 03/05/2025] Open
Abstract
Introduction Nanotechnology is the science that deals with matter on the nanoscale, with sizes ranging from 1 to 100 nm. It involves designing, synthesising, characterising and applying these nanoscale materials. Nanoparticles (NPs) are known for their high surface-area to volume-ratio, surface charge density, low melting point, and distinguishably good optical/electrical properties. NPs exhibit an excellent drug delivery system, an effective contrast agent for vascular imaging, and effective antimicrobial activity. The biological synthesis of NPs is a simple, cost-effective, and environmentally friendly technique. This bottom-up technique utilises organisms' enzymes/bio-compounds and a plant extract as capping and reducing agents. Cinnamomum species are known for their intrinsic antimicrobial, antidiabetic, antioxidant, anti-inflammatory, anticancer, and neuroprotective properties. This review summarises articles that greenly synthesised NPs using Cinnamomum species' extracts, describing their methodologies, characterisation of the nanoparticles and their medical applications. Methods A literature search has been conducted on databases PubMed, ScienceDirect, and Frontier on the green synthesis of metal nanoparticles (MNPs) using Cinnamomum-based extracts. Various articles reported the methodology of utilising Cinnamomum species' extracts as reducing and capping agents. Only original lab articles were considered. Results Various types of MNPs have been successfully synthesised. The most common Cinnamomum species utilised as extracts is Cinnamomum tamala. The most common applications tested were the MNPs' antibacterial, antiviral, antifungal, antidiabetic and anticancerous activity. MNPs also had a role in treating mice-induced polycystic ovarian syndrome and Parkinson-like neurodegenerative diseases. Conclusion Cinnamomum species have been successfully utilised in the green synthesis of various MNPs. Silver and Gold NPs were the most reported. These MNPs proved their efficacy in multiple fields of medicine and biology, especially their antibacterial, antiviral and antifungal activity. Notably, the newly synthesised NPs showed promising results in treating polycystic ovarian syndrome in rats.
Collapse
Affiliation(s)
| | - Deyari Azad Kareem Kassim
- Department of Medical Sciences, Royal College of Surgeons in Ireland - Medical University of Bahrain, Busaiteen, Muharraq, Kingdom of Bahrain
| | - Ahmed Taymour Algahiny
- Department of Medical Sciences, Royal College of Surgeons in Ireland - Medical University of Bahrain, Busaiteen, Muharraq, Kingdom of Bahrain
| | - Fryad Zeki Henari
- Department of Medical Sciences, Royal College of Surgeons in Ireland - Medical University of Bahrain, Busaiteen, Muharraq, Kingdom of Bahrain
| |
Collapse
|
5
|
Kaab SB, Martin M, Degand H, Foncoux B, Morsomme P, Jijakli MH. Label free quantitative proteomic analysis reveals the physiological and biochemical responses of Arabidopsis thaliana to cinnamon essential oil. Sci Rep 2025; 15:6156. [PMID: 39979395 PMCID: PMC11842708 DOI: 10.1038/s41598-025-89368-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 02/05/2025] [Indexed: 02/22/2025] Open
Abstract
The increasing use of synthetic chemical herbicides has resulted in environmental, human and animal health issues. This has also led to the development of herbicide resistance in weed populations. The use of essential oils (EOs) can contribute to the development of effective, eco-friendly and nature-based alternatives to these chemical products due to their phytotoxicity and multisite action. Our study aimed to evaluate the proteomic response of Arabidopsis thaliana (A. thaliana) leaves to the application of a cinnamon essential oil (CEO) emulsion. The results showed that the application of CEO emulsion at a concentration of 6% severely impacted the proteomic profile of A. thaliana, especially for membrane proteins and those involved in the photosynthesis process. Interestingly, 40 proteins were identified and listed as the most differentially accumulated proteins in the leaves of A. thaliana. CEO decreased the expression of all the proteins associated with catabolism and anabolism processes while simultaneously increasing the expression levels of proteins involved in the response to oxidative stress. Overall, these findings allowed us to obtain a global view of the proteome response to CEO, opening promising perspectives for the development of natural herbicides, especially given the low probability of developing resistant weed populations.
Collapse
Affiliation(s)
- Sofiene Ben Kaab
- Integrated and Urban Plant Pathology Laboratory, University of Liège, Gembloux Agro-Bio Tech, 2 Passage des Déportés, 5030, Gembloux, Belgium.
| | - Manon Martin
- Louvain Institute of Biomolecular Science and Technology, UCLouvain, Croix du sud 4-5, 1348, Louvain-la-Neuve, Belgium
| | - Hervé Degand
- Louvain Institute of Biomolecular Science and Technology, UCLouvain, Croix du sud 4-5, 1348, Louvain-la-Neuve, Belgium
| | - Bérénice Foncoux
- Integrated and Urban Plant Pathology Laboratory, University of Liège, Gembloux Agro-Bio Tech, 2 Passage des Déportés, 5030, Gembloux, Belgium
- APEO SRL (Agronomical Plant Extracts & Essential Oils), Passage des Déportés 2, 5030, Gembloux, Belgium
| | - Pierre Morsomme
- Louvain Institute of Biomolecular Science and Technology, UCLouvain, Croix du sud 4-5, 1348, Louvain-la-Neuve, Belgium
| | - M Haissam Jijakli
- Integrated and Urban Plant Pathology Laboratory, University of Liège, Gembloux Agro-Bio Tech, 2 Passage des Déportés, 5030, Gembloux, Belgium
| |
Collapse
|
6
|
Liang H, Lv F, Xian M, Luo C, Zhang L, Yang M, Li Q, Zhao X. Inhibition Mechanism of Cinnamomum burmannii Leaf Essential Oil Against Aspergillus flavus and Aflatoxins. Foods 2025; 14:682. [PMID: 40002124 PMCID: PMC11853908 DOI: 10.3390/foods14040682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 02/06/2025] [Accepted: 02/11/2025] [Indexed: 02/27/2025] Open
Abstract
This investigation evaluates the comparative efficacy of Cinnamomum burmannii leaf essential oil (YXYO) and its main active ingredients as a novel preservative to protect stored food commodities from fungal infestations, aflatoxin B1 (AFB1) contamination caused by Aspergillus flavus. Morphological observations utilizing SEM and TEM revealed significant alterations in treated samples, alongside a decrease in ergosterol content and a dose-dependent disruption of the antioxidant system and energy system. Transcriptomic analysis suggested that differentially expressed genes were predominantly associated with spore growth, the cell wall, the cell membrane, oxidative stress, energy metabolism, and aflatoxin biosynthesis. Solid-phase microextraction-gas chromatography-mass spectrometry (SPME-GC-MS) identified ten active ingredients in YXYO, including borneol, α-terpineol, terpinen-4-ol, etc. Moreover, an effective inhibition of A. flavus infection in peanuts was observed with the application of 30 μL/disc of YXYO and a blend of its active compounds.
Collapse
Affiliation(s)
- Huanyan Liang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China; (H.L.); (M.Y.)
- Hainan Provincial Key Laboratory of Resources Conservation and Development of Southern Medicine, Hainan Branch of the Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Haikou 570311, China; (F.L.); (M.X.); (C.L.)
| | - Feifei Lv
- Hainan Provincial Key Laboratory of Resources Conservation and Development of Southern Medicine, Hainan Branch of the Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Haikou 570311, China; (F.L.); (M.X.); (C.L.)
| | - Mengting Xian
- Hainan Provincial Key Laboratory of Resources Conservation and Development of Southern Medicine, Hainan Branch of the Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Haikou 570311, China; (F.L.); (M.X.); (C.L.)
| | - Chenghua Luo
- Hainan Provincial Key Laboratory of Resources Conservation and Development of Southern Medicine, Hainan Branch of the Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Haikou 570311, China; (F.L.); (M.X.); (C.L.)
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou 510006, China;
| | - Lei Zhang
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou 510006, China;
| | - Meihua Yang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China; (H.L.); (M.Y.)
| | - Qian Li
- College of Basic Medical Science, Ningxia Medical University, Yinchuan 750004, China
| | - Xiangsheng Zhao
- Hainan Provincial Key Laboratory of Resources Conservation and Development of Southern Medicine, Hainan Branch of the Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Haikou 570311, China; (F.L.); (M.X.); (C.L.)
| |
Collapse
|
7
|
Hernando G, Turani O, Rodriguez Araujo N, Pulido Carrasquero A, Bouzat C. Unraveling anthelmintic targets and mechanisms of action of trans-cinnamaldehyde from cinnamon essential oil. Sci Rep 2025; 15:5422. [PMID: 39948358 PMCID: PMC11825704 DOI: 10.1038/s41598-025-89883-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 02/10/2025] [Indexed: 02/16/2025] Open
Abstract
Parasitic nematodes pose a significant global socio-economic threat and contribute to neglected diseases. Current infection control relies on drug therapy, but increasing anthelmintic resistance highlights the urgent need for novel treatments. In this study, we investigate the molecular targets and mechanisms of action of trans-cinnamaldehyde (TCA), a principal component of Cinnamon Essential Oil (Cinnamomum verum EO), using Caenorhabditis elegans as a model organism. Our research offers new insights into the anthelmintic effects of TCA by identifying its specific interactions with key Cys-loop receptors and detailing its inhibitory mechanisms. The anthelmintic activity of C. verum EO and TCA manifests as rapid alterations in locomotor activity and inhibition of egg hatching. TCA screening of mutant worms lacking Cys-loop receptors reveal multiple receptor targets, including the levamisole-sensitive nicotinic ACh receptor (L-AChR), GABA-activated chloride channel (UNC-49) and glutamate-activated chloride channel. The mechanism behind the egg hatching inhibition by TCA remains unclear, as none of the mutants studied were found to be resistant to TCA. Furthermore, TCA increases the paralyzing effects of the anthelmintics levamisole and monepantel in a synergistic manner, offering a route for more effective polytherapy strategies. Electrophysiological studies on C. elegans Cys-loop receptors, in both native and heterologous systems, were used to elucidate the molecular mechanisms of TCA-induced paralysis. TCA reduces ACh- and GABA-elicited macroscopic currents and decreases single-channel activity and open durations of native muscle L-AChR channels, indicating an inhibitory action. Thus, by acting through a different mechanism to that of classical anthelmintics, TCA may be beneficial to counteract resistance in combined anthelmintic therapies. Our findings underscore the potential of the multitarget compound TCA as a valuable tool in integrated pharmacological strategies.
Collapse
Affiliation(s)
- Guillermina Hernando
- Instituto de Investigaciones Bioquímicas de Bahía Blanca, Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur (UNS)-CONICET, Bahía Blanca, 8000, Argentina.
| | - Ornella Turani
- Instituto de Investigaciones Bioquímicas de Bahía Blanca, Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur (UNS)-CONICET, Bahía Blanca, 8000, Argentina
| | - Noelia Rodriguez Araujo
- Instituto de Investigaciones Bioquímicas de Bahía Blanca, Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur (UNS)-CONICET, Bahía Blanca, 8000, Argentina
| | - Alcibeth Pulido Carrasquero
- Instituto de Investigaciones Bioquímicas de Bahía Blanca, Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur (UNS)-CONICET, Bahía Blanca, 8000, Argentina
| | - Cecilia Bouzat
- Instituto de Investigaciones Bioquímicas de Bahía Blanca, Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur (UNS)-CONICET, Bahía Blanca, 8000, Argentina
| |
Collapse
|
8
|
Ansari P, Reberio AD, Ansari NJ, Kumar S, Khan JT, Chowdhury S, Abd El-Mordy FM, Hannan JMA, Flatt PR, Abdel-Wahab YHA, Seidel V. Therapeutic Potential of Medicinal Plants and Their Phytoconstituents in Diabetes, Cancer, Infections, Cardiovascular Diseases, Inflammation and Gastrointestinal Disorders. Biomedicines 2025; 13:454. [PMID: 40002867 PMCID: PMC11853317 DOI: 10.3390/biomedicines13020454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 02/04/2025] [Accepted: 02/09/2025] [Indexed: 02/27/2025] Open
Abstract
Conditions like diabetes mellitus (DM), cancer, infections, inflammation, cardiovascular diseases (CVDs), and gastrointestinal (GI) disorders continue to have a major global impact on mortality and morbidity. Medicinal plants have been used since ancient times in ethnomedicine (e.g., Ayurveda, Unani, Traditional Chinese Medicine, and European Traditional Medicine) for the treatment of a wide range of disorders. Plants are a rich source of diverse phytoconstituents with antidiabetic, anticancer, antimicrobial, antihypertensive, antioxidant, antihyperlipidemic, cardioprotective, immunomodulatory, and/or anti-inflammatory activities. This review focuses on the 35 plants most commonly reported for the treatment of these major disorders, with a particular emphasis on their traditional uses, phytoconstituent contents, pharmacological properties, and modes of action. Active phytomolecules with therapeutic potential include cucurbitane triterpenoids, diosgenin, and limonoids (azadiradione and gedunin), which exhibit antidiabetic properties, with cucurbitane triterpenoids specifically activating Glucose Transporter Type 4 (GLUT4) translocation. Capsaicin and curcumin demonstrate anticancer activity by deactivating NF-κB and arresting the cell cycle in the G2 phase. Antimicrobial activities have been observed for piperine, reserpine, berberine, dictamnine, chelerythrine, and allitridin, with the latter two triggering bacterial cell lysis. Quercetin, catechin, and genistein exhibit anti-inflammatory properties, with genistein specifically suppressing CD8+ cytotoxic T cell function. Ginsenoside Rg1 and ginsenoside Rg3 demonstrate potential for treating cardiovascular diseases, with ginsenoside Rg1 activating PPARα promoter, and the PI3K/Akt pathway. In contrast, ternatin, tannins, and quercitrin exhibit potential in gastrointestinal disorders, with quercitrin regulating arachidonic acid metabolism by suppressing cyclooxygenase (COX) and lipoxygenase activity. Further studies are warranted to fully investigate the clinical therapeutic benefits of these plants and their phytoconstituents, as well as to elucidate their underlying molecular mechanisms of action.
Collapse
Affiliation(s)
- Prawej Ansari
- Department of Pharmacology, National Medical College and Teaching Hospital, Parsa, Birgunj 44300, Nepal
- Comprehensive Diabetes Center, Department of Genetics, Heersink School of Medicine, University of Alabama, Birmingham (UAB), Birmingham, AL 35233, USA;
- Department of Pharmacy, School of Pharmacy and Public Health, Independent University, Bangladesh (IUB), Dhaka 1229, Bangladesh (J.M.A.H.)
- Centre for Diabetes Research, School of Biomedical Sciences, Ulster University, Coleraine BT52 1SA, UK; (P.R.F.); (Y.H.A.A.-W.)
| | - Alexa D. Reberio
- Department of Pharmacy, School of Pharmacy and Public Health, Independent University, Bangladesh (IUB), Dhaka 1229, Bangladesh (J.M.A.H.)
| | - Nushrat J. Ansari
- Department of Radiology, National Medical College and Teaching Hospital, Parsa, Birgunj 44300, Nepal;
| | - Sandeep Kumar
- Comprehensive Diabetes Center, Department of Genetics, Heersink School of Medicine, University of Alabama, Birmingham (UAB), Birmingham, AL 35233, USA;
| | - Joyeeta T. Khan
- Department of Pharmacy, School of Pharmacy and Public Health, Independent University, Bangladesh (IUB), Dhaka 1229, Bangladesh (J.M.A.H.)
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences (UAMS), Little Rock, AR 72205, USA
| | - Suraiya Chowdhury
- Department of Pharmacy, School of Pharmacy and Public Health, Independent University, Bangladesh (IUB), Dhaka 1229, Bangladesh (J.M.A.H.)
| | - Fatma Mohamed Abd El-Mordy
- Department of Pharmacognosy and Medicinal Plants, Faculty of Pharmacy, Al-Azhar University, Cairo 11754, Egypt;
| | - J. M. A. Hannan
- Department of Pharmacy, School of Pharmacy and Public Health, Independent University, Bangladesh (IUB), Dhaka 1229, Bangladesh (J.M.A.H.)
| | - Peter R. Flatt
- Centre for Diabetes Research, School of Biomedical Sciences, Ulster University, Coleraine BT52 1SA, UK; (P.R.F.); (Y.H.A.A.-W.)
| | - Yasser H. A. Abdel-Wahab
- Centre for Diabetes Research, School of Biomedical Sciences, Ulster University, Coleraine BT52 1SA, UK; (P.R.F.); (Y.H.A.A.-W.)
| | - Veronique Seidel
- Natural Products Research Laboratory, Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, UK;
| |
Collapse
|
9
|
Jin L, Peng H, Wang Y, Chu C, Zhang X, Qian C, Zhan B, Zhu L, Yang D, Zhang L, Zhao Z. Mechanistic insights into the anti-oxidative and anti-inflammatory functions of covalent-reactive cinnamyl compounds within Cinnamomum cassia. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 136:156261. [PMID: 39740379 DOI: 10.1016/j.phymed.2024.156261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 08/19/2024] [Accepted: 11/13/2024] [Indexed: 01/02/2025]
Abstract
BACKGROUND Cinnamomum cassia Presl (Lauraceae) is widely used as a medicinal plant in the folk medicine and pharmaceutic industry, for its promising anti-inflammatory, anti-oxidative, and anti-bacterial function. However, the major bioactive components were still in debate, and their underlying molecular mechanism was not yet fully understood. PURPOSE This study aimed to identify the bioactive ingredients of C. cassia and investigate the molecular mechanism using in vitro and in silico methods. METHODS UPLC-QTOF/MS/MS analysis was used to characterize the chemical constituents of alcoholic extract from C. cassia. Reduced glutathione was employed to deplete covalent active cinnamyl compounds. Subsequently, the anti-inflammatory and antioxidant effects of covalent reactive and non-covalent reactive ingredients from C. cassia extract were compared. Their molecular mechanisms were investigated using untargeted metabolomics, in vitro assays, surface plasmon resonance (SPR), and molecular modeling. RESULTS Chemical analysis and in vitro assays confirmed the covalent reactive cinnamyl compounds, such as cinnamaldehyde and 2-methoxycinnamaldehyde, exhibited anti-inflammatory and anti-oxidative activity on LPS-stimulated macrophages. Untargeted metabolomics revealed that cinnamaldehyde, one of the covalent reactive cinnamyl compounds, primarily affected amino acid metabolism, and glucose metabolism, promoted glutathione synthesis within LPS-stimulated macrophages, and affected the metabolic profile of M1 macrophages. Consistent with these findings, cinnamaldehyde significantly increased glutathione synthesis and induced glutathione efflux from murine macrophages. In contrast to the literature data, we observed that cinnamaldehyde did not cause GSH depletion, nor elevate the expression of glutamate-cysteine ligase (GCL) in proinflammatory macrophages at low concentrations. The SPR experiment and molecular modeling demonstrated that GCLC was the potential target of cinnamaldehyde. CONCLUSIONS Our study not only demonstrated the reactive cinnamyl species as the principal antioxidative component of C. cassia but also unveiled a novel molecular mechanism whereby covalent reactive compounds exert their antioxidative effects through covalent modification of GCLC at its active center.
