1
|
Shahzadi J, Zaib-Un-Nisa, Ali N, Iftikhar M, Shah AA, Ashraf MY, Chao C, Shaffique S, Gatasheh MK. Foliar application of nano biochar solution elevates tomato productivity by counteracting the effect of salt stress insights into morphological physiological and biochemical indices. Sci Rep 2025; 15:3205. [PMID: 39863756 PMCID: PMC11762988 DOI: 10.1038/s41598-025-87399-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 01/20/2025] [Indexed: 01/27/2025] Open
Abstract
Nano-biochar considers a versatile and valuable sorbent to enhance plant productivity by improving soil environment and emerged as a novel solution for environmental remediation and sustainable agriculture in modern era. In this study, roles of foliar applied nanobiochar colloidal solution (NBS) on salt stressed tomato plants were investigated. For this purpose, NBS was applied (0%, 1% 3% and 5%) on two groups of plants (control 0 mM and salt stress 60 mM). Tween-20 was used as a surfactant to prolong NBS effective stay on plant leaf surface. The results showed that 3% NBS application effectively improved the plant height, plant biomass, fruit count and fruit weight under non-stressed and stressed plants. In addition, 3% NBS application further increased the plant pigments such as chlorophyll by 72% and 53%, carotenoids by 64% and 40%, leaf relative water content by 4.1 fold and 1.07 fold under both conditions, respectively. NBS application stabilized the plasma membrane via reducing electrolyte leakage by 30% as well as reduced the lipid peroxidation rates by 46% and 29% under non-stressed and stressed plants, respectively. 3% NBS application also significantly enhanced the plants primary and secondary metabolites, as well as activities of antioxidant enzymes compared to control plants. Overall, NBS foliar application significantly improved all growth and yield indices, pigments, primary and secondary metabolites, leaf water content, antioxidant enzyme activities as well as reduced electrolyte leakage and lipid peroxidation rates in tomato to combat stress conditions. In future, studies on nano biochar interactions with soil microbiota, surface modifications, long-term environmental impacts, reduced methane gas emissions, and biocompatibility could provide insights into optimizing its use in sustainable agriculture.
Collapse
Affiliation(s)
- Javeria Shahzadi
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore, Pakistan
| | - Zaib-Un-Nisa
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore, Pakistan.
| | - Naila Ali
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore, Pakistan
| | - Muhammad Iftikhar
- Department of Botany, Division of Science and Technology, University of Education, Lahore, 54770, Pakistan
| | - Anis Ali Shah
- Department of Botany, Division of Science and Technology, University of Education, Lahore, 54770, Pakistan.
| | - M Yasin Ashraf
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore, Pakistan
| | - Chen Chao
- Department of chemistry and molecular biology, School of Life Science and Technology, Harbin Normal University, Harbin, 150025, P.R. China
| | - Shifa Shaffique
- College of Agriculture & Life Science, School of Applied Biosciences, Kyungpook National University, 80 Daehak-ro, Buk-Gu, Daegu, 41566, South Korea
| | - Mansour K Gatasheh
- Department of Biochemistry, College of Science, King Saud University, P.O.Box 2455, Riyadh, 11451, Saudi Arabia
| |
Collapse
|
2
|
Chaudhary P, Bhattacharjee A, Khatri S, Dalal RC, Kopittke PM, Sharma S. Delineating the soil physicochemical and microbiological factors conferring disease suppression in organic farms. Microbiol Res 2024; 289:127880. [PMID: 39236602 DOI: 10.1016/j.micres.2024.127880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 05/23/2024] [Accepted: 08/14/2024] [Indexed: 09/07/2024]
Abstract
Organic farming utilizes farmyard manure, compost, and organic wastes as sources of nutrients and organic matter. Soil under organic farming exhibits increased microbial diversity, and thus, becomes naturally suppressive to the development of soil-borne pathogens due to the latter's competition with resident microbial communities. Such soils that exhibit resistance to soil-borne phytopathogens are called disease-suppressive soils. Based on the phytopathogen suppression range, soil disease suppressiveness is categorised as specific- or general- disease suppression. Disease suppressiveness can either occur naturally or can be induced by manipulating soil properties, including the microbiome responsible for conferring protection against soil-borne pathogens. While the induction of general disease suppression in agricultural soils is important for limiting pathogenic attacks on crops, the factors responsible for the phenomenon are yet to be identified. Limited efforts have been made to understand the systemic mechanisms involved in developing disease suppression in organically farmed soils. Identifying the critical factors could be useful for inducing disease suppressiveness in conducive soils as a cost-effective alternative to the application of pesticides and fungicides. Therefore, this review examines the soil properties, including microbiota, and assesses indicators related to disease suppression, for the process to be employed as a tactical option to reduce pesticide use in agriculture.
Collapse
Affiliation(s)
- Priya Chaudhary
- The University of Queensland and Indian Institute of Technology Delhi Research Academy, New Delhi 110016, India; Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, New Delhi, India; School of Agriculture and Food Sustainability, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Annapurna Bhattacharjee
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, New Delhi, India
| | - Shivani Khatri
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, New Delhi, India
| | - Ram C Dalal
- The University of Queensland and Indian Institute of Technology Delhi Research Academy, New Delhi 110016, India; School of Agriculture and Food Sustainability, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Peter M Kopittke
- The University of Queensland and Indian Institute of Technology Delhi Research Academy, New Delhi 110016, India; School of Agriculture and Food Sustainability, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Shilpi Sharma
- The University of Queensland and Indian Institute of Technology Delhi Research Academy, New Delhi 110016, India; Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, New Delhi, India.
| |
Collapse
|
3
|
Zhu XQ, Chen Y, Jia M, Dai HJ, Zhou YB, Yang HW, Zhou P, Du Y, Wang G, Bai YX, Wang N. Managing tobacco black shank disease using biochar: direct toxicity and indirect ecological mechanisms. Microbiol Spectr 2024; 12:e0014924. [PMID: 39212424 PMCID: PMC11448098 DOI: 10.1128/spectrum.00149-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 07/16/2024] [Indexed: 09/04/2024] Open
Abstract
Black shank disease in tobacco, caused by Phytophthora nicotianae, can lead to yield losses of 30%-50% upon outbreak. Recently, biochar derived from agricultural waste has shown significant potential in controlling soil-borne diseases, though its mechanisms remain unclear. Over a 3-year observation period, we found that the incidence of black shank was significantly lower in plots amended with biochar compared with normal cultivation plots. To investigate the underlying mechanisms, we studied both the direct and indirect effects of biochar on black shank. Direct antifungal assays indicated that biochar reduced the total number of sporangia by 53.91%. Further pot experiments revealed a 62.34% reduction in the P. nicotianae population in the soil following biochar application. Additionally, biochar application led to notable changes in soil physicochemical properties and microbial community composition. Microbial species analysis showed that biochar promoted the aggregation of beneficial microbes such as Sphingomonas, Flavisolibacter, and Mucoromycota. Functional predictions using the PICRUSt 2 software revealed that biochar enhances bacterial functions related to antimicrobial substance synthesis (Tetracycline biosynthesis), detoxification metabolism (D-arginine and D-ornithine metabolism, arginine and proline metabolism), and lipid and fatty acid metabolism (Lipopolysaccharide biosynthesis, fatty acid biosynthesis), while fungal functions showed no significant changes. This suggests that rhizosphere bacteria play a more prominent role in the suppression of black shank by biochar, a finding supported by partial least squares path modeling analysis. Therefore, we hypothesize that biochar not only directly inhibits P. nicotianae growth but also regulates the composition of the rhizosphere microbial community, inducing the production of antimicrobial substances by rhizosphere bacteria, effectively preventing P. nicotianae invasion.IMPORTANCEBlack shank, a global soil-borne fungal disease in tobacco, currently lacks effective control methods. Notably, biochar derived from agricultural waste has shown significant potential in controlling soil-borne diseases. Over a 3-year observation period, we found that plots amended with biochar had a significantly lower incidence of black shank compared with normal cultivation plots. However, the mechanisms of disease suppression remained unclear. Through in vitro antifungal assays and pot experiments, we discovered that tobacco-derived biochar can directly inhibit the growth of the pathogen. Additionally, biochar regulates the composition of the rhizosphere microbial community, inducing rhizosphere bacteria to produce antimicrobial substances, effectively preventing pathogen invasion. This discovery reveals both the direct and indirect mechanisms by which biochar suppresses black shank in tobacco. It provides a scientific basis for developing green control technologies for black shank and offers theoretical support for the application of biochar in managing soil-borne diseases in tobacco cultivation areas.
Collapse
Affiliation(s)
- Xuan-Quan Zhu
- College of Tobacco Science, Yunnan Agricultural University, Kunming, China
| | - Yan Chen
- College of Tobacco Science, Yunnan Agricultural University, Kunming, China
| | - Meng Jia
- College of Tobacco Science, Yunnan Agricultural University, Kunming, China
| | - Hui-Juan Dai
- China Tobacco Hebei Industrial Co. Ltd., Shijiazhuang, China
| | - Yan-Bin Zhou
- China Tobacco Hebei Industrial Co. Ltd., Shijiazhuang, China
| | - Huan-Wen Yang
- College of Tobacco Science, Yunnan Agricultural University, Kunming, China
| | - Peng Zhou
- College of Tobacco Science, Yunnan Agricultural University, Kunming, China
| | - Yu Du
- College of Tobacco Science, Yunnan Agricultural University, Kunming, China
| | - Ge Wang
- College of Tobacco Science, Yunnan Agricultural University, Kunming, China
| | - Yu-Xiang Bai
- College of Tobacco Science, Yunnan Agricultural University, Kunming, China
| | - Na Wang
- College of Tobacco Science, Yunnan Agricultural University, Kunming, China
| |
Collapse
|
4
|
Ndiaye M, Mollier A, Diouf A, Diop TA. Mycorrhizal inoculation and fertilizer microdosing interactions in pearl millet ( Pennisetum glaucum) under greenhouse conditions. FRONTIERS IN FUNGAL BIOLOGY 2024; 5:1448156. [PMID: 39323612 PMCID: PMC11423209 DOI: 10.3389/ffunb.2024.1448156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 08/01/2024] [Indexed: 09/27/2024]
Abstract
Introduction Soil fertility is a major constraint to agricultural development in the Sahel region of Africa. One alternative to reducing the use of mineral fertilizers is to partially replace them with microbes that promote nutrition and growth, such as arbuscular mycorrhizal fungi (AMF). Mineral fertilizer microdosing is a technique developed to enhance fertilizer efficiency and encourage smallholder farmers to adopt higher mineral fertilizer applications. Methods A pot experiment was set up to study the effects of AMF inoculation on the mineral nutrition of pearl millet under mineral fertilizer microdosing conditions. The experimental setup followed a randomized complete block design with five replicates. The treatments tested on millet were an absolute control and eight microdoses derived from the combination of three doses of 15- 10-10 [nitrogen, phosphorus, and potassium (NPK)] mineral fertilizer (2 g, 3 g, and 5 g per pot), three doses of urea (1 g, 2 g, and 3 g per pot), and three doses of organic manure (OM) (200 g, 400 g, and 600 g), combined with and without AMF (Rhizophagus irregularis and Rhizophagus aggregatum). The parameters studied were growth, root colonization by AMF, and mineral nutrition. Plant height, stem diameter, root dry biomass, and percentage of root mycorrhization were measured. Results and discussion The results revealed a significant effect of the fertilizers on the growth of pearl millet compared to the control. AMF and OM treatments resulted in the highest biomass production. AMF combined with microdoses of NPK improved N and calcium (Ca) concentrations, while their combination with organic matter mainly improved the K concentration. Combining AMF with microdosed NPK and compost enhanced zinc (Zn) and nickel (Ni) concentrations. Root colonization varied from 0.55 to 56.4%. This investigation highlights the positive effects of AMF inoculation on nutrient uptake efficiency when combined with microdosing fertilization.
Collapse
Affiliation(s)
- Malick Ndiaye
- Laboratoire de Biotechnologies des Champignons, Département de Biologie Végétale, Université Cheikh Anta Diop, Dakar, Senegal
| | - Alain Mollier
- UMR 1391 Interactions Sol Plant Atmosphère (ISPA), Institut National de Recherches pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Bordeaux Sciences Agro, Bordeaux, France
| | - Adama Diouf
- Laboratoire de Biotechnologies des Champignons, Département de Biologie Végétale, Université Cheikh Anta Diop, Dakar, Senegal
- Laboratoire Commun de Microbiologie, Institut de Recherche pour Développement (IRD)/Institut Sénégalais de Recherches Agricoles (ISRA)/ Université Cheikh Anta Diop de Dakar (UCAD), Centre de recherche de Bel Air, Dakar, Senegal
| | - Tahir Abdoulaye Diop
- Laboratoire de Biotechnologies des Champignons, Département de Biologie Végétale, Université Cheikh Anta Diop, Dakar, Senegal
- Polytech Diamniadio, Département Sciences et Techniques Agricoles, Alimentaires et Nutritionnelles, Université Amadou Mahtar Mbow, Dakar, Senegal
| |
Collapse
|
5
|
Baronti S, Montagnoli A, Beatrice P, Danieli A, Maienza A, Vaccari FP, Casini D, Di Gennaro SF. Above- and below-ground morpho-physiological traits indicate that biochar is a potential peat substitute for grapevine cuttings nursery production. Sci Rep 2024; 14:17185. [PMID: 39060320 PMCID: PMC11282078 DOI: 10.1038/s41598-024-67766-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 07/15/2024] [Indexed: 07/28/2024] Open
Abstract
The growing demand for grapevine planting materials, due to growing global viticulture, is promoting research studies to improve vineyard sustainability. In greenhouse nurseries, peat is the most common growing medium component used although is an expensive and non-renewable material. Indeed, the reduction of peat exploitation is receiving great attention, and currently, several materials are being investigated as peat substitutes for composing the cultivation substrates. Biochar, a carbon-rich, recalcitrant charred organic co-product of the pyrolysis or gasification process, has emerged as a potentially promising replacement for soilless substrates in nursery plant material propagation. Although several studies carried out at greenhouse nurseries have shown that biochar, can improve plant growth, only a few studies have focused on the production of grapevine plant material. To fulfil this knowledge gap and push forward the sustainability of the nursery sector, we evaluated above and below-ground morpho-physiological traits of one-year-old potted grapevine cuttings growing with 30% volume of four different biochar types (i.e., from pyrolysis and gasification) mixed with commercial peat. The present study shows that biochar can be used in growing media mixes without adverse effects on roots, improves soil water retention and leaf water potential, and improves the effects on soil microbiology.
