1
|
Hendriks SJ, Edwards JP, Shirley AK, Clark CEF, Schütz KE, Verhoek KJ, Jago JG. Heat stress amelioration for pasture-based dairy cattle: challenges and opportunities. Anim Front 2025; 15:32-42. [PMID: 40271103 PMCID: PMC12014281 DOI: 10.1093/af/vfae043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2025] Open
Affiliation(s)
| | | | - Alice K Shirley
- Livestock Production and Welfare Group, School of Life and Environmental Sciences, The University of Sydney, Camden, NSW 2570, Australia
| | - Cameron E F Clark
- Gulbali Institute, Charles Sturt University, Wagga Wagga, NSW 2650, Australia
| | - Karin E Schütz
- AgResearch Ltd., Ruakura Research Centre, 10 Bisley Road, Hamilton 3214, New Zealand
| | | | - Jenny G Jago
- DairyNZ Ltd., Private Bag 3221, Hamilton 3240, New Zealand
| |
Collapse
|
2
|
Marins TN, Orellana Rivas RM, Chen YC, Melo VHLR, Wang Z, Liu H, Gao J, Savegnago CG, Roper AM, Bernard JK, Melendez P, Tao S. Effects of heat stress abatement on behavioral response in lactating dairy cows prior to and following an intramammary lipopolysaccharide infusion. J Dairy Sci 2025; 108:1882-1895. [PMID: 39521408 DOI: 10.3168/jds.2024-25298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 10/10/2024] [Indexed: 11/16/2024]
Abstract
The assessment of animal behavior serves as a valuable approach to identify illness and animal responses to environmental stimuli. Both heat stress and mastitis are reported to affect the behavioral responses of dairy cattle. However, little is known about the effects of heat stress on the lactating cow's behavioral responses to mastitis. The aims of the current study were to evaluate the effects of deprivation of evaporative cooling on behavioral responses of lactating dairy cows before and following mammary inflammation induced by intramammary LPS (IM-LPS) infusion and to characterize the effect of deprivation of evaporative cooling on feed sorting in lactating dairy cows during summer. Multiparous mid-lactating Holstein dairy cows (n = 18, parity = 2.4 ± 0.6, DIM = 136 ± 61 d) were randomly assigned to: evaporatively cooled (CL, n = 9) or not cooled (NC, n = 9) for 36 d (average temperature-humidity index = 78.4). The evaporative cooling system included misters and fans. Misters were installed on the front face of each fan, which was placed over both feed bunk and freestalls. On d 30, the left rear quarters of a subset of cows (n = 14, 7 per treatment) were infused with a bolus of LPS (10 µg of Escherichia coli O111:B4 LPS). Feeding and resting behaviors were recorded throughout the experiment using automated sensor devices (NEDAP). Sorting activity based on particle size separation using a Penn State Particle Separator was assessed at d 3, 16, and 26 of the experiment. Before IM-LPS, NC cows had lower ruminating and eating time, and consequently greater inactive time compared with CL cows. Relative to CL cows, NC cows had reduced lying time, and greater standing and walking time. The NC cows also had greater standing bouts, only at the beginning of the experiment, relative to CL cows. Additionally, NC cows sorted more for long particles (NC: 99.4% vs. CL: 94.4%) and sorted against medium and short particles on d 3 of the experiment compared with CL cows. However, following IM-LPS, no significant differences in behavioral responses were observed between NC and CL cows. In conclusion, deprivation of evaporative cooling negatively affected the behavioral responses of lactating dairy cows during summer. Further, heat-stressed cows without evaporative cooling sorted more for long particles of the diet potentially as a response to cope with the reduced rumen pH. However, deprivation of evaporative cooling does not have a significant effect on the lactating cow's behavioral responses to LPS induced mammary inflammation.
Collapse
Affiliation(s)
- T N Marins
- Department of Animal and Dairy Science, University of Georgia, Athens, GA 30602
| | - R M Orellana Rivas
- Department of Animal and Dairy Science, University of Georgia, Athens, GA 30602
| | - Y-C Chen
- Department of Animal and Dairy Science, University of Georgia, Athens, GA 30602
| | - V H L R Melo
- Department of Animal and Dairy Science, University of Georgia, Athens, GA 30602
| | - Z Wang
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - H Liu
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - J Gao
- Department of Animal and Dairy Science, University of Georgia, Athens, GA 30602
| | - C G Savegnago
- Department of Animal and Dairy Science, University of Georgia, Athens, GA 30602
| | - A M Roper
- Department of Animal and Dairy Science, University of Georgia, Athens, GA 30602
| | - J K Bernard
- Department of Animal and Dairy Science, University of Georgia, Tifton, GA 31973
| | - P Melendez
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Tifton, GA 31793
| | - S Tao
- Department of Animal and Dairy Science, University of Georgia, Athens, GA 30602.
| |
Collapse
|
3
|
Branine M, Schilling-Hazlett AK, Carvalho PHV, Stackhouse-Lawson KR, Martins EC, da Silva JT, Amundson L, Ashworth C, Socha M, Dridi S. Effects of Production System With or Without Growth-Promoting Technologies on Growth and Blood Expression of (Cyto)Chemokines and Heat Shock and Tight Junction Proteins in Bos taurus and indicus Breeds During Summer Season. Vet Sci 2025; 12:65. [PMID: 39852940 PMCID: PMC11769308 DOI: 10.3390/vetsci12010065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 12/24/2024] [Accepted: 01/14/2025] [Indexed: 01/26/2025] Open
Abstract
Heat stress (HS) induced by global warming is a real welfare, productivity, and economic burden of cattle production. However, some cattle breeds have superior physiological adaptive traits to others, yet the underlying molecular mechanisms are not fully defined. The present study aimed, therefore, to determine the expression profile of stress-related molecular signatures in the blood of thermosensitive Angus (Bos taurus) and thermotolerant Brahman (Bos indicus) cattle breeds managed without (CON) or with growth-promoting technology (TRT) during the summer (April-October, 2023) season in Colorado, US. Body weight (BW) was significantly increased from April to October, and the amplitude was greater for the Angus compared to the Brahman breed. The TRT system slightly increased BW, mainly in the Angus breed. Molecular analyses showed that all tested genes were expressed in beef cattle blood. When comparing production systems, the expression of HSP1A1 was significantly upregulated, and HSP90 was downregulated in CON compared to TRT cattle. The expression of IL6, CCL20, and OCLN was induced by the CON system only in the Angus and not in the Brahman breed. At the breed level, Angus cattle exhibited greater expression of IL10, CCL20, and CLDN1 compared to their Brahman counterparts. There was a significant period by production system as well as period by breed interactions. The expression of HSP1A1 increased in both breeds during October. The expression of IL10, CXCL14, CXCR2, and CLDN1 was affected by the production systems in a period-dependent manner. However, the expression of IL6, CXCL14, CCL5, and CXCR2 was upregulated in Angus cattle in a period-sensitive manner. In summary, HSPs, (chemo)cytokines, and tight junction proteins are expressed in the whole blood of beef cattle, and their expression is regulated in a breed-, period-, and/or production system-dependent manner. This could open new vistas for future research to identify molecular signatures for non-invasive stress monitoring and/or marker-assisted genetic selection for robustness and resilience to HS.
Collapse
Affiliation(s)
- Mark Branine
- Zinpro Corporation, Eden Prairie, MN 55344, USA; (M.B.); (L.A.); (C.A.); (M.S.)
| | - Ashley K. Schilling-Hazlett
- AgNext, Colorado State University, Fort Collins, CO 80523, USA; (A.K.S.-H.); (P.H.V.C.); (K.R.S.-L.); (J.T.d.S.)
| | - Pedro H. V. Carvalho
- AgNext, Colorado State University, Fort Collins, CO 80523, USA; (A.K.S.-H.); (P.H.V.C.); (K.R.S.-L.); (J.T.d.S.)
| | - Kim R. Stackhouse-Lawson
- AgNext, Colorado State University, Fort Collins, CO 80523, USA; (A.K.S.-H.); (P.H.V.C.); (K.R.S.-L.); (J.T.d.S.)
| | - Edilane C. Martins
- AgNext, Colorado State University, Fort Collins, CO 80523, USA; (A.K.S.-H.); (P.H.V.C.); (K.R.S.-L.); (J.T.d.S.)
| | - Julia T. da Silva
- AgNext, Colorado State University, Fort Collins, CO 80523, USA; (A.K.S.-H.); (P.H.V.C.); (K.R.S.-L.); (J.T.d.S.)
| | - Laura Amundson
- Zinpro Corporation, Eden Prairie, MN 55344, USA; (M.B.); (L.A.); (C.A.); (M.S.)
| | - Chris Ashworth
- Zinpro Corporation, Eden Prairie, MN 55344, USA; (M.B.); (L.A.); (C.A.); (M.S.)
| | - Mike Socha
- Zinpro Corporation, Eden Prairie, MN 55344, USA; (M.B.); (L.A.); (C.A.); (M.S.)
| | - Sami Dridi
- Center of Excellence for Poultry Science, University of Arkansas, 1260 W. Maple Street, Fayetteville, AR 72701, USA
| |
Collapse
|
4
|
Lichtmannsperger K, Hechenberger N, Hartsleben C, Psenner A, Marseiler M, Tichy A, Albert T, Wittek T. Evaluation of factors associated with immunoglobulin, protein, fat and lactose concentrations in colostrum of dairy cows from Austria. Acta Vet Scand 2024; 66:63. [PMID: 39722015 DOI: 10.1186/s13028-024-00788-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 12/19/2024] [Indexed: 12/28/2024] Open
Abstract
BACKGROUND Calves rely on the passive transfer with immunoglobulins derived from colostrum. Currently, there is a lack of knowledge on colostrum management practices and colostrum quality on small scale family-owned dairy farms in Austria. The objectives of this study were to describe factors that are associated with immunoglobulin, protein, fat and lactose concentrations in dairy cow colostrum from the federal state of Salzburg. Therefore, an online questionnaire was designed to gather information on general farm characteristics. Further, the farmers collected individual colostrum samples and completed a detailed accompanying questionnaire for each sample. Immunoglobulin levels were determined by using a Brix refractometer and protein, fat and lactose by standardized laboratory methods. Linear mixed effect models were built to test factors associated with colostrum immunoglobulin, fat, protein and lactose concentrations. RESULTS In total, 1,050 colostrum samples from 72 dairy farms were collected. The number of calvings per year was distributed as follows: ≤10 calvings: 8.3% of the farms, 11 to 20: 31.9%, 21 to 30: 29.2%, 31 to 40: 15.3% and ≥ 41 calvings: 15.3%. Overall, the median Brix value was 22.0% (7.3-36.1%). The number of samples with good and poor-quality colostrum was 517 and 528, respectively. Cow-level factors significantly affecting colostrum Brix% were parity, calving season, ante partum colostrum leakage, time lag between parturition and colostrum collection. In total, a subset of 307 colostrum samples from 39 farms from pure-breed dual-purpose Simmental cows were further analysed for protein, fat and lactose concentration. The median concentration for fat was 5.1% (0.5-18.5%), protein 14.6% (4.2-27.5%) and lactose 2.3% (0.2-5.0%). The cow-level factors affecting protein concentration were similar to the factors influencing Brix%. Fat concentration was influenced by the time lag between calving and colostrum collection and by parity. CONCLUSIONS The present study confirmed the factors, which are currently known to have an impact on colostrum quality. This was the first large scale approach in the federal state of Salzburg to survey colostrum management including colostrum sample collection. The range of colostrum quality was wide (7.3% Brix to 36.1% Brix) therefore many calves will be at risk of receiving poor quality colostrum as defined by a Brix of ≤ 22%.
Collapse
Affiliation(s)
- Katharina Lichtmannsperger
- Clinical Department for Farm Animals and Food System Science, Clinical Center for Ruminant and Camelid Medicine, University of Veterinary Medicine Vienna, Veterinaerplatz 1, Vienna, 1210, Austria.
| | - Nicole Hechenberger
- Animal Health Service (Tiergesundheitsdienst) Salzburg, Bundesstraße 6, Wals-Siezenheim, Salzburg, 5071, Austria
| | - Christina Hartsleben
- Clinical Department for Farm Animals and Food System Science, Clinical Center for Ruminant and Camelid Medicine, University of Veterinary Medicine Vienna, Veterinaerplatz 1, Vienna, 1210, Austria
| | - Ariane Psenner
- Clinical Department for Farm Animals and Food System Science, Clinical Center for Ruminant and Camelid Medicine, University of Veterinary Medicine Vienna, Veterinaerplatz 1, Vienna, 1210, Austria
| | - Maren Marseiler
- Clinical Department for Farm Animals and Food System Science, Clinical Center for Ruminant and Camelid Medicine, University of Veterinary Medicine Vienna, Veterinaerplatz 1, Vienna, 1210, Austria
| | - Alexander Tichy
- Department of Biological Sciences and Pathobiology, Platform for Bioinformatics and Biostatistics, Centre of Biological Sciences, University of Veterinary Medicine Vienna, Veterinaerplatz 1, Vienna, 1210, Austria
| | - Thiemo Albert
- Faculty of Veterinary Medicine, Institute for Food Hygiene, University of Leipzig, An den Tierkliniken 1, 04103, Leipzig, Germany
| | - Thomas Wittek
- Clinical Department for Farm Animals and Food System Science, Clinical Center for Ruminant and Camelid Medicine, University of Veterinary Medicine Vienna, Veterinaerplatz 1, Vienna, 1210, Austria
| |
Collapse
|
5
|
Koch F, Albrecht D, Albrecht E, Hansen C, Kuhla B. Novel Perspective on Molecular and Cellular Adaptations of the Mammary Gland-Regulating Milk Constituents and Immunity of Heat-Stressed Dairy Cows. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:20286-20298. [PMID: 39226405 PMCID: PMC11421017 DOI: 10.1021/acs.jafc.4c03879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Climate change with increasing ambient temperatures negatively influences the biology of dairy cows and their milk production in the mammary gland (MG). This study aimed to elucidate the MG proteome, differences in milk composition, and ruminal short-chain fatty acid concentrations of dairy cows experiencing 7 days of heat stress [HS, 28 °C, temperature humidity index (THI) = 76], pair-feeding (PF), or ad libitum feeding (CON) at thermoneutrality (16 °C, THI = 60). Ruminal acetate, acetate/propionate ratio, and milk urea concentrations were greater, whereas milk protein and lactose were lower in HS than in control cows. Proteome analysis revealed an induced bacterial invasion of epithelial cells, leukocyte transendothelial migration, reduction of the pyruvate and carbon metabolism, and platelet activation in the MG of HS compared to CON or PF cows. These results highlight adaptive metabolic and immune responses to mitigate the negative effects of ambient heat in the MG.