Collapse
Affiliation(s)
- Lu Jin
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, PR China; Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, PR China
| | - Huayong Peng
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, PR China
| | - Yingchao Wang
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, PR China
| | - Chenliang Chu
- School of Food & Pharmaceutical Engineering, Zhaoqing University, Zhaoqing 526061, PR China
| | - Xinlei Zhang
- Department of Medicinal Chemistry, School of Pharmacy, Fourth Military Medical University, Xi'an, 710032, PR China
| | - Chunguo Qian
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, PR China; Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, PR China
| | - Bingjinfeng Zhan
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, PR China
| | - Longping Zhu
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, PR China
| | - Depo Yang
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, PR China
| | - Lixia Zhang
- Yunnan Key Laboratory of Southern Medicine Utilization, Yunnan Branch Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Jinghong 666100, PR China.
| | - Zhimin Zhao
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, PR China.
| |
Collapse
|
10
|
Ben Kaab S, Fernández Pierna JA, Foncoux B, Compère P, Baeten V, Jijakli MH. Biochemical and Physiological Responses of Weeds to the Application of a Botanical Herbicide Based on Cinnamon Essential Oil. PLANTS (BASEL, SWITZERLAND) 2024; 13:3432. [PMID: 39683225 DOI: 10.3390/plants13233432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 11/23/2024] [Accepted: 12/03/2024] [Indexed: 12/18/2024]
Abstract
The use of chemical herbicides induces negative impacts on the environment, animals, and human health. It also leads to the development of herbicide-resistant weeds. In this context, natural and efficacious herbicides are highly sought after. Essential oils are natural compounds with antibacterial, fungicidal, and phytotoxic properties. For this reason, we studied the post-emergence phytotoxic effect of cinnamon essential oil (cinnamon EO) from Cinnamomum cassia under greenhouse conditions, testing it against Trifolium incarnatum (T. incarnatum) and Lolium perenne (L. perenne). The content of malondialdehyde (MDA), percentage of water loss, electrolyte leakage, and the fluorescence of treated leaves by cinnamon EO were determined in order to understand the physiological and biochemical responses. In addition, transmission electron microscopy (TEM) was used to study the effect of cinnamon EO on cellular organelles in different tissues of T. incarnatum leaves. Results showed that cinnamon EO quickly induced oxidative stress in treated leaves by increasing MDA content, impacting membrane integrity and causing water loss. TEM observations confirmed the cell desiccation by cellular plasmolysis and showed an alteration of the membrane integrity and chloroplast damages. Moreover, Raman analysis confirms the disturbance of the plant metabolism by the disappearance of some scattering bands which correspond to primary metabolites. Through our finding, we confirm that cinnamon essential oil (EO) could be proposed in the future as a potential bioherbicide and a suitable source of natural phytotoxic compounds with a multisite action on weeds.
Collapse
Affiliation(s)
- Sofiene Ben Kaab
- Integrated and Urban Plant Pathology Laboratory, University of Liège, Gembloux Agro-Bio Tech, 2 Passage des Déportés, 5030 Gembloux, Belgium
| | - Juan Antonio Fernández Pierna
- Quality and Authentication of Products Unit, Knowledge and Valorization of Agricultural Products Department, Walloon Agricultural Research Centre (CRA-W), Chaussée de Namur 24, 5030 Gembloux, Belgium
| | - Berenice Foncoux
- Integrated and Urban Plant Pathology Laboratory, University of Liège, Gembloux Agro-Bio Tech, 2 Passage des Déportés, 5030 Gembloux, Belgium
| | - Philippe Compère
- Laboratory of Functional Morphology and Evolution, Center for Applied Research and Education in Microscopy (CAREM), University of Liège, 4000 Liège, Belgium
- Biomaterials Interfaculty Center (CEIB), University of Liège, 4000 Liège, Belgium
| | - Vincent Baeten
- Quality and Authentication of Products Unit, Knowledge and Valorization of Agricultural Products Department, Walloon Agricultural Research Centre (CRA-W), Chaussée de Namur 24, 5030 Gembloux, Belgium
| | - M Haïssam Jijakli
- Integrated and Urban Plant Pathology Laboratory, University of Liège, Gembloux Agro-Bio Tech, 2 Passage des Déportés, 5030 Gembloux, Belgium
| |
Collapse
|
11
|
Ansari P, Khan JT, Chowdhury S, Reberio AD, Kumar S, Seidel V, Abdel-Wahab YHA, Flatt PR. Plant-Based Diets and Phytochemicals in the Management of Diabetes Mellitus and Prevention of Its Complications: A Review. Nutrients 2024; 16:3709. [PMID: 39519546 PMCID: PMC11547802 DOI: 10.3390/nu16213709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 09/27/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024] Open
Abstract
Diabetes mellitus (DM) is currently regarded as a global public health crisis for which lifelong treatment with conventional drugs presents limitations in terms of side effects, accessibility, and cost. Type 2 diabetes (T2DM), usually associated with obesity, is characterized by elevated blood glucose levels, hyperlipidemia, chronic inflammation, impaired β-cell function, and insulin resistance. If left untreated or when poorly controlled, DM increases the risk of vascular complications such as hypertension, nephropathy, neuropathy, and retinopathy, which can be severely debilitating or life-threatening. Plant-based foods represent a promising natural approach for the management of T2DM due to the vast array of phytochemicals they contain. Numerous epidemiological studies have highlighted the importance of a diet rich in plant-based foods (vegetables, fruits, spices, and condiments) in the prevention and management of DM. Unlike conventional medications, such natural products are widely accessible, affordable, and generally free from adverse effects. Integrating plant-derived foods into the daily diet not only helps control the hyperglycemia observed in DM but also supports weight management in obese individuals and has broad health benefits. In this review, we provide an overview of the pathogenesis and current therapeutic management of DM, with a particular focus on the promising potential of plant-based foods.
Collapse
Affiliation(s)
- Prawej Ansari
- Comprehensive Diabetes Center, Heersink School of Medicine, University of Alabama, Birmingham (UAB), Birmingham, AL 35233, USA
- School of Pharmacy and Public Health, Department of Pharmacy, Independent University, Bangladesh (IUB), Dhaka 1229, Bangladesh
- Centre for Diabetes Research, School of Biomedical Sciences, Ulster University, Coleraine BT52 1SA, UK; (Y.H.A.A.-W.); (P.R.F.)
| | - Joyeeta T. Khan
- School of Pharmacy and Public Health, Department of Pharmacy, Independent University, Bangladesh (IUB), Dhaka 1229, Bangladesh
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences (UAMS), Little Rock, AR 72205, USA
| | - Suraiya Chowdhury
- School of Pharmacy and Public Health, Department of Pharmacy, Independent University, Bangladesh (IUB), Dhaka 1229, Bangladesh
| | - Alexa D. Reberio
- School of Pharmacy and Public Health, Department of Pharmacy, Independent University, Bangladesh (IUB), Dhaka 1229, Bangladesh
| | - Sandeep Kumar
- Comprehensive Diabetes Center, Heersink School of Medicine, University of Alabama, Birmingham (UAB), Birmingham, AL 35233, USA
| | - Veronique Seidel
- Natural Products Research Laboratory, Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, UK;
| | - Yasser H. A. Abdel-Wahab
- Centre for Diabetes Research, School of Biomedical Sciences, Ulster University, Coleraine BT52 1SA, UK; (Y.H.A.A.-W.); (P.R.F.)
| | - Peter R. Flatt
- Centre for Diabetes Research, School of Biomedical Sciences, Ulster University, Coleraine BT52 1SA, UK; (Y.H.A.A.-W.); (P.R.F.)
| |
Collapse
|
12
|
Moreira FD, Reis CEG, Gallassi AD, Moreira DC, Welker AF. Suppression of the postprandial hyperglycemia in patients with type 2 diabetes by a raw medicinal herb powder is weakened when consumed in ordinary hard gelatin capsules: A randomized crossover clinical trial. PLoS One 2024; 19:e0311501. [PMID: 39383145 PMCID: PMC11463819 DOI: 10.1371/journal.pone.0311501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 09/16/2024] [Indexed: 10/11/2024] Open
Abstract
INTRODUCTION Contradictory claims about the efficacy of several medicinal plants to promote glycemic control in patients with type 2 diabetes mellitus (T2DM) have been explained by divergences in the administration form and by extrapolation of data obtained from healthy individuals. It is not known whether the antidiabetic effects of traditional herbal medicines are influenced by gelatin capsules. This randomized crossover trial aimed to evaluate the acute effect of a single dose of raw cinnamon consumed orally either dissolved in water as a beverage or as ordinary hard gelatin capsules on postprandial hyperglycemia (>140 mg/dL; >7.8 mmol/L) in T2DM patients elicited by a nutritionally-balanced meal providing 50 g of complex carbohydrates. METHODS Fasting T2DM patients (n = 19) randomly ingested a standardized meal in five experimental sessions, one alone (Control) and the other after prior intake of 3 or 6 g of crude cinnamon in the form of hard gelatin capsules or powder dissolved in water. Blood glucose was measured at fasting and at 0.25, 0.5, 0.75, 1, 1.5 and 2 hours postprandially. After each breakfast, its palatability scores for visual appeal, smell and pleasantness of taste were assessed, as well as the taste intensity sweetness, saltiness, bitterness, sourness and creaminess. RESULTS The intake of raw cinnamon dissolved in water, independently of the dose, decreased the meal-induced large glucose spike (peak-rise of +87 mg/dL and Δ1-hour glycemia of +79 mg/dL) and the hyperglycemic blood glucose peak. When cinnamon was taken as capsules, these anti-hyperglycemic effects were lost or significantly diminished. Raw cinnamon intake did not change time-to-peak or the 2-h post-meal glycaemia, but flattened the glycemic curve (lower iAUC) without changing the shape that is typical of T2DM patients. CONCLUSIONS This cinnamon's antihyperglycemic action confirms its acarbose-like property to inhibit the activities of the carbohydrate-digesting enzymes α-amylases/α-glucosidases, which is in accordance with its exceptionally high content of raw insoluble fiber. The efficacy of using raw cinnamon as a diabetes treatment strategy seems to require its intake at a specific time before/concomitantly the main hyperglycemic daily meals. Trial registration: Registro Brasileiro de Ensaios Clínicos (ReBEC), number RBR-98tx28b.
Collapse
Affiliation(s)
- Fernanda Duarte Moreira
- Ministério da Saúde, Brasília, Brazil
- Secretaria de Estado de Saúde do Distrito Federal, Brasília, Brazil
- Programa de Pós-Graduação em Ciências e Tecnologias em Saúde, Universidade de Brasília, Brasília, Brazil
| | | | - Andrea Donatti Gallassi
- Programa de Pós-Graduação em Ciências e Tecnologias em Saúde, Universidade de Brasília, Brasília, Brazil
| | | | - Alexis Fonseca Welker
- Programa de Pós-Graduação em Ciências e Tecnologias em Saúde, Universidade de Brasília, Brasília, Brazil
| |
Collapse
|
13
|
Wang YF, An ZY, Yuan LQ, Wang T, Jin WL. Lilium brownii/ Baihe as Nutraceuticals: Insights into Its Composition and Therapeutic Properties. Pharmaceuticals (Basel) 2024; 17:1242. [PMID: 39338404 PMCID: PMC11434738 DOI: 10.3390/ph17091242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 09/06/2024] [Accepted: 09/17/2024] [Indexed: 09/30/2024] Open
Abstract
Nutraceuticals are compounds or components in food that offer health benefits. They can be incorporated into food to make it functional or used as supplements or medicine. Lilium brownii/Baihe is one of the classic nutraceuticals. The chemical composition of Lilium is complex and has a variety of pharmacological effects. Moreover, the compound preparation based on Lilium has been used in the treatment of respiratory diseases in traditional Chinese medicine. In addition, Lanzhou lily has become food on the dinner table. Therefore, Lilium brownii/Baihe is a nutraceutical with a long history. Based on the current understanding of Lilium, this review provides an in-depth discussion of the bioactive components and pharmacological effects of Lilium. This is important to provide theoretical reference for the in-depth study of Lilium as well as its development and application in medicine, food, and other industries.
Collapse
Affiliation(s)
- Yong-Fei Wang
- The First Clinical Medical College, Lanzhou University, Lanzhou 730000, China
- Institute of Cancer Neuroscience, Medical Frontier Innovation Research Center, The First Hospital of Lanzhou University, The First Clinical Medical College, Lanzhou University, Lanzhou 730000, China
| | - Zi-Yi An
- The First Clinical Medical College, Lanzhou University, Lanzhou 730000, China
- Institute of Cancer Neuroscience, Medical Frontier Innovation Research Center, The First Hospital of Lanzhou University, The First Clinical Medical College, Lanzhou University, Lanzhou 730000, China
| | - Le-Qi Yuan
- The First Clinical Medical College, Lanzhou University, Lanzhou 730000, China
- Institute of Cancer Neuroscience, Medical Frontier Innovation Research Center, The First Hospital of Lanzhou University, The First Clinical Medical College, Lanzhou University, Lanzhou 730000, China
| | - Ting Wang
- The First Clinical Medical College, Lanzhou University, Lanzhou 730000, China
- Institute of Cancer Neuroscience, Medical Frontier Innovation Research Center, The First Hospital of Lanzhou University, The First Clinical Medical College, Lanzhou University, Lanzhou 730000, China
| | - Wei-Lin Jin
- The First Clinical Medical College, Lanzhou University, Lanzhou 730000, China
- Institute of Cancer Neuroscience, Medical Frontier Innovation Research Center, The First Hospital of Lanzhou University, The First Clinical Medical College, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
14
|
Hestiantoro A, Permadi W, Tjandrawinata RR, Wiweko B, Ritonga MA, Ferrina AI, Sumapraja K, Muharam R, Djuwantono T. The Efficacy and Safety of DLBS3233, A Combined Bioactive Fraction of Cinnamomum burmanii and Lagerstroemia speciosa Plants on The Endocrine-Metabolic Profile of Women with Polycystic Ovary Syndrome: A Randomized Clinical Trial. INTERNATIONAL JOURNAL OF FERTILITY & STERILITY 2024; 18:35-47. [PMID: 39033369 PMCID: PMC11263850 DOI: 10.22074/ijfs.2023.551350.1283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 10/12/2023] [Accepted: 10/21/2023] [Indexed: 07/23/2024]
Abstract
BACKGROUND A bioactive fraction of Cinnamomum burmanii and Lagerstroemia speciosa, DLBS3233, has recently been used for type-2-diabetes treatment due to its favorable effect on insulin sensitivity. The insulin resistance leading to metabolic syndrome is closely linked to hyperandrogenemia in polycystic ovary syndrome (PCOS). This study evaluated the metabolic and reproductive efficacy and safety of DLBS3233 in insulin-resistant PCOS women. MATERIALS AND METHODS This was a 2-arm, randomized, double-blind, controlled, noninferiority clinical study over a 6-month therapy with DLBS3233 100-mg daily in comparison to metformin-XR 750 mg twice daily, involving 124 PCOS women with insulin resistance. The primary efficacy endpoint was the improvement of Homeostasis Model Assessment-Insulin Resistance (HOMA-IR). Secondary endpoints were improvements in other metabolic and reproductive parameters. Safety endpoints were based on blood pressure, heart rate, electrocardiogram findings, liver and renal function, and adverse events. RESULTS After 6 months, HOMA-IR improvement in DLBS3233-treated group (-1.03 ± 0.50) and metformin-XR (-1.19 ± 0.50) were comparable, with a between-group difference fell within the pre-set non-inferiority margin (0.16; 95% confidence interval (CI): -1.24, 1.56; P=0.3168). The HOMA-IR in both groups were significantly improved from baseline. On all secondary endpoints, both groups showed comparable effects. Markedly fewer adverse events occurred in the DLBS3233 treated group than in the Metformin-XR-treated group and most were mild clinically and had been resolved by the end of the study. CONCLUSION Treatment with DLBS3233 100-mg daily in PCOS women demonstrated comparable efficacy to metformin- XR 750-mg twice daily in improving insulin resistance. However, the non-inferiority of DLBS3233 to metformin- XR remains inconclusive. DLBS3233 was more tolerable than metformin-XR (registration number: NCT01733459).
Collapse
Affiliation(s)
- Andon Hestiantoro
- Division of Reproductive Immunoendocrinology, Department of Obstetrics and Gynecology, Faculty of Medicine, Universitas Indonesia, dr. Cipto Mangunkusumo Hospital, Jakarta, Indonesia.
- Yasmin Fertility Clinic Kencana, dr. Cipto Mangunkusumo, Jakarta, Indonesia
| | - Wiryawan Permadi
- Division of Reproductive Endocrinology and Fertility, Department of Obstetrics and Gynecology, Faculty of Medicine, University of Padjajaran, Hasan Sadikin Hospital, Bandung, Indonesia
- Aster Fertility Clinic, Hasan Sadikin Hospital, Bandung, Indonesia
| | | | - Budi Wiweko
- Division of Reproductive Immunoendocrinology, Department of Obstetrics and Gynecology, Faculty of Medicine, Universitas Indonesia, dr. Cipto Mangunkusumo Hospital, Jakarta, Indonesia
- Yasmin Fertility Clinic Kencana, dr. Cipto Mangunkusumo, Jakarta, Indonesia
| | - Mulyanusa Amarallah Ritonga
- Division of Reproductive Endocrinology and Fertility, Department of Obstetrics and Gynecology, Faculty of Medicine, University of Padjajaran / Hasan Sadikin Hospital, Bandung, Indonesia
| | - Ade Indra Ferrina
- Division of Reproductive Endocrinology and Fertility, Department of Obstetrics and Gynecology, Faculty of Medicine, University of Padjajaran, Hasan Sadikin Hospital, Bandung, Indonesia
- Aster Fertility Clinic, Hasan Sadikin Hospital, Bandung, Indonesia
| | - Kanadi Sumapraja
- Division of Reproductive Immunoendocrinology, Department of Obstetrics and Gynecology, Faculty of Medicine, Universitas Indonesia, dr. Cipto Mangunkusumo Hospital, Jakarta, Indonesia
- Yasmin Fertility Clinic Kencana, dr. Cipto Mangunkusumo, Jakarta, Indonesia
| | - R Muharam
- Division of Reproductive Immunoendocrinology, Department of Obstetrics and Gynecology, Faculty of Medicine, Universitas Indonesia, dr. Cipto Mangunkusumo Hospital, Jakarta, Indonesia
- Yasmin Fertility Clinic Kencana, dr. Cipto Mangunkusumo, Jakarta, Indonesia
| | - Tono Djuwantono
- Division of Reproductive Endocrinology and Fertility, Department of Obstetrics and Gynecology, Faculty of Medicine, University of Padjajaran, Hasan Sadikin Hospital, Bandung, Indonesia
- Aster Fertility Clinic, Hasan Sadikin Hospital, Bandung, Indonesia
| |
Collapse
|
15
|
Guo J, Yan S, Jiang X, Su Z, Zhang F, Xie J, Hao E, Yao C. Advances in pharmacological effects and mechanism of action of cinnamaldehyde. Front Pharmacol 2024; 15:1365949. [PMID: 38903995 PMCID: PMC11187351 DOI: 10.3389/fphar.2024.1365949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 05/06/2024] [Indexed: 06/22/2024] Open
Abstract
Cinnamaldehyde is extracted from Cinnamomum cassia and other species, providing diverse sources for varying chemical properties and therapeutic effects. Besides natural extraction, synthetic production and biotechnological methods like microbial fermentation offer scalable and sustainable alternatives. Cinnamaldehyd demonstrates a broad pharmacological range, impacting various diseases through detailed mechanisms. This review aims to encapsulate the diverse therapeutic effects of cinnamaldehyde, its molecular interactions, and its potential in clinical applications. Drawing on recent scientific studies and databases like Web of Science, PubMed, and ScienceDirect, this review outlines cinnamaldehyde's efficacy in treating inflammatory conditions, bacterial infections, cancer, diabetes, and cardiovascular and kidney diseases. It primarily operates by inhibiting the NF-κB pathway and modulating pro-inflammatory mediators, alongside disrupting bacterial cells and inducing apoptosis in cancer cells. The compound enhances metabolic health by improving glucose uptake and insulin sensitivity and offers cardiovascular protection through its anti-inflammatory and lipid-lowering effects. Additionally, it promotes autophagy in kidney disease management. Preclinical and clinical research supports its therapeutic potential, underscoring the need for further investigation into its mechanisms and safety to develop new drugs based on cinnamaldehyde.