Collapse
Affiliation(s)
- S Baronti
- Institute of BioEconomy - National Research Council (IBE CNR), Via Madonna del Piano 10, Sesto Fiorentino, 50019, Florence, Italy
| | - A Montagnoli
- Institute of BioEconomy - National Research Council (IBE CNR), Via Madonna del Piano 10, Sesto Fiorentino, 50019, Florence, Italy
- Department of Biotechnology and Life Science, University of Insubria, Via Dunant, 3, 21100, Varese, Italy
| | - P Beatrice
- Department of Biotechnology and Life Science, University of Insubria, Via Dunant, 3, 21100, Varese, Italy.
| | - A Danieli
- Department of Biotechnology and Life Science, University of Insubria, Via Dunant, 3, 21100, Varese, Italy
| | - A Maienza
- Institute of BioEconomy - National Research Council (IBE CNR), Via Madonna del Piano 10, Sesto Fiorentino, 50019, Florence, Italy
| | - F P Vaccari
- Institute of BioEconomy - National Research Council (IBE CNR), Via Madonna del Piano 10, Sesto Fiorentino, 50019, Florence, Italy
| | - D Casini
- RE-CORD-Renewable Energy Consortium for Research and Demonstration, Viale Kennedy, 182, 50038, Scarperia e San Piero, FI, Italy
| | - S F Di Gennaro
- Institute of BioEconomy - National Research Council (IBE CNR), Via Madonna del Piano 10, Sesto Fiorentino, 50019, Florence, Italy
| |
Collapse
|
6
|
Hudu AR, Addy F, Mahunu GK, Abubakari A, Opoku N. Zearalenone contamination in maize, its associated producing fungi, control strategies, and legislation in Sub-Saharan Africa. Food Sci Nutr 2024; 12:4489-4512. [PMID: 39055180 PMCID: PMC11266927 DOI: 10.1002/fsn3.4125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 02/26/2024] [Accepted: 03/13/2024] [Indexed: 07/27/2024] Open
Abstract
The fungal genus Fusarium contains many important plant pathogens as well as endophytes of wild and crop plants. Globally, Fusarium toxins in food crops are considered one of the greatest food safety concerns. Their occurrence has become more pronounced in Africa in recent times. Among the major Fusarium mycotoxins with food and feed safety concerns, zearalenone is frequently detected in finished feeds and cereals in Africa. However, the impact of indigenous agricultural practices (pre- and postharvest factors) and food processing techniques on the prevalence rate of Fusarium species and zearalenone occurrence in food and feed have not been collated and documented systematically. This review studies and analyzes recent reports on zearalenone contamination in maize and other cereal products from Africa, including its fungi producers, agronomic and climate variables impacting their occurrences, preventive measures, removal/decontamination methods, and legislations regulating their limits. Reports from relevant studies demonstrated a high prevalence of F. verticillioides and F. graminearum as Africa's main producers of zearalenone. Elevated CO2 concentration and high precipitation may carry along an increased risk of zearalenone contamination in maize. African indigenous processing methods may contribute to reduced ZEA levels in agricultural products and foods. Most African countries do not know their zearalenone status in the food supply chain and they have limited regulations that control its occurrence.
Collapse
Affiliation(s)
- Abdul Rashid Hudu
- Department of Agricultural Biotechnology, Faculty of Agriculture, Food and Consumer SciencesUniversity for Development StudiesNyankpalaGhana
| | - Francis Addy
- Department of Biotechnology and Molecular Biology, Faculty of BiosciencesUniversity for Development StudiesNyankpalaGhana
| | - Gustav Komla Mahunu
- Department of Food Science and Technology, Faculty of Agriculture, Food, and Consumer SciencesUniversity for Development StudiesNyankpalaGhana
| | - Abdul‐Halim Abubakari
- Department of Horticulture, Faculty of Agriculture, Food, and Consumer SciencesUniversity for Development StudiesNyankpalaGhana
| | - Nelson Opoku
- Department of Biotechnology and Molecular Biology, Faculty of BiosciencesUniversity for Development StudiesNyankpalaGhana
| |
Collapse
|
7
|
Wen Y, Shi F, Zhang B, Li K, Chang W, Fan X, Dai CL, Song F. Rhizophagus irregularis and biochar can synergistically improve the physiological characteristics of saline-alkali resistance of switchgrass. PHYSIOLOGIA PLANTARUM 2024; 176:e14367. [PMID: 38837234 DOI: 10.1111/ppl.14367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 05/03/2024] [Accepted: 05/08/2024] [Indexed: 06/07/2024]
Abstract
Inoculation of arbuscular mycorrhizal fungi (AMF) or biochar (BC) application can improve photosynthesis and promote plant growth under saline-alkali stress. However, little is known about the effects of the two combined on growth and physiological characteristics of switchgrass under saline-alkali stress. This study examined the effects of four treatments: (1) no AMF inoculation and no biochar addition (control), (2) biochar (BC) alone, (3) AMF (Rhizophagus irregularis, Ri) alone, and (4) the combination of both (BC+Ri) on the plant biomass, antioxidant enzymes, chlorophyll, and photosynthetic parameters of switchgrass under saline-alkali stress. The results showed that the above-ground, belowground and total biomass of switchgrass in the BC+Ri treatment group was significantly higher (+136.7%, 120.2% and 132.4%, respectively) than in other treatments compared with Control. BC+Ri treatment significantly increased plant leaves' relative chlorophyll content, antioxidant enzyme activity, and photosynthesis parameters. It is worth noting that the transpiration rate, stomatal conductance, net photosynthetic rate, PSII efficiency and other photosynthetic-related indexes of the BC+Ri treatment group were the highest (38% to 54% higher than other treatments). The fitting results of light response and CO2 response curves showed that the light saturation point, light compensation point, maximum carboxylation rate and maximum electron transfer rate of switchgrass in the Ri+BC treatment group were the highest. In conclusion, biochar combined with Ri has potential beneficial effects on promoting switchgrass growth under saline-alkali stress and improving the activity of antioxidant enzymes and photosynthetic characteristics of plants.
Collapse
Affiliation(s)
- Yuqiang Wen
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin, China
- Jiaxiang Industrial Technology Research Institute of Heilongjiang University, Jining, China
| | - Feng Shi
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin, China
| | - Bo Zhang
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin, China
| | - Kun Li
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin, China
| | - Wei Chang
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin, China
- Jiaxiang Industrial Technology Research Institute of Heilongjiang University, Jining, China
| | - Xiaoxu Fan
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin, China
| | - Chang Lei Dai
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin, China
- School of Hydraulic and Electric-Power of Heilongjiang University, Harbin, China
| | - Fuqiang Song
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin, China
- Jiaxiang Industrial Technology Research Institute of Heilongjiang University, Jining, China
| |
Collapse
|
8
|
Idbella M, Baronti S, Vaccari FP, Abd-ElGawad AM, Bonanomi G. Long-Term Application of Biochar Mitigates Negative Plant-Soil Feedback by Shaping Arbuscular Mycorrhizal Fungi and Fungal Pathogens. Microorganisms 2024; 12:810. [PMID: 38674754 PMCID: PMC11052468 DOI: 10.3390/microorganisms12040810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 03/30/2024] [Accepted: 04/16/2024] [Indexed: 04/28/2024] Open
Abstract
Negative plant-soil feedback (PSF) arises when localized accumulations of pathogens reduce the growth of conspecifics, whereas positive PSF can occur due to the emergence of mutualists. Biochar, a carbon-rich material produced by the pyrolysis of organic matter, has been shown to modulate soil microbial communities by altering their abundance, diversity, and activity. For this reason, to assess the long-term impact of biochar on soil microbiome dynamics and subsequent plant performance, we conducted a PSF greenhouse experiment using field soil conditioned over 10 years with Vitis vinifera (L.), without (e.g., C) or with biochar at two rates (e.g., B and BB). Subsequently, the conditioned soil was employed in a response phase involving either the same plant species or different species, i.e., Medicago sativa (L.), Lolium perenne (L.), and Solanum lycopersicum (L.). We utilized next-generation sequencing to assess the abundance and diversity of fungal pathogens and arbuscular mycorrhizal fungi (AMF) within each conditioned soil. Our findings demonstrate that biochar application exerted a stimulatory effect on the growth of both conspecifics and heterospecifics. In addition, our results show that untreated soils had a higher abundance of grape-specialized fungal pathogens, mainly Ilyonectria liriodendra, with a relative abundance of 20.6% compared to 2.1% and 5.1% in B and BB, respectively. Cryptovalsa ampelina also demonstrated higher prevalence in untreated soils, accounting for 4.3% compared to 0.4% in B and 0.1% in BB. Additionally, Phaeoacremonium iranianum was exclusively present in untreated soils, comprising 12.2% of the pathogens' population. Conversely, the application of biochar reduced generalist fungal pathogens. For instance, Plenodomus biglobosus decreased from 10.5% in C to 7.1% in B and 2.3% in BB, while Ilyonectria mors-panacis declined from 5.8% in C to 0.5% in B and 0.2% in BB. Furthermore, biochar application was found to enrich the AMF community. Notably, certain species like Funneliformis geosporum exhibited increased relative abundance in biochar-treated soils, reaching 46.8% in B and 70.3% in BB, compared to 40.5% in untreated soils. Concurrently, other AMF species, namely Rhizophagus irregularis, Rhizophagus diaphanus, and Claroideoglomus drummondii, were exclusively observed in soils where biochar was applied. We propose that the alleviation of negative PSF can be attributed to the positive influence of AMF in the absence of strong inhibition by pathogens. In conclusion, our study underscores the potential of biochar application as a strategic agricultural practice for promoting sustainable soil management over the long term.
Collapse
Affiliation(s)
- Mohamed Idbella
- College for Sustainable Agriculture and Environmental Sciences, Mohammed VI Polytechnic University, Ben Guerir 43150, Morocco
| | - Silvia Baronti
- Institute of BioEconomy (IBE), National Research Council (CNR), Via Giovanni Caproni, 8, 50144 Firenze, Italy; (S.B.); (F.P.V.)
| | - Francesco Primo Vaccari
- Institute of BioEconomy (IBE), National Research Council (CNR), Via Giovanni Caproni, 8, 50144 Firenze, Italy; (S.B.); (F.P.V.)
| | - Ahmed M. Abd-ElGawad
- Plant Production Department, College of Food & Agriculture Sciences, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia;
| | - Giuliano Bonanomi
- Department of Agricultural Sciences, University of Naples Federico II, Via Università 100, 80055 Portici, Italy;
- Task Force on Microbiome Studies, University of Naples Federico II, 80138 Naples, Italy
| |
Collapse
|
9
|
Pavlicevic M, Elmer W, Zuverza-Mena N, Abdelraheem W, Patel R, Dimkpa C, O'Keefe T, Haynes CL, Pagano L, Caldara M, Marmiroli M, Maestri E, Marmiroli N, White JC. Nanoparticles and biochar with adsorbed plant growth-promoting rhizobacteria alleviate Fusarium wilt damage on tomato and watermelon. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 203:108052. [PMID: 37778113 DOI: 10.1016/j.plaphy.2023.108052] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 09/17/2023] [Accepted: 09/20/2023] [Indexed: 10/03/2023]
Abstract
The addition of biochars and nanoparticles with adsorbed Azotobacter vinelandii and Bacillus megaterium alleviated damage from Fusarium infection in both tomato (Solanum lycopersicum) and watermelon (Citrullus lanatus) plants. Tomato and watermelon plants were grown in greenhouse for 28 and 30 days (respectively) and were treated with either nanoparticles (chitosan-coated mesoporous silica or nanoclay) or varying biochars (biochar produced by pyrolysis, gasification and pyrogasification). Treatments with nanoparticles and biochars were applied in two variants - with or without adsorbed plant-growth promoting bacteria (PGPR). Chitosan-coated mesoporous silica nanoparticles with adsorbed bacteria increased chlorophyll content in infected tomato and watermelon plants (1.12 times and 1.63 times, respectively) to a greater extent than nanoclay with adsorbed bacteria (1.10 times and 1.38 times, respectively). However, the impact on other endpoints (viability of plant cells, phosphorus and nitrogen content, as well antioxidative status) was species-specific. In all cases, plants treated with adsorbed bacteria responded better than plants without bacteria. For example, the content of antioxidative compounds in diseased watermelon plants increased nearly 46% upon addition of Aries biochar and by approximately 52% upon addition of Aries biochar with adsorbed bacteria. The overall effect on disease suppression was due to combination of the antifungal effects of both nanoparticles (and biochars) and plant-growth promoting bacteria. These findings suggest that nanoparticles or biochars with adsorbed PGPR could be viewed as a novel and sustainable solution for management of Fusarium wilt.