Collapse
Affiliation(s)
- Franziska Koch
- Research Institute for Farm Animal Biology (FBN), Dummerstorf 18196, Germany
| | - Dirk Albrecht
- Department for Microbial Physiology and Molecular Biology, University of Greifswald, Greifswald 17489, Germany
| | - Elke Albrecht
- Research Institute for Farm Animal Biology (FBN), Dummerstorf 18196, Germany
| | - Christiane Hansen
- Mecklenburg-Vorpommern Research Centre for Agriculture and Fisheries, Institute of Livestock Farming, Dummerstorf 18196, Germany
| | - Björn Kuhla
- Research Institute for Farm Animal Biology (FBN), Dummerstorf 18196, Germany
| |
Collapse
|
6
|
Liu E, Liu L, Zhang Z, Qu M, Xue F. An Automated Sprinkler Cooling System Effectively Alleviates Heat Stress in Dairy Cows. Animals (Basel) 2024; 14:2586. [PMID: 39272371 PMCID: PMC11394125 DOI: 10.3390/ani14172586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 08/10/2024] [Accepted: 08/20/2024] [Indexed: 09/15/2024] Open
Abstract
(1) Background: Heat stress detrimentally restricted economic growth in dairy production. In particular, the cooling mechanism of the spraying system effectively reduced both environmental and shell temperatures. This study was designed to investigate the underlying modulatory mechanism of an automatic cooling system in alleviating heat-stressed dairy cows. (2) Methods: A total of 1208 multiparous dairy cows was randomly allocated into six barns, three of which were equipped with automatic sprinklers (SPs), while the other three were considered the controls (CONs). Each barn was considered a replicate. (3) Results: Body temperatures and milk somatic cell counts significantly decreased, while DMI, milk yield, and milk fat content significantly increased under SP treatment. Rumen fermentability was enhanced, embodied by the increased levels of total VFA, acetate, propionate, and butyrate after SP treatment. The rumen microbiota results showed the relative abundances of fiber-degrading bacteria, including the Fibrobacters, Saccharofermentans, Lachnospira, Pseudobutyrivibrio, Selenomonas, and Succinivibrio, which significantly increased after receiving the SP treatment. (4) Conclusions: This study demonstrated that SP effectively alleviated heat stress and improved production performances and milk quality through modulating the rumen microbiota composition and fermentation function of dairy cows.
Collapse
Affiliation(s)
- En Liu
- Jiangxi Province Key Laboratory of Animal Nutrition, Engineering Research Center of Feed Development, Jiangxi Agricultural University, Nanchang 330029, China
| | - Liping Liu
- School of Food Engineering, Anhui College of Science and Technology, Chuzhou 233100, China
| | - Zhili Zhang
- Modern Farming (Wuhe) Co., Ltd., Bengbu 233311, China
| | - Mingren Qu
- Jiangxi Province Key Laboratory of Animal Nutrition, Engineering Research Center of Feed Development, Jiangxi Agricultural University, Nanchang 330029, China
| | - Fuguang Xue
- Jiangxi Province Key Laboratory of Animal Nutrition, Engineering Research Center of Feed Development, Jiangxi Agricultural University, Nanchang 330029, China
| |
Collapse
|
7
|
Laporta J, Khatib H, Zachut M. Review: Phenotypic and molecular evidence of inter- and trans-generational effects of heat stress in livestock mammals and humans. Animal 2024; 18 Suppl 2:101121. [PMID: 38531705 DOI: 10.1016/j.animal.2024.101121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 02/22/2024] [Accepted: 02/23/2024] [Indexed: 03/28/2024] Open
Abstract
Internal and external factors can change an individual's phenotype. A significant external threat to humans and livestock is environmental heat load, a combination of high ambient temperatures and humidity. A heat stress response occurs when an endothermal animal is exposed to a heat load that challenges its' thermoregulation capacity. With the ongoing climate change trends, the incidence of chronically elevated temperatures causing heat stress is expected to rise, posing an even greater risk to the health and survival of all species. Heat stress is generally related to adverse effects on food intake, health, and performance in mammal livestock species and humans. Evidence from epidemiological and experimental studies of humans and livestock demonstrated that exposing pregnant females to heat stress affects the phenotype of the newborn in various ways. For instance, in utero heat stress is related to lower BW at birth and changes in metabolic and immune functions in the newborn. In cows, the effects of heat stress on the performance of the offspring last for three or four generations, suggesting intergenerational effects. The molecular mechanism orchestrating these effects of heat stress may be epigenetic regulation, as various epigenetic mechanisms control genome reprogramming. Epigenetic modifications are attached to DNA and histone proteins and can influence how specific genes are expressed, resulting in phenotypic changes. Epigenetic modifications can be triggered in response to environmental heat stress without altering the DNA sequence. Heat stress insults during critical periods of organ development (i.e., fetal exposure) can trigger epigenetic modifications that impact health and productivity across generations. Thus, epigenetic changes caused by extreme temperatures can be passed down to the offspring if the mother is exposed to the insult during pregnancy. Understanding the phenotypic and molecular consequences of maternal heat stress, including the carry-over lingering effects on the resulting progeny, is necessary to develop effective mitigation strategies and gain translational knowledge about the fundamental processes leading to intergenerational and transgenerational inheritance. This review examines the phenotypic and molecular evidence of how maternal exposure to extreme heat can affect future generations in several species, including humans, swine, sheep, goats, and cattle. The current knowledge of the molecular mechanisms involved in intergenerational and transgenerational epigenetic inheritance will also be presented and discussed.
Collapse
Affiliation(s)
- J Laporta
- Department of Animal and Dairy Sciences, The University of Wisconsin-Madison, Madison, WI 53705, USA.
| | - H Khatib
- Department of Animal and Dairy Sciences, The University of Wisconsin-Madison, Madison, WI 53705, USA
| | - M Zachut
- Department of Ruminant Science, Institute of Animal Science, Volcani Institute, Rishon LeZion 7505101, Israel
| |
Collapse
|
8
|
Kumar R, Kumari R, Verma A, Gupta ID. Association analysis of HSP90AA1 polymorphism with thermotolerance in tropically adapted Indian crossbred cattle. Trop Anim Health Prod 2024; 56:230. [PMID: 39096401 DOI: 10.1007/s11250-024-04055-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 06/20/2024] [Indexed: 08/05/2024]
Abstract
Raising cattle is a lucrative business that operates globally but is confronted by many obstacles, such as thermal stress, which results in substantial monetary losses. A vital role of heat shock proteins (HSPs) is to protect cells from cellular damage. HSP90 is a highly prevalent, extremely adaptable gene linked to physiological resilience in thermal stress. This study aimed to find genetic polymorphisms of the HSP90AA1 gene in Karan Fries cattle and explore their relationship to thermal tolerance and production traits. One SNP (g.3292 A > C) was found in the Intron 8 and three SNPs loci (g.4776 A > G, g.5218T > C and g.5224 A > C) were found in the exon 11 of 100 multiparous Karan Fries cattle. The association study demonstrated that the SNP1-g.3292 A > C was significantly (P < 0.01) linked to the variables respiratory rate (RR), heat tolerance coefficient (HTC) and total milk yield (TMY (kg)) attributes. There was no significant correlation identified between any of the other SNP sites (SNP2-g.4776 A > G; SNP3-g.5218T > C; SNP4-g.5224 A > C) with the heat tolerance and production attributes in Karan Fries cattle. Haploview 4.2 and SHEsis software programs were used to analyse pair linkage disequilibrium and construct haplotypes for HSP90AA1. Association studies indicated that the Hap3 (CATA) was beneficial for heat tolerance breeding in Karan Fries cattle. In conclusion, genetic polymorphisms and haplotypes in the HSP90AA1 were associated with thermal endurance attributes. This relationship can be utilized as a beneficial SNP or Hap marker for genetic heat resistance selection in cow breeding platforms.
Collapse
Affiliation(s)
- Rakesh Kumar
- ICAR-Research Complex for Eastern Region, Patna, Bihar, 800014, India.
| | - Ragini Kumari
- Animal and Fisheries Resource Department, Govt. of Bihar, Saran, Chapra, Bihar, 841301, India
| | - Archana Verma
- Division of Animal Genetics and Breeding, ICAR-National Dairy Research Institute, Karnal, Haryana, 132 001, India
| | - Ishwar Dayal Gupta
- Division of Animal Genetics and Breeding, ICAR-National Dairy Research Institute, Karnal, Haryana, 132 001, India
| |
Collapse
|
9
|
Reolon HG, Abduch NG, de Freitas AC, Silva RMDO, Fragomeni BDO, Lourenco D, Baldi F, de Paz CCP, Stafuzza NB. Proteomic changes of the bovine blood plasma in response to heat stress in a tropically adapted cattle breed. Front Genet 2024; 15:1392670. [PMID: 39149588 PMCID: PMC11324462 DOI: 10.3389/fgene.2024.1392670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 07/17/2024] [Indexed: 08/17/2024] Open
Abstract
Background Identifying molecular mechanisms responsible for the response to heat stress is essential to increase production, reproduction, health, and welfare. This study aimed to identify early biological responses and potential biomarkers involved in the response to heat stress and animal's recovery in tropically adapted beef cattle through proteomic analysis of blood plasma. Methods Blood samples were collected from 14 Caracu males during the heat stress peak (HSP) and 16 h after it (heat stress recovery-HSR) assessed based on wet bulb globe temperature index and rectal temperature. Proteome was investigated by liquid chromatography-tandem mass spectrometry from plasma samples, and the differentially regulated proteins were evaluated by functional enrichment analysis using DAVID tool. The protein-protein interaction network was evaluated by STRING tool. Results A total of 1,550 proteins were detected in both time points, of which 84 and 65 were downregulated and upregulated during HSR, respectively. Among the differentially regulated proteins with the highest absolute log-fold change values, those encoded by the GABBR1, EPHA2, DUSP5, MUC2, DGCR8, MAP2K7, ADRA1A, CXADR, TOPBP1, and NEB genes were highlighted as potential biomarkers because of their roles in response to heat stress. The functional enrichment analysis revealed that 65 Gene Ontology terms and 34 pathways were significant (P < 0.05). We highlighted those that could be associated with the response to heat stress, such as those related to the immune system, complement system, hemostasis, calcium, ECM-receptor interaction, and PI3K-Akt and MAPK signaling pathways. In addition, the protein-protein interaction network analysis revealed several complement and coagulation proteins and acute-phase proteins as important nodes based on their centrality and edges. Conclusion Identifying differentially regulated proteins and their relationship, as well as their roles in key pathways contribute to improve the knowledge of the mechanisms behind the response to heat stress in naturally adapted cattle breeds. In addition, proteins highlighted herein are potential biomarkers involved in the early response and recovery from heat stress in tropically adapted beef cattle.
Collapse
Affiliation(s)
| | - Natalya Gardezani Abduch
- Beef Cattle Research Center, Animal Science Institute, Sertãozinho, Brazil
- Department of Genetics, Ribeirao Preto Medical School (FMRP), University of Sao Paulo (USP), Ribeirão Preto, Brazil
| | - Ana Claudia de Freitas
- Beef Cattle Research Center, Animal Science Institute, Sertãozinho, Brazil
- Agricultural Research Agency of the State of Minas Gerais (EPAMIG), Patos de Minas, Brazil
| | | | | | - Daniela Lourenco
- Department of Animal and Dairy Science, University of Georgia, Athens, GA, United States
| | - Fernando Baldi
- Department of Animal Science, School of Agricultural and Veterinary Sciences, Sao Paulo State University (UNESP), Jaboticabal, Brazil
| | - Claudia Cristina Paro de Paz
- Department of Genetics, Ribeirao Preto Medical School (FMRP), University of Sao Paulo (USP), Ribeirão Preto, Brazil
- Sustainable Livestock Research Center, Animal Science Institute, São José do Rio Preto, Brazil
| | | |
Collapse
|
10
|
Zeng J, Wang D, Sun H, Liu H, Zhao FQ, Liu J. Heat stress affects mammary metabolism by influencing the plasma flow to the glands. J Anim Sci Biotechnol 2024; 15:92. [PMID: 38965570 PMCID: PMC11225325 DOI: 10.1186/s40104-024-01050-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 05/16/2024] [Indexed: 07/06/2024] Open
Abstract
BACKGROUND Environmental heat stress (HS) can have detrimental effects on milk production by compromising the mammary function. Mammary plasma flow (MPF) plays a crucial role in nutrient supply and uptake in the mammary gland. In this experiment, we investigated the physiological and metabolic changes in high-yielding cows exposed to different degrees of HS: no HS with thermal-humidity index (THI) below 68 (No-HS), mild HS (Mild-HS, 68 ≤ THI ≤ 79), and moderate HS (Mod-HS, 79 < THI ≤ 88) in their natural environment. Our study focused on the changes in blood oxygen supply and mammary glucose uptake and utilization. RESULTS Compared with No-HS, the MPF of dairy cows was greater (P < 0.01) under Mild-HS, but was lower (P < 0.01) in cows under Mod-HS. Oxygen supply and consumption exhibited similar changes to the MPF under different HS, with no difference in ratio of oxygen consumption to supply (P = 0.46). The mammary arterio-vein differences in glucose concentration were lower (P < 0.05) under Mild- and Mod-HS than under no HS. Glucose supply and flow were significantly increased (P < 0.01) under Mild-HS but significantly decreased (P < 0.01) under Mod-HS compared to No-HS. Glucose uptake (P < 0.01) and clearance rates (P < 0.01) were significantly reduced under Mod-HS compared to those under No-HS and Mild-HS. Under Mild-HS, there was a significant decrease (P < 0.01) in the ratio of lactose yield to mammary glucose supply compared to that under No-HS and Mod-HS, with no difference (P = 0.53) in the ratio of lactose yield to uptaken glucose among different HS situations. CONCLUSIONS Degrees of HS exert different influences on mammary metabolism, mainly by altering MPF in dairy cows. The output from this study may help us to develop strategies to mitigate the impact of different degrees of HS on milk production.