Collapse
Affiliation(s)
- Jiageng Guo
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Guangxi University of Chinese Medicine, Nanning, China
- Guangxi Collaborative Innovation Center of Study on Functional Ingredients of Agricultural Residues, Guangxi University of Chinese Medicine, Nanning, China
- Guangxi Key Laboratory of TCM Formulas Theory and Transformation for Damp Diseases, Guangxi University of Chinese Medicine, Nanning, China
| | - Shidu Yan
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Guangxi University of Chinese Medicine, Nanning, China
- Guangxi Collaborative Innovation Center of Study on Functional Ingredients of Agricultural Residues, Guangxi University of Chinese Medicine, Nanning, China
- Guangxi Key Laboratory of TCM Formulas Theory and Transformation for Damp Diseases, Guangxi University of Chinese Medicine, Nanning, China
| | - Xinya Jiang
- Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, China
| | - Zixia Su
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Guangxi University of Chinese Medicine, Nanning, China
- Guangxi Collaborative Innovation Center of Study on Functional Ingredients of Agricultural Residues, Guangxi University of Chinese Medicine, Nanning, China
- Guangxi Key Laboratory of TCM Formulas Theory and Transformation for Damp Diseases, Guangxi University of Chinese Medicine, Nanning, China
| | - Fan Zhang
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Guangxi University of Chinese Medicine, Nanning, China
- Guangxi Collaborative Innovation Center of Study on Functional Ingredients of Agricultural Residues, Guangxi University of Chinese Medicine, Nanning, China
- Guangxi Key Laboratory of TCM Formulas Theory and Transformation for Damp Diseases, Guangxi University of Chinese Medicine, Nanning, China
| | - Jinling Xie
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Guangxi University of Chinese Medicine, Nanning, China
- Guangxi Collaborative Innovation Center of Study on Functional Ingredients of Agricultural Residues, Guangxi University of Chinese Medicine, Nanning, China
- Guangxi Key Laboratory of TCM Formulas Theory and Transformation for Damp Diseases, Guangxi University of Chinese Medicine, Nanning, China
| | - Erwei Hao
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Guangxi University of Chinese Medicine, Nanning, China
- Guangxi Collaborative Innovation Center of Study on Functional Ingredients of Agricultural Residues, Guangxi University of Chinese Medicine, Nanning, China
- Guangxi Key Laboratory of TCM Formulas Theory and Transformation for Damp Diseases, Guangxi University of Chinese Medicine, Nanning, China
- Engineering Research Center of Innovative Drugs for Traditional Chinese Medicine and Zhuang and Yao Medicine, Ministry of Education, Guangxi University of Chinese Medicine, Nanning, China
| | - Chun Yao
- Engineering Research Center of Innovative Drugs for Traditional Chinese Medicine and Zhuang and Yao Medicine, Ministry of Education, Guangxi University of Chinese Medicine, Nanning, China
| |
Collapse
|
16
|
Zhang X, Lin X, Cao J, Xie G, Yang X, Liu B, Xu X, Cheng F, Chen H, Pang Y. Application of Cinnamomum burmannii Essential Oil in Promoting Wound Healing. Molecules 2024; 29:2080. [PMID: 38731569 PMCID: PMC11085404 DOI: 10.3390/molecules29092080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 04/23/2024] [Accepted: 04/26/2024] [Indexed: 05/13/2024] Open
Abstract
Skin wounds, leading to infections and death, have a huge negative impact on healthcare systems around the world. Antibacterial therapy and the suppression of excessive inflammation help wounds heal. To date, the application of wound dressings, biologics and biomaterials (hydrogels, epidermal growth factor, stem cells, etc.) is limited due to their difficult and expensive preparation process. Cinnamomum burmannii (Nees & T. Nees) Blume is an herb in traditional medicine, and its essential oil is rich in D-borneol, with antibacterial and anti-inflammatory effects. However, it is not clear whether Cinnamomum burmannii essential oil has the function of promoting wound healing. This study analyzed 32 main components and their relative contents of essential oil using GC-MS. Then, network pharmacology was used to predict the possible targets of this essential oil in wound healing. We first proved this essential oil's effects in vitro and in vivo. Cinnamomum burmannii essential oil could not only promote the proliferation and migration of skin stromal cells, but also promote M2-type polarization of macrophages while inhibiting the expression of pro-inflammatory cytokines. This study explored the possible mechanism by which Cinnamomum burmannii essential oil promotes wound healing, providing a cheap and effective strategy for promoting wound healing.
Collapse
Affiliation(s)
- Xiangsheng Zhang
- School of Traditional Medicine Materials Resource, Guangdong Pharmaceutical University, Yunfu 527325, China; (X.Z.); (X.L.); (J.C.); (B.L.); (X.X.)
- Yunfu Traditional Chinese Medicine Resources and Germplasm Resources Bank Management Center, Yunfu 527399, China
| | - Xueyi Lin
- School of Traditional Medicine Materials Resource, Guangdong Pharmaceutical University, Yunfu 527325, China; (X.Z.); (X.L.); (J.C.); (B.L.); (X.X.)
- Yunfu Traditional Chinese Medicine Resources and Germplasm Resources Bank Management Center, Yunfu 527399, China
| | - Jiayuan Cao
- School of Traditional Medicine Materials Resource, Guangdong Pharmaceutical University, Yunfu 527325, China; (X.Z.); (X.L.); (J.C.); (B.L.); (X.X.)
- Yunfu Traditional Chinese Medicine Resources and Germplasm Resources Bank Management Center, Yunfu 527399, China
| | - Guofeng Xie
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China; (G.X.); (X.Y.)
| | - Xinrui Yang
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China; (G.X.); (X.Y.)
| | - Bingnan Liu
- School of Traditional Medicine Materials Resource, Guangdong Pharmaceutical University, Yunfu 527325, China; (X.Z.); (X.L.); (J.C.); (B.L.); (X.X.)
- Yunfu Traditional Chinese Medicine Resources and Germplasm Resources Bank Management Center, Yunfu 527399, China
| | - Xin Xu
- School of Traditional Medicine Materials Resource, Guangdong Pharmaceutical University, Yunfu 527325, China; (X.Z.); (X.L.); (J.C.); (B.L.); (X.X.)
- Yunfu Traditional Chinese Medicine Resources and Germplasm Resources Bank Management Center, Yunfu 527399, China
| | - Fang Cheng
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China; (G.X.); (X.Y.)
| | - Hongbo Chen
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China; (G.X.); (X.Y.)
| | - Yuxin Pang
- School of Traditional Medicine Materials Resource, Guangdong Pharmaceutical University, Yunfu 527325, China; (X.Z.); (X.L.); (J.C.); (B.L.); (X.X.)
- Yunfu Traditional Chinese Medicine Resources and Germplasm Resources Bank Management Center, Yunfu 527399, China
- College of Pharmaceutical Sciences, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China
| |
Collapse
|
17
|
Su YS, Cheng MJ, Kwan AL, Huang SP, Tyan YC, Chai CY, Huang B. The crude extract obtained from Cinnamomum macrostemon Hayata regulates oxidative stress and mitophagy in keratinocytes. Biosci Biotechnol Biochem 2024; 88:529-537. [PMID: 38509025 DOI: 10.1093/bbb/zbae022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 02/10/2024] [Indexed: 03/22/2024]
Abstract
Four ethanol fractionated crude extracts (EFCEs [A-D]) purified from the leaves of Cinnamomum macrostemon Hayata were screened for antioxidative effects and mitochondrial function in HaCaT cells. The higher cell viability indicated that EFCE C was mildly toxic. Under the treatment of 50 ng/mL EFCE C, the hydrogen peroxide (H2O2)-induced cytosolic and mitochondrial reactive oxygen species levels were reduced as well as the H2O2-impaired cell viability, mitochondrial membrane potential (MMP), ATP production, and mitochondrial mass. The conversion of globular mitochondria to tubular mitochondria is coincident with EFCE C-restored mitochondrial function. The mitophagy activator rapamycin showed similar effects to EFCE C in recovering the H2O2-impaired cell viability, MMP, ATP production, mitochondrial mass, and also mitophagic proteins such as PINK1, Parkin, LC3 II, and biogenesis protein PGC-1α. We thereby propose the application of EFCE C in the prevention of oxidative stress in skin cells.
Collapse
Affiliation(s)
- Yung-Shun Su
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Dermatology, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Ming-Jen Cheng
- Department of Life Science, Fu Jen Catholic University, New Taipei City, Taiwan
| | - Aij-Lie Kwan
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Neurosurgery, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Shu-Ping Huang
- Department of Biological Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Yu-Chang Tyan
- Department of Medical Imaging and Radiological Sciences, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chee-Yin Chai
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Pathology, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Bin Huang
- Department of Biological Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan
- Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Biomedical Science and Environmental Biology, College of Life Science, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| |
Collapse
|
18
|
Novakovic S, Jakovljevic V, Jovic N, Andric K, Milinkovic M, Anicic T, Pindovic B, Kareva EN, Fisenko VP, Dimitrijevic A, Joksimovic Jovic J. Exploring the Antioxidative Effects of Ginger and Cinnamon: A Comprehensive Review of Evidence and Molecular Mechanisms Involved in Polycystic Ovary Syndrome (PCOS) and Other Oxidative Stress-Related Disorders. Antioxidants (Basel) 2024; 13:392. [PMID: 38671840 PMCID: PMC11047656 DOI: 10.3390/antiox13040392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 03/17/2024] [Accepted: 03/20/2024] [Indexed: 04/28/2024] Open
Abstract
Oxidative stress represents the pathophysiological basis for most disorders, including reproductive issues. Polycystic ovary syndrome (PCOS) is heterogeneous endocrine disorder of women characterized primarily by irregular menstrual cycles, hyper-androgenism, and ovulatory dysfunction. In the last decades, PCOS was recognized as a systemic silent inflammation and an oxidative disturbance-related disorder, exerting multifaceted symptoms, including metabolic. PCOS treatment should involve a personalized approach tailored to individual symptoms; however, the results are often unsatisfactory. Various supplementary treatments have been proposed to assist in the management and alleviation of PCOS symptoms. Cinnamon and ginger, known for millennia as herbs used in spices or traditional medicine for the treatment of various diseases, are of interest in this study. The aim of this study is to evaluate and investigate the effects of cinnamon and ginger in PCOS patients. Using relevant keywords we searched through PubMed/MEDLINE, Science Direct, Google Scholar and Web of science to find animal studies, pre-clinical, and clinical studies which were then reviewed for usage. Out of all of the reviewed studies a total of 65 studies were included in this review article. Cinnamon and ginger can affect hormonal status, lipid profile, obesity, and insulin resistance by mitigating oxidative stress and inflammation. Generally, based on current clinical evidence, it was revealed that supplementation with cinnamon or ginger had a useful impact in patients with PCOS. This review summarizes the antioxidative effects of ginger and cinnamon in PCOS treatment, highlighting their potential benefits in other oxidative stress-related pathologies.
Collapse
Affiliation(s)
- Sladjana Novakovic
- Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia; (S.N.); (T.A.); (A.D.)
| | - Vladimir Jakovljevic
- Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovica 69, 34000 Kragujevac, Serbia;
- Center of Excellence for Redox Balance Research in Cardiovascular and Metabolic Disorders, 34000 Kragujevac, Serbia
- Department of Human Pathology, I.M. Sechenov First Moscow State Medical University, Moscow 119048, Russia
| | - Nikola Jovic
- Department of Gynecology and Obstetrics, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovica 69, 34000 Kragujevac, Serbia;
- Clinic for Gynecology and Obstertics, University Clinical Center Kragujevac, Zmaj Jovina 30, 34000 Kragujevac, Serbia
| | - Kristina Andric
- Department of Dermatovenerology, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovica 69, 34000 Kragujevac, Serbia;
- Center for Dermatology, University Clinical Center Kragujevac, Zmaj Jovina 30, 34000 Kragujevac, Serbia
| | - Milica Milinkovic
- Department of Biochemistry, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovica 69, 34000 Kragujevac, Serbia;
| | - Teodora Anicic
- Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia; (S.N.); (T.A.); (A.D.)
| | - Bozidar Pindovic
- Department of Pharmacy, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovica 69, 34000 Kragujevac, Serbia;
| | - Elena Nikolaevna Kareva
- Department of Pharmacology, I.M. Sechenov First Moscow State Medical University, Moscow 119048, Russia; (E.N.K.); (V.P.F.)
| | - Vladimir Petrovich Fisenko
- Department of Pharmacology, I.M. Sechenov First Moscow State Medical University, Moscow 119048, Russia; (E.N.K.); (V.P.F.)
| | - Aleksandra Dimitrijevic
- Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia; (S.N.); (T.A.); (A.D.)
- Institute of Public Health Kragujevac, 34000 Kragujevac, Serbia
| | - Jovana Joksimovic Jovic
- Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovica 69, 34000 Kragujevac, Serbia;
- Center of Excellence for Redox Balance Research in Cardiovascular and Metabolic Disorders, 34000 Kragujevac, Serbia
| |
Collapse
|
19
|
Venkatachalam K, Lekjing S, Noonim P, Charoenphun N. Extension of Quality and Shelf Life of Tomatoes Using Chitosan Coating Incorporated with Cinnamon Oil. Foods 2024; 13:1000. [PMID: 38611306 PMCID: PMC11011822 DOI: 10.3390/foods13071000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 03/20/2024] [Accepted: 03/22/2024] [Indexed: 04/14/2024] Open
Abstract
This study examined the effects of 2% chitosan (CS) coatings incorporated with varying concentrations of cinnamon oil (CO) (0%, 0.5%, 1.0%, and 1.5%) on the extension of the quality and shelf-life of tomatoes stored under ambient conditions. Control samples were untreated and coated with distilled water. All samples were stored for 14 days at 25 ± 1 °C, with quality assessments conducted every two days. The application of CS-CO treatments was notably effective in controlling weight loss (3.91-5.26%) and firmness loss (10.81-16.51 N), sustaining the color index score (11.98-16.78), and stabilizing the total soluble solids (4.64-4.71 brix), titratable acidity (0.374-0.383%), total phenolic content (75.89-81.54 mg/100 g), ascorbic acid concentration (21.64-33.69 mg/100 g), total antioxidant capacity (85.89-91.54%) and pigment levels, particularly chlorophyll (52.80-63.18 mg/100 g), compared to control samples (p < 0.05). Higher CO concentrations (1.0% and 1.5%) in the CS coating maintained a significant level of phytochemicals in the samples compared to the control group, while CS-CO at 0.5% performed similarly in preserving the other physicochemical qualities. Both CS and CS-CO treatments extended the shelf life of the tomatoes up to 14 days (<6.78 log10 CFU/mL), whereas control samples were only viable for storage for 6 days due to higher microbial growth (>7.8 log10 CFU/mL) (p < 0.05). Overall, CS-CO-treated tomatoes demonstrated superior quality preservation and shelf-life enhancement, with a notable improvement in overall qualities as compared to the CS and control samples.
Collapse
Affiliation(s)
- Karthikeyan Venkatachalam
- Faculty of Innovative Agriculture and Fishery Establishment Project, Prince of Songkla University, Surat Thani Campus, Makham Tia, Mueang, Surat Thani 84000, Thailand; (K.V.); (S.L.); (P.N.)
| | - Somwang Lekjing
- Faculty of Innovative Agriculture and Fishery Establishment Project, Prince of Songkla University, Surat Thani Campus, Makham Tia, Mueang, Surat Thani 84000, Thailand; (K.V.); (S.L.); (P.N.)
| | - Paramee Noonim
- Faculty of Innovative Agriculture and Fishery Establishment Project, Prince of Songkla University, Surat Thani Campus, Makham Tia, Mueang, Surat Thani 84000, Thailand; (K.V.); (S.L.); (P.N.)
| | - Narin Charoenphun
- Faculty of Science and Arts, Burapha University Chanthaburi Campus, Khamong, Thamai, Chanthaburi 22170, Thailand
| |
Collapse
|
20
|
Khedkar S, Khan MA. An in vitro study elucidating the synergistic effects of aqueous cinnamon extract and an anti-TNF-α biotherapeutic: implications for a complementary and alternative therapy for non-responders. BMC Complement Med Ther 2024; 24:131. [PMID: 38521924 PMCID: PMC10960381 DOI: 10.1186/s12906-024-04438-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 03/15/2024] [Indexed: 03/25/2024] Open
Abstract
BACKGROUND Tumor necrosis factor-alpha (TNF-α) is a critical pro-inflammatory cytokine, and its abnormal production is associated with several immune mediated inflammatory diseases (IMID). Biological anti-TNF-α therapy includes treatment with monoclonal antibodies such as infliximab which have proven successful and are well-tolerated in most patients. Unfortunately, some patients may not respond to therapy (primary non-responders) or may lose sensitivity to the biological agent over time (early and late secondary non-responders). Natural products can reduce inflammation and act synergistically with small molecules or biologics, although evidence remains limited. This study aimed to investigate whether complementary and alternative medicine (CAM) could play a role in infliximab non-responders. Reportedly, cinnamon can help manage chronic inflammatory conditions owing to its anti-inflammatory properties. METHODS We studied the synergistic effects of cinnamon and infliximab in vitro using a two-step approach. First, we investigated whether cinnamon and infliximab act synergistically. Second, we selected conditions that supported statistically significant synergy with infliximab and studied the mRNA expression of several genes involved in non-response to infliximab. We used aqueous cinnamon extract (aCE) from Cinnamomum cassia, Cinnamomum zeylanicum, and Cinnamomum loureiroi and bioactive trans-cinnamaldehyde (TCA), cinnamic acid (CA), and eugenol to study the synergy between infliximab and aCE/bioactive compounds using bioassays in fibroblast (L929) and monocytic (U937) cell lines, followed by qPCR for molecular-level insights. TCA, C. cassia aCE, and C. zeylanicum aCE demonstrated a dose-dependent synergistic effect with infliximab. Moreover, we saw differential gene expression for adhesion molecules, apoptotic factors, signaling molecules, and matrix remodelers in presence and absence of aCE/bioactives. RESULTS CAM supplementation was most effective with C. cassia aCE, where a synergistic effect was observed for all the tested genes specifically for MMP-1, BcL-xL, Bax and JAK2, followed by TCA, which affected most of the tested genes except TLR-2, MMP1, MMP3, TIMP-1, and BAX, and C. zeylanicum aCE, which did not affect ICAM-1, VCAM-1, TLR-2, TLR-4, MMP1, MMP3, TIMP-1, and STAT3. CONCLUSION In conclusion, cinnamon acted synergistically with infliximab to mitigate inflammation when used as an extract. Purified bioactive TCA also showed synergistic activity. Thus, aCE, or cinnamon bioactive may be used as a CAM to improve patients' quality of life.