Collapse
Affiliation(s)
- Milica Pavlicevic
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy.
| | - Wade Elmer
- Connecticut Agricultural Experimental Station, New Haven, CT, USA.
| | | | - Wael Abdelraheem
- Connecticut Agricultural Experimental Station, New Haven, CT, USA; Chemistry Department, Faculty of Science, Sohag University, Sohag 82524, Egypt.
| | - Ravikumar Patel
- Connecticut Agricultural Experimental Station, New Haven, CT, USA.
| | - Christian Dimkpa
- Connecticut Agricultural Experimental Station, New Haven, CT, USA.
| | - Tana O'Keefe
- Department of Chemistry, University of Minnesota, Minneapolis, MN, USA.
| | - Christy L Haynes
- Department of Chemistry, University of Minnesota, Minneapolis, MN, USA.
| | - Luca Pagano
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy.
| | - Marina Caldara
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy.
| | - Marta Marmiroli
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy.
| | - Elena Maestri
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy; Interdepartmental Center SITEIA.PARMA, University of Parma, Parma, Italy.
| | - Nelson Marmiroli
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy; Interdepartmental Center SITEIA.PARMA, University of Parma, Parma, Italy; National Interuniversity Consortium for Environmental Sciences (CINSA), Parma, Italy.
| | - Jason C White
- Connecticut Agricultural Experimental Station, New Haven, CT, USA.
| |
Collapse
|
10
|
Tran HT, Bolan NS, Lin C, Binh QA, Nguyen MK, Luu TA, Le VG, Pham CQ, Hoang HG, Vo DVN. Succession of biochar addition for soil amendment and contaminants remediation during co-composting: A state of art review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 342:118191. [PMID: 37210821 DOI: 10.1016/j.jenvman.2023.118191] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 05/13/2023] [Accepted: 05/15/2023] [Indexed: 05/23/2023]
Abstract
This paper aimed to highlight the succession of biochar addition for soil amendment and contaminants remediation during composting process. Biochar incorporated into the compost mixture promotes composting performance and enhances contaminants reduction. Co-composting with biochar for soil biota has been demonstrated via modified soil biological community abundance and diversity. On the other hand, adverse alterations to soil properties were noted, which had a negative impact on the communication of microbe-to-plant interactions within the rhizosphere. As a result, these changes influenced the competition between soilborne pathogens and beneficial soil microorganisms. Co-composting with biochar promoted the heavy metals (HMs) remediation efficiency in contaminated soils by around 66-95%. Notably, applying biochar during composting could improve nutrient retention and mitigate leaching. The adsorption of nutrients such as nitrogen and phosphorus compounds by biochar can be applied to manage environmental contamination and presents an excellent opportunity to enhance soil quality. Additionally, the various specific functional groups and large specific surface areas of biochar allow for excellent adsorption of persistent pollutants (e.g., pesticides, polychlorinated biphenyls (PCBs)) and emerging organic pollutants, such as microplastic, phthalate acid esters (PAEs) during co-composting. Finally, future perspectives, research gaps, and recommendations for further studies are highlighted, and potential opportunities are discussed.
Collapse
Affiliation(s)
- Huu-Tuan Tran
- Laboratory of Ecology and Environmental Management, Science and Technology Advanced Institute, Van Lang University, Ho Chi Minh City, 700000, Viet Nam; Faculty of Applied Technology, School of Technology, Van Lang University, Ho Chi Minh City, 700000, Viet Nam
| | - Nanthi S Bolan
- The UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6001, Australia; School of Agriculture and Environment, The University of Western Australia, Perth, WA 6001, Australia
| | - Chitsan Lin
- Program in Maritime Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung, 81157, Taiwan; Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung, 81157, Taiwan
| | - Quach An Binh
- Department of Academic Affair and Testing, Dong Nai Technology University, Bien Hoa, Dong Nai, 810000, Viet Nam
| | - Minh-Ky Nguyen
- Program in Maritime Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung, 81157, Taiwan; Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung, 81157, Taiwan; Faculty of Environment and Natural Resources, Nong Lam University of Ho Chi Minh City, Hamlet 6, Linh Trung Ward, Thu Duc City, Ho Chi Minh City, 700000, Viet Nam.
| | - The Anh Luu
- Central Institute for Natural Resources and Environmental Studies, Vietnam National University, Hanoi, 111000, Viet Nam
| | - Van-Giang Le
- Central Institute for Natural Resources and Environmental Studies, Vietnam National University, Hanoi, 111000, Viet Nam
| | - Cham Q Pham
- Institute of Applied Technology and Sustainable Development, Nguyen Tat Thanh University, Ho Chi Minh City, 755414, Viet Nam
| | - Hong-Giang Hoang
- Faculty of Medicine, Dong Nai Technology University, Bien Hoa, Dong Nai, 810000, Viet Nam
| | - Dai-Viet N Vo
- Institute of Applied Technology and Sustainable Development, Nguyen Tat Thanh University, Ho Chi Minh City, 755414, Viet Nam.
| |
Collapse
|
11
|
Jin X, Rahman MKU, Ma C, Zheng X, Wu F, Zhou X. Silicon modification improves biochar's ability to mitigate cadmium toxicity in tomato by enhancing root colonization of plant-beneficial bacteria. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 249:114407. [PMID: 36508786 DOI: 10.1016/j.ecoenv.2022.114407] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 11/16/2022] [Accepted: 12/07/2022] [Indexed: 06/17/2023]
Abstract
Modification of biochar, such as impregnation with minerals, can improve biochar's efficacy to mitigate heavy metal toxicity in plants. Biochar amendments can alter plant rhizosphere microbiome, which has profound effects on plant growth and fitness. Here, we tested whether rhizosphere microbiome is involved in the ability of silicon (Si)-modified biochar to mitigate cadmium toxicity in tomato (Solanum lycopersicum L.). We demonstrated that Si modification altered biochar's physico-chemical properties and enhanced its ability to mitigate cadmium toxicity in tomato. Particularly, the Si-modified biochar contained higher content of Si and increased plant-available Si content in the soil. The rhizosphere microbiome transplant experiment showed that changes in rhizosphere microbiome contributed to the mitigation of cadmium toxicity by biochar amendments. The raw biochar and Si-modified biochar differently altered tomato rhizosphere bacterial community composition. Both biochars, especially the Si-modified biochar, promoted specific bacterial taxa (e.g., Sphingomonas, Lysobacter and Pseudomonas spp.). Subsequent culturing found these promoted bacteria could mitigate cadmium toxicity in tomato. Moreover, both biochars stimulated tomato to recruit plant-beneficial bacteria with Si-modified biochar having stronger stimulatory effects, indicating that the positive effects of biochar on plant-beneficial bacteria was partially mediated via the host plant. Overall, Si modification enhanced biochar's ability to mitigate cadmium toxicity, which was linked to the stimulatory effects on plant-beneficial bacteria.
Collapse
Affiliation(s)
- Xue Jin
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Department of Horticulture, Northeast Agricultural University, Harbin 150030, China
| | - Muhammad Khashi U Rahman
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Department of Horticulture, Northeast Agricultural University, Harbin 150030, China
| | - Changli Ma
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Department of Horticulture, Northeast Agricultural University, Harbin 150030, China
| | - Xianqing Zheng
- Institute of Eco-Environment and Plant Protection, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Fengzhi Wu
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Department of Horticulture, Northeast Agricultural University, Harbin 150030, China
| | - Xingang Zhou
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Department of Horticulture, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
12
|
Zhou X, Zhang X, Ma C, Wu F, Jin X, Dini-Andreote F, Wei Z. Biochar amendment reduces cadmium uptake by stimulating cadmium-resistant PGPR in tomato rhizosphere. CHEMOSPHERE 2022; 307:136138. [PMID: 36002065 DOI: 10.1016/j.chemosphere.2022.136138] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 08/06/2022] [Accepted: 08/17/2022] [Indexed: 06/15/2023]
Abstract
Biochar amendment in the soil can exert a positive effect in reducing heavy metal toxicity in plants. However, it remains unclear the extent to which this effect is associated with the modulation of plant growth-promoting rhizobacteria (PGPR). Here, we initially conducted a pot experiment using tomato (Solanum lycopersicum L.) as a model plant grown in soil spiked with cadmium. First, we found biochar amendment to result in reduced cadmium uptake in tomato plants and trackable changes in the tomato rhizosphere microbiome. Then, a rhizosphere transplant experiment validated the importance of this microbiome modulation for cadmium-toxicity amelioration. Sequence-based analyses targeted the isolation of representative isolates of PGPR, including Bacillus and Flavisolibacter spp. that displayed in vitro cadmium tolerance and biosorption capabilities (in addition to abilities to solubilize phosphate and produce indole acetic acid). Last, we performed a soil inoculation experiment and confirmed the effectiveness of these isolates in reducing cadmium toxicity in tomato plants. Besides, we found the inoculation of these taxa as single inoculant and in combination to result in increased activities of specific antioxidant enzymes in tomato tissues. Taken together, this study revealed the ecological and physiological mechanisms by which biochar amendment indirectly alleviate cadmium toxicity in tomato plants, in this case, via the modulation and activity of specific PGPR populations. This study provides new insights into strategies able to promote beneficial PGPR in the rhizosphere with potential application to ameliorate heavy metal toxicity in plants.
Collapse
Affiliation(s)
- Xingang Zhou
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Department of Horticulture, Northeast Agricultural University, Harbin, 150030, PR China
| | - Xianhong Zhang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Department of Horticulture, Northeast Agricultural University, Harbin, 150030, PR China
| | - Changli Ma
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Department of Horticulture, Northeast Agricultural University, Harbin, 150030, PR China
| | - Fengzhi Wu
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Department of Horticulture, Northeast Agricultural University, Harbin, 150030, PR China
| | - Xue Jin
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Department of Horticulture, Northeast Agricultural University, Harbin, 150030, PR China.
| | - Francisco Dini-Andreote
- Department of Plant Science & Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, USA
| | - Zhong Wei
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, 210095, PR China.
| |
Collapse
|
13
|
Jindo K, Goron TL, Pizarro-Tobías P, Sánchez-Monedero MÁ, Audette Y, Deolu-Ajayi AO, van der Werf A, Goitom Teklu M, Shenker M, Pombo Sudré C, Busato JG, Ochoa-Hueso R, Nocentini M, Rippen J, Aroca R, Mesa S, Delgado MJ, Tortosa G. Application of biostimulant products and biological control agents in sustainable viticulture: A review. FRONTIERS IN PLANT SCIENCE 2022; 13:932311. [PMID: 36330258 PMCID: PMC9623300 DOI: 10.3389/fpls.2022.932311] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 09/05/2022] [Indexed: 06/16/2023]
Abstract
Current and continuing climate change in the Anthropocene epoch requires sustainable agricultural practices. Additionally, due to changing consumer preferences, organic approaches to cultivation are gaining popularity. The global market for organic grapes, grape products, and wine is growing. Biostimulant and biocontrol products are often applied in organic vineyards and can reduce the synthetic fertilizer, pesticide, and fungicide requirements of a vineyard. Plant growth promotion following application is also observed under a variety of challenging conditions associated with global warming. This paper reviews different groups of biostimulants and their effects on viticulture, including microorganisms, protein hydrolysates, humic acids, pyrogenic materials, and seaweed extracts. Of special interest are biostimulants with utility in protecting plants against the effects of climate change, including drought and heat stress. While many beneficial effects have been reported following the application of these materials, most studies lack a mechanistic explanation, and important parameters are often undefined (e.g., soil characteristics and nutrient availability). We recommend an increased study of the underlying mechanisms of these products to enable the selection of proper biostimulants, application methods, and dosage in viticulture. A detailed understanding of processes dictating beneficial effects in vineyards following application may allow for biostimulants with increased efficacy, uptake, and sustainability.
Collapse
Affiliation(s)
- Keiji Jindo
- Agrosystems Research, Wageningen University and Research, Wageningen, Netherlands
| | - Travis L. Goron
- Department of Plant Agriculture, University of Guelph, Guelph, ON, Canada
| | - Paloma Pizarro-Tobías
- Faculty of Computer Sciences, Multimedia and Telecommunication, Universitat Oberta de Catalunya (UOC), Barcelona, Spain
| | - Miguel Ángel Sánchez-Monedero
- Department of Soil and Water Conservation and Organic Waste Management, Centro de Edafología y Biología Aplicada del Segura (CEBAS), Agencia Estatal CSIC, Murcia, Spain
| | - Yuki Audette
- School of Environmental Sciences, University of Guelph, Guelph, ON, Canada
- Chitose Laboratory Corp., Kawasaki, Japan
| | | | - Adrie van der Werf
- Agrosystems Research, Wageningen University and Research, Wageningen, Netherlands
| | | | - Moshe Shenker
- The Robert H. Smith Faculty of Agriculture, Food and Environment, Rehovot, Israel
| | - Cláudia Pombo Sudré
- Laboratório de Melhoramento Genético Vegetal, Universidade Estadual do Norte Fluminense Darcy Ribeiro, UENF, Campos dos Goytacazes, Brazil
| | - Jader Galba Busato
- Faculdade de Agronomia e Medicina Veterinária, Campus Universitário Darcy Ribeiro, Universidade de Brasília, Brasília, DF, Brazil
| | - Raúl Ochoa-Hueso
- Department of Biology, IVAGRO, Agroalimentario, Campus del Rio San Pedro, University of Cádiz, Cádiz, Spain
- Department of Terrestrial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, Netherlands
| | - Marco Nocentini
- Dipartimento di Scienze e Tecnologie Agrarie, Alimentari, Ambientali e Forestali (DAGRI), Università degli Studi Firenze, Firenze, Italy
| | | | - Ricardo Aroca
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín (EEZ), Agencia Estatal CSIC, Granada, Spain
| | - Socorro Mesa
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín (EEZ), Agencia Estatal CSIC, Granada, Spain
| | - María J. Delgado
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín (EEZ), Agencia Estatal CSIC, Granada, Spain
| | - Germán Tortosa
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín (EEZ), Agencia Estatal CSIC, Granada, Spain
| |
Collapse
|
14
|
Jin X, Bai Y, Khashi u Rahman M, Kang X, Pan K, Wu F, Pommier T, Zhou X, Wei Z. Biochar stimulates tomato roots to recruit a bacterial assemblage contributing to disease resistance against Fusarium wilt. IMETA 2022; 1:e37. [PMID: 38868709 PMCID: PMC10989760 DOI: 10.1002/imt2.37] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 05/18/2022] [Accepted: 06/04/2022] [Indexed: 06/14/2024]
Abstract
Biochar amendment is acknowledged to favor plant resistance against soil-borne diseases. Although plant-beneficial bacteria enrichment in the rhizosphere is often proposed to be associated with this protection, the mechanism behind this stimulating effect remains unelucidated. Here, we tested whether biochar promotes plants to recruit beneficial bacteria to the rhizosphere, and thus develop a disease-suppressive rhizosphere microbiome. In a pot experiment, biochar amendment decreased tomato Fusarium wilt disease severity. Using a transplanting rhizosphere microbiome experiment, we showed that biochar enhanced the suppressiveness of tomato rhizosphere microbiome against Fusarium wilt disease. High-throughput sequencing of 16S ribosomal RNA gene and in vitro cultures further indicated that the recruited suppressive rhizosphere microbiome was associated with the increase of plant-beneficial bacteria, such as Pseudomonas sp. This amendment also enhanced the in vitro chemoattraction and biofilm promotion activity of tomato root exudates. Collectively, our results demonstrate that biochar amendment induces tomato seedlings to efficiently recruit a disease-suppressive rhizosphere microbiome against Fusarium wilt.