Collapse
Affiliation(s)
- Jia Zeng
- Institute of Dairy Science, College of Animal Sciences, Zhejiang University, Hangzhou, China
- Zhejiang Key Laboratory of Dairy Cow Genetic Improvement and Milk Quality Research, Zhejiang University, Hangzhou, China
| | - Diming Wang
- Institute of Dairy Science, College of Animal Sciences, Zhejiang University, Hangzhou, China
- Zhejiang Key Laboratory of Dairy Cow Genetic Improvement and Milk Quality Research, Zhejiang University, Hangzhou, China
| | - Huizeng Sun
- Institute of Dairy Science, College of Animal Sciences, Zhejiang University, Hangzhou, China
- Zhejiang Key Laboratory of Dairy Cow Genetic Improvement and Milk Quality Research, Zhejiang University, Hangzhou, China
| | - Hongyun Liu
- Institute of Dairy Science, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Feng-Qi Zhao
- Department of Animal & Veterinary Sciences, University of Vermont, Burlington, VT, USA
| | - Jianxin Liu
- Institute of Dairy Science, College of Animal Sciences, Zhejiang University, Hangzhou, China.
| |
Collapse
|
11
|
Chavarría I, Alvarado AS, Macías-Cruz U, Avendaño-Reyes L, Ángel-García O, Contreras V, Carrillo DI, Mellado M. Unmasking seasonal cycles in a high-input dairy herd in a hot environment: How climate shapes dynamics of milk yield, reproduction, and productive status. J Therm Biol 2024; 123:103944. [PMID: 39137568 DOI: 10.1016/j.jtherbio.2024.103944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 07/05/2024] [Accepted: 08/05/2024] [Indexed: 08/15/2024]
Abstract
This study aimed to predict the annual herd milk yield, lactation, and reproductive cycle stages in a high-input dairy herd in a zone with prolonged thermal stress. Also, the impact of climatic conditions on milk yield and productive and reproductive status was assessed. An autoregressive integrated moving average (ARIMA) model was used in data fitting to predict future monthly herd milk yield and reproductive status using data from 2014 to 2020. Based on the annual total milk output, the highest predicted percentage of milk yield based on the yearly milk production was in February (9.1%; 95% CI = 8.3-9.9) and the lowest in August (6.9%; 95% CI = 6.0-7.9). The predicted highest percentage of pregnant cows for 2021 was in May (61.8; 95% CI = 53.0-70.5) and the lowest for November (33.2%; 95% CI = 19.9-46.5). The monthly percentage of dry cows in this study showed a steady trend across years; the predicted highest percentage was in September (20.1%; CI = 16.4-23.7) and the lowest in March (7.5%; 4.0-11.0). The predicted days in milk (DIM) were lower in September (158; CI = 103-213) and highest in May (220; 95% CI = 181-259). Percentage of calvings was seasonal, with the predicted maximum percentage of calvings occurring in September (10.3%; CI = 8.0-12.5) and the minimum in April (3.2%; CI = 1.0-5.5). The highest predicted culling rate for the year ensuing the present data occurred in November (4.3%; 95% CI = 3.2-5.4) and the lowest in April (2.5%; 95% CI = 1.4-3.5). It was concluded that meteorological factors strongly influenced rhythms of monthly milk yield and reproductive status. Also, ARIMA models robustly estimated and forecasted productive and reproductive events in a dairy herd in a hot environment.
Collapse
Affiliation(s)
- I Chavarría
- Department of Veterinary Science, Autonomous Agrarian University Antonio Narro, Torreon, Mexico.
| | - A S Alvarado
- Department of Veterinary Science, Autonomous Agrarian University Antonio Narro, Torreon, Mexico.
| | - U Macías-Cruz
- Institute of Agricultural Sciences, Autonomous University of Baja California, Mexicali, Mexico.
| | - L Avendaño-Reyes
- Institute of Agricultural Sciences, Autonomous University of Baja California, Mexicali, Mexico.
| | - O Ángel-García
- Department of Veterinary Science, Autonomous Agrarian University Antonio Narro, Torreon, Mexico.
| | - V Contreras
- Department of Veterinary Science, Autonomous Agrarian University Antonio Narro, Torreon, Mexico.
| | - D I Carrillo
- Department of Veterinary Science, Autonomous Agrarian University Antonio Narro, Torreon, Mexico.
| | - M Mellado
- Department of Animal Nutrition, Autonomous Agrarian University Antonio Narro, Saltillo, Coah, Mexico.
| |
Collapse
|
12
|
Jo JH, Nejad JG, Kim HR, Lee HG. Effect of seven days heat stress on feed and water intake, milk characteristics, blood parameters, physiological indicators, and gene expression in Holstein dairy cows. J Therm Biol 2024; 123:103929. [PMID: 39106611 DOI: 10.1016/j.jtherbio.2024.103929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 05/17/2024] [Accepted: 07/14/2024] [Indexed: 08/09/2024]
Abstract
This study examined the effects of 7 days of heat stress on eight early lactating Holstein cows in climate-controlled chambers. The early lactating Holstein cows (42 ± 2 days in milk, 29.27 ± 0.38 kg/day milk yield, 1.21 ± 0.05 parity) were subjected to two 14-day periods, each consisting of 7 days of adaptation and 7 days of heat stress. Conditions were set to 22 °C and 50% humidity during adaptation, followed by heat stress periods with low-temperature, low-humidity (LTLH, 71 THI) and high-temperature, high-humidity (HTHH, 86 THI) treatments. Data from the last 7 days were analyzed using a mixed procedure in SAS. In the study, the HTHH group displayed marked physiological and biochemical changes on 14 days of heat stress exposure compared to the LTLH group. Firstly, the HTHH group's dry matter intake decreased by approximately 12% while their water intake increased by about 23%. Secondly, both milk yield and milk protein production in the HTHH group decreased by 10% and 20%, respectively. Thirdly, there was a reduction in white blood cells, hemoglobin, mean corpuscular hemoglobin, and platelets in the HTHH group, with concurrent increases in glucose, non-esterified fatty acids, and albumin concentrations. Additionally, the HTHH group exhibited elevated plasma concentrations of cortisol and haptoglobin. Moreover, the gene expression of heat shock protein 70 and heat shock protein 90 was significantly upregulated in the HTHH group's peripheral blood mononuclear cells. Lastly, key physiological indicators such as rectal temperature, heart rate, and skin temperature showed substantial elevations in the HTHH group. Considering the enormous negative effects observed in the analyzed blood metabolites, milk yield and compositions, and heat shock protein gene expression, early lactating Holstein cows were found to be more vulnerable to HTHH than LTLH over a 7 days exposure to heat stress.
Collapse
Affiliation(s)
- Jang-Hoon Jo
- Department of Animal Science and Technology, Sanghuh College of Life Sciences, Konkuk University, Seoul, 05029, Republic of Korea
| | - Jalil Ghassemi Nejad
- Department of Animal Science and Technology, Sanghuh College of Life Sciences, Konkuk University, Seoul, 05029, Republic of Korea
| | - Hye-Ran Kim
- Animal Nutrition and Physiology Division, National Institute of Animal Science, RDA, Wanju, 55365, Republic of Korea
| | - Hong-Gu Lee
- Department of Animal Science and Technology, Sanghuh College of Life Sciences, Konkuk University, Seoul, 05029, Republic of Korea.
| |
Collapse
|
13
|
Ellett MD, Rhoads RP, Hanigan MD, Corl BA, Perez-Hernandez G, Parsons CLM, Baumgard LH, Daniels KM. Relationships between gastrointestinal permeability, heat stress, and milk production in lactating dairy cows. J Dairy Sci 2024; 107:5190-5203. [PMID: 38428497 DOI: 10.3168/jds.2023-24043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 02/02/2024] [Indexed: 03/03/2024]
Abstract
Heat stress (HS) is a global issue that decreases farm profits and compromises animal welfare. To distinguish between the direct and indirect effects of HS, 16 multiparous Holstein cows approximately 100 DIM were assigned to one of 2 treatments: pair fed to match HS cow intake, housed in thermoneutral conditions (PFTN, n = 8) or cyclical HS (n = 8). All cows were subjected to 2 experimental periods. Period 1 consisted of a 4 d thermoneutral period with ad libitum intake. During period 2 (P2), the HS cows were housed in cyclical HS conditions with a temperature-humidity index (THI) ranging from 76 to 80 and the PFTN cows were exposed to a constant THI of 64 for 4 d. Dry matter intake of the PFTN cows was intake matched to the HS cows. Milk yield, milk composition, rectal temperature, and respiration rate were recorded twice daily, blood was collected daily via a jugular catheter, and cows were fed twice daily. On d 3 of each period, Cr-EDTA and sucralose were orally administered and recovered via 24 h total urine collection to assess gastrointestinal permeability. All data were analyzed using the GLIMMIX procedure in SAS. The daily data collected in P1 was averaged and used as a covariate if deemed significant in the model. Heat stress decreased voluntary feed intake by 35% and increased rectal temperature and respiration rate (38.4°C vs. 39.4°C and 40 vs. 71 respirations/min, respectively). Heat stress reduced DMI by 35%, which accounted for 66% of the decrease in milk yield. The yields, and not concentrations, of milk protein, fat, and other solids were lower in the HS cows on d 4 of P2. Milk urea nitrogen was higher and plasma urea nitrogen tended to be higher on d 3 and d 4 of HS. Glucose was 7% lower in the HS cows and insulin was 71% higher in the HS cows than the PFTN cows on d 4 of P2. No difference in lipopolysaccharide-binding protein was observed. Heat stress cows produced 7 L/d more urine than PFTN cows. No differences were detected in the urine concentration or percentage of the oral dose recovered for Cr-EDTA or sucralose. In conclusion, HS was responsible for 34% of the reduction of milk yield. The elevated MUN and the tendency for elevated plasma urea nitrogen indicate a whole-body shift in nitrogen metabolism. No differences in gastrointestinal permeability or lipopolysaccharide-binding protein were observed. These results indicate that, under the conditions of this experiment, activation of the immune system by gut-derived lipopolysaccharide was not responsible for the decreased milk yield observed during HS.
Collapse
Affiliation(s)
- M D Ellett
- School of Animal Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061
| | - R P Rhoads
- School of Animal Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061
| | - M D Hanigan
- School of Animal Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061
| | - B A Corl
- School of Animal Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061
| | - G Perez-Hernandez
- School of Animal Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061
| | - C L M Parsons
- School of Animal Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061
| | - L H Baumgard
- Department of Animal Science, Iowa State University, Ames, IA 50011
| | - K M Daniels
- School of Animal Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061.
| |
Collapse
|
14
|
White AR. The firestorm within: A narrative review of extreme heat and wildfire smoke effects on brain health. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 922:171239. [PMID: 38417511 DOI: 10.1016/j.scitotenv.2024.171239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 02/21/2024] [Accepted: 02/22/2024] [Indexed: 03/01/2024]
Abstract
Climate change is generating increased heatwaves and wildfires across much of the world. With these escalating environmental changes comes greater impacts on human health leading to increased numbers of people suffering from heat- and wildfire smoke-associated respiratory and cardiovascular impairment. One area of health impact of climate change that has received far less attention is the effects of extreme heat and wildfire smoke exposure on human brain health. As elevated temperatures, and wildfire-associated smoke, are increasingly experienced simultaneously over summer periods, understanding this combined impact is critical to management of human health especially in the elderly, and people with dementia, and other neurological disorders. Both extreme heat and wildfire smoke air pollution (especially particulate matter, PM) induce neuroinflammatory and cerebrovascular effects, oxidative stress, and cognitive impairment, however the combined effect of these impacts are not well understood. In this narrative review, a comprehensive examination of extreme heat and wildfire smoke impact on human brain health is presented, with a focus on how these factors contribute to cognitive impairment, and dementia, one of the leading health issues today. Also discussed is the potential impact of combined heat and wildfire smoke on brain health, and where future efforts should be applied to help advance knowledge in this rapidly growing and critical field of health research.
Collapse
Affiliation(s)
- Anthony R White
- Mental Health and Neuroscience Program, QIMR Berghofer Medical Research Institute, Herston, Queensland 4006, Australia; A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Neulaniementie 2, 70211 Kuopio, Finland; School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia; School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, QLD, Australia.
| |
Collapse
|
15
|
Buonaiuto G, Visentin G, Costa A, Niero G, Degano L, Cavallini D, Mammi LME, Palmonari A, Formigoni A, Lopez-Villalobos N. The effect of first-lactation calving season, milk production, and morphology on the survival of Simmental cows. Animal 2024; 18:101128. [PMID: 38574454 DOI: 10.1016/j.animal.2024.101128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 03/01/2024] [Accepted: 03/05/2024] [Indexed: 04/06/2024] Open
Abstract
Longevity in dairy and dual-purpose cattle is a complex trait which depends on many individual and managerial factors. The purpose of the present study was to investigate the survival (SURV) rate of Italian Simmental dual-purpose cows across different parities. Data of this study referred to 2 173 primiparous cows under official milk recording that calved between 2002 and 2020. Only cows linearly classified for type traits, including muscularity (MU) and body condition score (BCS) were kept. Survival analysis was carried out, through the Cox regression model, for different pairwise combinations of classes of milk productivity MU, BCS, and calving season. Herd-year of first calving was also considered in the model. SURV (0 = culled; 1 = survived) at each lactation up to the 6th were the dependent variables, so that, for example, SURV2 equal to 1 was attributed to cows that entered the 2nd lactation. Survival rates were 98, 71, 63, 56, and 53% for 2nd, 3rd, 4th, 5th, and 6th lactation, respectively. Results revealed that SURV2 was not dependent on milk yield, while in subsequent parities, low-producing cows were characterized by higher SURV compared to high-producing ones. Additionally, cows starting the lactation in autumn survived less (47.38%) than those starting in spring (53.49%), suggesting that facing the late gestation phase in summer could increase the culling risk. The present study indicates that SURV in Italian Simmental cows is influenced by various factors in addition to milk productivity. However, it is important to consider that in this study all first-calving cows culled before the linear evaluation - carried out between mid- and late lactation in this breed - were not accounted for. Finding can be transferred to other dual-purpose breeds, where the cows' body conformation and muscle development - i.e. meat-related features - are often considered as important as milk performance by farmers undertaking culling decisions.
