1
|
Brkić A, Vila S, Šimić D, Jambrović A, Zdunić Z, Salaić M, Brkić J, Volenik M, Galić V. In-Season Predictions Using Chlorophyll a Fluorescence for Selecting Agronomic Traits in Maize. PLANTS (BASEL, SWITZERLAND) 2025; 14:1216. [PMID: 40284103 PMCID: PMC12030001 DOI: 10.3390/plants14081216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 04/08/2025] [Accepted: 04/09/2025] [Indexed: 04/29/2025]
Abstract
Traditional maize (Zea mays L.) breeding approaches use directly measured phenotypic performance to make decisions for the next generation of crosses. Indirect assessment of cultivar performance can be utilized using various methods such as genomic predictions and remote sensing. However, some secondary traits might expand the breeder's ability to make informed decisions within a single season, facilitating an increase in breeding speed. We hypothesized that assessment of photosynthetic performance with chlorophyll a fluorescence (ChlF) might be efficient for in-season predictions of yield and grain moisture. The experiment was set with 16 maize hybrids over three consecutive years (2017-2019). ChlF was measured on dark-adapted leaves in the morning during anthesis. Partial least squares models were fitted and the efficiency of indirect selection was assessed. The results showed variability in the traits used in this study. Genetic correlations among all traits were mainly very weak and negative. Heritability estimates for all traits were moderately high to high. The model with 10 latent variables showed a higher predictive ability for grain yield (GY) than other models. The efficiency of the indirect selection for GY using biophysical parameters was lower than direct selection efficiency, while the indirect selection efficiency for grain moisture using biophysical parameters was relatively high. The results of this study highlight the significance and applicability of the ChlF transients in maize breeding programs.
Collapse
Affiliation(s)
- Andrija Brkić
- Agricultural Institute Osijek, 31000 Osijek, Croatia; (D.Š.); (A.J.); (Z.Z.); (M.S.); (J.B.); (M.V.)
| | - Sonja Vila
- Department for Plant Production and Biotechnology, Faculty of Agrobiotechnical Sciences Osijek, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia;
| | - Domagoj Šimić
- Agricultural Institute Osijek, 31000 Osijek, Croatia; (D.Š.); (A.J.); (Z.Z.); (M.S.); (J.B.); (M.V.)
| | - Antun Jambrović
- Agricultural Institute Osijek, 31000 Osijek, Croatia; (D.Š.); (A.J.); (Z.Z.); (M.S.); (J.B.); (M.V.)
| | - Zvonimir Zdunić
- Agricultural Institute Osijek, 31000 Osijek, Croatia; (D.Š.); (A.J.); (Z.Z.); (M.S.); (J.B.); (M.V.)
| | - Miroslav Salaić
- Agricultural Institute Osijek, 31000 Osijek, Croatia; (D.Š.); (A.J.); (Z.Z.); (M.S.); (J.B.); (M.V.)
| | - Josip Brkić
- Agricultural Institute Osijek, 31000 Osijek, Croatia; (D.Š.); (A.J.); (Z.Z.); (M.S.); (J.B.); (M.V.)
| | - Mirna Volenik
- Agricultural Institute Osijek, 31000 Osijek, Croatia; (D.Š.); (A.J.); (Z.Z.); (M.S.); (J.B.); (M.V.)
| | - Vlatko Galić
- Agricultural Institute Osijek, 31000 Osijek, Croatia; (D.Š.); (A.J.); (Z.Z.); (M.S.); (J.B.); (M.V.)
| |
Collapse
|
2
|
Ferguson JN, Caproni L, Walter J, Shaw K, Arce-Cubas L, Baines A, Thein MS, Mager S, Taylor G, Cackett L, Mathan J, Vath RL, Martin L, Genty B, Pè ME, Lawson T, Dell’Acqua M, Kromdijk J. A deficient CP24 allele defines variation for dynamic nonphotochemical quenching and photosystem II efficiency in maize. THE PLANT CELL 2025; 37:koaf063. [PMID: 40132112 PMCID: PMC12018801 DOI: 10.1093/plcell/koaf063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Accepted: 02/12/2025] [Indexed: 03/27/2025]
Abstract
Maize (Zea mays L.) is a global crop species in which CO2 assimilation occurs via the C4 pathway. C4 photosynthesis is typically more efficient than C3 photosynthesis under warm and dry conditions; however, despite this inherent advantage, considerable variation remains in photosynthetic efficiency for C4 species that could be leveraged to benefit crop performance. Here, we investigate the genetic architecture of nonphotochemical quenching (NPQ) and photosystem II (PSII) efficiency using a combination of high-throughput phenotyping and quantitative trait loci (QTL) mapping in a field-grown Multi-parent Advanced Generation Inter-Cross (MAGIC) mapping population. QTL mapping was followed by the identification of putative candidate genes using a combination of genomics, transcriptomics, protein biochemistry, and targeted physiological phenotyping. We identified four genes with a putative causal role in the observed QTL effects. The highest confidence causal gene was found for a large effect QTL for photosynthetic efficiency on chromosome 10, which was underpinned by allelic variation in the expression of the minor PSII antenna protein light harvesting complex photosystem II subunit (LHCB6 or CP24), mainly driven by poor expression associated with the haplotype of the F7 founder line. The historical role of this line in breeding for early flowering time may suggest that the presence of this deficient allele could be enriched in temperate maize germplasm. These findings advance our understanding of the genetic basis of NPQ and PSII efficiency in C4 plants and highlight the potential for breeding strategies aimed at optimizing photosynthetic efficiency in maize.
Collapse
Affiliation(s)
- John N Ferguson
- Department of Plant Sciences, University of Cambridge, Cambridge, Cambridgeshire CB2 3EA, UK
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester, Essex CO4 3SQ, UK
| | - Leonardo Caproni
- Institute of Plant Sciences, Scuola Superiore Sant’Anna, 56127 Pisa, Italy
| | - Julia Walter
- Department of Plant Sciences, University of Cambridge, Cambridge, Cambridgeshire CB2 3EA, UK
| | - Katie Shaw
- Department of Plant Sciences, University of Cambridge, Cambridge, Cambridgeshire CB2 3EA, UK
| | - Lucia Arce-Cubas
- Department of Plant Sciences, University of Cambridge, Cambridge, Cambridgeshire CB2 3EA, UK
| | - Alice Baines
- Department of Plant Sciences, University of Cambridge, Cambridge, Cambridgeshire CB2 3EA, UK
| | - Min Soe Thein
- Institute of Plant Sciences, Scuola Superiore Sant’Anna, 56127 Pisa, Italy
| | - Svenja Mager
- Institute of Plant Sciences, Scuola Superiore Sant’Anna, 56127 Pisa, Italy
| | - Georgia Taylor
- Department of Plant Sciences, University of Cambridge, Cambridge, Cambridgeshire CB2 3EA, UK
| | - Lee Cackett
- Department of Plant Sciences, University of Cambridge, Cambridge, Cambridgeshire CB2 3EA, UK
| | - Jyotirmaya Mathan
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester, Essex CO4 3SQ, UK
| | - Richard L Vath
- Department of Plant Sciences, University of Cambridge, Cambridge, Cambridgeshire CB2 3EA, UK
| | - Leo Martin
- Commissariat à l'Energie Atomique, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7265, Institut de Biosciences et Biotechnologies Aix-Marseille, Université Aix-Marseille, Saint-Paul-lez-Durance 13108, France
| | - Bernard Genty
- Commissariat à l'Energie Atomique, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7265, Institut de Biosciences et Biotechnologies Aix-Marseille, Université Aix-Marseille, Saint-Paul-lez-Durance 13108, France
| | - Mario Enrico Pè
- Institute of Plant Sciences, Scuola Superiore Sant’Anna, 56127 Pisa, Italy
| | - Tracy Lawson
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester, Essex CO4 3SQ, UK
| | - Matteo Dell’Acqua
- Institute of Plant Sciences, Scuola Superiore Sant’Anna, 56127 Pisa, Italy
| | - Johannes Kromdijk
- Department of Plant Sciences, University of Cambridge, Cambridge, Cambridgeshire CB2 3EA, UK
- Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
3
|
Martina A, Ferroni L, Marrocchino E. The Soil-Plant Continuity of Rare Earth Elements: Insights into an Enigmatic Class of Xenobiotics and Their Interactions with Plant Structures and Processes. J Xenobiot 2025; 15:46. [PMID: 40126264 PMCID: PMC11932217 DOI: 10.3390/jox15020046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 03/17/2025] [Accepted: 03/18/2025] [Indexed: 03/25/2025] Open
Abstract
Rare earth elements (REEs) are increasingly present in the environment owing to their extensive use in modern industries, yet their interactions with plants remain poorly understood. This review explores the soil-plant continuum of REEs, focusing on their geochemical behavior in soil, the mechanisms of plant uptake, and fractionation processes. While REEs are not essential for plant metabolism, they interact with plant structures and interfere with the normal functioning of biological macromolecules. Accordingly, the influence of REEs on the fundamental physiological functions of plants is reviewed, including calcium-mediated signalling and plant morphogenesis. Special attention is paid to the interaction of REEs with photosynthetic machinery and, particularly, the thylakoid membrane. By examining both the beneficial effects at low concentrations and toxicity at higher levels, this review provides some mechanistic insights into the hormetic action of REEs. It is recommended that future research should address knowledge gaps related to the bioavailability of REEs to plants, as well as the short- and long-range transport mechanisms responsible for REE fractionation. A better understanding of REE-plant interactions will be critical in regard to assessing their ecological impact and the potential risks in terms of agricultural and natural ecosystems, to ensure that the benefits of using REEs are not at the expense of environmental integrity or human health.
Collapse
Affiliation(s)
| | - Lorenzo Ferroni
- Department of Environmental and Prevention Sciences, University of Ferrara, 44121 Ferrara, Italy; (A.M.); (E.M.)
| | | |
Collapse
|
4
|
Kolaksazov M, Vasileva I, Stoycheva I. Physiological and biochemical response of mixed lupine and barley cultures under changing environmental conditions during spring. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2025; 31:493-505. [PMID: 40256278 PMCID: PMC12006630 DOI: 10.1007/s12298-025-01577-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 02/06/2025] [Accepted: 03/18/2025] [Indexed: 04/22/2025]
Abstract
Mixed cultivation of grass-legume forage crops, such as lupine (Lupinus albus L.) and barley (Hordeum vulgare L.), offers significant advantages in terms of nitrogen utilization, stress resistance and a balanced diet for ruminants. This study explored the symbiotic effects of these crops on photosynthesis and stress tolerance via measuring key physiological and biochemical parameters. Measurements were performed on the photosynthetic activity, chlorophyll and carotenoid content, glycolate oxidase activity, antioxidant capacity, and total phenolic content. The varying temperatures during May, allowed the effects of mixed cultivation on the response to chilling to be analyzed. Notably, barley monoculture was the most affected by the decreased temperatures. In general, mixed culture showed mitigation of the effects from chilling, as compared with both lupine and barley monocultures alone. These results suggest an adaptive synergy between lupine and barley, highlighting the potential advantages of mixed cultivation for improving stress tolerance and overall crop performance.
Collapse
Affiliation(s)
- Marko Kolaksazov
- Institute of Forage Crops - Pleven, Agricultural Academy, “Gen. Vl. Vazov” Str. 89, 5804 Pleven, Bulgaria
| | - Ivanina Vasileva
- Institute of Forage Crops - Pleven, Agricultural Academy, “Gen. Vl. Vazov” Str. 89, 5804 Pleven, Bulgaria
| | - Ina Stoycheva
- Institute of Forage Crops - Pleven, Agricultural Academy, “Gen. Vl. Vazov” Str. 89, 5804 Pleven, Bulgaria
| |
Collapse
|
5
|
Zhang Y, Li T, Lin Y, Xu D, Jiao H. Physiological effects of sulfadiazine and sulfamethoxazole on Skeletonema costatum and toxicological evaluation using IBR v2 index. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 292:117881. [PMID: 39999626 DOI: 10.1016/j.ecoenv.2025.117881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 12/20/2024] [Accepted: 02/10/2025] [Indexed: 02/27/2025]
Abstract
Sulfonamide antibiotics, widely used in human and veterinary medicine as well as agriculture, pose environmental concerns due to their stability and poor biodegradability. This study fills a critical gap in understanding the ecological impact of sulfonamide antibiotics on marine microalgae, particularly Skeletonema costatum, a key primary producer in marine ecosystems. This study investigated the biological responses of the marine microalga Skeletonema costatum to sulfadiazine (SD) and sulfamethoxazole (SMX). Both antibiotics significantly impacted S. costatum, with SD having a more pronounced effect. Growth studies showed a clear dose-response relationship: Low concentrations (0.5 mg/L) of SD and SMX stimulated growth, while higher concentrations (3 mg/L, 5 mg/L, and 10 mg/L) inhibited growth. The 96-hour half-maximal inhibitory concentrations (96h-IC50) were 1.654 mg/L and 1.838 mg/L, respectively, initially indicating that SD has a stronger inhibitory effect on S. costatum than SMX. Photosynthetic activity, measured by chlorophyll a content and the maximum quantum yield of photosystem II (Fv/Fm) values, showed that low concentrations (0.5 mg/L) of SD and SMX increased photosynthetic efficiency, while high concentrations (3 mg/L, 5 mg/L, and 10 mg/L) significantly inhibited it. Antioxidants activity analysis revealed that SD and SMX exposure altered superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), glutathione reductase (GR), and malondialdehyde (MDA) levels. SOD, GR, and GSH-Px levels initially increased but later decreased, suggesting a synergistic effect, while MDA levels consistently increased, indicating oxidative stress and biochemical disruption in algal cells. The Integrated Biomarker Response Version 2 (IBRv2) index provided a comprehensive evaluation of the ecological risks posed by SD and SMX, demonstrating that these antibiotics can significantly disrupt the physiology of marine microalgae. The IBRv2 index provided a comprehensive evaluation of the ecological risks posed by SD and SMX, demonstrating that these antibiotics can significantly disrupt the physiology of marine microalgae. Higher IBRv2 values for SD exposure indicated more substantial impacts on S. costatum. This study underscores the significant ecological risks of sulfonamide antibiotics in marine environments, highlighting the need for further research and regulation to mitigate their impact.
Collapse
Affiliation(s)
- Yurong Zhang
- College of Biological & Environmental Sciences, Zhejiang Wanli University, Ningbo, Zhejiang 315100, China
| | - Tiejun Li
- Zhejiang Marine Fisheries Research Institute, Key Lab of Mariculture and Enhancement of Zhejiang Province, Zhoushan 316100, China
| | - Yuxin Lin
- Zhejiang Marine Fisheries Research Institute, Key Lab of Mariculture and Enhancement of Zhejiang Province, Zhoushan 316100, China
| | - Dongdong Xu
- Zhejiang Marine Fisheries Research Institute, Key Lab of Mariculture and Enhancement of Zhejiang Province, Zhoushan 316100, China.
| | - Haifeng Jiao
- College of Biological & Environmental Sciences, Zhejiang Wanli University, Ningbo, Zhejiang 315100, China.
| |
Collapse
|
6
|
Dubey G, Phillips AL, Kemp DJ, Atwell BJ. Physiological and structural traits contribute to thermotolerance in wild Australian cotton species. ANNALS OF BOTANY 2025; 135:577-588. [PMID: 38980751 PMCID: PMC11897598 DOI: 10.1093/aob/mcae098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 07/03/2024] [Indexed: 07/11/2024]
Abstract
BACKGROUND AND AIMS Five species of cotton (Gossypium) were exposed to 38 °C days during early vegetative development. Commercial cotton (Gossypium hirsutum) was contrasted with four wild cotton species (Gossypium australe, G. bickii, G. robinsonii and G. sturtianum) that are endemic to central and northern Australia. METHODS Plants were grown at daytime maxima of 30 or 38 °C for 25 days, commencing at the four-leaf stage. Leaf areas and shoot biomass were used to calculate relative rates of growth and specific leaf areas. Leaf gas exchange measurements revealed assimilation and transpiration rates, in addition to electron transport rates and carboxylation efficiency in steady-state conditions. Finally, leaf morphological traits (mean leaf area and leaf shape) were quantified, along with leaf surface decorations, imaged using scanning electron microscopy. KEY RESULTS Shoot morphology was differentially affected by heat, with three of the four wild species growing faster at 38 than at 30 °C, whereas early growth in G. hirsutum was severely inhibited by heat. Areas of individual leaves and the number of leaves both contributed to these contrasting growth responses, with fewer, smaller leaves at 38 °C in G. hirsutum. CO2 assimilation and transpiration rates of G. hirsutum were also dramatically reduced by heat. Cultivated cotton failed to achieve evaporative cooling, contrasting with the transpiration-driven cooling in the wild species. Heat substantially reduced electron transport rates and carboxylation efficiency in G. hirsutum, with much smaller effects in the wild species. We speculate that leaf shape, as assessed by invaginations of leaf margins, and leaf size contributed to heat dispersal differentially among the five species. Likewise, reflectance of light radiation was also highly distinctive for each species. CONCLUSIONS These four wild Australian relatives of cotton have adapted to hot days that are inhibitory to commercial cotton, deploying a range of physiological and structural adaptations to achieve accelerated growth at 38 °C.
Collapse
Affiliation(s)
- Garima Dubey
- Hawkesbury Institute for the Environment, University of Western Sydney, Sydney, NSW, Australia
| | - Aaron L Phillips
- Department of Food Science, University of Adelaide, Adelaide, SA, Australia
| | - Darrell J Kemp
- School of Natural Sciences, Macquarie University, Sydney, NSW, Australia
| | - Brian J Atwell
- School of Natural Sciences, Macquarie University, Sydney, NSW, Australia
| |
Collapse
|
7
|
Somkuwar RG, Dhole AM. Understanding the photosynthesis in relation to climate change in grapevines. Theory Biosci 2025:10.1007/s12064-025-00435-w. [PMID: 39953364 DOI: 10.1007/s12064-025-00435-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 01/26/2025] [Indexed: 02/17/2025]
Abstract
Due to predicted global climate change, there have been significant alterations in agricultural production patterns, which had a negative impact on ecosystems as well as the commercial and export prospects for the production of grapevines. The natural biochemistry of grapevines, including their chlorophyll content, net photosynthetic rate, Fv/Fm ratio, photorespiration, reduced yield, and quality is also anticipated to be negatively impacted by the various effects of light, temperature, and carbon dioxide at elevated scales. Grapevine phenology, physiology, and quality are impacted by the inactivation of photosystems (I and II), the Rubisco enzyme system, pigments, chloroplast integrity, and light intensity by temperature and increasing CO2 levels. Grape phenological events are considerably altered by climatic conditions; in particular, berries mature earlier, increasing the sugar-to-acid ratio. In enology, the sugar-to-acid ratio is crucial since it determines the wine's final alcohol concentration and flavour. As light intensity and CO2 levels rise, the biosynthesis of anthocyanins and tannins declines. As the temperature rises, the production of antioxidants diminishes, affecting the quality of raisins. Table grapes are more sensitive to temperature because of physiological problems like pink berries and a higher sugar-to-acidity ratio. Therefore, the systemic impact of light intensity, temperature, and increasing CO2 levels on grapevine physiology, phenology, photosystems, photosynthesis enzyme system, and adaptive strategies for grape producers and researchers are highlighted in this article.