Collapse
Affiliation(s)
- Shubrata Khedkar
- Department of Biochemistry, School of Bioengineering and Biosciences, Lovely Professional University, Jalandhar, 144411, Punjab, India
| | - Minhaj Ahmad Khan
- Department of Biochemistry, School of Bioengineering and Biosciences, Lovely Professional University, Jalandhar, 144411, Punjab, India.
| |
Collapse
|
21
|
Ragupathy S, Thirugnanasambandam A, Vinayagam V, Newmaster SG. Nuclear Magnetic Resonance Fingerprints and Mini DNA Markers for the Authentication of Cinnamon Species Ingredients Used in Food and Natural Health Products. PLANTS (BASEL, SWITZERLAND) 2024; 13:841. [PMID: 38592863 PMCID: PMC10975438 DOI: 10.3390/plants13060841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 03/01/2024] [Accepted: 03/12/2024] [Indexed: 04/11/2024]
Abstract
Cinnamomum verum (syn C. zeylanicum) is considered 'true' cinnamon. However, it is reported that less expensive sources of cinnamon from C. cassia (syn C. aromaticum), C. loureiroi, and C. burmannii (toxic coumarin) may be used in the place of C. verum. We lack the quality assurance tools that are required to differentiate C. verum from other cinnamon species when verifying that the correct species is sourced from ingredient suppliers. The current research on cinnamon species authentication using DNA tools is limited to a few species and the use of high-quality DNA extracted from raw leaf materials. The cinnamon bark traded in the supply chain contains much less DNA and poorer-quality DNA than leaves. Our research advances DNA methods to authenticate cinnamon, as we utilized full-length chloroplast genomes via a genome skimming approach for C. burmannii and C. cassia to facilitate the design of optimal mini DNA markers. Furthermore, we developed and validated the use of NMR fingerprints for several commercial cinnamon species, including the quantification of 16 molecules. NMR fingerprints provided additional data that were useful for quality assessment in cinnamon extract powders and product consistency. Both the new mini DNA markers and NMR fingerprints were tested on commercial cinnamon products.
Collapse
Affiliation(s)
- Subramanyam Ragupathy
- Natural Health Products (NHP) Research Alliance, College of Biological Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada; (V.V.); (S.G.N.)
| | - Arunachalam Thirugnanasambandam
- Natural Health Products (NHP) Research Alliance, College of Biological Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada; (V.V.); (S.G.N.)
| | | | | |
Collapse
|
22
|
Kaushik A, Kaushik M, Kaur G, Gupta V. Perspective of Secondary Metabolites in Respect of Multidrug Resistance (MDR): A Review. Infect Disord Drug Targets 2024; 24:40-52. [PMID: 38031773 DOI: 10.2174/0118715265210606231113105225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 10/07/2023] [Accepted: 10/13/2023] [Indexed: 12/01/2023]
Abstract
Aberrant and haphazard use of antibiotics has created the development of antimicrobial resistance which is a bizarre challenge for human civilization. This emerging crisis of antibiotic resistance for microbial pathogens is alarming all the nations posing a global threat to human health. It is difficult to treat bacterial infections as they develop resistance to all antimicrobial resistance. Currently used antibacterial agents inhibit a variety of essential metabolic pathways in bacteria, including macro-molecular synthesis (MMS) pathways (e.g. protein, DNA, RNA, cell wall) most often by targeting a specific enzyme or subcellular component e.g. DNA gyrase, RNA polymerase, ribosomes, transpeptidase. Despite the availability of diverse synthetic molecules, there are still many complications in managing progressive and severe antimicrobial resistance. Currently not even a single antimicrobial agent is available for which the microbes do not show resistance. Thus, the lack of efficient drug molecules for combating microbial resistance requires continuous research efforts to overcome the problem of multidrug-resistant bacteria. The phytochemicals from various plants have the potential to combat the microbial resistance produced by bacteria, fungi, protozoa and viruses without producing any side effects. This review is a concerted effort to identify some of the major active phytoconstituents from various medicinal plants which might have the potential to be used as an alternative and effective strategy to fight against microbial resistance and can promote research for the treatment of MDR.
Collapse
Affiliation(s)
- Aditi Kaushik
- School of Pharmaceutical Sciences, Lovely Professional University, Jalandhar, Punjab, India
| | - Manish Kaushik
- KC Group of Institutions, UNA, H.P, MMDU, Mullana, Ambala, Haryana, India
| | - Gagandeep Kaur
- Chitkara School of Pharmacy, Chitkara University, Himachal Pradesh, India
| | - Vrinda Gupta
- Chitkara Group of Institutions, Chitkara University, Chandigarh, India
| |
Collapse
|
23
|
Han YM, Song MY, Lee DY, Lee SW, Ahn HR, Yoo J, Kim HJ, Kim EH. Gastric Mucosal Protective Effects of Cinnamomum cassia in a Rat Model of Ethanol-Induced Gastric Injury. Nutrients 2023; 16:55. [PMID: 38201885 PMCID: PMC10780402 DOI: 10.3390/nu16010055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 12/11/2023] [Accepted: 12/22/2023] [Indexed: 01/12/2024] Open
Abstract
Cinnamomum cassia (cassia) is a tropical aromatic evergreen tree of the Lauraceae family well known for its fragrance and spicy flavor and widely used in Asian traditional medicine. It has recently garnered attention for its diverse potential health benefits, including anti-inflammatory, anti-cancer, and anti-diabetic properties. However, the gastroprotective effect of C. cassia, particularly against ethanol-induced gastric damage, remains unclear. We investigated the potential gastroprotective property of C. cassia and the underlying mechanisms of action in a rat model of ethanol-induced gastric injury. To assess its effectiveness, rats were fed C. cassia for a 14-day period prior to inducing gastric damage by oral administration of ethanol. Our results indicated that pre-treatment with C. cassia mitigated ethanol-induced gastric mucosal lesions and bleeding. Reduced gastric acid secretion and expression of acid secretion-linked receptors were also observed. Additionally, pretreatment with C. cassia led to decreased levels of inflammatory factors, including TNF-α, p-p65, and IκBα. Notably, C. cassia upregulated the expressions of HO1 and HSP90, with particular emphasis on the enhanced expression of PAS and MUC, the crucial gastric mucosa defense molecules. These findings suggest that C. cassia has protective effects on the gastric mucosa and can effectively reduce oxidative stress and inflammation.
Collapse
Affiliation(s)
- Young-Min Han
- College of Pharmacy and Institute of Pharmaceutical Sciences, CHA University, Seongnam 13488, Republic of Korea; (Y.-M.H.); (M.-Y.S.); (D.-Y.L.); (S.-W.L.); (H.-R.A.)
| | - Moon-Young Song
- College of Pharmacy and Institute of Pharmaceutical Sciences, CHA University, Seongnam 13488, Republic of Korea; (Y.-M.H.); (M.-Y.S.); (D.-Y.L.); (S.-W.L.); (H.-R.A.)
| | - Da-Young Lee
- College of Pharmacy and Institute of Pharmaceutical Sciences, CHA University, Seongnam 13488, Republic of Korea; (Y.-M.H.); (M.-Y.S.); (D.-Y.L.); (S.-W.L.); (H.-R.A.)
| | - Seung-Won Lee
- College of Pharmacy and Institute of Pharmaceutical Sciences, CHA University, Seongnam 13488, Republic of Korea; (Y.-M.H.); (M.-Y.S.); (D.-Y.L.); (S.-W.L.); (H.-R.A.)
| | - Hye-Rin Ahn
- College of Pharmacy and Institute of Pharmaceutical Sciences, CHA University, Seongnam 13488, Republic of Korea; (Y.-M.H.); (M.-Y.S.); (D.-Y.L.); (S.-W.L.); (H.-R.A.)
| | - Jihee Yoo
- CHlabs Corporation, Seoul 07249, Republic of Korea;
| | - Hyo Jun Kim
- Chong Kun Dang Healthcare, Seoul 07249, Republic of Korea;
| | - Eun-Hee Kim
- College of Pharmacy and Institute of Pharmaceutical Sciences, CHA University, Seongnam 13488, Republic of Korea; (Y.-M.H.); (M.-Y.S.); (D.-Y.L.); (S.-W.L.); (H.-R.A.)
| |
Collapse
|
24
|
El Omari N, Balahbib A, Bakrim S, Benali T, Ullah R, Alotaibi A, Naceiri El Mrabti H, Goh BH, Ong SK, Ming LC, Bouyahya A. Fenchone and camphor: Main natural compounds from Lavandula stoechas L., expediting multiple in vitro biological activities. Heliyon 2023; 9:e21222. [PMID: 38053906 PMCID: PMC10694050 DOI: 10.1016/j.heliyon.2023.e21222] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 09/17/2023] [Accepted: 10/18/2023] [Indexed: 12/07/2023] Open
Abstract
Lavandula stoechas, a Mediterranean plant, renowned in traditional medicine for its health benefits, is also arousing strong interest associated with its essential oils (EOs) with promising therapeutic properties. The aim of this study was to analyze the chemical composition of the plant, as well as to study its major activities, including antioxidant, anti-diabetic, dermatoprotective, anti-inflammatory, and antibacterial effects, focusing on its major molecules. Using the GC-MS method, the main compounds identified in L. stoechas EO (LSEO) were fenchone (31.81 %) and camphor (29.60 %), followed by terpineol (13.14 %) and menthone (8.96 %). To assess their antioxidant activity, three in vitro methods were used (DPPH, FRAP, and ABTS). The results revealed that LSEO exhibited the best antiradical property (54 ± 62 μg/mL) according to the DPPH test, while fenchone demonstrated the highest antioxidant capacity (87 ± 92 μg/mL) in the FRAP test, and camphor displayed the highest antioxidant capacity (96 ± 32 μg/mL) in the ABTS test. However, these results were lower than those obtained by Trolox used as a reference. In addition, study also explored the anti-diabetic potential of LSEO and its major compounds by evaluating their inhibitory activity towards two digestive enzymes, α-glucosidase and α-amylase. Camphor (76.92 ± 2.43 μg/mL) and fenchone (69.03 ± 2.31 μg/mL) exhibited the best inhibitory activities for α-amylase and α-glucosidase assays, respectively. Interestingly, all elements of the study exerted activities superior to those of acarbose, regardless of the test performed. In contrast, the evaluation of the dermatoprotective potential was carried out in vitro by targeting two enzymes involved in cutaneous processes, tyrosinase and elastase. In this light, fenchone (53.14 ± 3.06 μg/mL) and camphor (48.39 ± 1.92 μg/mL) were the most active against tyrosinase and elastase, respectively. It should be noted that the effect of both molecules, as well as that of LSEO, ranged between 53.14 ± 3.06 and 97.45 ± 5.22 μg/mL, which was significantly lower than the standard, quercetin (IC50 of 246.90 ± 2 0.54 μg/mL) against tyrosinase. Furthermore, the anti-inflammatory potential of these elements has been studied by evaluating their ability to inhibit lipooxygenase (LOX), a class of enzymes involved in the inflammatory process in the human body. As a result, the LSEO demonstrated a remarkable effect with an IC50 of 6.34 ± 1.29 μg/mL, which was almost comparable to the standard, quercetin (IC50 = 3.93 ± 0.45 μg/mL). Concerning the antibacterial potential, we carried out a quantitative analysis of the various products tested, revealing a bactericidal activity of the LSEO against the strain L. monocytogenes ATCC 13932 at a minimum effective concentration (MIC = CMB = 0.25). Overall, LSEOs offer significant potential as a source of natural antioxidants, and antidiabetic and anti-inflammatory agents, as well as dermatoprotective and antibacterial compounds. Its major molecules, fenchone and camphor, showed promising activity in these areas of study, making it a valuable candidate for future research and development in the field of natural medicine.
Collapse
Affiliation(s)
- Nasreddine El Omari
- Laboratory of Histology, Embryology, and Cytogenetic, Faculty of Medicine and Pharmacy, Mohammed V University, Rabat, 10100, Morocco
| | - Abdelaali Balahbib
- Laboratory of Human Pathologies Biology, Faculty of Sciences, Mohammed V University in Rabat, Rabat, 10106, Morocco
| | - Saad Bakrim
- Geo-Bio-Environment Engineering and Innovation Laboratory, Molecular Engineering, Biotechnology and Innovation Team, Polydisciplinary Faculty of Taroudant, Ibn Zohr University, Agadir, 80000, Morocco
| | - Taoufiq Benali
- Environment and Health Team, Polydisciplinary Faculty of Safi, Cadi Ayyad University, Safi, B.P. 4162, Morocco
| | - Riaz Ullah
- Medicinal Aromatic and Poisonous Plants Research Center, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Amal Alotaibi
- Department of Basic Science, College of Medicine, Princess Nourah bint Abdulrahman University, P. O. Box 84428, Riyadh, 11671, Saudi Arabia
| | - Hanae Naceiri El Mrabti
- Higher Institute of Nursing Professions and Health Techniques, Casablanca, Morocco
- Sidi Mohammed Ben Abdellah University, Laboratory of Applied Organic Chemistry, Faculty of Sciences and Technology of Fez, Morocco
| | - Bey Hing Goh
- Sunway Biofunctional Molecules Discovery Centre (SBMDC), School of Medical and Life Sciences, Sunway University, 47500 Subang Jaya, Selangor, Malaysia
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, Zhejiang Province, PR China
| | - Seng-Kai Ong
- Sunway Biofunctional Molecules Discovery Centre (SBMDC), School of Medical and Life Sciences, Sunway University, 47500 Subang Jaya, Selangor, Malaysia
| | - Long Chiau Ming
- Sunway Biofunctional Molecules Discovery Centre (SBMDC), School of Medical and Life Sciences, Sunway University, 47500 Subang Jaya, Selangor, Malaysia
| | - Abdelhakim Bouyahya
- Laboratory of Human Pathologies Biology, Faculty of Sciences, Mohammed V University in Rabat, Rabat, 10106, Morocco
| |
Collapse
|
25
|
Vepštaitė-Monstavičė I, Ravoitytė B, Būdienė J, Valys A, Lukša J, Servienė E. Essential Oils of Mentha arvensis and Cinnamomum cassia Exhibit Distinct Antibacterial Activity at Different Temperatures In Vitro and on Chicken Skin. Foods 2023; 12:3938. [PMID: 37959057 PMCID: PMC10647671 DOI: 10.3390/foods12213938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 10/23/2023] [Accepted: 10/26/2023] [Indexed: 11/15/2023] Open
Abstract
The bacterial contamination of meat is a global concern, especially for the risk of Salmonella infection that can lead to health issues. Artificial antibacterial compounds used to preserve fresh meat can have negative health effects. We investigated the potential of natural essential oils (EOs), namely Mentha arvensis (mint) and Cinnamomum cassia (cinnamon) EOs, to prevent contamination of the food pathogen, Salmonella enterica subsp. enterica serotype Typhimurium, in vitro and on chicken skin. The gas chromatography-mass spectrometry (GC-MS) technique was used to determine the compositions of mint EO (MEO) and cinnamon EO (CEO); the most abundant compound in MEO was menthol (68.61%), and the most abundant compound was cinnamaldehyde (83.32%) in CEO. The antibacterial activity of MEO and CEO were examined in vapor and direct contact with S. typhimurium at temperatures of 4 °C, 25 °C, and 37 °C. The minimal inhibitory concentration at 37 °C for MEO and CEO reached 20.83 µL/mL, and the minimal bactericidal concentration of CEO was the same, while for MEO, it was two-fold higher. We report that in most tested conditions in experiments performed in vitro and on chicken skin, CEO exhibits a stronger antibacterial effect than MEO. In the vapor phase, MEO was more effective against S. typhimurium than CEO at 4 °C. In direct contact, the growth of S. typhimurium was inhibited more efficiently by MEO than CEO at small concentrations and a longer exposure time at 37 °C. The exploration of CEO and MEO employment for the inhibition of Salmonella bacteria at different temperatures and conditions expands the possibilities of developing more environment- and consumer-friendly antibacterial protection for raw meat.
Collapse
Affiliation(s)
| | - Bazilė Ravoitytė
- Laboratory of Genetics, Nature Research Centre, 08412 Vilnius, Lithuania; (I.V.-M.); (A.V.); (J.L.)
| | - Jurga Būdienė
- Laboratory of Chemical and Behavioural Ecology, Nature Research Centre, 08412 Vilnius, Lithuania;
| | - Algirdas Valys
- Laboratory of Genetics, Nature Research Centre, 08412 Vilnius, Lithuania; (I.V.-M.); (A.V.); (J.L.)
| | - Juliana Lukša
- Laboratory of Genetics, Nature Research Centre, 08412 Vilnius, Lithuania; (I.V.-M.); (A.V.); (J.L.)
| | - Elena Servienė
- Laboratory of Genetics, Nature Research Centre, 08412 Vilnius, Lithuania; (I.V.-M.); (A.V.); (J.L.)
- Department of Chemistry and Bioengineering, Vilnius Gediminas Technical University, 10223 Vilnius, Lithuania
| |
Collapse
|
26
|
Oppedisano F, De Fazio R, Gugliandolo E, Crupi R, Palma E, Abbas Raza SH, Tilocca B, Merola C, Piras C, Britti D. Mediterranean Plants with Antimicrobial Activity against Staphylococcus aureus, a Meta-Analysis for Green Veterinary Pharmacology Applications. Microorganisms 2023; 11:2264. [PMID: 37764109 PMCID: PMC10534841 DOI: 10.3390/microorganisms11092264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/06/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023] Open
Abstract
Antimicrobial resistance (AMR) has emerged as a global health crisis, necessitating the search for innovative strategies to combat infectious diseases. The unique biodiversity of Italian flora offers a treasure trove of plant species and their associated phytochemicals, which hold immense potential as a solution to address AMR. By investigating the antimicrobial properties of Italian flora and their phytochemical constituents, this study aims to shed light on the potential of phyto-complexes as a valuable resource for developing novel or supportive antimicrobial agents useful for animal production.