Collapse
Affiliation(s)
- G Buonaiuto
- Department of Veterinary Medical Sciences (DIMEVET), Alma Mater Studiorum - University of Bologna, Via Tolara di Sopra 50, 40064 Ozzano dell'Emilia (BO), Italy
| | - G Visentin
- Department of Veterinary Medical Sciences (DIMEVET), Alma Mater Studiorum - University of Bologna, Via Tolara di Sopra 50, 40064 Ozzano dell'Emilia (BO), Italy
| | - A Costa
- Department of Veterinary Medical Sciences (DIMEVET), Alma Mater Studiorum - University of Bologna, Via Tolara di Sopra 50, 40064 Ozzano dell'Emilia (BO), Italy.
| | - G Niero
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova, Viale dell'Università 16, 35020 Legnaro (PD), Italy
| | - L Degano
- National Association of Italian Simmental Cattle Breeders (ANAPRI), Via Ippolito Nievo, 19, 33100 Udine, Italy
| | - D Cavallini
- Department of Veterinary Medical Sciences (DIMEVET), Alma Mater Studiorum - University of Bologna, Via Tolara di Sopra 50, 40064 Ozzano dell'Emilia (BO), Italy
| | - L M E Mammi
- Department of Veterinary Medical Sciences (DIMEVET), Alma Mater Studiorum - University of Bologna, Via Tolara di Sopra 50, 40064 Ozzano dell'Emilia (BO), Italy
| | - A Palmonari
- Department of Veterinary Medical Sciences (DIMEVET), Alma Mater Studiorum - University of Bologna, Via Tolara di Sopra 50, 40064 Ozzano dell'Emilia (BO), Italy
| | - A Formigoni
- Department of Veterinary Medical Sciences (DIMEVET), Alma Mater Studiorum - University of Bologna, Via Tolara di Sopra 50, 40064 Ozzano dell'Emilia (BO), Italy
| | - N Lopez-Villalobos
- School of Agriculture and Environment, Massey University, Private Bag 11 222, Palmerston North 4442, New Zealand
| |
Collapse
|
16
|
Li B, Wu K, Duan G, Yin W, Lei M, Yan Y, Ren Y, Zhang C. Folic Acid and Taurine Alleviate the Impairment of Redox Status, Immunity, Rumen Microbial Composition and Fermentation of Lambs under Heat Stress. Animals (Basel) 2024; 14:998. [PMID: 38612237 PMCID: PMC11010938 DOI: 10.3390/ani14070998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/14/2024] [Accepted: 03/22/2024] [Indexed: 04/14/2024] Open
Abstract
The aim of this study was to investigate if the supplementation of folic acid and taurine can relieve the adverse effects of different levels of heat stress (HS) on growth performance, physiological indices, antioxidative capacity, immunity, rumen fermentation and microbiota. A total of 24 Dorper × Hu crossbred lambs (27.51 ± 0.96 kg) were divided into four groups: control group (C, 25 °C), moderate HS group (MHS, 35 °C), severe HS group (SHS, 40 °C), and the treatment group, under severe HS (RHS, 40 °C, 4 and 40 mg/kg BW/d coated folic acid and taurine, respectively). Results showed that, compared with Group C, HS significantly decreased the ADG of lambs (p < 0.05), and the ADG in the RHS group was markedly higher than in the MHS and SHS group (p < 0.05). HS had significant detrimental effects on physiological indices, antioxidative indices and immune status on the 4th day (p < 0.05). The physiological indices, such as RR and ST, increased significantly (p < 0.05) with the HS level and were significantly decreased in the RHS group, compared to the SHS group (p < 0.05). HS induced the significant increase of MDA, TNF-α, and IL-β, and the decrease of T-AOC, SOD, GPx, IL-10, IL-13, IgA, IgG, and IgM (p < 0.05). However, there was a significant improvement in these indices after the supplementation of folic acid and taurine under HS. Moreover, there were a significant increase in Quinella and Succinivibrio, and an evident decrease of the genera Rikenellaceae_RC9_gut_group and Asteroleplasma under HS (p < 0.05). The LEfSe analysis showed that the genera Butyrivibrio, Eubacterium_ventriosum_group, and f_Bifidobacteriaceae were enriched in the MHS, SHS and RHS groups, respectively. Correlated analysis indicated that the genus Rikenellaceae_RC9_gut_group was positively associated with MDA, while it was negatively involved in IL-10, IgA, IgM, and SOD (p < 0.05); The genus Anaeroplasma was positively associated with the propionate and valerate, while the genus Succinivibrio was negatively involved in TNF-α (p < 0.05). In conclusion, folic acid and taurine may alleviate the adverse effects of HS on antioxidant capacity, immunomodulation, and rumen fermentation of lambs by inducing changes in the microbiome that improve animal growth performance.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Youshe Ren
- College of Animal Science, Shanxi Agricultural University, Taiyuan 030031, China; (B.L.); (K.W.); (G.D.); (W.Y.); (M.L.); (Y.Y.)
| | - Chunxiang Zhang
- College of Animal Science, Shanxi Agricultural University, Taiyuan 030031, China; (B.L.); (K.W.); (G.D.); (W.Y.); (M.L.); (Y.Y.)
| |
Collapse
|
17
|
Jurkovich V, Bakony M, Reiczigel J. A retrospective study of thermal events on the mortality rate of hutch-reared dairy calves. Front Vet Sci 2024; 11:1366254. [PMID: 38560627 PMCID: PMC10980180 DOI: 10.3389/fvets.2024.1366254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 03/05/2024] [Indexed: 04/04/2024] Open
Abstract
Introduction Heat stress in hutch-reared dairy calves (Bos taurus) is highly relevant due to its adverse effects on animal welfare, health, growth, and economic outcomes. This study aimed to provide arguments for protecting calves against heat stress. It was hypothesized that the thermal stress caused by high ambient temperature in summer months negatively affects the survival rate in preweaning calves. Methods In a retrospective study, we investigated how calf mortality varied by calendar month and between thermoneutral and heat stress periods on a large-scale Hungarian dairy farm (data of 46,899 calves between 1991 and 2015). Results The daily mortality rate was higher in the summer (8.7-11.9 deaths per 10,000 calf days) and winter months (10.7-12.5 deaths per 10,000 calf-days) than in the spring (6.8-9.2 deaths per 10,000 calf-days) and autumn months (7.1-9.5 deaths per 10,000 calf-days). The distribution of calf deaths per calendar month differed between the 0-14-day and 15-60-day age groups. The mortality risk ratio was highest in July (6.92). The mortality risk in the 0-14-day age group was twice as high in periods with a daily mean temperature above 22°C than in periods with a daily mean of 5-18°C. Conclusions Heat stress abatement is advised in outdoor calf rearing when the mean daily temperature reaches 22°C, which, due to global warming, will be a common characteristic of summer weather in a continental region.
Collapse
Affiliation(s)
- Viktor Jurkovich
- Centre for Animal Welfare, University of Veterinary Medicine, Budapest, Hungary
- Department of Animal Hygiene, Herd Health and Mobile Clinic, University of Veterinary Medicine, Budapest, Hungary
| | - Mikolt Bakony
- Centre for Translational Medicine, Semmelweis University, Budapest, Hungary
| | - Jeno Reiczigel
- Department of Biostatistics, University of Veterinary Medicine, Budapest, Hungary
| |
Collapse
|
18
|
Tamminen LM, Båge R, Åkerlind M, Olmos Antillón G. Farmers´ sense of the biological impact of extreme heat and seasonality on Swedish high-yielding dairy cows - A mixed methods approach. Prev Vet Med 2024; 224:106131. [PMID: 38277818 DOI: 10.1016/j.prevetmed.2024.106131] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 01/01/2024] [Accepted: 01/16/2024] [Indexed: 01/28/2024]
Abstract
Supporting dairy farmers in becoming resilient towards extreme weather requires a broad understanding of the experiences and perceived risks associated with these events from those who undergo them. We used a mixed methods approach to explore national trends of biological consequences on dairy cow udder health and fertility, combined with in-depth farmer conversations around extreme weather events, focusing on heat. The aim is to provide a comprehensive picture of how dairy farmer perceptions, priorities and decision-making are related to the season and extreme weather to identify preventive pathways that can reduce biological costs of heat stress on Swedish dairy cattle during summer. Data collected monthly at cow and farm level between 2016-2019 as part of the Swedish milk and disease recording system confirm seasonal trends and show increased somatic cell counts (SCC) and negatively impacted fertility during summers. In addition, transcriptions of 18 interviews with dairy farmers across the country and seasonal variations of SCC and fertility were thematically analysed. The results suggest that farmers have a broad definition of extreme weather and are aware of the negative impacts. Yet handling of extreme weather events can mainly be classified as reactive. Nevertheless, there are long-term effects on the farm economy, health and herd dynamics. Swedish dairy farmers are currently showing resilience, albeit a fragile one. The capability to ensure sufficient feed production in extreme weather is critical for farm self-perceived resilience. However, acknowledging the long-term biological costs related to fertility, currently not perceived by farmers, has the potential to support proactive planning and improve farm resilience and profitability.
Collapse
Affiliation(s)
- Lena-Mari Tamminen
- Department of Clinical Sciences, Swedish University of Agricultural Sciences, Uppsala 75651, Sweden.
| | - Renée Båge
- Department of Clinical Sciences, Swedish University of Agricultural Sciences, Uppsala 75651, Sweden.
| | | | - Gabriela Olmos Antillón
- Department of Clinical Sciences, Swedish University of Agricultural Sciences, Uppsala 75651, Sweden.
| |
Collapse
|
19
|
Pantoja MHDA, Novais FJD, Mourão GB, Mateescu RG, Poleti MD, Beline M, Monteiro CP, Fukumasu H, Titto CG. Exploring candidate genes for heat tolerance in ovine through liver gene expression. Heliyon 2024; 10:e25692. [PMID: 38370230 PMCID: PMC10869868 DOI: 10.1016/j.heliyon.2024.e25692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 01/24/2024] [Accepted: 01/31/2024] [Indexed: 02/20/2024] Open
Abstract
Thermotolerance has become an essential factor in the prevention of the adverse effects of heat stress, but it varies among animals. Identifying genes related to heat adaptability traits is important for improving thermotolerance and for selecting more productive animals in hot environments. The primary objective of this research was to find candidate genes in the liver that play a crucial role in the heat stress response of Santa Ines sheep, which exhibit varying levels of heat tolerance. To achieve this goal, 80 sheep were selected based on their thermotolerance and placed in a climate chamber for 10 days, during which the average temperature was maintained at 36 °C from 10 a.m. to 4 p.m. and 28 °C from 4 p.m. to 10 a.m. A subset of 14 extreme animals, with seven thermotolerant and seven non-thermotolerant animals based on heat loss (rectal temperature), were selected for liver sampling. RNA sequencing and differential gene expression analysis were performed. Thermotolerant sheep showed higher expression of genes GPx3, RGS6, GPAT3, VLDLR, LOC101108817, and EVC. These genes were mainly related to the Hedgehog signaling pathway, glutathione metabolism, glycerolipid metabolism, and thyroid hormone synthesis. These enhanced pathways in thermotolerant animals could potentially mitigate the negative effects of heat stress, conferring greater heat resistance.
Collapse
Affiliation(s)
- Messy Hannear de Andrade Pantoja
- Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo, Av. Duque de Caxias Norte, 225, Pirassununga, SP, 13635-900, Brazil
| | - Francisco José de Novais
- Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo, Av. Duque de Caxias Norte, 225, Pirassununga, SP, 13635-900, Brazil
| | - Gerson Barreto Mourão
- Escola Superior de Agricultura Luiz de Queiroz, Universidade São Paulo, Av. Pádua Dias, 11, Piracicaba, SP, 13418-900, Brazil
| | - Raluca G. Mateescu
- Department of Animal Science, University of Florida, Gainesville, FL, United States
| | - Mirele Daiana Poleti
- Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo, Av. Duque de Caxias Norte, 225, Pirassununga, SP, 13635-900, Brazil
| | - Mariane Beline
- Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061-0002, United States
| | - Camylla Pedrosa Monteiro
- Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo, Av. Duque de Caxias Norte, 225, Pirassununga, SP, 13635-900, Brazil
| | - Heidge Fukumasu
- Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo, Av. Duque de Caxias Norte, 225, Pirassununga, SP, 13635-900, Brazil
| | - Cristiane Gonçalves Titto
- Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo, Av. Duque de Caxias Norte, 225, Pirassununga, SP, 13635-900, Brazil
| |
Collapse
|
20
|
Alhussien MN, Hussen J, De Matteis G. Editorial: Heat stress and immune responses in livestock: current challenges and intervention strategies. Front Vet Sci 2024; 11:1366274. [PMID: 38328258 PMCID: PMC10847576 DOI: 10.3389/fvets.2024.1366274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Accepted: 01/15/2024] [Indexed: 02/09/2024] Open
Affiliation(s)
- Mohanned Naif Alhussien
- Reproductive Biotechnology, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Jamal Hussen
- Department of Microbiology, College of Veterinary Medicine, King Faisal University, Al Hofuf, Saudi Arabia
| | - Giovanna De Matteis
- Research Centre for Animal Production and Aquaculture, Council for Agricultural Research and Economics, CREA, Rome, Italy
| |
Collapse
|
21
|
Scatà MC, Alhussien MN, Grandoni F, Reale A, Zampieri M, Hussen J, De Matteis G. Hyperthermia-induced changes in leukocyte survival and phagocytosis: a comparative study in bovine and buffalo leukocytes. Front Vet Sci 2024; 10:1327148. [PMID: 38322426 PMCID: PMC10844375 DOI: 10.3389/fvets.2023.1327148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 12/18/2023] [Indexed: 02/08/2024] Open
Abstract
Heat stress negatively affects health, welfare, and livestock productivity by impairing immune function, increasing disease incidence. In recent years, there has been increasing interest in understanding the immune system of water buffalo due to the growing economic impact of this species for the high quality and nutritional value of buffalo milk. While there are common responses across bovine and buffalo species, there are also some species-specific variations in the physiological responses to heat stress, mainly attributed to differences in metabolism and heat dissipation efficiency. At cellular level, the exposure to thermal stress induces several anomalies in cell functions. However, there is limited knowledge about the differential response of bovine and buffalo leucocytes to early and late exposure to different degrees of thermal exposure. The aim of this study was to compare the in vitro effect of hyperthermia on apoptosis and phagocytosis in leukocytes from bovine and buffalo species. For this, whole blood samples of six bovines and nine buffaloes were incubated at 39°C (mimicking normothermia condition) or 41°C (mimicking heat stress condition) for 1, 2, and 4 h. Two flow cytometric assays were then performed to evaluate apoptosis and determine functional capacity of phagocytic cells (neutrophils and monocytes). The results showed that the viability of bovine and buffalo leukocytes was differently affected by temperature and time of in vitro exposure. A higher percentage of apoptotic leukocytes was observed in bovines than in buffaloes at 39°C (3.19 vs. 1.51, p < 0.05) and 41°C (4.01 vs. 1.69, p < 0.05) and for all incubation time points (p < 0.05). In contrast, no difference was observed in the fraction of necrotic leukocytes between the two species. In both species, lymphocytes showed the highest sensitivity to hyperthermia, showing an increased apoptosis rates along with increased incubation time. In bovine, apoptotic lymphocytes increased from 5.79 to 12.7% at 39°C (p < 0.05), in buffalo, this population increased from 1.50 to 3.57% at 39°C and from 2.90 to 4.99% at 41°C (p < 0.05). Although no significant differences were found between the two species regarding the percentage of phagocytic neutrophils, lower phagocytosis capacity values (MFI, mean fluorescence intensity) were found in bovines compared with buffaloes at 41°C (27960.72 vs. 53676.45, p > 0.05). However, for monocytes, the differences between species were significant for both phagocytosis activity and capacity with lower percentages of bovine phagocytic monocytes after 2 h at 39°C and after 1 h at 41°C. The bovine monocytes showed lower MFI values for all temperature and time variations than buffaloes (37538.91 vs. 90445.47 at 39°C and 33752.91 vs. 70278.79 at 41°C, p < 0.05). In conclusion, the current study represents the first report on the comparative analysis of the effect of in vitro heat stress on bovine and buffalo leukocyte populations, highlighting that the leukocytes of buffalo exhibit relatively higher thermal adaptation than bovine cells.