Collapse
Affiliation(s)
| | - Archana M Dhole
- ICAR-National Research Centre for Grapes, Pune, 412307, India
| |
Collapse
|
8
|
Abdelkhalik A, Gyushi MAH, Howladar SM, Kutby AM, Asiri NA, Baeshen AA, Nahari AM, Alsamadany H, Semida WM. Synergistic Effects of Zinc Oxide Nanoparticles and Moringa Leaf Extracts on Drought Tolerance and Productivity of Cucurbita pepo L. Under Saline Conditions. PLANTS (BASEL, SWITZERLAND) 2025; 14:544. [PMID: 40006803 PMCID: PMC11860005 DOI: 10.3390/plants14040544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 01/25/2025] [Accepted: 02/06/2025] [Indexed: 02/27/2025]
Abstract
This study investigated the combined effects of zinc oxide nanoparticles (Nano-Zn) and moringa leaf extract (MLE) on squash plants grown under water stress conditions in saline soil during 2021-2022. The research compared full irrigation (100% ETc) with water deficit conditions (60% ETc). While water deficit negatively impacted plant growth, yield, and various physiological parameters, the sequential application of Nano-Zn (at 50 or 100 mg L-1) with MLE (3%) significantly mitigated these adverse effects. The combined treatment proved more effective than individual applications, enhancing growth parameters, photosynthetic efficiency, and antioxidant systems. The treatment particularly improved stress tolerance by increasing protective compounds like soluble sugars and amino acids while reducing harmful H2O2 levels. The study concluded that sequential application of 100 mg L-1 Nano-Zn with MLE was optimal for enhancing squash performance under drought stress, with 50 mg L-1 Nano-Zn plus MLE as the second-best option.
Collapse
Affiliation(s)
- Abdelsattar Abdelkhalik
- Horticulture Department, Faculty of Agriculture, Fayoum University, Fayoum 63514, Egypt; (A.A.); (M.A.H.G.)
| | - Mohammed A. H. Gyushi
- Horticulture Department, Faculty of Agriculture, Fayoum University, Fayoum 63514, Egypt; (A.A.); (M.A.H.G.)
| | - Saad M. Howladar
- Department of Biological Sciences, College of Science, University of Jeddah, Jeddah 21959, Saudi Arabia; (S.M.H.); (A.M.K.); (N.A.A.); (A.A.B.); (A.M.N.)
| | - Abeer M. Kutby
- Department of Biological Sciences, College of Science, University of Jeddah, Jeddah 21959, Saudi Arabia; (S.M.H.); (A.M.K.); (N.A.A.); (A.A.B.); (A.M.N.)
| | - Nouf A. Asiri
- Department of Biological Sciences, College of Science, University of Jeddah, Jeddah 21959, Saudi Arabia; (S.M.H.); (A.M.K.); (N.A.A.); (A.A.B.); (A.M.N.)
| | - Areej A. Baeshen
- Department of Biological Sciences, College of Science, University of Jeddah, Jeddah 21959, Saudi Arabia; (S.M.H.); (A.M.K.); (N.A.A.); (A.A.B.); (A.M.N.)
| | - Aziza M. Nahari
- Department of Biological Sciences, College of Science, University of Jeddah, Jeddah 21959, Saudi Arabia; (S.M.H.); (A.M.K.); (N.A.A.); (A.A.B.); (A.M.N.)
| | - Hameed Alsamadany
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Wael M. Semida
- Horticulture Department, Faculty of Agriculture, Fayoum University, Fayoum 63514, Egypt; (A.A.); (M.A.H.G.)
| |
Collapse
|
9
|
Kumar A, Yadav PK, Singh A. Physiological and metabolome characterization of Amaranthus hybridus L. grown under cypermethrin stress: an insight of Jasmonic acid treatment. BMC PLANT BIOLOGY 2025; 25:137. [PMID: 39893397 PMCID: PMC11786400 DOI: 10.1186/s12870-025-06131-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Accepted: 01/21/2025] [Indexed: 02/04/2025]
Abstract
The indiscriminate use of pesticides compromises physiology and metabolism in crops, posing health risks through residue accumulation in edible tissues. Amaranthus hybridus L., a fast growing, nutritionally and medicinally valuable crop was studied here to assess the impact of cypermethrin (CYP) at recommended (R1, 100 ppm) and double dose (R2, 200 ppm) alongside foliar application of jasmonic acid (JA) at 50 µM, 100 µM, and 200 µM concentrations. CYP at R1 dose induced hormesis, while R2 was toxic, elevating the production of ROS molecules (H2O2, SOR, MDA). JA application upregulated the antioxidant activity of SOD, POD, APX, GST, DHAR, GSH, and proline to alleviate oxidative stress and improve growth indicators, including shoot length, leaf area, chlorophyll content, Fv/Fm ratio, and biomass. JA at 100 µM yielded the highest increase in biomass, 11.52% and 13.7% for R1 and R2 treated plants, respectively and also led to reduced accumulation of CYP residues. The UHPLC-MS analysis of leaf tissue revealed increase in the contents of carotenoids, flavonoids, phenolics, phenylpropanoids, steroids content in the plant group combinedly treated with JA and CYP compared to those treated with CYP alone, indicating a protective and growth-promoting role of JA under pesticide stress conditions. Overall, 100 µM concentration of JA proved to be effective against the stress induced by the either dose of CYP in the study. These insights could offer strategies to reduce pesticide-induced damage in vegetable crops, advancing sustainable agriculture.
Collapse
Affiliation(s)
- Arun Kumar
- Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, U.P, 221005, India
| | - Pradeep Kumar Yadav
- Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, U.P, 221005, India
| | - Anita Singh
- Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, U.P, 221005, India.
| |
Collapse
|
10
|
Pipiak P, Sieczyńska K, Gendaszewska D, Skwarek-Fadecka M. Effect of Pre-Sowing Seed Stimulation on Maize Seedling Vigour. Int J Mol Sci 2024; 25:12480. [PMID: 39596545 PMCID: PMC11594436 DOI: 10.3390/ijms252212480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 11/14/2024] [Accepted: 11/18/2024] [Indexed: 11/28/2024] Open
Abstract
The aim of this study was to investigate the effects of treating maize (Zea mays L.) seeds with fish collagen hydrolysate (FC) and keratin (KE) derived from animal waste by-products of leather and meat production, as well as poly(hexamethylene biguanide) hydrochloride (P) and bentonite (B). This research is in line with the search for new, environmentally friendly methods to increase yields of industrial crops in a way that is compatible with sustainable development. The effect of the binders used was investigated by analysing the grown maize seedlings by determining changes in parameters of chlorophyll fluorescence, photosynthetic pigments, elemental composition and FTIR analysis on maize shoots. The results indicated a slightly higher fresh weight (FW) of shoots in plants treated with fish collagen, PHMB and bentonite (FC+P+B) and FW of roots in plants treated with keratin, PHMB and bentonite (KE+P+B). Unexpectedly, the FW and dry weight (DW) of both roots and shoots of all bentonite-treated plants were significantly higher than the corresponding non-bentonite-treated groups. In addition, changes in chlorophyll-a fluorescence were observed for the keratin, PHMB and bentonite variants. This study showed that the proposed materials could be promising seed pelleting agents to improve seed growth and yield.
Collapse
Affiliation(s)
- Paulina Pipiak
- Łukasiewicz Research Network—Lodz Institute of Technology, 73 Zgierska Str., 91-463 Łódź, Poland; (K.S.); (D.G.)
| | - Katarzyna Sieczyńska
- Łukasiewicz Research Network—Lodz Institute of Technology, 73 Zgierska Str., 91-463 Łódź, Poland; (K.S.); (D.G.)
| | - Dorota Gendaszewska
- Łukasiewicz Research Network—Lodz Institute of Technology, 73 Zgierska Str., 91-463 Łódź, Poland; (K.S.); (D.G.)
| | - Monika Skwarek-Fadecka
- Department of Plant Ecophysiology, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, 90-237 Łódź, Poland;
| |
Collapse
|
11
|
Krzemińska B, Borkowska I, Malm M, Tchórzewska D, Vangronsveld J, Vassilev A, Dos Santos Szewczyk K, Wójcik M. Comparative study of the photosynthetic efficiency and leaf structure of four Cotoneaster species. Sci Rep 2024; 14:25113. [PMID: 39443611 PMCID: PMC11499681 DOI: 10.1038/s41598-024-75434-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 10/04/2024] [Indexed: 10/25/2024] Open
Abstract
Plants belonging to the genus Cotoneaster can be valuable sources of phytochemicals with potential therapeutic properties. The natural habitats of most of these species are situated in Asia, Africa and southern Europe. Introducing them into other climatic conditions could expose them to abiotic and biotic stresses, affecting their bioactive properties. The aim of this study was to assess and compare the performance of four non-native Cotoneaster species (C. roseus, C. hissaricus, C. hsingshangensis, C. nebrodensis) grown in eastern Poland in terms of leaf morphology, anatomy, and efficiency of the photosynthetic apparatus in relation to lipid peroxidation level, being an indicator of oxidative stress. Photosynthetic pigments concentration and chlorophyll a fluorescence parameters were used to evaluate the photosynthetic capacity. The morphological and anatomical analysis of leaves did not show any anomalies or stress symptoms. Cotoneaster roseus was characterized by the highest chlorophyll concentration, viability index (Rfd) and a moderate lipid peroxidation level. On the other hand, the lowest values of photochemical quenching (qP), maximum fluorescence (Fm), Rfd, and quantum yield of the photosystem II (QY) observed for C. nebrodensis might indicate an inferior efficiency of the photosynthetic apparatus in this species; however, it demonstrated the lowest lipid peroxidation level. Nevertheless, the content and proportion of the photosynthetic pigments as well as overall chlorophyll a fluorescence parameters and lipid peroxidation levels indicate a good physiological condition of all examined plants. The observed differences between the species may be rather species specific and genetically established and not indicate their sensitivity to non-native growth conditions. This is the first report about the physiological parameters of the four Cotoneaster species, proving they are well adapted to growth in the climatic conditions of central Europe providing thus a raw material with potential for pharmaceutical applications.
Collapse
Affiliation(s)
- Barbara Krzemińska
- Department of Pharmaceutical Botany, Medical University of Lublin, Chodźki 1, 20-093, Lublin, Poland
| | - Izabela Borkowska
- Department of Plant Physiology and Biophysics, Institute of Biological Sciences, Maria Curie- Skłodowska University, Akademicka 19, 20-033, Lublin, Poland
| | - Maria Malm
- Department of Medical Informatics and Statistics with e-Health Lab, Medical University of Lublin, ul. Jaczewskiego 4, 20-090, Lublin, Poland
| | - Dorota Tchórzewska
- Department of Cell Biology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Akademicka 19, 20-033, Lublin, Poland
| | - Jaco Vangronsveld
- Department of Plant Physiology and Biophysics, Institute of Biological Sciences, Maria Curie- Skłodowska University, Akademicka 19, 20-033, Lublin, Poland
- Environmental Biology, Centre for Environmental Sciences, Hasselt University, Agoralaan Building D, 3590, Diepenbeek, Belgium
| | - Andon Vassilev
- Department of Plant Physiology, Biochemistry and Genetics, Faculty of Agronomy, Agricultural University, Mendeleev Str. 12, 4000, Plovdiv, Bulgaria
| | | | - Małgorzata Wójcik
- Department of Plant Physiology and Biophysics, Institute of Biological Sciences, Maria Curie- Skłodowska University, Akademicka 19, 20-033, Lublin, Poland.
| |
Collapse
|
12
|
Falcioni R, Antunes WC, de Oliveira RB, Chicati ML, Demattê JAM, Nanni MR. Comparative Insights into Photosynthetic, Biochemical, and Ultrastructural Mechanisms in Hibiscus and Pelargonium Plants. PLANTS (BASEL, SWITZERLAND) 2024; 13:2831. [PMID: 39409701 PMCID: PMC11478917 DOI: 10.3390/plants13192831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 10/05/2024] [Accepted: 10/08/2024] [Indexed: 10/20/2024]
Abstract
Understanding photosynthetic mechanisms in different plant species is crucial for advancing agricultural productivity and ecological restoration. This study presents a detailed physiological and ultrastructural comparison of photosynthetic mechanisms between Hibiscus (Hibiscus rosa-sinensis L.) and Pelargonium (Pelargonium zonale (L.) L'Hér. Ex Aiton) plants. The data collection encompassed daily photosynthetic profiles, responses to light and CO2, leaf optical properties, fluorescence data (OJIP transients), biochemical analyses, and anatomical observations. The findings reveal distinct morphological, optical, and biochemical adaptations between the two species. These adaptations were associated with differences in photochemical (AMAX, E, Ci, iWUE, and α) and carboxylative parameters (VCMAX, ΓCO2, gs, gm, Cc, and AJMAX), along with variations in fluorescence and concentrations of chlorophylls and carotenoids. Such factors modulate the efficiency of photosynthesis. Energy dissipation mechanisms, including thermal and fluorescence pathways (ΦPSII, ETR, NPQ), and JIP test-derived metrics highlighted differences in electron transport, particularly between PSII and PSI. At the ultrastructural level, Hibiscus exhibited optimised cellular and chloroplast architecture, characterised by increased chloroplast density and robust grana structures. In contrast, Pelargonium displayed suboptimal photosynthetic parameters, possibly due to reduced thylakoid counts and a higher proportion of mitochondria. In conclusion, while Hibiscus appears primed for efficient photosynthesis and energy storage, Pelargonium may prioritise alternative cellular functions, engaging in a metabolic trade-off.
Collapse
Affiliation(s)
- Renan Falcioni
- Department of Agronomy, State University of Maringá, Av. Colombo, 5790, Maringá 87020-900, Paraná, Brazil; (W.C.A.); (R.B.d.O.); (M.L.C.); (M.R.N.)
| | - Werner Camargos Antunes
- Department of Agronomy, State University of Maringá, Av. Colombo, 5790, Maringá 87020-900, Paraná, Brazil; (W.C.A.); (R.B.d.O.); (M.L.C.); (M.R.N.)
| | - Roney Berti de Oliveira
- Department of Agronomy, State University of Maringá, Av. Colombo, 5790, Maringá 87020-900, Paraná, Brazil; (W.C.A.); (R.B.d.O.); (M.L.C.); (M.R.N.)
| | - Marcelo Luiz Chicati
- Department of Agronomy, State University of Maringá, Av. Colombo, 5790, Maringá 87020-900, Paraná, Brazil; (W.C.A.); (R.B.d.O.); (M.L.C.); (M.R.N.)
| | - José Alexandre M. Demattê
- Department of Soil Science, Luiz de Queiroz College of Agriculture, University of São Paulo, Av. Pádua Dias, 11, Piracicaba 13418-260, São Paulo, Brazil;
| | - Marcos Rafael Nanni
- Department of Agronomy, State University of Maringá, Av. Colombo, 5790, Maringá 87020-900, Paraná, Brazil; (W.C.A.); (R.B.d.O.); (M.L.C.); (M.R.N.)
| |
Collapse
|
13
|
Gonçalves FCDM, Mantoan LPB, Corrêa CV, Parreiras NDS, de Almeida LFR, Ono EO, Rodrigues JD, Prado RDM, Boaro CSF. Effects of Salicylic Acid on Physiological Responses of Pepper Plants Pre-Subjected to Drought under Rehydration Conditions. PLANTS (BASEL, SWITZERLAND) 2024; 13:2805. [PMID: 39409675 PMCID: PMC11479176 DOI: 10.3390/plants13192805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 09/28/2024] [Accepted: 09/29/2024] [Indexed: 10/20/2024]
Abstract
Capsicum annuum L. has worldwide distribution, but drought has limited its production. There is a lack of research to better understand how this species copes with drought stress, whether it is reversible, and the effects of mitigating agents such as salicylic acid (SA). Therefore, this study aimed to understand the mechanisms of action of SA and rehydration on the physiology of pepper plants grown under drought conditions. The factorial scheme adopted was 3 × 4, with three water regimes (irrigation, drought, and rehydration) and four SA concentrations, namely: 0 (control), 0.5, 1, and 1.5 mM. This study evaluated leaf water percentage, water potential of shoots, chlorophylls (a and b), carotenoids, stomatal conductance, chlorophyll a fluorescence, and hydrogen peroxide (H2O2) concentration at different times of day, water conditions (irrigation, drought, and rehydration), and SA applications (without the addition of a regulator (0) and with the addition of SA at concentrations equal to 0.5, 1, and 1.5 mM). In general, exogenous SA application increased stomatal conductance (gs) responses and modified the fluorescence parameters (ΦPSII, qP, ETR, NPQ, D, and E) of sweet pepper plants subjected to drought followed by rehydration. It was found that the use of SA, especially at concentrations of 1 mM in combination with rehydration, modulates gs, which is reflected in a higher electron transport rate. This, along with the production of photosynthetic pigments, suggests that H2O2 did not cause membrane damage, thereby mitigating the water deficit in pepper plants. Plants under drought conditions and rehydration with foliar SA application at concentrations of 1 mM demonstrated protection against damage resulting from water stress. Focusing on sustainable productivity, foliar SA application of 1 mM could be recommended as a technique to overcome the adverse effects of water stress on pepper plants cultivated in arid and semi-arid regions.