Collapse
Affiliation(s)
- Francesca Oppedisano
- Institute of Research for Food Safety & Health (IRC-FSH), Department of Health Sciences, “Magna Græcia University” of Catanzaro, Campus Universitario “Salvatore Venuta” Viale Europa, 88100 Catanzaro, Italy; (F.O.); (E.P.)
| | - Rosario De Fazio
- Department of Health Sciences, “Magna Græcia University” of Catanzaro, Campus Universitario “Salvatore Venuta” Viale Europa, 88100 Catanzaro, Italy; (R.D.F.); (B.T.); (D.B.)
| | - Enrico Gugliandolo
- Department of Veterinary Science, University of Messina, 98166 Messina, Italy; (E.G.); (R.C.)
| | - Rosalia Crupi
- Department of Veterinary Science, University of Messina, 98166 Messina, Italy; (E.G.); (R.C.)
| | - Ernesto Palma
- Institute of Research for Food Safety & Health (IRC-FSH), Department of Health Sciences, “Magna Græcia University” of Catanzaro, Campus Universitario “Salvatore Venuta” Viale Europa, 88100 Catanzaro, Italy; (F.O.); (E.P.)
| | - Sayed Haidar Abbas Raza
- Guangdong Provincial Key Laboratory of Food Quality and Safety, Nation-Local Joint Engineering Research Center for Machining and Safety of Livestock and Poultry Products, South China Agricultural University, Guangzhou 510642, China;
| | - Bruno Tilocca
- Department of Health Sciences, “Magna Græcia University” of Catanzaro, Campus Universitario “Salvatore Venuta” Viale Europa, 88100 Catanzaro, Italy; (R.D.F.); (B.T.); (D.B.)
| | - Carmine Merola
- Department of Bioscience and Technology for Food Agriculture and Environment, University of Teramo, Via Balzarini 1, 64100 Teramo, Italy;
| | - Cristian Piras
- Department of Health Sciences, “Magna Græcia University” of Catanzaro, Campus Universitario “Salvatore Venuta” Viale Europa, 88100 Catanzaro, Italy; (R.D.F.); (B.T.); (D.B.)
- CISVetSUA, University of Catanzaro, Campus Universitario “Salvatore Venuta” Viale Europa, 88100 Catanzaro, Italy
| | - Domenico Britti
- Department of Health Sciences, “Magna Græcia University” of Catanzaro, Campus Universitario “Salvatore Venuta” Viale Europa, 88100 Catanzaro, Italy; (R.D.F.); (B.T.); (D.B.)
- CISVetSUA, University of Catanzaro, Campus Universitario “Salvatore Venuta” Viale Europa, 88100 Catanzaro, Italy
| |
Collapse
|
27
|
Qu S, Yu S, Ma X, Wang R. "Medicine food homology" plants promote periodontal health: antimicrobial, anti-inflammatory, and inhibition of bone resorption. Front Nutr 2023; 10:1193289. [PMID: 37396128 PMCID: PMC10307967 DOI: 10.3389/fnut.2023.1193289] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 05/24/2023] [Indexed: 07/04/2023] Open
Abstract
"Medicine food homology" (MFH) is a term with a lengthy history. It refers to the fact that a lot of traditional natural products have both culinary and therapeutic benefits. The antibacterial, anti-inflammatory and anticancer effects of MFH plants and their secondary metabolites have been confirmed by numerous research. A bacterially generated inflammatory illness with a complicated pathophysiology, periodontitis causes the loss of the teeth's supporting tissues. Several MFH plants have recently been shown to have the ability to prevent and treat periodontitis, which is exhibited by blocking the disease's pathogens and the virulence factors that go along with them, lowering the host's inflammatory reactions and halting the loss of alveolar bone. To give a theoretical foundation for the creation of functional foods, oral care products and adjuvant therapies, this review has especially explored the potential medicinal benefit of MFH plants and their secondary metabolites in the prevention and treatment of periodontitis.
Collapse
Affiliation(s)
- Shanlin Qu
- Hospital of Stomatology, Jilin University, Changchun, China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Changchun, China
| | - Shuo Yu
- Hospital of Stomatology, Jilin University, Changchun, China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Changchun, China
| | - Xiaolin Ma
- Hospital of Stomatology, Jilin University, Changchun, China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Changchun, China
| | - Rui Wang
- Hospital of Stomatology, Jilin University, Changchun, China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Changchun, China
| |
Collapse
|
28
|
Dilworth L, Stennett D, Omoruyi F. Cellular and Molecular Activities of IP6 in Disease Prevention and Therapy. Biomolecules 2023; 13:972. [PMID: 37371552 DOI: 10.3390/biom13060972] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 06/02/2023] [Accepted: 06/05/2023] [Indexed: 06/29/2023] Open
Abstract
IP6 (phytic acid) is a naturally occurring compound in plant seeds and grains. It is a poly-phosphorylated inositol derivative that has been shown to exhibit many biological activities that accrue benefits in health and diseases (cancer, diabetes, renal lithiasis, cardiovascular diseases, etc.). IP6 has been shown to have several cellular and molecular activities associated with its potential role in disease prevention. These activities include anti-oxidant properties, chelation of metal ions, inhibition of inflammation, modulation of cell signaling pathways, and modulation of the activities of enzymes and hormones that are involved in carbohydrate and lipid metabolism. Studies have shown that IP6 has anti-oxidant properties and can scavenge free radicals known to cause cellular damage and contribute to the development of chronic diseases such as cancers and cardiovascular diseases, as well as diabetes mellitus. It has also been shown to possess anti-inflammatory properties that may modulate immune responses geared towards the prevention of inflammatory conditions. Moreover, IP6 exhibits anti-cancer properties through the induction of cell cycle arrest, promoting apoptosis and inhibiting cancer cell growth. Additionally, it has been shown to have anti-mutagenic properties, which reduce the risk of malignancies by preventing DNA damage and mutations. IP6 has also been reported to have a potential role in bone health. It inhibits bone resorption and promotes bone formation, which may help in the prevention of bone diseases such as osteoporosis. Overall, IP6's cellular and molecular activities make it a promising candidate for disease prevention. As reported in many studies, its anti-inflammatory, anti-oxidant, and anti-cancer properties support its inclusion as a dietary supplement that may protect against the development of chronic diseases. However, further studies are needed to understand the mechanisms of action of this dynamic molecule and its derivatives and determine the optimal doses and appropriate delivery methods for effective therapeutic use.
Collapse
Affiliation(s)
- Lowell Dilworth
- Department of Pathology, The University of the West Indies, Mona Campus, Kingston 7, Jamaica
| | - Dewayne Stennett
- The Transitional Year Programme, University of Toronto, Toronto, ON M5S 2E8, Canada
| | - Felix Omoruyi
- Department of Life Sciences, Texas A&M University, Corpus Christi, TX 78412, USA
- Department of Health Sciences, Texas A&M University, Corpus Christi, TX 78412, USA
| |
Collapse
|
29
|
Ijaz S, Iqbal J, Abbasi BA, Ullah Z, Yaseen T, Kanwal S, Mahmood T, Sydykbayeva S, Ydyrys A, Almarhoon ZM, Sharifi-Rad J, Hano C, Calina D, Cho WC. Rosmarinic acid and its derivatives: Current insights on anticancer potential and other biomedical applications. Biomed Pharmacother 2023; 162:114687. [PMID: 37062215 DOI: 10.1016/j.biopha.2023.114687] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/29/2023] [Accepted: 04/09/2023] [Indexed: 04/18/2023] Open
Abstract
Cancer is still the leading cause of death worldwide, burdening the global medical system. Rosmarinic acid (RA) is among the first secondary metabolites discovered and it is a bioactive compound identified in plants such as Boraginaceae and Nepetoideae subfamilies of the Lamiaceae family, including Thymus masticmasti chinaythia koreana, Ocimum sanctum, and Hyptis pectinate. This updated review is to highlight the chemopreventive and chemotherapeutic effects of RA and its derivatives, thus providing valuable clues for the potential development of some complementary drugs in the treatment of cancers. Relevant information about RA's chemopreventive and chemotherapeutic effects and its derivatives were collected from electronic scientific databases, such as PubMed/Medline, Scopus, TRIP database, Web of Science, and Science Direct. The results of the studies showed numerous significant biological effects such as antiviral, antibacterial, anti-inflammatory, anti-tumour, antioxidant and antiangiogenic effects. Most of the studies on the anticancer potential with the corresponding mechanisms are still in the experimental preclinical stage and are missing evidence from clinical trials to support the research. To open new anticancer therapeutic perspectives of RA and its derivatives, future clinical studies must elucidate the molecular mechanisms and targets of action in more detail, the human toxic potential and adverse effects.
Collapse
Affiliation(s)
- Shumaila Ijaz
- Department of Plant Sciences, Faculty of Biological Sciences, Quaid-i-Azam University Islamabad, 45320, Pakistan
| | - Javed Iqbal
- Department of Botany, Bacha Khan University, Charsadda 24420, Khyber Pakhtunkhwa, Pakistan.
| | - Banzeer Ahsan Abbasi
- Department of Botany, Rawalpindi Women University, 6th Road, Satellite Town, Rawalpindi 46300, Pakistan
| | - Zakir Ullah
- Department of Plant Sciences, Faculty of Biological Sciences, Quaid-i-Azam University Islamabad, 45320, Pakistan
| | - Tabassum Yaseen
- Department of Botany, Bacha Khan University, Charsadda 24420, Khyber Pakhtunkhwa, Pakistan
| | - Sobia Kanwal
- Department of Biology and Environmental Sciences, Allama Iqbal Open University, Islamabad, Pakistan
| | - Tariq Mahmood
- Department of Plant Sciences, Faculty of Biological Sciences, Quaid-i-Azam University Islamabad, 45320, Pakistan
| | - Sandugash Sydykbayeva
- Higher School of Natural Sciences, Zhetysu University named after I.Zhansugurov, 040009 Taldykorgan, Kazakhstan
| | - Alibek Ydyrys
- Biomedical Research Centre, Al-Farabi Kazakh National University, Al-Farabi ave. 71, 050040, Kazakhstan
| | - Zainab M Almarhoon
- Department of Chemistry, College of Science, King Saud University, P. O. Box 2455, Riyadh 11451, Saudi Arabia
| | | | - Christophe Hano
- Laboratoire de Biologie Des Ligneux Et Des Grandes Cultures (LBLGC), INRA USC1328 Université ď Orléans, 45067 Orléans Cedex2, France.
| | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania.
| | - William C Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Kowloon, Hong Kong.
| |
Collapse
|
30
|
Nawaz A, Ali T, Naeem M, Hussain F, Li Z, Nasir A. Biochemical, structural characterization and in-vitro evaluation of antioxidant, antibacterial, cytotoxic, and antidiabetic activities of nanosuspensions of Cinnamomum zeylanicum bark extract. Front Chem 2023; 11:1194389. [PMID: 37214484 PMCID: PMC10196027 DOI: 10.3389/fchem.2023.1194389] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 04/25/2023] [Indexed: 05/24/2023] Open
Abstract
Cinnamomum zeylanicum is a traditional medicinal plant known for its anti-inflammatory, antidiabetic, antimicrobial, anticancer, and antioxidant properties. Its therapeutic efficacy using nanosuspensions is still unclear for treating infectious diseases. This study was designed to evaluate the bioactivities, biochemical characterization, and bioavailability of freshly prepared nanosuspensions of C. zeylanicum. Structural and biochemical characterization of C. zeylanicum and its biological activities, such as antioxidants, antimicrobials, antiglycation, α-amylase inhibition, and cytotoxicity was performed using Fourier-transform infrared (FTIR) spectroscopy and High-Performance Liquid Chromatography (HPLC). C. zeylanicum extract and nanosuspensions showed TPCs values of 341.88 and 39.51 mg GAE/100 g while showing TFCs as 429.19 and 239.26 mg CE/100g, respectively. DPPH inhibition potential of C. zeylanicum extract and nanosuspension was 27.3% and 10.6%, respectively. Biofilm inhibition activity revealed that bark extract and nanosuspension showed excessive growth restraint against Escherichia coli, reaching 67.11% and 66.09%, respectively. The α-amylase inhibition assay of extract and nanosuspension was 39.3% and 6.3%, while the antiglycation activity of nanosuspension and extract was 42.14% and 53.76%, respectively. Extracts and nanosuspensions showed maximum hemolysis at 54.78% and 19.89%, respectively. Results indicated that nanosuspensions possessed antidiabetic, antimicrobial, anticancer, and antioxidant properties. Further study, however, is needed to assess the clinical studies for the therapeutic use of nanosuspensions.
Collapse
Affiliation(s)
- Aqsa Nawaz
- Clinico-Molecular Biochemistry Laboratory, Department of Biochemistry, Faculty of Sciences, University of Agriculture, Faisalabad, Pakistan
| | - Tayyab Ali
- Clinico-Molecular Biochemistry Laboratory, Department of Biochemistry, Faculty of Sciences, University of Agriculture, Faisalabad, Pakistan
| | - Muhammad Naeem
- College of Life Science, Hebei Normal University, Shijiazhuang, China
| | - Fatma Hussain
- Clinico-Molecular Biochemistry Laboratory, Department of Biochemistry, Faculty of Sciences, University of Agriculture, Faisalabad, Pakistan
| | - Zhiye Li
- Department of Pharmacy, Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Abdul Nasir
- Medical Research Center, Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
31
|
Chaudhary P, Mitra D, Das Mohapatra PK, Oana Docea A, Mon Myo E, Janmeda P, Martorell M, Iriti M, Ibrayeva M, Sharifi-Rad J, Santini A, Romano R, Calina D, Cho WC. Camellia sinensis: Insights on its molecular mechanisms of action towards nutraceutical, anticancer potential and other therapeutic applications. ARAB J CHEM 2023; 16:104680. [DOI: 10.1016/j.arabjc.2023.104680] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023] Open
|
32
|
Sharifi-Rad J, Seidel V, Izabela M, Monserrat-Mequida M, Sureda A, Ormazabal V, Zuniga FA, Mangalpady SS, Pezzani R, Ydyrys A, Tussupbekova G, Martorell M, Calina D, Cho WC. Phenolic compounds as Nrf2 inhibitors: potential applications in cancer therapy. Cell Commun Signal 2023; 21:89. [PMID: 37127651 PMCID: PMC10152593 DOI: 10.1186/s12964-023-01109-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 03/22/2023] [Indexed: 05/03/2023] Open
Abstract
Cancer is a leading cause of death worldwide and involves an oxidative stress mechanism. The transcription factor Nrf2 has a crucial role in cytoprotective response against oxidative stress, including cancer growth and progression and therapy resistance. For this reason, inhibitors of Nrf2 are new targets to be studied. Traditional plant-based remedies rich in phytochemicals have been used against human cancers and phenolic compounds are known for their chemopreventive properties. This comprehensive review offers an updated review of the role of phenolic compounds as anticancer agents due to their action on Nrf2 inhibition. In addition, the role of naturally-occurring bioactive anticancer agents are covered in the clinical applications of polyphenols as Nrf2 inhibitors. Video Abstract.
Collapse
Affiliation(s)
| | - Veronique Seidel
- Natural Products Research Laboratory, Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | - Michalak Izabela
- Department of Advanced Material Technologies, Faculty of Chemistry, Wroclaw University of Science and Technology, Smoluchowskiego 25, 50-372 Wroclaw, Poland
| | - Margalida Monserrat-Mequida
- Research Group in Community Nutrition and Oxidative Stress, University of the Balearic Islands—IUNICS, 07122 Palma, Spain
- Health Research Institute of Balearic Islands (IdISBa), 07120 Palma, Spain
- CIBER Fisiopatología de La Obesidad Y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
| | - Antoni Sureda
- Research Group in Community Nutrition and Oxidative Stress, University of the Balearic Islands—IUNICS, 07122 Palma, Spain
- Health Research Institute of Balearic Islands (IdISBa), 07120 Palma, Spain
- CIBER Fisiopatología de La Obesidad Y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
| | - Valeska Ormazabal
- Department of Pharmacology, Faculty of Biological Sciences, University of Concepción, Concepción, Chile
| | - Felipe A. Zuniga
- Department of Clinical Biochemistry and Immunology, Faculty of Pharmacy, University of Concepción, Concepción, Chile
| | | | - Raffaele Pezzani
- Phytotherapy Lab, Endocrinology Unit, Department of Medicine (DIMED), University of Padova, Via Ospedale 105, 35128 Padova, Italy
- AIROB, Associazione Italiana Per La Ricerca Oncologica Di Base, Padova, Italy
| | - Alibek Ydyrys
- Biomedical Research Centre, Al-Farabi Kazakh National University, Al-Farabi Ave. 71, 050040 Almaty, Kazakhstan
- The Elliott School of International Affairs, 1957 E St NW, George Washington UniversityWashington DC, 20052 USA
| | - Gulmira Tussupbekova
- Department of Biophysics, Biomedicine and Neuroscience, Al-Farabi Kazakh National University, Al-Farabi Ave. 71, 050040 Almaty, Kazakhstan
| | - Miquel Martorell
- Department of Nutrition and Dietetics, Faculty of Pharmacy, and Centre for Healthy Living, University of Concepción, Concepción, Chile
- Universidad de Concepción, Unidad de Desarrollo Tecnológico, UDT, 4070386 Concepción, Chile
| | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - William C. Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Kowloon, Hong Kong
| |
Collapse
|
33
|
Rahaman MM, Hossain R, Herrera‐Bravo J, Islam MT, Atolani O, Adeyemi OS, Owolodun OA, Kambizi L, Daştan SD, Calina D, Sharifi‐Rad J. Natural antioxidants from some fruits, seeds, foods, natural products, and associated health benefits: An update. Food Sci Nutr 2023; 11:1657-1670. [PMID: 37051367 PMCID: PMC10084981 DOI: 10.1002/fsn3.3217] [Citation(s) in RCA: 105] [Impact Index Per Article: 52.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 12/10/2022] [Accepted: 12/19/2022] [Indexed: 01/15/2023] Open
Abstract
Antioxidants are compounds that inhibit the oxidation of other molecules and protect the body from the effects of free radicals, produced either by normal cell metabolism or as an effect of pollution and exposure to other external factors and are responsible for premature aging and play a role in cardiovascular disease. degenerative diseases such as cataracts, Alzheimer's disease, and cancer. While many antioxidants are found in nature, others are obtained in synthetic form and reduce oxidative stress in organisms. This review highlights the pharmacological relevance of antioxidants in fruits, plants, and other natural sources and their beneficial effect on human health through the analysis and in-depth discussion of studies that included phytochemistry and their pharmacological effects. The information obtained for this review was collected from several scientific databases (ScienceDirect, TRIP database, PubMed/Medline, Scopus, Web of Science), professional websites, and traditional medicine books. Current pharmacological studies and evidence have shown that the various natural antioxidants present in some fruits, seeds, foods, and natural products have different health-promoting effects. Adopting functional foods with high antioxidant potential will improve the effective and affordable management of free radical diseases while avoiding the toxicities and unwanted side effects caused by conventional medication.