Collapse
Affiliation(s)
- Maria Carmela Scatà
- Research Centre for Animal Production and Aquaculture, Council for Agricultural Research and Economics (CREA), Rome, Italy
| | - Mohanned Naif Alhussien
- Reproductive Biotechnology, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Francesco Grandoni
- Research Centre for Animal Production and Aquaculture, Council for Agricultural Research and Economics (CREA), Rome, Italy
| | - Anna Reale
- Department of Experimental Medicine, Faculty of Medicine and Dentistry, Sapienza University of Rome, Rome, Italy
| | - Michele Zampieri
- Department of Experimental Medicine, Faculty of Medicine and Dentistry, Sapienza University of Rome, Rome, Italy
| | - Jamal Hussen
- Department of Microbiology, College of Veterinary Medicine, King Faisal University, Al-Ahsa, Saudi Arabia
| | - Giovanna De Matteis
- Research Centre for Animal Production and Aquaculture, Council for Agricultural Research and Economics (CREA), Rome, Italy
| |
Collapse
|
22
|
Contreras-Méndez LA, Medrano JF, Thomas MG, Enns RM, Speidel SE, Luna-Nevárez G, López-Castro PA, Rivera-Acuña F, Luna-Nevárez P. The Anti-Müllerian Hormone as Endocrine and Molecular Marker Associated with Reproductive Performance in Holstein Dairy Cows Exposed to Heat Stress. Animals (Basel) 2024; 14:213. [PMID: 38254382 PMCID: PMC10812537 DOI: 10.3390/ani14020213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/30/2023] [Accepted: 01/05/2024] [Indexed: 01/24/2024] Open
Abstract
Anti-Müllerian hormone (AMH) is proposed as a biomarker for fertility in cattle, yet this associative relationship appears to be influenced by heat stress (HS). The objective was to test serum AMH and AMH-related single nucleotide polymorphisms (SNPs) as markers potentially predictive of reproductive traits in dairy cows experiencing HS. The study included 300 Holstein cows that were genotyped using BovineSNP50 (54,000 SNP). A genome-wide association study was then executed. Nine intragenic SNPs within the pathways that influence the AMH gene were found important with multiple comparisons adjustment tests (p < 1.09 × 10-6). A further validation study was performed in an independent Holstein cattle population, which was divided into moderate (MH; n = 152) and severe heat-stressed (SH; n = 128) groups and then subjected to a summer reproductive management program. Serum AMH was confirmed as a predictor of fertility measures (p < 0.05) in MH but not in the SH group. Cows were genotyped, which revealed four SNPs as predictive markers for serum AMH (p < 0.01), reproductive traits (p < 0.01), and additional physiological variables (p < 0.05). These SNPs were in the genes AMH, IGFBP1, LGR5, and TLR4. In conclusion, serum AMH concentrations and AMH polymorphisms are proposed as predictive markers that can be used in conjunction with genomic breeding value approaches to improve reproductive performance in Holstein cows exposed to summer HS conditions.
Collapse
Affiliation(s)
- Luis A. Contreras-Méndez
- Departamento de Ciencias Agronómicas y Veterinarias, Instituto Tecnológico de Sonora, Ciudad Obregón 85000, Mexico
| | - Juan F. Medrano
- Department of Animal Science, University of California, Davis, CA 95616, USA
| | | | - R. Mark Enns
- Department of Animal Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | - Scott E. Speidel
- Department of Animal Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | - Guillermo Luna-Nevárez
- Departamento de Ciencias Agronómicas y Veterinarias, Instituto Tecnológico de Sonora, Ciudad Obregón 85000, Mexico
| | - Pedro A. López-Castro
- Departamento de Ciencias Agronómicas y Veterinarias, Instituto Tecnológico de Sonora, Ciudad Obregón 85000, Mexico
| | - Fernando Rivera-Acuña
- Departamento de Ciencias Agronómicas y Veterinarias, Instituto Tecnológico de Sonora, Ciudad Obregón 85000, Mexico
| | - Pablo Luna-Nevárez
- Departamento de Ciencias Agronómicas y Veterinarias, Instituto Tecnológico de Sonora, Ciudad Obregón 85000, Mexico
| |
Collapse
|
23
|
Manriquez D, Jannat A, Velásquez-Munoz A, Pinedo P. Effects of perinatal exposure to daily maximum THI and THI fluctuations on serum total proteins and health of preweaned Holstein heifers raised in a dry climate. J Anim Sci 2024; 102:skae218. [PMID: 39082314 PMCID: PMC11333829 DOI: 10.1093/jas/skae218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 07/29/2024] [Indexed: 08/21/2024] Open
Abstract
The objective of this study was to assess the effects of the exposure to daily maximum and temperature-humidity index (THI) and to daily THI fluctuations (∆THI = maximum THI-minimum THI) at exposure periods comprising 2 d before birth to birth (-2 d), birth date (0 d), birth to 2 d of age (+2 d), and birth to 7 d of age (+7 d) on serum total proteins (STP), transfer of passive immunity (TPI), and the occurrence of scours and respiratory disease. A total of 841 Holstein heifer calves were retrospectively observed from -2 d until 65 d of age. Colostrum quality was assessed using a colostrometer to ensure a minimum globulin concentration of 52 mg/mL in the colostrum fed to the study calves. Two temperature and relative humidity sensors were installed at the calf yard. Maximum, minimum, and ∆THI values were obtained for each exposure period, and thermal exposure categories were defined as heat stress (HS: maximum THI > 70 units; non-HS: THI ≤ 70 units) and ∆THI (low < 20 units, medium ≥ 20 to ≤30 units, high > 30). The TPI was classified as poor (STP < 5.1 g/dL), fair (5.1 and 5.7 g/dL), good (>5.7 and 6.1 g/dL), and excellent (≥6.1 g/dL). Associations between the thermal exposure categories and the study outcomes were examined using ANOVA, logistic regression, and survival analyses. No differences in STP at -2 d were observed between HS and non-HS calves (6.83 ± 0.05 vs. 6.91 ± 0.05 g/dL), whereas HS-exposed calves at 0 d tended to have lower STP compared with non-HS calves (6.82 ± 0.05 vs. 6.92 ± 0.05 g/dL). Calves exposed to small ∆THI at 0 d had greater STP compared with calves exposed to medium ∆THI (7.00 ± 0.06 vs. 6.75 ± 0.05 g/dL). No association was found between HS, and ∆THI categories and the TPI category. The odds of scours were about 2 times greater in HS calves compared with non-HS calves at all exposure periods. In addition, HS calves were affected by scours between 9 and 15 d earlier than non-HS calves. Furthermore, high ∆THI favored the development of respiratory problems compared with medium and low ∆THI. Assessment of extreme THI values and THI fluctuations provides a research opportunity for assessing thermal stress in dairy heifer calves raised in dry climate.
Collapse
Affiliation(s)
- Diego Manriquez
- AgNext, Department of Animal Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | - Afrin Jannat
- AgNext, Department of Animal Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | - Ana Velásquez-Munoz
- Departamento de Ciencias Veterinarias y Salud Pública, Universidad Católica de Temuco, Temuco 4780000, Chile
| | - Pablo Pinedo
- Department of Animal Sciences, Colorado State University, Fort Collins, CO 80523, USA
| |
Collapse
|
24
|
Giannone C, Bovo M, Ceccarelli M, Torreggiani D, Tassinari P. Review of the Heat Stress-Induced Responses in Dairy Cattle. Animals (Basel) 2023; 13:3451. [PMID: 38003069 PMCID: PMC10668733 DOI: 10.3390/ani13223451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 11/02/2023] [Accepted: 11/03/2023] [Indexed: 11/26/2023] Open
Abstract
In the dairy cattle sector, the evaluation of the effects induced by heat stress is still one of the most impactful and investigated aspects as it is strongly connected to both sustainability of the production and animal welfare. On the other hand, more recently, the possibility of collecting a large dataset made available by the increasing technology diffusion is paving the way for the application of advanced numerical techniques based on machine learning or big data approaches. In this scenario, driven by rapid change, there could be the risk of dispersing the relevant information represented by the physiological animal component, which should maintain the central role in the development of numerical models and tools. In light of this, the present literature review aims to consolidate and synthesize existing research on the physiological consequences of heat stress in dairy cattle. The present review provides, in a single document, an overview, as complete as possible, of the heat stress-induced responses in dairy cattle with the intent of filling the existing research gap for extracting the veterinary knowledge present in the literature and make it available for future applications also in different research fields.
Collapse
Affiliation(s)
| | - Marco Bovo
- Department of Agricultural and Food Sciences (DISTAL), Alma Mater Studiorum University of Bologna, Viale Fanin 48, 40127 Bologna, Italy; (C.G.); (M.C.); (D.T.); (P.T.)
| | | | | | | |
Collapse
|
25
|
Chauhan SS, Zhang M, Osei-Amponsah R, Clarke I, Sejian V, Warner R, Dunshea FR. Impact of heat stress on ruminant livestock production and meat quality, and strategies for amelioration. Anim Front 2023; 13:60-68. [PMID: 37841767 PMCID: PMC10575297 DOI: 10.1093/af/vfad046] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2023] Open
Affiliation(s)
- Surinder S Chauhan
- School of Agriculture, Food and Ecosystem Sciences, Faculty of Science, The University of Melbourne, Parkville, Melbourne, VIC 3010, Australia
| | - Minghao Zhang
- Department of Food and Nutrition, Provincial Hospital, Shandong First Medical University, China
| | - Richard Osei-Amponsah
- School of Agriculture, Food and Ecosystem Sciences, Faculty of Science, The University of Melbourne, Parkville, Melbourne, VIC 3010, Australia
- Department of Animal Science, School of Agriculture, University of Ghana, Accra, Ghana
| | - Iain Clarke
- School of Agriculture, Food and Ecosystem Sciences, Faculty of Science, The University of Melbourne, Parkville, Melbourne, VIC 3010, Australia
| | - Veerasamy Sejian
- Animal Physiology Division, ICAR-National Institute of Animal Nutrition and Physiology, Bangalore 560030, India
| | - Robyn Warner
- School of Agriculture, Food and Ecosystem Sciences, Faculty of Science, The University of Melbourne, Parkville, Melbourne, VIC 3010, Australia
| | - Frank R Dunshea
- School of Agriculture, Food and Ecosystem Sciences, Faculty of Science, The University of Melbourne, Parkville, Melbourne, VIC 3010, Australia
- Faculty of Biological Sciences, The University of Leeds, Leeds LS2 9JT, UK
| |
Collapse
|
26
|
Worku D, Hussen J, De Matteis G, Schusser B, Alhussien MN. Candidate genes associated with heat stress and breeding strategies to relieve its effects in dairy cattle: a deeper insight into the genetic architecture and immune response to heat stress. Front Vet Sci 2023; 10:1151241. [PMID: 37771947 PMCID: PMC10527375 DOI: 10.3389/fvets.2023.1151241] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 08/31/2023] [Indexed: 09/30/2023] Open
Abstract
The need for food products of animal origin is increasing worldwide. Satisfying these needs in a way that has minimal impact on the environment requires cutting-edge technologies and techniques to enhance the genetic quality of cattle. Heat stress (HS), in particular, is affecting dairy cattle with increasing frequency and severity. As future climatic challenges become more evident, identifying dairy cows that are more tolerant to HS will be important for breeding dairy herds that are better adapted to future environmental conditions and for supporting the sustainability of dairy farming. While research into the genetics of HS in the context of the effect of global warming on dairy cattle is gaining momentum, the specific genomic regions involved in heat tolerance are still not well documented. Advances in omics information, QTL mapping, transcriptome profiling and genome-wide association studies (GWAS) have identified genomic regions and variants associated with tolerance to HS. Such studies could provide deeper insights into the genetic basis for response to HS and make an important contribution to future breeding for heat tolerance, which will help to offset the adverse effects of HS in dairy cattle. Overall, there is a great interest in identifying candidate genes and the proportion of genetic variation associated with heat tolerance in dairy cattle, and this area of research is currently very active worldwide. This review provides comprehensive information pertaining to some of the notable recent studies on the genetic architecture of HS in dairy cattle, with particular emphasis on the identified candidate genes associated with heat tolerance in dairy cattle. Since effective breeding programs require optimal knowledge of the impaired immunity and associated health complications caused by HS, the underlying mechanisms by which HS modulates the immune response and renders animals susceptible to various health disorders are explained. In addition, future breeding strategies to relieve HS in dairy cattle and improve their welfare while maintaining milk production are discussed.
