1
|
Wang G, Mu W, Zhang T. Comment on 'the relationship between kidney disease and mitochondria: a bibliometric study'. Ren Fail 2025; 47:2460747. [PMID: 39995106 PMCID: PMC11864025 DOI: 10.1080/0886022x.2025.2460747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 01/23/2025] [Accepted: 01/24/2025] [Indexed: 02/26/2025] Open
Affiliation(s)
- Guozhen Wang
- School of Basic Medicine, Zhejiang Chinese Medical University, Hangzhou, People’s Republic of China
| | - Wenwen Mu
- School of Basic Medicine, Zhejiang Chinese Medical University, Hangzhou, People’s Republic of China
| | - Tianxing Zhang
- School of Basic Medicine, Zhejiang Chinese Medical University, Hangzhou, People’s Republic of China
| |
Collapse
|
2
|
García-Suastegui WA, Navarro-Mabarak C, Silva-Adaya D, Dolores-Raymundo HG, Alvarez-Gonzalez MY, León-Olea M, Ramos-Chávez LA. Neurotransmitter Systems Affected by PBDE Exposure: Insights from In Vivo and In Vitro Neurotoxicity Studies. TOXICS 2025; 13:316. [PMID: 40278631 DOI: 10.3390/toxics13040316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 01/24/2025] [Accepted: 01/28/2025] [Indexed: 04/26/2025]
Abstract
Polybrominated diphenyl ethers (PBDEs) are synthetic halogen compounds, industrially used as flame retardants in many flammable products. PBDEs are environmentally persistent and bioaccumulative substances that were used from the 1970s and discontinued in the 1990s. PBDEs are present in air, soil, water, and food, where they remain stable for a long time. Chronic exposure to PBDEs is associated with adverse human health effects, including cancer, immunotoxicity, hepatotoxicity, reproductive and metabolic disorders, motor and hormonal impairments, and neurotoxicity, especially in children. It has been demonstrated that PBDE exposure can cause mitochondrial and DNA damage, apoptosis, oxidative stress, epigenetic modifications, and changes in calcium and neurotransmitter levels. Here, we conduct a comprehensive review of the molecular mechanisms of the neurotoxicity of PBDEs using different approaches. We discuss the main neurotransmitter pathways affected by exposure to PBDEs in vitro and in vivo in different mammalian models. Excitatory and inhibitory signaling pathways are the putative target where PBDEs carry out their neurotoxicity. Based on this evidence, environmental PBDEs are considered a risk to human public health and a hazard to biota, underscoring the need for environmental monitoring to mitigate exposure to PBDEs.
Collapse
Affiliation(s)
- Wendy Argelia García-Suastegui
- Departamento de Biología y Toxicología de la Reproducción, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Puebla C.P. 72570, Mexico
| | - Cynthia Navarro-Mabarak
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de Mexico, Mexico City C.P. 04510, Mexico
| | - Daniela Silva-Adaya
- Laboratorio Experimental de Enfermedades Neurodegenerativas, Instituto Nacional de Neurología y Neurocirugía, Ciudad de Mexico 14269, Mexico
- Centro de Investigación Sobre el Envejecimiento, Centro de Investigación y de Estudios Avanzados (CIE-CINVESTAV), Ciudad de Mexico C.P. 14330, Mexico
| | - Heidy Galilea Dolores-Raymundo
- Departamento de Biología y Toxicología de la Reproducción, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Puebla C.P. 72570, Mexico
| | - Mhar Yovavyn Alvarez-Gonzalez
- Departamento de Neuromorfología Funcional, Dirección de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Ciudad de Mexico C.P. 14370, Mexico
| | - Martha León-Olea
- Departamento de Neuromorfología Funcional, Dirección de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Ciudad de Mexico C.P. 14370, Mexico
| | - Lucio Antonio Ramos-Chávez
- Departamento de Neuromorfología Funcional, Dirección de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Ciudad de Mexico C.P. 14370, Mexico
| |
Collapse
|
3
|
Arslan NP, Azad F, Orak T, Budak-Savas A, Ortucu S, Dawar P, Baltaci MO, Ozkan H, Esim N, Taskin M. A review on bacteria-derived antioxidant metabolites: their production, purification, characterization, potential applications, and limitations. Arch Pharm Res 2025:10.1007/s12272-025-01541-5. [PMID: 40208553 DOI: 10.1007/s12272-025-01541-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Accepted: 04/02/2025] [Indexed: 04/11/2025]
Abstract
Antioxidants are organic molecules that scavenge reactive oxygen species (ROS) and reactive nitrogen species (RNS), thereby maintaining cellular redox balance in living organisms. The human body synthesizes endogenous antioxidants, whereas humans obtain exogenous antioxidants from other organisms such as plants, animals, fungi, and bacteria. This review primarily focuses on the antioxidant potential of natural metabolites and extracts from five major bacterial phyla, including the well-studied Actinobacteria and Cyanobacteria, as well as less-studied Bacteroides, Firmicutes, and Proteobacteria. The literature survey revealed that the metabolites and the extracts with antioxidant activity can be obtained from bacterial cells and their culture supernatants. The metabolites with antioxidant activity include pigments, phycobiliproteins, polysaccharides, mycosporins-like amino acids, peptides, phenolic compounds, and alkaloids. Both metabolites and extracts demonstrate in vitro antioxidant capacity through radical-scavenging, metal-reducing, and metal-chelating activity assays. In in vivo models, they can scavenge ROS and RNS directly and/or indirectly eliminate them by enhancing the activities of antioxidant enzymes, such as catalase, superoxide dismutase, and glutathione peroxidase. Due to their antioxidant activities, they may find applications in the cosmetic industry as anti-aging agents for the skin and in medicine as drugs or supplements for combating oxidative stress-related disorders, such as neurodegenerative diseases and diabetes. The literature survey also elucidated that some metabolites and extracts with antioxidant activity also exhibited strong antimicrobial properties. Therefore, we consider that they may have future applications in the treatment of infectious diseases, the preparation of pathogen-free healthy foods, and the extension of food shelf life.
Collapse
Affiliation(s)
| | - Fakhrul Azad
- Department of Biochemistry and Cell Biology, Chobanian and Avedisian School of Medicine, Boston University, Boston, MA, USA
| | - Tugba Orak
- Department of Molecular Biology and Genetics, Science Faculty, Ataturk University, 25240, Erzurum, Turkey
| | - Aysenur Budak-Savas
- Department of Medical Pharmacology, Faculty of Medicine, Ataturk University, Erzurum, Turkey
| | - Serkan Ortucu
- Department of Molecular Biology and Genetics, Science Faculty, Erzurum Technical University, Erzurum, Turkey
| | - Pranav Dawar
- Environmental Molecular Sciences Laboratory (EMSL), Pacific Northwest National Laboratory (PNNL), Richland, WA, USA
| | - Mustafa Ozkan Baltaci
- Department of Molecular Biology and Genetics, Science Faculty, Ataturk University, 25240, Erzurum, Turkey
| | - Hakan Ozkan
- Department of Molecular Biology and Genetics, Science Faculty, Ataturk University, 25240, Erzurum, Turkey
| | - Nevzat Esim
- Department of Molecular Biology and Genetics, Science and Art Faculty, Bingol University, Bingol, Turkey
| | - Mesut Taskin
- Department of Molecular Biology and Genetics, Science Faculty, Ataturk University, 25240, Erzurum, Turkey.
| |
Collapse
|
4
|
Liu R, Jia L, Yu L, Lai D, Li Q, Zhang B, Guo E, Xu K, Luo Q. Interaction between post-tumor inflammation and vascular smooth muscle cell dysfunction in sepsis-induced cardiomyopathy. Front Immunol 2025; 16:1560717. [PMID: 40276499 PMCID: PMC12018406 DOI: 10.3389/fimmu.2025.1560717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Accepted: 02/28/2025] [Indexed: 04/26/2025] Open
Abstract
Background Sepsis-induced cardiomyopathy (SIC) presents a critical complication in cancer patients, contributing notably to heart failure and elevated mortality rates. While its clinical relevance is well-documented, the intricate molecular mechanisms that link sepsis, tumor-driven inflammation, and cardiac dysfunction remain inadequately explored. This study aims to elucidate the interaction between post-tumor inflammation, intratumor heterogeneity, and the dysfunction of VSMC in SIC, as well as to evaluate the therapeutic potential of exercise training and specific pharmacological interventions. Methods Transcriptomic data from NCBI and GEO databases were analyzed to identify differentially expressed genes (DEGs) associated with SIC. Weighted gene co-expression network analysis (WGCNA), gene ontology (GO), and KEGG pathway enrichment analyses were utilized to elucidate the biological significance of these genes. Molecular docking and dynamics simulations were used to investigate drug-target interactions, and immune infiltration and gene mutation analyses were carried out by means of platforms like TIMER 2.0 and DepMap to comprehend the influence of DVL1 on immune responsiveness. Results Through the utilization of the datasets, we discovered the core gene DVL1 that exhibited remarkable up-regulated expression both in SIC and in diverse kinds of cancers, which were associated with poor prognosis and inflammatory responses. Molecular docking revealed that Digoxin could bind to DVL1 and reduce oxidative stress in SIC. The DVL1 gene module related to SIC was identified by means of WGCNA, and the immune infiltration analysis demonstrated the distinctive immune cell patterns associated with DVL1 expression and the impact of DVL1 on immunotherapeutic resistance. Conclusions DVL1 is a core regulator of SIC and other cancers and, therefore, can serve as a therapeutic target. The present study suggests that targeted pharmacological therapies to enhance response to exercise regimens may be a novel therapeutic tool to reduce the inflammatory response during sepsis, particularly in cancer patients. The identified drugs, Digoxin, require further in vivo and clinical studies to confirm their effects on SIC and their potential efforts to improve outcomes in immunotherapy-resistant cancer patients.
Collapse
Affiliation(s)
- Rui Liu
- Department of Critical Care Medicine, Shanghai Pudong New Area Gongli Hospital, Shanghai, China
| | - Lina Jia
- Hebei Medical University, Shijiazhuang, China
| | - Lin Yu
- Department of Critical Care Medicine, Shanghai Pudong New Area Gongli Hospital, Shanghai, China
| | - Detian Lai
- Department of Critical Care Medicine, Shanghai Pudong New Area Gongli Hospital, Shanghai, China
| | - Qingzhu Li
- Department of Critical Care Medicine, Shanghai Pudong New Area Gongli Hospital, Shanghai, China
| | - Bingyu Zhang
- Department of Critical Care Medicine, Shanghai Pudong New Area Gongli Hospital, Shanghai, China
| | - Enwei Guo
- Department of Critical Care Medicine, Shanghai Pudong New Area Gongli Hospital, Shanghai, China
| | - Kailiang Xu
- Department of Critical Care Medicine, Shanghai Pudong New Area Gongli Hospital, Shanghai, China
| | - Qiancheng Luo
- Department of Critical Care Medicine, Shanghai Pudong New Area Gongli Hospital, Shanghai, China
| |
Collapse
|
5
|
Ahmed N, Dalmasso C, Turner MB, Arthur G, Cincinelli C, Loria AS. From fat to filter: the effect of adipose tissue-derived signals on kidney function. Nat Rev Nephrol 2025:10.1038/s41581-025-00950-5. [PMID: 40175570 DOI: 10.1038/s41581-025-00950-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/05/2025] [Indexed: 04/04/2025]
Abstract
Obesity is associated with severe consequences for the renal system, including chronic kidney disease, kidney failure and increased mortality. Obesity has both direct and indirect effects on kidney health through several mechanisms, including activation of the renin-angiotensin system, mechanical compression, inflammation, fibrosis, increased filtration barrier permeability and renal nerve activity. The expansion of adipose tissue through hypertrophy and hyperplasia can induce haemodynamic changes that promote glomerular hyperfiltration to compensate for the greater metabolic demands of the increased body weight. Adipose expansion is also associated with the release of adipokines and pro-inflammatory cytokines, hyperinsulinaemia and insulin resistance, which exert direct and indirect effects on kidney function via various mechanisms. Increased uptake of fatty acids by the kidney leads to alterations in lipid metabolism and lipotoxicity, also contributing to the pro-inflammatory and pro-fibrotic environment. The role of the adipose tissue-brain-kidney axis in the obesity-associated decline in renal function is sustained by studies showing that stimulation of adipose tissue sensory neurons by locally released factors increases renal sympathetic nerve activity. Conversely, pre-existent kidney disease can contribute to adipose dysfunction through the accumulation of uraemic toxins and hormonal changes. These findings highlight the importance of crosstalk between adipose tissue and the kidneys and provide insights into the mechanisms underlying the associations between obesity and kidney disease.
Collapse
Affiliation(s)
- Nermin Ahmed
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY, USA
| | - Carolina Dalmasso
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY, USA.
| | - Meghan B Turner
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY, USA
| | - Gertrude Arthur
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY, USA
| | - Cole Cincinelli
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY, USA
| | - Analia S Loria
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY, USA.
| |
Collapse
|
6
|
Teixeira J, Benfeito S, Carreira R, Barbosa A, Amorim R, Tavares LC, Jones JG, Raimundo N, Cagide F, Oliveira C, Borges F, Koopman WJH, Oliveira PJ. The mitochondriotropic antioxidants AntiOxBEN 2 and AntiOxCIN 4 are structurally-similar but differentially alter energy homeostasis in human skin fibroblasts. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2025; 1866:149535. [PMID: 39788276 DOI: 10.1016/j.bbabio.2025.149535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 12/17/2024] [Accepted: 12/30/2024] [Indexed: 01/12/2025]
Abstract
Mitochondrial dysfunction and increased reactive oxygen species (ROS) generation play an import role in different human pathologies. In this context, mitochondrial targeting of potentially protective antioxidants by their coupling to the lipophilic triphenylphosphonium cation (TPP) is widely applied. Employing a six‑carbon (C6) linker, we recently demonstrated that mitochondria-targeted phenolic antioxidants derived from gallic acid (AntiOxBEN2) and caffeic acid (AntiOxCIN4) counterbalance oxidative stress in primary human skin fibroblasts by activating ROS-protective mechanisms. Here we demonstrate that C6-TPP (but not AntiOxBEN2 and AntiOxCIN4) induce cell death in human skin fibroblasts. This indicates that C6-TPP cytoxocity is counterbalanced by the antioxidant moieties of AntiOxBEN2 and AntiOxCIN4. Remarkably, C6-TPP and AntiOxBEN2 (but not AntiOxCIN4) induced a glycolytic switch, as exemplified by a reduced cellular oxygen consumption rate (OCR), increased extracellular acidification rate (ECAR), elevated extracellular lactate levels, and higher protein levels of glucose transporter 1 (GLUT-1). This switch involved activation of AMP-activated protein kinase (AMPK) and fully compensated for the loss in mitochondrial ATP production by sustaining cellular ATP content. When glycolytic switch induction was prevented (i.e. by using a glucose-free, galactose-containing medium), AntiOxBEN2 induced cell death whereas AntiOxCIN4 did not. We conclude that, despite their similar chemical structure and antioxidant capacity, AntiOxBEN2 and AntiOxCIN4 display both common (redox-adaptive) and specific (bioenergetic-adaptive) effects.
Collapse
Affiliation(s)
- José Teixeira
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal; CIBB - Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal.
| | - Sofia Benfeito
- CIQUP-IMS/Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Porto, Portugal
| | - Rodrigo Carreira
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal; CIBB - Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
| | - André Barbosa
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal; CIBB - Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
| | - Ricardo Amorim
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal; CIBB - Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal; CIQUP-IMS/Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Porto, Portugal
| | - Ludgero C Tavares
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal; CIVG - Vasco da Gama Research Center, University School Vasco da Gama - EUVG, Coimbra, Portugal
| | - John G Jones
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal; CIBB - Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
| | - Nuno Raimundo
- Multidisciplinary Institute of Ageing (MIA), University of Coimbra, Coimbra, Portugal; Department of Cellular and Molecular Physiology, Penn State University College of Medicine, Hershey, PA, USA
| | - Fernando Cagide
- CIQUP-IMS/Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Porto, Portugal
| | - Catarina Oliveira
- CIQUP-IMS/Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Porto, Portugal
| | - Fernanda Borges
- CIQUP-IMS/Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Porto, Portugal
| | - Werner J H Koopman
- Cellular Bioenergetics Group, Department of Pediatrics, Amalia Children's Hospital, Radboud Center for Mitochondrial Medicine (RCMM), Radboud University Medical Center (Radboudumc), Nijmegen, the Netherlands; Human and Animal Physiology, Wageningen University, Wageningen, the Netherlands
| | - Paulo J Oliveira
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal; CIBB - Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
7
|
Vincent V, Thakkar H, Sen A, Bansal A, Das US, Gunasekaran A, Bhatla N, Velpandian T, Singh A. Adiponectin mediated metabolic and sphingolipid alterations in preventing endothelial dysfunction. Mol Cell Biochem 2025:10.1007/s11010-025-05268-1. [PMID: 40140228 DOI: 10.1007/s11010-025-05268-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Accepted: 03/22/2025] [Indexed: 03/28/2025]
Abstract
Endothelial dysfunction is an early indicator of atherosclerosis. Adiponectin, a hormone secreted by adipose tissue with insulin-sensitizing and anti-inflammatory properties, offers protection against atherosclerosis. This study investigated the metabolic and sphingolipid alterations in endothelial cells linked to the protective effects of adiponectin against endothelial dysfunction. Human Umbilical Endothelial Cells (HUVECs) were treated with Tumor Necrosis Factor-alpha (TNF-α) to induce endothelial dysfunction. AdipoRon and SKI-I were used to study the effects of adiponectin and sphingosine kinase inhibition in HUVECs. Metabolic changes and sphingolipid alterations were assessed to understand changes in lipid metabolism, and RNA sequencing was used to quantify the transcriptomics changes. TNF-α treatment significantly upregulated glycolysis and downregulated long-chain fatty acid oxidation and mitochondrial ATP production, while AdipoRon co-treatment partially reversed these metabolic effects. In HUVECs, TNF-α treatment increased intracellular C16 and C18 ceramides and Sphingosine 1-Phosphate (S1P) while decreasing extracellular S1P. AdipoRon Co-treatment reversed these effects; AdipoRon also reversed the transcriptional changes induced by TNF-α. Sphingosine kinase inhibition in HUVECs led to mitochondrial dysfunction at the metabolic and transcriptional levels. This study provides insights into potential therapeutic strategies targeting endothelial metabolism while unraveling a novel mitochondrial modulation mediated by sphingosine kinases in endothelial cells.