Collapse
Affiliation(s)
- Md. Mizanur Rahaman
- Department of PharmacyBangabandhu Sheikh MujiburRahman Science and Technology UniversityDhakaBangladesh
| | - Rajib Hossain
- Department of PharmacyBangabandhu Sheikh MujiburRahman Science and Technology UniversityDhakaBangladesh
| | - Jesús Herrera‐Bravo
- Departamento de Ciencias Básicas, Facultad de CienciasUniversidad Santo TomasTalcaChile
- Center of Molecular Biology and Pharmacogenetics, Scientific and Technological Bioresource NucleusUniversidad de La FronteraTemucoChile
| | - Mohammad Torequl Islam
- Department of PharmacyBangabandhu Sheikh MujiburRahman Science and Technology UniversityDhakaBangladesh
| | | | - Oluyomi Stephen Adeyemi
- Department of Biochemistry, Medicinal Biochemistry, Infectious Diseases, Nanomedicine& Toxicology LaboratoryLandmark UniversityOmu‐AranNigeria
| | | | - Learnmore Kambizi
- Department of HorticultureCape Peninsula University of TechnologyBellvilleSouth Africa
| | - Sevgi Durna Daştan
- Department of Biology, Faculty of ScienceSivas Cumhuriyet UniversitySivasTurkey
- Beekeeping Development Application and Research CenterSivas Cumhuriyet UniversitySivasTurkey
| | - Daniela Calina
- Department of Clinical PharmacyUniversity of Medicine and Pharmacy of CraiovaCraiovaRomania
| | | |
Collapse
|
34
|
Sharifi‐Rad J, Painuli S, Sener B, Kılıç M, Kumar NVA, Semwal P, Docea AO, Suleria HAR, Calina D. Revisiting the nutraceutical profile, chemical composition, and health benefits of jaggery: Updates from recent decade. EFOOD 2023. [DOI: 10.1002/efd2.75] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023] Open
Affiliation(s)
| | - Sakshi Painuli
- Department of Biotechnology Graphic Era University Dehradun Uttarakhand India
| | - Bilge Sener
- International Center for Chemical and Biological Sciences, H.E.J. Research Institute of Chemistry University of Karachi Karachi Pakistan
| | - Mehtap Kılıç
- Department of Pharmacognosy, Faculty of Pharmacy Health Sciences University Ankara Turkey
| | - Nanjangud V. A. Kumar
- Department of Chemistry, Manipal Institute of Technology Manipal Academy of Higher Education Manipal India
| | - Prabhakar Semwal
- Department of Biotechnology Graphic Era University Dehradun Uttarakhand India
| | - Anca O. Docea
- Department of Toxicology University of Medicine and Pharmacy of Craiova Craiova Romania
| | - Hafiz A. R. Suleria
- Faculty of Veterinary and Agricultural Sciences, School of Agriculture and Food The University of Melbourne Parkville Victoria Australia
| | - Daniela Calina
- Department of Clinical Pharmacy University of Medicine and Pharmacy of Craiova Craiova Romania
| |
Collapse
|
35
|
Prasher P, Sharma M, Sharma AK, Sharifi-Rad J, Calina D, Hano C, Cho WC. Key oncologic pathways inhibited by Erinacine A: A perspective for its development as an anticancer molecule. Biomed Pharmacother 2023; 160:114332. [PMID: 36736282 DOI: 10.1016/j.biopha.2023.114332] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/21/2023] [Accepted: 01/27/2023] [Indexed: 02/04/2023] Open
Abstract
In the modern era, cancer can be controlled by chemotherapy treatment, and in many situations a stable disease is obtained. The significant clinical success and subsequent commercialization of naturally derived molecules have further encouraged their exploration as adjunctive therapies in cancer management. The purpose of this comprehensive review is to update the anticancer mechanisms triggered by Erinacine A and regulation of signaling pathways potentially involved in its anticancer activity.The results of preclinical research showed that Erinacin A, a therapeutically important biological metabolite isolated from the basidiomycete fungus Hericium erinaceus offers a multitude of possible chemotherapeutic applications by regulating complex signaling pathways as validated by various pharmacological in vitro and in vivo studies. As a result of Erinacin A's action on oncological signaling pathways, it resulted in induction of apoptosis, reduction of proliferation, invasiveness, generation of oxidative stress and cell cycle arrest in cancer cells.
Collapse
Affiliation(s)
- Parteek Prasher
- Department of Chemistry, University of Petroleum & Energy Studies, Energy Acres, Dehradun 248007, India.
| | - Mousmee Sharma
- Department of Chemistry, Uttaranchal University, Arcadia Grant, Dehradun 248007, India.
| | - Amit Kumar Sharma
- Department of Chemistry, University of Petroleum & Energy Studies, Energy Acres, Dehradun 248007, India.
| | | | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania.
| | - Christophe Hano
- Laboratoire de Biologie Des Ligneux Et Des Grandes Cultures (LBLGC), INRA USC1328 Université ď Orléans, 45067 Orléans Cedex 2, France.
| | - William C Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Kowloon, Hong Kong.
| |
Collapse
|
36
|
Bhuia MS, Rahaman MM, Islam T, Bappi MH, Sikder MI, Hossain KN, Akter F, Al Shamsh Prottay A, Rokonuzzman M, Gürer ES, Calina D, Islam MT, Sharifi-Rad J. Neurobiological effects of gallic acid: current perspectives. Chin Med 2023; 18:27. [PMID: 36918923 PMCID: PMC10015939 DOI: 10.1186/s13020-023-00735-7] [Citation(s) in RCA: 53] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 03/07/2023] [Indexed: 03/16/2023] Open
Abstract
Gallic acid (GA) is a phenolic molecule found naturally in a wide range of fruits as well as in medicinal plants. It has many health benefits due to its antioxidant properties. This study focused on finding out the neurobiological effects and mechanisms of GA using published data from reputed databases. For this, data were collected from various sources, such as PubMed/Medline, Science Direct, Scopus, Google Scholar, SpringerLink, and Web of Science. The findings suggest that GA can be used to manage several neurological diseases and disorders, such as Alzheimer's disease, Parkinson's disease, strokes, sedation, depression, psychosis, neuropathic pain, anxiety, and memory loss, as well as neuroinflammation. According to database reports and this current literature-based study, GA may be considered one of the potential lead compounds to treat neurological diseases and disorders. More preclinical and clinical studies are required to establish GA as a neuroprotective drug.
Collapse
Affiliation(s)
- Md. Shimul Bhuia
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, 8100 Bangladesh
| | - Md. Mizanur Rahaman
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, 8100 Bangladesh
| | - Tawhida Islam
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, 8100 Bangladesh
| | - Mehedi Hasan Bappi
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, 8100 Bangladesh
| | - Md. Iqbal Sikder
- Department of Pharmacy, Southern University Bangladesh, Chattogram, 4210 Bangladesh
| | - Kazi Nadim Hossain
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, 8100 Bangladesh
| | - Fatama Akter
- Department of Pharmacy, Southern University Bangladesh, Chattogram, 4210 Bangladesh
| | - Abdullah Al Shamsh Prottay
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, 8100 Bangladesh
| | - Md. Rokonuzzman
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, 8100 Bangladesh
| | - Eda Sönmez Gürer
- Faculty of Pharmacy, Department of Pharmacognosy, Sivas Cumhuriyet University, Sivas, Turkey
| | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Muhammad Torequl Islam
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, 8100 Bangladesh
| | | |
Collapse
|
37
|
Zahra N, Iqbal J, Arif M, Abbasi BA, Sher H, Nawaz AF, Yaseen T, Ydyrys A, Sharifi-Rad J, Calina D. A comprehensive review on traditional uses, phytochemistry and pharmacological properties of Paeonia emodi Wall. ex Royle: current landscape and future perspectives. Chin Med 2023; 18:23. [PMID: 36859262 PMCID: PMC9979516 DOI: 10.1186/s13020-023-00727-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 02/10/2023] [Indexed: 03/03/2023] Open
Abstract
Paeonia emodi Wall. ex Royle is commonly known as Himalayan paeony has great importance as a food and medicine. The practice of Paeonia emodi Wall. ex Royle is very ancient and it is conventionally used for a wide range of illnesses in the folk system of medicine because of its wide beneficial phytochemical profile. The main purpose of the current review was the synthesis of recent data on botany, ethnopharmacology, phytochemistry and potential pharmacological mechanisms of action of Paeonia emodi Wall. ex Royle, thus offering new prospects for the development of new adjuvant natural therapies. Using scientific databases such as PubMed/MedLine, Scopus, Web of Science, ScienceDirect, Google Scholar, Springer, and Wiley, a comprehensive literature search was performed for Paeonia emodi Wall. ex Royle. For searching, we used the next MeSH terms: "Biological Product/isolation and purification", "Biological Products/pharmacology", "Drug Discovery/methods", "Ethnopharmacology, Medicine", "Traditional/methods", "Paeonia/chemistry", "Plant Extracts/pharmacology", "Phytochemicals/chemistry", "Phytochemicals/pharmacology", "Plants, Medicinal". The results of the most recent studies were analyzed and the most important data were summarized in tables and figures. Phytochemical research of Paeonia emodi Wall. ex Royle has led to the isolation of triterpenes, monoterpenes, phenolic acids, fatty acids, organic compounds, steroids, free radicals and some other classes of primary metabolites. In addition, diverse pharmacological activities like antibacterial, antifungal, anticoagulant, airway relaxant lipoxygenase and beta-glucuronidase inhibiting activity, radical scavenging activity, phytotoxic and insecticidal activities have been reported for Paeonia emodi Wall. ex Royle. Different bioactive compounds of Paeonia emodi Wall. ex Royle has proven their therapeutic potential in modern pharmacological and biomedical research to cure numerous gastrointestinal and nervous disorders. In future, further in vitro and in vivo therapeutic studies are required to identify new mechanisms of action, pharmacokinetics studies, and new pharmaceutical formulations for target transport and possible interaction with allopathic drugs. Also, new research regarding quality evaluation, toxicity and safety data in humans is needed.
Collapse
Affiliation(s)
- Nida Zahra
- Department of Biotechnology, University of Mianwali, Mianwali, 42200 Pakistan
| | - Javed Iqbal
- Department of Botany, Bacha Khan University, Charsadda, Khyber Pakhtunkhwa Pakistan
| | - Muhammad Arif
- Department of Biotechnology, University of Mianwali, Mianwali, 42200 Pakistan
| | - Banzeer Ahsan Abbasi
- Department of Botany, Rawalpindi Women University, 6th Road, Satellite Town, Rawalpindi, 46300 Pakistan
| | - Hassan Sher
- Center for Plant Sciences and Biodiversity, University of Swat, Kanju, 19201 Pakistan
| | - Ayesha Fazal Nawaz
- National Institute of Genomics and Advanced Biotechnology (NIGAB), National Agricultural Research Center (NARC), Park Road, Islamabad, Pakistan
| | - Tabassum Yaseen
- Department of Botany, Bacha Khan University, Charsadda, Khyber Pakhtunkhwa Pakistan
| | - Alibek Ydyrys
- Biomedical Research Centre, Al-Farabi Kazakh National University, Al-Farabi Ave. 71, 050040 Almaty, Kazakhstan
- The Elliott School of International Affairs, George Washington University, 1957 E St NW, Washington, DC 20052 USA
| | | | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| |
Collapse
|
38
|
Singh B, Nathawat S, Avtar Sharma R. Antimicrobial potential of Indian Cinnamomum species. Saudi J Biol Sci 2023; 30:103549. [PMID: 36619679 PMCID: PMC9813755 DOI: 10.1016/j.sjbs.2022.103549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 11/23/2022] [Accepted: 12/20/2022] [Indexed: 12/27/2022] Open
Abstract
Cinnamomum is the largest genus of Lauraceae family and has been used as spices, food, and food additives by the people. Total 15 Cinnamomum species are distributed in different parts of Indian sub-continent. Different parts (leaves, stem bark, stem wood, roots, flowers, and fruits) of these species were shade-dried and used for the determination of essential oils. A total of 19 essential oils were identified and quantified from the different parts of (leaf, stem bark, stem wood, root, flower, and fruit) of 15 Cinnamomum species. The stem bark of C. altissimum was rich in the presence of essential oils (52.2 %) whereas minimum levels of essential oils were recorded in roots (17.9 %). The γ-terpinene (11.1 %) was reported as the major component essential oil in C. subavenium flowers. Methanol extract of C. camphora stem wood showed stronger lowest minimum inhibitory concentration against S. aureus (25 ± 0.01 μg/ml), H. pylori (29 ± 0.05 μg/ml), B. subtilis (31 ± 0.03 μg/ml), E. faecalis (33 ± 0.01 μg/ml), C. albicans (38 ± 0.03 μg/ml) when compared to amoxycillin (S. aureus 56 ± 0.05 μg/ml; B. subtilis 27 ± 0.04 μg/ml, E. faecalis 22 ± 0.01 μg/ml), streptomycin (H. pylori 38 ± 0.02 μg/ml) and fluconazole (C. albicans 56 ± 0.01 μg/ml). Methanolic extract of C. camphora stem wood demonstrated maximum antimicrobial activity against S. aureus, H. pylori, B. subtilis, E. faecalis and C. albicans. The essential oil of C. altissimum stem bark displayed significant lowest MIC against S. aureus (21 ± 0.03 μg/ml), E. coli (22 ± 0.03 μg/ml), E. cloacae (37 ± 0.06 μg/ml), L. monocytogenes (47 ± 0.08 μg/ml), and P. chrysogenum (101 ± 0.07 μg/ml) when compared to amoxycillin (E. coli 18 ± 0.01 μg/ml, E. cloacae 21 ± 0.05 μg/ml, L. monocytogenes 31 ± 0.03 μg/ml), and fluconazole (P. chrysogenum 101 ± 0.07 μg/ml). The essential oil of C. altissimum stem bark displayed maximum antimicrobial activity against S. aureus, E. coli, E. cloacae, L. monocytogenes, and P. chrysogenum. Cinnamomum essential oils may be used as an alternative source of antibacterial and antifungal compounds in the treatment of various types of infections.
Collapse
Affiliation(s)
- Bharat Singh
- Amity of Biotechnology, Amity University Rajasthan, Jaipur 303 002, India,Corresponding author at: Amity of Biotechnology, Amity University Rajasthan, Jaipur 303 002, India.
| | - Sheenu Nathawat
- Amity of Biotechnology, Amity University Rajasthan, Jaipur 303 002, India
| | - Ram Avtar Sharma
- Department of Botany, University of Rajasthan, Jaipur 302 004, India
| |
Collapse
|
39
|
Fernandez-Soto P, Celi D, Tejera E, Alvarez-Suarez JM, Machado A. Cinnamomum sp. and Pelargonium odoratissimum as the Main Contributors to the Antibacterial Activity of the Medicinal Drink Horchata: A Study Based on the Antibacterial and Chemical Analysis of 21 Plants. Molecules 2023; 28:693. [PMID: 36677749 PMCID: PMC9862262 DOI: 10.3390/molecules28020693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/28/2022] [Accepted: 01/04/2023] [Indexed: 01/13/2023] Open
Abstract
Horchata, a herbal infusion drink from Ecuador containing a mixture of medicinal plants, has been reported to exhibit anti-inflammatory, analgesic, diuretic, and antioxidant activity. The antibacterial activity of each of the plants contained in the horchata mixture has not been fully evaluated. Thus, in this study, we analysed the antibacterial activity of 21 plants used in horchata, collected from the Ecuadorian Andes region, against bacterial strains of clinical importance. The methanolic extract of Cinnamomum sp. showed minimal inhibitory concentration (MIC) values of 250 µg/mL against Staphylococcus aureus ATCC25923 and Methicillin-resistant S. aureus (MRSA), while Pelargonium odoratissimum exhibited a MIC value of 500 µg/mL towards S. aureus ATCC25923. The high-performance liquid chromatography-diode array detector-tandem mass spectrometry (HPLC-DAD-MS/MS) analyses identified in Cinnamomum sp. epicatechin tannins, cinnamaldehyde, and prehelminthosporol molecules, whereas in P. odoratissimum, gallocatechin and epigallocatechin tannins, some flavonoids, and gallic acid and derivatives were identified. Finally, Cinnamomum sp. and P. odoratissimum showed partial inhibition of biofilm formation of S. aureus ATCC25923 and MRSA. Overall, our findings revealed which of the plants used in horchata are responsible for the antibacterial activity attributed to this herbal drink and exhibit the potential for Cinnamomum sp. and P. odoratissimum secondary metabolites to be explored as scaffolds in drug development.
Collapse
Affiliation(s)
- Paulina Fernandez-Soto
- Facultad de Ciencias de la Salud, Carrera de Enfermería, Grupo de Bio-Quimioinformática, Universidad de Las Américas (UDLA), Quito 170125, Ecuador
| | - Diana Celi
- Facultad de Ingeniería y Ciencias Aplicadas, Carrera de Ingeniería Agroindustrial, Universidad de Las Américas (UDLA), Quito 170125, Ecuador
| | - Eduardo Tejera
- Facultad de Ingeniería y Ciencias Agropecuarias Aplicadas, Grupo de Bio-Quimioinformática, Universidad de Las Américas (UDLA), Quito 170125, Ecuador
| | - José Miguel Alvarez-Suarez
- Colegio de Ciencias e Ingenierías, Departamento de Ingeniería en Alimentos, Universidad San Francisco de Quito (USFQ), Quito 170901, Ecuador
| | - António Machado
- Colegio de Ciencias Biológicas y Ambientales (COCIBA), Instituto de Microbiología, Laboratorio de Bacteriología, Universidad San Francisco de Quito (USFQ), Quito 170901, Ecuador
| |
Collapse
|
40
|
Pezzani R, Jiménez-Garcia M, Capó X, Sönmez Gürer E, Sharopov F, Rachel TYL, Ntieche Woutouoba D, Rescigno A, Peddio S, Zucca P, Tsouh Fokou PV, Martorell M, Gulsunoglu-Konuskan Z, Ydyrys A, Bekzat T, Gulmira T, Hano C, Sharifi-Rad J, Calina D. Anticancer properties of bromelain: State-of-the-art and recent trends. Front Oncol 2023; 12:1068778. [PMID: 36698404 PMCID: PMC9869248 DOI: 10.3389/fonc.2022.1068778] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 12/12/2022] [Indexed: 01/12/2023] Open
Abstract
Bromelain is a key enzyme found in pineapple (Ananas comosus (L.) Merr.); a proteolytic substance with multiple beneficial effects for human health such as anti-inflammatory, immunomodulatory, antioxidant and anticarcinogenic, traditionally used in many countries for its potential therapeutic value. The aim of this updated and comprehensive review focuses on the potential anticancer benefits of bromelain, analyzing the cytotoxic, apoptotic, necrotic, autophagic, immunomodulating, and anti-inflammatory effects in cancer cells and animal models. Detailed information about Bromelain and its anticancer effects at the cellular, molecular and signaling levels were collected from online databases such as PubMed/MedLine, TRIP database, GeenMedical, Scopus, Web of Science and Google Scholar. The results of the analyzed studies showed that Bromelain possesses corroborated pharmacological activities, such as anticancer, anti-edema, anti-inflammatory, anti-microbial, anti-coagulant, anti-osteoarthritis, anti-trauma pain, anti-diarrhea, wound repair. Nonetheless, bromelain clinical studies are scarce and still more research is needed to validate the scientific value of this enzyme in human cancer diseases.