Collapse
Affiliation(s)
- Destaw Worku
- Department of Animal Science, College of Agriculture, Food and Climate Sciences, Injibara University, Injibara, Ethiopia
| | - Jamal Hussen
- Department of Microbiology, College of Veterinary Medicine, King Faisal University, Al-Ahsa, Saudi Arabia
| | - Giovanna De Matteis
- Council for Agricultural Research and Economics, CREA Research Centre for Animal Production and Aquaculture, Monterotondo, Rome, Italy
| | - Benjamin Schusser
- Reproductive Biotechnology, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Mohanned Naif Alhussien
- Reproductive Biotechnology, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| |
Collapse
|
27
|
Wickramasinghe HKJP, Stepanchenko N, Oconitrillo MJ, Goetz BM, Abeyta MA, Gorden PJ, Baumgard LH, Appuhamy JADRN. Effects of a phytogenic feed additive on weaned dairy heifer calves subjected to a diurnal heat stress bout. J Dairy Sci 2023; 106:6114-6127. [PMID: 37479578 DOI: 10.3168/jds.2022-22856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 03/17/2023] [Indexed: 07/23/2023]
Abstract
The study objective was to evaluate the effects of a phytogenic feed additive (PFA) on dry matter intake (DMI), average daily gain (ADG), inflammation, and oxidative stress markers of heifer calves exposed to a heat stress bout in the summer. A total of18 Holstein and 4 Jersey heifer calves (192 ± 5 kg of body weight at 162 ± 16 d of age) housed in indoor stalls were assigned to 1 of 2 dietary treatments (n = 11; 9 Holstein and 2 Jersey): (1) a basal total mixed ration (CTL), and (2) CTL top-dressed with 0.25 g/d of PFA. Following 7 d of acclimation, baseline measurements were made over 7 d under regular summer conditions [average temperature-humidity index (THI) = 79 from 0900 to 2000 h, and 75 from 2000 to 0900 h]. Calves were then subjected to a 7-d cyclic heat stress bout (HS) by turning on barn heaters and increasing the barn temperature to 33.0°C only during the daytime (the average THI = 85 from 0900 to 2000 h). The study continued for an extra 4-d period after HS ended (post-HS). The HS increased rectal temperature, skin temperature, and respiration rate from the baseline by 1.0°C, 4.0°C, and 49 breaths/min, respectively. The drinking water intake increased by 32% in response to HS, and calves continued to consume more water (44%) than the baseline consumption even after HS ended. The treatment × time interactions were not significant for feed intake, ADG, partial pressure of O2 in the blood, and blood concentrations of inflammation markers such as haptoglobin and lipopolysaccharide binding protein (LBP), and antioxidant markers such as protein carbonyl and thiobarbituric acid (TBARS). The PFA tended to increase daytime DMI (0.24 kg/d) compared with CTL throughout the experiment but did not affect ADG, which decreased from 1.12 kg/d to 0.26 kg/d in response to HS. Both DMI (13%) and ADG (85%) increased during post-HS relative to baseline, indicating compensatory performances that were not affected by the PFA. Serum haptoglobin and plasma LBP concentrations of PFA calves were 44% and 38% lower than that of CTL calves across all time points. The PFA decreased O2 pressure and tended to decrease protein carbonyl concentration in the blood across all time points. The PFA tended to decrease TBARS concentration on the first day of HS and increase and decrease the ratio of reduced to oxidized glutathione in the blood during the baseline and post-HS periods, respectively. Despite the lack of growth improvements, feeding PFA seems to increase O2 levels in the blood and alleviate oxidative stress and inflammation of heifer calve exposed to diurnal heat waves (~7 d) in the summer.
Collapse
Affiliation(s)
| | - N Stepanchenko
- Department of Animal Science, Iowa State University, Ames, IA 50011
| | - M J Oconitrillo
- Department of Animal Science, Iowa State University, Ames, IA 50011
| | - B M Goetz
- Department of Animal Science, Iowa State University, Ames, IA 50011
| | - M A Abeyta
- Department of Animal Science, Iowa State University, Ames, IA 50011
| | - P J Gorden
- Veterinary Diagnostic and Production Animal Medicine, Iowa State University, Ames, IA 50011
| | - L H Baumgard
- Department of Animal Science, Iowa State University, Ames, IA 50011
| | | |
Collapse
|
28
|
Osei-Amponsah R, Dunshea FR, Leury BJ, Abhijith A, Chauhan SS. Association of Phenotypic Markers of Heat Tolerance with Australian Genomic Estimated Breeding Values and Dairy Cattle Selection Indices. Animals (Basel) 2023; 13:2259. [PMID: 37508037 PMCID: PMC10376013 DOI: 10.3390/ani13142259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 06/24/2023] [Accepted: 07/09/2023] [Indexed: 07/30/2023] Open
Abstract
Dairy cattle predicted by genomic breeding values to be heat tolerant are known to have less milk production decline and lower core body temperature increases in response to elevated temperatures. In a study conducted at the University of Melbourne's Dookie Robotic Dairy Farm during summer, we identified the 20 most heat-susceptible and heat-tolerant cows in a herd of 150 Holstein Friesian lactating cows based on their phenotypic responses (changes in respiration rate, surface body temperature, panting score, and milk production). Hair samples were collected from the tip of the cows' tails following standard genotyping protocols. The results indicated variation in feed saved and HT genomic estimated breeding values (GEBVs) (p ≤ 0.05) across age, indicating a potential for their selection. As expected, the thermotolerant group had higher GEBVs for HT and feed saved but lower values for milk production. In general, younger cows had superior GEBVs for the Balanced Performance Index (BPI) and Australian Selection Index (ASI), whilst older cows were superior in fertility, feed saved (FS), and HT. This study demonstrated highly significant (p ≤ 0.001) negative correlations (-0.28 to -0.74) between HT and GEBVs for current Australian dairy cattle selection indices (BPI, ASI, HWI) and significant (p ≤ 0.05) positive correlations between HT and GEBVs for traits like FS (0.45) and fertility (0.25). Genomic selection for HT will help improve cow efficiency and sustainability of dairy production under hot summer conditions. However, a more extensive study involving more lactating cows across multiple farms is recommended to confirm the associations between the phenotypic predictors of HT and GEBVs.
Collapse
Affiliation(s)
- Richard Osei-Amponsah
- School of Agriculture, Food and Ecosystem Sciences, Faculty of Science, The University of Melbourne, Melbourne 3010, Australia
- Department of Animal Science, School of Agriculture, College of Basic and Applied Sciences, University of Ghana, Legon, Accra P.O. Box LG 226, Ghana
| | - Frank R Dunshea
- School of Agriculture, Food and Ecosystem Sciences, Faculty of Science, The University of Melbourne, Melbourne 3010, Australia
- Faculty of Biological Sciences, The University of Leeds, Leeds LS2 9JT, UK
| | - Brian J Leury
- School of Agriculture, Food and Ecosystem Sciences, Faculty of Science, The University of Melbourne, Melbourne 3010, Australia
| | - Archana Abhijith
- School of Agriculture, Food and Ecosystem Sciences, Faculty of Science, The University of Melbourne, Melbourne 3010, Australia
| | - Surinder S Chauhan
- School of Agriculture, Food and Ecosystem Sciences, Faculty of Science, The University of Melbourne, Melbourne 3010, Australia
| |
Collapse
|
29
|
Cartwright SL, Schmied J, Karrow N, Mallard BA. Impact of heat stress on dairy cattle and selection strategies for thermotolerance: a review. Front Vet Sci 2023; 10:1198697. [PMID: 37408833 PMCID: PMC10319441 DOI: 10.3389/fvets.2023.1198697] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Accepted: 06/02/2023] [Indexed: 07/07/2023] Open
Abstract
Climate change is a problem that causes many environmental issues that impact the productivity of livestock species. One of the major issues associated with climate change is an increase of the frequency of hot days and heat waves, which increases the risk of heat stress for livestock species. Dairy cattle have been identified as being susceptible to heat stress due to their high metabolic heat load. Studies have shown heat stress impacts several biological processes that can result in large economic consequences. When heat stress occurs, dairy cattle employ several physiological and cellular mechanisms in order to dissipate heat and protect cells from damage. These mechanisms require an increase and diversion in energy toward protection and away from other biological processes. Therefore, in turn heat stress in dairy cattle can lead numerous issues including reductions in milk production and reproduction as well as increased risk for disease and mortality. This indicates a need to select dairy cattle that would be thermotolerant. Various selection strategies to confer thermotolerance have been discussed in the literature, including selecting for reduced milk production, crossbreeding with thermotolerant breeds, selecting based on physiological traits and most recently selecting for enhanced immune response. This review discusses the various issues associated with heat stress in dairy cattle and the pros and cons to the various selection strategies that have been proposed to select for thermotolerance in dairy cattle.
Collapse
Affiliation(s)
- Shannon L. Cartwright
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | - Julie Schmied
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | - Niel Karrow
- Centre of Genetics of Improvement of Livestock, Animal Biosciences, University of Guelph, Guelph, ON, Canada
| | - Bonnie A. Mallard
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
- Centre of Genetics of Improvement of Livestock, Animal Biosciences, University of Guelph, Guelph, ON, Canada
| |
Collapse
|
30
|
Thomas M, Serrenho RC, Puga SO, Torres JM, Puga SO, Stangaferro M. Effect of feeding a Saccharomyces cerevisiae fermentation product to Holstein cows exposed to high temperature and humidity conditions on milk production performance and efficiency-A pen-level trial. J Dairy Sci 2023:S0022-0302(23)00289-8. [PMID: 37268565 DOI: 10.3168/jds.2022-22516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 01/31/2023] [Indexed: 06/04/2023]
Abstract
The objective of this study was to evaluate the effect of feeding a Saccharomyces cerevisiae fermentation product (SCFP) on milk production efficiency of Holstein cows naturally exposed to high temperature and humidity conditions. The study was conducted in 2 commercial farms in Mexico from July to October 2020 and included 1 wk covariate period, 3 wk adaptation, and 12 wk data collection. Cows [n = 1,843; ≥21 d in milk (DIM) and <100 d carried calf] were enrolled and assigned to the study pens (n = 10) balanced for parity, milk yield, and DIM. Pens were fed a total mixed ration diet either without (CTRL) or with SCFP (19 g/d, NutriTek, Diamond V). Milk yield, energy-corrected milk (ECM), milk components, linear somatic cell score, dry matter intake (DMI), feed efficiency (FE; Milk/DMI and ECM/DMI), body condition score, and the incidence of clinical mastitis, pneumonia, and culling were monitored. Statistical analyses included mixed linear and logistic models accounting for repeated measures (when applicable; multiple measurements per cow within treated pens) with pen as the experimental unit and treatment, time (week of study), parity (1 vs. 2+), and their interactions as fixed and pen nested within farm and treatment as random effect. Parity 2+ cows within pens fed SCFP produced more milk than cows within CTRL pens (42.1 vs. 41.2 kg/d); there were no production differences between groups of primiparous groups. Cows within SCFP pens had lower DMI (25.2 vs. 26.0 kg/d) and greater FE (1.59 vs. 1.53) and ECM FE (1.73 vs. 1.68) than cows within CTRL pens. Milk components, linear somatic cell score, health events, and culling were not different between groups. At the end of the study (245 ± 54 DIM), SCFP cows had greater body condition score than CTRL (3.33 vs. 3.23 in the first parity; 3.11 vs. 3.04 in 2+ parity cows). Feeding Saccharomyces cerevisiae fermentation products to lactating cows exposed to high temperature and humidity conditions improved FE.
Collapse
Affiliation(s)
- M Thomas
- Dairy Health and Management Services, Lowville, NY 13367
| | | | | | | | | | - M Stangaferro
- Dairy Health and Management Services, Lowville, NY 13367.
| |
Collapse
|
31
|
Lemal P, May K, König S, Schroyen M, Gengler N. Invited review: From heat stress to disease-Immune response and candidate genes involved in cattle thermotolerance. J Dairy Sci 2023:S0022-0302(23)00214-X. [PMID: 37164864 DOI: 10.3168/jds.2022-22727] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 01/01/2023] [Indexed: 05/12/2023]
Abstract
Heat stress implies unfavorable effects on primary and functional traits in dairy cattle and, in consequence, on the profitability of the whole production system. The increasing number of days with extreme hot temperatures suggests that it is imperative to detect the heat stress status of animals based on adequate measures. However, confirming the heat stress status of an individual is still challenging, and, in consequence, the identification of novel heat stress biomarkers, including molecular biomarkers, remains a very relevant issue. Currently, it is known that heat stress seems to have unfavorable effects on immune system mechanisms, but this information is of limited use in the context of heat stress phenotyping. In addition, there is a lack of knowledge addressing the molecular mechanisms linking the relevant genes to the observed phenotype. In this review, we explored the potential molecular mechanisms explaining how heat stress affects the immune system and, therefore, increases the occurrence of immune-related diseases in cattle. In this regard, 2 relatively opposite hypotheses are under focus: the immunosuppressive action of cortisol, and the proinflammatory effect of heat stress. In both hypotheses, the modulation of the immune response during heat stress is highlighted. Moreover, it is possible to link candidate genes to these potential mechanisms. In this context, immune markers are very valuable indicators for the detection of heat stress in dairy cattle, broadening the portfolio of potential biomarkers for heat stress.
Collapse
Affiliation(s)
- P Lemal
- TERRA Teaching and Research Center, University of Liège, Gembloux Agro-Bio Tech (ULiège-GxABT), 5030 Gembloux, Belgium
| | - K May
- Institute of Animal Breeding and Genetics, Justus-Liebig-University of Gießen, Ludwigstraße 21B, 35390 Gießen, Germany
| | - S König
- Institute of Animal Breeding and Genetics, Justus-Liebig-University of Gießen, Ludwigstraße 21B, 35390 Gießen, Germany
| | - M Schroyen
- TERRA Teaching and Research Center, University of Liège, Gembloux Agro-Bio Tech (ULiège-GxABT), 5030 Gembloux, Belgium
| | - N Gengler
- TERRA Teaching and Research Center, University of Liège, Gembloux Agro-Bio Tech (ULiège-GxABT), 5030 Gembloux, Belgium.
| |
Collapse
|
32
|
Sajjanar B, Aalam MT, Khan O, Tanuj GN, Sahoo AP, Manjunathareddy GB, Gandham RK, Dhara SK, Gupta PK, Mishra BP, Dutt T, Singh G. Genome-wide expression analysis reveals different heat shock responses in indigenous (Bos indicus) and crossbred (Bos indicus X Bos taurus) cattle. Genes Environ 2023; 45:17. [PMID: 37127630 PMCID: PMC10152620 DOI: 10.1186/s41021-023-00271-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 04/03/2023] [Indexed: 05/03/2023] Open
Abstract
Environmental heat stress in dairy cattle leads to poor health, reduced milk production and decreased reproductive efficiency. Multiple genes interact and coordinate the response to overcome the impact of heat stress. The present study identified heat shock regulated genes in the peripheral blood mononuclear cells (PBMC). Genome-wide expression patterns for cellular stress response were compared between two genetically distinct groups of cattle viz., Hariana (B. indicus) and Vrindavani (B. indicus X B. taurus). In addition to major heat shock response genes, oxidative stress and immune response genes were also found to be affected by heat stress. Heat shock proteins such as HSPH1, HSPB8, FKB4, DNAJ4 and SERPINH1 were up-regulated at higher fold change in Vrindavani compared to Hariana cattle. The oxidative stress response genes (HMOX1, BNIP3, RHOB and VEGFA) and immune response genes (FSOB, GADD45B and JUN) were up-regulated in Vrindavani whereas the same were down-regulated in Hariana cattle. The enrichment analysis of dysregulated genes revealed the biological functions and signaling pathways that were affected by heat stress. Overall, these results show distinct cellular responses to heat stress in two different genetic groups of cattle. This also highlight the long-term adaptation of B. indicus (Hariana) to tropical climate as compared to the crossbred (Vrindavani) with mixed genetic makeup (B. indicus X B. taurus).