Collapse
Affiliation(s)
- Vinnyfred Vincent
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Himani Thakkar
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Atanu Sen
- Department of Cardiac Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Ashutosh Bansal
- Department of Cardiac Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Ujjalkumar Subhash Das
- Ocular Pharmacology and Pharmacy Division, Dr. RP Centre for Ophthalmic Sciences, All India Institute of Medical Sciences, New Delhi, India
| | - Abishek Gunasekaran
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Neerja Bhatla
- Department of Obstetrics and Gynaecology, All India Institute of Medical Sciences, New Delhi, Delhi, India
| | - Thirumurthy Velpandian
- Ocular Pharmacology and Pharmacy Division, Dr. RP Centre for Ophthalmic Sciences, All India Institute of Medical Sciences, New Delhi, India
| | - Archna Singh
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India.
| |
Collapse
|
8
|
Barakat R, Al-Sarraf H, Redzic Z. Hypoxemia exerts detrimental effects on the choroid plexuses and cerebrospinal fluid system in rats. Fluids Barriers CNS 2025; 22:27. [PMID: 40075475 PMCID: PMC11905537 DOI: 10.1186/s12987-024-00613-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 12/20/2024] [Indexed: 03/14/2025] Open
Abstract
BACKGROUND Hypoxemia can cause secondary acute brain injury, but the mechanisms behind it are not entirely clear and could involve disturbances in the brain extracellular fluids. We aimed to explore the effects of hypoxemia on the choroid plexus (CPs) and cerebrospinal fluid (CSF) system in rats. METHODS Male Sprague Dawley rats were kept in O2 control in vivo cabinet with either 21% (normoxia) or 8% O2 (hypoxemia) for up to 48 h. In some cases, signaling of selected cytokines was inhibited prior to hypoxemia. CSF and blood samples were collected by Cisterna Magna puncture and through venous catheters, respectively. The percentages of dead cells in the CPs and ependymal layers (EL) after hypoxemia or normoxia was estimated using TUNEL staining. CP's ultrastructure was analyzed by transmission electron microscopy. Protein concentration in the CSF and plasma was measured and the CSF albumin-to-total protein ratios were estimated. Concentrations of hypoxia-related cytokines in the CSF and plasma samples were estimated using the multiplex immunoassay. Data was analyzed by one-way ANOVA followed by either Bonferroni or Tukey's multiple comparison tests, or Student's t-test. Results are presented as mean ± SD; p < 0.05 was considered statistically significant. RESULTS Duration of hypoxemia exerted significant effects on the cell viability in the CPs (p < 0.01) and EL (p < 0.01) and caused apoptosis-related changes in the CP. Hypoxemia had significant effects on the protein concentration in the CSF (p < 0.05), but not in plasma (p > 0.05), with a significant increase in the CSF albumin-to-total protein ratio after 6 h hypoxemia (p < 0.05). Thirty-two cytokines were detected in the CSF. Hypoxemia caused a statistically significant reduction in the concentrations of 12 cytokines, while concentrations of erythropoietin (EPO) and vascular endothelial growth factor (VEGF) increased significantly. Exposure to hypoxemia after inhibitions of EPO, VEGF, or tumor necrosis factor alpha (TNFα) signaling resulted in more dead cells (p < 0.01), less dead cells (p < 0.01) and more dead cells (p < 0.01) in the CPs, respectively, when compared to the number of dead cells when these cytokines were not inhibited. The density of macrophages in the CPs decreased significantly during hypoxemia; that effect was cancelled out by TNFα inhibition. CONCLUSION Hypoxemia had detrimental effects on the CPs and CSF system, which was modulated by hypoxia- and inflammation-related cytokines.
Collapse
Affiliation(s)
- Rawan Barakat
- Department of Physiology, College of Medicine, Kuwait University, P.O. Box 24923, 13110, Safat, Kuwait
| | - Hameed Al-Sarraf
- Department of Physiology, College of Medicine, Kuwait University, P.O. Box 24923, 13110, Safat, Kuwait
| | - Zoran Redzic
- Department of Physiology, College of Medicine, Kuwait University, P.O. Box 24923, 13110, Safat, Kuwait.
| |
Collapse
|
9
|
Caiati C, Arrigoni R, Stanca A, Lepera ME. Kidney Toxicity of Drugs for the Heart: An Updated Perspective. Metabolites 2025; 15:191. [PMID: 40137155 PMCID: PMC11943962 DOI: 10.3390/metabo15030191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2025] [Revised: 02/14/2025] [Accepted: 03/07/2025] [Indexed: 03/27/2025] Open
Abstract
Cardiovascular drugs are widely used for the prevention and treatment of various cardiac and vascular disorders. However, some of these drugs can also cause adverse effects on the kidney, leading to acute or chronic renal dysfunction, electrolyte imbalances, and increased mortality. The mechanisms of drug-induced renal toxicity vary depending on the type and class of the drug, the dose and duration of exposure, and the patient's characteristics and comorbidities. In this review, we summarize the current knowledge on the renal effects of some common cardiovascular drugs, such as diuretics, angiotensin-converting enzyme inhibitors, angiotensin receptor blockers, calcium channel blockers, beta-blockers, antiplatelet agents, anticoagulants, and statins and proton-pump inhibitors. We also discuss the clinical implications and management strategies for preventing or minimizing drug-induced nephrotoxicity, as well as the potential role of oxidative stress in its pathogenesis.
Collapse
Affiliation(s)
- Carlo Caiati
- Unit of Cardiovascular Diseases, Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.S.); (M.E.L.)
| | - Roberto Arrigoni
- CNR Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM), 70124 Bari, Italy;
| | - Alessandro Stanca
- Unit of Cardiovascular Diseases, Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.S.); (M.E.L.)
| | - Mario Erminio Lepera
- Unit of Cardiovascular Diseases, Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.S.); (M.E.L.)
| |
Collapse
|
10
|
Lu M, Zhan Z, Li D, Chen H, Li A, Hu J, Huang Z, Yi B. Protective role of vitamin D receptor against mitochondrial calcium overload from PM 2.5-Induced injury in renal tubular cells. Redox Biol 2025; 80:103518. [PMID: 39891958 PMCID: PMC11836507 DOI: 10.1016/j.redox.2025.103518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 01/23/2025] [Accepted: 01/24/2025] [Indexed: 02/03/2025] Open
Abstract
PURPOSE This research explores the consequences of being exposed to PM2.5 contribute to renal injury while also evaluating the protective role of Vitamin D-VDR signaling in alleviating mitochondrial calcium imbalance and oxidative stress in renal tubular cells. METHODS Animal models of chronic PM2.5 exposure were used to simulate environmental conditions in wild type and VDR-overexpressing mice specific to renal tubules. In parallel, HK-2 cell lines were treated with PM2.5 in vitro. Mitochondrial function, calcium concentration, and oxidative stress markers were assessed. VDR activation, achieved through genetic overexpression and paricalcitol, was induced to examine its effect on mitochondrial calcium uniporter (MCU) expression and mitochondrial calcium regulation. RESULTS PM2.5 exposure caused significant mitochondrial damage in renal tubular cells, including mitochondrial calcium overload, increased oxidative stress, reduced membrane potential, and diminished ATP production. Elevated MCU expressions were a key contributor to these disruptions. VDR activation effectively reversed these effects by downregulating MCU, restoring mitochondrial calcium balance, reducing oxidative stress, and improving renal function. CONCLUSION This study shows that activating Vitamin D-VDR signaling shields the kidneys from PM2.5-induced damage by reestablishing mitochondrial calcium balance and lowering oxidative stress via inhibition of the MCU. These results unveil a new protective role of VDR in defending against environmental pollutants and suggest that targeting the MCU could offer a potential therapeutic strategy for treating chronic kidney disease linked to pollution exposure.
Collapse
Affiliation(s)
- Mengqiu Lu
- Department of Nephrology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China; Clinical Research Center for Critical Kidney Disease in Hunan Province, China
| | - Zishun Zhan
- Department of Nephrology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China; Clinical Research Center for Critical Kidney Disease in Hunan Province, China; Center for Experimental Medicine, The Third Xiangya Hospital of Central South University, Changsha, China; Department of Cardiology, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Dan Li
- Department of Nephrology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China; Clinical Research Center for Critical Kidney Disease in Hunan Province, China
| | - Hengbing Chen
- Department of Nephrology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China; Clinical Research Center for Critical Kidney Disease in Hunan Province, China
| | - Aimei Li
- Department of Nephrology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China; Clinical Research Center for Critical Kidney Disease in Hunan Province, China
| | - Jing Hu
- Department of Nephrology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China; Clinical Research Center for Critical Kidney Disease in Hunan Province, China
| | - Zhijun Huang
- Department of Nephrology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China; Center for Clinical Pharmacology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China; Furong Laboratory, Changsha, Hunan, China.
| | - Bin Yi
- Department of Nephrology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China; Clinical Research Center for Critical Kidney Disease in Hunan Province, China.
| |
Collapse
|
11
|
Tang X, Zhang A, Feng X, Wang W, Chen F, Tao Y, Wu C, Jiang F. Global research trends on the associations between chronic kidney disease and mitochondria: insights from the bibliometric analysis. Int Urol Nephrol 2025:10.1007/s11255-025-04437-x. [PMID: 40019610 DOI: 10.1007/s11255-025-04437-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Accepted: 02/21/2025] [Indexed: 03/01/2025]
Abstract
BACKGROUND Chronic kidney disease (CKD) is a global health burden characterized by a progressive and irreversible loss of kidney function. Mitochondrial dysfunction has emerged as a pivotal factor in CKD pathogenesis, contributing to renal cell injury, inflammation, and fibrosis through mechanisms such as oxidative stress and impaired bioenergetics. This study aimed to provide a comprehensive bibliometric analysis of global research trends on the associations between CKD and mitochondria over the past two decades. METHODS A bibliometric analysis was conducted using the Web of Science Core Collection database, focusing on publications from 2004 to 2024. Data were analyzed using Citespace and VOSviewer to visualize publication trends, key contributors, keyword co-occurrences, and collaboration networks. RESULTS A total of 2,870 publications were identified, with a significant increase in annual output observed after 2010. The United States, China, and Japan were the leading contributors, fostering strong international collaborations. Institutional analysis highlighted the prominent roles of the US Department of Veterans Affairs and the University of California System. Key authors, such as Jose Pedraza-Chaverri and HM Kang, and influential studies addressing mitochondrial quality control and metabolic reprogramming were identified. Keyword analysis revealed major research themes, including oxidative stress, ischemia-reperfusion injury, and fatty acid oxidation, with recent trends emphasizing mitochondrial dynamics and autophagy. CONCLUSIONS This analysis underscored the growing recognition of mitochondrial dysfunction in CKD pathogenesis and highlighted the interdisciplinary nature of this field. The findings revealed key research trends, influential contributors, and emerging topics, providing a foundation for future studies and the development of targeted mitochondrial therapies. These insights hold promise for advancing the understanding and treatment of CKD through precision medicine approaches. Specifically, therapeutic strategies aimed at enhancing mitochondrial biogenesis, promoting mitophagy, and restoring metabolic balance may offer novel avenues for delaying CKD progression and mitigating renal dysfunction. Integrating these mitochondrial-targeted interventions into current clinical practice could improve patient outcomes and guide the development of more effective treatment protocols.
Collapse
Affiliation(s)
- Xinfang Tang
- Department of Nephrology, The Affiliated Lianyungang Municipal Oriental Hospital of Kangda College of Nanjing Medical University, Lianyungang Municipal Oriental Hospital, Lianyungang, China
| | - Anna Zhang
- Department of Nephrology, The Affiliated Lianyungang Municipal Oriental Hospital of Kangda College of Nanjing Medical University, Lianyungang Municipal Oriental Hospital, Lianyungang, China
| | - Xiaojuan Feng
- Department of Laboratory, The Affiliated Lianyungang Municipal Oriental Hospital of Kangda College of Nanjing Medical University, Lianyungang Municipal Oriental Hospital, Lianyungang, China
| | - Wenjuan Wang
- Department of Ultrasound, The Affiliated Lianyungang Municipal Oriental Hospital of Kangda College of Nanjing Medical University, Lianyungang Municipal Oriental Hospital, Lianyungang, China
| | - Fanghong Chen
- Department of Scientific Research, The Affiliated Lianyungang Municipal Oriental Hospital of Kangda College of Nanjing Medical University, Lianyungang Municipal Oriental Hospital, Lianyungang, China
| | - Yijie Tao
- Department of Nephrology, The Affiliated Lianyungang Municipal Oriental Hospital of Kangda College of Nanjing Medical University, Lianyungang Municipal Oriental Hospital, Lianyungang, China
| | - Chuyan Wu
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China.
| | - Feng Jiang
- Department of Neonatology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, 200011, China.
| |
Collapse
|
12
|
Kuk MU, Lee YH, Kim D, Lee KS, Park JH, Yoon JH, Lee YJ, So B, Kim M, Kwon HW, Byun Y, Lee KY, Park JT. Sauchinone Ameliorates Senescence Through Reducing Mitochondrial ROS Production. Antioxidants (Basel) 2025; 14:259. [PMID: 40227233 PMCID: PMC11939387 DOI: 10.3390/antiox14030259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 02/17/2025] [Accepted: 02/20/2025] [Indexed: 04/15/2025] Open
Abstract
One of the major causes of senescence is oxidative stress caused by ROS, which is mainly generated from dysfunctional mitochondria. Strategies to limit mitochondrial ROS production are considered important for reversing senescence, but effective approaches to reduce them have not yet been developed. In this study, we screened the secondary metabolites that plants produce under oxidative stress and discovered sauchinone as a potential candidate. Sauchinone induced mitochondrial function recovery, enabling efficient electron transport within the electron transport chain (ETC). This led to a decrease in ROS production, a byproduct of inefficient electron transport. The reduction in ROS by sauchinone rejuvenated senescence-associated phenotypes. To understand the underlying mechanism by which sauchinone rejuvenates senescence, we carried out RNA sequencing and found VAMP8 as a key gene. VAMP8 was downregulated by sauchinone. Knockdown of VAMP8 decreased mitochondrial ROS levels and subsequently rejuvenated mitochondrial function, which was similar to the effect of sauchinone. Taken together, these studies revealed a novel mechanism by which sauchinone reduces mitochondrial ROS production by regulating mitochondrial function and VAMP8 expression. Our results open a new avenue for aging research to control senescence by regulating mitochondrial ROS production.
Collapse
Affiliation(s)
- Myeong Uk Kuk
- Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon 22012, Republic of Korea; (M.U.K.); (Y.H.L.); (D.K.); (J.H.P.); (J.H.Y.); (Y.J.L.); (B.S.); (M.K.); (H.W.K.)
| | - Yun Haeng Lee
- Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon 22012, Republic of Korea; (M.U.K.); (Y.H.L.); (D.K.); (J.H.P.); (J.H.Y.); (Y.J.L.); (B.S.); (M.K.); (H.W.K.)
| | - Duyeol Kim
- Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon 22012, Republic of Korea; (M.U.K.); (Y.H.L.); (D.K.); (J.H.P.); (J.H.Y.); (Y.J.L.); (B.S.); (M.K.); (H.W.K.)
| | - Kyeong Seon Lee
- College of Pharmacy, Korea University, Sejong 30019, Republic of Korea; (K.S.L.); (Y.B.)
- Interdisciplinary Major Program in Innovative Pharmaceutical Sciences, Korea University, Sejong 30019, Republic of Korea
| | - Ji Ho Park
- Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon 22012, Republic of Korea; (M.U.K.); (Y.H.L.); (D.K.); (J.H.P.); (J.H.Y.); (Y.J.L.); (B.S.); (M.K.); (H.W.K.)
| | - Jee Hee Yoon
- Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon 22012, Republic of Korea; (M.U.K.); (Y.H.L.); (D.K.); (J.H.P.); (J.H.Y.); (Y.J.L.); (B.S.); (M.K.); (H.W.K.)
| | - Yoo Jin Lee
- Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon 22012, Republic of Korea; (M.U.K.); (Y.H.L.); (D.K.); (J.H.P.); (J.H.Y.); (Y.J.L.); (B.S.); (M.K.); (H.W.K.)
| | - Byeonghyeon So
- Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon 22012, Republic of Korea; (M.U.K.); (Y.H.L.); (D.K.); (J.H.P.); (J.H.Y.); (Y.J.L.); (B.S.); (M.K.); (H.W.K.)
| | - Minseon Kim
- Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon 22012, Republic of Korea; (M.U.K.); (Y.H.L.); (D.K.); (J.H.P.); (J.H.Y.); (Y.J.L.); (B.S.); (M.K.); (H.W.K.)
| | - Hyung Wook Kwon
- Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon 22012, Republic of Korea; (M.U.K.); (Y.H.L.); (D.K.); (J.H.P.); (J.H.Y.); (Y.J.L.); (B.S.); (M.K.); (H.W.K.)
- Convergence Research Center for Insect Vectors, Incheon National University, Incheon 22012, Republic of Korea
| | - Youngjoo Byun
- College of Pharmacy, Korea University, Sejong 30019, Republic of Korea; (K.S.L.); (Y.B.)
- Interdisciplinary Major Program in Innovative Pharmaceutical Sciences, Korea University, Sejong 30019, Republic of Korea
| | - Ki Yong Lee
- College of Pharmacy, Korea University, Sejong 30019, Republic of Korea; (K.S.L.); (Y.B.)
- Interdisciplinary Major Program in Innovative Pharmaceutical Sciences, Korea University, Sejong 30019, Republic of Korea
| | - Joon Tae Park
- Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon 22012, Republic of Korea; (M.U.K.); (Y.H.L.); (D.K.); (J.H.P.); (J.H.Y.); (Y.J.L.); (B.S.); (M.K.); (H.W.K.)
- Convergence Research Center for Insect Vectors, Incheon National University, Incheon 22012, Republic of Korea
| |
Collapse
|
13
|
Ercanbrack WS, Ramirez M, Dungan A, Gaul E, Ercanbrack SJ, Wingert RA. Frataxin deficiency and the pathology of Friedreich's Ataxia across tissues. Tissue Barriers 2025:2462357. [PMID: 39981684 DOI: 10.1080/21688370.2025.2462357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 01/08/2025] [Accepted: 01/14/2025] [Indexed: 02/22/2025] Open
Abstract
Friedreich's Ataxia (FRDA) is a neurodegenerative disease that affects a variety of different organ systems. The disease is caused by GAA repeat expansions in intron 1 of the Frataxin gene (FXN), which results in a decrease in the expression of the FXN protein. FXN is needed for the biogenesis of iron-sulfur clusters (ISC) which are required by key metabolic processes in the mitochondria. Without ISCs those processes do not occur properly. As a result, reactive oxygen species accumulate, and the mitochondria cease to function. Iron is also thought to accumulate in the cells of certain tissue types. These processes are thought to be intimately related to the pathologies affecting a myriad of tissues in FRDA. Most FRDA patients suffer from loss of motor control, cardiomyopathy, scoliosis, foot deformities, and diabetes. In this review, we discuss the known features of FRDA pathology and the current understanding about the basis of these alterations.