Collapse
Affiliation(s)
- Fabrício Custódio de Moura Gonçalves
- Department of Horticulture, Faculty of Agricultural Sciences, São Paulo State University (UNESP), Campus de Botucatu, Avenida Universitária, 3780 Altos do Paraíso, Botucatu 18610-034, Brazil; (C.V.C.); (N.d.S.P.)
| | - Luís Paulo Benetti Mantoan
- Department of Biodiversity and Biostatistics, Institute of Biosciences, São Paulo State University (UNESP), Campus de Botucatu, R. Prof. Dr. Antônio Celso Wagner Zanin, 250 Distrito de Rubião Junior, Botucatu 18618-689, Brazil; (L.P.B.M.); (L.F.R.d.A.); (E.O.O.); (J.D.R.); (C.S.F.B.)
| | - Carla Verônica Corrêa
- Department of Horticulture, Faculty of Agricultural Sciences, São Paulo State University (UNESP), Campus de Botucatu, Avenida Universitária, 3780 Altos do Paraíso, Botucatu 18610-034, Brazil; (C.V.C.); (N.d.S.P.)
| | - Nathália de Souza Parreiras
- Department of Horticulture, Faculty of Agricultural Sciences, São Paulo State University (UNESP), Campus de Botucatu, Avenida Universitária, 3780 Altos do Paraíso, Botucatu 18610-034, Brazil; (C.V.C.); (N.d.S.P.)
| | - Luiz Fernando Rolim de Almeida
- Department of Biodiversity and Biostatistics, Institute of Biosciences, São Paulo State University (UNESP), Campus de Botucatu, R. Prof. Dr. Antônio Celso Wagner Zanin, 250 Distrito de Rubião Junior, Botucatu 18618-689, Brazil; (L.P.B.M.); (L.F.R.d.A.); (E.O.O.); (J.D.R.); (C.S.F.B.)
| | - Elizabeth Orika Ono
- Department of Biodiversity and Biostatistics, Institute of Biosciences, São Paulo State University (UNESP), Campus de Botucatu, R. Prof. Dr. Antônio Celso Wagner Zanin, 250 Distrito de Rubião Junior, Botucatu 18618-689, Brazil; (L.P.B.M.); (L.F.R.d.A.); (E.O.O.); (J.D.R.); (C.S.F.B.)
| | - João Domingos Rodrigues
- Department of Biodiversity and Biostatistics, Institute of Biosciences, São Paulo State University (UNESP), Campus de Botucatu, R. Prof. Dr. Antônio Celso Wagner Zanin, 250 Distrito de Rubião Junior, Botucatu 18618-689, Brazil; (L.P.B.M.); (L.F.R.d.A.); (E.O.O.); (J.D.R.); (C.S.F.B.)
| | - Renato de Mello Prado
- Department of Soils and Fertilizers, Faculty of Agricultural and Veterinary Sciences, São Paulo State University (UNESP), Campus Jaboticabal, Prof. Paulo Donato Castellane s/n, Jaboticabal 14884-900, Brazil;
| | - Carmen Sílvia Fernandes Boaro
- Department of Biodiversity and Biostatistics, Institute of Biosciences, São Paulo State University (UNESP), Campus de Botucatu, R. Prof. Dr. Antônio Celso Wagner Zanin, 250 Distrito de Rubião Junior, Botucatu 18618-689, Brazil; (L.P.B.M.); (L.F.R.d.A.); (E.O.O.); (J.D.R.); (C.S.F.B.)
| |
Collapse
|
14
|
Abdullaev F, Pirogova P, Vodeneev V, Sherstneva O. Chlorophyll Fluorescence in Wheat Breeding for Heat and Drought Tolerance. PLANTS (BASEL, SWITZERLAND) 2024; 13:2778. [PMID: 39409648 PMCID: PMC11478672 DOI: 10.3390/plants13192778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/30/2024] [Accepted: 10/01/2024] [Indexed: 10/20/2024]
Abstract
The constantly growing need to increase the production of agricultural products in changing climatic conditions makes it necessary to accelerate the development of new cultivars that meet the modern demands of agronomists. Currently, the breeding process includes the stages of genotyping and phenotyping to optimize the selection of promising genotypes. One of the most popular phenotypic methods is the pulse-amplitude modulated (PAM) fluorometry, due to its non-invasiveness and high information content. In this review, we focused on the opportunities of using chlorophyll fluorescence (ChlF) parameters recorded using PAM fluorometry to assess the state of plants in drought and heat stress conditions and predict the economically significant traits of wheat, as one of the most important agricultural crops, and also analyzed the relationship between the ChlF parameters and genetic markers.
Collapse
Affiliation(s)
| | | | | | - Oksana Sherstneva
- Department of Biophysics, National Research Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Avenue, 603022 Nizhny Novgorod, Russia
| |
Collapse
|
15
|
Zia A, Gulzar S, Edwards GE. Differential modulation of photosystem II photochemical efficiency in six C 4 xero-halophytes. FUNCTIONAL PLANT BIOLOGY : FPB 2024; 51:FP24060. [PMID: 39365896 DOI: 10.1071/fp24060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 09/18/2024] [Indexed: 10/06/2024]
Abstract
Xero-halophytes are the salt-tolerant plants of dry habitats that adapt efficient strategies to endure extreme salt and water fluctuations. This study elucidated the adaptations related to PSII photochemistry, photoprotection, and photoinhibition in six C4 xero-halophytes (Atriplex stocksii , Haloxylon stocksii , Salsola imbricata, Suaeda fruticosa, Desmostachya bipinnata , and Saccharum griffithii ) grown in their native habitats. Chlorophyll a fluorescence quenching measurements suggested that S. imbricata and H. stocksii maintained efficient PSII photochemistry by downregulating heat dissipation and keeping a high fraction of open PSII centres that indicates plastoquinone (PQ) pool oxidation. Fluorescence induction kinetics revealed that S. imbricata demonstrated the highest performance index of PSII excitation to the reduction of end electron acceptors. S. fruticosa sustained photochemical efficiency through enhanced dissipation of excess energy and a low fraction of open PSII centres, indicating PQ reduced state. The large light-harvesting antenna size, deduced from the chlorophyll a /b ratio in S. fruticosa apparently led to the superior performance index of PSII excitation to the reduction of intersystem electron carriers. A. stocksii retained more open PSII centres with responsive non-photochemical quenching to safely dissipate excess energy. Despite maintaining the highest pigment contents and stoichiometry, A. stocksii remained lowest in both performance indices. The grass species D. bipinnata and S. griffithii kept fewer PSII centres open during photoinhibition, as evidenced by downregulation of PSII operating efficiency. The results provide insights into the differential modulation of PSII photochemical efficiency through dynamic control of photoprotective energy dissipation, PQ pool redox states, and photoinhibitory shutdown in these xero-halophytes.
Collapse
Affiliation(s)
- Ahmad Zia
- Department of Biology, University of Hafr Al-Batin, Hafr Al-Batin 31991, Saudi Arabia
| | - Salman Gulzar
- Institute of Sustainable Halophyte Utilization, University of Karachi, Karachi 75270, Pakistan
| | - Gerald E Edwards
- School of Biological Sciences, Washington State University, Pullman, WA 99164-4236, USA
| |
Collapse
|
16
|
Byambasuren O, Bat-Amgalan A, Byambadorj SO, Hernandez JO, Nyam-Osor T, Nyam-Osor B. Variation in Leaf Functional Traits of Populus laurifolia Ldb and Ulmus pumila L. Across Five Contrasting Urban Sites in Ulaanbaatar, Mongolia. PLANTS (BASEL, SWITZERLAND) 2024; 13:2709. [PMID: 39409579 PMCID: PMC11478421 DOI: 10.3390/plants13192709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 09/18/2024] [Accepted: 09/24/2024] [Indexed: 10/20/2024]
Abstract
Amid urbanization, studying leaf functional traits of woody plants in urban environments is essential for understanding how urban green spaces function and how they can be effectively managed sustainably. In this study, we investigated the effects of different growing conditions on the morpho-physiological traits of Populus laurifolia and Ulmus pumila across five contrasting urban sites. The leaf area (LA), leaf length (LL), leaf width (LW), leaf biomass (LB), specific leaf area (SLA), leaf chlorophyll concentration, chlorophyll fluorescence parameters, leaf water potential at predawn (Ψpd) and midday (Ψmd), leaf performance index (PIabs), and phenotypic plasticity index (PPI) were compared across five contrasting urban sites. The soil chemical and physical properties were also compared between sites. There were significant differences in soil physicochemical characteristics between sites. We found significant effects of site on most of the morpho-physiological traits measured, except for Ψmd. The leaf chlorophyll concentration of P. laurifolia and U. pumila varied significantly between sites. The Ψpd was significantly different between years and sites. In U. pumila, the mean PPI for morphological traits (0.20) was lower than that for physiological traits (0.21). In conclusion, we revealed significant variations in the morpho-physiological traits of P. laurifolia and U. pumila across the five urban sites. Hence, long-term, large-scale studies are recommended to examine how diverse species respond to different urban growing conditions and to include other ecologically important plant traits for a better understanding of urban trees in a changing environment.
Collapse
Affiliation(s)
- Otgonsaikhan Byambasuren
- Laboratory of Forest Genetics and Ecophysiology, National University of Mongolia, Ulaanbaatar 14201, Mongolia; (O.B.); (S.-O.B.); (T.N.-O.)
| | - Anujin Bat-Amgalan
- Department of Biology, School of Arts and Sciences, National University of Mongolia, Ulaanbaatar 14201, Mongolia;
| | - Ser-Oddamba Byambadorj
- Laboratory of Forest Genetics and Ecophysiology, National University of Mongolia, Ulaanbaatar 14201, Mongolia; (O.B.); (S.-O.B.); (T.N.-O.)
| | - Jonathan O. Hernandez
- Department of Forest Biological Sciences, College of Forestry and Natural Resources, University of the Philippines, Los Baños 4031, Philippines;
| | - Tuguldur Nyam-Osor
- Laboratory of Forest Genetics and Ecophysiology, National University of Mongolia, Ulaanbaatar 14201, Mongolia; (O.B.); (S.-O.B.); (T.N.-O.)
- Institute of Geography and Geoecology, Mongolian Academy of Sciences, Ulaanbaatar 15170, Mongolia
| | - Batkhuu Nyam-Osor
- Laboratory of Forest Genetics and Ecophysiology, National University of Mongolia, Ulaanbaatar 14201, Mongolia; (O.B.); (S.-O.B.); (T.N.-O.)
| |
Collapse
|
17
|
Dhiman S, Debnath N, Bandyopadhyay K, Das S. Novel Approach of Nanophotonic Electron Transfer for Augmenting Photosynthesis in Arachis hypogaea: A Biophysical Rationale behind the Plasmonic Enhancement of Chemical Energy Transfer. ACS OMEGA 2024; 9:35332-35347. [PMID: 39184485 PMCID: PMC11339815 DOI: 10.1021/acsomega.4c00550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 07/02/2024] [Accepted: 07/08/2024] [Indexed: 08/27/2024]
Abstract
Plant photosynthetic machinery is the main source of acquisition and conversion of solar energy to chemical energy with the capacity for autonomous self-repair. However, the major limitation of the chloroplast photosystem is that it can absorb light only within the visible range of the spectrum, which is roughly 50% of the incident solar radiation. Moreover, the photosynthetic apparatus is saturated by less than 10% of available sunlight. If the capacity of solar light absorption and the transmission of resulting photons through the photosynthetic electron transport chain (ETC) can be extended, the overall efficiency of photosynthesis can be improved. The plant nanobionic approach can address this via the introduction of nanoparticles into or in the vicinity of the photosynthetic machinery/chloroplast. We have studied this exceptional nanobionic-mediated capability of two optically active nanostructures and evaluated the impact of their optical properties on plant photosynthesis. Our study revealed that metal (Ag) and core-shell metal nanostructures (AgS) can increase light absorption and improve electron transport through ETC. Both nanostructures were found to have a beneficial effect on the photoluminescence property of the isolated chloroplast. Translocation studies confirmed systemic transportation of the nanomaterial in different plant tissues. The primary growth parameters showed no detrimental effect until 21 days of treatment on Arachis hypogaea. The nano silver/silica core/shell structure (AgS) was found to be more advantageous over nano silver (AgNP) in photon entrapment, light-dependent biochemical reactions, and toxicity parameters. In the future, these nanostructures can enhance photosynthesis by increasing light absorption and resulting in higher assimilatory power generation in the form of ATP and NADPH. This approach may lead to a paradigm shift toward a sustainable method for the configuration of plant chloroplast-based hybrid energy harvesting devices.
Collapse
Affiliation(s)
- Shikha Dhiman
- Amity Institute of Biotechnology, Amity University Haryana, Gurugram 122413, India
| | - Nitai Debnath
- Amity Institute of Biotechnology, Amity University Haryana, Gurugram 122413, India
| | | | - Sumistha Das
- Amity Institute of Biotechnology, Amity University Haryana, Gurugram 122413, India
| |
Collapse
|
18
|
Saeedi R, Seyedi A, Esmaeilizadeh M, Seyedi N, Morteza Zahedi S, Malekzadeh MR. Improving the performance of the photosynthetic apparatus of Citrus sinensis with the use of chitosan-selenium nanocomposite (CS + Se NPs) under salinity stress. BMC PLANT BIOLOGY 2024; 24:745. [PMID: 39098917 PMCID: PMC11299350 DOI: 10.1186/s12870-024-05462-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 07/29/2024] [Indexed: 08/06/2024]
Abstract
BACKGROUND Abiotic stress, such as salinity, affects the photosynthetic apparatus of plants. It is reported that the use of selenium nanoparticles (Se NPs), and biochemical compounds such as chitosan (CS) increase the tolerance of plants to stress conditions. Therefore, this study aimed to elucidate the potential of Se NPs, CS, and their composite (CS + Se NPs) in improving the photosynthetic apparatus of C. sinensis under salt stress in greenhouse conditions. The grafted seedlings of C. sinensis cv. Valencia after adapting to the greenhouse condition, were imposed with 0, 50, and 100 mM NaCl. After two weeks, the plants were foliar sprayed with distilled water (control), CS (0.1% w/v), Se NPs (20 mg L- 1), and CS + Se NPs (10 and 20 mg L- 1). Three months after treatment, the levels of photosynthetic pigments, leaf gas exchange, and chlorophyll fluorescence in the treated plants were evaluated. RESULTS Under salinity stress, total chlorophyll, carotenoid, and SPAD values decreased by 31%, 48%, and 28% respectively, and Fv/Fm also decreased compared to the control, while the ratio of absorption flux (ABS), dissipated energy flux (DI0) and maximal trapping rate of PSII (TR0) to RC (a measure of PSII apparent antenna size) were increased. Under moderate (50 mM NaCl) and intense (100 mM NaCl) salinity stress, the application of CS + Se NPs significantly increased the levels of photosynthetic pigments and the Fv/Fm value compared to plants treated with distilled water. CONCLUSIONS It may be inferred that foliar treatment with CS + Se NPs can sustain the photosynthetic ability of C. sinensis under salinity stress and minimize its deleterious effects on photosynthesis.
Collapse
Affiliation(s)
- Reza Saeedi
- Department of Horticultural Science, Faculty of Agriculture, University of Jiroft, Jiroft, Iran
| | - Azam Seyedi
- Department of Horticultural Science, Faculty of Agriculture, University of Jiroft, Jiroft, Iran.
| | - Majid Esmaeilizadeh
- Department of Horticultural Sciences, Faculty of Agriculture, Vali-e-Asr University of Rafsanjan, Kerman, Iran
| | - Neda Seyedi
- Department of Chemistry, Faculty of Science, University of Jiroft, Jiroft, Iran
| | - Seyed Morteza Zahedi
- Department of Horticultural Science, Faculty of Agriculture, University of Maragheh, Maragheh, Iran
| | - Mohammad Reza Malekzadeh
- Department of Horticultural Sciences, Faculty of Agriculture, Vali-e-Asr University of Rafsanjan, Kerman, Iran
| |
Collapse
|
19
|
Amombo E, Gbibar M, Ashilenje DS, Hirich A, Kouisni L, Oukarroum A, Ghoulam C, El Gharous M, Nilahyane A. Screening for genetic variability in photosynthetic regulation provides insights into salt performance traits in forage sorghum under salt stress. BMC PLANT BIOLOGY 2024; 24:690. [PMID: 39030485 PMCID: PMC11264756 DOI: 10.1186/s12870-024-05406-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 07/11/2024] [Indexed: 07/21/2024]
Abstract
BACKGROUND Sorghum (Sorghum bicolor) is a promising opportunity crop for arid regions of Africa due to its high tolerance to drought and heat stresses. Screening for genetic variability in photosynthetic regulation under salt stress can help to identify target trait combinations essential for sorghum genetic improvement. The primary objective of this study was to identify reliable indicators of photosynthetic performance under salt stress for forage yield within a panel of 18 sorghum varieties from stage 1 (leaf 3) to stage 7 (late flowering to early silage maturity). We dissected the genetic diversity and variability in five stress-sensitive photosynthetic parameters: nonphotochemical chlorophyll fluorescence quenching (NPQ), the electron transport rate (ETR), the maximum potential quantum efficiency of photosystem II (FV/FM), the CO2 assimilation rate (A), and the photosynthetic performance based on absorption (PIABS). Further, we investigated potential genes for target phenotypes using a combined approach of bioinformatics, transcriptional analysis, and homologous overexpression. RESULTS The panel revealed polymorphism, two admixed subpopulations, and significant molecular variability between and within population. During the investigated development stages, the PIABS varied dramatically and consistently amongst varieties. Under higher saline conditions, PIABS also showed a significant positive connection with A and dry matter gain. Because PIABS is a measure of plants' overall photosynthetic performance, it was applied to predict the salinity performance index (SPI). The SPI correlated positively with dry matter gain, demonstrating that PIABS could be used as a reliable salt stress performance marker for forage sorghum. Eight rubisco large subunit genes were identified in-silico and validated using qPCR with variable expression across the varieties under saline conditions. Overexpression of Rubisco Large Subunit 8 increased PIABS, altered the OJIP, and growth with an insignificant effect on A. CONCLUSIONS These findings provide insights into strategies for enhancing the photosynthetic performance of sorghum under saline conditions for improved photosynthetic performance and potential dry matter yield. The integration of molecular approaches, guided by the identified genetic variability, holds promise for genetically breeding sorghum tailored to thrive in arid and saline environments, contributing to sustainable agricultural practices.