Collapse
Affiliation(s)
- Xue Jin
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Department of HorticultureNortheast Agricultural UniversityHarbinChina
| | - Yang Bai
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Department of HorticultureNortheast Agricultural UniversityHarbinChina
| | - Muhammad Khashi u Rahman
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Department of HorticultureNortheast Agricultural UniversityHarbinChina
| | - Xiaojun Kang
- Department of Plant & Microbial BiologyUniversity of MinnesotaSaint PaulMinnesotaUSA
| | - Kai Pan
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Department of HorticultureNortheast Agricultural UniversityHarbinChina
| | - Fengzhi Wu
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Department of HorticultureNortheast Agricultural UniversityHarbinChina
| | - Thomas Pommier
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, INRAE, VetAgro Sup, UMR Ecologie MicrobienneVilleurbanneFrance
| | - Xingang Zhou
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Department of HorticultureNortheast Agricultural UniversityHarbinChina
| | - Zhong Wei
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, Laboratory of Bio‐interactions and Crop Health, National Engineering Research Center for Organic‐based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource UtilizationNanjing Agricultural UniversityNanjingChina
| |
Collapse
|
15
|
Zhang X, Wells M, Niazi NK, Bolan N, Shaheen S, Hou D, Gao B, Wang H, Rinklebe J, Wang Z. Nanobiochar-rhizosphere interactions: Implications for the remediation of heavy-metal contaminated soils. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 299:118810. [PMID: 35007673 DOI: 10.1016/j.envpol.2022.118810] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 12/12/2021] [Accepted: 01/06/2022] [Indexed: 06/14/2023]
Abstract
Soil heavy metal contamination has increasingly become a serious environmental issue globally, nearing crisis proportions. There is an urgent need to find environmentally friendly materials to remediate heavy-metal contaminated soils. With the continuing maturation of research on using biochar (BC) for the remediation of contaminated soil, nano-biochar (nano-BC), which is an important fraction of BC, has gradually attracted increasing attention. Compared with BC, nano-BC has unique and useful properties for soil remediation, including a high specific surface area and hydrodynamic dispersivity. The efficacy of nano-BC for immobilization of non-degradable heavy-metal contaminants in soil systems, however, is strongly affected by plant rhizosphere processes, and there is very little known about the role that nano-BC play in these processes. The rhizosphere represents a dynamically complex soil environment, which, although having a small thickness, drives potentially large materials fluxes into and out of plants, notably agricultural foodstuffs, via large diffusive gradients. This article provides a critical review of over 140 peer-reviewed papers regarding nano-BC-rhizosphere interactions and the implications for the remediation of heavy-metal contaminated soils. We conclude that, when using nano-BC to remediate heavy metal-contaminated soil, the relationship between nano-BC and rhizosphere needs to be considered. Moreover, the challenges to extending our knowledge regarding the environmental risk of using nano-BC for remediation, as well as further research needs, are identified.
Collapse
Affiliation(s)
- Xiaokai Zhang
- Institute of Environmental Processes and Pollution Control, School of Environmental and Civil Engineering, Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Mona Wells
- Natural Sciences, Ronin Institute, Montclair, NJ, 07043, United States
| | - Nabeel Khan Niazi
- Institute of Soil and Environmental Sciences, University of Agriculture Faisalabad, Faisalabad, 38040, Pakistan
| | - Nanthi Bolan
- School of Agriculture and Environment, The University of Western Australia, Perth, WA, 6001, Australia; School of Engineering, College of Engineering, Science and Environment, University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Sabry Shaheen
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water, and Waste-Management, Laboratory of Soil, and Groundwater-Management, Pauluskirchstraße 7, 42285, Wuppertal, Germany; King Abdulaziz University, Faculty of Meteorology, Environment, and Arid Land Agriculture, Department of Arid Land Agriculture, Jeddah, 21589, Saudi Arabia
| | - Deyi Hou
- Tsinghua University, School of Environment, Beijing, 100084, China
| | - Bin Gao
- Department of Agricultural and Biological Engineering, University of Florida, Gainesville, FL, 32611, USA
| | - Hailong Wang
- Biochar Engineering Technology Research Center of Guangdong Province, School of Environmental and Chemical Engineering, Foshan University, Foshan, 528000, China
| | - Jörg Rinklebe
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water, and Waste-Management, Laboratory of Soil, and Groundwater-Management, Pauluskirchstraße 7, 42285, Wuppertal, Germany; Department of Environment, Energy and Geoinformatics, Sejong University, 98 Gunja-Dong, Guangjin-Gu, Seoul, Republic of Korea
| | - Zhenyu Wang
- Institute of Environmental Processes and Pollution Control, School of Environmental and Civil Engineering, Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi, 214122, China.
| |
Collapse
|
16
|
Assemblage of indigenous arbuscular mycorrhizal fungi and green waste compost enhance drought stress tolerance in carob (Ceratonia siliqua L.) trees. Sci Rep 2021; 11:22835. [PMID: 34819547 PMCID: PMC8613250 DOI: 10.1038/s41598-021-02018-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 10/13/2021] [Indexed: 01/11/2023] Open
Abstract
In the current study, an eco-friendly management technology to improve young carob (Ceratonia siliqua L.) tree tolerance to water deficit was set up by using single or combined treatments of arbuscular mycorrhizal fungi (AMF) and/or compost (C). Two groups of young carob have been installed: (i) carob cultivated under well-watered conditions (WW; 70% field capacity (FC)) and (ii) where the plants were drought-stressed (DS; 35% FC) during 2, 4, 6, and 8 months. The effect of used biofertilizers on the course of growth, physiological (photosynthetic traits, water status, osmolytes, and mineral content), and biochemical (hydrogen peroxide (H2O2), oxidative damage to lipids (malondialdehyde (MDA), and membrane stability (MS)) traits in response to short- and long-term droughts were assessed. The dual application of AMF and C (C + AMF) boosted growth, physiological and biochemical parameters, and nutrient uptake in carob under WW and DS. After eight months, C + AMF significantly enhanced stomatal conductance by 20%, maximum photochemical efficiency of PSII by 7%, leaf water potential by 23%, chlorophyll and carotenoid by 40%, plant uptake of mineral nutrients (P by 75%, N by 46%, K+ by 35%, and Ca2+ by 40%), concentrations of soluble sugar by 40%, and protein content by 44% than controls under DS conditions. Notably, C + AMF reduced the accumulation of H2O2 and MDA content to a greater degree and increased MS. In contrast, enzyme activities (superoxide dismutase, catalase, peroxidase, and polyphenoloxidase) significantly increased in C + AMF plants under DS. Overall, our findings suggest that the pairing of C + AMF can mediate superior drought tolerance in young carob trees by increasing leaf stomatal conductance, cellular water content, higher solute concentration, and defense response against oxidative damage during the prolonged period of DS.
Collapse
|
17
|
Mycorrhizal fungi induced activation of tomato defense system mitigates Fusarium wilt stress. Saudi J Biol Sci 2021; 28:5442-5450. [PMID: 34588854 PMCID: PMC8459153 DOI: 10.1016/j.sjbs.2021.07.025] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 07/01/2021] [Accepted: 07/05/2021] [Indexed: 12/04/2022] Open
Abstract
The fungus Fusarium oxysporum f. sp. lycopersici (FOL) is known to cause vascular wilt on tomato almost over the world. Inoculation of FOL reduced plant growth and increased wilt of tomato. The following study examined the possible role of arbuscular mycorrhizal fungi (AMF) consortium comprising of Rhizophagus intraradices, Funneliformis mosseae and Claroideoglomus etunicatum against FOL in tomato and explored in an inducing plant systemic defense. AMF inoculation reduced the wilt disease within vascular tissue and in vivo production of fusaric acid was observed which may be responsible in reduced wilting. FOL had an antagonistic effect on AMF colonization, reduced the number of spores, arbuscules and vesicles. AMF also inhibited the damage induced by Fusarium wilt through increasing chlorophyll contents along with the activity of phosphate metabolising enzymes (acid and alkaline phosphatases). Moreover, tomato plants with mycorrhizal inoculation showed an increase in the level of antioxidant enzymes including glutathione reductase, catalase, and etc. with an ultimate influence on the elimination of reactive oxygen species. Moreover, rise in phosphatase along with antioxidant enzymatic systems and enhanced photosynthetic performance contributed to induced resistance against FOL in tomato.
Collapse
|
18
|
Abstract
Agricultural activities face several challenges due to the intensive increase in population growth and environmental issues. It has been established that biochar can be assigned a useful role in agriculture. Its agronomic application has therefore received increasing attention recently. The literature shows different applications, e.g., biochar serves as a soil ameliorant to optimize soil structure and composition, and it increases the availability of nutrients and the water retention capacity in the soil. If the biochar is buried in the soil, it decomposes very slowly and thus serves as a long-term store of carbon. Limiting the availability of pesticides and heavy metals increases soil health. Biochar addition also affects soil microbiology and enzyme activity and contributes to the improvement of plant growth and crop production. Biochar can be used as a compost additive and animal feed and simultaneously provides a contribution to minimizing greenhouse gas emissions. Several parameters, including biochar origin, pyrolysis temperature, soil type when biochar is used as soil amendment, and application rate, control biochar’s efficiency in different agricultural applications. Thus, special care should be given when using a specific biochar for a specific application to prevent any negative effects on the agricultural environment.
Collapse
|
19
|
Poveda J, Martínez-Gómez Á, Fenoll C, Escobar C. The Use of Biochar for Plant Pathogen Control. PHYTOPATHOLOGY 2021; 111:1490-1499. [PMID: 33529050 DOI: 10.1094/phyto-06-20-0248-rvw] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
To support the search for alternative, nonchemical plant disease control strategies, we present a review of the pathogen-suppressive effects of biochar, a product derived from agricultural and other organic wastes, used as a soil amendment. A wide range of biochar effects contribute to the control of root or foliar fungal pathogens through modification of root exudates, soil properties, and nutrient availability, which influence the growth of antagonist microorganisms. The induction of systemic plant defenses by biochar in the roots to reduce foliar pathogenic fungi, the activation of stress-hormone responses, as well as changes in active oxygen species are indicative of a coordinated hormonal signaling within the plant. Although scarce data are available for oomycetes and bacterial pathogens, reports indicate that biochar promotes changes in the soil microbiota influencing pathogen motility and colonization, and the induction of plant systemic defenses, both contributing to disease suppression. Biochar also suppresses nematode and insect pests. For plant-parasitic nematodes, the primary modes of action are changes in soil microbial community diversity, the release of nematicidal compounds, and the induction of plant defenses. Use of biochar-based soil amendments is a promising strategy compatible with a circular economy, based on zero waste, as part of integrated pathogen and pest management. Since biochars exert complex and distinct modes of action for the control of plant pathogens, its nature and application regimes should be designed for particular pathogens and its effects studied locally.
Collapse
Affiliation(s)
- Jorge Poveda
- Biological Mission of Galicia (MBG-CSIC), Pontevedra, Spain
| | - Ángela Martínez-Gómez
- Facultad de Ciencias Ambientales y Bioquímica, Área de Fisiología Vegetal, Universidad de Castilla-La Mancha, Avda. Carlos III, s/n, 45071 Toledo, Spain
| | - Carmen Fenoll
- Facultad de Ciencias Ambientales y Bioquímica, Área de Fisiología Vegetal, Universidad de Castilla-La Mancha, Avda. Carlos III, s/n, 45071 Toledo, Spain
| | - Carolina Escobar
- Facultad de Ciencias Ambientales y Bioquímica, Área de Fisiología Vegetal, Universidad de Castilla-La Mancha, Avda. Carlos III, s/n, 45071 Toledo, Spain
- International Research Organization for Advanced Science and Technology (IROAST), Kumamoto University, Kumamoto 860-8555, Japan
| |
Collapse
|
20
|
Liang JF, Li QW, Gao JQ, Feng JG, Zhang XY, Hao YJ, Yu FH. Biochar-compost addition benefits Phragmites australis growth and soil property in coastal wetlands. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 769:145166. [PMID: 33486185 DOI: 10.1016/j.scitotenv.2021.145166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 12/24/2020] [Accepted: 01/10/2021] [Indexed: 06/12/2023]
Abstract
Salinity stress is common for plants growing in coastal wetlands. The addition of biochar in the soil may alleviate the negative effect of salinity through its unique physicochemical properties. To test this, we conducted a greenhouse experiment where the cosmopolitan wetland plant Phragmites australis was subjected to four salinity treatments (0, 5, 10 and 15‰) and three biochar treatments (no biochar addition, with biochar addition and with biochar-compost addition, both biochar and compost were made from P. australis) in a factorial design. Both biochar addition and biochar-compost addition to the substrate enhanced belowground mass of P. australis, application of biochar-compost significantly increased total mass by 35.5% and net photosynthesis rate of P. australis by 51.4%. Both biochar addition and biochar-compost addition significantly increased soil organic carbon content by 62.9% and 31.7%, respectively, but decreased soil ammonium nitrogen content. In the saline soil, application of the mixture of biochar-compost had a strong, and positive effect on the growth of P. australis, compared to biochar alone. Therefore, incorporation of biochar and compost might be an appropriate approach to improve the productivity of P. australis growing in coastal wetlands, where soil salinity is a common environmental stress.