Collapse
Affiliation(s)
- Wesley S Ercanbrack
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA
| | - Mateo Ramirez
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA
| | - Austin Dungan
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA
| | - Ella Gaul
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA
| | - Sarah J Ercanbrack
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA
| | - Rebecca A Wingert
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA
| |
Collapse
|
14
|
Berlingerio SP, Bondue T, Tassinari S, Siegerist F, Ferrulli A, Lismont C, Cairoli S, Goffredo BM, Ghesquière B, Fransen M, Endlich N, Oliveira Arcolino F, Bussolati B, van den Heuvel L, Levtchenko E. Targeting oxidative stress-induced lipid peroxidation enhances podocyte function in cystinosis. J Transl Med 2025; 23:206. [PMID: 39980044 PMCID: PMC11844038 DOI: 10.1186/s12967-024-05996-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 12/15/2024] [Indexed: 02/22/2025] Open
Abstract
BACKGROUND Cystinosis is a rare, incurable lysosomal storage disease caused by mutations in the CTNS gene encoding the cystine transporter cystinosin, which leads to lysosomal cystine accumulation in all cells of the body. Patients with cystinosis display signs of podocyte damage characterized by extensive loss of podocytes into the urine at early disease stages, glomerular proteinuria, and the development of focal segmental glomerulosclerosis (FSGS) lesions. Although standard treatment with cysteamine decreases cellular cystine levels, it neither reverses glomerular injury nor prevents the loss of podocytes. Thus, pathogenic mechanisms other than cystine accumulation are involved in podocyte dysfunction in cystinosis. METHODS We used immortalized patient-derived cystinosis, healthy, and CTNS knockdown podocytes to investigate podocyte dysfunction in cystinosis. The results were validated in our newly in-house developed fluorescent ctns-/-[Tg(fabp10a:gc-EGFP)] zebrafish larvae model. To understand impaired podocyte functionality, static and dynamic permeability assays, tracer-metabolomic analysis, flow cytometry, western blot, and chemical and dynamic redox-sensing fluorescent probes were used. RESULTS In the current study, we discovered that cystinosis podocytes demonstrate increased ferroptotic cell death caused by mitochondrial reactive oxygen species (ROS)-driven membrane lipid peroxidation. Moreover, cystinosis cells present a fragmented mitochondrial network with impaired tricarboxylic acid cycle (TCA) cycle and energy metabolism. Targeting mitochondrial ROS and lipid peroxidation improved podocyte function in vitro and rescued proteinuria in vivo in cystinosis zebrafish larvae. CONCLUSIONS Mitochondrial ROS contribute to podocyte injury in cystinosis by driving lipid peroxidation and ferroptosis, which in turn lead to podocyte detachment. This finding adds cystinosis to the list of podocytopathies associated with mitochondrial dysfunction. The identified mechanisms reveal new therapeutic targets and highlight lipid peroxidation as an exploitable vulnerability of cystinosis podocytes.
Collapse
Affiliation(s)
- Sante Princiero Berlingerio
- Laboratory of Pediatric Nephrology, Department of Development and Regeneration, KU Leuven, Leuven, Belgium
- Department of Pediatric Nephrology, Emma Children's Hospital, Amsterdam UMC, Location AMC, Amsterdam, The Netherlands
- Emma Center for Personalized Medicine, Amsterdam UMC, Location AMC, Amsterdam, The Netherlands
| | - Tjessa Bondue
- Laboratory of Pediatric Nephrology, Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| | - Sarah Tassinari
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Turin, Italy
| | - Florian Siegerist
- Institute of Anatomy and Cell Biology, University Medicine Greifswald, Greifswald, Germany
| | - Angela Ferrulli
- Laboratory of Pediatric Nephrology, Department of Development and Regeneration, KU Leuven, Leuven, Belgium
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Bari, Italy
| | - Celien Lismont
- Laboratory of Peroxisome Biology and Intracellular Communication, KU Leuven, Leuven, Belgium
| | - Sara Cairoli
- Laboratory of Metabolic Biochemistry, Department of Pediatric Medicine, Bambino Gesù Children's Hospital, IRCSS, Rome, Italy
| | - Bianca Maria Goffredo
- Laboratory of Metabolic Biochemistry, Department of Pediatric Medicine, Bambino Gesù Children's Hospital, IRCSS, Rome, Italy
| | - Bart Ghesquière
- Metabolomics Expertise Center, Department of Cellular and Molecular Medicine, VIB-KU Leuven, Leuven, Belgium
| | - Marc Fransen
- Laboratory of Peroxisome Biology and Intracellular Communication, KU Leuven, Leuven, Belgium
| | - Nicole Endlich
- Institute of Anatomy and Cell Biology, University Medicine Greifswald, Greifswald, Germany
| | - Fanny Oliveira Arcolino
- Department of Pediatric Nephrology, Emma Children's Hospital, Amsterdam UMC, Location AMC, Amsterdam, The Netherlands
- Emma Center for Personalized Medicine, Amsterdam UMC, Location AMC, Amsterdam, The Netherlands
| | - Benedetta Bussolati
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Turin, Italy
| | - Lambertus van den Heuvel
- Laboratory of Pediatric Nephrology, Department of Development and Regeneration, KU Leuven, Leuven, Belgium
- Department of Pediatric Nephrology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Elena Levtchenko
- Laboratory of Pediatric Nephrology, Department of Development and Regeneration, KU Leuven, Leuven, Belgium.
- Department of Pediatric Nephrology, Emma Children's Hospital, Amsterdam UMC, Location AMC, Amsterdam, The Netherlands.
| |
Collapse
|
15
|
Valeros J, Jerome M, Tseyang T, Vo P, Do T, Fajardo Palomino D, Grotehans N, Kunala M, Jerrett AE, Hathiramani NR, Mireku M, Magesh RY, Yenilmez B, Rosen PC, Mann JL, Myers JW, Kunchok T, Manning TL, Boercker LN, Carr PE, Munim MB, Lewis CA, Sabatini DM, Kelly M, Xie J, Czech MP, Gao G, Shepherd JN, Walker AK, Kim H, Watson EV, Spinelli JB. Rhodoquinone carries electrons in the mammalian electron transport chain. Cell 2025; 188:1084-1099.e27. [PMID: 39909039 PMCID: PMC11845293 DOI: 10.1016/j.cell.2024.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 08/19/2024] [Accepted: 12/09/2024] [Indexed: 02/07/2025]
Abstract
Ubiquinone (UQ), the only known electron carrier in the mammalian electron transport chain (ETC), preferentially delivers electrons to the terminal electron acceptor oxygen (O2). In hypoxia, ubiquinol (UQH2) diverts these electrons onto fumarate instead. Here, we identify rhodoquinone (RQ), an electron carrier detected in mitochondria purified from certain mouse and human tissues that preferentially delivers electrons to fumarate through the reversal of succinate dehydrogenase, independent of environmental O2 levels. The RQ/fumarate ETC is strictly present in vivo and is undetectable in cultured mammalian cells. Using genetic and pharmacologic tools that reprogram the ETC from the UQ/O2 to the RQ/fumarate pathway, we establish that these distinct ETCs support unique programs of mitochondrial function and that RQ confers protection upon hypoxia exposure in vitro and in vivo. Thus, in discovering the presence of RQ in mammals, we unveil a tractable therapeutic strategy that exploits flexibility in the ETC to ameliorate hypoxia-related conditions.
Collapse
Affiliation(s)
- Jonathan Valeros
- Program in Molecular Medicine, UMass Chan Medical School, Worcester, MA 01605, USA
| | - Madison Jerome
- Program in Molecular Medicine, UMass Chan Medical School, Worcester, MA 01605, USA
| | - Tenzin Tseyang
- Program in Molecular Medicine, UMass Chan Medical School, Worcester, MA 01605, USA
| | - Paula Vo
- Program in Molecular Medicine, UMass Chan Medical School, Worcester, MA 01605, USA
| | - Thang Do
- Program in Molecular Medicine, UMass Chan Medical School, Worcester, MA 01605, USA
| | - Diana Fajardo Palomino
- Program in Molecular Medicine, UMass Chan Medical School, Worcester, MA 01605, USA; Morningside Graduate School of Biomedical Sciences, UMass Chan Medical School, Worcester, MA 01605, USA
| | - Nils Grotehans
- Program in Molecular Medicine, UMass Chan Medical School, Worcester, MA 01605, USA
| | - Manisha Kunala
- Program in Molecular Medicine, UMass Chan Medical School, Worcester, MA 01605, USA; Morningside Graduate School of Biomedical Sciences, UMass Chan Medical School, Worcester, MA 01605, USA
| | - Alexandra E Jerrett
- Program in Molecular Medicine, UMass Chan Medical School, Worcester, MA 01605, USA; Morningside Graduate School of Biomedical Sciences, UMass Chan Medical School, Worcester, MA 01605, USA
| | - Nicolai R Hathiramani
- Program in Molecular Medicine, UMass Chan Medical School, Worcester, MA 01605, USA; Morningside Graduate School of Biomedical Sciences, UMass Chan Medical School, Worcester, MA 01605, USA; Diabetes Center of Excellence, UMass Chan Medical School, Worcester, MA 01605, USA
| | - Michael Mireku
- Program in Molecular Medicine, UMass Chan Medical School, Worcester, MA 01605, USA
| | - Rayna Y Magesh
- Department of Systems Biology, UMass Chan Medical School, Worcester, MA 01605, USA
| | - Batuhan Yenilmez
- Program in Molecular Medicine, UMass Chan Medical School, Worcester, MA 01605, USA
| | - Paul C Rosen
- Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Jessica L Mann
- Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Jacob W Myers
- Program in Molecular Medicine, UMass Chan Medical School, Worcester, MA 01605, USA
| | | | - Tanner L Manning
- Department of Chemistry and Biochemistry, Gonzaga University, Spokane, WA 99258, USA
| | - Lily N Boercker
- Department of Chemistry and Biochemistry, Gonzaga University, Spokane, WA 99258, USA
| | - Paige E Carr
- Department of Chemistry and Biochemistry, Gonzaga University, Spokane, WA 99258, USA
| | | | - Caroline A Lewis
- Program in Molecular Medicine, UMass Chan Medical School, Worcester, MA 01605, USA
| | - David M Sabatini
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo n. 2, 166 10 Prague, Czech Republic; Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences Boston Branch, 840 Memorial Drive, Cambridge, MA 02139, USA
| | - Mark Kelly
- Program in Molecular Medicine, UMass Chan Medical School, Worcester, MA 01605, USA; Division of Cardiovascular Medicine, Department of Medicine, UMass Chan Medical School, Worcester, MA 01605, USA
| | - Jun Xie
- Horae Gene Therapy Center, UMass Chan Medical School, Worcester, MA 01605, USA
| | - Michael P Czech
- Program in Molecular Medicine, UMass Chan Medical School, Worcester, MA 01605, USA; Diabetes Center of Excellence, UMass Chan Medical School, Worcester, MA 01605, USA
| | - Guangping Gao
- Horae Gene Therapy Center, UMass Chan Medical School, Worcester, MA 01605, USA; Li Weibo Institute for Rare Disease Research, UMass Chan Medical School, Worcester, MA 01655, USA; Department of Microbiology and Physiological Systems, UMass Chan Medical School, Worcester, MA 01605, USA
| | - Jennifer N Shepherd
- Department of Chemistry and Biochemistry, Gonzaga University, Spokane, WA 99258, USA
| | - Amy K Walker
- Program in Molecular Medicine, UMass Chan Medical School, Worcester, MA 01605, USA
| | - Hahn Kim
- Small Molecule Screening Center, Princeton University, Princeton, NJ 08544, USA; Department of Chemistry, Princeton University, Princeton, NJ 08544, USA
| | - Emma V Watson
- Diabetes Center of Excellence, UMass Chan Medical School, Worcester, MA 01605, USA
| | - Jessica B Spinelli
- Program in Molecular Medicine, UMass Chan Medical School, Worcester, MA 01605, USA.
| |
Collapse
|
16
|
Srinivasan V, Soliymani R, Ivanova L, Eriksson O, Peitsaro N, Lalowski M, Karelson M, Lindholm D. USP14 is crucial for proteostasis regulation and α-synuclein degradation in human SH-SY5Y dopaminergic cells. Heliyon 2025; 11:e42031. [PMID: 39916840 PMCID: PMC11795799 DOI: 10.1016/j.heliyon.2025.e42031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 12/02/2024] [Accepted: 01/15/2025] [Indexed: 02/09/2025] Open
Abstract
Ubiquitin specific protease-14 (USP14) is critical for controlling proteostasis disturbed in human disorders, including Parkinson's disease (PD). Here we investigated USP14 in the regulation of α-synuclein (α-syn) degradation via the proteasome and autophagy. α-Syn and pS129 α-syn were elevated in USP14 gene-deleted SH-SY5Y dopaminergic cells with decreased proteasome activity. However, autophagy and coordinated lysosomal expression and regulation pathways were elevated in USP14 lacking cells with higher levels of the transcription factor TFEB. There was an increase in reactive oxidative species (ROS) and elongated mitochondria in USP14 deficient cells and counteracting oxidative stress decreased α-syn levels. Phosphoproteomics revealed that USP14 is phosphorylated at residue S143 that reduces its binding to the proteasome. Re-expression of wild-type and phospho-mimetic S143D-USP14 mutant lowered ROS and α-syn levels in USP14 lacking cells. USP14 is a promising factor to consider in PD to target α-syn through its regulation of proteasomes and oxidative stress in dopaminergic neurons.
Collapse
Affiliation(s)
- Vignesh Srinivasan
- Department of Biochemistry and Developmental Biology, Faculty of Medicine, University of Helsinki, P.O. Box 63, FIN-00014, Finland
- Minerva Foundation Institute for Medical Research, Biomedicum Helsinki 2U, Tukholmankatu 8, FIN-00290, Helsinki, Finland
| | - Rabah Soliymani
- Department of Biochemistry and Developmental Biology, Faculty of Medicine, University of Helsinki, P.O. Box 63, FIN-00014, Finland
- HiLIFE, Meilahti Clinical Proteomics Core Facility, University of Helsinki, Helsinki, Finland
| | - Larisa Ivanova
- Institute of Chemistry, University of Tartu, Ravila 14a, 50411, Tartu, Estonia
| | - Ove Eriksson
- Department of Biochemistry and Developmental Biology, Faculty of Medicine, University of Helsinki, P.O. Box 63, FIN-00014, Finland
- Minerva Foundation Institute for Medical Research, Biomedicum Helsinki 2U, Tukholmankatu 8, FIN-00290, Helsinki, Finland
| | - Nina Peitsaro
- Department of Biochemistry and Developmental Biology, Faculty of Medicine, University of Helsinki, P.O. Box 63, FIN-00014, Finland
| | - Maciej Lalowski
- Department of Biochemistry and Developmental Biology, Faculty of Medicine, University of Helsinki, P.O. Box 63, FIN-00014, Finland
- HiLIFE, Meilahti Clinical Proteomics Core Facility, University of Helsinki, Helsinki, Finland
- Institute of Molecular Biology and Biochemistry, Department of Gene Expression, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| | - Mati Karelson
- Institute of Chemistry, University of Tartu, Ravila 14a, 50411, Tartu, Estonia
| | - Dan Lindholm
- Department of Biochemistry and Developmental Biology, Faculty of Medicine, University of Helsinki, P.O. Box 63, FIN-00014, Finland
- Minerva Foundation Institute for Medical Research, Biomedicum Helsinki 2U, Tukholmankatu 8, FIN-00290, Helsinki, Finland
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| |
Collapse
|
17
|
Jurčacková Z, Hrčková G, Mudroňová D, Matiašová AA, Biedermann D. Flavonolignans silybin, silychristin and 2,3-dehydrosilybin showed differential cytoprotective, antioxidant and anti-apoptotic effects on splenocytes from Balb/c mice. Sci Rep 2025; 15:5631. [PMID: 39955331 PMCID: PMC11830019 DOI: 10.1038/s41598-025-89824-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 02/07/2025] [Indexed: 02/17/2025] Open
Abstract
Silymarin is an extract obtained from the seeds of milk thistle (Sylibum marianum L., Asteraceae) and contains several structurally related flavonolignans and a small family of flavonoids. Mouse spleen cells represent highly sensitive primary cells suitable for studying the pharmacological potential and biofunctional properties of natural substances. Cultivation of splenocytes for 24 h under standard culture conditions (humidity, 37 °C, 5% CO2, atmospheric oxygen) resulted in decreased viability of splenocytes compared to intact cells. A cytoprotective effect of silybin (SB), silychristin (SCH) and 2,3-dehydrosilybin (DHSB) was observed at concentrations as low as 5 µmol/ml. At 50 µmol/ml, these substances restored and/or stimulated viability and mitochondrial membrane potential and had anti-apoptotic effect in the order SB > DHSB > SCH. The substances demonstrated a concentration-dependent activity in restoring the redox balance based on the changes in the concentration of reactive oxygen species (ROS), hydrogen peroxide (H2O2) and nitric oxide. This was in the order DHSB > SCH > SB, which correlated with the suppressed expression of nuclear factor erythroid 2-related factor 2 (Nrf2), catalase and glutathione peroxidase. The strong stimulation of the superoxide dismutase 1 gene converting ROS to H2O2 points to its dominant role in the maintaining redox homeostasis in splenocytes, which was disrupted by oxidative stress due to non-physiological culture conditions. Our study showed significant differences in the cytoprotective, antioxidant and anti-apoptotic activities of SB, SCH, and DHSB on splenocytes exposed to mild and AAPH-induced oxidative stress.