Collapse
Affiliation(s)
- Erick Amombo
- African Sustainable Agriculture Research Institute (ASARI), Mohammed VI Polytechnic University (UM6P), Laâyoune, Morocco
| | - Maryam Gbibar
- African Sustainable Agriculture Research Institute (ASARI), Mohammed VI Polytechnic University (UM6P), Laâyoune, Morocco
| | - Dennis S Ashilenje
- African Sustainable Agriculture Research Institute (ASARI), Mohammed VI Polytechnic University (UM6P), Laâyoune, Morocco
| | - Abdelaziz Hirich
- African Sustainable Agriculture Research Institute (ASARI), Mohammed VI Polytechnic University (UM6P), Laâyoune, Morocco
| | - Lamfeddal Kouisni
- African Sustainable Agriculture Research Institute (ASARI), Mohammed VI Polytechnic University (UM6P), Laâyoune, Morocco
| | - Abdallah Oukarroum
- AgroBioSciences Department (AgBS), Mohammed VI Polytechnic University (UM6P), Ben Guerir, Morocco
| | - Cherki Ghoulam
- AgroBioSciences Department (AgBS), Mohammed VI Polytechnic University (UM6P), Ben Guerir, Morocco
- Center of Agrobiotechnology and Bioengineering, Labeled Research Unit CNRST, Cadi Ayyad University (UCA), Marrakech, Morocco
| | - Mohamed El Gharous
- Agricultural Innovation and Technology Transfer Center (AITTC), Mohammed VI Polytechnic University (UM6P), Ben Guerir, Morocco
| | - Abdelaziz Nilahyane
- African Sustainable Agriculture Research Institute (ASARI), Mohammed VI Polytechnic University (UM6P), Laâyoune, Morocco.
| |
Collapse
|
20
|
Mazumder AK, Yadav R, Kumar M, Babu P, Kumar N, Singh SK, Solanke AU, Wani SH, Alalawy AI, Alasmari A, Gaikwad KB. Discovering novel genomic regions explaining adaptation of bread wheat to conservation agriculture through GWAS. Sci Rep 2024; 14:16351. [PMID: 39013994 PMCID: PMC11252282 DOI: 10.1038/s41598-024-66903-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 07/05/2024] [Indexed: 07/18/2024] Open
Abstract
To sustainably increase wheat yield to meet the growing world population's food demand in the face of climate change, Conservation Agriculture (CA) is a promising approach. Still, there is a lack of genomic studies investigating the genetic basis of crop adaptation to CA. To dissect the genetic architecture of 19 morpho-physiological traits that could be involved in the enhanced adaptation and performance of genotypes under CA, we performed GWAS to identify MTAs under four contrasting production regimes viz., conventional tillage timely sown (CTTS), conservation agriculture timely sown (CATS), conventional tillage late sown (CTLS) and conservation agriculture late sown (CALS) using an association panel of 183 advanced wheat breeding lines along with 5 checks. Traits like Phi2 (Quantum yield of photosystem II; CATS:0.37, CALS: 0.31), RC (Relative chlorophyll content; CATS:55.51, CALS: 54.47) and PS1 (Active photosystem I centers; CATS:2.45, CALS: 2.23) have higher mean values in CA compared to CT under both sowing times. GWAS identified 80 MTAs for the studied traits across four production environments. The phenotypic variation explained (PVE) by these QTNs ranged from 2.15 to 40.22%. Gene annotation provided highly informative SNPs associated with Phi2, NPQ (Quantum yield of non-photochemical quenching), PS1, and RC which were linked with genes that play crucial roles in the physiological adaptation under both CA and CT. A highly significant SNP AX94651261 (9.43% PVE) was identified to be associated with Phi2, while two SNP markers AX94730536 (30.90% PVE) and AX94683305 (16.99% PVE) were associated with NPQ. Identified QTNs upon validation can be used in marker-assisted breeding programs to develop CA adaptive genotypes.
Collapse
Affiliation(s)
- Amit Kumar Mazumder
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Rajbir Yadav
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Manjeet Kumar
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Prashanth Babu
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Naresh Kumar
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Sanjay Kumar Singh
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | | | - Shabir H Wani
- Mountain Research Centre for Field Crops, Khudwani, 192101, India
- Sher-E-Kashmir University of Agricultural Sciences and Technology-Kashmir (SKUAST-K), Srinagar, Jammu-Kashmir, India
| | - Adel I Alalawy
- Department of Biochemistry, Faculty of Science, University of Tabuk, Tabuk, Saudi Arabia
| | - Abdulrahman Alasmari
- Department of Biology, Faculty of Science, University of Tabuk, Tabuk, Saudi Arabia
| | - Kiran B Gaikwad
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India.
| |
Collapse
|
21
|
Song M, Lin X, Wei X, Zeng Q, Mu C, Zhou X. Trichoderma viride improves phosphorus uptake and the growth of Chloris virgata under phosphorus-deficient conditions. Front Microbiol 2024; 15:1425034. [PMID: 39027109 PMCID: PMC11255847 DOI: 10.3389/fmicb.2024.1425034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 06/17/2024] [Indexed: 07/20/2024] Open
Abstract
Introduction Phosphorus (P) readily forms insoluble complexes in soil, thereby inhibiting the absorption and utilization of this essential nutrient by plants. Phosphorus deficiency can significantly impede the growth of forage grass. While Trichoderma viride (T. viride) has been recognized for promoting the assimilation of otherwise unobtainable nutrients, its impact on P uptake remains understudied. Consequently, it is imperative to gain a more comprehensive insight into the role of T. viride in facilitating the uptake and utilization of insoluble P in forage grass. Methods This research explored the influence of T. viride inoculation on P absorption and the growth of Chloris virgata (C. virgata) across various P sources. We treated plants with control P (P), tricalcium phosphate (TCP), calcium phytate (PHY), and low P (LP), with and without T. viride inoculation (P+T, TCP+T, PHY+T, LP+T). We analyzed photosynthesis parameters, growth indices, pigment accumulation, P content, leaf acid phosphatase activity. Results Results demonstrated that T. viride inoculation alleviated inhibition of photosynthesis, reduced leaf acid phosphatase activity, and enhanced growth of C. virgata in the presence of insoluble P sources. Additionally, T. viride inoculation enabled the plants to extract more available P from insoluble P sources, as evidenced by a substantial increase in P content: shoot P content surged by 58.23 to 59.08%, and root P content rose by 55.13 to 55.2%. Biomass P-use efficiency (PUE) declined by 38% upon inoculation with T. viride compared to the non-inoculated insoluble P sources, paralleled by a reduction in photosynthetic P-use efficiency (PPUE) by 26 to 29%. Inoculation under insoluble P sources further triggered a lower allocation to root biomass (25 to 26%) and a higher investment in shoot biomass (74 to 75%). However, its application under low P condition curtailed the growth of C. virgata. Discussion Our results suggest that T. viride inoculation represents an innovative approach for plants to acquire available P from insoluble P sources, thereby promoting growth amid environmental P limitations. This insight is crucial for comprehending the synergy among forage grass, P, and T. viride.
Collapse
Affiliation(s)
- Mingxia Song
- Key Laboratory of Vegetation Ecology of the Ministry of Education, Institute of Grassland Science, Northeast Normal University, Changchun, China
- School of Life Sciences, Tonghua Normal University, Tonghua, China
- Key Laboratory for Plant Resources Science and Green Production, Jilin Normal University, Siping, China
| | - Xiaoru Lin
- Key Laboratory for Plant Resources Science and Green Production, Jilin Normal University, Siping, China
| | - Xiaowei Wei
- Key Laboratory for Plant Resources Science and Green Production, Jilin Normal University, Siping, China
| | - Qingpan Zeng
- Key Laboratory for Plant Resources Science and Green Production, Jilin Normal University, Siping, China
| | - Chunsheng Mu
- Key Laboratory of Vegetation Ecology of the Ministry of Education, Institute of Grassland Science, Northeast Normal University, Changchun, China
| | - Xiaofu Zhou
- Key Laboratory for Plant Resources Science and Green Production, Jilin Normal University, Siping, China
| |
Collapse
|
22
|
M D, K S VB, R R, P J. Sorghum drought tolerance is enhanced by cerium oxide nanoparticles via stomatal regulation and osmolyte accumulation. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 212:108733. [PMID: 38761547 DOI: 10.1016/j.plaphy.2024.108733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 04/01/2024] [Accepted: 05/14/2024] [Indexed: 05/20/2024]
Abstract
Sorghum [Sorghum bicolor (L.) Moench] yield is limited by the coincidence of drought during its sensitive stages. The use of cerium oxide nanoparticles in agriculture is minimal despite its antioxidant properties. We hypothesize that drought-induced decreases in photosynthetic rate in sorghum may be associated with decreased tissue water content and organelle membrane damage. We aimed to quantify the impact of foliar application of nanoceria on transpiration rate, accumulation of compatible solutes, photosynthetic rate and reproductive success under drought stress in sorghum. In order to ascertain the mechanism by which nanoceria mitigate drought-induced inhibition of photosynthesis and reproductive success, experiments were undertaken in a factorial completely randomized design or split-plot design. Foliar spray of nanoceria under progressive soil drying conserved soil moisture by restricting the transpiration rate than water spray, indicating that nanoceria exerted strong stomatal control. Under drought stress at the seed development stage, foliar application of nanoceria at 25 mg L-1 significantly improved the photosynthetic rate (19%) compared to control by maintaining a higher tissue water content (18%) achieved by accumulating compatible solutes. The nanoceria-sprayed plants exhibited intact chloroplast and thylakoid membranes because of increased heme enzymes [catalase (53%) and peroxidase (45%)] activity, which helped in the reduction of hydrogen peroxide content (74%). Under drought, compared to water spray, nanoceria improved the seed-set percentage (24%) and individual seed mass (27%), eventually causing a higher seed yield. Thus, foliar application of nanoceria at 25 mg L-1 under drought can increase grain yield through increased photosynthesis and reproductive traits.
Collapse
Affiliation(s)
- Djanaguiraman M
- Department of Crop Physiology, Tamil Nadu Agricultural University, Coimbatore, 641003, India.
| | - Vidhya Bharathi K S
- Department of Crop Physiology, Tamil Nadu Agricultural University, Coimbatore, 641003, India
| | - Raghu R
- Department of Plant Biotechnology, Tamil Nadu Agricultural University, Coimbatore, 641003, India
| | - Jeyakumar P
- Department of Crop Physiology, Tamil Nadu Agricultural University, Coimbatore, 641003, India
| |
Collapse
|
23
|
Zhang J, Lin Z, Ai F, Du W, Yin Y, Guo H. Effect of ultraviolet aged polytetrafluoroethylene microplastics on copper bioavailability and Microcystis aeruginosa growth. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 272:106967. [PMID: 38833998 DOI: 10.1016/j.aquatox.2024.106967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 05/08/2024] [Accepted: 05/20/2024] [Indexed: 06/06/2024]
Abstract
Microplastics (MPs) are ubiquitous in aquatic environments, which can act as carriers to affect the bioavailability of heavy metals. The aging process in the environment changes the physicochemical properties of MPs, thereby affecting their environmental behavior and co-toxicity with other pollutants. However, relevant research is limited. In this study, we compared the properties and Cu2+ adsorption capacity of pristine and aged polytetrafluoroethylene (PTFE) MPs and further explored the influence on copper bioavailability and bio-effects on Microcystis aeruginosa. Aging process induced surface oxidation and cracks of PTFE MPs, and decreased the stability of MPs in water by increasing zeta potential. PTFE MPs had a strong adsorption capacity for Cu2+ and increased the bioavailability of copper to microalgae, which was not affected by the aging process. Pristine and aged PTFE MPs adhered to cyanobacterium surfaces and caused shrinkage and deformation of cells. Inhibition of cyanobacterium growth, photosynthesis and reduction of total antioxidant capacity were observed in the treatment of PTFE MPs. Combined exposure of pristine MPs and Cu2+ had stronger toxic effects to cyanobacterium, and increased Microcystin-LR release, which could cause harm to aquatic environment. Aging reduced the toxic effects of PTFE MPs on microalgae. Furthermore, soluble exopolysaccharide (EPS) content was significantly higher in co-exposure of aged MPs and Cu2+, which could reduce the toxicity to cyanobacterium cells. These results indicate that aging process alleviates the toxicity to microalgae and environmental risks caused by PTFE MPs. This study improves understanding of the combined toxicity of aged MPs and metals in freshwater ecosystems.
Collapse
Affiliation(s)
- Juanjuan Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Zihan Lin
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Fuxun Ai
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Wenchao Du
- School of Environment, Nanjing Normal University, Nanjing 210036, China
| | - Ying Yin
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China; Joint International Research Centre for Critical Zone Science-University of Leeds and Nanjing University, Nanjing University, Nanjing 210023, China.
| | - Hongyan Guo
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China; Joint International Research Centre for Critical Zone Science-University of Leeds and Nanjing University, Nanjing University, Nanjing 210023, China
| |
Collapse
|
24
|
Wang F, Shi L, Zhang R, Xu W, Bo Y. Effects of nitrogen addition and Bothriochloa ischaemum and Lespedeza davurica mixture on plant chlorophyll fluorescence and community production in semi-arid grassland. FRONTIERS IN PLANT SCIENCE 2024; 15:1400309. [PMID: 38984159 PMCID: PMC11232416 DOI: 10.3389/fpls.2024.1400309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 06/06/2024] [Indexed: 07/11/2024]
Abstract
Background Grass-legume mixture can effectively improve productivity and stimulate overyielding in artificial grasslands, but may be N-limited in semi-arid regions. This study investigated the effects of N addition on chlorophyll fluorescence and production in the grass-legume mixtures community. Methods An N addition experiment was conducted in the Bothriochloa ischaemum and Lespedeza davurica mixture community, with seven mixture ratios (B0L10, B2L8, B4L6, B5L5, B6L4, B8L2, and B10L0) according to the sowing abundance of B.ischaemum and L.davurica and four N addition levels, N0, N25, N50, and N75 (0,25,50,75kgNhm-2 a-1), respectively. We analyzed the response of chlorophyll fluorescence parameters of the two species, the rapid light-response curves of chlorophyll fluorescence, as well as aboveground biomass (AGB) and overyielding. Results Our results showed that the two species showed different photosynthetic strategies, with L.davurica having significantly higher initial fluorescence (Fo), effective photochemical quantum yield of PSII (ΦPSII), and coefficient of photochemical fluorescence quenching (qP) than B. ischaemum, consisting with results of rapid light-response curves. N addition and mixture ratio both had significant effects on chlorophyll fluorescence and AGB (p<0.001). The ΦPSII and qP of L.davurica were significantly lowest in B5L5 and B6L4 under N addition, and the effect of N varied with mixture ratio. The photosynthetic efficiency of B. ischaemum was higher in mixture than in monoculture (B10L0), and ΦPSII was significantly higher in N50 than in N25 and N50 at mixture communities except at B5L5. The community AGB was significantly higher in mixture communities than in two monocultures and highest at B6L4. In the same mixture ratio, the AGB was highest under the N50. The overyielding effects were significantly highest under the N75 and B6L4 treatments, mainly attributed to L.davurica. The partial least squares path models demonstrated that adding N increased soil nutrient content, and complementary utilization by B.ischaemum and L.davurica increased the photosynthetic efficiency. However, as the different photosynthetic strategies of these two species, the effect on AGB was offset, and the mixture ratio's effects were larger than N. Our results proposed the B6L4 and N50 treatments were the optimal combination, with the highest AGB and overyielding, moderate grass-legume ratio, optimal community structure, and forage values.
Collapse
Affiliation(s)
- Fugang Wang
- College of Life Science, Yulin University, Yulin, China
| | - Lei Shi
- College of Life Science, Yulin University, Yulin, China
| | - Ruiyi Zhang
- College of Life Science, Yulin University, Yulin, China
| | - Weizhou Xu
- College of Life Science, Yulin University, Yulin, China
- Shaanxi Engineering Research Center of Forage Plants of the Loess Plateau, Yulin University, Yulin, Shaanxi, China
| | - Yaojun Bo
- College of Life Science, Yulin University, Yulin, China
- Shaanxi Engineering Research Center of Forage Plants of the Loess Plateau, Yulin University, Yulin, Shaanxi, China
| |
Collapse
|
25
|
Pietrini F, Wyrwicka-Drewniak A, Passatore L, Nogués I, Zacchini M, Donati E. PFOA accumulation in the leaves of basil (Ocimum basilicum L.) and its effects on plant growth, oxidative status, and photosynthetic performance. BMC PLANT BIOLOGY 2024; 24:556. [PMID: 38877484 PMCID: PMC11177490 DOI: 10.1186/s12870-024-05269-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 06/07/2024] [Indexed: 06/16/2024]
Abstract
BACKGROUND Perfluoroalkyl substances (PFASs) are emerging contaminants of increasing concern due to their presence in the environment, with potential impacts on ecosystems and human health. These substances are considered "forever chemicals" due to their recalcitrance to degradation, and their accumulation in living organisms can lead to varying levels of toxicity based on the compound and species analysed. Furthermore, concerns have been raised about the possible transfer of PFASs to humans through the consumption of edible parts of food plants. In this regard, to evaluate the potential toxic effects and the accumulation of perfluorooctanoic acid (PFOA) in edible plants, a pot experiment in greenhouse using three-week-old basil (Ocimum basilicum L.) plants was performed adding PFOA to growth substrate to reach 0.1, 1, and 10 mg Kg- 1 dw. RESULTS After three weeks of cultivation, plants grown in PFOA-added substrate accumulated PFOA at different levels, but did not display significant differences from the control group in terms of biomass production, lipid peroxidation levels (TBARS), content of α-tocopherol and activity of ascorbate peroxidase (APX), catalase (CAT) and guaiacol peroxidase (POX) in the leaves. A reduction of total phenolic content (TPC) was instead observed in relation to the increase of PFOA content in the substrate. Furthermore, chlorophyll content and photochemical reflectance index (PRI) did not change in plants exposed to PFAS in comparison to control ones. Chlorophyll fluorescence analysis revealed an initial, rapid photoprotective mechanism triggered by PFOA exposure, with no impact on other parameters (Fv/Fm, ΦPSII and qP). Higher activity of glutathione S-transferase (GST) in plants treated with 1 and 10 mg Kg- 1 PFOA dw (30 and 50% to control, respectively) paralleled the accumulation of PFOA in the leaves of plants exposed to different PFOA concentration in the substrate (51.8 and 413.9 ng g- 1 dw, respectively). CONCLUSION Despite of the absorption and accumulation of discrete amount of PFOA in the basil plants, the analysed parameters at biometric, physiological and biochemical level in the leaves did not reveal any damage effect, possibly due to the activation of a detoxification pathway likely involving GST.