Collapse
Affiliation(s)
- Jin-Feng Liang
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, China; State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Qian-Wei Li
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, China
| | - Jun-Qin Gao
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, China; The Key Laboratory of Ecological Protection in the Yellow River Basin of National Forestry and Grassland Administration, China.
| | - Jiu-Ge Feng
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, China
| | - Xiao-Ya Zhang
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, China
| | - Yi-Jing Hao
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, China
| | - Fei-Hai Yu
- Institute of Wetland Ecology & Clone Ecology; Zhejiang Provincial Key Laboratory of Evolutionary Ecology and Conservation, Taizhou University, Taizhou 318000, China
| |
Collapse
|
21
|
Role of biochar, compost and plant growth promoting rhizobacteria in the management of tomato early blight disease. Sci Rep 2021; 11:6092. [PMID: 33731746 PMCID: PMC7971063 DOI: 10.1038/s41598-021-85633-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Accepted: 03/04/2021] [Indexed: 01/20/2023] Open
Abstract
The individual role of biochar, compost and PGPR has been widely studied in increasing the productivity of plants by inducing resistance against phyto-pathogens. However, the knowledge on combined effect of biochar and PGPR on plant health and management of foliar pathogens is still at juvenile stage. The effect of green waste biochar (GWB) and wood biochar (WB), together with compost (Comp) and plant growth promoting rhizobacteria (PGPR; Bacillus subtilis) was examined on tomato (Solanum lycopersicum L.) physiology and Alternaria solani development both in vivo and in vitro. Tomato plants were raised in potting mixture modified with only compost (Comp) at application rate of 20% (v/v), and along with WB and GWB at application rate of 3 and 6% (v/v), each separately, in combination with or without B. subtilis. In comparison with WB amended soil substrate, percentage disease index was significantly reduced in GWB amended treatments (Comp + 6%GWB and Comp + 3%GWB; 48.21 and 35.6%, respectively). Whereas, in the presence of B. subtilis disease suppression was also maximum (up to 80%) in the substrate containing GWB. Tomato plant growth and physiological parameters were significantly higher in treatment containing GWB (6%) alone as well as in combination with PGPR. Alternaria solani mycelial growth inhibition was less than 50% in comp, WB and GWB amended growth media, whereas B. subtilis induced maximum inhibition (55.75%). Conclusively, the variable impact of WB, GWB and subsequently their concentrations in the soil substrate was evident on early blight development and plant physiology. To our knowledge, this is the first report implying biochar in synergism with PGPR to hinder the early blight development in tomatoes.
Collapse
|
22
|
Fang W, Song Z, Tao S, Zhang D, Huang B, Ren L, Cheng H, Yan D, Li Y, Cao A, Wang Q. Biochar mitigates the negative effect of chloropicrin fumigation on beneficial soil microorganisms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 738:139880. [PMID: 32531602 DOI: 10.1016/j.scitotenv.2020.139880] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 05/25/2020] [Accepted: 05/30/2020] [Indexed: 06/11/2023]
Abstract
Chloropicrin (CP) is the most commonly used soil fumigant worldwide. Although CP effectively controls soilborne pathogens, it is also detrimental to beneficial soil microorganisms unless measures can be put in place to protect them from the effects of fumigation. In this study, we evaluated the ability of biochar made from the invasive weed Eupatorium adenophorum to mitigate the effects of CP fumigation on beneficial species. Our results showed that the addition of biochar to the soil effectively reduced the detrimental effects of CP on beneficial species and their ecological functions. Biochar added to CP-fumigated soil shortened the time to 28-84 days for microbial diversity and nitrogen cycle functions to be restored to unfumigated levels. At the same time, the inorganic nitrogen (NH4+-N, NO3--N) content and N2O production potential level in CP-fumigated soil returned to unfumigated levels relatively quickly, which showed that nitrogen metabolism improved with the addition of biochar. The mitigation effect of biochar in CP-fumigated soil was more evident at higher biochar amendment rates. Our results suggest that the addition of biochar to CP-fumigated soil significantly reduced the impact of CP on beneficial species and their ecological functions, and significantly shortened the time for beneficial species to recover to pre-fumigation levels. Field research is required to determine biochar's ability to mitigate the impact of CP and other fumigants on beneficial species and to quantify its benefits on crop quality and yield.
Collapse
Affiliation(s)
- Wensheng Fang
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Zhaoxin Song
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Laboratory of Integrated and Urban Phytopathology, University of Liege, Gembloux Agro-Bio Tech, Passage des deportes 2, 5030 Gembloux, Belgium
| | - Sha Tao
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Daqi Zhang
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Bin Huang
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Lirui Ren
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Hongyan Cheng
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Dongdong Yan
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yuan Li
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Aocheng Cao
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Qiuxia Wang
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| |
Collapse
|
23
|
Ait-El-Mokhtar M, Baslam M, Ben-Laouane R, Anli M, Boutasknit A, Mitsui T, Wahbi S, Meddich A. Alleviation of Detrimental Effects of Salt Stress on Date Palm (Phoenix dactylifera L.) by the Application of Arbuscular Mycorrhizal Fungi and/or Compost. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2020. [DOI: 10.3389/fsufs.2020.00131] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
|
24
|
Tartaglia M, Arena S, Scaloni A, Marra M, Rocco M. Biochar Administration to San Marzano Tomato Plants Cultivated Under Low-Input Farming Increases Growth, Fruit Yield, and Affects Gene Expression. FRONTIERS IN PLANT SCIENCE 2020; 11:1281. [PMID: 32973840 PMCID: PMC7481538 DOI: 10.3389/fpls.2020.01281] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 08/06/2020] [Indexed: 06/11/2023]
Abstract
Biochar is a rich-carbon charcoal obtained by pyrolysis of biomasses, which was used since antiquity as soil amendant. Its storage in soils was demonstrated contributing to abate the effects of climate changes by sequestering carbon, also providing bioenergy, and improving soil characteristics and crop yields. Despite interest in this amendant, there is still poor information on its effects on soil fertility and plant growth. Considerable variation in the plant response has been reported, depending on biomass source, pyrolysis conditions, crop species, and cultivation practices. Due to these conflicting evidences, this work was aimed at studying the effects of biochar from pyrolyzed wood at 550°C, containing 81.1% carbon and 0.91% nitrogen, on growth and yield of tomato plants experiencing low-input farming conditions. San Marzano ecotype from Southern Italy was investigated, due to its renowned quality and adaptability to sustainable farming practices. Biochar administration improved vegetative growth and berry yield, while affecting gene expression and protein repertoire in berries. Different enzymes of carbon metabolism and photosynthesis were over-represented, whereas various stress-responsive and defense proteins were down-represented. Molecular results are here discussed in relation to estimated agronomic parameters to provide a rationale justifying the growth-promoting effect of this soil amendant.
Collapse
Affiliation(s)
- Maria Tartaglia
- Department of Science and Technology, University of Sannio, Benevento, Italy
| | - Simona Arena
- Proteomics & Mass Spectrometry Laboratory, ISPAAM, National Research Council, Naples, Italy
| | - Andrea Scaloni
- Proteomics & Mass Spectrometry Laboratory, ISPAAM, National Research Council, Naples, Italy
| | - Mauro Marra
- Department of Biology, University of Tor Vergata, Rome, Italy
| | - Mariapina Rocco
- Department of Science and Technology, University of Sannio, Benevento, Italy
| |
Collapse
|
25
|
Wang W, Wang Z, Yang K, Wang P, Wang H, Guo L, Zhu S, Zhu Y, He X. Biochar Application Alleviated Negative Plant-Soil Feedback by Modifying Soil Microbiome. Front Microbiol 2020; 11:799. [PMID: 32411119 PMCID: PMC7201025 DOI: 10.3389/fmicb.2020.00799] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Accepted: 04/03/2020] [Indexed: 12/25/2022] Open
Abstract
Negative plant-soil feedback (NPSF) frequently cause replant failure in agricultural ecosystems, which has been restricting the sustainable development of agriculture. Biochar application has appealing effects on soil improvement and potential capacity to affect NPSF, but the process is poorly understood. Here, our study demonstrated that biochar amendment can effectively alleviate the NPSF and this biochar effect is strongly linked to soil microorganism in a sanqi (Panax notoginseng) production system. High-throughput sequencing showed that the bacterial and fungal communities were altered with biochar amendment, and bacterial community is more sensitive to biochar amendment than the fungal community. Biochar amendment significantly increased the soil bacterial diversity, but the fungal diversity was not significantly different between biochar-amended and non-amended soils. Moreover, we found that biochar amendment significantly increased the soil pH, electrical conductivity, organic matter, available phosphorus, available potassium, and C/N ratio. The correlation analysis showed that these increased soil chemical variables have a significantly positive correlation with the bacterial diversity. Further analysis of the soil microbial composition demonstrated that biochar soil amendment enriched the beneficial bacterium Bacillus and Lysobacter but suppressed pathogens Fusarium and Ilyonectria. In addition, we verified that biochar had no direct effect on the pathogen Fusarium solani, but can directly enrich biocontrol bacterium Bacillus subtilis. In short, biochar application can mitigate NPSF is mostly due to the fact that biochar soil amendment modified the soil microbiome, especially inhibited pathogens by enriching beneficial bacterium with antagonistic activity against pathogen.
Collapse
Affiliation(s)
- Wenpeng Wang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
| | - Zhuhua Wang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
| | - Kuan Yang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
| | - Pei Wang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
| | - Huiling Wang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
| | - Liwei Guo
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
| | - Shusheng Zhu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
| | - Youyong Zhu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
| | - Xiahong He
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China.,School of Landscape and Horticulture, Southwest Forestry University, Kunming, China
| |
Collapse
|
26
|
Ni N, Kong D, Wu W, He J, Shan Z, Li J, Dou Y, Zhang Y, Song Y, Jiang X. The Role of Biochar in Reducing the Bioavailability and Migration of Persistent Organic Pollutants in Soil-Plant Systems: A Review. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2020; 104:157-165. [PMID: 31898750 DOI: 10.1007/s00128-019-02779-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Accepted: 12/23/2019] [Indexed: 05/22/2023]
Abstract
The amendment of biochar in soils contaminated with persistent organic pollutants (POPs) is an environmentally friendly in situ remediation measure. Numerous studies focused on the application of biochars to reduce the uptake of POPs by plants in soils. In this review, we summarized the role of biochar in reducing the migration of POPs in soil-plant systems. The mechanisms of biochar reducing the bioavailability of POPs in the soil, i.e. immobilization and promoted biodegradation, and the influencing factors are fully discussed. Especially in rhizosphere amended with biochar, the synergistic effect of POPs-root exudates-microorganisms on the reduced bioavailability of POPs is analyzed. This paper suggests that future researches should focus on the long-term environmental fate of POPs sorbed on high-temperature biochars and the long-term impacts of low-temperature biochars on the interaction of POPs-root exudates-rhizosphere microorganisms. All the above are necessary for efficient and safe use of biochar for remediating POP-contaminated farmland soils.
Collapse
Affiliation(s)
- Ni Ni
- Nanjing Institute of Environmental Science, Ministry of Ecology and Environment of the People's Republic of China, Nanjing, 210042, People's Republic of China
- Key Laboratory of Pesticide Environmental Assessment and Pollution Control, Ministry of Ecology and Environment of the People's Republic of China, Nanjing, 210042, People's Republic of China
| | - Deyang Kong
- Nanjing Institute of Environmental Science, Ministry of Ecology and Environment of the People's Republic of China, Nanjing, 210042, People's Republic of China
- Key Laboratory of Pesticide Environmental Assessment and Pollution Control, Ministry of Ecology and Environment of the People's Republic of China, Nanjing, 210042, People's Republic of China
| | - Wenzhu Wu
- Nanjing Institute of Environmental Science, Ministry of Ecology and Environment of the People's Republic of China, Nanjing, 210042, People's Republic of China
- Key Laboratory of Pesticide Environmental Assessment and Pollution Control, Ministry of Ecology and Environment of the People's Republic of China, Nanjing, 210042, People's Republic of China
| | - Jian He
- Nanjing Institute of Environmental Science, Ministry of Ecology and Environment of the People's Republic of China, Nanjing, 210042, People's Republic of China
- Key Laboratory of Pesticide Environmental Assessment and Pollution Control, Ministry of Ecology and Environment of the People's Republic of China, Nanjing, 210042, People's Republic of China
| | - Zhengjun Shan
- Nanjing Institute of Environmental Science, Ministry of Ecology and Environment of the People's Republic of China, Nanjing, 210042, People's Republic of China
- Key Laboratory of Pesticide Environmental Assessment and Pollution Control, Ministry of Ecology and Environment of the People's Republic of China, Nanjing, 210042, People's Republic of China
| | - Juying Li
- Nanjing Institute of Environmental Science, Ministry of Ecology and Environment of the People's Republic of China, Nanjing, 210042, People's Republic of China
- Key Laboratory of Pesticide Environmental Assessment and Pollution Control, Ministry of Ecology and Environment of the People's Republic of China, Nanjing, 210042, People's Republic of China
| | - Yezhi Dou
- Nanjing Institute of Environmental Science, Ministry of Ecology and Environment of the People's Republic of China, Nanjing, 210042, People's Republic of China
- Key Laboratory of Pesticide Environmental Assessment and Pollution Control, Ministry of Ecology and Environment of the People's Republic of China, Nanjing, 210042, People's Republic of China
| | - Yueqing Zhang
- Nanjing Institute of Environmental Science, Ministry of Ecology and Environment of the People's Republic of China, Nanjing, 210042, People's Republic of China
- Key Laboratory of Pesticide Environmental Assessment and Pollution Control, Ministry of Ecology and Environment of the People's Republic of China, Nanjing, 210042, People's Republic of China
| | - Yang Song
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, People's Republic of China.
| | - Xin Jiang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, People's Republic of China
| |
Collapse
|
27
|
Carmona SL, Burbano-David D, Gómez MR, Lopez W, Ceballos N, Castaño-Zapata J, Simbaqueba J, Soto-Suárez M. Characterization of Pathogenic and Nonpathogenic Fusarium oxysporum Isolates Associated with Commercial Tomato Crops in the Andean Region of Colombia. Pathogens 2020; 9:E70. [PMID: 31968574 PMCID: PMC7168637 DOI: 10.3390/pathogens9010070] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 01/07/2020] [Accepted: 01/15/2020] [Indexed: 01/03/2023] Open
Abstract
In Colombia, tomato production under protected conditions represents an important economic contribution to the agricultural sector. Fusarium wilt diseases, caused by pathogenic formae speciales of the soil-borne fungus Fusarium oxysporum Schltdl., cause significant yield losses in tomatoes throughout the world. Investigation of the F. oxysporum-tomato pathosystem in Colombia is required to develop appropriate alternative disease management. In this study, 120 fungal isolates were obtained from four different departments in the Central Andean Region in Colombia from tomato crops with symptoms of wilt disease. A molecular characterization of the fungal isolates was performed using the SIX1, SIX3, and SIX4 effector genes of Fusarium oxysporum f. sp. lycopersici W.C. Snyder & H.N. Hansen (Fol). Additionally, we developed a new specific marker to distinguish between Fusarium oxysporum f. sp. radicis-lycopersici Jarvis & Shoemaker (Forl) and Fol isolates. Furthermore, a phylogenetic analysis using the Translation Elongation Factor 1-alpha (EF1a) gene was performed with the collected isolates. Two isolates (named Fol59 and Fol-UDC10) were identified as Fol race 2, four isolates were identified as Forl, six isolates were identified as F. solani, and most of the isolates were grouped within the F. oxysporum species complex. The phylogenetic tree of EF1a showed that most of the isolates could potentially correspond to nonpathogenic strains of F. oxysporum. Additional pathogenicity assays carried out with Fol59 and Fol-UDC10 confirmed that both isolates were highly virulent strains. This study represents a contribution to the understanding of the local interaction between tomatoes and F. oxysporum in Colombia.