Collapse
Affiliation(s)
- Basavaraj Sajjanar
- Veterinary Biotechnology Division, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, 243122, Uttar Pradesh, India.
| | - Mohd Tanzeel Aalam
- Veterinary Biotechnology Division, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, 243122, Uttar Pradesh, India
| | - Owais Khan
- Veterinary Biotechnology Division, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, 243122, Uttar Pradesh, India
| | - Gunturu Narasimha Tanuj
- Veterinary Biotechnology Division, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, 243122, Uttar Pradesh, India
| | - Aditya Prasad Sahoo
- ICAR- Directorate of Foot and Mouth Disease, Bhubaneswar, 752050, Odisha, India
| | | | - Ravi Kumar Gandham
- Veterinary Biotechnology Division, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, 243122, Uttar Pradesh, India
| | - Sujoy K Dhara
- Veterinary Biotechnology Division, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, 243122, Uttar Pradesh, India
| | - Praveen K Gupta
- Veterinary Biotechnology Division, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, 243122, Uttar Pradesh, India
| | - Bishnu Prasad Mishra
- ICAR-National Bureau of Animal Genetic Resources, Karnal, 132001, Haryana, India
| | - Triveni Dutt
- Veterinary Biotechnology Division, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, 243122, Uttar Pradesh, India
| | - Gyanendra Singh
- Physiology and Climatology Division, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, 243122, Uttar Pradesh, India.
| |
Collapse
|
33
|
Lendez PA, Martínez Cuesta L, Nieto Farías MV, Vater AA, Ghezzi MD, Mota-Rojas D, Dolcini GL, Ceriani MC. Effect of heat stress on TNF-α, TNFRI and TNFRII expression in BLV infected dairy cattle. J Therm Biol 2023; 114:103568. [PMID: 37162166 DOI: 10.1016/j.jtherbio.2023.103568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 04/11/2023] [Accepted: 04/12/2023] [Indexed: 05/11/2023]
Abstract
High temperatures for extended periods, which do not allow animals to recover from heat stress, affect in particular those BLV-infected animals that carry a high proviral load. For this study, animals were discriminated between BLV (+) and BLV (-), and those belonging to the first group, were classified based on their proviral load. The expression of the inflammatory cytokine TNF-α and its receptors, which play an important role in disease progression, were quantified by qPCR in two different seasons. During the summer, average temperature was 19.8 °C, maximums higher than 30 °C were frequent. Instead, during the autumn, the average temperature was 12.63 °C, and temperatures never exceeded 27 °C. During this season, almost no periods of temperatures exceeded the comfort limit. Our results revealed that the expression levels of TNF-α and its receptors were downregulated in animals with high proviral load. This fact could affect their antiviral response and predispose to viral dissemination; over time, animals with a poorer immune system are prone to acquiring opportunistic diseases. Conversely, animals with LPL maintained their expression profile, with behavior comparable to non-infected animals. These findings should be considered by producers and researchers, given the problems that global warming is causing lately to the planet.
Collapse
Affiliation(s)
- Pamela Anahí Lendez
- Faculty of Veterinary Sciences, Universidad Nacional Del Centro De la Provincia de Buenos Aires (UNCPBA), Tandil, Veterinary Research Center (CIVETAN), CONICET-CICPBA, Arroyo Seco S/N, Campus Universitario, Tandil, 7000, Argentina
| | - Lucía Martínez Cuesta
- Faculty of Veterinary Sciences, Universidad Nacional Del Centro De la Provincia de Buenos Aires (UNCPBA), Tandil, Veterinary Research Center (CIVETAN), CONICET-CICPBA, Arroyo Seco S/N, Campus Universitario, Tandil, 7000, Argentina
| | - María Victoria Nieto Farías
- Faculty of Veterinary Sciences, Universidad Nacional Del Centro De la Provincia de Buenos Aires (UNCPBA), Tandil, Veterinary Research Center (CIVETAN), CONICET-CICPBA, Arroyo Seco S/N, Campus Universitario, Tandil, 7000, Argentina
| | - Adrián Alejandro Vater
- Escuela de Educación Secundaria Agraria N°1 "DR, RAMON SANTAMARINA", Pje La Porteña, Ruta Pcial N, 30 KM 122.5, Tandil, Argentina
| | - Marcelo Daniel Ghezzi
- Faculty of Veterinary Sciences, Universidad Nacional del Centro de la Provincia de Buenos Aires (UNCPBA), Arroyo Seco S/N, Campus Universitario, Tandil, 7000, Argentina
| | - Daniel Mota-Rojas
- Stress Physiology and Farm Animal Welfare, Departamento de Producción Agrícola y Animal, Universidad Autónoma Metropolitana (UAM), Ciudad de México, Mexico
| | - Guillermina Laura Dolcini
- Faculty of Veterinary Sciences, Universidad Nacional Del Centro De la Provincia de Buenos Aires (UNCPBA), Tandil, Veterinary Research Center (CIVETAN), CONICET-CICPBA, Arroyo Seco S/N, Campus Universitario, Tandil, 7000, Argentina
| | - María Carolina Ceriani
- Faculty of Veterinary Sciences, Universidad Nacional Del Centro De la Provincia de Buenos Aires (UNCPBA), Tandil, Veterinary Research Center (CIVETAN), CONICET-CICPBA, Arroyo Seco S/N, Campus Universitario, Tandil, 7000, Argentina.
| |
Collapse
|
34
|
Moore SS, Costa A, Penasa M, Callegaro S, De Marchi M. How heat stress conditions affect milk yield, composition, and price in Italian Holstein herds. J Dairy Sci 2023; 106:4042-4058. [PMID: 37080787 DOI: 10.3168/jds.2022-22640] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 12/21/2022] [Indexed: 04/22/2023]
Abstract
An edited data set of 700 bulk and 46,338 test-day records collected between 2019 and 2021 in 42 Holstein-dominated farms in the Veneto Region (North of Italy) was available for the present study. Information on protein, fat and lactose content, somatic cell count, and somatic cell score was available in bulk milk as well as individual test-day records, whereas urea concentration (mg/dL), differential somatic cell count (%), and milk yield (kg/d) were available for test-day records only. Milk features were merged with meteorological data retrieved from 8 weather stations located maximum 10 km from the farms. The daily and weekly temperature-humidity index (THI; wTHI) and maximum daily (MTHI) and weekly temperature-humidity index were associated with each record to evaluate the effect of heat stress conditions on milk-related traits through linear mixed models. Least squares means were estimated to evaluate the effect of THI and, separately, of MTHI on milk characteristics correcting for conventional systematic factors. Overall, heat stress conditions lowered the quality of both bulk milk and test-day records, with fat and protein content being greatly reduced, and somatic cell score and differential somatic cell count augmented. Milk yield was not affected by either THI or MTHI in this data set, but the effect of elevated THI and MTHI was in general stronger on test-day records than on bulk milk. Farm-level economic losses of reduced milk quality rather than reduced yield as consequence of elevated THI or MTHI was estimated to be between $23.57 and $43.98 per farmer per day, which is of comparable magnitude to losses resulting from reduced production. Furthermore, MTHI was found to be a more accurate indicator of heat stress experienced by a cow, explaining more variability of traits compared with THI. The negative effect of heat stress conditions on quality traits commences at lower THI/MTHI values compared with milk yield. Thus, a progressive farmers' income loss due to climatic changes is already a reality and it is mainly due to deterioration of milk quality rather than quantity in the studied area.
Collapse
Affiliation(s)
- S Sterup Moore
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova, 35020 Legnaro, Italy
| | - A Costa
- Department of Veterinary Medical Sciences (DIMEVET), Alma Mater University of Bologna, 40064 Ozzano dell'Emilia, Italy.
| | - M Penasa
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova, 35020 Legnaro, Italy
| | - S Callegaro
- Department of Agriculture, Food, Environment and Forestry (DAGRI), University of Firenze, 50144 Florence, Italy
| | - M De Marchi
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova, 35020 Legnaro, Italy
| |
Collapse
|
35
|
Halli K, Cohrs I, Brügemann K, Koch C, König S. A Pilot Study on Across-Generation Impacts of Maternal Heat Stress on Blood Metabolites of Female Holstein Dairy Calves. Metabolites 2023; 13:metabo13040494. [PMID: 37110153 PMCID: PMC10141042 DOI: 10.3390/metabo13040494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 03/20/2023] [Accepted: 03/28/2023] [Indexed: 03/31/2023] Open
Abstract
Heat stress (HS) during late gestation implies unfavorable effects on dairy cows and their in-utero heat stressed offspring. The objective of the present study was to elucidate the effect of intrauterine (maternal) HS during the last week of gestation on blood metabolite concentrations of female dairy calves during their first week of life. We defined the mean temperature humidity index (mTHI) during the last gestation week of ≥60 as threshold for maternal HS. In this regard, we compared differences in metabolite concentrations of maternally heat stressed (MHSCALVES) (n = 14) and not heat stressed (NMHSCALVES) (n = 33) calves. We identified 15 metabolites from five different biochemical classes (phosphatidylcholines, cholesteryl esters, sphingomyelins, cresols and hexoses) as potential biomarkers for maternal HS in calves. The plasma concentrations of all significantly affected metabolites were lower in MHSCALVES when compared to NMHSCALVES. The effect of maternal HS during the last week of gestation on blood metabolite concentrations of the female offspring during the first week after birth might be due to HS induced intergenerational physiological alterations, impaired colostrum quality or epigenetic modifications of the calf genome. The results of this pilot study should be validated in ongoing fully standardized studies.
Collapse
Affiliation(s)
- Kathrin Halli
- Institute of Animal Breeding and Genetics, Justus-Liebig-University Gießen, Ludwigstraße 21 b, 35390 Gießen, Germany
- Correspondence:
| | - Imke Cohrs
- Educational and Research Centre for Animal Husbandry, Hofgut Neumuehle, 67728 Muenchweiler an der Alsenz, Germany
| | - Kerstin Brügemann
- Institute of Animal Breeding and Genetics, Justus-Liebig-University Gießen, Ludwigstraße 21 b, 35390 Gießen, Germany
| | - Christian Koch
- Educational and Research Centre for Animal Husbandry, Hofgut Neumuehle, 67728 Muenchweiler an der Alsenz, Germany
| | - Sven König
- Institute of Animal Breeding and Genetics, Justus-Liebig-University Gießen, Ludwigstraße 21 b, 35390 Gießen, Germany
| |
Collapse
|
36
|
Njoga EO, Ilo SU, Nwobi OC, Onwumere-Idolor OS, Ajibo FE, Okoli CE, Jaja IF, Oguttu JW. Pre-slaughter, slaughter and post-slaughter practices of slaughterhouse workers in Southeast, Nigeria: Animal welfare, meat quality, food safety and public health implications. PLoS One 2023; 18:e0282418. [PMID: 36867613 PMCID: PMC9983863 DOI: 10.1371/journal.pone.0282418] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 02/10/2023] [Indexed: 03/04/2023] Open
Abstract
BACKGROUND Pre-slaughter stress or the welfare condition of food-producing animals (FPAs) and the slaughter practices of slaughterhouse workers (SHWs) are critically important for the safety and quality of meats processed in slaughterhouses (SHs). Consequently, this study determined the pre-slaughter, slaughter, and post-slaughter (PSP) practices of SHWsin four SHs in Southeast, Nigeria; and discussed the impacts on meat quality and safety. METHODS The PSP practices were determined by observation method. Additionally, a structured and validated closed-ended questionnaire was used to determine the knowledge of the SHWs on: the effects of poor welfare (preslaughter stress) on the quality and safety of meats produced, carcass/meat processing practices and modes of transmission of meat-borne zoonotic pathogens during carcass/meat processing. Finally, a systematic post-mortem inspection (PMI) was conducted on cattle, pigs and goats slaughtered, and economic losses accruable from condemned carcasses/meats were estimated. RESULTS Food-producing animals were transported to the SHs or held in the lairage under inhumane conditions. A pig being conveyed to one of the SHs was seen gasping for air, as it was firmly tied on motorbike at the thoracic and abdominal regions. Fatigued cattle were forcefully dragged on the ground from the lairage to the killing floor. Cattle for slaughter were restrained, held in lateral recumbency and left groaning, due to extreme discomfort, for about one hour before slaughter. Stunning was not performed. Singed pig carcasses were dragged on the ground to the washing point. Although more than 50% of the respondents knew the modes of transmission of meat-borne zoonotic pathogens during meat processing, 71.3% of the SHWs processed carcasses on bare floor, 52.2% used same bowl of water to wash multiple carcasses while 72% did not wear personal protective equipment during meat/carcass processing. Processed meats were transported to meat shops in an unsanitary conditions, using open vans and tricycles. During the PMI, diseased carcasses/meats/organs were detected in 5.7% (83/1452), 2.1% (21/1006) and 0.8% (7/924) of the cattle, pig and goat carcasses inspected, respectively. Gross lesions pathognomonic of bovine tuberculosis, contagious bovine pleuro-pneumonia, fascioliasis and porcine cysticercosis were detected. Consequently, 391,089.2 kg of diseased meat/organs valued at 978 million Naira (235, 030 USD) were condemned. There were significant associations (p < 0.05) between educational level and the use of personal protective equipment (PPE) during slaughterhouse operations and knowledge that FPAs can harbour zoonotic pathogens (p = < 0.001) transmissible during carcass processing. Similarly, significant association was observed between working experience and use of PPE; and between geographical location of the respondents and knowledge that zoonotic pathogens in animals are transmissible during carcass processing or via the food chain. CONCLUSION The findings show that slaughter practices of SHWs have detrimental impacts on the quality and safety of meats processed for human consumption in Southeast, Nigeria. These findings underscore the need to: improve the welfare condition of slaughter-animals, mechanise abattoir operations, train and retrain the SHWs on hygienic carcass/meat processing practices. There is a need to adopt strict enforcement of food safety laws to promote meat quality, food safety and consequently promote the health of the public.