Collapse
Affiliation(s)
- Fabrizio Pietrini
- Research Institute on Terrestrial Ecosystems (IRET), National Research Council of Italy (CNR), Via Salaria km 29.300, Monterotondo Scalo, Roma, 00015, Italy
| | - Anna Wyrwicka-Drewniak
- Faculty of Biology and Environmental Protection, Department of Plant Physiology and Biochemistry, University of Lodz, ul. Banacha 12/16, Lodz, 90-237, Poland
| | - Laura Passatore
- Research Institute on Terrestrial Ecosystems (IRET), National Research Council of Italy (CNR), Via Salaria km 29.300, Monterotondo Scalo, Roma, 00015, Italy
| | - Isabel Nogués
- Research Institute on Terrestrial Ecosystems (IRET), National Research Council of Italy (CNR), Via Salaria km 29.300, Monterotondo Scalo, Roma, 00015, Italy
| | - Massimo Zacchini
- Research Institute on Terrestrial Ecosystems (IRET), National Research Council of Italy (CNR), Via Salaria km 29.300, Monterotondo Scalo, Roma, 00015, Italy.
| | - Enrica Donati
- Institute for Biological Systems (ISB), National Research Council of Italy (CNR), Via Salaria km 29.300, Monterotondo Scalo, Roma, 00015, Italy
| |
Collapse
|
26
|
Garcia-Tejera O, Ritter A, Regalado CM. The combined effect of diffuse radiation and leaf wetness on functional traits and transpiration efficiency on a cloud forest species. TREE PHYSIOLOGY 2024; 44:tpae050. [PMID: 38700996 DOI: 10.1093/treephys/tpae050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 05/02/2024] [Indexed: 05/05/2024]
Abstract
Cloud forests are unique biomes that thrive in foggy environments for a substantial part of the season. Fog in cloud forests plays two critical roles: it reduces incoming radiation and creates a humid environment, leading to the wetting of the canopy. This paper aims to investigate the combined effect of both radiation and wetness on Myrica faya Wilbur-a cloud forest species present in subtropical regions-both directly in plants and through simulations. Experiments consisted of a controlled environment with two levels of radiation and leaf wetness: low radiation/wet conditions, and high radiation/no-wetness; and three treatments: continuous low radiation and wetness, continuous high radiation and no wetness and alternate high low radiation and alternate wetness. The results revealed that a combination of low radiation and leaf wetness significantly improves leaf stomata conductance and increases the specific leaf area (SLA). Changes in SLA were driven by leaf size changes. However, the minimum leaf conductance (gmin) did not respond to any of the treatments. The simulations focused on exploring the impact of radiation and canopy wetness on transpiration efficiency (TE), i.e. the ratio between photosynthesis (An) and transpiration (Tc). The simulations demonstrated that TE increased exponentially as the canopy was gradually wetted, regardless of the radiation environment. This increase in TE results from Tc approaching zero while An maintains positive values. Overall, this study provides an integrated understanding of how fog alters M. faya functioning and, potentially, other cloud forest tree species.
Collapse
Affiliation(s)
- Omar Garcia-Tejera
- Dep. de Ingeniería Agraria y del Medio Natural, Universidad de La Laguna, Ctra General Geneto, 2, La Laguna 38200 Tenerife, Spain
| | - Axel Ritter
- Área de Ingeniería Agroforestal, Universidad de La Laguna, Ctra General Geneto, 2, La Laguna 38200 Tenerife, Spain
| | - Carlos M Regalado
- Dep. Producción Vegetal en Zonas Tropicales y Subtropicales, Instituto Canario de Investigaciones Agrarias (ICIA), Ctra. de El Boquerón s/n, Valle Guerra, La Laguna 38270, Tenerife, Spain
| |
Collapse
|
27
|
Lanoue J, St Louis S, Little C, Hao X. Photosynthetic adaptation strategies in peppers under continuous lighting: insights into photosystem protection. FRONTIERS IN PLANT SCIENCE 2024; 15:1372886. [PMID: 38882573 PMCID: PMC11176547 DOI: 10.3389/fpls.2024.1372886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 04/29/2024] [Indexed: 06/18/2024]
Abstract
Energy efficient lighting strategies have received increased interest from controlled environment producers. Long photoperiods (up to 24 h - continuous lighting (CL)) of lower light intensities could be used to achieve the desired daily light integral (DLI) with lower installed light capacity/capital costs and low electricity costs in regions with low night electricity prices. However, plants grown under CL tend to have higher carbohydrate and reactive oxygen species (ROS) levels which may lead to leaf chlorosis and down-regulation of photosynthesis. We hypothesize that the use of dynamic CL using a spectral change and/or light intensity change between day and night can negate CL-injury. In this experiment we set out to assess the impact of CL on pepper plants by subjecting them to white light during the day and up to 150 µmol m-2 s-1 of monochromatic blue light at night while controlling the DLI at the same level. Plants grown under all CL treatments had similar cumulative fruit number and weight compared to the 16h control indicating no reduction in production. Plants grown under CL had higher carbohydrate levels and ROS-scavenging capacity than plants grown under the 16h control. Conversely, the amount of photosynthetic pigment decreased with increasing nighttime blue light intensity. The maximum quantum yield of photosystem II (Fv/Fm), a metric often used to measure stress, was unaffected by light treatments. However, when light-adapted, the operating efficiency of photosystem II (ΦPSII) decreased and non-photochemical quenching (NPQ) increased with increasing nighttime blue light intensity. This suggests that both acclimated and instantaneous photochemistry during CL can be altered and is dependent on the nighttime light intensity. Furthermore, light-adapted chlorophyll fluorescence measurements may be more adept at detecting altered photochemical states than the conventional stress metric using dark-adapted measurements.
Collapse
Affiliation(s)
- Jason Lanoue
- Harrow Research and Development Centre, Agriculture & Agri-Food Canada, Harrow, ON, Canada
| | - Sarah St Louis
- Harrow Research and Development Centre, Agriculture & Agri-Food Canada, Harrow, ON, Canada
| | - Celeste Little
- Harrow Research and Development Centre, Agriculture & Agri-Food Canada, Harrow, ON, Canada
| | - Xiuming Hao
- Harrow Research and Development Centre, Agriculture & Agri-Food Canada, Harrow, ON, Canada
| |
Collapse
|
28
|
Falcioni R, Antunes WC, Berti de Oliveira R, Chicati ML, Demattê JAM, Nanni MR. Hyperspectral and Chlorophyll Fluorescence Analyses of Comparative Leaf Surfaces Reveal Cellular Influences on Leaf Optical Properties in Tradescantia Plants. Cells 2024; 13:952. [PMID: 38891083 PMCID: PMC11171972 DOI: 10.3390/cells13110952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/28/2024] [Accepted: 05/29/2024] [Indexed: 06/21/2024] Open
Abstract
The differential effects of cellular and ultrastructural characteristics on the optical properties of adaxial and abaxial leaf surfaces in the genus Tradescantia highlight the intricate relationships between cellular arrangement and pigment distribution in the plant cells. We examined hyperspectral and chlorophyll a fluorescence (ChlF) kinetics using spectroradiometers and optical and electron microscopy techniques. The leaves were analysed for their spectral properties and cellular makeup. The biochemical compounds were measured and correlated with the biophysical and ultrastructural features. The main findings showed that the top and bottom leaf surfaces had different amounts and patterns of pigments, especially anthocyanins, flavonoids, total phenolics, chlorophyll-carotenoids, and cell and organelle structures, as revealed by the hyperspectral vegetation index (HVI). These differences were further elucidated by the correlation coefficients, which influence the optical signatures of the leaves. Additionally, ChlF kinetics varied between leaf surfaces, correlating with VIS-NIR-SWIR bands through distinct cellular structures and pigment concentrations in the hypodermis cells. We confirmed that the unique optical properties of each leaf surface arise not only from pigmentation but also from complex cellular arrangements and structural adaptations. Some of the factors that affect how leaves reflect light are the arrangement of chloroplasts, thylakoid membranes, vacuoles, and the relative size of the cells themselves. These findings improve our knowledge of the biophysical and biochemical reasons for leaf optical diversity, and indicate possible implications for photosynthetic efficiency and stress adaptation under different environmental conditions in the mesophyll cells of Tradescantia plants.
Collapse
Affiliation(s)
- Renan Falcioni
- Department of Agronomy, State University of Maringá, Av. Colombo, 5790, Maringá 87020-900, Paraná, Brazil; (W.C.A.); (R.B.d.O.); (M.L.C.); (M.R.N.)
| | - Werner Camargos Antunes
- Department of Agronomy, State University of Maringá, Av. Colombo, 5790, Maringá 87020-900, Paraná, Brazil; (W.C.A.); (R.B.d.O.); (M.L.C.); (M.R.N.)
| | - Roney Berti de Oliveira
- Department of Agronomy, State University of Maringá, Av. Colombo, 5790, Maringá 87020-900, Paraná, Brazil; (W.C.A.); (R.B.d.O.); (M.L.C.); (M.R.N.)
| | - Marcelo Luiz Chicati
- Department of Agronomy, State University of Maringá, Av. Colombo, 5790, Maringá 87020-900, Paraná, Brazil; (W.C.A.); (R.B.d.O.); (M.L.C.); (M.R.N.)
| | - José Alexandre M. Demattê
- Department of Soil Science, Luiz de Queiroz College of Agriculture, University of São Paulo, Av. Pádua Dias, 11, Piracicaba 13418-260, São Paulo, Brazil;
| | - Marcos Rafael Nanni
- Department of Agronomy, State University of Maringá, Av. Colombo, 5790, Maringá 87020-900, Paraná, Brazil; (W.C.A.); (R.B.d.O.); (M.L.C.); (M.R.N.)
| |
Collapse
|
29
|
Hammami Z, Tounsi-Hammami S, Nhamo N, Rezgui S, Trifa Y. The efficiency of chlorophyll fluorescence as a selection criterion for salinity and climate aridity tolerance in barley genotypes. FRONTIERS IN PLANT SCIENCE 2024; 15:1324388. [PMID: 38863544 PMCID: PMC11165102 DOI: 10.3389/fpls.2024.1324388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 05/09/2024] [Indexed: 06/13/2024]
Abstract
Introduction In the Near East and North Africa (NENA) region, crop production is being affected by various abiotic factors, including freshwater scarcity, climate, and soil salinity. As a result, farmers in this region are in search of salt-tolerant crops that can thrive in these harsh environments, using poor-quality groundwater. The main staple food crop for most of the countries in this region, Tunisia included, is barley. Methods The present study was designed to investigate the sensitivity and tolerance of six distinct barley genotypes to aridity and salinity stresses in five different natural field environments by measuring their photosynthetic activity. Results and discussion The results revealed that tolerant genotypes were significantly less affected by these stress factors than sensitive genotypes. The genotypes that were more susceptible to salinity and aridity stress exhibited a significant decline in their photosynthetic activity. Additionally, the fluorescence yields in growth phases J, I, and P declined significantly in the order of humid environment (BEJ), semi-arid site (KAI), and arid environment (MED) and became more significant when salt stress was added through the use of saline water for irrigation. The stress adversely affected the quantum yield of primary photochemistry (φP0), the quantum yield of electron transport (φE0), and the efficiency by trapped excitation (ψ0) in the vulnerable barley genotypes. Moreover, the performance index (PI) of the photosystem II (PSII) was found to be the most distinguishing parameter among the genotypes tested. The PI of sensitive genotypes was adversely affected by aridity and salinity. The PI of ICARDA20 and Konouz decreased by approximately 18% and 33%, respectively, when irrigated with non-saline water. The reduction was even greater, reaching 39%, for both genotypes when irrigated with saline water. However, tolerant genotypes Souihli and Batini 100/1B were less impacted by these stress factors.The fluorescence study provided insights into the photosynthetic apparatus of barley genotypes under stress. It enabled reliable salinity tolerance screening. Furthermore, the study confirmed that the chlorophyll a fluorescence induction curve had an inflection point (step K) even before the onset of visible signs of stress, indicating physiological disturbances, making chlorophyll fluorescence an effective tool for identifying salinity tolerance in barley.
Collapse
Affiliation(s)
- Zied Hammami
- Crop Diversification and Genetics Section, International Center for Biosaline Agriculture, Dubai, United Arab Emirates
| | - Soumaya Tounsi-Hammami
- Department of Life and Environmental Sciences, College of Natural and Health Sciences at Zayed University, Dubai, United Arab Emirates
| | - Nhamo Nhamo
- Crop Diversification and Genetics Section, International Center for Biosaline Agriculture, Dubai, United Arab Emirates
| | - Saleh Rezgui
- Department of Agronomy and Biotechnology, Carthage University, National Agronomic Institute of Tunisia (INAT), Tunis, Tunisia
| | - Yousef Trifa
- Laboratory of Genetics and Cereal Breeding, National Agronomic Institute of Tunisia, Carthage University, Tunis, Tunisia
| |
Collapse
|
30
|
Ceccanti C, Davini A, Lo Piccolo E, Lauria G, Rossi V, Ruffini Castiglione M, Spanò C, Bottega S, Guidi L, Landi M. Polyethylene microplastics alter root functionality and affect strawberry plant physiology and fruit quality traits. JOURNAL OF HAZARDOUS MATERIALS 2024; 470:134164. [PMID: 38583200 DOI: 10.1016/j.jhazmat.2024.134164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 02/24/2024] [Accepted: 03/27/2024] [Indexed: 04/09/2024]
Abstract
Strawberry, a globally popular crop whose fruit are known for their taste and health benefits, were used to evaluate the effects of polyethylene microplastics (PE-MPs) on plant physiology and fruit quality. Plants were grown in 2-L pots with natural soil mixed with PE-MPs at two concentrations (0.2% and 0.02%; w/w) and sizes (⌀ 35 and 125 µm). Plant physiological responses, root histochemical and anatomical analyses as well as fruit biometric and quality features were conducted. Plants subjected to ⌀ 35 µm/0.2% PE-MPs exhibited the most severe effects in terms of CO2 assimilation due to stomatal limitations, along with the highest level of oxidative stress in roots. Though no differences were observed in plant biomass, the impact on fruit quality traits was severe in ⌀ 35 µm/0.2% MPs treatment resulting in a drop in fruit weight (-42%), soluble solid (-10%) and anthocyanin contents (-25%). The smallest sized PE-MPs, adsorbed on the root surface, impaired plant water status by damaging the radical apparatus, which finally resulted in alteration of plant physiology and fruit quality. Further research is required to determine if these alterations also occur with other MPs and to understand more deeply the MPs influence on fruit physio-chemistry.
Collapse
Affiliation(s)
- C Ceccanti
- Department of Agriculture, Food and Environment, University of Pisa, via del Borghetto, 80, 56124 Pisa, Italy
| | - A Davini
- Department of Agriculture, Food and Environment, University of Pisa, via del Borghetto, 80, 56124 Pisa, Italy
| | - E Lo Piccolo
- Department of Agriculture, Food, Environment and Forestry, University of Florence, viale delle Idee 30, 50019 Sesto Fiorentino, Firenze, Italy.
| | - G Lauria
- Department of Agriculture, Food and Environment, University of Pisa, via del Borghetto, 80, 56124 Pisa, Italy
| | - V Rossi
- Department of Agriculture, Food and Environment, University of Pisa, via del Borghetto, 80, 56124 Pisa, Italy
| | - M Ruffini Castiglione
- Department of Biology, University of Pisa, via Luca Ghini, 13, 56126 Pisa, Italy; CIRSEC, Centre for Climate Change Impact, University of Pisa, Pisa, Italy
| | - C Spanò
- Department of Biology, University of Pisa, via Luca Ghini, 13, 56126 Pisa, Italy; CIRSEC, Centre for Climate Change Impact, University of Pisa, Pisa, Italy
| | - S Bottega
- Department of Biology, University of Pisa, via Luca Ghini, 13, 56126 Pisa, Italy
| | - L Guidi
- Department of Agriculture, Food and Environment, University of Pisa, via del Borghetto, 80, 56124 Pisa, Italy; CIRSEC, Centre for Climate Change Impact, University of Pisa, Pisa, Italy
| | - M Landi
- Department of Agriculture, Food and Environment, University of Pisa, via del Borghetto, 80, 56124 Pisa, Italy; CIRSEC, Centre for Climate Change Impact, University of Pisa, Pisa, Italy.
| |
Collapse
|
31
|
Swain BB, Mishra S, Samal S, Adak T, Mohapatra PK, Ayyamperumal R. Chlorpyrifos enrichment enhances tolerance of Anabaena sp. PCC 7119 to dimethoate. ENVIRONMENTAL RESEARCH 2024; 249:118310. [PMID: 38331154 DOI: 10.1016/j.envres.2024.118310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 01/03/2024] [Accepted: 01/23/2024] [Indexed: 02/10/2024]
Abstract
Organophosphorus (OP) insecticides are widely used for on-field pest control, constituting about 38% of global pesticide consumption. Insecticide tolerance has been recorded in microorganisms isolated from the contaminated soil. However, the cross-tolerance of laboratory-enriched cultures remains poorly understood. A chlorpyrifos tolerant (T) strain of Anabaena sp. PCC 7119 was developed through continuous enrichment of the wild strain (W). The cross-tolerance of the T strain to the OP insecticide dimethoate was assessed by measuring photosynthetic performance, key enzyme activities and degradation potential. The presence of dimethoate led to a significant reduction in the growth and pigment content of the W strain. In contrast, the T strain demonstrated improved growth and metabolic performance. Chl a and carotenoids were degraded faster than phycobiliproteins in both strains. The T strain exhibited superior photosynthetic performance, metabolic efficiency and photosystem functions, than of W strain, at both the tested dimethoate concentrations (100 and 200 μM). The treated T strain had more or less a normal OJIP fluorescence transient and bioenergetic functions, while the W strain showed a greater fluorescence rise at ≤ 300 μs indicating the inhibition of electron donation to PS II, and at 2 ms due to reduced electron release beyond QA. The T strain had significantly higher levels of esterase and phosphatases, further enhanced by insecticide treatment. Dimethoate degradation efficiency of the T strain was significantly higher than of the W strain. T strain also removed chlorpyrifos more efficiently than W strain at both the tested concentrations. The BCFs of both chlorpyrifos and dimethoate were lower in the T strain compared to the W strain. These findings suggest that the enriched strain exhibits promising results in withstanding dimethoate toxicity and could be explored for its potential as a bioremediating organism for OP degradation.
Collapse
Affiliation(s)
| | | | - Subhashree Samal
- Department of Botany, Ravenshaw University, Cuttack, 753003, India.
| | - Totan Adak
- Crop Protection Division, ICAR- National Rice Research Institute, Cuttack, 753006, India.
| | | | - Ramamoorthy Ayyamperumal
- College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, 730000, PR China; SIMATS Saveetha University, Chennai, Tamilnadu, 600077, India.
| |
Collapse
|
32
|
Cobacho SP, Leemans LH, Weideveld STJ, Fu X, van Katwijk MM, Lamers LPM, Smolders AJP, Christianen MJA. Addition of iron does not ameliorate sulfide toxicity by sargassum influx to mangroves but dampens methane and nitrous oxide emissions. MARINE POLLUTION BULLETIN 2024; 202:116303. [PMID: 38569305 DOI: 10.1016/j.marpolbul.2024.116303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 03/25/2024] [Accepted: 03/25/2024] [Indexed: 04/05/2024]
Abstract
Sargassum spp. strandings in the tropical Atlantic harm local ecosystems due to toxic sulfide levels. We conducted a mesocosm experiment to test the efficacy of iron(III) (hydr)oxides in (a) mitigating sulfide toxicity in mangroves resulting from Sargassum and (b) reducing potentially enhanced greenhouse gas emissions. Our results show that iron addition failed to prevent mangrove mortality caused by highly toxic sulfide concentrations, which reached up to 15,000 μmol l-1 in 14 days; timely removal may potentially prevent mangrove death. Sargassum-impacted mesocosms significantly increased methane, nitrous oxide, and carbon dioxide emissions, producing approximately 1 g CO2-equivalents m-2 h-1 during daylight hours, thereby shifting mangroves from sinks to sources of greenhouse gasses. However, iron addition decreased methane emissions by 62 % and nitrous oxide emissions by 57 %. This research reveals that Sargassum strandings have multiple adverse effects related to chemical and ecological dynamics in mangrove ecosystems, including greenhouse gas emissions.