Collapse
Affiliation(s)
- Sandra L. Carmona
- Corporación Colombiana de Investigación Agropecuaria. AGROSAVIA, Km 14 vía Mosquera-Bogotá, Mosquera 250047, Colombia; (S.L.C.); (D.B.-D.); (M.R.G.); (J.S.)
| | - Diana Burbano-David
- Corporación Colombiana de Investigación Agropecuaria. AGROSAVIA, Km 14 vía Mosquera-Bogotá, Mosquera 250047, Colombia; (S.L.C.); (D.B.-D.); (M.R.G.); (J.S.)
| | - Magda R. Gómez
- Corporación Colombiana de Investigación Agropecuaria. AGROSAVIA, Km 14 vía Mosquera-Bogotá, Mosquera 250047, Colombia; (S.L.C.); (D.B.-D.); (M.R.G.); (J.S.)
| | - Walter Lopez
- Departamento de Física y Química, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Colombia sede Manizales, Manizales 170004, Colombia;
| | - Nelson Ceballos
- Facultad de Ciencias Agropecuarias, Universidad de Caldas, Manizales 170004, Colombia; (N.C.); (J.C.-Z.)
| | - Jairo Castaño-Zapata
- Facultad de Ciencias Agropecuarias, Universidad de Caldas, Manizales 170004, Colombia; (N.C.); (J.C.-Z.)
| | - Jaime Simbaqueba
- Corporación Colombiana de Investigación Agropecuaria. AGROSAVIA, Km 14 vía Mosquera-Bogotá, Mosquera 250047, Colombia; (S.L.C.); (D.B.-D.); (M.R.G.); (J.S.)
| | - Mauricio Soto-Suárez
- Corporación Colombiana de Investigación Agropecuaria. AGROSAVIA, Km 14 vía Mosquera-Bogotá, Mosquera 250047, Colombia; (S.L.C.); (D.B.-D.); (M.R.G.); (J.S.)
| |
Collapse
|
28
|
Biochar Suppresses Bacterial Wilt of Tomato by Improving Soil Chemical Properties and Shifting Soil Microbial Community. Microorganisms 2019; 7:microorganisms7120676. [PMID: 31835630 PMCID: PMC6955753 DOI: 10.3390/microorganisms7120676] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 11/22/2019] [Accepted: 12/07/2019] [Indexed: 12/22/2022] Open
Abstract
The role of biochar amendments in enhancing plant disease resistance has been well documented, but its mechanism is not yet fully understood. In the present study, 2% biochar made from wheat straw was added to the soil of tomato infected by Ralstonia solanacearum to explore the interrelation among biochar, tomato bacterial wilt resistance, soil chemical properties, and soil microbial community and to decipher the disease suppression mechanisms from a soil microbial perspective. Biochar application significantly reduced the disease severity of bacterial wilt, increased soil total organic carbon, total nitrogen, C:N ratio, organic matter, available P, available K, pH, and electrical conductivity. Biochar treatment also increased soil acid phosphatase activity under the non-R.-solanacearum-inoculated condition. High-throughput sequencing of 16S rRNA revealed substantial differences in rhizosphere bacterial community structures between biochar-amended and nonamended treatments. Biochar did not influence soil microbial richness and diversity but significantly increased the relative abundance of Bacteroidetes and Proteobacteria in soil at the phylum level under R. solanacearum inoculation. Furthermore, biochar amendment harbored a higher abundance of Chitinophaga, Flavitalea, Adhaeribacter, Pontibacter, Pedobacter, and Ohtaekwangia at the genus level of Bacteroides and Pseudomonas at the genus level of Proteobacteria under R. solanacearum inoculation. Our findings suggest that a biochar-shifted soil bacterial community structure can favorably contribute to the resistance of tomato plants against bacterial wilt.
Collapse
|
29
|
Liu M, Che Y, Wang L, Zhao Z, Zhang Y, Wei L, Xiao Y. Rice straw biochar and phosphorus inputs have more positive effects on the yield and nutrient uptake of Lolium multiflorum than arbuscular mycorrhizal fungi in acidic Cd-contaminated soils. CHEMOSPHERE 2019; 235:32-39. [PMID: 31255763 DOI: 10.1016/j.chemosphere.2019.06.160] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 06/18/2019] [Accepted: 06/21/2019] [Indexed: 06/09/2023]
Abstract
The purpose of the study was to examine biochar amendment, phosphorus (P) fertilizer and arbuscular mycorrhizal fungi (AMF) on the yield, nutrient and cadmium (Cd) absorption of Lolium multiflorum in acidic soil. It was shown that mycorrhizal inoculation had no positive influence on the plant shoot biomass and the contents of nitrogen (N), P, potassium (K), calcium (Ca) and magnesium (Mg) in plants at all biochar and P level treatments. Irrespective of mycorrhizal inoculation and P level, biochar amendments markedly elevated the soil available P and K uptake in plant tissues. In contrast, biochar significantly decreased the translocation factor of plants, soil exchangeable Cd, and acid and neutral phosphatase activities, regardless of the mycorrhizal inoculation and P fertilizer. Without P fertilization, biochar amendments significantly promoted shoot P content, while biochar amendments significantly reduced shoot P content when P fertilizer was applied. Without biochar application, P fertilizer application significantly promoted the biomass and N uptake of shoots in both AMF inoculation treatments, while P fertilizer increased these only in the presence of biochar and mycorrhizal inoculation. The increased N content induced by the biochar amendment elevated the shoot N:P ratio and alleviated the N deficiency with P fertilizer input. Thus, we concluded that the addition of biochar and P fertilizer showed more positive effects on the promotion of growth and nutrient uptake of L. multiflorum than AMF grown in acidic Cd-contaminated soils.
Collapse
Affiliation(s)
- Mohan Liu
- College of Agro-grassland Science, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Yeye Che
- College of Agro-grassland Science, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Leqi Wang
- College of Agro-grassland Science, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Zhuojun Zhao
- College of Agro-grassland Science, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Yanchao Zhang
- College of Agro-grassland Science, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Lingling Wei
- College of Agro-grassland Science, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Yan Xiao
- College of Agro-grassland Science, Nanjing Agricultural University, Nanjing, 210095, PR China.
| |
Collapse
|
30
|
Trichoderma harzianum favours the access of arbuscular mycorrhizal fungi to non-host Brassicaceae roots and increases plant productivity. Sci Rep 2019; 9:11650. [PMID: 31406170 PMCID: PMC6690897 DOI: 10.1038/s41598-019-48269-z] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 08/01/2019] [Indexed: 12/20/2022] Open
Abstract
The family Brassicaceae includes plants that are non-host for arbuscular mycorrhizal fungi (AMF) such as the model plant Arabidopsis thaliana (arabidopsis) and the economically important crop plant Brassica napus (rapeseed). It is well known that Trichoderma species have the ability to colonize the rhizosphere of Brassicaceae plants, promoting growth and development as well as stimulating systemic defenses. The aim of the present work is to ascertain that Brassicaceae plants increase productivity when AMF and Trichoderma are combinedly applied, and how such an effect can be ruled. This simultaneous application of a Trichoderma harzianum biocontrol strain and an AMF formulation produces a significant increase in the colonization by Trichoderma and the presence of AMF in arabidopsis and rapeseed roots, such colonization accompanied by improved productivity in both Brassicaceae species. Expression profiling of defense-related marker genes suggests that the phytohormone salicylic acid plays a key role in the modulation of the root colonization process when both fungi are jointly applied.
Collapse
|
31
|
Zhang T, Wang Z, Lv X, Li Y, Zhuang L. High-throughput sequencing reveals the diversity and community structure of rhizosphere fungi of Ferula Sinkiangensis at different soil depths. Sci Rep 2019; 9:6558. [PMID: 31024051 PMCID: PMC6484027 DOI: 10.1038/s41598-019-43110-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 04/12/2019] [Indexed: 01/09/2023] Open
Abstract
Ferula sinkiangesis is a valuable medicinal plant that has become endangered. Improving the soil habitat of Ferula sinkiangesis can alleviate plant damage. Fungi play an important role in the soil, but current information on the fungal community structure in the habitat of Ferula sinkiangesis and the relationship between soil fungi and abiotic factors remains unclear. In this study, we analyzed the relative abundance of fungal species in the rhizosphere of Ferula sinkiangesis. Spearman correlation analysis showed that the abiotic factor total potassium (TK) significantly explained the alpha diversity of the fungal community. At altitude, available phosphorus (AP), nitrate nitrogen (NN) and TK were significantly associated with the fungal species. In addition, a two-way ANOVA showed that soil depth had no significant effects on the alpha diversity of rhizosphere and non-rhizosphere fungi. Interestingly, linear discriminant effect size (LEfSe) analysis indicated that different biomarkers were present at varying soil depths. These findings may be related to the growth and medicinal properties of Ferula Sinkiangensis.
Collapse
Affiliation(s)
- Tao Zhang
- College of Life Sciences, Key Laboratory of Xinjiang Phytomedicine Resource Utilization, Ministry of Education, Shihezi University, Xinjiang Shihezi, 832003, China
| | - Zhongke Wang
- College of Life Sciences, Key Laboratory of Xinjiang Phytomedicine Resource Utilization, Ministry of Education, Shihezi University, Xinjiang Shihezi, 832003, China
| | - Xinhua Lv
- College of Life Sciences, Key Laboratory of Xinjiang Phytomedicine Resource Utilization, Ministry of Education, Shihezi University, Xinjiang Shihezi, 832003, China
| | - Yang Li
- College of Life Sciences, Key Laboratory of Xinjiang Phytomedicine Resource Utilization, Ministry of Education, Shihezi University, Xinjiang Shihezi, 832003, China
| | - Li Zhuang
- College of Life Sciences, Key Laboratory of Xinjiang Phytomedicine Resource Utilization, Ministry of Education, Shihezi University, Xinjiang Shihezi, 832003, China.
| |
Collapse
|
32
|
Zhang F, Liu M, Li Y, Che Y, Xiao Y. Effects of arbuscular mycorrhizal fungi, biochar and cadmium on the yield and element uptake of Medicago sativa. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 655:1150-1158. [PMID: 30577108 DOI: 10.1016/j.scitotenv.2018.11.317] [Citation(s) in RCA: 106] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 11/15/2018] [Accepted: 11/21/2018] [Indexed: 05/08/2023]
Abstract
The synergistic effects of arbuscular mycorrhizal fungi (AMF) inoculation and biochar application on plant growth and heavy metal uptake remain unclear. A pot experiment was carried out to investigate the influence of AMF inoculation, biochar and cadmium (Cd) addition on the growth, nutrient and cadmium uptake of Medicago sativa, as well as soil biological and chemical characteristics. In comparison to the non-Cd pollution treatment, Cd addition significantly decreased mycorrhizal colonization, biomass, and N, P, Ca and Mg contents of shoots and roots in the absence of biochar. Biochar amendment did not increase mycorrhizal colonization at either Cd levels. Regardless of the biochar amendment, AMF inoculation significantly promoted contents of N and P in plant shoots grown in the Cd-contaminated soils. Nevertheless, in the presence of Cd pollution, biochar dramatically elevated the biomass and N, P, K and Ca contents of plant tissues in both AMF inoculation treatments. Biochar addition significantly reduced soil DTPA-extracted Cd. The treatments with AMF inoculation and biochar amendment showed the lowest shoot Cd concentrations and contents, highest plant tissue N and P contents in the Cd addition group. These results suggested that combined use of AMF inoculation and biochar amendment had significant synergistic effects not only on nutrient uptake but also on the reduction in cadmium uptake of alfalfa grown in Cd-polluted soil.
Collapse
Affiliation(s)
- Fengge Zhang
- College of Agro-grassland Science, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Mohan Liu
- College of Agro-grassland Science, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Yang Li
- College of Agro-grassland Science, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Yeye Che
- College of Agro-grassland Science, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Yan Xiao
- College of Agro-grassland Science, Nanjing Agricultural University, Nanjing 210095, PR China.
| |
Collapse
|
33
|
Hill RA, Hunt J, Sanders E, Tran M, Burk GA, Mlsna TE, Fitzkee NC. Effect of Biochar on Microbial Growth: A Metabolomics and Bacteriological Investigation in E. coli. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:2635-2646. [PMID: 30695634 PMCID: PMC6429029 DOI: 10.1021/acs.est.8b05024] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Biochar has been proposed as a soil amendment in agricultural applications due to its advantageous adsorptive properties, high porosity, and low cost. These properties allow biochar to retain soil nutrients, yet the effects of biochar on bacterial growth remain poorly understood. To examine how biochar influences microbial metabolism, Escherichia coli was grown in a complex, well-defined media and treated with either biochar or activated carbon. The concentration of metabolites in the media were then quantified at several time points using NMR spectroscopy. Several metabolites were immediately adsorbed by the char, including l-asparagine, l-glutamine, and l-arginine. However, we find that biochar quantitatively adsorbs less of these metabolic precursors when compared to activated carbon. Electron microscopy reveals differences in surface morphology after cell culture, suggesting that Escherichia coli can form biofilms on the surfaces of the biochar. An examination of significant compounds in the tricarboxylic acid cycle and glycolysis reveals that treatment with biochar is less disruptive than activated carbon throughout metabolism. While both biochar and activated carbon slowed growth compared to untreated media, Escherichia coli in biochar-treated media grew more efficiently, as indicated by a longer logarithmic growth phase and a higher final cell density. This work suggests that biochar can serve as a beneficial soil amendment while minimizing the impact on bacterial viability. In addition, the experiments identify a mechanism for biochar's effectiveness in soil conditioning and reveal how biochar can alter specific bacterial metabolic pathways.