Collapse
Affiliation(s)
- Zuzana Jurčacková
- Institute of Parasitology, Slovak Academy of Sciences, Hlinkova 3, 04001, Kosice, Slovakia
| | - Gabriela Hrčková
- Institute of Parasitology, Slovak Academy of Sciences, Hlinkova 3, 04001, Kosice, Slovakia.
| | - Dagmar Mudroňová
- Department of Microbiology and Immunology, University of Veterinary Medicine and Pharmacy, Kosice, Slovakia
| | - Anna Alexovič Matiašová
- Institute of Biology and Ecology, Faculty of Science, P. J. Šafárik University, Kosice, Slovakia
| | - David Biedermann
- Institute of Microbiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| |
Collapse
|
18
|
Viggiano D, Joshi R, Borriello G, Cacciola G, Gonnella A, Gigliotti A, Nigro M, Gigliotti G. SGLT2 Inhibitors: The First Endothelial-Protector for Diabetic Nephropathy. J Clin Med 2025; 14:1241. [PMID: 40004772 PMCID: PMC11856817 DOI: 10.3390/jcm14041241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 02/05/2025] [Accepted: 02/07/2025] [Indexed: 02/27/2025] Open
Abstract
Sodium-glucose co-transporter type 2 inhibitors (SGLT2i) have emerged as a class of agents relevant for managing diabetic nephropathy and cardiopathy. In a previous report, we noticed that these drugs share, with other drugs with "nephroprotective" effects, the ability to reduce the glomerular filtration rate (GFR), thus suggesting the kidney hemodynamic effect as a proxy for optimal drug dosage. We also noticed that all known nephroprotective drugs exert cardioprotective functions, suggesting the possibility of activities not mediated by the kidney. Finally, we observe that nephroprotective drugs can be grouped according to their effects on hemoglobin levels, thus suggesting their mechanism of action. While the primary mechanism of SGLT2i involves glycosuria and natriuria, growing evidence suggests broader therapeutic effects beyond hemodynamic modulation. Specifically, the evidence that SGLT2 can be expressed in several atypical regions under pathological conditions, supports the possibility that its inhibition has several extratubular effects. Evidence supports the hypothesis that SGLT2i influence mitochondrial function in various cell types affected by diabetes, particularly in the context of diabetic nephropathy. Notably, in SGLT2i-treated patients, the extent of albumin-creatinine ratio (ACR) reduction post-treatment may be correlated with mitochondrial staining intensity in glomerular endothelial cells. This implies that the anti-proteinuric effects of SGLT2i could involve direct actions on glomerular endothelial cell. Our investigation into the role of SGLT2 inhibitors (SGLT2i) in endothelial function suggests that the aberrant expression of SGLT2 in endothelial cells in T2DM would lead to intracellular accumulation of glucose; therefore, SGLT2i are the first type of endothelial protective drugs available today, with potential implications for ageing-related kidney disease. The review reveals two major novel findings: SGLT2 inhibitors are the first known class of endothelial-protective drugs, due to their ability to prevent glucose accumulation in endothelial cells where SGLT2 is aberrantly expressed in Type 2 Diabetes. Additionally, the research demonstrates that SGLT2 inhibitors share a GFR-reducing effect with other nephroprotective drugs, suggesting both a mechanism for optimal drug dosing and potential broader applications in ageing-related kidney disease through their effects on mitochondrial function and glomerular endothelial cells.
Collapse
Affiliation(s)
- Davide Viggiano
- Department Translational Medical Sciences, University of Campania, 80138 Naples, Italy; (R.J.); (G.B.); (G.C.)
| | - Rashmi Joshi
- Department Translational Medical Sciences, University of Campania, 80138 Naples, Italy; (R.J.); (G.B.); (G.C.)
| | - Gianmarco Borriello
- Department Translational Medical Sciences, University of Campania, 80138 Naples, Italy; (R.J.); (G.B.); (G.C.)
| | - Giovanna Cacciola
- Department Translational Medical Sciences, University of Campania, 80138 Naples, Italy; (R.J.); (G.B.); (G.C.)
| | - Annalisa Gonnella
- Department Nephrology, Eboli Hospital, 84025 Eboli, Italy; (A.G.); (A.G.); (M.N.); (G.G.)
| | - Andrea Gigliotti
- Department Nephrology, Eboli Hospital, 84025 Eboli, Italy; (A.G.); (A.G.); (M.N.); (G.G.)
| | - Michelangelo Nigro
- Department Nephrology, Eboli Hospital, 84025 Eboli, Italy; (A.G.); (A.G.); (M.N.); (G.G.)
| | - Giuseppe Gigliotti
- Department Nephrology, Eboli Hospital, 84025 Eboli, Italy; (A.G.); (A.G.); (M.N.); (G.G.)
| |
Collapse
|
19
|
Wang W, Chen J, Zhan L, Zou H, Wang L, Guo M, Gao H, Xu J, Wu W. Iron and ferroptosis in kidney disease: molecular and metabolic mechanisms. Front Immunol 2025; 16:1531577. [PMID: 39975561 PMCID: PMC11835690 DOI: 10.3389/fimmu.2025.1531577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Accepted: 01/20/2025] [Indexed: 02/21/2025] Open
Abstract
Maintaining iron homeostasis is necessary for kidney functioning. There is more and more research indicating that kidney disease is often caused by iron imbalance. Over the past decade, ferroptosis' role in mediating the development and progression of renal disorders, such as acute kidney injury (renal ischemia-reperfusion injury, drug-induced acute kidney injury, severe acute pancreatitis induced acute kidney injury and sepsis-associated acute kidney injury), chronic kidney disease (diabetic nephropathy, renal fibrosis, autosomal dominant polycystic kidney disease) and renal cell carcinoma, has come into focus. Thus, knowing kidney iron metabolism and ferroptosis regulation may enhance disease therapy. In this review, we discuss the metabolic and molecular mechanisms of iron signaling and ferroptosis in kidney disease. We also explore the possible targets of ferroptosis in the therapy of renal illness, as well as their existing limitations and future strategies.
Collapse
Affiliation(s)
- Wenjie Wang
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Jingdi Chen
- Department of orthopedics, The Airborne Military Hospital, Wuhan, Hubei, China
| | - Liying Zhan
- Department of Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Handong Zou
- Department of Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Lu Wang
- Department of Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Mengmeng Guo
- The First Clinical College of Wuhan University, Wuhan, Hubei, China
| | - Hang Gao
- Department of Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Jing Xu
- Department of Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Wei Wu
- Department of Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| |
Collapse
|
20
|
Mohamed Yusoff AA, Mohd Khair SZN. Unraveling mitochondrial dysfunction: comprehensive perspectives on its impact on neurodegenerative diseases. Rev Neurosci 2025; 36:53-90. [PMID: 39174305 DOI: 10.1515/revneuro-2024-0080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 07/30/2024] [Indexed: 08/24/2024]
Abstract
Neurodegenerative diseases represent a significant challenge to modern medicine, with their complex etiology and progressive nature posing hurdles to effective treatment strategies. Among the various contributing factors, mitochondrial dysfunction has emerged as a pivotal player in the pathogenesis of several neurodegenerative disorders. This review paper provides a comprehensive overview of how mitochondrial impairment contributes to the development of neurodegenerative diseases including Alzheimer's disease, Parkinson's disease, Huntington's disease, and amyotrophic lateral sclerosis, driven by bioenergetic defects, biogenesis impairment, alterations in mitochondrial dynamics (such as fusion or fission), disruptions in calcium buffering, lipid metabolism dysregulation and mitophagy dysfunction. It also covers current therapeutic interventions targeting mitochondrial dysfunction in these diseases.
Collapse
Affiliation(s)
- Abdul Aziz Mohamed Yusoff
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, 16150 Kubang Kerian, Kelantan, Malaysia
| | - Siti Zulaikha Nashwa Mohd Khair
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, 16150 Kubang Kerian, Kelantan, Malaysia
| |
Collapse
|
21
|
Jana S, Alayash AI. Exploring the Molecular Interplay Between Oxygen Transport, Cellular Oxygen Sensing, and Mitochondrial Respiration. Antioxid Redox Signal 2025. [PMID: 39846399 DOI: 10.1089/ars.2023.0428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/24/2025]
Abstract
Significance: The mitochondria play a key role in maintaining oxygen homeostasis under normal oxygen tension (normoxia) and during oxygen deprivation (hypoxia). This is a critical balancing act between the oxygen content of the blood, the tissue oxygen sensing mechanisms, and the mitochondria, which ultimately consume most oxygen for energy production. Recent Advances: We describe the well-defined role of the mitochondria in oxygen metabolism with a special focus on the impact on blood physiology and pathophysiology. Critical Issues: Fundamental questions remain regarding the impact of mitochondrial responses to changes in overall blood oxygen content under normoxic and hypoxic states and in the case of impaired oxygen sensing in various cardiovascular and pulmonary complications including blood disorders involving hemolysis and hemoglobin toxicity, ischemia reperfusion, and even in COVID-19 disease. Future Directions: Understanding the nature of the crosstalk among normal homeostatic pathways, oxygen carrying by hemoglobin, utilization of oxygen by the mitochondrial respiratory chain machinery, and oxygen sensing by hypoxia-inducible factor proteins, may provide a target for future therapeutic interventions. Antioxid. Redox Signal. 00, 000-000.
Collapse
Affiliation(s)
- Sirsendu Jana
- Laboratory of Biochemistry and Vascular Biology, Center for Biologics Evaluation and Research, Food and Drug Administration (FDA), Silver Spring, Maryland, USA
| | - Abdu I Alayash
- Laboratory of Biochemistry and Vascular Biology, Center for Biologics Evaluation and Research, Food and Drug Administration (FDA), Silver Spring, Maryland, USA
| |
Collapse
|
22
|
Rayat Pisheh H, Sani M. Mesenchymal stem cells derived exosomes: a new era in cardiac regeneration. Stem Cell Res Ther 2025; 16:16. [PMID: 39849585 PMCID: PMC11756228 DOI: 10.1186/s13287-024-04123-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 12/18/2024] [Indexed: 01/25/2025] Open
Abstract
Despite significant strides in medical treatments and surgical procedures for cardiovascular diseases, these conditions continue to be a major global health concern. The persistent need for innovative therapeutic approaches to mend damaged heart tissue highlights the complexity and urgency of this medical challenge. In recent years, stem cells have emerged as a promising tool for tissue regeneration, but challenges such as graft rejection and tumor formation have limited their clinical application. Exosomes, extracellular vesicles containing a diverse array of biomolecules, have garnered significant attention for their potential in regenerative medicine. The cardioprotective and reparative properties of mesenchymal stem cell-derived exosomes hold promise for the treatment of heart diseases. These exosomes can modulate various cellular processes, including angiogenesis, apoptosis, and inflammation, thereby enhancing cardiac function. Despite the growing interest, there remains a lack of comprehensive reviews synthesizing the molecular mechanisms, preclinical, and clinical evidence related to the specific role of MSC-derived exosomes in cardiac therapies. This review aims to fill that gap by exploring the potential of MSC-derived exosomes as a therapeutic strategy for cardiac diseases. This review explores the potential of mesenchymal stem cell-derived exosomes as a therapeutic strategy for cardiac diseases. We discuss the molecular mechanisms underlying their cardioprotective effects, summarize preclinical and clinical studies investigating their efficacy, and address the challenges and future perspectives of exosome-based therapies. The collective evidence suggests that MSC-derived exosomes hold promise as a novel and effective therapeutic approach for cardiac diseases.
Collapse
Affiliation(s)
- Hossein Rayat Pisheh
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
- Shiraz Institute for Stem Cell & Regenerative Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mahsa Sani
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran.
- Shiraz Institute for Stem Cell & Regenerative Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
23
|
Belenichev I, Popazova O, Bukhtiyarova N, Ryzhenko V, Pavlov S, Suprun E, Oksenych V, Kamyshnyi O. Targeting Mitochondrial Dysfunction in Cerebral Ischemia: Advances in Pharmacological Interventions. Antioxidants (Basel) 2025; 14:108. [PMID: 39857442 PMCID: PMC11760872 DOI: 10.3390/antiox14010108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 01/13/2025] [Accepted: 01/16/2025] [Indexed: 01/27/2025] Open
Abstract
The study of mitochondrial dysfunction has become increasingly pivotal in elucidating the pathophysiology of various cerebral pathologies, particularly neurodegenerative disorders. Mitochondria are essential for cellular energy metabolism, regulation of reactive oxygen species (ROS), calcium homeostasis, and the execution of apoptotic processes. Disruptions in mitochondrial function, driven by factors such as oxidative stress, excitotoxicity, and altered ion balance, lead to neuronal death and contribute to cognitive impairments in several brain diseases. Mitochondrial dysfunction can arise from genetic mutations, ischemic events, hypoxia, and other environmental factors. This article highlights the critical role of mitochondrial dysfunction in the progression of neurodegenerative diseases and discusses the need for targeted therapeutic strategies to attenuate cellular damage, restore mitochondrial function, and enhance neuroprotection.
Collapse
Affiliation(s)
- Igor Belenichev
- Department of Pharmacology and Medical Formulation with Course of Normal Physiology, Zaporizhzhia State Medical and Pharmaceutical University, 69000 Zaporizhzhia, Ukraine;
| | - Olena Popazova
- Department of Histology, Cytology and Embryology, Zaporizhzhia State Medical and Pharmaceutical University, 69000 Zaporizhzhia, Ukraine
| | - Nina Bukhtiyarova
- Department of Clinical Laboratory Diagnostics, Zaporizhzhia State Medical and Pharmaceutical University, 69000 Zaporizhzhia, Ukraine
| | - Victor Ryzhenko
- Department of Medical and Pharmaceutical Informatics and Advanced Technologies, Zaporizhzhia State Medical University, 69000 Zaporizhzhia, Ukraine
| | - Sergii Pavlov
- Department of Clinical Laboratory Diagnostics, Zaporizhzhia State Medical and Pharmaceutical University, 69000 Zaporizhzhia, Ukraine
| | - Elina Suprun
- The State Institute of Neurology, Psychiatry and Narcology of the National Academy of Medical Sciences of Ukraine, 46 Academician Pavlov Street, 61076 Kharkov, Ukraine
| | | | - Oleksandr Kamyshnyi
- Department of Microbiology, Virology and Immunology, I. Horbachevsky Ternopil State Medical University, 46001 Ternopil, Ukraine;
| |
Collapse
|
24
|
Errico A, Ambrosini G, Vinco S, Bottani E, Dalla Pozza E, Marroncelli N, Brandi J, Cecconi D, Decimo I, Migliorini F, Zampieri N, Dando I. In vitro effect of hCG on cryptorchid patients' gubernacular cells: a predictive model for adjuvant personalized therapy. Cell Commun Signal 2025; 23:19. [PMID: 39794843 PMCID: PMC11724491 DOI: 10.1186/s12964-024-01979-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 12/04/2024] [Indexed: 01/13/2025] Open
Abstract
BACKGROUND Cryptorchidism is the absence of one or both testicles in the scrotum at birth, being a risk factor for testis cancer and infertility. The most effective method to treat cryptorchidism is orchiopexy, followed by human chorionic gonadotropin (hCG) therapy; however, a portion of treated patients do not show a significant improvement in testis volume and vascularization after adjuvant therapy. METHODS In this study, we generated an in vitro model to predict the patient response to hCG by cultivating and treating primary cells derived from five cryptorchid patients' biopsies of gubernaculum testis, the ligament that connects the testicle to the scrotum. On these in vitro cultured cells, we analyzed the effect of hCG on cell proliferation, tubular structure formation, cellular respiration, reactive oxygen species content, and proteome. RESULTS We demonstrate that in vitro hCG stimulates gubernacular cells to proliferate and form vessel-like structures to a different extent among the five cryptorchid patients' cells, with a decrease in oxygen consumption and reactive oxygen species generation. Furthermore, from the proteomic analysis, we show that hCG regulates the intra- and extra-cellular organization of gubernacular cells together with a massive regulation of the antioxidant response. CONCLUSIONS Hereby, we characterized the cellular and molecular effects of hCG, demonstrating that the diverse patient response to hCG may be ascribable to their age since young patients better respond in vitro to the hormone, supporting a prompt surgical procedure and subsequent therapy. TRIAL REGISTRATION The study was conducted in accordance with the Declaration of Helsinki and approved by the Institutional Ethics Committee of "Azienda Ospedaliera Universitaria Integrata" (AOUI) of Verona, Italy ("ANDRO-PRO", protocol code N. 4206 CESC of 26 April 2023).
Collapse
Affiliation(s)
- Andrea Errico
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Giulia Ambrosini
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Sara Vinco
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Emanuela Bottani
- Department of Diagnostics and Public Health, University of Verona, Verona, Italy
| | - Elisa Dalla Pozza
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Nunzio Marroncelli
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Jessica Brandi
- Department of Biotechnology, University of Verona, Verona, Italy
| | - Daniela Cecconi
- Department of Biotechnology, University of Verona, Verona, Italy
| | - Ilaria Decimo
- Department of Diagnostics and Public Health, University of Verona, Verona, Italy
| | - Filippo Migliorini
- UOC of Urology, Azienda Ospedaliera Universitaria Integrata di Verona, Verona, Italy
| | - Nicola Zampieri
- Department of Engineering and Innovation Medicine, Paediatric Fertility Lab, Woman and Child Hospital, Division of Pediatric Surgery, University of Verona, Verona, Italy.
- UniCamillus-Saint Camillus International University of Health Sciences, Rome, Italy.
| | - Ilaria Dando
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy.
| |
Collapse
|
25
|
Ding Z, Du W, Huang J, Han J, Bai J, Yang G, Zhang Y, Ding Y. Allogeneic platelet lysate activates the SIRT1-PINK1/Parkin pathway: A promising approach for improving mitochondrial function in an in vitro model of intervertebral disc degeneration. Int Immunopharmacol 2025; 144:113700. [PMID: 39626535 DOI: 10.1016/j.intimp.2024.113700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 11/18/2024] [Accepted: 11/20/2024] [Indexed: 12/15/2024]
Abstract
BACKGROUND Intervertebral disc degeneration (IVDD) is a common cause of low back pain and spinal issues. Allogeneic platelet lysate (APL) is a blood product for several growth agents. However, only a few studies have revealed that APL can increase autophagy in defective mitochondria by activating the SIRT1-PINK1/parkin pathway while enhancing mitochondrial function to decrease reactive oxygen species (ROS) levels. OBJECTIVE To elucidate the mechanism by which APL mediates mitochondrial autophagy via the SIRT1-PINK1/Parkin pathway in the treatment of IVDD in vitro. METHODS Pure platelet-rich plasma (P-PRP) was prepared by two-step centrifugation, and APL was prepared via freeze-thaw cycles. The nucleus pulposus cells of New Zealand white rabbits were harvested and grown. After the third generation, four groups of cells were cultured: (1) control group: standard culture conditions; (2) IL-1β group: intervention; (3) APL group: 24-hour IL-1β intervention followed by 24-hour APL treatment; and (4) APL + EX527 group: SIRT1 inhibitor EX527 24-hour treatment after 24-hour IL-1β and APL treatment. After interventions, cell activity was measured by Trypan blue staining. Apoptosis was measured by flow cytometry in each group. Immunofluorescence labeling measured mitochondrial permeability, ROS, and ROS. RT-PCR evaluated autophagy and inflammation-related gene mRNA expression. Western blot analysis revealed the protein levels of these genes. Electron microscopy reveals mitochondrial autophagy. RESULTS APL from P-PRP decreased ROS levels in an IVDD in vitro model, mediated autophagy in dysfunctional mitochondria, and alleviated inflammation via the SIRT1-PINK1/Parkin pathway.