Collapse
Affiliation(s)
- Raffaele Pezzani
- Phytotherapy Lab, Endocrinology Unit, Department of Medicine (DIMED), University of Padova, Padova, Italy,Associazione Italiana per la Ricerca Oncologica di Base (AIROB), Padova, Italy
| | - Manuel Jiménez-Garcia
- Laboratory of Neurophysiology, Biology Department, University of Balearic Islands (UIB), Palma de Mallorca, Spain
| | - Xavier Capó
- Research Group in Community Nutrition and Oxidative Stress and Health Research Institute of the Balearic Islands (IdISBa), University of Balearic Islands, Palma de Mallorca, Spain
| | - Eda Sönmez Gürer
- Faculty of Pharmacy, Department of Pharmacognosy, Sivas Cumhuriyet University, Sivas, Turkey
| | - Farukh Sharopov
- Research Institution “Chinese-Tajik Innovation Center for Natural Products” of the National Academy of Sciences of Tajikistan, Dushanbe, Tajikistan
| | | | - David Ntieche Woutouoba
- Antimicrobial and Biocontrol Agents Unit, Department of Biochemistry, Faculty of Science, University of Yaounde, Yaounde, Cameroon
| | - Antonio Rescigno
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - Stefania Peddio
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - Paolo Zucca
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy,*Correspondence: Javad Sharifi-Rad, ; Christophe Hano, ; Daniela Calina, ; Paolo Zucca,
| | | | - Miquel Martorell
- Department of Nutrition and Dietetics, Faculty of Pharmacy, and Centre for Healthy Living, University of Concepción, Concepción, Chile,Universidad de Concepción, Unidad de Desarrollo Tecnológico, UDT, Concepción, Chile
| | - Zehra Gulsunoglu-Konuskan
- Faculty of Health Science, Nutrition and Dietetics Department, Istanbul Aydin University, Istanbul, Turkey
| | - Alibek Ydyrys
- Biomedical Research Centre, Al-Farabi Kazakh National University, Almaty, Kazakhstan,The Elliott School of International Affairs, George Washington University, Washington, DC, United States
| | - Tynybekov Bekzat
- Department of Biodiversity and Bioresources, Al-Farabi Kazakh National University, Almaty, Kazakhstan
| | - Tussupbekova Gulmira
- Department of Biophysics, Biomedicine and Neuroscience, Al-Farabi Kazakh National University, Almaty, Kazakhstan
| | - Christophe Hano
- Department of Biological Chemistry, University of Orleans, Chartres, France,*Correspondence: Javad Sharifi-Rad, ; Christophe Hano, ; Daniela Calina, ; Paolo Zucca,
| | - Javad Sharifi-Rad
- Facultad de Medicina, Universidad del Azuay, Cuenca, Ecuador,*Correspondence: Javad Sharifi-Rad, ; Christophe Hano, ; Daniela Calina, ; Paolo Zucca,
| | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, Craiova, Romania,*Correspondence: Javad Sharifi-Rad, ; Christophe Hano, ; Daniela Calina, ; Paolo Zucca,
| |
Collapse
|
41
|
Qasem A, Assaggaf H, Mrabti HN, Minshawi F, Rajab BS, Attar AA, Alyamani RA, Hamed M, Mrabti NN, Baaboua AE, Omari NE, Alshahrani MM, Awadh AAA, Sheikh RA, Ming LC, Goh KW, Bouyahya A. Determination of Chemical Composition and Investigation of Biological Activities of Ocimum basilicum L. Molecules 2023; 28:614. [PMID: 36677672 PMCID: PMC9866482 DOI: 10.3390/molecules28020614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/08/2022] [Accepted: 10/12/2022] [Indexed: 01/11/2023] Open
Abstract
This study aimed to determine the chemical composition of the essential oils (EOs) of Ocimum basilicum L., as well as to evaluate the antibacterial, antidiabetic, dermatoprotective, and anti-inflammatory properties, and the EOs and aqueous extracts of O. basilicum. The antibacterial activity was evaluated against bacterial strains, Gram-positive and Gram-negative, using the well diffusion and microdilution methods, whereas the antidiabetic activity was assessed in vitro using two enzymes involved in carbohydrate digestion, α-amylase and α-glucosidase. On the other hand, the dermatoprotective and anti-inflammatory activities were studied by testing tyrosinase and lipoxygenase inhibition activity, respectively. The results showed that the chemical composition of O. basilicum EO (OBEO) is dominated by methyl chavicol (86%) and trans-anethol (8%). OBEO exhibited significant antibacterial effects against Gram-negative and Gram-positive strains, demonstrated by considerable diameters of the inhibition zones and lower MIC and MBC values. In addition, OBEO exhibited significant inhibition of α-amylase (IC50 = 50.51 ± 0.32 μg/mL) and α-glucosidase (IC50 = 39.84 ± 1.2 μg/mL). Concerning the anti-inflammatory activity, OBEO significantly inhibited lipoxygenase activity (IC50 = 18.28 ± 0.03 μg/mL) compared to the aqueous extract (IC50 = 24.8 ± 0.01 μg/mL). Moreover, tyrosinase was considerably inhibited by OBEO (IC50 = 68.58 ± 0.03 μg/mL) compared to the aqueous extract (IC50 = 118.37 ± 0.05 μg/mL). The toxicological investigations revealed the safety of O. basilicum in acute and chronic toxicity. The finding of in silico analysis showed that methyl chavicol and trans-anethole (main compounds of OBEO) validate the pharmacokinetics of these compounds and decipher some antibacterial targets.
Collapse
Affiliation(s)
- Ahmed Qasem
- Department of Laboratory Medicine, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Hamza Assaggaf
- Department of Laboratory Medicine, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Hanae Naceiri Mrabti
- Laboratoires TBC, Faculty of Pharmaceutical and Biological Sciences, B.P. 8359006 Lille, France
| | - Faisal Minshawi
- Department of Laboratory Medicine, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Bodour S. Rajab
- Department of Laboratory Medicine, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Ammar A. Attar
- Department of Laboratory Medicine, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Reema A. Alyamani
- Faculty of Applied Medical Sciences, Clinical Nutrition Department, Umm Al-Qura University, Makkah 24381, Saudi Arabia
| | - Munerah Hamed
- Department of Pathology, Faculty of Medicine, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Nidal Naceiri Mrabti
- Engineering Materials, Modeling and Environmental Laboratory, Faculty of Sciences Dhar El Mehraz, Sidi Mohammed Ben Abdellah University, Fez 30000, Morocco
| | - Aicha El Baaboua
- Biology and Health Laboratory, Department of Biology, Faculty of Science, Abdelmalek-Essaadi University, Tetouan 93000, Morocco
| | - Nasreddine El Omari
- Laboratory of Histology, Embryology and Cytogenetic, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Rabat 10100, Morocco
| | - Mohammed Merae Alshahrani
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Najran University, P.O. Box 1988, Najran 61441, Saudi Arabia
| | - Ahmed Abdullah Al Awadh
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Najran University, P.O. Box 1988, Najran 61441, Saudi Arabia
| | - Ryan Adnan Sheikh
- Biochemistry Department, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Long Chiau Ming
- School of Medical and Life Sciences, Sunway University, Bandar Sunway 47500, Malaysia
| | - Khang Wen Goh
- Faculty of Data Science and Information Technology, INTI International University, Nilai 71800, Malaysia
| | - Abdelhakim Bouyahya
- Laboratory of Human Pathologies Biology, Department of Biology, Faculty of Sciences, Mohammed V University in Rabat, Rabat 10100, Morocco
| |
Collapse
|
42
|
Khouchlaa A, El Baaboua A, El Moudden H, Lakhdar F, Bakrim S, El Menyiy N, Belmehdi O, Harhar H, El Omari N, Balahbib A, Park MN, Zengin G, Kim B, Bouyahya A. Traditional Uses, Bioactive Compounds, and Pharmacological Investigations of Calendula arvensis L.: A Comprehensive Review. Adv Pharmacol Pharm Sci 2023; 2023:2482544. [PMID: 36636465 PMCID: PMC9831710 DOI: 10.1155/2023/2482544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 10/06/2022] [Accepted: 12/10/2022] [Indexed: 01/05/2023] Open
Abstract
Calendula arvensis L. (Asteraceae) is a famous ornamental and medicinal plant widely distributed in Mediterranean countries and the southern region of Europe. This reputed species is widely used in traditional medicine in the treatment of many disorders and has various bioactivities, especially anti-inflammatory, antiviral, antimutagenic, antimicrobial, insecticidal, antioxidant, and immunomodulatory activities. The present review was conducted to provide a critical review of the comprehensive and current knowledge regarding C. arvensis species, in particular, its taxonomy and geographical distribution, botanical description, medicinal uses, phytochemical compounds, pharmacological properties, and toxicity investigations. The data collected on C. arvensis were obtained using different scientific research databases such as PubMed, SciFinder, SpringerLink, Web of Science, Science Direct, Google Scholar, Wiley Online, and Scopus. Phytochemical screening of different C. arvensis extracts and essential oils showed their richness in bioactive compounds, particularly in fatty acids, sterols, phenolics, flavonoids, saponins, tannins, alkaloids, and terpenoid compounds. The findings of this review showed that the pharmacological activities of C. arvensis confirm its importance and diversity as a traditional remedy for many diseases. This plant presents a wide range of bioactivities, namely, anti-inflammatory, antimicrobial, antitrypanosomial, antitumoral, antimutagenic, and immunomodulatory activities, as well as hemolytic properties and wound treatment. Nevertheless, pharmacokinetic validation and toxicological examinations are required to detect any possible toxicity for future clinical trials.
Collapse
Affiliation(s)
- Aya Khouchlaa
- Laboratory of Biochemistry, National Agency of Medicinal and Aromatic Plants, 34025 Taounate, Morocco
| | - Aicha El Baaboua
- Biology and Health Laboratory, Department of Biology, Faculty of Science, Abdelmalek-Essaadi University, Tetouan, Morocco
| | - Hamza El Moudden
- Ecole Supérieure de Technologie d'El Kelaa Des Sraghna, Université Cadi Ayyad, B.P 104, El Kelaa Des Sraghna, Morocco
| | - Fatima Lakhdar
- Department of Biology, Laboratory of Marine Biotechnology and Environment, Faculty of Sciences, Chouaib Doukkali University, BP 20, El Jadida 24000, Morocco
| | - Saad Bakrim
- Geo-Bio-Environment Engineering and Innovation Laboratory, Molecular Engineering, Biotechnology and Innovation Team, Polydisciplinary Faculty of Taroudant, Ibn Zohr University, Agadir 80000, Morocco
| | - Naoual El Menyiy
- Laboratory of Pharmacology, National Agency of Medicinal and Aromatic Plants, 34025 Taounate, Morocco
| | - Omar Belmehdi
- Biology and Health Laboratory, Department of Biology, Faculty of Science, Abdelmalek-Essaadi University, Tetouan, Morocco
| | - Hicham Harhar
- Laboratory of Nanotechnology, Materials and Environment, Department of Chemistry, Faculty of Science, Mohammed V University in Rabat, Rabat, Morocco
| | - Nasreddine El Omari
- Laboratory of Histology, Embryology, and Cytogenetic, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Rabat 10100, Morocco
| | - Abdelaali Balahbib
- Laboratory of Biodiversity Ecology and Genome, Faculty of Sciences, Mohammed V University, Rabat P.O. Box 1014, Rabat, Morocco
| | - Moon Nyeo Park
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Gokhan Zengin
- Physiology and Biochemistry Research Laboratory, Department of Biology, Science Faculty, Selcuk University Campus, Konya, Turkey
| | - Bonglee Kim
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Abdelhakim Bouyahya
- Laboratory of Human Pathologies Biology, Department of Biology, Faculty of Sciences, Mohammed V University, Rabat B.P. 1014, Morocco
| |
Collapse
|
43
|
Agrawal K, Chakraborty P, Dewanjee S, Arfin S, Das SS, Dey A, Moustafa M, Mishra PC, Jafari SM, Jha NK, Jha SK, Kumar D. Neuropharmacological interventions of quercetin and its derivatives in neurological and psychological disorders. Neurosci Biobehav Rev 2023; 144:104955. [PMID: 36395983 DOI: 10.1016/j.neubiorev.2022.104955] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 10/20/2022] [Accepted: 11/06/2022] [Indexed: 11/16/2022]
Abstract
Quercetin is a naturally occurring bioactive flavonoid abundant in many plants and fruits. Quercetin and its derivatives have shown an array of pharmacological activities in preclinical tests against various illnesses and ailments. Owing to its protective role against oxidative stress and neuroinflammation, quercetin is a possible therapeutic choice for the treatment of neurological disorders. Quercetin and its derivatives can modulate a variety of signal transductions, including neuroreceptor, neuroinflammatory receptor, and redox signaling events. The research on quercetin and its derivatives in neurology-related illnesses mainly focused on the targets, such as redox stress, neuroinflammation, and signaling pathways; however, the function of quercetin and its derivatives on specific molecular targets, such as nuclear receptors and proinflammatory mediators are yet to be explored. Findings showed that various molecular targets of quercetin and its derivatives have therapeutic potential against psychological and neurodegenerative disorders.
Collapse
Affiliation(s)
- Kirti Agrawal
- School of Health sciences & Technology, UPES University, Dehradun, Uttarakhand, India, 248007
| | - Pratik Chakraborty
- Advanced Pharmacognosy Research Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700 032, West Bengal, India
| | - Saikat Dewanjee
- Advanced Pharmacognosy Research Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700 032, West Bengal, India
| | - Saniya Arfin
- School of Health sciences & Technology, UPES University, Dehradun, Uttarakhand, India, 248007
| | - Sabya Sachi Das
- School of Pharmaceutical and Population Health Informatics, DIT University, Dehradun 248009, Uttarakhand, India
| | - Abhijit Dey
- Department of Life Sciences, Presidency University, Kolkata 700073, West Bengal, India
| | - Mahmoud Moustafa
- Department of Biology, Faculty of Science, King Khalid University, Abha, Saudi Arabia; Department of Botany and Microbiology, Faculty of Science, South Valley University, Qena, Egypt
| | - Prabhu Chandra Mishra
- Department of Biotechnology, School of Engineering and Technology (SET), Sharda University, Greater Noida, Uttar Pradesh 201310, India
| | - Seid Mahdi Jafari
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran; Universidade de Vigo, Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Science, E-32004 Ourense, Spain
| | - Niraj Kumar Jha
- Department of Biotechnology, School of Engineering and Technology (SET), Sharda University, Greater Noida, Uttar Pradesh 201310, India.
| | - Saurabh Kumar Jha
- Department of Biotechnology, School of Engineering and Technology (SET), Sharda University, Greater Noida, Uttar Pradesh 201310, India; Department of Biotechnology Engineering and Food Technology, Chandigarh University, Mohali 140413, India; Department of Biotechnology, School of Applied & Life Sciences (SALS), Uttaranchal University, Dehradun 248007, India.
| | - Dhruv Kumar
- School of Health sciences & Technology, UPES University, Dehradun, Uttarakhand, India, 248007.
| |
Collapse
|
44
|
Salinas-Arellano ED, Castro-Dionicio IY, Jeyaraj JG, Mirtallo Ezzone NP, Carcache de Blanco EJ. Phytochemical Profiles and Biological Studies of Selected Botanical Dietary Supplements Used in the United States. PROGRESS IN THE CHEMISTRY OF ORGANIC NATURAL PRODUCTS 2023; 122:1-162. [PMID: 37392311 DOI: 10.1007/978-3-031-26768-0_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/03/2023]
Abstract
Based on their current wide bioavailability, botanical dietary supplements have become an important component of the United States healthcare system, although most of these products have limited scientific evidence for their use. The most recent American Botanical Council Market Report estimated for 2020 a 17.3% increase in sales of these products when compared to 2019, for a total sales volume of $11,261 billion. The use of botanical dietary supplements products in the United States is guided by the Dietary Supplement Health and Education Act (DSHEA) from 1994, enacted by the U.S. Congress with the aim of providing more information to consumers and to facilitate access to a larger number of botanical dietary supplements available on the market than previously. Botanical dietary supplements may be formulated for and use only using crude plant samples (e.g., plant parts such as the bark, leaves, or roots) that can be processed by grinding into a dried powder. Plant parts can also be extracted with hot water to form an "herbal tea." Other preparations of botanical dietary supplements include capsules, essential oils, gummies, powders, tablets, and tinctures. Overall, botanical dietary supplements contain bioactive secondary metabolites with diverse chemotypes that typically are found at low concentration levels. These bioactive constituents usually occur in combination with inactive molecules that may induce synergy and potentiation of the effects observed when botanical dietary supplements are taken in their different forms. Most of the botanical dietary supplements available on the U.S. market have been used previously as herbal remedies or as part of traditional medicine systems from around the world. Their prior use in these systems also provides a certain level of assurance in regard to lower toxicity levels. This chapter will focus on the importance and diversity of the chemical features of bioactive secondary metabolites found in botanical dietary supplements that are responsible for their applications. Many of the active principles of botanical dietary substances are phenolics and isoprenoids, but glycosides and some alkaloids are also present. Biological studies on the active constituents of selected botanical dietary supplements will be discussed. Thus, the present chapter should be of interest for both members of the natural products scientific community, who may be performing development studies of the products available, as well as for healthcare professionals who are directly involved in the analysis of botanical interactions and evaluation of the suitability of botanical dietary supplements for human consumption.