Collapse
Affiliation(s)
- Sara P Cobacho
- Aquatic Ecology and Water Quality Management Group, Department of Environmental Sciences, Wageningen University, Droevendaalsesteeg 3a, 6708 PB Wageningen, the Netherlands
| | - Luuk H Leemans
- Aquatic Ecology and Environmental Biology, Radboud Institute for Biological and Environmental Sciences, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, the Netherlands
| | - Stefan T J Weideveld
- Aquatic Ecology and Environmental Biology, Radboud Institute for Biological and Environmental Sciences, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, the Netherlands; B-WARE Research Centre, Toernooiveld 1, 6525 ED Nijmegen, the Netherlands
| | - Xitong Fu
- Aquatic Ecology and Water Quality Management Group, Department of Environmental Sciences, Wageningen University, Droevendaalsesteeg 3a, 6708 PB Wageningen, the Netherlands
| | - Marieke M van Katwijk
- Department of Environmental Science, Radboud Institute for Biological and Environmental Sciences, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, the Netherlands
| | - Leon P M Lamers
- Aquatic Ecology and Environmental Biology, Radboud Institute for Biological and Environmental Sciences, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, the Netherlands
| | - Alfons J P Smolders
- Aquatic Ecology and Environmental Biology, Radboud Institute for Biological and Environmental Sciences, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, the Netherlands; B-WARE Research Centre, Toernooiveld 1, 6525 ED Nijmegen, the Netherlands
| | - Marjolijn J A Christianen
- Aquatic Ecology and Water Quality Management Group, Department of Environmental Sciences, Wageningen University, Droevendaalsesteeg 3a, 6708 PB Wageningen, the Netherlands
| |
Collapse
|
33
|
Kangi E, Brzostek ER, Bills RJ, Callister SJ, Zink EM, Kim YM, Larsen PE, Cumming JR. A multi-omic survey of black cottonwood tissues highlights coordinated transcriptomic and metabolomic mechanisms for plant adaptation to phosphorus deficiency. FRONTIERS IN PLANT SCIENCE 2024; 15:1324608. [PMID: 38645387 PMCID: PMC11032019 DOI: 10.3389/fpls.2024.1324608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 03/11/2024] [Indexed: 04/23/2024]
Abstract
Introduction Phosphorus (P) deficiency in plants creates a variety of metabolic perturbations that decrease photosynthesis and growth. Phosphorus deficiency is especially challenging for the production of bioenergy feedstock plantation species, such as poplars (Populus spp.), where fertilization may not be practically or economically feasible. While the phenotypic effects of P deficiency are well known, the molecular mechanisms underlying whole-plant and tissue-specific responses to P deficiency, and in particular the responses of commercially valuable hardwoods, are less studied. Methods We used a multi-tissue and multi-omics approach using transcriptomic, proteomic, and metabolomic analyses of the leaves and roots of black cottonwood (Populus trichocarpa) seedlings grown under P-deficient (5 µM P) and replete (100 µM P) conditions to assess this knowledge gap and to identify potential gene targets for selection for P efficiency. Results In comparison to seedlings grown at 100 µM P, P-deficient seedlings exhibited reduced dry biomass, altered chlorophyll fluorescence, and reduced tissue P concentrations. In line with these observations, growth, C metabolism, and photosynthesis pathways were downregulated in the transcriptome of the P-deficient plants. Additionally, we found evidence of strong lipid remodeling in the leaves. Metabolomic data showed that the roots of P-deficient plants had a greater relative abundance of phosphate ion, which may reflect extensive degradation of P-rich metabolites in plants exposed to long-term P-deficiency. With the notable exception of the KEGG pathway for Starch and Sucrose Metabolism (map00500), the responses of the transcriptome and the metabolome to P deficiency were consistent with one another. No significant changes in the proteome were detected in response to P deficiency. Discussion and conclusion Collectively, our multi-omic and multi-tissue approach enabled the identification of important metabolic and regulatory pathways regulated across tissues at the molecular level that will be important avenues to further evaluate for P efficiency. These included stress-mediating systems associated with reactive oxygen species maintenance, lipid remodeling within tissues, and systems involved in P scavenging from the rhizosphere.
Collapse
Affiliation(s)
- Emel Kangi
- Department of Biology, West Virginia University, Morgantown, WV, United States
| | - Edward R. Brzostek
- Department of Biology, West Virginia University, Morgantown, WV, United States
| | - Robert J. Bills
- Biology Department, Willamette University, Salem, OR, United States
| | - Stephen J. Callister
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, United States
| | - Erika M. Zink
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, United States
| | - Young-Mo Kim
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, United States
| | - Peter E. Larsen
- Loyola Genomics Facility, Loyola University Chicago, Maywood, IL, United States
| | - Jonathan R. Cumming
- Department of Natural Sciences, University of Maryland Eastern Shore, Princess Anne, MD, United States
| |
Collapse
|
34
|
Ofori S, Abebrese DK, Klement A, Provazník D, Tomášková I, Růžičková I, Wanner J. Impact of treated wastewater on plant growth: leaf fluorescence, reflectance, and biomass-based assessment. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2024; 89:1647-1664. [PMID: 38619895 DOI: 10.2166/wst.2024.097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 03/15/2024] [Indexed: 04/17/2024]
Abstract
The study evaluated the impact of treated wastewater on plant growth through the use of hyperspectral and fluorescence-based techniques coupled with classical biomass analyses, and assessed the potential of reusing treated wastewater for irrigation without fertilizer application. Cherry tomato (Solanum lycopersicum) and cabbage (Brassica oleracea L.) were irrigated with tap water (Tap), secondary effluent (SE), and membrane effluent (ME). Maximum quantum yield of photosystem II (Fv/Fm) of tomato and cabbage was between 0.78 to 0.80 and 0.81 to 0.82, respectively, for all treatments. The performance index (PI) of Tap/SE/ME was 2.73, 2.85, and 2.48 for tomatoes and 4.25, 3.79, and 3.70 for cabbage, respectively. Both Fv/Fm and PI indicated that the treated wastewater did not have a significant adverse effect on the photosynthetic efficiency and plant vitality of the crops. Hyperspectral analysis showed higher chlorophyll and nitrogen content in leaves of recycled water-irrigated crops than tap water-irrigated crops. SE had 10.5% dry matter composition (tomato) and Tap had 10.7% (cabbage). Total leaf count of Tap/SE/ME was 86, 111, and 102 for tomato and 37, 40, and 42 for cabbage, respectively. In this study, the use of treated wastewater did not induce any photosynthetic-related or abiotic stress on the crops; instead, it promoted crop growth.
Collapse
Affiliation(s)
- Solomon Ofori
- Department of Water Technology and Environmental Engineering, Faculty of Environmental Technology, University of Chemistry and Technology, Technická 5, 166 28 Prague 6 - Dejvice, Prague, Czech Republic E-mail:
| | - David Kwesi Abebrese
- Department of Water Resources, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences, Kamýcká 129, 165 00 Prague 6 - Suchdol, Prague, Czech Republic
| | - Aleš Klement
- Department of Soil Science and Soil Protection, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences, Kamýcká 129, 165 00 Prague 6 - Suchdol, Prague, Czech Republic
| | - Daniel Provazník
- Department of Genetics and Physiology of Forest Trees, Faculty of Forestry and Wood Sciences, Czech University of Life Sciences, Kamýcká 129, 165 21 Prague 6 - Suchdol, Prague, Czech Republic
| | - Ivana Tomášková
- Department of Genetics and Physiology of Forest Trees, Faculty of Forestry and Wood Sciences, Czech University of Life Sciences, Kamýcká 129, 165 21 Prague 6 - Suchdol, Prague, Czech Republic
| | - Iveta Růžičková
- Department of Water Technology and Environmental Engineering, Faculty of Environmental Technology, University of Chemistry and Technology, Technická 5, 166 28 Prague 6 - Dejvice, Prague, Czech Republic
| | - Jiří Wanner
- Department of Water Technology and Environmental Engineering, Faculty of Environmental Technology, University of Chemistry and Technology, Technická 5, 166 28 Prague 6 - Dejvice, Prague, Czech Republic
| |
Collapse
|
35
|
Hoshika Y, Moura BB, Cotrozzi L, Nali C, Alfarraj S, Rennenberg H, Paoletti E. An assessment of ozone risk for date palm suggests that phytotoxic ozone dose nonlinearly affects carbon gain. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 342:123143. [PMID: 38097156 DOI: 10.1016/j.envpol.2023.123143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 12/05/2023] [Accepted: 12/10/2023] [Indexed: 12/17/2023]
Abstract
Tropospheric ozone (O3) is a significant phytotoxic air pollutant that has a negative impact on plant carbon gain. Although date palm (Phoenix dactylifera L.) is a globally important crop in arid or semi-arid regions, so far O3 risk assessment for this species has not been reported. This study estimated leaf- and plant-level photosynthetic CO2 uptake for understanding how elevated levels of O3 affects date palm biomass growth. Ozone risks to date palm plants were assessed based on exposure- (AOT40) or flux-based indices (Phytotoxic Ozone Dose, PODy, where y is a threshold of uptake). For this purpose, plants were exposed to three levels of O3 [ambient air, AA (45 ppb as daily average); 1.5 × AA; 2.0 × AA] for 92 days in an O3 Free-Air Controlled Exposure facility. According to the model simulations, the negative effects of O3 on plant-level net photosynthetic CO2 uptake were attributed to reduced gross photosynthetic carbon gain and increased respiratory carbon loss. Season-long O3 exposure and elevated temperatures promoted the negative O3 effect because of a further increase of respiratory carbon loss, which was caused by increased leaf temperature due to stomatal closure. POD1 nonlinearly affected the photosynthetic CO2 uptake, which was closely related to the variation of dry mass increment during the experiment. Although the dose-response relationship suggested that a low O3 dose (POD1 < 5.2 mmol m-2) may even positively affect photosynthetic CO2 uptake in date palms, stomatal O3 uptake at the current ambient O3 levels has potentially a negative impact on date palm growth. The results indicate 5.8 mmol m-2 POD1 or 21.1 ppm h AOT40 as critical levels corresponding to a 4% reduction of net CO2 uptake for date palm, suggesting that this species can be identified as a species moderately sensitive to O3.
Collapse
Affiliation(s)
- Yasutomo Hoshika
- Institute of Research on Terrestrial Ecosystems (IRET), National Research Council of Italy (CNR), Sede Secondaria di Firenze, Via Madonna del Piano, 50019, Sesto Fiorentino, Italy; NBFC, National Biodiversity Future Center, Palermo, 90133, Italy.
| | - Barbara Baesso Moura
- Institute of Research on Terrestrial Ecosystems (IRET), National Research Council of Italy (CNR), Sede Secondaria di Firenze, Via Madonna del Piano, 50019, Sesto Fiorentino, Italy; NBFC, National Biodiversity Future Center, Palermo, 90133, Italy
| | - Lorenzo Cotrozzi
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124, Pisa, Italy; CIRSEC, Centre for Climate Change Impact, University of Pisa, Via del Borghetto 80, 56124, Pisa, Italy
| | - Cristina Nali
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124, Pisa, Italy; CIRSEC, Centre for Climate Change Impact, University of Pisa, Via del Borghetto 80, 56124, Pisa, Italy
| | - Saleh Alfarraj
- College of Sciences, King Saud University, PO Box 2455, Riyad, 11451, Saudi Arabia
| | - Heinz Rennenberg
- College of Sciences, King Saud University, PO Box 2455, Riyad, 11451, Saudi Arabia; Chair of Tree Physiology, Faculty of Environment and Natural Resources, Institute of Forest Sciences, Albert-Ludwigs-University Freiburg, Georges-Köhler-Allee 53, 79110, Freiburg, Germany; Center of Molecular Ecophysiology (CMEP), College of Resources and Environment, Southwest University No. 2, Tiansheng Road, Beibei District, 400715, Chongqing, PR China
| | - Elena Paoletti
- Institute of Research on Terrestrial Ecosystems (IRET), National Research Council of Italy (CNR), Sede Secondaria di Firenze, Via Madonna del Piano, 50019, Sesto Fiorentino, Italy; NBFC, National Biodiversity Future Center, Palermo, 90133, Italy
| |
Collapse
|
36
|
Yang M, Du D, Zhu F, Wang X. Metabolomic analysis reveals the toxicity mechanisms of bisphenol A on the Microcystis aeruginosa under different phosphorus levels. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 342:123022. [PMID: 38008252 DOI: 10.1016/j.envpol.2023.123022] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 11/18/2023] [Accepted: 11/20/2023] [Indexed: 11/28/2023]
Abstract
Harmful cyanobacterial blooms have been a global environmental problem. Discharge of anthropogenic pollutants and excess nutrient import into the freshwater bodies may be the biggest drivers of bloom. Bisphenol A (BPA), a typical endocrine-disrupting compound, is frequently detected in different natural waters, which was a threat to the balance of aquatic ecosystem. Yet mechanistic understanding of the bloom and microcystin generation under combined pollution conditions is still a mystery. Herein, the cellular and metabolomic responses to BPA exposure and phosphorus (P) levels in Microcystis aeruginosa were investigated throughout its growth period. The results showed that the stress response of M. aeruginosa to BPA was characterized by a decrease in growth density, an increase in P utilization, an increase in ATPase activity, a disruption of the photosynthetic system, and an increase in the production and release of microcystins (MCs). However, these effects are highly dependent on the growth stage of the cyanobacterial cell and the magnitude of the added P concentration. In addition, exposure to a high concentration (10 μM) of BPA significantly stimulated the production of 20.7% more and the release of 29.2% more MCs from M. aeruginosa cells at a low P level. The responses of reactive oxygen species (ROS), superoxide dismutase (SOD) and malondialdehyde (MDA) suggested that exposure to BPA exposure at a low P level can lead to oxidative stress in M. aeruginosa. In addition, the differentially expressed 63 metabolites showed that cell growth, energy generation and photosynthesis were mainly regulated by the metabolic network of 3-phosphoglyceric acid (3-PGA), D-glucose 6-phosphate, UDP-α-D-galactose and UDP-N-acetyl-D-galactosamine (UDP-GalNAc) metabolism. Amino acids and lipid metabolism collectively mediated MCs production and release. These findings will provide important references for the control of harmful cyanobacterial blooms under combined pollution.
Collapse
Affiliation(s)
- Meng Yang
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China.
| | - Daolin Du
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China.
| | - Fang Zhu
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China.
| | - Xiangrong Wang
- Department of Environmental Science and Engineering, Fudan University, Shanghai, 200438, China.
| |
Collapse
|
37
|
Kostić O, Jarić S, Pavlović D, Matić M, Radulović N, Mitrović M, Pavlović P. Ecophysiological response of Populus alba L. to multiple stress factors during the revitalisation of coal fly ash lagoons at different stages of weathering. FRONTIERS IN PLANT SCIENCE 2024; 14:1337700. [PMID: 38269133 PMCID: PMC10805861 DOI: 10.3389/fpls.2023.1337700] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 12/21/2023] [Indexed: 01/26/2024]
Abstract
The enormous quantities of fly ash (FA) produced by thermal power plants is a global problem and safe, sustainable approaches to reduce the amount and its toxic effects are still being sought. Vegetation cover comprising long-living species can help reduce FA dump-related environmental health issues. However, the synergistic effect of multiple abiotic factors, like drought, low organic matter content, a deficit of essential nutrients, alkaline pH, and phytotoxicity due to high potentially toxic element (PTE) and soluble salt content, limits the number of species that can grow under such stressful conditions. Thus, we hypothesised that Populus alba L., which spontaneously colonised two FA disposal lagoons at the 'Nikola Tesla A' thermal power plant (Obrenovac, Serbia) 3 years (L3) and 11 years (L11) ago, has high restoration potential thanks to its stress tolerance. We analysed the basic physical and chemical properties of FA at different weathering stages, while the ecophysiological response of P. alba to multiple stresses was determined through biological indicators [the bioconcentration factor (BCF) and translocation factor (TF) for PTEs (As, B, Cr, Cu, Mn, Ni, Se, and Zn)] and by measuring the following parameters: photosynthetic efficiency and chlorophyll concentration, non-enzymatic antioxidant defence (carotenoids, anthocyanins, and phenols), oxidative stress (malondialdehyde (MDA) concentrations), and total antioxidant capacity (IC50) to neutralise DPPH free radical activity. Unlike at L3, toxic As, B, and Zn concentrations in leaves induced oxidative stress in P. alba at L11, shown by the higher MDA levels, lower vitality, and reduced synthesis of chlorophyll, carotenoids, and total antioxidant activity, suggesting its stress tolerance decreases with long-term exposure to adverse abiotic factors. Although P. alba is a fast-growing species with good metal accumulation ability and high stress tolerance, it has poor stabilisation potential for substrates with high As and B concentrations, making it highly unsuitable for revitalising such habitats.
Collapse
Affiliation(s)
- Olga Kostić
- Department of Ecology, Institute for Biological Research ‘Siniša Stanković’ - National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | | | | | | | | | | | | |
Collapse
|
38
|
Cseresnyés I, Füzy A, Kabos S, Kelemen B, Rajkai K, Takács T. Monitoring of plant water uptake by measuring root dielectric properties on a fine timescale: diurnal changes and response to leaf excision. PLANT METHODS 2024; 20:5. [PMID: 38195647 PMCID: PMC10775601 DOI: 10.1186/s13007-023-01133-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 12/28/2023] [Indexed: 01/11/2024]
Abstract
BACKGROUND The measurement of root dielectric response is a useful non-destructive method to evaluate root growth and function. Previous studies tracked root development throughout the plant growing cycle by single-time electrical measurements taken repeatedly. However, it is known that root conductivity and uptake activity can change rapidly, coupled with the day/night cycles of photosynthetic and transpiration rate. Therefore, the low-frequency dielectric monitoring of intact root-substrate systems at minute-scale temporal resolution was tested using a customized impedance measurement system in a laboratory environment. Electrical capacitance (CR) and conductance (GR) and the dissipation factor (DR) were detected for 144 h in potted maize, cucumber and pea grown under various light/dark and temperature conditions, or subjected to progressive leaf excision or decapitation. Photosynthetic parameters and stomatal conductance were also measured to evaluate the stress response. RESULTS The CR and GR data series showed significant 24-h seasonality associated with the light/dark and temperature cycles applied. This was attributed to the diurnal patterns in whole-plant transpiration (detected via stomatal conductance), which is strongly linked to the root water uptake rate. CR and GR decreased during the 6-day dark treatment, and dropped proportionally with increasing defoliation levels, likely due to the loss of canopy transpiration caused by dark-induced senescence or removal of leaves. DR showed a decreasing trend for plants exposed to 6-day darkness, whereas it was increased markedly by decapitation, indicating altered root membrane structure and permeability, and a modified ratio of apoplastic to cell-to-cell water and current pathways. CONCLUSIONS Dynamic, in situ impedance measurement of the intact root system was an efficient way of following integrated root water uptake, including diurnal cycles, and stress-induced changes. It was also demonstrated that the dielectric response mainly originated from root tissue polarization and current conduction, and was influenced by the actual physiological activity of the root system. Dielectric measurement on fine timescale, as a diagnostic tool for monitoring root physiological status and environmental response, deserves future attention.