Collapse
Affiliation(s)
- Rebecca A. Hill
- Department of Chemistry, Mississippi State University, Mississippi State, MS 39762
| | - John Hunt
- Department of Chemistry, Mississippi State University, Mississippi State, MS 39762
| | - Emily Sanders
- Department of Chemistry, Mississippi State University, Mississippi State, MS 39762
| | - Melanie Tran
- Department of Chemistry, Mississippi State University, Mississippi State, MS 39762
| | - Griffin A. Burk
- Department of Chemistry, Mississippi State University, Mississippi State, MS 39762
| | - Todd E. Mlsna
- Department of Chemistry, Mississippi State University, Mississippi State, MS 39762
| | - Nicholas C. Fitzkee
- Department of Chemistry, Mississippi State University, Mississippi State, MS 39762
| |
Collapse
|
34
|
Zhang L, Jing Y, Xiang Y, Zhang R, Lu H. Responses of soil microbial community structure changes and activities to biochar addition: A meta-analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 643:926-935. [PMID: 29960229 DOI: 10.1016/j.scitotenv.2018.06.231] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Revised: 05/25/2018] [Accepted: 06/19/2018] [Indexed: 06/08/2023]
Abstract
The objective of this study was to investigate responses of soil microbial community structure changes and activities to biochar addition under different biochar characteristics, soil properties, and experiment conditions. A meta-analysis was conducted based on 265 datasets from 49 published studies. Results showed that biochar addition significantly increased the ratios of soil fungi to bacteria (F/B) and the ratios of Gram-positive bacteria to Gram-negative bacteria (G+/G-), and microbial biomass and activities. The enhancement of F/B ratios was most significant with addition of biochars produced at low temperatures to soils with lower pH and nutrients in a long-term condition, which improved ecosystem stability of agricultural soils. The F/B ratios were mainly affected by biochar nutrients, soil nutrients, and soil pH values. Biochar nutrients and structural properties (i.e., surface area and porosity) also played the important role in enhancing G+/G-, total microbial biomass, and activities of bacteria, fungi, and actinomycetes. The G+/G- ratios increased the most with addition of biochars produced with medium temperatures and residue accompanied with fertilizers in dry land (dried farmland) soils. High biochar load greatly improved the total phospholipid fatty acids, and activities of bacteria, fungi, and actinomycetes in fine/coarse, paddy soils, and soils with low nutrients, in turn increased the soil nutrient cycling. In addition, the structural properties of biochars were the most influencing factor to increase total microbial biomass and actinomycete activity. Overall, the enhancement of microbial activities and community structure shifts under biochar addition should promote soil nutrients cycling and carbon sequestration, and improve crop yields.
Collapse
Affiliation(s)
- Leiyi Zhang
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China
| | - Yiming Jing
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China
| | - Yangzhou Xiang
- Guizhou Institute of Forest Inventory and Planning, Guiyang 550003, China
| | - Renduo Zhang
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China.
| | - Haibo Lu
- School of Atmospheric Sciences, Sun Yat-sen University, Guangzhou 510275, China
| |
Collapse
|
35
|
Zhou H, Wang P, Chen D, Shi G, Cheng K, Bian R, Liu X, Zhang X, Zheng J, Crowley DE, van Zwieten L, Li L, Pan G. Short-term biochar manipulation of microbial nitrogen transformation in wheat rhizosphere of a metal contaminated Inceptisol from North China plain. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 640-641:1287-1296. [PMID: 30021295 DOI: 10.1016/j.scitotenv.2018.06.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 05/24/2018] [Accepted: 06/01/2018] [Indexed: 05/20/2023]
Abstract
While metal immobilization had been increasingly reported with biochar soil amendment (BSA), changes in microbial activity and nitrogen (N) transformation in metal contaminated croplands following biochar addition had been insufficiently addressed. In a field experiment, a Pb/Cd contaminated Inceptisol from North China was amended to topsoil with wheat straw biochar at 0 (CK), 20 (C1) and 40 t ha-1 (C2). The changes within two years following BSA were tested in microbial biomass and respiration, and in abundance of N transforming microbial communities and their activities. Corresponding to the results of decreased soil extractable Cd and Pb, significant reductions in qCO2 were found in rhizosphere and bulk soil only under C2 in the first year. The potential nitrification activity was significantly increased by 20-71%, along with an increase in ammonium (by 7-21%) and nitrate (by 21%-70%) concentration, with BSA compared to CK. Meanwhile, N2O production activity was slightly increased (by up to 20%) but N2O reduction activity greatly enhanced (by up to 84%), with a higher ratio of nosZ/(nirS + nirK), under C2 in rhizosphere in both wheat seasons. Whereas, such changes were not remarkable in bulk soil. Moreover, microbial communities were less respondent to biochar in the second year following the addition. Therefore, microbial growth and functioning for N transforming and cycling in metal contaminated soils could be largely improved with BSA at 40 t ha-1. Of course, studies are still deserved to mimic the long term changes with biochar in N cycling of the metal contaminated dry croplands.
Collapse
Affiliation(s)
- Huimin Zhou
- Institute of Resource, Ecosystem and Environment of Agriculture, Nanjing Agricultural University, Nanjing 210095, China; Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Pan Wang
- Institute of Resource, Ecosystem and Environment of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - De Chen
- Institute of Resource, Ecosystem and Environment of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Gaoling Shi
- Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Kun Cheng
- Institute of Resource, Ecosystem and Environment of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Rongjun Bian
- Institute of Resource, Ecosystem and Environment of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiaoyu Liu
- Institute of Resource, Ecosystem and Environment of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Xuhui Zhang
- Institute of Resource, Ecosystem and Environment of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Jufeng Zheng
- Institute of Resource, Ecosystem and Environment of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - David E Crowley
- Institute of Resource, Ecosystem and Environment of Agriculture, Nanjing Agricultural University, Nanjing 210095, China; Department of Environmental Science, University of California Riverside, CA 92521, USA
| | - Lukas van Zwieten
- Institute of Resource, Ecosystem and Environment of Agriculture, Nanjing Agricultural University, Nanjing 210095, China; NSW Department of Primary Industries, 1243 Bruxner Highway, Wollongbar, NSW 2477, Australia
| | - Lianqing Li
- Institute of Resource, Ecosystem and Environment of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Genxing Pan
- Institute of Resource, Ecosystem and Environment of Agriculture, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
36
|
Continuous applications of biochar to rice: Effects on nitrogen uptake and utilization. Sci Rep 2018; 8:11461. [PMID: 30061619 PMCID: PMC6065394 DOI: 10.1038/s41598-018-29877-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 07/20/2018] [Indexed: 11/17/2022] Open
Abstract
Improving soil quality is critical for increasing rice yield, and biochar could be a beneficial soil amendment for high yield. This study was conducted to determine the effects of continuous (repeated seasonal) applications of biochar on nitrogen (N) uptake and utilization in rice. A fixed field experiment was done in Yongan Town, Hunan Province, China, in six continuous seasons (the early and late rice-growing seasons from 2015 to 2017). Results showed that biochar application did not significantly affect soil N uptake in the first four seasons. The effect of biochar application on fertilizer N uptake was not significant in three of the first four seasons. In the fifth and sixth seasons, biochar application resulted in 14–26% increases in soil N uptake but 19–26% decreases in fertilizer N uptake. Soil N availability did not explain the increased soil N uptake with biochar application. The decreased fertilizer N uptake with biochar application was attributed to both decreased fertilizer N availability and increased N loss through ammonia volatilization. As a consequence of a compensation between the increased soil N uptake and the decreased fertilizer N uptake, the effect of biochar application on total N uptake was not significant in the fifth and sixth seasons. However, biochar application led to 7–11% increases in internal N use efficiency in the fifth and sixth seasons and 6% increase in grain yield in the sixth season. Our study suggests that the effects of repeated seasonal applications of biochar on N uptake and utilization in rice depend on the duration of biochar application. Longer continuous applications of biochar can increase internal N use efficiency and grain yield in rice with insignificant change in total N uptake.
Collapse
|
37
|
Mehta CM, Pudake RN, Srivastava R, Palni U, Sharma AK. Development of PCR-based molecular marker for screening of disease-suppressive composts against Fusarium wilt of tomato ( Solanum lycopersicum L.). 3 Biotech 2018; 8:306. [PMID: 30002996 PMCID: PMC6035786 DOI: 10.1007/s13205-018-1331-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 07/02/2018] [Indexed: 10/28/2022] Open
Abstract
The present study was carried out to develop a PCR-based molecular marker suitable for screening of disease-suppressive composts against Fusarium wilt of tomato. An effective uncultured bacterial community was screened from our previous study on investigation of microbial communities in composts for their potential for biocontrol of Fusarium wilt. Based on available sequence information (Accession no. HQ388491) of selective community, PCR-based molecular markers were designed and tested for their specificity in different compost sample. To confirm specificity of designed marker, real-time reverse transcription-PCR (qRT-PCR) analysis was performed. Selective marker efficacy was further tested for different set of composts and results were cross-verified by conducting bioassay of same composts against Fusarium wilt in tomato crop. Results showed that out of two designed set of primers (i.e., PAC1F/PAC1R and PAC4F/PAC4R), primer set PAC4F/PAC4R resulted in successful amplification of 199 bp in highly disease-suppressive compost (i.e., CPP); however, no/below detection level amplification was observed in non-suppressive compost (JC). qRT-PCR analysis confirmed the specificity of selective marker by representing single peak in melting curve. A clear difference was observed in relative population of selective community in different set of composts. It was observed maximum in the most effective compost, i.e., CPP followed by other disease-suppressive composts. Cross-examination of results with bioassay confirmed that composts with presence of selective bacterial community having no/very less disease incidence of Fusarium. It is clearly evident from the study that such kind of molecular markers can be developed and used in future research focusing on compost-based disease suppression.
Collapse
Affiliation(s)
- C. M. Mehta
- Department of Biological Sciences, College of Basic Sciences and Humanities, Govind Ballabh Pant University of Agriculture and Technology, U. S. Nagar, Pantnagar, Uttarakhand 263145 India
- Department of Botany, DSB Campus, Kumaun University, Nainital, Uttarakhand 263002 India
- School of Agriculture, Lovely Professional University, Phagwara, Punjab 144411 India
| | - Ramesh N. Pudake
- Amity Institute of Nanotechnology, Amity University Uttar Pradesh, Noida, UP 201313 India
| | - Rashmi Srivastava
- Department of Biological Sciences, College of Basic Sciences and Humanities, Govind Ballabh Pant University of Agriculture and Technology, U. S. Nagar, Pantnagar, Uttarakhand 263145 India
| | - Uma Palni
- Department of Botany, DSB Campus, Kumaun University, Nainital, Uttarakhand 263002 India
| | - Anil K. Sharma
- Department of Biological Sciences, College of Basic Sciences and Humanities, Govind Ballabh Pant University of Agriculture and Technology, U. S. Nagar, Pantnagar, Uttarakhand 263145 India
| |
Collapse
|
38
|
Jaiswal A, Elad Y, Graber E, Cytryn E, Frenkel O. Soil-borne disease suppression and plant growth promotion by biochar soil amendments and possible mode of action. ACTA ACUST UNITED AC 2018. [DOI: 10.17660/actahortic.2018.1207.9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
39
|
Zhu X, Chen B, Zhu L, Xing B. Effects and mechanisms of biochar-microbe interactions in soil improvement and pollution remediation: A review. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2017; 227:98-115. [PMID: 28458251 DOI: 10.1016/j.envpol.2017.04.032] [Citation(s) in RCA: 390] [Impact Index Per Article: 48.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Revised: 04/01/2017] [Accepted: 04/13/2017] [Indexed: 05/05/2023]
Abstract
Biochars have attracted tremendous attention due to their effects on soil improvement; they enhance carbon storage, soil fertility and quality, and contaminant (organic and heavy metal) immobilization and transformation. These effects could be achieved by modifying soil microbial habitats and (or) directly influencing microbial metabolisms, which together induce changes in microbial activity and microbial community structures. This review links microbial responses, including microbial activity, community structures and soil enzyme activities, with changes in soil properties caused by biochars. In particular, we summarized possible mechanisms that are involved in the effects that biochar-microbe interactions have on soil carbon sequestration and pollution remediation. Special attention has been paid to biochar effects on the formation and protection of soil aggregates, biochar adsorption of contaminants, biochar-mediated transformation of soil contaminants by microorganisms, and biochar-facilitated electron transfer between microbial cells and contaminants and soil organic matter. Certain reactive organic compounds and heavy metals in biochar may induce toxicity to soil microorganisms. Adsorption and hydrolysis of signaling molecules by biochar interrupts microbial interspecific communications, potentially altering soil microbial community structures. Further research is urged to verify the proposed mechanisms involved in biochar-microbiota interactions for soil remediation and improvement.
Collapse
Affiliation(s)
- Xiaomin Zhu
- Department of Environmental Science, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou 310058, China.
| | - Baoliang Chen
- Department of Environmental Science, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou 310058, China.
| | - Lizhong Zhu
- Department of Environmental Science, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou 310058, China.
| | - Baoshan Xing
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA 01003, United States.
| |
Collapse
|
40
|
Witkowska D, Buska-Pisarek K, Łaba W, Piegza M, Kancelista A. Effect of Lyophilization on Survivability and Growth Kinetic of Trichoderma Strains Preserved on Various Agriculture By-Products. Pol J Microbiol 2017; 66:181-188. [PMID: 28735312 DOI: 10.5604/01.3001.0010.4361] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Growth of four Trichoderma strains were tested on lignocellulosic by-products in solid state fermentation (SSF). The strains were also analyzed for their survival rate and growth after lyophilization on these carriers. All applied monocomponent and bicomponent media were substrates for the production and preservation of Trichoderma biomass. However, the maximum number of colony forming units (CFU/g dm) was acquired on bicomponent media based on dried grass and beet pulp or grass with corn cobs, when compared to monocomponent media. Although the process of lyophilization reduced the survival rate by 50%-60%, the actual number of viable cells in obtained biopreparations remained relatively high (0.58 × 108-1.68 × 108 CFU/g dm). The studied strains in the preserved biopreparations were characterized by a high growth rate, as evaluated in microcultures using the Bioscreen C system.