Collapse
Affiliation(s)
- Zhili Ding
- Orthopedics of TCM Senior Department, The Sixth Medical Center of PLA General Hospital, Beijing 100048, China; Navy Clinical College, Fifth School of Clinical Medicine, Anhui Medical University, Hefei, China
| | - Wei Du
- Orthopedics of TCM Senior Department, The Sixth Medical Center of PLA General Hospital, Beijing 100048, China
| | - Jie Huang
- Orthopedics of TCM Senior Department, The Sixth Medical Center of PLA General Hospital, Beijing 100048, China; Department of Orthopedics, School of Medicine, South China University of Technology, Guangzhou 510006, China
| | - Jiaheng Han
- Orthopedics of TCM Senior Department, The Sixth Medical Center of PLA General Hospital, Beijing 100048, China; Department of Orthopedics, School of Medicine, South China University of Technology, Guangzhou 510006, China
| | - Jie Bai
- Orthopedics of TCM Senior Department, The Sixth Medical Center of PLA General Hospital, Beijing 100048, China
| | - Guangnan Yang
- Orthopedics of TCM Senior Department, The Sixth Medical Center of PLA General Hospital, Beijing 100048, China; Department of Orthopedics, School of Medicine, South China University of Technology, Guangzhou 510006, China
| | - Yan Zhang
- Orthopedics of TCM Senior Department, The Sixth Medical Center of PLA General Hospital, Beijing 100048, China.
| | - Yu Ding
- Orthopedics of TCM Senior Department, The Sixth Medical Center of PLA General Hospital, Beijing 100048, China; Navy Clinical College, Fifth School of Clinical Medicine, Anhui Medical University, Hefei, China.
| |
Collapse
|
26
|
Li H, Deng N, Yang J, Zhao Y, Jin X, Cai A, Seeram NP, Ma H, Li D, Yang H, Liu C. Anti-inflammatory and antioxidant properties of oleuropein in human keratinocytes characterized by bottom-up proteomics. Front Pharmacol 2025; 15:1496078. [PMID: 39845787 PMCID: PMC11751055 DOI: 10.3389/fphar.2024.1496078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 12/16/2024] [Indexed: 01/24/2025] Open
Abstract
Oleuropein is a phenolic compound commonly found in cosmetic ingredients including olive leaves and jasmine flowers with various skin-beneficial effects. Here, we evaluated oleuropein's anti-inflammatory and antioxidant activities in human skin cells. In a cell-based inflammasome model with human monocytes (THP-1 cells), oleuropein (12-200 µM) reduced proinflammatory cytokine interleukin (IL)-6 by 38.8%-45.5%, respectively. Oleuropein (50 and 100 µM) also alleviated oxidative stress in keratinocytes (HaCaT cells) by reducing H2O2-induced cell death by 6.4% and 9.2%, respectively. Additionally, biological evaluations revealed that oleuropein's antioxidant effects were attributed to its mitigation of reactive oxygen species in HaCaT cells. Furthermore, a multiplexed gene assay identified IL-1β and thioredoxin-interacting proteins as potential molecular targets involved in oleuropein's protective effects in HaCaT cells. This was supported by findings from several cellular assays showing that oleuropein reduced the level of IL-1β and inhibited the activity of caspase-1/IL-1 converting enzyme, as well as ameliorated pyroptosis in HaCaT cells. Moreover, a bottom-up proteomics study was conducted to explore potential molecular targets and signaling pathways involved in oleuropein's antioxidant activities. Taken together, findings from this study expand the understanding of oleuropein's skin protective effects against oxidative and inflammatory stresses, which support that oleuropein is a promising natural cosmeceutical for skincare applications.
Collapse
Affiliation(s)
- Huifang Li
- Bioactive Botanical Research Laboratory, Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI, United States
| | - Ni Deng
- Proteomics Facility, College of Pharmacy, University of Rhode Island, Kingston, RI, United States
| | - Jiayi Yang
- Bioactive Botanical Research Laboratory, Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI, United States
| | - Yang Zhao
- Outpatient Department, Southern Theater Command General Hospital, Guangzhou, China
| | - Xiaoxuan Jin
- Outpatient Department, Southern Theater Command General Hospital, Guangzhou, China
| | - Ang Cai
- Proteomics Facility, College of Pharmacy, University of Rhode Island, Kingston, RI, United States
| | - Navindra P. Seeram
- Bioactive Botanical Research Laboratory, Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI, United States
| | - Hang Ma
- Bioactive Botanical Research Laboratory, Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI, United States
| | - Dongli Li
- School of Pharmacy and Food Engineering, Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, Wuyi University, Jiangmen, China
| | - Huilan Yang
- Outpatient Department, Southern Theater Command General Hospital, Guangzhou, China
| | - Chang Liu
- Bioactive Botanical Research Laboratory, Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI, United States
- Proteomics Facility, College of Pharmacy, University of Rhode Island, Kingston, RI, United States
| |
Collapse
|
27
|
Ashique S, Mishra N, Mantry S, Garg A, Kumar N, Gupta M, Kar SK, Islam A, Mohanto S, Subramaniyan V. Crosstalk between ROS-inflammatory gene expression axis in the progression of lung disorders. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:417-448. [PMID: 39196392 DOI: 10.1007/s00210-024-03392-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 08/16/2024] [Indexed: 08/29/2024]
Abstract
A significant number of deaths and disabilities worldwide are brought on by inflammatory lung diseases. Many inflammatory lung disorders, including chronic respiratory emphysema, resistant asthma, resistance to steroids, and coronavirus-infected lung infections, have severe variants for which there are no viable treatments; as a result, new treatment alternatives are needed. Here, we emphasize how oxidative imbalance contributes to the emergence of provocative lung problems that are challenging to treat. Endogenic antioxidant systems are not enough to avert free radical-mediated damage due to the induced overproduction of ROS. Pro-inflammatory mediators are then produced due to intracellular signaling events, which can harm the tissue and worsen the inflammatory response. Overproduction of ROS causes oxidative stress, which causes lung damage and various disease conditions. Invasive microorganisms or hazardous substances that are inhaled repeatedly can cause an excessive amount of ROS to be produced. By starting signal transduction pathways, increased ROS generation during inflammation may cause recurrent DNA damage and apoptosis and activate proto-oncogenes. This review provides information about new targets for conducting research in related domains or target factors to prevent, control, or treat such inflammatory oxidative stress-induced inflammatory lung disorders.
Collapse
Affiliation(s)
- Sumel Ashique
- Department of Pharmaceutics, Bengal College of Pharmaceutical Sciences & Research, Durgapur, West Bengal, 713212, India.
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, 144411, India.
| | - Neeraj Mishra
- Department of Pharmaceutics, Amity Institute of Pharmacy, Amity University Madhya Pradesh (AUMP), Gwalior, MP, 474005, India
| | - Shubhrajit Mantry
- Department of Pharmaceutics, Department of Pharmacy, Sarala Birla University, Ranchi, Jharkhand, 835103, India
| | - Ashish Garg
- Department of Pharmaceutics, Guru Ramdas Khalsa Institute of Science and Technology (Pharmacy), Jabalpur, Madhya Pradesh, 483001, India
| | - Nitish Kumar
- SRM Modinagar College of Pharmacy, SRM Institute of Science and Technology (Deemed to Be University), Delhi-NCR Campus, Modinagar, Ghaziabad, Uttar Pradesh, 201204, India
| | - Madhu Gupta
- Department of Pharmaceutics, Delhi Pharmaceutical Sciences and Research University, Delhi, 110017, India
| | - Sanjeeb Kumar Kar
- Department of Pharmaceutical Chemistry, Department of Pharmacy, Sarala Birla University, Ranchi, Jharkhand, 835103, India
| | - Anas Islam
- Faculty of Pharmacy, Integral University, Lucknow, Uttar Pradesh, 226026, India
| | - Sourav Mohanto
- Department of Pharmaceutics, Yenepoya Pharmacy College & Research Centre, Yenepoya (Deemed to Be University), Mangalore, Karnataka, 575018, India.
| | - Vetriselvan Subramaniyan
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, 47500, Subang Jaya, Selangor, Malaysia.
| |
Collapse
|
28
|
Nunes-Pinto M, Bandeira de Mello RG, Pinto MN, Moro C, Vellas B, Martinez LO, Rolland Y, de Souto Barreto P. Sarcopenia and the biological determinants of aging: A narrative review from a geroscience perspective. Ageing Res Rev 2025; 103:102587. [PMID: 39571617 DOI: 10.1016/j.arr.2024.102587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 11/13/2024] [Accepted: 11/14/2024] [Indexed: 11/29/2024]
Abstract
BACKGROUND The physiopathology of sarcopenia shares common biological cascades with the aging process, as does any other age-related condition. However, our understanding of the interconnected pathways between diagnosed sarcopenia and aging remains limited, lacking sufficient scientific evidence. METHODS This narrative review aims to gather and describe the current evidence on the relationship between biological aging determinants, commonly referred to as the hallmarks of aging, and diagnosed sarcopenia in humans. RESULTS Among the twelve hallmarks of aging studied, there appears to be a substantial association between sarcopenia and mitochondrial dysfunction, epigenetic alterations, deregulated nutrient sensing, and altered intercellular communication. Although limited, preliminary evidence suggests a promising association between sarcopenia and genomic instability or stem cell exhaustion. DISCUSSION Overall, an imbalance in energy regulation, characterized by impaired mitochondrial energy production and alterations in circulatory markers, is commonly associated with sarcopenia and may reflect the interplay between aging physiology and sarcopenia biology.
Collapse
Affiliation(s)
- Mariá Nunes-Pinto
- Gerontopôle de Toulouse, Institut du Vieillissement, Centre Hospitalo-Universitaire de Toulouse, France; Postgraduate Program in Medical Sciences (Endocrinology), Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Brazil.
| | - Renato Gorga Bandeira de Mello
- Postgraduate Program in Medical Sciences (Endocrinology), Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Brazil; School of Medicine, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Brazil; Master of Public Health Program, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, USA
| | - Milena Nunes Pinto
- School of Medicine, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Cédric Moro
- Institut des Maladies Métaboliques et Cardiovasculaires, I2MC, Université de Toulouse, INSERM, Université Toulouse III - Paul Sabatier (UPS), Toulouse UMR1297, France
| | - Bruno Vellas
- Gerontopôle de Toulouse, Institut du Vieillissement, Centre Hospitalo-Universitaire de Toulouse, France; CERPOP UMR 1295, University of Toulouse III, Institut National de la Santé et de la Recherche Médicale (Inserm), UPS, Toulouse, France; IHU HealthAge, Toulouse, France
| | - Laurent O Martinez
- Institut des Maladies Métaboliques et Cardiovasculaires, I2MC, Université de Toulouse, INSERM, Université Toulouse III - Paul Sabatier (UPS), Toulouse UMR1297, France; IHU HealthAge, Toulouse, France
| | - Yves Rolland
- Gerontopôle de Toulouse, Institut du Vieillissement, Centre Hospitalo-Universitaire de Toulouse, France; CERPOP UMR 1295, University of Toulouse III, Institut National de la Santé et de la Recherche Médicale (Inserm), UPS, Toulouse, France; IHU HealthAge, Toulouse, France
| | - Philipe de Souto Barreto
- Gerontopôle de Toulouse, Institut du Vieillissement, Centre Hospitalo-Universitaire de Toulouse, France; CERPOP UMR 1295, University of Toulouse III, Institut National de la Santé et de la Recherche Médicale (Inserm), UPS, Toulouse, France; IHU HealthAge, Toulouse, France
| |
Collapse
|
29
|
Pedklang N, Navasumrit P, Chompoobut C, Promvijit J, Hunsonti P, Ruchirawat M. Effects of particulate air pollution on BPDE-DNA adducts, telomere length, and mitochondrial DNA copy number in human exhaled breath condensate and BEAS-2B cells. Int J Hyg Environ Health 2025; 263:114488. [PMID: 39561502 DOI: 10.1016/j.ijheh.2024.114488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 10/15/2024] [Accepted: 11/13/2024] [Indexed: 11/21/2024]
Abstract
Traffic-related particulate matter (PM) and polycyclic aromatic hydrocarbons (PAHs) have been linked to respiratory diseases and cancer risk in humans. Genomic damage, including benzo[a]pyrene diolepoxide (BPDE)-DNA adducts as well as alterations in telomere length (TL) and mitochondrial DNA copy number (mtDNA-CN) are associated with respiratory diseases. This study aimed to investigate the association between exposure to traffic-related particulate pollutants and genomic damage in exhaled breath condensate (EBC) in human subjects and a bronchial epithelial cell line (BEAS-2B). Among the 60 healthy recruited subjects, residents living in high-traffic-congested areas were exposed to higher concentrations of PM2.5 (1.66-fold, p < 0.01), UFPs (1.79-fold, p < 0.01), PM2.5-PAHs (1.50-fold, p < 0.01), and UFPs-PAHs (1.35-fold, p < 0.05), than those in low-traffic-congested areas. In line with increased exposure to particulate air pollution, the high-traffic-exposed group had significantly increased BPDE-DNA adducts (1.40-fold, p < 0.05), TL shortening (1.24-fold, p < 0.05), and lower mtDNA-CN (1.38-fold, p < 0.05) in EBC. The observations in the human study linking exposure to PM2.5, UFPs, PM2.5-PAHs, and UFPs-PAHs with the aforementioned biological effects were confirmed by an in vitro cell-based study, in which BEAS-2B cells were treated with diesel exhaust particulate matter (DEP) containing fine and ultrafine PM and PAHs. Increased BPDE-DNA adducts levels, shortened TL, and decreased mtDNA-CN were also found in treated BEAS-2B cells. The shortened TL and decreased mtDNA-CN were in part mediated by decreased transcript levels of hTERT, and SIRT1, which are involved in telomerase activity and mitochondrial biogenesis, respectively. These results suggest that exposure to traffic-related particulate pollutants can cause genomic instability in respiratory cells, which may increase the health risk of respiratory diseases and the development of cancer.
Collapse
Affiliation(s)
- Naruporn Pedklang
- Laboratory of Environmental Toxicology, Chulabhorn Research Institute, Laksi, Bangkok, Thailand; Chulabhorn Graduate Institute, Laksi, Bangkok, Thailand
| | - Panida Navasumrit
- Laboratory of Environmental Toxicology, Chulabhorn Research Institute, Laksi, Bangkok, Thailand; Chulabhorn Graduate Institute, Laksi, Bangkok, Thailand; Center of Excellence on Environmental Health and Toxicology (EHT), OPS, MHESI, Thailand.
| | - Chalida Chompoobut
- Laboratory of Environmental Toxicology, Chulabhorn Research Institute, Laksi, Bangkok, Thailand
| | - Jeerawan Promvijit
- Laboratory of Environmental Toxicology, Chulabhorn Research Institute, Laksi, Bangkok, Thailand
| | - Potchanee Hunsonti
- Laboratory of Environmental Toxicology, Chulabhorn Research Institute, Laksi, Bangkok, Thailand
| | - Mathuros Ruchirawat
- Laboratory of Environmental Toxicology, Chulabhorn Research Institute, Laksi, Bangkok, Thailand; Center of Excellence on Environmental Health and Toxicology (EHT), OPS, MHESI, Thailand.
| |
Collapse
|
30
|
Aslan A, Seçme M. Effects of Pelargonium Sidoides Extract on Apoptosis and Oxidative Stress in Human Neuroblastoma Cells. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:2110. [PMID: 39768989 PMCID: PMC11679892 DOI: 10.3390/medicina60122110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 12/19/2024] [Accepted: 12/21/2024] [Indexed: 01/11/2025]
Abstract
Background and Objectives: Neuroblastoma is the most common extracranial solid tumor in children, often presenting challenges in treatment due to its clinical and genetic heterogeneity. This study investigated the anticancer potential of Pelargonium sidoides root extract on the human neuroblastoma cell line (SH-SY5Y). Using XTT assays, ELISA-based oxidative stress markers, and RT-PCR analysis of apoptotic genes, the study explored the extract's effects on cell proliferation, oxidative stress, and apoptosis. Materials and Methods: For the cell culture, SH-SY5Y human neuroblastoma cells were thawed, cultured, and maintained under appropriate conditions for experiments. The dose- and time-dependent activity of Pelorgonium sidoides extract on SH-SY5Y neuroblastoma cells was investigated by XTT assay. The change in the oxidative stress marker 8-Hydroxy-2'-deoxyguanosine (8-OhDG) level was determined by ELISA for the doses applied to the control group root extract at a concentration of 25 μg/mL. Total antioxidant status (TAS) and total oxidant status (TOS) were measured from the cells in the study group with the help of a commercial kit. The oxidative stress index (OSI) was calculated by dividing the TAS by the TOS and multiplying by 100. In order to evaluate the expression levels of apoptosis-related Bax, Bcl-2, Caspase-3, Caspase-8, and Caspase-9 genes at the mRNA level in control and dose group cells, RNA isolation was performed from the SH-SY5Y control and dose group cells (IC50 value). Results: It is observed that the P. sidoides substance inhibits proliferation in cells at 24 h (p < 0.05). As the dose increases, cell proliferation decreases (p < 0.05). The IC50 value was calculated to be 113.83 μg/mL at 24 h. The concentration of 8-OhDG increased in neuroblastoma cells as a result of P. sidoides extract treatment (p < 0.05). TOS levels increased in neuroblastoma cells treated with P. sidoides extract (p < 0.01). OSI levels increased in cells treated with P. sidoides extract (p < 0.001). BAX and Caspase-8 expression increased are statistically significant in the P. sidoides dose group (p < 0.05). Conclusions: P. sidoides extract induces apoptosis in neuroblastoma cells through oxidative stress and mitochondrial- and death receptor-mediated pathways. This study highlights the potential of P. sidoides as a complementary therapeutic agent for neuroblastoma, warranting further in vivo and clinical investigations to assess its safety and efficacy.