Collapse
Affiliation(s)
- Imre Cseresnyés
- Institute for Soil Sciences, HUN-REN Centre for Agricultural Research, Herman Ottó út 15., 1022, Budapest, Hungary.
| | - Anna Füzy
- Institute for Soil Sciences, HUN-REN Centre for Agricultural Research, Herman Ottó út 15., 1022, Budapest, Hungary
| | - Sándor Kabos
- Department of Statistics, Eötvös Loránd University, Pázmány Péter stny. 1/A., 1117, Budapest, Hungary
| | - Bettina Kelemen
- Institute for Soil Sciences, HUN-REN Centre for Agricultural Research, Herman Ottó út 15., 1022, Budapest, Hungary
| | - Kálmán Rajkai
- Institute for Soil Sciences, HUN-REN Centre for Agricultural Research, Herman Ottó út 15., 1022, Budapest, Hungary
| | - Tünde Takács
- Institute for Soil Sciences, HUN-REN Centre for Agricultural Research, Herman Ottó út 15., 1022, Budapest, Hungary
| |
Collapse
|
39
|
Zhang J, Song F, Xu X, Xia T, Zhang X, Dong L, Yin D. Comprehensive evaluation of morphological and physiological responses of seventeen Crassulaceae species to waterlogging and drainage under temperate monsoon climate. BMC PLANT BIOLOGY 2024; 24:6. [PMID: 38163891 PMCID: PMC10759745 DOI: 10.1186/s12870-023-04676-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 12/11/2023] [Indexed: 01/03/2024]
Abstract
Unpredictable rainfall frequently results in excess moisture, which is detrimental to the landscape because it interferes with the genetic, morphological, and physiological processes of plants, even though the majority of urban landscapes frequently experience moisture shortages. A study was conducted to analyze the effects of a 36-day waterlogging phase and a subsequent 12-day recovery period on the morpho-physiological responses of 17 Crassulaceae species with the goal of identifying those which were more tolerant of the conditions. Results revealed that waterlogging stress has an impact on all morpho-physiological parameters. Sensitive materials (S7, Hylotelephium telephium 'Purple Emperor' and S15, S. sexangulare) showed severe ornamental quality damage, mortality, decreases in total dry biomass, root-shoot ratio, and chlorophyll content, as well as higher MDA concentrations. Lower reductions in these parameters, along with improved antioxidant enzyme activities and greater recovery capabilities after drainage, were observed in the most tolerant materials S2 (H. spectabile 'Brilliant'), S3 (H. spectabile 'Carl'), and S5 (H. telephium 'Autumn Joy'). Furthermore, with the exception of early death materials (S7 and S15), all materials showed varying intensities of adventitious root formation in response to waterlogging. The 17 species were divided into 4 clusters based on the comprehensive evaluation value. The first group included S1-S3, S5-S6, S8-S12, which were waterlogged tolerant with the highest values (0.63-0.82). S14 belongs to the intermediate waterlogging tolerant. S4, S13, S16, and S17 were clustered into the low waterlogging-tolerant group. S7 and S15 were the most susceptible to waterlogging. The survival and success of Crassulaceae species (especially, the first and second cluster), throughout this prolonged period of waterlogging (36 days) and recovery were attributed to a combination of physiological and morphological responses, indicating that they are an appealing species for the creation of rain gardens or obstructed drainage locations.
Collapse
Affiliation(s)
- Jie Zhang
- Shandong Jianzhu University, Jinan, China
| | - Feng Song
- Shandong Jianzhu University, Jinan, China
| | - Xiaolei Xu
- Shandong Jianzhu University, Jinan, China
| | | | - Xu Zhang
- Shandong Jianzhu University, Jinan, China
| | - Li Dong
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, School of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China
| | - Dejie Yin
- Shandong Jianzhu University, Jinan, China.
| |
Collapse
|
40
|
Saini D, Bapatla RB, Vemula CK, Gahir S, Bharath P, Gupta KJ, Raghavendra AS. Moderate modulation by S-nitrosoglutathione of photorespiratory enzymes in pea (Pisum sativum) leaves, compared to the strong effects of high light. PROTOPLASMA 2024; 261:43-51. [PMID: 37421536 DOI: 10.1007/s00709-023-01878-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Accepted: 06/28/2023] [Indexed: 07/10/2023]
Abstract
When plants are exposed to water stress, photosynthesis is downregulated due to enhanced reactive oxygen species (ROS) and nitric oxide (NO). In contrast, photorespiratory metabolism protected photosynthesis and sustained yield. Modulation of photorespiration by ROS was established, but the effect of NO on photorespiratory metabolism was unclear. We, therefore, examined the impact of externally added NO by using S-nitrosoglutathione (GSNO), a natural NO donor, in leaf discs of pea (Pisum sativum) under dark or light: moderate or high light (HL). Maximum NO accumulation with GSNO was under high light. The presence of 2-4-carboxyphenyl-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (cPTIO), a NO scavenger, prevented the increase in NO, confirming the release of NO in leaves. The increase in S-nitrosothiols and tyrosine-nitrated proteins on exposure to GSNO confirmed the nitrosative stress in leaves. However, the changes by GSNO in the activities and transcripts of five photorespiratory enzymes: glycolate oxidase, hydroxypyruvate reductase, catalase, glycerate kinase, and phosphoglycolate phosphatase activities were marginal. The changes in photorespiratory enzymes caused by GSNO were much less than those with HL. Since GSNO caused only mild oxidative stress, we felt that the key modulator of photorespiration might be ROS, but not NO.
Collapse
Affiliation(s)
- Deepak Saini
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, India
| | - Ramesh B Bapatla
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, India
| | | | - Shashibhushan Gahir
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, India
| | - Pulimamidi Bharath
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, India
| | | | - Agepati S Raghavendra
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, India.
| |
Collapse
|
41
|
Cobacho SP, Janssen SAR, Brekelmans MACP, van de Leemput IA, Holmgren M, Christianen MJA. High temperature and eutrophication alter biomass allocation of black mangrove (Avicennia germinans L.) seedlings. MARINE ENVIRONMENTAL RESEARCH 2024; 193:106291. [PMID: 38086136 DOI: 10.1016/j.marenvres.2023.106291] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 11/25/2023] [Accepted: 11/29/2023] [Indexed: 01/02/2024]
Abstract
Mangrove restoration is underway along tropical coastlines to combat their rapid worldwide decline. However, restoration success is limited due to local drivers such as eutrophication, and global drivers such as climate change, yet their interactions remain unclear. We conducted a mesocosm experiment to assess the impact of increased nutrients and temperature on the photosynthetic efficiency and development of black mangrove seedlings. Seedlings exposed to high temperature and eutrophication showed reduced root growth and disproportionally long stems, with lower net assimilation rates. This architectonical imbalance between root and stem growth may increase susceptibility to physical disturbances and dislodgement. Notably, none of the experimental seedlings displayed signs of photophysiological stress, and those exposed to increased nutrients and temperature exhibited robust photosynthetic performance. The disbalance in biomass allocation highlights the importance of considering local nutrient status and hydrodynamic conditions in restoration projects, ensuring the effective anchorage of mangrove seedlings and restoration success under a warming climate.
Collapse
Affiliation(s)
- Sara P Cobacho
- Aquatic Ecology and Water Quality Management Group, Department of Environmental Sciences, Wageningen University, Droevendaalsesteeg 3a, 6708 PB Wageningen, the Netherlands.
| | - Sjoerd A R Janssen
- Aquatic Ecology and Water Quality Management Group, Department of Environmental Sciences, Wageningen University, Droevendaalsesteeg 3a, 6708 PB Wageningen, the Netherlands
| | - Mabel A C P Brekelmans
- Aquatic Ecology and Water Quality Management Group, Department of Environmental Sciences, Wageningen University, Droevendaalsesteeg 3a, 6708 PB Wageningen, the Netherlands
| | - Ingrid A van de Leemput
- Aquatic Ecology and Water Quality Management Group, Department of Environmental Sciences, Wageningen University, Droevendaalsesteeg 3a, 6708 PB Wageningen, the Netherlands
| | - Milena Holmgren
- Wildlife Ecology and Conservation Group, Department of Environmental Sciences, Wageningen University, Droevendaalsesteeg 3a, 6708 PB Wageningen, the Netherlands
| | - Marjolijn J A Christianen
- Aquatic Ecology and Water Quality Management Group, Department of Environmental Sciences, Wageningen University, Droevendaalsesteeg 3a, 6708 PB Wageningen, the Netherlands
| |
Collapse
|
42
|
Xu C, Wang Y, Yang H, Tang Y, Liu B, Hu X, Hu Z. Cold acclimation alleviates photosynthetic inhibition and oxidative damage induced by cold stress in citrus seedlings. PLANT SIGNALING & BEHAVIOR 2023; 18:2285169. [PMID: 38015652 PMCID: PMC10761016 DOI: 10.1080/15592324.2023.2285169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 11/11/2023] [Indexed: 11/30/2023]
Abstract
Cold stress seriously inhibits plant growth and development, geographical distribution, and yield stability of plants. Cold acclimation (CA) is an important strategy for modulating cold stress, but the mechanism by which CA induces plant resistance to cold stress is still not clear. The purpose of this study was to investigate the effect of CA treatment on the cold resistance of citrus seedlings under cold stress treatment, and to use seedlings without CA treatment as the control (NA). The results revealed that CA treatment increased the content of photosynthetic pigments under cold stress, whereas cold stress greatly reduced the value of gas exchange parameters. CA treatment also promoted the activity of Rubisco and FBPase, as well as led to an upregulation of the transcription levels of photosynthetic related genes (rbcL and rbcS),compared to the NA group without cold stress. In addition, cold stress profoundly reduced photochemical chemistry of photosystem II (PSII), especially the maximum quantum efficiency (Fv/Fm) in PSII. Conversely, CA treatment improved the chlorophyll a fluorescence parameters, thereby improving electron transfer efficiency. Moreover, under cold stress, CA treatment alleviated oxidative stress damage to cell membranes by inhibiting the concentration of H2O2 and MDA, enhancing the activities of superoxide dismutase (SOD), catalase (CAT), ascorbic acid peroxidase (APX) and glutathione reductase (GR), accompanied by an increase in the expression level of antioxidant enzyme genes (CuZnSOD1, CAT1, APX and GR). Additionally, CA also increased the contents of abscisic acid (ABA) and salicylic acid (SA) in plants under cold stress. Overall, we concluded that CA treatment suppressed the negative effects of cold stress by enhancing photosynthetic performance, antioxidant enzymes functions and plant hormones contents.
Collapse
Affiliation(s)
- Chao Xu
- Nanchang Key Laboratory of Germplasm Innovation and Utilization of Fruit and Tea, Jiangxi Academy of Agricultural Sciences, Nanchang, P. R. China
- Institute of Environment and Sustainable Development in Agriculture, CAAS, Beijing, P. R. China
| | - Yuting Wang
- Nanchang Key Laboratory of Germplasm Innovation and Utilization of Fruit and Tea, Jiangxi Academy of Agricultural Sciences, Nanchang, P. R. China
| | - Huidong Yang
- Nanchang Key Laboratory of Germplasm Innovation and Utilization of Fruit and Tea, Jiangxi Academy of Agricultural Sciences, Nanchang, P. R. China
| | - Yuqing Tang
- Nanchang Key Laboratory of Germplasm Innovation and Utilization of Fruit and Tea, Jiangxi Academy of Agricultural Sciences, Nanchang, P. R. China
| | - Buchun Liu
- Institute of Environment and Sustainable Development in Agriculture, CAAS, Beijing, P. R. China
| | - Xinlong Hu
- Nanchang Key Laboratory of Germplasm Innovation and Utilization of Fruit and Tea, Jiangxi Academy of Agricultural Sciences, Nanchang, P. R. China
| | - Zhongdong Hu
- Nanchang Key Laboratory of Germplasm Innovation and Utilization of Fruit and Tea, Jiangxi Academy of Agricultural Sciences, Nanchang, P. R. China
| |
Collapse
|
43
|
Zhou J, Jiang X, Agathokleous E, Lu X, Yang Z, Li R. High temperature inhibits photosynthesis of chrysanthemum ( Chrysanthemum morifolium Ramat.) seedlings more than relative humidity. FRONTIERS IN PLANT SCIENCE 2023; 14:1272013. [PMID: 38116157 PMCID: PMC10728730 DOI: 10.3389/fpls.2023.1272013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 11/15/2023] [Indexed: 12/21/2023]
Abstract
High relative humidity (RH) and high temperature are expected more frequently due to climate change, and can severely affect the growth of chrysanthemums. In order to analyze the interactive effects of RH and high temperature on the photosynthetic performance of chrysanthemum, a completely randomized block experiment was conducted with three factors, namely temperature (Day/night temperature, 35°C/18°C, 38°C/18°C, 41°C/18°C), RH (Whole day RH, 50%, 70%, 90%), and treatment duration (3d, 6d, 9d). The control (CK) temperature was 28°C/18°C and RH was 50%. The results showed that with the increase of temperature, the apparent quantum efficiency (AQE), maximum net photosynthetic rate (Pn-max), net photosynthetic rate (Pn), transpiration rate (Tr), water use efficiency (WUE), maximal recorded fluorescence intensity (Fm), PSII maximal photochemical efficiency (Fv/Fm), absorption flux per cross section (ABS/CSm), trapped energy flux per cross section (TRo/CSm), electron transport flux per cross section (ETo/CSm) and photosynthetic pigment content of leaves significantly decreased, the minimal recorded fluorescence intensity (Fo), fluorescence intensity at point J of the OJIP curve (Fj) and non-photochemical quenching per cross section (DIo/CSm) significantly increased, the fluorescence difference kinetics of the OJ phase of chrysanthemum leaves showed K-bands. Pn, AQE, Fm, Fv, Fv/Fm, ABS/CSm, TRo/CSm, ETo/CSm and photosynthetic pigment content were higher at 70% RH than the other two RH conditions. The dominant factor causing the decrease of Pn in leaves was stomatal limitation at 35°C,38°C, three RH conditions, 3d and 6d, but non-stomatal limitation at 41°C and 9d. There was an interaction between temperature and RH, with a significant impact on Pn. The temperature had the greatest impact on Pn, followed by RH. This study confirms that heat stress severely affects the photosynthesis of chrysanthemum leaves, and when the temperature reaches or exceeds 35°C, adjusting the RH to 70% can effectively reduce the impact of heat stress on chrysanthemum photosynthesis.
Collapse
Affiliation(s)
- Jianfei Zhou
- Jiangsu Province Key Laboratory of Agricultural Meteorology, Nanjing, China
- Collaborative Innovation Center of Meteorological Disaster Forecasting and Assessment, Nanjing University of Information Science and Technology, Nanjing, China
- School of Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing, China
| | - Xiaodong Jiang
- Jiangsu Province Key Laboratory of Agricultural Meteorology, Nanjing, China
- Collaborative Innovation Center of Meteorological Disaster Forecasting and Assessment, Nanjing University of Information Science and Technology, Nanjing, China
- School of Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing, China
| | - Evgenios Agathokleous
- Collaborative Innovation Center of Meteorological Disaster Forecasting and Assessment, Nanjing University of Information Science and Technology, Nanjing, China
- School of Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing, China
| | - Xiaojing Lu
- Jiangsu Province Key Laboratory of Agricultural Meteorology, Nanjing, China
- Collaborative Innovation Center of Meteorological Disaster Forecasting and Assessment, Nanjing University of Information Science and Technology, Nanjing, China
- School of Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing, China
| | - Zaiqiang Yang
- Jiangsu Province Key Laboratory of Agricultural Meteorology, Nanjing, China
- Collaborative Innovation Center of Meteorological Disaster Forecasting and Assessment, Nanjing University of Information Science and Technology, Nanjing, China
- School of Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing, China
| | - Ruiying Li
- Jiangsu Province Key Laboratory of Agricultural Meteorology, Nanjing, China
- Meteorological Bureau of Heze City, Heze, China
| |
Collapse
|
44
|
Sharma L, Kudłak B, Siedlewicz G, Pazdro K. The effects of the IM1-12Br ionic liquid and the oxytetracycline mixture on selected marine and brackish microorganisms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 901:165898. [PMID: 37527710 DOI: 10.1016/j.scitotenv.2023.165898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 07/03/2023] [Accepted: 07/28/2023] [Indexed: 08/03/2023]
Abstract
The number of applications and commercialized processes utilizing ionic liquids has been increasing, and it is anticipated that this trend will persist and even intensify in the future. Ionic liquids possess desirable characteristics, such as low vapor pressure, good water solubility, amphiphilicity, and stability. Nevertheless, these properties can influence their environmental behavior, resulting in resistance to biotic and abiotic degradation and subsequent water contamination with more harmful derivatives. However, there is a notable scarcity of data regarding the impact of mixtures comprising ionic liquids and other micropollutants. Identifying potential potentiation of ionic liquids (Ils) toxicity in the presence of other xenobiotics is a proactive risk assessment measure. Therefore, the study aims to fill an important knowledge gap and identify possible interactions between imidazolium-based ionic liquid (IM1-12Br) and the common antibiotic oxytetracycline (OXTC). During 11-day experiments, selected marine, brackish and freshwater microorganisms (diatom Phaeodactylum tricornutum, cyanobacterium Microcystis aeruginosa and green algae Chlorella vulgaris) were exposed to binary mixtures of target substances. The assessed responses encompassed chlorophyll a kinetic parameters related to photosynthesis efficiency, as well as pigment concentrations, specifically phycobilin content. Additionally, the impact on the luminescent marine bacterium Aliivibrio fischeri has been evaluated. Significant effects on the growth, photosynthetic processes, and pigment content were observed in all the targeted microorganisms. The concentration addition (CA) and independent action (IA) mathematical models followed by the Model Deviation Ratio (MDR) evaluation enabled the identification of mainly synergistic interactions in the studied mixtures. The findings of present study offer valuable insights into the impacts of ionic liquids and other organic micropollutants.