Collapse
Affiliation(s)
- Eric D Salinas-Arellano
- Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, 500 West 12th Avenue, Columbus, OH, 43210, USA
| | - Ines Y Castro-Dionicio
- Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, 500 West 12th Avenue, Columbus, OH, 43210, USA
| | - Jonathan G Jeyaraj
- Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, 500 West 12th Avenue, Columbus, OH, 43210, USA
| | - Nathan P Mirtallo Ezzone
- Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, 500 West 12th Avenue, Columbus, OH, 43210, USA
| | - Esperanza J Carcache de Blanco
- Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, 500 West 12th Avenue, Columbus, OH, 43210, USA.
| |
Collapse
|
45
|
Pires SMG, Reis RS, Cardoso SM, Pezzani R, Paredes-Osses E, Seilkhan A, Ydyrys A, Martorell M, Sönmez Gürer E, Setzer WN, Abdull Razis AF, Modu B, Calina D, Sharifi-Rad J. Phytates as a natural source for health promotion: A critical evaluation of clinical trials. Front Chem 2023; 11:1174109. [PMID: 37123871 PMCID: PMC10140425 DOI: 10.3389/fchem.2023.1174109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Accepted: 04/03/2023] [Indexed: 05/02/2023] Open
Abstract
Phytates are a type of organophosphorus compound produced in terrestrial ecosystems by plants. In plant feeds, phytic acid and its salt form, phytate, account for 60%-80% of total phosphorus. Because phytate is a polyanionic molecule, it can chelate positively charged cations such as calcium, iron, and zinc. Due to its prevalence in vegetal tissues and the fact that people consume plants, phytate was first considered a potential health benefit. This updated review aims to summarize the current data on the results of clinical trials of phytates on human health, highlighting both beneficial and undesirable effects. To obtain these updated data, published papers in electronic databases such as PubMed/MedLine, TRIP database, Wiley, Google Scholar, Baidu, and Scopus were searched. Study results have shown that phytate can have beneficial health effects such as antioxidant, anticancer potential and reduction of pathological calcifications in blood vessels and organs; but also, negative effects by reducing the absorption of minerals important for maintaining the homeostasis of the human body. According to these recent results derived from recent clinical studies, phytates may be a potential natural source for health benefits. To improve clinical efficacy and human health benefits, further dose-response studies are needed to determine effective therapeutic doses and potential interactions with conventional drugs.
Collapse
Affiliation(s)
- Sónia M. G. Pires
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - Rita Silva Reis
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - Susana M. Cardoso
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Aveiro, Portugal
- *Correspondence: Susana M. Cardoso, ; Miquel Martorell, ; Ahmad Faizal Abdull Razis, ; Daniela Calina, ; Javad Sharifi-Rad,
| | - Raffaele Pezzani
- Phytotherapy Lab (PhT-Lab), Endocrinology Unit, Department of Medicine (DIMED), University of Padova, Padova, Italy
- AIROB, Associazione Italiana per la Ricerca Oncologica di Base, Padova, Italy
| | - Esteban Paredes-Osses
- Instituto de Ciencias Naturales, Facultad de Medicina Veterinaria y Agronomía, Universidad de Las Américas, Las Américas, Chile
| | - Ainur Seilkhan
- Educational Program, Geography, Environment and Service Sector, Abai Kazakh National Pedagogical University, Almaty, Kazakhstan
| | - Alibek Ydyrys
- Biomedical Research Centre, Al-Farabi Kazakh National University, Almaty, Kazakhstan
| | - Miquel Martorell
- Centre for Healthy Living, Department of Nutrition and Dietetics, Faculty of Pharmacy, University of Concepción, Concepción, Chile
- Unidad de Desarrollo Tecnológico, UDT, Universidad de Concepción, Concepción, Chile
- *Correspondence: Susana M. Cardoso, ; Miquel Martorell, ; Ahmad Faizal Abdull Razis, ; Daniela Calina, ; Javad Sharifi-Rad,
| | - Eda Sönmez Gürer
- Department of Pharmacognosy, Faculty of Pharmacy, Sivas Cumhuriyet University, Sivas, Türkiye
| | - William N. Setzer
- Aromatic Plant Research Center, Lehi, UT, United States
- Department of Chemistry, University of Alabama in Huntsville, Huntsville, AL, United States
| | - Ahmad Faizal Abdull Razis
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
- Natural Medicines and Products Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
- *Correspondence: Susana M. Cardoso, ; Miquel Martorell, ; Ahmad Faizal Abdull Razis, ; Daniela Calina, ; Javad Sharifi-Rad,
| | - Babagana Modu
- Natural Medicines and Products Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
- Department of Biochemistry, Faculty of Science, University of Maiduguri, Maiduguri, Borno, Nigeria
| | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, Craiova, Romania
- *Correspondence: Susana M. Cardoso, ; Miquel Martorell, ; Ahmad Faizal Abdull Razis, ; Daniela Calina, ; Javad Sharifi-Rad,
| | - Javad Sharifi-Rad
- Facultad de Medicina, Universidad del Azuay, Cuenca, Ecuador
- *Correspondence: Susana M. Cardoso, ; Miquel Martorell, ; Ahmad Faizal Abdull Razis, ; Daniela Calina, ; Javad Sharifi-Rad,
| |
Collapse
|
46
|
Cucurbitacins as potential anticancer agents: new insights on molecular mechanisms. J Transl Med 2022; 20:630. [PMID: 36585670 PMCID: PMC9805216 DOI: 10.1186/s12967-022-03828-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Accepted: 12/11/2022] [Indexed: 01/01/2023] Open
Abstract
Since ancient times, plants have been an extensive reservoir of bioactive compounds with therapeutic interest for new drug development and clinical application. Cucurbitacins are a compelling example of these drug leads, primarily present in the plant kingdom, especially in the Cucurbitaceae family. However, these natural compounds are also known in several genera within other plant families. Beyond the Cucurbitaceae family, they are also present in other plant families, as well as in some fungi and one shell-less marine mollusc. Despite the natural abundance of cucurbitacins in different natural species, their obtaining and isolation is limited, as a result, an increase in their chemical synthesis has been developed by researchers. Data on cucurbitacins and their anticancer activities were collected from databases such as PubMed/MedLine, TRIP database, Web of Science, Google Scholar, and ScienceDirect and the information was arranged sequentially for a better understanding of the antitumor potential. The results of the studies showed that cucurbitacins have significant biological activities, such as anti-inflammatory, antioxidant, antimalarial, antimicrobial, hepatoprotective and antitumor potential. In conclusion, there are several studies, both in vitro and in vivo reporting this important anticancer/chemopreventive potential; hence a comprehensive review on this topic is recommended for future clinical research.
Collapse
|
47
|
Garzoli S, Alarcón-Zapata P, Seitimova G, Alarcón-Zapata B, Martorell M, Sharopov F, Fokou PVT, Dize D, Yamthe LRT, Les F, Cásedas G, López V, Iriti M, Rad JS, Gürer ES, Calina D, Pezzani R, Vitalini S. Natural essential oils as a new therapeutic tool in colorectal cancer. Cancer Cell Int 2022; 22:407. [PMID: 36514100 PMCID: PMC9749237 DOI: 10.1186/s12935-022-02806-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 11/24/2022] [Indexed: 12/15/2022] Open
Abstract
Colorectal cancer (CRC) is the third most revalent type of cancer in the world and the second most common cause of cancer death (about 1 million per year). Historically, natural compounds and their structural analogues have contributed to the development of new drugs useful in the treatment of various diseases, including cancer. Essential oils are natural odorous products made up of a complex mixture of low molecular weight compounds with recognized biological and pharmacological properties investigated also for the prevention and treatment of cancer. The aim of this paper is to highlight the possible role of essential oils in CRC, their composition and the preclinical studies involving them. It has been reviewed the preclinical pharmacological studies to determine the experimental models used and the anticancer potential mechanisms of action of natural essential oils in CRC. Searches were performed in the following databases PubMed/Medline, Web of science, TRIP database, Scopus, Google Scholar using appropriate MeSH terms. The results of analyzed studies showed that EOs exhibited a wide range of bioactive effects like cytotoxicity, antiproliferative, and antimetastatic effects on cancer cells through various mechanisms of action. This updated review provides a better quality of scientific evidence for the efficacy of EOs as chemotherapeutic/chemopreventive agents in CRC. Future translational clinical studies are needed to establish the effective dose in humans as well as the most suitable route of administration for maximum bioavailability and efficacy. Given the positive anticancer results obtained from preclinical pharmacological studies, EOs can be considered efficient complementary therapies in chemotherapy in CRC.
Collapse
Affiliation(s)
- Stefania Garzoli
- Department of Drug Chemistry and Technologies, University “Sapienza” of Rome, P.Le Aldo Moro 5, 00185 Rome, Italy
| | - Pedro Alarcón-Zapata
- Clinical Biochemistry and Immunology Department, Faculty of Pharmacy, University of Concepción, Concepción, VIII – Bio Bio Region Chile
- Facultad de Ciencias de La Salud, Universidad San Sebastián, Lientur 1457, 4080871 Concepción, Chile
| | - Gulnaz Seitimova
- Faculty of Chemistry and Chemical Technology, Al-Farabi Kazakh National University, Almaty, Kazakhstan
| | - Barbara Alarcón-Zapata
- Clinical Biochemistry and Immunology Department, Faculty of Pharmacy, University of Concepción, Concepción, VIII – Bio Bio Region Chile
| | - Miquel Martorell
- Department of Nutrition and Dietetics, Faculty of Pharmacy, and Centre for Healthy Living, University of Concepción, 4070386 Concepción, Chile
| | - Farukh Sharopov
- Research Institution “Chinese-Tajik Innovation Center for Natural Products”, National Academy of Sciences of the Republic of Tajikistan, Ayni 299/2, Dushanbe, 734063 Tajikistan
| | | | - Darline Dize
- Antimicrobial and Biocontrol Agents Unit, Department of Biochemistry, Faculty of Science, University of Yaounde 1, Ngoa Ekelle, Yaounde, 812 Cameroon
| | | | - Francisco Les
- Department of Pharmacy, Faculty of Health Sciences, Universidad San Jorge, 50830 Villanueva de Gállego (Saragossa), Spain
- Instituto Agroalimentario de Aragón-IA2 (CITA-Universidad de Zaragoza), 50059 Saragossa, Spain
| | - Guillermo Cásedas
- Department of Pharmacy, Faculty of Health Sciences, Universidad San Jorge, 50830 Villanueva de Gállego (Saragossa), Spain
| | - Víctor López
- Department of Pharmacy, Faculty of Health Sciences, Universidad San Jorge, 50830 Villanueva de Gállego (Saragossa), Spain
- Instituto Agroalimentario de Aragón-IA2 (CITA-Universidad de Zaragoza), 50059 Saragossa, Spain
| | - Marcello Iriti
- Department of Biomedical, Surgical and Dental Sciences, Università Degli Studi di Milano, Via G. Pascal 36, 20133 Milan, Italy
| | | | - Eda Sönmez Gürer
- Faculty of Pharmacy, Department of Pharmacognosy, Sivas Cumhuriyet University, Sivas, Turkey
| | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Raffaele Pezzani
- Phytotherapy Lab (PhT-Lab), Endocrinology Unit, Department of Medicine (DIMED), University of Padova, Via Ospedale 105, 35128 Padua, Italy
- AIROB, Associazione Italiana Per la Ricerca Oncologica Di Base, Padua, Italy
| | - Sara Vitalini
- Department of Agricultural and Environmental Sciences, Università Degli Studi di Milano, Via G. Celoria 2, 20133 Milan, Italy
| |
Collapse
|
48
|
Ahmed MB, Islam SU, Alghamdi AAA, Kamran M, Ahsan H, Lee YS. Phytochemicals as Chemo-Preventive Agents and Signaling Molecule Modulators: Current Role in Cancer Therapeutics and Inflammation. Int J Mol Sci 2022; 23:15765. [PMID: 36555406 PMCID: PMC9779495 DOI: 10.3390/ijms232415765] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/02/2022] [Accepted: 12/09/2022] [Indexed: 12/15/2022] Open
Abstract
Cancer is one of the deadliest non communicable diseases. Numerous anticancer medications have been developed to target the molecular pathways driving cancer. However, there has been no discernible increase in the overall survival rate in cancer patients. Therefore, innovative chemo-preventive techniques and agents are required to supplement standard cancer treatments and boost their efficacy. Fruits and vegetables should be tapped into as a source of compounds that can serve as cancer therapy. Phytochemicals play an important role as sources of new medication in cancer treatment. Some synthetic and natural chemicals are effective for cancer chemoprevention, i.e., the use of exogenous medicine to inhibit or impede tumor development. They help regulate molecular pathways linked to the development and spread of cancer. They can enhance antioxidant status, inactivating carcinogens, suppressing proliferation, inducing cell cycle arrest and death, and regulating the immune system. While focusing on four main categories of plant-based anticancer agents, i.e., epipodophyllotoxin, camptothecin derivatives, taxane diterpenoids, and vinca alkaloids and their mode of action, we review the anticancer effects of phytochemicals, like quercetin, curcumin, piperine, epigallocatechin gallate (EGCG), and gingerol. We examine the different signaling pathways associated with cancer and how inflammation as a key mechanism is linked to cancer growth.
Collapse
Affiliation(s)
- Muhammad Bilal Ahmed
- BK21 FOUR KNU Creative BioResearch Group, School of Life Sciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Salman Ul Islam
- Department of Pharmacy, Cecos University, Peshawar, Street 1, Sector F 5 Phase 6 Hayatabad, Peshawar 25000, Pakistan
| | | | - Muhammad Kamran
- School of Molecular Sciences, The University of Western Australia, M310, 35 Stirling Hwy, Perth, WA 6009, Australia
| | - Haseeb Ahsan
- Department of Pharmacy, Faculty of Life and Environmental Sciences, University of Peshawar, Peshawar 25120, Pakistan
| | - Young Sup Lee
- BK21 FOUR KNU Creative BioResearch Group, School of Life Sciences, Kyungpook National University, Daegu 41566, Republic of Korea
| |
Collapse
|
49
|
MRABTİ NN, MRABTİ HN, DOUDACH L, KHALİL Z, KACHMAR MR, MEKKAOUİ M, FAOUZİ MEA, ABDALLAH EM, ZENGİN G, BOUYAHYA A, ELHALLAOUİ M. Mineral contents, antimicrobial profile, acute and chronic toxicity of the aqueous extract of Moroccan Thymus vulgaris in rodents. INTERNATIONAL JOURNAL OF SECONDARY METABOLITE 2022. [DOI: 10.21448/ijsm.1106820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Moroccan flora is rich in plants used in traditional medicine, but the further scientific investigation is necessary. The aim of the research was to evaluate the nutritional content and antimicrobial activity of Moroccan Thymus vulgaris, as well as its possible acute and chronic toxicological effects on rodents. Inductively coupled plasma atomic emission spectroscopy (ICP-AES) was used to determine the mineral content. The antimicrobial activity was determined using a well-diffusion test, a minimum inhibitory concentration (MIC), and a minimum bactericidal/fungicidal concentration (MBC/MFC) assay. Acute and chronic toxicity studies were conducted in vivo on mice and rats, respectively. Following that, haematological, serum-biochemistry, and histological investigations were performed. Moroccan Thyme was shown to be a source of numerous minerals which are necessary for health promotion. All antimicrobial testing, disc diffusion, MIC, and MBC tests revealed that thyme had potent antibacterial activity against all microorganisms tested. Staphylococcus aureus was the most susceptible bacterium, followed by Salmonella enterica and Escherichia coli. Additionally, thyme exhibited great antifungal efficacy against Candida albicans. The acute toxicity results indicated that the aqueous extract of T. vulgaris is almost non-toxic when taken orally. According to the chronic toxicity study, the extract is generally safe when taken orally over an extended period of time. The biochemical and haematological characteristics of the serum and blood were within acceptable limits, and histological examination revealed no abnormalities. In conclusion, the findings of this investigation, confirm the antimicrobial efficacy of the aqueous extract of Moroccan T. vulgaris and its safety for experimental animals.
Collapse
|
50
|
Coêlho ML, Islam MT, Laylson da Silva Oliveira G, Oliveira Barros de Alencar MV, Victor de Oliveira Santos J, Campinho dos Reis A, Oliveira Ferreira da Mata AM, Correia Jardim Paz MF, Docea AO, Calina D, Sharifi-Rad J, Amélia de Carvalho Melo-Cavalcante A. Cytotoxic and Antioxidant Properties of Natural Bioactive Monoterpenes Nerol, Estragole, and 3,7-Dimethyl-1-Octanol. Adv Pharmacol Pharm Sci 2022; 2022:8002766. [PMID: 36465700 PMCID: PMC9712021 DOI: 10.1155/2022/8002766] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 10/28/2022] [Accepted: 11/04/2022] [Indexed: 01/27/2024] Open
Abstract
The therapeutic potential of medicinal plants is noted because of the presence of varieties of biochemicals. The monoterpenes, like nerol, estragole, and 3,7-dimethyl-1-octanol, have been reported for antimicrobial, antifungal, anthelmintic, and antioxidant activities. This study evaluated the toxic, cytotoxic, and oxidant/antioxidant effects of these compounds by several in vitro (DPPH and ABTS radical scavenging, and ferric reducing potential), ex vivo (hemolysis), and in vivo (Artemia Salina and Saccharomyces cerevisiae) assays. Results suggest that estragole and 3,7-dimethyl-1-octanol at 31.25-500 μg/mL did not exhibit significant cytotoxic effects in the A. Salina and hemolysis tests. Nerol showed significant cytotoxic effects on these test systems at all test concentrations. The monoterpenes showed radical (ABTS•+ and DPPH•) scavenging capacities in a concentration-dependent manner in vitro tests. However, they did not oxidize the genetic material of S. cerevisiae (SODWT, Sod1Δ, Sod2Δ, Sod1/Sod2Δ, Cat1Δ, and Cat1Δ/Sod1Δ) lines. Among the three monoterpenes, nerol may be a good candidate for antioxidant and anti-tumor therapies.
Collapse
Affiliation(s)
- Mayara Ladeira Coêlho
- Northeast Biotechnology Network (RENORBIO), Federal University of Piauí, Teresina, Brazil
- Post-Graduation Program in Pharmaceutical Science, Federal University of Piauí, Teresina, Brazil
| | - Muhammad Torequl Islam
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh
| | - George Laylson da Silva Oliveira
- Northeast Biotechnology Network (RENORBIO), Federal University of Piauí, Teresina, Brazil
- Post-Graduation Program in Pharmaceutical Science, Federal University of Piauí, Teresina, Brazil
| | - Marcus Vinicius Oliveira Barros de Alencar
- Northeast Biotechnology Network (RENORBIO), Federal University of Piauí, Teresina, Brazil
- Post-Graduation Program in Pharmaceutical Science, Federal University of Piauí, Teresina, Brazil
| | | | | | | | - Márcia Fernanda Correia Jardim Paz
- Northeast Biotechnology Network (RENORBIO), Federal University of Piauí, Teresina, Brazil
- Post-Graduation Program in Pharmaceutical Science, Federal University of Piauí, Teresina, Brazil
| | - Anca Oana Docea
- Department of Toxicology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | | | - Ana Amélia de Carvalho Melo-Cavalcante
- Northeast Biotechnology Network (RENORBIO), Federal University of Piauí, Teresina, Brazil
- Post-Graduation Program in Pharmaceutical Science, Federal University of Piauí, Teresina, Brazil
| |
Collapse
|