Collapse
Affiliation(s)
- Ali Aslan
- Department of Physiology, Faculty of Medicine, Ordu University, Ordu 52200, Turkey
| | - Mücahit Seçme
- Department of Medical Biology, Faculty of Medicine, Ordu University, Ordu 52200, Turkey;
| |
Collapse
|
31
|
Guelfi G, Capaccia C, Tedeschi M, Bufalari A, Leonardi L, Cenci-Goga B, Maranesi M. Dog Aging: A Comprehensive Review of Molecular, Cellular, and Physiological Processes. Cells 2024; 13:2101. [PMID: 39768192 PMCID: PMC11675035 DOI: 10.3390/cells13242101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 12/16/2024] [Accepted: 12/17/2024] [Indexed: 01/11/2025] Open
Abstract
The aging process is a multifactorial biological phenomenon starting at birth and persisting throughout life, characterized by a decline in physiological functions and adaptability. This decline results in the diminished capacity of aging organisms to respond to environmental changes and stressors, leading to reduced efficiency in metabolic, immune, and hormonal functions. As behavioral flexibility wanes, older individuals face longer recovery times and increased vulnerability to diseases. While early research proposed nine core hallmarks of mammalian aging, recent studies have expanded this framework to twelve key characteristics: epigenetic changes, genomic instability, telomere shortening, loss of proteostasis, altered metabolism, mitochondrial dysfunction, cellular senescence, disrupted intercellular communication, stem cell depletion, immune system dysfunction, accumulation of toxic metabolites, and dysbiosis. Given the growing interest in the aging area, we propose to add a new hallmark: impaired water homeostasis. This potential hallmark could play a critical role in aging processes and might open new directions for future research in the field. This review enhances our understanding of the physiological aspects of aging in dogs, suggesting new clinical intervention strategies to prevent and control issues that may arise from the pathological degeneration of these hallmarks.
Collapse
Affiliation(s)
- Gabriella Guelfi
- Department of Veterinary Medicine, University of Perugia, Via San Costanzo 4, 06126 Perugia, Italy; (C.C.); (M.T.); (L.L.); (B.C.-G.); (M.M.)
| | | | | | - Antonello Bufalari
- Department of Veterinary Medicine, University of Perugia, Via San Costanzo 4, 06126 Perugia, Italy; (C.C.); (M.T.); (L.L.); (B.C.-G.); (M.M.)
| | | | | | | |
Collapse
|
32
|
Chen J, Chen C, Luo Z, Jin X, Chen Y, Wu Q, Gong Z, Yang J, Jiang S, Lin S, Li J, Li F, Wu J, Guo J, Chen X, Lin L, Guo Z, Yu G, Shao W, Wu H, Wu S, Li H, Zheng F. The role of Sod-2 in different types of neuronal damage and behavioral changes induced by polystyrene nanoplastics in Caenorhabditis elegans. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 288:117416. [PMID: 39615303 DOI: 10.1016/j.ecoenv.2024.117416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 11/21/2024] [Accepted: 11/25/2024] [Indexed: 12/09/2024]
Abstract
Polystyrene nanoplastics (PS-NPs) have been demonstrated to accumulate in organisms especially from soil and exhibit neurotoxicity. However, the specific mechanisms by which PS-NPs caused neurotoxic effects remain largely unexplored. In this study, we employed PS-NPs with a diameter of 50 nm as the toxicant and used estimated exposure concentrations which are similar to those found in Chinese agricultural soil (i.e., 0, 1, 5 and 10 μg/mL). We found that PS-NPs induced significant neurotoxicity and behavioral damage in nematodes. Taking advantage of neuronal-specific reporter nematodes, we unveiled the order of neuronal damage induced by PS-NPs being DAergic neurons, followed by Achergic neurons and GABAergic neurons. Additionally, PS-NPs significantly reduced the neurotransmitter levels corresponding to these three types of neurons, with the order of reduction being Ach followed by DA and GABA. Moreover, we demonstrated that PS-NPs led to an increase in ROS production, the activation of gst-4 and a decrease in Sod-2 protein content. Furthermore, we unveiled that Sod-2 could suppress the generation of ROS induced by PS-NPs. Then we proved that the pretreatment with mitochondrial ROS scavenger Mitoquinone (Mito Q) was able to alleviate PS-NPs-induced neurotoxic effects and behavioral damage by scavenging ROS and subsequently regulating Sod-2 protein expression. In summary, we have demonstrated for the first time that ROS-mediated reduction of Sod-2 protein plays a crucial role in PS-NPs-induced neurotoxicity and behavioral damage. Furthermore, Mito Q shows potential therapeutic value in alleviating the toxic effects of PS-NPs, providing new insights for the prevention and treatment of PS-NPs-induced neurotoxicity.
Collapse
Affiliation(s)
- Jingrong Chen
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province 350122, China; The Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province 350122, China; Fujian Provincial Key Laboratory of Molecular Neurology and Institute of Neuroscience, Fujian Medical University, Fuzhou, China
| | - Cheng Chen
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province 350122, China; The Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province 350122, China; Fujian Provincial Key Laboratory of Molecular Neurology and Institute of Neuroscience, Fujian Medical University, Fuzhou, China
| | - Zhousong Luo
- Fujian Provincial Key Laboratory of Molecular Neurology and Institute of Neuroscience, Fujian Medical University, Fuzhou, China
| | - Xuepeng Jin
- The Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province 350122, China; Department of Clinical Medicine, School of Basic Medical Science, Fujian Medical University, Fuzhou, Fujian Province 350122, China
| | - Yilong Chen
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province 350122, China; The Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province 350122, China
| | - Qingqing Wu
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province 350122, China; The Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province 350122, China
| | - Zhaohui Gong
- The Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province 350122, China
| | - Jiafu Yang
- The Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province 350122, China
| | - Shangrong Jiang
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province 350122, China; The Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province 350122, China
| | - Shengsong Lin
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province 350122, China; The Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province 350122, China
| | - Jiamei Li
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province 350122, China; The Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province 350122, China
| | - Fangjie Li
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province 350122, China; The Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province 350122, China
| | - Jiawei Wu
- The Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province 350122, China
| | - Jiayi Guo
- The Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province 350122, China
| | - Xinshuai Chen
- The Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province 350122, China
| | - Ling Lin
- Public Technology Service Center, Fujian Medical University, Fuzhou, China
| | - Zhenkun Guo
- The Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province 350122, China
| | - Guangxia Yu
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province 350122, China; The Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province 350122, China
| | - Wenya Shao
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province 350122, China; The Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province 350122, China
| | - Hong Wu
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province 350122, China; The Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province 350122, China
| | - Siying Wu
- The Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province 350122, China; Department of Epidemiology and Health Statistics, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province 350122, China
| | - Huangyuan Li
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province 350122, China; The Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province 350122, China
| | - Fuli Zheng
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province 350122, China; The Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province 350122, China; Fujian Provincial Key Laboratory of Molecular Neurology and Institute of Neuroscience, Fujian Medical University, Fuzhou, China.
| |
Collapse
|
33
|
Alrouji M, Anwar S, Venkatesan K, Shahwan M, Hassan MI, Islam A, Shamsi A. Iron homeostasis and neurodegeneration in the ageing brain: Insight into ferroptosis pathways. Ageing Res Rev 2024; 102:102575. [PMID: 39515619 DOI: 10.1016/j.arr.2024.102575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 10/25/2024] [Accepted: 11/03/2024] [Indexed: 11/16/2024]
Abstract
Ageing is a major risk factor for various chronic diseases and offers a potential target for developing novel and broadly effective preventatives or therapeutics for age-related conditions, including those affecting the brain. Mechanisms contributing to ageing have been summarized as the hallmarks of ageing, with iron imbalance being one of the major factors. Ferroptosis, an iron-mediated lipid peroxidation-induced programmed cell death, has recently been implicated in neurodegenerative diseases such as Alzheimer's disease (AD), Parkinson's disease (PD) and Huntington's disease (HD). Addressing ferroptosis offers both opportunities and challenges for treating neurodegenerative diseases, though the specific mechanisms remain unclear. This research explores the key processes behind how ferroptosis contributes to brain ageing, with a focus on the complex signaling networks that are involved. The current article aims to uncover that how ferroptosis, a specific type of cell death, may drive age-related changes in the brain. Additionally, the article also unveils its role in neurodegenerative diseases, discussing how understanding these mechanisms could open up new therapeutic avenues.
Collapse
Affiliation(s)
- Mohammed Alrouji
- Department of Medical Laboratories, College of Applied Medical Sciences, Shaqra University, Shaqra 11961, Saudi Arabia.
| | - Saleha Anwar
- Center for Global Health Research, Saveetha medical college, Saveetha institute of Medical and Technical Sciences, Chennai, India.
| | - Kumar Venkatesan
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Khalid University, Abha 62529, Saudi Arabia.
| | - Moyad Shahwan
- Centre of Medical and Bio-allied Health Sciences Research, Ajman University, United Arab Emirates.
| | - Md Imtaiyaz Hassan
- Center for Interdsicplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India.
| | - Asimul Islam
- Center for Interdsicplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India.
| | - Anas Shamsi
- Centre of Medical and Bio-allied Health Sciences Research, Ajman University, United Arab Emirates.
| |
Collapse
|
34
|
Kim S, Jung UJ, Kim SR. Role of Oxidative Stress in Blood-Brain Barrier Disruption and Neurodegenerative Diseases. Antioxidants (Basel) 2024; 13:1462. [PMID: 39765790 PMCID: PMC11673141 DOI: 10.3390/antiox13121462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 11/22/2024] [Accepted: 11/27/2024] [Indexed: 01/11/2025] Open
Abstract
Upregulation of reactive oxygen species (ROS) levels is a principal feature observed in the brains of neurodegenerative diseases such as Parkinson's disease (PD) and Alzheimer's disease (AD). In these diseases, oxidative stress can disrupt the blood-brain barrier (BBB). This disruption allows neurotoxic plasma components, blood cells, and pathogens to enter the brain, leading to increased ROS production, mitochondrial dysfunction, and inflammation. Collectively, these factors result in protein modification, lipid peroxidation, DNA damage, and, ultimately, neural cell damage. In this review article, we present the mechanisms by which oxidative damage leads to BBB breakdown in brain diseases. Additionally, we summarize potential therapeutic approaches aimed at reducing oxidative damage that contributes to BBB disruption in neurodegenerative diseases.
Collapse
Affiliation(s)
- Sehwan Kim
- School of Life Science and Biotechnology, Kyungpook National University, Daegu 41566, Republic of Korea;
- BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Un Ju Jung
- Department of Food Science and Nutrition, Pukyong National University, Busan 48513, Republic of Korea
| | - Sang Ryong Kim
- School of Life Science and Biotechnology, Kyungpook National University, Daegu 41566, Republic of Korea;
- BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566, Republic of Korea
- Brain Science and Engineering Institute, Kyungpook National University, Daegu 41404, Republic of Korea
| |
Collapse
|
35
|
Chen Z, Wang W, Zeng K, Zhu J, Wang X, Huang W. Potential antiviral activity of rhamnocitrin against influenza virus H3N2 by inhibiting cGAS/STING pathway in vitro. Sci Rep 2024; 14:28287. [PMID: 39550441 PMCID: PMC11569172 DOI: 10.1038/s41598-024-79788-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 11/12/2024] [Indexed: 11/18/2024] Open
Abstract
Influenza remains a serious issue for public health and it's urgent to discover more effected drugs against influenza virus. Rhamnocitrin, as a flavonoid, its effect on influenza virus infection remains poorly explored. In this study, rhamnocitrin showed antiviral effect and anti-apoptosis on influenza virus A/Aichi/2/1968 (H3N2) in MDCK cells and A549 cells. In addition, molecular docking revealed that rhamnocitrin have good binding activity with the target proteins cGAS and STING, molecular dynamic simulation and surface plasmon resonance showed that rhamnocitrin could form a stable complex with the above proteins. Moreover, the qPCR and western blot assays further verified that rhamnocitrin could reduce type I IFN and proinflammatory cytokines production by inhibiting the cGAS/STING pathway. Taken together, the results suggest that rhamnocitrin could be a potential anti-viral agent against influenza.
Collapse
Affiliation(s)
- Zexing Chen
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510180, China
- Institute of Integration of Traditional and Western Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Wanqi Wang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510180, China
- Institute of Integration of Traditional and Western Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Kefeng Zeng
- Institute of Integration of Traditional and Western Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jinyi Zhu
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510180, China
- Institute of Integration of Traditional and Western Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xinhua Wang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510180, China
- Institute of Integration of Traditional and Western Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Wanyi Huang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510180, China.
- Institute of Integration of Traditional and Western Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
| |
Collapse
|
36
|
Di Raimo R, Mizzoni D, Aloi A, Pietrangelo G, Dolo V, Poppa G, Fais S, Logozzi M. Antioxidant Effect of a Plant-Derived Extracellular Vesicles' Mix on Human Skin Fibroblasts: Induction of a Reparative Process. Antioxidants (Basel) 2024; 13:1373. [PMID: 39594515 PMCID: PMC11590891 DOI: 10.3390/antiox13111373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 10/29/2024] [Accepted: 11/07/2024] [Indexed: 11/28/2024] Open
Abstract
Plant-Derived Extracellular Vesicles extracellular vesicles (PDEVs) from organic agriculture (without the use of pesticides and microbicides) contain high levels of antioxidants. Organic PDEVs have shown an increased antioxidant power compared to PDEVs from single plants, suggesting a synergistic effect of the bioactives constitutively expressed in the PDEVs from single fruits. With this study, we wanted to investigate the beneficial effects of a mix of PDEVs on human skin cells. We found detectable levels of citric acid, ascorbic acid, glutathione, catalase, and SOD in a mix of PDEVs deriving from five different fruits (grape, red orange, papaya, pomegranate, and tangerine). We then treated H2O2-conditioned fibroblasts with the mix of PDEVs. The results showed that the PDEVs' mixture reverted the H2O2-induced redox imbalance, restoring mitochondrial homeostasis, with a strong reduction of mitochondrial anion superoxide and an increase in sirtuin levels. The antioxidant action was consistent with wound repair on a lesion produced in a fibroblast's monolayer. This result was consistent with an increased level of vimentin and matrix metalloproteinase-9, whose expression is directly related to the efficiency of the reparative processes. These data support a beneficial role of PDEVs in both preventing and treating skin injuries through their potent antioxidant and reparative activities.
Collapse
Affiliation(s)
- Rossella Di Raimo
- ExoLab Italia, Tecnopolo D’Abruzzo, 67100 L’Aquila, Italy; (R.D.R.); (D.M.); (A.A.); (G.P.)
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy
| | - Davide Mizzoni
- ExoLab Italia, Tecnopolo D’Abruzzo, 67100 L’Aquila, Italy; (R.D.R.); (D.M.); (A.A.); (G.P.)
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy
| | - Antonella Aloi
- ExoLab Italia, Tecnopolo D’Abruzzo, 67100 L’Aquila, Italy; (R.D.R.); (D.M.); (A.A.); (G.P.)
| | - Giulia Pietrangelo
- ExoLab Italia, Tecnopolo D’Abruzzo, 67100 L’Aquila, Italy; (R.D.R.); (D.M.); (A.A.); (G.P.)
| | - Vincenza Dolo
- Department of Clinical Medicine, Public Health, Life and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (V.D.); (G.P.)
| | - Giuseppina Poppa
- Department of Clinical Medicine, Public Health, Life and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (V.D.); (G.P.)
| | - Stefano Fais
- ExoLab Italia, Tecnopolo D’Abruzzo, 67100 L’Aquila, Italy; (R.D.R.); (D.M.); (A.A.); (G.P.)
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy
| | - Mariantonia Logozzi
- ExoLab Italia, Tecnopolo D’Abruzzo, 67100 L’Aquila, Italy; (R.D.R.); (D.M.); (A.A.); (G.P.)
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy
| |
Collapse
|
37
|
Baysal M, Karaduman AB, Korkut Çelikateş B, Atlı-Eklioğlu Ö, Ilgın S. Assessment of the toxicity of different antiretroviral drugs and their combinations on Sertoli and Leydig cells. Drug Chem Toxicol 2024; 47:1100-1108. [PMID: 38647040 DOI: 10.1080/01480545.2024.2336506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 03/25/2024] [Indexed: 04/25/2024]
Abstract
The human immunodeficiency virus continues to pose a significant global public health challenge, affecting millions of individuals. The current treatment strategy has incorporated the utilization of combinations of antiretroviral drugs. The administration of these drugs is associated with many deleterious consequences on several physiological systems, notably the reproductive system. This study aimed to assess the toxic effects of abacavir sulfate, ritonavir, nevirapine, and zidovudine, as well as their combinations, on TM3 Leydig and TM4 Sertoli cells. The cell viability was gauged using 3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide (MTT) and neutral red uptake (NRU) assays. Reactive oxygen species (ROS) production was assessed via the 2',7'-dichlorofluorescein diacetate (DCFDA) test, and DNA damage was determined using the comet assay. Results indicated cytotoxic effects at low drug concentrations, both individually and combined. The administration of drugs, individually and in combination, resulted in the production of ROS and caused damage to the DNA at the tested concentrations. In conclusion, the results of this study suggest that the administration of antiretroviral drugs can lead to testicular toxicity by promoting the generation of ROS and DNA damage. Furthermore, it should be noted that the toxicity of antiretroviral drug combinations was shown to be higher compared to that of individual drugs.