Collapse
Affiliation(s)
- Lilianna Sharma
- Department of Marine Chemistry and Biochemistry, Institute of Oceanology, Polish Academy of Sciences, 81-712 Sopot, Poland.
| | - Błażej Kudłak
- Department of Analytical Chemistry, Faculty of Chemistry, Gdańsk University of Technology, 11/12 Narutowicza Str., Gdańsk 80-233, Poland
| | - Grzegorz Siedlewicz
- Department of Marine Chemistry and Biochemistry, Institute of Oceanology, Polish Academy of Sciences, 81-712 Sopot, Poland
| | - Ksenia Pazdro
- Department of Marine Chemistry and Biochemistry, Institute of Oceanology, Polish Academy of Sciences, 81-712 Sopot, Poland
| |
Collapse
|
45
|
Cerqueira WM, Scalon SPQ, Santos CC, Santiago EF, Almeida JLCS, Figueiredo VMA, Linné JA, Silverio JM. Ecophysiological mechanisms and growth of Inga vera Willd. under different water and light availability. BRAZ J BIOL 2023; 83:e275378. [PMID: 38055578 DOI: 10.1590/1519-6984.275378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Accepted: 10/02/2023] [Indexed: 12/08/2023] Open
Abstract
Light and water availability can impact plant survival and growth, making ecophysiological studies crucial for understanding their tolerance and to single and combined stresses. The aimed of this study was to investigate the physiological and growth responses of Inga vera Willd. plants induced by different water regimes and light intensities. Three water regimes were implemented based on substrate water retention capacity (WRC) - 50%, 75%, and 100%, along with shading levels (SH) - 0% (full sun), 30%, and 70%. Evaluations were conducted at 25 and 50 days after applying the water regimes, and during a recovery period of 30 days when all treatments were maintained at 75% of WRC. Photochemical efficiency, gas exchange, chlorophylls indices, growth, quality of the seedlings and content proline amino acid were assessed. Overall, I. vera plants showed greater sensitivity to increased exposure to light than to low water availability. The interaction of SH + WRC was beneficial for the gas exchange and chlorophylls indices characteristics under SH 70% + WRC 75-100% at 25 and 50 days, with higher results, greater plant growth and higher proline contents for leaves and roots under SH 30% and 70% + WRC 50%, 75% and 100% at 25 and 50 days. There was no recovery effect for seedlings grown in full sun. The plants grown under shade during the recovery period maintained their values for most of the characteristics evaluated. SH 30% + WRC 75% contributed to an increase in photosynthetic metabolism and, as a result, to the quality of the seedlings.
Collapse
Affiliation(s)
- W M Cerqueira
- Universidade Federal da Grande Dourados - UFGD, Faculdade de Ciências Biológicas e Ambientais, Dourados, MS, Brasil
| | - S P Q Scalon
- Universidade Federal da Grande Dourados - UFGD, Faculdade de Ciências Agrárias, Dourados, MS, Brasil
| | - C C Santos
- Universidade Federal da Grande Dourados - UFGD, Faculdade de Ciências Agrárias, Dourados, MS, Brasil
| | - E F Santiago
- Universidade Estadual de Mato Grosso do Sul - UEMS, Departamento de Recursos Naturais, Dourados, MS, Brasil
| | - J L C S Almeida
- Universidade Federal da Grande Dourados - UFGD, Faculdade de Ciências Agrárias, Dourados, MS, Brasil
| | - V M A Figueiredo
- Universidade Federal da Grande Dourados - UFGD, Faculdade de Ciências Agrárias, Dourados, MS, Brasil
| | - J A Linné
- Universidade Federal da Grande Dourados - UFGD, Faculdade de Ciências Agrárias, Dourados, MS, Brasil
| | - J M Silverio
- Universidade Federal da Grande Dourados - UFGD, Faculdade de Ciências Agrárias, Dourados, MS, Brasil
| |
Collapse
|
46
|
Saeedi SA, Vahdati K, Sarikhani S, Daylami SD, Davarzani M, Gruda NS, Aliniaeifard S. Growth, photosynthetic function, and stomatal characteristics of Persian walnut explants in vitro under different light spectra. FRONTIERS IN PLANT SCIENCE 2023; 14:1292045. [PMID: 38046599 PMCID: PMC10690960 DOI: 10.3389/fpls.2023.1292045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 10/31/2023] [Indexed: 12/05/2023]
Abstract
Light plays a crucial role in photosynthesis, which is an essential process for plantlets produced during in vitro tissue culture practices and ex vitro acclimatization. LED lights are an appropriate technology for in vitro lighting but their effect on propagation and photosynthesis under in vitro condition is not well understood. This study aimed to investigate the impact of different light spectra on growth, photosynthetic functionality, and stomatal characteristics of micropropagated shoots of Persian walnut (cv. Chandler). Tissue-cultured walnut nodal shoots were grown under different light qualities including white, blue, red, far-red, green, combination of red and blue (70:30), combination of red and far-red (70:30), and fluorescent light as the control. Results showed that the best growth and vegetative characteristics of in vitro explants of Persian walnut were achieved under combination of red and blue light. The biggest size of stomata was detected under white and blue lights. Red light stimulated stomatal closure, while stomatal opening was induced under blue and white lights. Although the red and far-red light spectra resulted in the formation of elongated explants with more lateral shoots and anthocyanin content, they significantly reduced the photosynthetic functionality. Highest soluble carbohydrate content and maximum quantum yield of photosystem II were detected in explants grown under blue and white light spectra. In conclusion, growing walnut explants under combination of red and blue lights leads to better growth, photosynthesis functionality, and the emergence of functional stomata in in vitro explants of Persian walnuts.
Collapse
Affiliation(s)
- Seyyed Arash Saeedi
- Department of Horticulture, College of Aburaihan, University of Tehran, Tehran, Iran
| | - Kourosh Vahdati
- Department of Horticulture, College of Aburaihan, University of Tehran, Tehran, Iran
| | - Saadat Sarikhani
- Department of Horticulture, College of Aburaihan, University of Tehran, Tehran, Iran
| | | | - Maryam Davarzani
- Department of Horticulture, College of Aburaihan, University of Tehran, Tehran, Iran
| | - Nazim S. Gruda
- Department of Horticultural Science, INRES–Institute of Crop Science and Resource Conservation, University of Bonn, Bonn, Germany
| | - Sasan Aliniaeifard
- Department of Horticulture, College of Aburaihan, University of Tehran, Tehran, Iran
- Controlled Environment Agriculture Center (CEAC), College of Agriculture and Natural Resources, University of Tehran, Tehran, Iran
| |
Collapse
|
47
|
Shariatipour N, Shams Z, Heidari B, Richards C. Genetic variation and response to selection of photosynthetic and forage characteristics in Kentucky bluegrass ( Poa pratensis L.) ecotypes under drought conditions. FRONTIERS IN PLANT SCIENCE 2023; 14:1239860. [PMID: 38023869 PMCID: PMC10667697 DOI: 10.3389/fpls.2023.1239860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 10/24/2023] [Indexed: 12/01/2023]
Abstract
Introduction Evaluation of the effects of water-limited conditions on the photosynthetic characteristics and forage yield is important for enhancing the forage productivity and drought tolerance in Kentucky bluegrass (Poa pratensis L.). Methods In the present study, 100 P. pratensis ecotypes collected from different geographical areas in Iran were assessed under well-watered and drought stress conditions. Genetic variation and response to selection for the photosynthetic characteristics [i.e., net photosynthesis rate (A), stomatal conductance (gs), transpiration rate (Tr), chlorophyll content (Chl), and photochemical efficiency (Fv/Fm)] and forage yield [fresh forage yield (FY) and dry forage yield (Dy)] traits were analyzed during the 2018 and 2019 growing seasons. Results and discussion Drought stress had negative effects on evaluated photosynthesis parameters and significantly reduced dry and fresh forage yields. On average, FY with a 45% decrease and gs with a 326% decrease under drought stress conditions showed the highest reduction rate among forage yield and photosynthesis traits, respectively. Genotypic coefficients of variation (GCV) for FY were lower under drought stress. The estimates of heritability, genetic advance, and genetic advance as percentage of mean showed the predominance of additive gene action for the traits. Overall, the results showed that "Ciakhor", "Damavand", "Karvandan", "Basmenj", "Abr2", "Abrumand", "Borhan", "Hezarkanian", "LasemCheshmeh", "Torshab", and "DoSar" have higher forage yield production with little change between two irrigation regimes, which makes them promising candidates for developing high-yielding drought-tolerant varieties through breeding programs.
Collapse
Affiliation(s)
- Nikwan Shariatipour
- Department of Plant Production and Genetics, School of Agriculture, Shiraz University, Shiraz, Iran
| | - Zahra Shams
- Department of Horticulture Science, School of Agriculture, Shiraz University, Shiraz, Iran
| | - Bahram Heidari
- Department of Plant Production and Genetics, School of Agriculture, Shiraz University, Shiraz, Iran
| | - Christopher Richards
- United States Department of Agriculture, The Agricultural Research Service, National Laboratory for Genetic Resources Preservation, Fort Collins, CO, United States
| |
Collapse
|
48
|
Shomali A, Aliniaeifard S, Mohammadian M, Lotfi M, Kalaji HM. Genotype-dependent Strategies to "Overcome" Excessive Light: Insights into Non-Photochemical Quenching under High Light Intensity. PHYSIOLOGIA PLANTARUM 2023; 175:e14077. [PMID: 38148223 DOI: 10.1111/ppl.14077] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 10/05/2023] [Accepted: 10/27/2023] [Indexed: 12/28/2023]
Abstract
High light (HL) intensities have a significant impact on energy flux and distribution within photosynthetic apparatus. To understand the effect of high light intensity (HL) on the HL tolerance mechanisms in tomatoes, we examined the response of the photosynthesis apparatus of 12 tomato genotypes to HL. A reduced electron transfer per reaction center (ET0 /RC), an increased energy dissipation (DI0 /RC) and non-photochemical quenching (NPQ), along with a reduced maximum quantum yield of photosystem II (FV /FM ), and performance index per absorbed photon (PIABS ) were common HL-induced responses among genotypes; however, the magnitude of those responses was highly genotype-dependent. Tolerant and sensitive genotypes were distinguished based on chlorophyll fluorescence and energy-quenching responses to HL. Tolerant genotypes alleviated excess light through energy-dependent quenching (qE ), resulting in smaller photoinhibitory quenching (qI ) compared to sensitive genotypes. Quantum yield components also shifted under HL, favoring the quantum yield of NPQ (ՓNPQ ) and the quantum yield of basal energy loss (ՓN0 ), while reducing the efficient quantum yield of PSII (ՓPSII ). The impact of HL on tolerant genotypes was less pronounced. While the energy partitioning ratio did not differ significantly between sensitive and tolerant genotypes, the ratio of NPQ components, especially qI , affected plant resilience against HL. These findings provide insights into different patterns of HL-induced NPQ components in tolerant and sensitive genotypes, aiding the development of resilient crops for heterogeneous light conditions.
Collapse
Affiliation(s)
- Aida Shomali
- Photosynthesis Laboratory, Department of Horticulture, Aburaihan Campus, University of Tehran, Pakdasht, Iran
| | - Sasan Aliniaeifard
- Photosynthesis Laboratory, Department of Horticulture, Aburaihan Campus, University of Tehran, Pakdasht, Iran
- Controlled Environment Agriculture Center, College of Agriculture and natural resources, University of Tehran, Tehran, Iran
| | - Mohammad Mohammadian
- Photosynthesis Laboratory, Department of Horticulture, Aburaihan Campus, University of Tehran, Pakdasht, Iran
| | - Mahmoud Lotfi
- Photosynthesis Laboratory, Department of Horticulture, Aburaihan Campus, University of Tehran, Pakdasht, Iran
| | - Hazem M Kalaji
- Institute of Technology and Life Sciences, National Research Institute, Raszyn, Poland
- Department of Plant Physiology, Institute of Biology, Warsaw University of Life Sciences, SGGW, Warsaw, Poland
| |
Collapse
|
49
|
Anshori MF, Dirpan A, Sitaresmi T, Rossi R, Farid M, Hairmansis A, Sapta Purwoko B, Suwarno WB, Nugraha Y. An overview of image-based phenotyping as an adaptive 4.0 technology for studying plant abiotic stress: A bibliometric and literature review. Heliyon 2023; 9:e21650. [PMID: 38027954 PMCID: PMC10660044 DOI: 10.1016/j.heliyon.2023.e21650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 09/20/2023] [Accepted: 10/25/2023] [Indexed: 12/01/2023] Open
Abstract
Improving the tolerance of crop species to abiotic stresses that limit plant growth and productivity is essential for mitigating the emerging problems of global warming. In this context, imaged data analysis represents an effective method in the 4.0 technology era, where this method has the non-destructive and recursive characterization of plant phenotypic traits as selection criteria. So, the plant breeders are helped in the development of adapted and climate-resilient crop varieties. Although image-based phenotyping has recently resulted in remarkable improvements for identifying the crop status under a range of growing conditions, the topic of its application for assessing the plant behavioral responses to abiotic stressors has not yet been extensively reviewed. For such a purpose, bibliometric analysis is an ideal analytical concept to analyze the evolution and interplay of image-based phenotyping to abiotic stresses by objectively reviewing the literature in light of existing database. Bibliometricy, a bibliometric analysis was applied using a systematic methodology which involved data mining, mining data improvement and analysis, and manuscript construction. The obtained results indicate that there are 554 documents related to image-based phenotyping to abiotic stress until 5 January 2023. All document showed the future development trends of image-based phenotyping will be mainly centered in the United States, European continent and China. The keywords analysis major focus to the application of 4.0 technology and machine learning in plant breeding, especially to create the tolerant variety under abiotic stresses. Drought and saline become an abiotic stress often using image-based phenotyping. Besides that, the rice, wheat and maize as the main commodities in this topic. In conclusion, the present work provides information on resolutive interactions in developing image-based phenotyping to abiotic stress, especially optimizing high-throughput sensors in image-based phenotyping for the future development.
Collapse
Affiliation(s)
| | - Andi Dirpan
- Department of Agricultural Technology, Hasanuddin University, Makassar, 90245, Indonesia
- Center of Excellence in Science and Technology on Food Product Diversification, 90245, Makassar, Indonesia
| | - Trias Sitaresmi
- Research Center for Food Crops, Research Organization for Agriculture and Food, National Research and Innovation Agency, 16911, Cibinong, Indonesia
| | - Riccardo Rossi
- Department of Agriculture, Food, Environment and Forestry (DAGRI), University of Florence (UNIFI), Piazzale delle Cascine 18, 50144, Florence, Italy
| | - Muh Farid
- Department of Agronomy, Hasanuddin University, Makassar, 90245, Indonesia
| | - Aris Hairmansis
- Research Center for Food Crops, Research Organization for Agriculture and Food, National Research and Innovation Agency, 16911, Cibinong, Indonesia
| | - Bambang Sapta Purwoko
- Department of Agronomy and Horticulture, Faculty of Agriculture, IPB University, Bogor, 11680, Indonesia
| | - Willy Bayuardi Suwarno
- Department of Agronomy and Horticulture, Faculty of Agriculture, IPB University, Bogor, 11680, Indonesia
| | - Yudhistira Nugraha
- Research Center for Food Crops, Research Organization for Agriculture and Food, National Research and Innovation Agency, 16911, Cibinong, Indonesia
| |
Collapse
|
50
|
Makhtoum S, Sabouri H, Gholizadeh A, Ahangar L, Katouzi M, Mastinu A. Genomics and Physiology of Chlorophyll Fluorescence Parameters in Hordeum vulgare L. under Drought and Salt Stresses. PLANTS (BASEL, SWITZERLAND) 2023; 12:3515. [PMID: 37836255 PMCID: PMC10575077 DOI: 10.3390/plants12193515] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 09/16/2023] [Accepted: 10/05/2023] [Indexed: 10/15/2023]
Abstract
To map the genomic regions and control chlorophyll fluorescence attributes under normal, salinity-, and drought-stress conditions in barley (Hordeum vulgare L.) at the seedling stage, an experiment was conducted in 2019-2020 using 106 F8 lines resulting from the cross between Badia × Kavir. Initially, the different chlorophyll fluorescence parameters were evaluated. Under drought stress, the highest decrease was related to REo/CSm (59.56%), and the highest increase was related to dV/dto (77.17%). Also, under salinity stress, the highest decrease was related to Fv/Fo (59.56%), and the highest increase was related to DIo/RC (77.17%). Linkage maps were prepared using 152 SSR polymorphic markers, 72 ISSR alleles, 7 IRAP alleles, 29 CAAT alleles, 27 Scot alleles, and 15 iPBS alleles. The obtained map accounted for 999.2 centi-Morgans (cM) of the barley genome length (92% of the whole barley genome). The results indicated the importance of chromosomes 3, 2, and 7 in controlling ABS/CSm, Area, ETo/CSm, Fm, Fv, and ETo/RC under drought stress. qEToRCD-7, as a major QTL, controlled 18.3% of ETo/RC phenotypic variation under drought stress. Under salinity stress, the regions of chromosomes 2 and 7 (102 cM and 126 cM) controlled the parameters ABS/CSo, Fm, Fo, Fv, TRo/SCo, Area, ETo/CSm, and ETo/CSo. The results showed that chlorophyll fluorescence is an important parameter in the study of drought and salinity effects on barley. This is the first report of the investigation of changes in the genetic structure of quantitative genes controlling the fluorescence parameters associated with barley response to drought and salinity stresses in the Iranian barley RILs population. According to the obtained results, it is possible to use HVPLASC1B and EBmac0713 in normal conditions, ISSR21-2 and ISSR30-4 in drought conditions, and Bmac0047, Scot5-B, CAAT6-C, and ISSR30iPBS2076-4 in saline stress conditions to select genotypes with higher photosynthetic capacity in marker-assisted selection programs.
Collapse
Affiliation(s)
- Somayyeh Makhtoum
- Department of Plant Production, Faculty of Agriculture Science and Natural Resources, Gonbad Kavous University, P.O. Box 163, Gonbad 49717-99151, Iran; (S.M.); (A.G.); (L.A.)
| | - Hossein Sabouri
- Department of Plant Production, Faculty of Agriculture Science and Natural Resources, Gonbad Kavous University, P.O. Box 163, Gonbad 49717-99151, Iran; (S.M.); (A.G.); (L.A.)
| | - Abdollatif Gholizadeh
- Department of Plant Production, Faculty of Agriculture Science and Natural Resources, Gonbad Kavous University, P.O. Box 163, Gonbad 49717-99151, Iran; (S.M.); (A.G.); (L.A.)
| | - Leila Ahangar
- Department of Plant Production, Faculty of Agriculture Science and Natural Resources, Gonbad Kavous University, P.O. Box 163, Gonbad 49717-99151, Iran; (S.M.); (A.G.); (L.A.)
| | - Mahnaz Katouzi
- Department of Plant Breeding and Genetic Resource, Agroscope, 1260 Nyon, Switzerland;
| | - Andrea Mastinu
- Department of Molecular and Translational Medicine, Division of Pharmacology, University of Brescia, Viale Europa 11, 25123 Brescia, Italy
| |
Collapse
|