Collapse
Affiliation(s)
- Danuta Witkowska
- Department of Biotechnology and Food Microbiology, Wroclaw University of Environmental and Life Sciences, Wrocław, Poland
| | - Katarzyna Buska-Pisarek
- Laboratory of Reproductive Immunology, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | - Wojciech Łaba
- Department of Biotechnology and Food Microbiology, Wroclaw University of Environmental and Life Sciences, Wrocław, Poland
| | - Michał Piegza
- Department of Biotechnology and Food Microbiology, Wroclaw University of Environmental and Life Sciences, Wrocław, Poland
| | - Anna Kancelista
- Department of Biotechnology and Food Microbiology, Wroclaw University of Environmental and Life Sciences, Wrocław, Poland
| |
Collapse
|
41
|
Głuszek S, Sas-Paszt L, Sumorok B, Kozera R. Biochar-Rhizosphere Interactions – a Review. Pol J Microbiol 2017; 66:151-161. [DOI: 10.5604/01.3001.0010.6288] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Biochar is a solid material of biological origin obtained from biomass carbonization, designed as a mean to reduce greenhouse gases emission and carbon sequestration in soils for a long time. Biochar has a wide spectrum of practical utilization and is applied as a promising soil improver or fertilizer in agriculture, or as a medium for soil or water remediation. Preparations of biochar increase plant growth and yielding when applied into soil and also improve plant growth conditions, mainly bio, physical and chemical properties of soil. Its physical and chemical properties have an influence on bacteria, fungi and invertebrates, both in field and laboratory conditions. Such effects on rhizosphere organisms are positive or negative depending on biochar raw material origin, charring conditions, frequency of applications, applications method and doses, but long term effects are generally positive and are associated mainly with increased soil biota activity. However, a risk assessment of biochar applications is necessary to protect food production and the soil environment. This should be accomplished by biochar production and characterization, land use implementation, economic analysis, including life cycle assessment, and environmental impact assessment.
Collapse
Affiliation(s)
| | | | - Beata Sumorok
- Research Institute of Horticulture, Skierniewice, Poland
| | - Ryszard Kozera
- Warsaw University of Life Sciences – SGGW, Warsaw, Poland
| |
Collapse
|
42
|
Jaiswal AK, Elad Y, Paudel I, Graber ER, Cytryn E, Frenkel O. Linking the Belowground Microbial Composition, Diversity and Activity to Soilborne Disease Suppression and Growth Promotion of Tomato Amended with Biochar. Sci Rep 2017; 7:44382. [PMID: 28287177 PMCID: PMC5347032 DOI: 10.1038/srep44382] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 02/07/2017] [Indexed: 01/21/2023] Open
Abstract
Biochar, in addition to sequestering carbon, ameliorating soil, and improving plant performance, can impact foliar and soilborne plant diseases. Nevertheless, the mechanisms associated with suppression of soilborne diseases and improved plant performances are not well understood. This study is designed to establish the relationships between biochar-induced changes in rhizosphere microbial community structure, taxonomic and functional diversity, and activity with soilborne disease suppression and enhanced plant performance in a comprehensive fashion. Biochar suppressed Fusarium crown and root-rot of tomato and simultaneously improved tomato plant growth and physiological parameters. Furthermore, biochar reduced Fusarium root colonization and survival in soil, and increased the culturable counts of several biocontrol and plant growth promoting microorganisms. Illumina sequencing analyses of 16S rRNA gene revealed substantial differences in rhizosphere bacterial taxonomical composition between biochar-amended and non-amended treatments. Moreover, biochar amendment caused a significant increase in microbial taxonomic and functional diversity, microbial activities and an overall shift in carbon-source utilization. High microbial taxonomic and functional diversity and activity in the rhizosphere has been previously associated with suppression of diseases caused by soilborne pathogens and with plant growth promotion, and may collectively explain the significant reduction of disease and improvement in plant performance observed in the presence of biochar.
Collapse
Affiliation(s)
- Amit K. Jaiswal
- Department of Plant Pathology and Weed Research, Institute of Plant Protection, Agricultural Research Organization (ARO), The Volcani Center, Bet Dagan 50250, Israel
- Department of Soil Chemistry, Plant Nutrition and Microbiology, Institute of Soil, Water and Environmental Sciences, The Volcani Center, Bet Dagan 50250, Israel
- Department of Plant Pathology and Microbiology, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, P. O. Box 12, Rehovot, 76100, Israel
| | - Yigal Elad
- Department of Plant Pathology and Weed Research, Institute of Plant Protection, Agricultural Research Organization (ARO), The Volcani Center, Bet Dagan 50250, Israel
| | - Indira Paudel
- Department of Soil and Water Sciences, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, P. O. Box 12, Rehovot, 76100, Israel
| | - Ellen R. Graber
- Department of Soil Chemistry, Plant Nutrition and Microbiology, Institute of Soil, Water and Environmental Sciences, The Volcani Center, Bet Dagan 50250, Israel
| | - Eddie Cytryn
- Department of Soil Chemistry, Plant Nutrition and Microbiology, Institute of Soil, Water and Environmental Sciences, The Volcani Center, Bet Dagan 50250, Israel
| | - Omer Frenkel
- Department of Plant Pathology and Weed Research, Institute of Plant Protection, Agricultural Research Organization (ARO), The Volcani Center, Bet Dagan 50250, Israel
| |
Collapse
|
43
|
Copley T, Bayen S, Jabaji S. Biochar Amendment Modifies Expression of Soybean and Rhizoctonia solani Genes Leading to Increased Severity of Rhizoctonia Foliar Blight. FRONTIERS IN PLANT SCIENCE 2017; 8:221. [PMID: 28270822 PMCID: PMC5318381 DOI: 10.3389/fpls.2017.00221] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 02/06/2017] [Indexed: 06/06/2023]
Abstract
Application of biochar, a pyrolyzed biomass from organic sources, to agricultural soils is considered a promising strategy to sustain soil fertility leading to increased plant productivity. It is also known that applications of biochar to soilless potting substrates and to soil increases resistance of plants against diseases, but also bear the potential to have inconsistent and contradictory results depending on the type of biochar feedstock and application rate. The following study examined the effect of biochar produced from maple bark on soybean resistance against Rhizoctonia foliar blight (RFB) disease caused by Rhizoctonia solani, and examined the underlying molecular responses of both soybean and R. solani during interaction with biochar application. Soybean plants were grown in the presence of 1, 3, or 5% (w/w) or absence of maple bark biochar for 2 weeks, and leaves were infected with R. solani AG1-IA. At lower concentrations (1 and 3%), biochar was ineffective against RFB, however at the 5% amendment rate, biochar was conducive to RFB with a significant increase in disease severity. For the first time, soybean and R. solani responsive genes were monitored during the development of RFB on detached leaves of plants grown in the absence and presence of 5% biochar at 0, 6, 12, and 24 h post-inoculation (h.p.i.). Generally, large decreases in soybean transcript abundances of genes associated with primary metabolism such as glycolysis, tricarboxylic acid (TCA) cycle, starch, amino acid and glutathione metabolism together with genes associated with plant defense and immunity such as salicylic acid (SA) and jasmonic acid pathways were observed after exposure of soybean to high concentration of biochar. Such genes are critical for plant protection against biotic and abiotic stresses. The general down-regulation of soybean genes and changes in SA hormonal balance were tightly linked with an increased susceptibility to RFB. In conjunction, R. solani genes associated with carbohydrate metabolism were up-regulated, while genes involved in redox reactions and detoxification had varying effects. In conclusion, this study presents strong evidence that maple bark biochar increased susceptibility of soybean to a foliar disease. This condition is partly mediated by the down-regulation of soybean genes leading to reduced immunity and also affecting R. solani gene expression.
Collapse
Affiliation(s)
- Tanya Copley
- Plant Science Department, McGill UniversityMontreal, QC, Canada
| | - Stéphane Bayen
- Department of Food Science and Agricultural Chemistry, McGill UniversityMontreal, QC, Canada
| | - Suha Jabaji
- Plant Science Department, McGill UniversityMontreal, QC, Canada
| |
Collapse
|
44
|
Biochar for Horticultural Rooting Media Improvement: Evaluation of Biochar from Gasification and Slow Pyrolysis. AGRONOMY-BASEL 2017. [DOI: 10.3390/agronomy7010006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
45
|
Servin AD, De la Torre-Roche R, Castillo-Michel H, Pagano L, Hawthorne J, Musante C, Pignatello J, Uchimiya M, White JC. Exposure of agricultural crops to nanoparticle CeO 2 in biochar-amended soil. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2017; 110:147-157. [PMID: 27288265 DOI: 10.1016/j.plaphy.2016.06.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Revised: 05/27/2016] [Accepted: 06/01/2016] [Indexed: 06/06/2023]
Abstract
Biochar is seeing increased usage as an amendment in agricultural soils but the significance of nanoscale interactions between this additive and engineered nanoparticles (ENP) remains unknown. Corn, lettuce, soybean and zucchini were grown for 28 d in two different soils (agricultural, residential) amended with 0-2000 mg engineered nanoparticle (ENP) CeO2 kg-1 and biochar (350 °C or 600 °C) at application rates of 0-5% (w/w). At harvest, plants were analyzed for biomass, Ce content, chlorophyll and lipid peroxidation. Biomass from the four species grown in residential soil varied with species and biochar type. However, biomass in the agricultural soil amended with biochar 600 °C was largely unaffected. Biochar co-exposure had minimal impact on Ce accumulation, with reduced or increased Ce content occurring at the highest (5%) biochar level. Soil-specific and biochar-specific effects on Ce accumulation were observed in the four species. For example, zucchini grown in agricultural soil with 2000 mg CeO2 kg-1 and 350 °C biochar (0.5-5%) accumulated greater Ce than the control. However, for the 600 °C biochar, the opposite effect was evident, with decreased Ce content as biochar increased. A principal component analysis showed that biochar type accounted for 56-99% of the variance in chlorophyll and lipid peroxidation across the plants. SEM and μ-XRF showed Ce association with specific biochar and soil components, while μ-XANES analysis confirmed that after 28 d in soil, the Ce remained largely as CeO2. The current study demonstrates that biochar synthesis conditions significantly impact interactions with ENP, with subsequent effects on particle fate and effects.
Collapse
Affiliation(s)
- Alia D Servin
- Department of Analytical Chemistry, Connecticut Agricultural Experiment Station, New Haven, CT, 06511, United States
| | - Roberto De la Torre-Roche
- Department of Analytical Chemistry, Connecticut Agricultural Experiment Station, New Haven, CT, 06511, United States
| | | | - Luca Pagano
- Department of Analytical Chemistry, Connecticut Agricultural Experiment Station, New Haven, CT, 06511, United States; Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA, 01003, United States; Department of Life Sciences, University of Parma, 43124, Parma, Italy
| | - Joseph Hawthorne
- Department of Analytical Chemistry, Connecticut Agricultural Experiment Station, New Haven, CT, 06511, United States
| | - Craig Musante
- Department of Analytical Chemistry, Connecticut Agricultural Experiment Station, New Haven, CT, 06511, United States
| | - Joseph Pignatello
- Department of Environmental Sciences, Connecticut Agricultural Experiment Station, New Haven, CT, 06511, United States
| | | | - Jason C White
- Department of Analytical Chemistry, Connecticut Agricultural Experiment Station, New Haven, CT, 06511, United States.
| |
Collapse
|
46
|
Osorio-Guarín JA, Enciso-Rodríguez FE, González C, Fernández-Pozo N, Mueller LA, Barrero LS. Association analysis for disease resistance to Fusarium oxysporum in cape gooseberry (Physalis peruviana L). BMC Genomics 2016; 17:248. [PMID: 26988219 PMCID: PMC4797340 DOI: 10.1186/s12864-016-2568-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Accepted: 03/07/2016] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND Vascular wilt caused by Fusarium oxysporum is the most important disease in cape gooseberry (Physalis peruviana L.) in Colombia. The development of resistant cultivars is considered one of the most cost-effective means to reduce the impact of this disease. In order to do so, it is necessary to provide breeders with molecular markers and promising germplasm for introgression of different resistance loci as part of breeding schemes. Here we described an association mapping study in cape gooseberry with the goal to: (i) select promising materials for use in plant breeding and (ii) identify SNPs associated with the cape gooseberry resistance response to the F. oxysporum pathogen under greenhouse conditions, as potential markers for cape gooseberry breeding. RESULTS We found a total of 21 accessions with different resistance responses within a diversity panel of 100 cape gooseberry accessions. A total of 60,663 SNPs were also identified within the same panel by means of GBS (Genotyping By Sequencing). Model-based population structure and neighbor-joining analyses showed three populations comprising the cape gooseberry panel. After correction for population structure and kinship, we identified SNPs markers associated with the resistance response against F. oxysporum. The identification of markers was based on common tags using the reference genomes of tomato and potato as well as the root/stem transcriptome of cape gooseberry. By comparing their location with the tomato genome, 16 SNPs were found in genes involved in defense/resistance response to pathogens, likewise when compared with the genome of potato, 12 markers were related. CONCLUSIONS The work presented herein provides the first association mapping study in cape gooseberry showing both the identification of promising accessions with resistance response phenotypes and the identification of a set of SNP markers mapped to defense/resistance response genes of reference genomes. Thus, the work also provides new knowledge on candidate genes involved in the P. peruviana - F. oxysporum pathosystem as a foundation for further validation in marker-assisted selection. The results have important implications for conservation and breeding strategies in cape gooseberry.
Collapse
Affiliation(s)
- Jaime A. Osorio-Guarín
- />Tibaitatá Research Center, Colombian Corporation for Agricultural Research, Corpoica, Km 14 vía Mosquera, Bogotá, Colombia
| | - Felix E. Enciso-Rodríguez
- />Tibaitatá Research Center, Colombian Corporation for Agricultural Research, Corpoica, Km 14 vía Mosquera, Bogotá, Colombia
| | - Carolina González
- />Tibaitatá Research Center, Colombian Corporation for Agricultural Research, Corpoica, Km 14 vía Mosquera, Bogotá, Colombia
| | | | | | - Luz Stella Barrero
- />Agrobiodiversity Department, National Direction of Research and Development, Corpoica, Km 14 vía Mosquera, Bogotá, Colombia
| |
Collapse
|