Collapse
Affiliation(s)
- Merve Baysal
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Anadolu University, Eskişehir, Turkey
| | - Abdullah Burak Karaduman
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Anadolu University, Eskişehir, Turkey
| | - Büşra Korkut Çelikateş
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Anadolu University, Eskişehir, Turkey
| | - Özlem Atlı-Eklioğlu
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Anadolu University, Eskişehir, Turkey
| | - Sinem Ilgın
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Anadolu University, Eskişehir, Turkey
| |
Collapse
|
38
|
Bannon ST, Decker ST, Erol ME, Fan R, Huang YT, Chung S, Layec G. Mitochondrial free radicals contribute to cigarette smoke condensate-induced impairment of oxidative phosphorylation in the skeletal muscle in situ. Free Radic Biol Med 2024; 224:325-334. [PMID: 39178923 PMCID: PMC11975403 DOI: 10.1016/j.freeradbiomed.2024.08.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 08/01/2024] [Accepted: 08/20/2024] [Indexed: 08/26/2024]
Abstract
Oxidative stress plays a critical role in cellular dysfunction associated with cigarette smoke exposure and aging. Some chemicals from tobacco smoke have the potential to amplify mitochondrial ROS (mROS) production, which, in turn, may impair mitochondrial respiratory function. Accordingly, the present study tested the hypothesis that a mitochondria-targeted antioxidant (MitoTEMPO, MT) would attenuate the inhibitory effects of cigarette smoke on skeletal muscle respiratory capacity of middle-aged mice. Specifically, mitochondrial oxidative phosphorylation was assessed using high-resolution respirometry in permeabilized fibers from the fast-twitch gastrocnemius muscle of middle-aged C57Bl/6J mice. Before the assessment of respiration, tissues were incubated for 1hr with a control buffer (CON), cigarette smoke condensate (2 % dilution, SMOKE), or MitoTEMPO (10 μM) combined with cigarette smoke condensate (MT + SMOKE). Cigarette smoke condensate (CSC) decreased maximal-ADP stimulated respiration (CON: 60 ± 15 pmolO2.s-1.mg-1 and SMOKE: 33 ± 8 pmolO2.s-1.mg-1; p = 0.0001), and this effect was attenuated by MT (MT + SMOKE: 41 ± 7 pmolO2.s-1.mg-1; p = 0.02 with SMOKE). Complex-I specific respiration was inhibited by CSC, with no significant effect of MT (p = 0.35). Unlike CON, the addition of glutamate (ΔGlutamate) had an additive effect on respiration in fibers exposed to CSC (CON: 0.9 ± 1.1 pmolO2.s-1.mg-1 and SMOKE: 5.4 ± 3.7 pmolO2.s-1.mg-1; p = 0.008) and MT (MT + SMOKE: 8.2 ± 3.8 pmolO2.s-1.mg-1; p ≤ 0.01). Complex-II specific respiration was inhibited by CSC but was partially restored by MT (p = 0.04 with SMOKE). Maximal uncoupled respiration induced by FCCP was inhibited by CSC, with no significant effect of MT. These findings underscore that mROS contributes to cigarette smoke condensate-induced inhibition of mitochondrial respiration in fast-twitch gastrocnemius muscle fibers of middle-aged mice thus providing a potential target for therapeutic treatment of smoke-related diseases. In addition, this study revealed that CSC largely impaired muscle respiratory capacity by decreasing metabolic flux through mitochondrial pyruvate transporter (MPC) and/or the enzymes upstream of α-ketoglutarate in the Krebs cycle.
Collapse
Affiliation(s)
- Sean T Bannon
- Department of Kinesiology, University of Massachusetts Amherst, MA, USA
| | - Stephen T Decker
- Department of Kinesiology, University of Massachusetts Amherst, MA, USA; Diabetes and Metabolism Research Center, University of Utah, UT, USA
| | - Muhammet Enes Erol
- Department of Kinesiology, University of Massachusetts Amherst, MA, USA; School of Health and Kinesiology, University of Nebraska Omaha, NE, USA
| | - Rong Fan
- Department of Nutrition, University of Massachusetts Amherst, MA, USA
| | - Yu-Ting Huang
- Department of Kinesiology, University of Massachusetts Amherst, MA, USA
| | - Soonkyu Chung
- Department of Nutrition, University of Massachusetts Amherst, MA, USA
| | - Gwenael Layec
- Department of Kinesiology, University of Massachusetts Amherst, MA, USA; School of Health and Kinesiology, University of Nebraska Omaha, NE, USA.
| |
Collapse
|
39
|
Xu L, Meng L, Xiang W, Wang X, Yang J, Shu C, Zhao XH, Rong Z, Ye Y. Prohibitin 2 confers NADPH oxidase 1-mediated cytosolic oxidative signaling to promote gastric cancer progression by ERK activation. Free Radic Biol Med 2024; 224:130-143. [PMID: 39182738 DOI: 10.1016/j.freeradbiomed.2024.08.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 08/21/2024] [Accepted: 08/22/2024] [Indexed: 08/27/2024]
Abstract
Oxidative signaling plays a dual role in tumor initiation and progression to malignancy; however, the regulatory mechanisms of oxidative stress in gastric cancer remain to be explored. In this study, we discovered that Prohibitin 2 (PHB2) specifically regulates cytosolic reactive oxygen species production in gastric cancer and facilitates its malignant progression. Previously, we found that PHB2 is upregulated in gastric cancer, correlating with increased tumorigenicity of gastric cancer cells and poor patient prognosis. Here, we discovered that PHB2 expression correlates with the activation of the ERK/MAPK cascade, positively regulating the top gene NADPH oxidase 1 (NOX1) within this pathway. Further mechanistic investigation reveals that PHB2 enhances NOX1 transcription by interacting with the transcription factor C/EBP-beta and promoting its translocation into the nucleus, resulting in elevated intracellular oxidative signaling driven by NOX1, which subsequently activates ERK. Therefore, we propose that targeting PHB2-C/EBP-beta-NOX1-mediated cytosolic oxidative stress could offer a promising therapeutic avenue for combating gastric cancer malignant progression.
Collapse
Affiliation(s)
- Liang Xu
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China; School of Biomedical Sciences and Pharmacy, The University of Newcastle, NSW, 2308, Australia
| | - Li Meng
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China; Department of Prenatal Diagnostic Center, People's Hospital of Puyang, Puyang, 457001, China
| | - Wanying Xiang
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China
| | - Xinyue Wang
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China
| | - Jiezhen Yang
- Department of Pathology, Zhongshan Hospital (Xiamen Branch), Fudan University, Xiamen, 361015, China
| | - Chang Shu
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China
| | - Xiao Hong Zhao
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, NSW, 2308, Australia
| | - Ziye Rong
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China.
| | - Yan Ye
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China.
| |
Collapse
|
40
|
Panda SS, Biswal BK. The phytochemical plumbagin: mechanism behind its "pleiotropic" nature and potential as an anticancer treatment. Arch Toxicol 2024; 98:3585-3601. [PMID: 39271481 DOI: 10.1007/s00204-024-03861-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 08/29/2024] [Indexed: 09/15/2024]
Abstract
Chemotherapeutics are most often used to treat cancer, but side effects, drug resistance, and toxicity often compromise their effectiveness. In contrast, phytocompound plumbagin possesses a distinct pleiotropic nature, targeting multiple signaling pathways, such as ROS generation, cell death, cellular proliferation, metastasis, and drug resistance, and is shown to enhance the efficacy of chemotherapeutic drugs. Plumbagin has been shown to act synergistically with various chemotherapeutic drugs and enhance their efficacy in drug-resistant cancers. The pleiotropic nature is believed to be due to plumbagin's unique structure, which contains a naphthoquinone ring and a hydroxyl group responsible for plumbagin's various biological responses. Despite limitations such as restricted bioavailability and delivery, recent developments aim to address these challenges and harness the potential of plumbagin as an anticancer therapeutics. This review delves into the structural aspect of the plumbagin molecule contributing to its pleiotropic nature, explores the diverse mechanism that it targets, and discusses emerging strategies to overcome its limitations.
Collapse
Affiliation(s)
- Shikshya Swarupa Panda
- Cancer Drug Resistance Laboratory, Department of Life Science, National Institute of Technology Rourkela, Rourkela, Odisha, 769008, India
| | - Bijesh Kumar Biswal
- Cancer Drug Resistance Laboratory, Department of Life Science, National Institute of Technology Rourkela, Rourkela, Odisha, 769008, India.
| |
Collapse
|
41
|
Adewale OO, Oyelola RF, Adetuyi OA, Adebisi OA, Adekomi DA, Oladele JO. Water-soluble phenolics from Phoenix dactylifera fruits as potential reno-protective agent against cisplatin-induced toxicity: pre- and post-treatment strategies. Drug Chem Toxicol 2024; 47:1058-1071. [PMID: 38529813 DOI: 10.1080/01480545.2024.2329762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 03/07/2024] [Indexed: 03/27/2024]
Abstract
Nephrotoxicity is the major side effect of cisplatin, an effective platinum-based chemotherapeutic drug that is applicable in the treatment of several solid-tissue cancers. Studies have indicated that certain water-soluble phenolics offer renal protection. Thus, this study investigates the role of pre and post-treatment of rats with water-soluble phenolics from Phoenix dactylifera (PdP) against nephrotoxicity induced by cisplatin. Rats were either orally pretreated or post-treated with 200 mg/kg body weight of PdP before or after exposure to a single therapeutic dose of cisplatin (5 mg/kg body weight) for 7 successive days intraperitoneally. The protective effects of PdP against Cisplatin-induced nephrotoxicity was based on the evaluation of various biochemical and redox biomarkers, together with histopathological examination of kidney tissues. The composition, structural features, and antioxidative influence of PdP were determined based on chromatographic, spectroscopic, and in vitro antioxidative models. Cisplatin single exposure led to a substantial increase in the tested renal function biomarkers (uric acid, creatinine, and urea levels), associated with an increase in malondialdehyde indicating lipid peroxidation and a significant decline (p < 0.05) in reduced glutathione (GSH) levels in the renal tissue when compared with the control group. A marked decline exists in the kidney antioxidant enzymes (catalase, SOD, and GPx). Nevertheless, treatment with PdP significantly suppressed the heightened renal function markers, lipid peroxidation, and oxidative stress. Spectroscopic analysis revealed significant medicinal phenolics, and in vitro tests demonstrated antioxidative properties. Taken together, results from this study indicate that pre- and/or post-treatment strategies of PdP could serve therapeutic purposes in cisplatin-induced renal damage.
Collapse
Affiliation(s)
| | | | - Oluwatosin Adefunke Adetuyi
- Department of Biochemistry, Osun State University, Osogbo, Nigeria
- Department of Chemistry and Biochemistry, Wichita State University, Wichita, KS, USA
| | - Oluwaseun Abraham Adebisi
- Department of Biochemistry, Osun State University, Osogbo, Nigeria
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Damilare Adedayo Adekomi
- Department of Anatomy, Faculty of Basic Medical Sciences, Osun State University, Osogbo, Nigeria
| | - Johnson Olaleye Oladele
- Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
- Phytochemical research unit, Royal Scientific Research Institute, Osogbo, Nigeria
| |
Collapse
|
42
|
Chaudhuri RH. The role of amino acids in skeletal muscle health and sarcopenia: A narrative review. J Biomed Res 2024; 38:1-14. [PMID: 39433511 DOI: 10.7555/jbr.38.20240167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2024] Open
Abstract
The skeletal muscle is the largest organ present inside the body and is responsible for mechanical activities like maintaining posture, movement, respiratory function, and support for the health and functioning of other systems of the body. Skeletal muscle atrophy is a condition associated with a reduction in muscle size, strength, and activity, which leads to an increased dependency on movement, an increased risk of falls, and a reduced quality of life. Various conditions like osteoarthritis, osteoporosis, and fractures are directly associated with an increased muscle atrophy. Additionally, numerous risk factors, like aging, malnutrition, physical inactivity, and certain disease conditions, through distinct pathways negatively affect skeletal muscle health and lead to muscle atrophy. Among the various determinants of the overall muscle health, the rate of muscle protein synthesis and degradation is an important parameter that eventually alters the fate of overall muscle health. In conditions of excessive skeletal muscle atrophy, including sarcopenia, the rate of muscle protein degradation usually exceeds the rate of protein synthesis. The availability of amino acids in the systemic circulation is a crucial step for muscle protein synthesis. The current review aimed to consolidate the existing evidence of amino acids, highlight their mechanisms of action, and assess their roles and effectiveness in enhancing skeletal muscle health.
Collapse
Affiliation(s)
- Ramendu Hom Chaudhuri
- Department of Orthopaedics, Sri Aurobindo Seva Kendra, Jodhpur Park, Kolkata, West Bengal 700068, India
| |
Collapse
|
43
|
Aminuddin A, Ng PY, Leong CO, Makpol S, Chua EW. Potential role of heteroplasmic mitochondrial DNA mutations in modulating the subtype-specific adaptation of oral squamous cell carcinoma to cisplatin therapy. Discov Oncol 2024; 15:573. [PMID: 39425872 PMCID: PMC11490477 DOI: 10.1007/s12672-024-01445-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 10/10/2024] [Indexed: 10/21/2024] Open
Abstract
Cancer cells are constantly evolving to adapt to environmental changes, particularly during exposure to drug treatment. In this work, we aimed to characterize genetic and epigenetic changes in mitochondrial DNA (mtDNA) that may increase the resistance of oral squamous cell carcinoma (OSCC) to cisplatin. We first derived drug-resistant cells from two human OSCC cell lines, namely SAS and H103, by continual cisplatin treatments for about 4 months. To determine mtDNA changes induced by cisplatin, we performed nanopore sequencing and quantitative polymerase chain reaction analysis of mtDNA extracted from the cells pre- and post-treatment. We also assessed the mitochondrial functions of the cells and their capacity to generate intracellular reactive oxygen species (ROS). We found that in the cisplatin-resistant cells derived from SAS, there was a reduction in mtDNA content and significant enrichment of a m.3910G > C mutation in the MT-ND1 gene. However, such changes were not detected in cisplatin-resistant H103 cells. The cisplatin treatment also altered methylation patterns in both SAS and H103 cells and decreased their sensitivity to ROS-induced cytotoxicity. We suggest that the sequence alterations and epigenetic changes in mtDNA and the reduction in mtDNA content could be key drivers of cisplatin resistance in OSCC. These mtDNA alterations may participate in cellular adaptation that serves as a response to adverse changes in the environment, particularly exposure to cytotoxic agents. Importantly, the observed mtDNA changes may be influenced by the distinct genetic landscapes of various cancer subtypes. Overall, this study reveals significant insights into cisplatin resistance driven by complex mtDNA dynamics, particularly in OSCC. This underscores the need for targeted therapies tailored to the genetic profiles of individual OSCC patients to improve disease prognosis.
Collapse
Affiliation(s)
- Amnani Aminuddin
- Department of Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Cheras, Kuala Lumpur, Malaysia
| | - Pei Yuen Ng
- Centre for Drug and Herbal Development, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Chee Onn Leong
- Centre for Cancer and Stem Cell Research, Institute for Research, Development and Innovation, International Medical University, Bukit Jalil, Kuala Lumpur, Malaysia
- AGTC Genomics, Bukit Jalil, Kuala Lumpur, Malaysia
| | - Suzana Makpol
- Department of Biochemistry, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Cheras, Kuala Lumpur, Malaysia
| | - Eng Wee Chua
- Centre for Drug and Herbal Development, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia.
| |
Collapse
|
44
|
Payasi A, Yadav MK, Chaudhary S, Aggarwal A. Evaluating nephrotoxicity reduction in a novel polymyxin B formulation: insights from a 3D kidney-on-a-chip model. Antimicrob Agents Chemother 2024; 68:e0021924. [PMID: 39225483 PMCID: PMC11459911 DOI: 10.1128/aac.00219-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 08/05/2024] [Indexed: 09/04/2024] Open
Abstract
This study aimed to assess the nephrotoxicity associated with VRP-034 (novel formulation of polymyxin B [PMB]) compared to marketed PMB in a three-dimensional (3D) kidney-on-a-chip model. To model the human kidney proximal tubule for analysis, tubular structures were established using 23 triple-channel chips seeded with RPTEC/hTERT1 cells. These cells were exposed to VRP-034 or PMB at seven concentrations (1-200 µM) over 12, 24, and 48 h. A suite of novel kidney injury biomarkers, cell health, and inflammatory markers were quantitatively assessed in the effluent. Additionally, caspase and cytochrome C levels were measured, and cell viability was evaluated using calcein AM and ethidium homodimer-1 (EthD-1). Exposure to marketed PMB resulted in significantly elevated levels (P < 0.05) of four key biomarkers (KIM-1, cystatin C, clusterin, and OPN) compared to VRP-034, particularly at clinically relevant concentrations of ≥10 µM. At 25 µM, all biomarkers demonstrated a significant increase (P < 0.05) with marketed PMB exposure compared to VRP-034. Inflammatory markers (interleukin-6 and interleukin-8) increased significantly (P < 0.05) with marketed PMB at concentrations of ≥5 µM, relative to VRP-034. VRP-034 displayed superior cell health outcomes, exhibiting lower lactate dehydrogenase release, while ATP levels remained comparable. Morphological analysis revealed that marketed PMB induced more severe damage, disrupting tubular integrity. Both treatments activated cytochrome C, caspase-3, caspase-8, caspase-9, and caspase-12 in a concentration-dependent manner; however, caspase activation was significantly reduced (P < 0.05) with VRP-034. This study demonstrates that VRP-034 significantly reduces nephrotoxicity compared to marketed PMB within a 3D microphysiological system, suggesting its potential to enable the use of full therapeutic doses of PMB with an improved safety profile, addressing the need for less nephrotoxic polymyxin antibiotics.
Collapse
Affiliation(s)
- Anurag Payasi
- Department of Cell Culture, Venus Medicine Research Centre, Baddi, Himachal Pradesh, India
| | - Manoj Kumar Yadav
- Department of Cell Culture, Venus Medicine Research Centre, Baddi, Himachal Pradesh, India
| | | | - Anmol Aggarwal
- Department of Pipeline Strategy, Venus Medicine Research Centre, Baddi, Himachal Pradesh, India
| |
Collapse
|
45
|
Krishnamurthy HK, Pereira M, Rajavelu I, Jayaraman V, Krishna K, Wang T, Bei K, Rajasekaran JJ. Oxidative stress: fundamentals and advances in quantification techniques. Front Chem 2024; 12:1470458. [PMID: 39435263 PMCID: PMC11491411 DOI: 10.3389/fchem.2024.1470458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 09/09/2024] [Indexed: 10/23/2024] Open
Abstract
Oxidative species, generated endogenously via metabolism or from exogenous sources, play crucial roles in the body. At low levels, these species support immune functions by participating in phagocytosis. They also aid in cellular signaling and contribute to vasomodulation. However, when the levels of oxidative species exceed the body's antioxidant capacity to neutralize them, oxidative stress occurs. This stress can damage cellular macromolecules such as lipids, DNA, RNA, and proteins, driving the pathogenesis of diseases and aging through the progressive deterioration of physiological functions and cellular structures. Therefore, the body's ability to manage oxidative stress and maintain it at optimal levels is essential for overall health. Understanding the fundamentals of oxidative stress, along with its reliable quantification, can enable consistency and comparability in clinical practice across various diseases. While direct quantification of oxidant species in the body would be ideal for assessing oxidative stress, it is not feasible due to their high reactivity, short half-life, and the challenges of quantification using conventional techniques. Alternatively, quantifying lipid peroxidation, damage products of nucleic acids and proteins, as well as endogenous and exogenous antioxidants, serves as appropriate markers for indicating the degree of oxidative stress in the body. Along with the conventional oxidative stress markers, this review also discusses the role of novel markers, focusing on their biological samples and detection techniques. Effective quantification of oxidative stress may enhance the understanding of this phenomenon, aiding in the maintenance of cellular integrity, prevention of age-associated diseases, and promotion of longevity.
Collapse
Affiliation(s)
| | | | | | | | | | - Tianhao Wang
- Vibrant Sciences LLC., Santa Clara, CA, United States
| | - Kang Bei
- Vibrant Sciences LLC., Santa Clara, CA, United States
| | | |
Collapse
|
46
|
Delgado Y, Torres-Sanchez A, Perez D, Torres G, Estrada S, Ortiz Alvelo N, Vega J, Santos L, Torres A, Madera BA, Ferrer-Acosta Y. Deferasirox's Anti-Chemoresistance and Anti-Metastatic Effect on Non-Small Cell Lung Carcinoma. Biomedicines 2024; 12:2272. [PMID: 39457585 PMCID: PMC11505511 DOI: 10.3390/biomedicines12102272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 09/27/2024] [Accepted: 09/30/2024] [Indexed: 10/28/2024] Open
Abstract
Clinically approved iron chelators, originally designed to address iron overload disorders, have emerged as potential anticancer agents. Deferasirox (Def), a tridentate iron chelator, has demonstrated antiproliferative effects in cancer. Background/Objectives: This study aims to elucidate the mechanism of action of Def and its impact on non-small cell lung carcinoma (NSCLC). Methods: NSCLC A549 cells were treated with Def to assess cytotoxicity, the effect on nuclear and mitochondrial pathways, and iron-containing proteins and genes to evaluate anti-metastasis and chemoresistance. A lung carcinoma mouse model was used for in vivo studies. Results: Our findings revealed that Def induced cytotoxicity, effectively chelated intracellular iron, and triggered apoptosis through the increase in phosphatidylserine externalization and caspase 3 activity. Additionally, Def caused G0/G1 cell cycle arrest by downregulating the ribonucleotide reductase catalytic subunit. Furthermore, Def perturbed mitochondrial function by promoting the production of reactive oxygen species and the inhibition of glutathione as a measurement of ferroptosis activation. Def demonstrated inhibitory effects on cell migration in scratch assays, which was supported by the upregulation of n-myc downstream-regulated gene 1 and downregulation of the epidermal growth factor receptor protein. Also, Def downregulated one of the main markers of chemoresistance, the ABCB1 gene. In vivo experiments using a lung carcinoma mouse model showed that Def treatment did not affect the animal's body weight and showed a significant decrease in tumor growth. Conclusions: This investigation lays the groundwork for unraveling Def action's molecular targets and mechanisms in lung carcinoma, particularly within iron-related pathways, pointing out its anti-metastasis and anti-chemoresistance effect.
Collapse
Affiliation(s)
- Yamixa Delgado
- Biochemistry & Pharmacology Department, San Juan Bautista School of Medicine, Caguas, PR 00725, USA; (D.P.); (G.T.); (N.O.A.); (J.V.); (A.T.)
| | - Anamaris Torres-Sanchez
- Biology Department, University of Puerto Rico-Rio Piedras, San Juan, PR 00925, USA; (A.T.-S.); (S.E.)
| | - Daraishka Perez
- Biochemistry & Pharmacology Department, San Juan Bautista School of Medicine, Caguas, PR 00725, USA; (D.P.); (G.T.); (N.O.A.); (J.V.); (A.T.)
| | - Grace Torres
- Biochemistry & Pharmacology Department, San Juan Bautista School of Medicine, Caguas, PR 00725, USA; (D.P.); (G.T.); (N.O.A.); (J.V.); (A.T.)
| | - Sthephanie Estrada
- Biology Department, University of Puerto Rico-Rio Piedras, San Juan, PR 00925, USA; (A.T.-S.); (S.E.)
| | - Natalia Ortiz Alvelo
- Biochemistry & Pharmacology Department, San Juan Bautista School of Medicine, Caguas, PR 00725, USA; (D.P.); (G.T.); (N.O.A.); (J.V.); (A.T.)
| | - Jaisy Vega
- Biochemistry & Pharmacology Department, San Juan Bautista School of Medicine, Caguas, PR 00725, USA; (D.P.); (G.T.); (N.O.A.); (J.V.); (A.T.)
| | - Laurie Santos
- Biomedical Graduate Program, Universidad Central del Caribe, Bayamón, PR 00960, USA;
| | - Aracelis Torres
- Biochemistry & Pharmacology Department, San Juan Bautista School of Medicine, Caguas, PR 00725, USA; (D.P.); (G.T.); (N.O.A.); (J.V.); (A.T.)
| | - Bismark A. Madera
- Molecular Sciences Research Center, University of Puerto Rico, San Juan, PR 00926, USA;
| | - Yancy Ferrer-Acosta
- Department of Anatomy and Neurobiology, School of Medicine, University of Puerto Rico, Medical Sciences Campus, San Juan, PR 00936, USA;
| |
Collapse
|
47
|
Cao Y, Tan YJ, Huang D. Molecular Mechanism of 5,6-Dihydroxyflavone in Suppressing LPS-Induced Inflammation and Oxidative Stress. Int J Mol Sci 2024; 25:10694. [PMID: 39409020 PMCID: PMC11477439 DOI: 10.3390/ijms251910694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/01/2024] [Accepted: 10/02/2024] [Indexed: 10/20/2024] Open
Abstract
5,6-dihydroxyflavone (5,6-DHF), a flavonoid that possesses potential anti-inflammatory and antioxidant activities owing to its special catechol motif on the A ring. However, its function and mechanism of action against inflammation and cellular oxidative stress have not been elucidated. In the current study, 5,6-DHF was observed inhibiting lipopolysaccharide (LPS)-induced nitric oxide (NO) and cytoplasmic reactive oxygen species (ROS) production with the IC50 of 11.55 ± 0.64 μM and 0.8310 ± 0.633 μM in murine macrophages, respectively. Meanwhile, 5,6-DHF suppressed the overexpression of pro-inflammatory mediators such as proteins and cytokines and eradicated the accumulation of mitochondrial ROS (mtROS). The blockage of the activation of cell surface toll-like receptor 4 (TLR4), impediment of the phosphorylation of c-Jun N-terminal kinase (JNK) and p38 from the mitogen-activated protein kinases (MAPK) pathway, Janus kinase 2 (JAK2) and signal transducer and activator of transcription 3 (STAT3) from the JAK-STAT pathway, and p65 from nuclear factor-κB (NF-κB) pathways were involved in the process of 5,6-DHF suppressing inflammation. Furthermore, 5,6-DHF acted as a cellular ROS scavenger and heme-oxygenase 1 (HO-1) inducer in relieving cellular oxidative stress. Importantly, 5,6-DHF exerted more potent anti-inflammatory activity than its close structural relatives, such as baicalein and chrysin. Overall, our findings pave the road for further research on 5,6-DHF in animal models.
Collapse
Affiliation(s)
- Yujia Cao
- Department of Food Science and Technology, National University of Singapore, Singapore 117542, Singapore;
| | - Yee-Joo Tan
- Infectious Diseases Translational Research Program, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117545, Singapore;
| | - Dejian Huang
- Department of Food Science and Technology, National University of Singapore, Singapore 117542, Singapore;
- National University of Singapore (Suzhou) Research Institute, 377 Linquan Street, Suzhou 215123, China
| |
Collapse
|
48
|
Sharma A, Virmani T, Kumar G, Sharma A, Virmani R, Gugulothu D, Singh K, Misra SK, Pathak K, Chitranshi N, Coutinho HDM, Jain D. Mitochondrial signaling pathways and their role in cancer drug resistance. Cell Signal 2024; 122:111329. [PMID: 39098704 DOI: 10.1016/j.cellsig.2024.111329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 07/22/2024] [Accepted: 07/30/2024] [Indexed: 08/06/2024]
Abstract
Mitochondria, traditionally known as cellular powerhouses, now emerge as critical signaling centers influencing cancer progression and drug resistance. The review highlights the role that apoptotic signaling, DNA mutations, mitochondrial dynamics and metabolism play in the development of resistance mechanisms and the advancement of cancer. Targeted approaches are discussed, with an emphasis on managing mitophagy, fusion, and fission of the mitochondria to make resistant cancer cells more susceptible to traditional treatments. Additionally, metabolic reprogramming can be used to effectively target metabolic enzymes such GLUT1, HKII, PDK, and PKM2 in order to avoid resistance mechanisms. Although there are potential possibilities for therapy, the complex structure of mitochondria and their subtle role in tumor development hamper clinical translation. Novel targeted medicines are put forth, providing fresh insights on combating drug resistance in cancer. The study also emphasizes the significance of glutamine metabolism, mitochondrial respiratory complexes, and apoptotic pathways as potential targets to improve treatment effectiveness against drug-resistant cancers. Combining complementary and nanoparticle-based techniques to target mitochondria has demonstrated encouraging results in the treatment of cancer, opening doors to reduce resistance and enable individualized treatment plans catered to the unique characteristics of each patient. Suggesting innovative approaches such as drug repositioning and mitochondrial drug delivery to enhance the efficacy of mitochondria-targeting therapies, presenting a pathway for advancements in cancer treatment. This thorough investigation is a major step forward in the treatment of cancer and has the potential to influence clinical practice and enhance patient outcomes.
Collapse
Affiliation(s)
- Ashwani Sharma
- Delhi Institute of Pharmaceutical Sciences and Research (DIPSAR), Delhi Pharmaceutical Sciences and Research University (DPSRU), New Delhi 110017, India
| | - Tarun Virmani
- School of Pharmaceutical Sciences, MVN University, Palwal, Haryana 121105, India.
| | - Girish Kumar
- School of Pharmaceutical Sciences, MVN University, Palwal, Haryana 121105, India.
| | - Anjali Sharma
- School of Pharmaceutical Sciences, MVN University, Palwal, Haryana 121105, India
| | - Reshu Virmani
- School of Pharmaceutical Sciences, MVN University, Palwal, Haryana 121105, India.
| | - Dalapathi Gugulothu
- Delhi Institute of Pharmaceutical Sciences and Research (DIPSAR), Delhi Pharmaceutical Sciences and Research University (DPSRU), New Delhi 110017, India
| | - Kuldeep Singh
- Department of Pharmacology, Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, India.
| | - Shashi Kiran Misra
- School of Pharmaceutical Sciences, CSJM University Kanpur, Kanpur 208024, India
| | - Kamla Pathak
- Faculty of Pharmacy, Uttar Pradesh University of Medical Sciences, Saifai, Etawah 206130, India
| | - Nitin Chitranshi
- Macquarie Medical School, Macquarie University, New South Wales, Australia; School of Science and Technology, the University of New England, Armidale, New South Wales, Australia.
| | | | - Divya Jain
- Department of Microbiology, School of Applied and Life Sciences, Uttaranchal University, Dehradun 248007, Uttarakhand, India
| |
Collapse
|
49
|
Kireev V, Bespalova I, Prokopiuk V, Maksimchuk P, Hubenko K, Grygorova G, Demchenko L, Onishchenko A, Tryfonyuk L, Tomchuk O, Tkachenko A, Yefimova S. Oxidative stress-modifying effects of TiO 2nanoparticles with varying content of Ti 3+(Ti 2+) ions. NANOTECHNOLOGY 2024; 35:505701. [PMID: 39315467 DOI: 10.1088/1361-6528/ad7e31] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 09/23/2024] [Indexed: 09/25/2024]
Abstract
Nanoparticles (NPs) with reactive oxygen species (ROS)-regulating ability have recently attracted great attention as promising agents for nanomedicine. In the present study, we have analyzed the effects of TiO2defect structure related to the presence of stoichiometric (Ti4+) and non-stoichiometric (Ti3+and Ti2+) titanium ions in the crystal lattice and TiO2NPs aggregation ability on H2O2- and tert-butyl hydroperoxide (tBOOH)-induced ROS production in L929 cells. Synthesized TiO2-A, TiO2-B, and TiO2-C NPs with varying Ti3+(Ti2+) content were characterized by x-ray powder diffraction, transmission electron microscopy, small-angle x-ray scattering, x-ray photoelectron spectroscopy, and optical spectroscopy methods. Given the role of ROS-mediated toxicity for metal oxide NPs, L929 cell viability and changes in the intracellular ROS levels in H2O2- and tBOOH-treated L929 cells incubated with TiO2NPs have been evaluated. Our research shows that both the amount of non-stoichiometric Ti3+and Ti2+ions in the crystal lattice of TiO2NPs and NPs aggregative behavior affect their catalytic activity, in particular, H2O2decomposition and, consequently, the efficiency of aggravating H2O2- and tBOOH-induced oxidative damage to L929 cells. TiO2-A NPs reveal the strongest H2O2decomposition activity aligning with their less pronounced additional effects on H2O2-treated L929 cells due to the highest amount of Ti3+(Ti2+) ions. TiO2-C NPs with smaller amounts of Ti3+ions and a tendency to aggregate in water solutions show lower antioxidant activity and, consequently, some elevation of the level of ROS in H2O2/tBOOH-treated L929 cells. Our findings suggest that synthesized TiO2NPs capable of enhancing ROS generation at concentrations non-toxic for normal cells, which should be further investigated to assess their possible application in nanomedicine as ROS-regulating pharmaceutical agents.
Collapse
Affiliation(s)
- Viktor Kireev
- Department of Nanostructured Materials, Institute for Scintillation Materials of the National Academy of Sciences of Ukraine, 60 Nauky ave., 61072 Kharkiv, Ukraine
| | - Iryna Bespalova
- Department of Nanostructured Materials, Institute for Scintillation Materials of the National Academy of Sciences of Ukraine, 60 Nauky ave., 61072 Kharkiv, Ukraine
| | - Volodymyr Prokopiuk
- Research Institute of Experimental and Clinical Medicine, Kharkiv National Medical University, 4 Nauky ave, 61022 Kharkiv, Ukraine
- Department of Cryobiochemistry, Institute for Problems of Cryobiology and Cryomedicine of the National Academy of Sciences of Ukraine, 23 Pereyaslavskaya St,, 61015 Kharkiv, Ukraine
| | - Pavel Maksimchuk
- Department of Nanostructured Materials, Institute for Scintillation Materials of the National Academy of Sciences of Ukraine, 60 Nauky ave., 61072 Kharkiv, Ukraine
| | - Kateryna Hubenko
- Department of Nanostructured Materials, Institute for Scintillation Materials of the National Academy of Sciences of Ukraine, 60 Nauky ave., 61072 Kharkiv, Ukraine
- Leibniz Institute for Solid State and Materials Research Dresden, Helmholtz Straße 20, 01069 Dresden, Germany
| | - Ganna Grygorova
- Department of Nanostructured Materials, Institute for Scintillation Materials of the National Academy of Sciences of Ukraine, 60 Nauky ave., 61072 Kharkiv, Ukraine
| | - Lesya Demchenko
- Department of Materials and Environmental Chemistry, Stockholm University, SE-106 91 Stockholm, Sweeden
- National Technical University of Ukraine 'Igor Sikorsky Kyiv Polytechnic Institute', 37 Beresteisky ave., Kyiv, Ukraine
| | - Anatolii Onishchenko
- Department of Cryobiochemistry, Institute for Problems of Cryobiology and Cryomedicine of the National Academy of Sciences of Ukraine, 23 Pereyaslavskaya St,, 61015 Kharkiv, Ukraine
| | - Liliya Tryfonyuk
- Institute of Health, National University of Water and Environmental Engineering, Rivne, Ukraine
| | - Oleksandr Tomchuk
- Rutherford Appleton Laboratory, ISIS Neutron and Muon Source, Harwell Oxford, Didcot OX11 0QX, United Kingdom
- The Henryk Niewodniczański Institute of Nuclear Physics, Polish Academy of Sciences, Radzikowskiego 152, Kraków 31-342, Poland
| | - Anton Tkachenko
- Department of Cryobiochemistry, Institute for Problems of Cryobiology and Cryomedicine of the National Academy of Sciences of Ukraine, 23 Pereyaslavskaya St,, 61015 Kharkiv, Ukraine
| | - Svitlana Yefimova
- Department of Nanostructured Materials, Institute for Scintillation Materials of the National Academy of Sciences of Ukraine, 60 Nauky ave., 61072 Kharkiv, Ukraine
| |
Collapse
|
50
|
Suganuma T, Hassan H, Gogol M, Workman JL. C G composition in transposon-derived genes is increased in FXD with perturbed immune system. NAR MOLECULAR MEDICINE 2024; 1:ugae015. [PMID: 39465205 PMCID: PMC11500580 DOI: 10.1093/narmme/ugae015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 10/01/2024] [Accepted: 10/09/2024] [Indexed: 10/29/2024]
Abstract
Increasing incidence of Fragile X disorders (FXD) and of immune-mediated disorders in FXD suggests that additional factors besides FMR1 mutations contribute to the pathogenesis. Here, we discovered that the expression levels or splicing of specific transposon element (TE)-derived genes, regulating purine metabolism and immune responses against viral infections are altered in FXD. These genes include HLA genes clustered in chr6p21.3 and viral responsive genes in chr5q15. Remarkably, these TE-derived genes contain a low A T/C G suggesting base substitutions of A T to C G. The TE-derived genes with changed expression levels contained a higher content of 5'-CG-3' dinucleotides in FXD compared to healthy donors. This resembles the genomes of some RNA viruses, which maintain high contents of CG dinucleotides to sustain their latent infection exploiting antiviral responses. Thus, past viral infections may have persisted as TEs, provoking immune-mediated disorders in FXD.
Collapse
Affiliation(s)
- Tamaki Suganuma
- Stowers Institute for Medical Research, 1000 E. 50 Street, Kansas City, MO 64110, USA
| | - Huzaifa Hassan
- Stowers Institute for Medical Research, 1000 E. 50 Street, Kansas City, MO 64110, USA
| | - Madelaine Gogol
- Stowers Institute for Medical Research, 1000 E. 50 Street, Kansas City, MO 64110, USA
| | - Jerry L Workman
- Stowers Institute for Medical Research, 1000 E. 50 Street, Kansas City, MO 64110, USA
| |
Collapse
|