Collapse
Affiliation(s)
- Emmanuel O. Njoga
- Department of Veterinary Public Health and Preventive Medicine, Faculty of Veterinary Medicine, University of Nigeria, Nsukka, Nigeria
| | - Stanley U. Ilo
- Department of Animal Science, Faculty of Agriculture, University of Nigeria, Nsukka, Nigeria
| | - Obichukwu C. Nwobi
- Department of Veterinary Public Health and Preventive Medicine, Faculty of Veterinary Medicine, University of Nigeria, Nsukka, Nigeria
| | - Onyinye S. Onwumere-Idolor
- Department of Animal Production, Faculty of Agriculture, Delta State University of Science and Technology, Ozoro, Delta State, Nigeria
| | - Festus E. Ajibo
- Department of Animal Health and Production, Enugu State Polytechnic, Iwollo, Nigeria
| | - Chinwe E. Okoli
- Department of Veterinary Public Health and Preventive Medicine, Faculty of Veterinary Medicine, University of Abuja, Abuja, Nigeria
| | - Ishmael F. Jaja
- Department of Agriculture and Animal Health, College of Agriculture and Environmental Sciences, University of South Africa, Johannesburg, South Africa
| | - James W. Oguttu
- Department of Agriculture and Animal Health, College of Agriculture and Environmental Sciences, University of South Africa, Johannesburg, South Africa
| |
Collapse
|
37
|
Zhu X, Huang J, Wu Y, Zhao S, Chai X. Effect of Heat Stress on Hippocampal Neurogenesis: Insights into the Cellular and Molecular Basis of Neuroinflammation-Induced Deficits. Cell Mol Neurobiol 2023; 43:1-13. [PMID: 34767143 PMCID: PMC11415162 DOI: 10.1007/s10571-021-01165-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Accepted: 11/01/2021] [Indexed: 01/07/2023]
Abstract
Heat stress is known to result in neuroinflammation, neuronal damage, and disabilities in learning and memory in animals and humans. It has previously been reported that cognitive impairment caused by neuroinflammation may at least in part be mediated by defective hippocampal neurogenesis, and defective neurogenesis has been linked to aberrantly activated microglial cells. Moreover, the release of cytokines within the brain has been shown to contribute to the disruption of cognitive functions in several conditions following neuroinflammation. In this review, we summarize evolving evidence for the current understanding of inflammation-induced deficits in hippocampal neurogenesis, and the resulting behavioral impairments after heat stress. Furthermore, we provide valuable insights into the molecular and cellular mechanisms underlying neuroinflammation-induced deficits in hippocampal neurogenesis, particularly relating to cognitive dysfunction following heat stress. Lastly, we aim to identify potential mechanisms through which neuroinflammation induces cognitive dysfunction, and elucidate how neuroinflammation contributes to defective hippocampal neurogenesis. This review may therefore help to better understand the relationship between hippocampal neurogenesis and heat stress.
Collapse
Affiliation(s)
- Xiaoyan Zhu
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China.
| | - Jian Huang
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China
| | - Yongji Wu
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China
| | - Shanting Zhao
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China
| | - Xuejun Chai
- College of Basic Medicine, Xi'An Medical University, Xi'An, 710021, Shaanxi, People's Republic of China.
| |
Collapse
|
38
|
Kumar R, Gupta ID, Verma A, Singh S, Kumari R, Verma N. Genetic polymorphism in HSPB6 gene and their association with heat tolerance traits in Indian Karan Fries ( Bos taurus x Bos indicus) cattle. Anim Biotechnol 2022; 33:1416-1427. [PMID: 33781169 DOI: 10.1080/10495398.2021.1899939] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Heat shock proteins (HSPs) act as a chaperone activity ensuring the folding, unfolding, and refolding of denatured proteins, which help in a protective role during thermal stress in dairy cattle. This study aimed to detect genetic variations of the HSPB6 gene and to determine their association with heat tolerance traits in Karan Fries cattle. Five single nucleotide polymorphisms (SNPs) (SNP 1-5) were reported in the Karan Fries cattle, which included three transitions viz. SNP1-g.161G > A, SNP2-g.436G > A, and SNP4-g.2152A > G and two transversions viz. SNP3-g.1743C > G, SNP5-g.2417A > T. The association analysis revealed that the three SNPs loci i.e., SNP1-g.161G > A, SNP2-g.436G > A, and SNP3-g.1743C > G were significantly (p < 0.01) associated with the respiration rate (RR) and rectal temperature (RT) (°C) traits. Furthermore, in the case of heat tolerance coefficient (HTC) trait was found significantly associated (p < 0.01) with SNPs loci i.e., SNP1-g.161G > A, SNP2-g.436G > A, and SNP3-g.1743C > G. The Hap 4 (GACAT) was found to more adaptable than cattle of other haplotypes as reflected by lower values of RR, RT and HTC. This study provides the first association analyses between the SNPs and haplotypes of HSPB6 gene and heat tolerance traits in Karan Fries cattle, which could be used as effective SNP markers in genetic selection for heat tolerance in cattle breeding program.
Collapse
Affiliation(s)
- Rakesh Kumar
- Division of Animal and Fishery Sciences, ICAR-Research Complex for NEH Region, Umiam, Meghalaya, India
| | - Ishwar Dayal Gupta
- Division of Dairy Cattle Breeding, ICAR-National Dairy Research Institute, Karnal, India
| | - Archana Verma
- Division of Dairy Cattle Breeding, ICAR-National Dairy Research Institute, Karnal, India
| | - Sohanvir Singh
- Division of Dairy Cattle Physiology, ICAR-National Dairy Research Institute, Karnal, India
| | - Ragini Kumari
- Block Animal Husbandry Officer, Ekangarsarai, Nalanda, India
| | - Nishant Verma
- Department of Animal Genetics and Breeding, Dr. G. C. Negi College of Veterinary and Animal Sciences, Palampur, India
| |
Collapse
|
39
|
Swartz T, Bradford B, Lemke M, Mamedova L, Agnew R, Fehn J, Owczarzak E, McGill J, Estes K. Effects of prenatal dietary rumen-protected choline supplementation during late gestation on calf growth, metabolism, and vaccine response. J Dairy Sci 2022; 105:9639-9651. [DOI: 10.3168/jds.2022-22239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 07/10/2022] [Indexed: 11/17/2022]
|
40
|
Neculai-Valeanu AS, Ariton AM. Udder Health Monitoring for Prevention of Bovine Mastitis and Improvement of Milk Quality. Bioengineering (Basel) 2022; 9:608. [PMID: 36354519 PMCID: PMC9687184 DOI: 10.3390/bioengineering9110608] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/19/2022] [Accepted: 10/20/2022] [Indexed: 08/05/2023] Open
Abstract
To maximize milk production, efficiency, and profits, modern dairy cows are genetically selected and bred to produce more and more milk and are fed copious quantities of high-energy feed to support ever-increasing milk volumes. As demands for increased milk yield and milking efficiency continue to rise to provide for the growing world population, more significant stress is placed on the dairy cow's productive capacity. In this climate, which is becoming increasingly hotter, millions of people depend on the capacity of cattle to respond to new environments and to cope with temperature shocks as well as additional stress factors such as solar radiation, animal crowding, insect pests, and poor ventilation, which are often associated with an increased risk of mastitis, resulting in lower milk quality and reduced production. This article reviews the impact of heat stress on milk production and quality and emphasizes the importance of udder health monitoring, with a focus on the use of emergent methods for monitoring udder health, such as infrared thermography, biosensors, and lab-on-chip devices, which may promote animal health and welfare, as well as the quality and safety of dairy products, without hindering the technological flow, while providing significant benefits to farmers, manufacturers, and consumers.
Collapse
|
41
|
Wichman LG, Redifer CA, Rathert-Williams AR, Duncan NB, Payne CA, Meyer AM. Effects of spring- versus fall-calving on perinatal nutrient availability and neonatal vigor in beef cattle. Transl Anim Sci 2022; 6:txac136. [PMID: 36381953 PMCID: PMC9661251 DOI: 10.1093/tas/txac136] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 09/29/2022] [Indexed: 09/29/2023] Open
Abstract
To determine the effect of calving season on perinatal nutrient availability and neonatal beef calf vigor, data were collected from 4 spring- (average calving date: February 14; n = 203 total) and 4 fall- (average calving date: September 20; n = 179 total) calving experiments. Time to stand was determined as minutes from birth to standing for 5 s. After birth, calf weight and size (length, heart and abdominal girth, and cannon circumference) were recorded. Jugular blood samples and rectal temperatures were obtained at 0, 6, 12, and 24 h postnatally in 6 experiments and at 48 h postnatally in Exp. 2 to 8. Data were analyzed with fixed effects of season (single point) or season, hour, and their interaction (over time, using repeated measures). Experiment was a random effect; calf sex was included when P ≤ 0.25. Within calving season, correlations were determined between calf size, vigor, and 48-h serum total protein. Fall-born calves tended to have lighter (P = 0.09) birth weight and faster (P = 0.05) time to stand than spring-born calves. Season did not affect (P ≥ 0.18) gestation length, other calf size measures, or 48-h serum total protein. Fall-born calves had greater (P ≤ 0.003) rectal temperature at 0, 24, and 48 h postnatal. Spring-born calves had greater (P ≤ 0.009) circulating glucose at 0 h, serum non-esterified fatty acids at 0 and 6 h, and plasma triglycerides at 0, 6, 12, and 48 h. Fall-born calves had greater (P ≤ 0.03) sodium from 6 to 48 h and magnesium from 0 to 24 h of age. Phosphorus was greater (P ≤ 0.02) at 6 and 12 h of age in spring-born calves. Spring-born calves had greater (P ≤ 0.04) aspartate aminotransferase at 12 and 24 h and creatine kinase at 0 and 12 h of age. Fall-born calves had greater (P ≤ 0.03) albumin, calcium, and chloride, had lower (P ≤ 0.03) bicarbonate and direct bilirubin, and tended to have greater (P = 0.10) anion gap (all main effects of calving season). Calf birth weight had a weak positive relationship (P ≤ 0.03) with 48-h serum total protein and time to stand in fall-born, but not spring-born, calves. Overall, fetal growth was restricted and neonatal dehydration was increased by warm conditions for fall-born calves, but vigor and metabolism were negatively affected by cold conditions in spring-born calves. These data suggest that calving season influences perinatal nutrient availability, which may impact the transition of beef calves to postnatal life.
Collapse
Affiliation(s)
- Lindsey G Wichman
- Division of Animal Sciences, University of Missouri, Columbia, MO 65211, USA
| | - Colby A Redifer
- Division of Animal Sciences, University of Missouri, Columbia, MO 65211, USA
| | | | - Natalie B Duncan
- Division of Animal Sciences, University of Missouri, Columbia, MO 65211, USA
| | - Craig A Payne
- Department of Veterinary Extension and Continuing Education, University of Missouri, Columbia, MO 65211, USA
| | - Allison M Meyer
- Division of Animal Sciences, University of Missouri, Columbia, MO 65211, USA
| |
Collapse
|
42
|
Transcriptome Analyses Reveal Essential Roles of Alternative Splicing Regulation in Heat-Stressed Holstein Cows. Int J Mol Sci 2022; 23:ijms231810664. [PMID: 36142577 PMCID: PMC9505234 DOI: 10.3390/ijms231810664] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 09/07/2022] [Accepted: 09/08/2022] [Indexed: 12/03/2022] Open
Abstract
Heat stress (HS) severely impacts the productivity and welfare of dairy cows. Investigating the biological mechanisms underlying HS response is crucial for developing effective mitigation and breeding strategies. Therefore, we evaluated the changes in milk yield, physiological indicators, blood biochemical parameters, and alternative splicing (AS) patterns of lactating Holstein cows during thermoneutral (TN, N = 19) and heat-stress (HS, N = 17) conditions. There was a significant (p < 0.05) decline in milk yield as physiological indicators increased after exposure to natural HS conditions. The levels of eight out of 13 biochemical parameters of HS were also significantly altered in the presence of HS (p < 0.05). These results demonstrate that HS negatively influences various biological processes of Holstein cows. Furthermore, we investigated AS events based on the RNA-seq data from blood samples. With HS, five common types of AS events were generally increased by 6.7−38.9%. A total of 3470 AS events corresponding to 3143 unique genes were differentially alternatively spliced (DSGs) (p-adjusted < 0.05) between TN and HS groups. The functional annotation results show that the majority of DSGs are involved in mRNA splicing and spliceosomal complex, followed by enrichment in immune and metabolic processes. Eighty-seven out of 645 differentially expressed genes (DEGs) (fold change ≥ 1.5 and false discovery rate < 0.05) overlapped with DSGs. Further analyses showed that 20 of these genes were significantly enriched for the RNA splicing, RNA binding, and RNA transport. Among them, two genes (RBM25 and LUC7L3) had strong interrelation and co-expression pattern with other genes and were identified as candidate genes potentially associated with HS responses in dairy cows. In summary, AS plays a crucial role in changing the transcriptome diversity of heat-stress-related genes in multiple biological pathways and provides a different regulation mechanism from DEGs.
Collapse
|
43
|
Dou J, Luo H, Sammad A, Lou W, Wang D, Schenkel F, Yu Y, Fang L, Wang Y. Epigenomics of rats' liver and its cross-species functional annotation reveals key regulatory genes underlying short term heat-stress response. Genomics 2022; 114:110449. [PMID: 35985612 DOI: 10.1016/j.ygeno.2022.110449] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 07/28/2022] [Accepted: 08/12/2022] [Indexed: 11/04/2022]
Abstract
Molecular responses to heat stress are multifaceted and under a complex cellular post-transcriptional control. This study explores the epigenetic and transcriptional alterations induced by heat stress (42 °C for 120 min) in the liver of rats, by integrating ATAC-seq, RNA-Seq, and WGBS information. Out of 2586 differential ATAC-seq peaks induced by heat stress, 36 up-regulated and 22 down-regulated transcript factors (TFs) are predicted, such as Cebpα, Foxa2, Foxo4, Nfya and Sp3. Furthermore, 150,189 differentially methylated regions represent 2571 differentially expressed genes (DEGs). By integrating all data, 45 DEGs are concluded as potential heat stress response markers in rats. To comprehensively annotate and narrow down predicted markers, they are integrated with GWAS results of heat stress parameters in cows, and PheWAS data in humans. Besides better understanding of heat stress responses in mammals, INSR, MAPK8, RHPN2 and BTBD7 are proposed as candidate markers for heat stress in mammals.
Collapse
Affiliation(s)
- Jinhuan Dou
- Key Laboratory of Animal Genetics, Breeding and Reproduction, MARA, National Engineering Laboratory of Animal Breeding, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; Animal Science and Technology College, Beijing University of Agriculture, Beijing 102206, China
| | - Hanpeng Luo
- Key Laboratory of Animal Genetics, Breeding and Reproduction, MARA, National Engineering Laboratory of Animal Breeding, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Abdul Sammad
- Key Laboratory of Animal Genetics, Breeding and Reproduction, MARA, National Engineering Laboratory of Animal Breeding, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Wenqi Lou
- Key Laboratory of Animal Genetics, Breeding and Reproduction, MARA, National Engineering Laboratory of Animal Breeding, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Di Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction, MARA, National Engineering Laboratory of Animal Breeding, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Flavio Schenkel
- Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, University of Guelph, N1G 2W1 Guelph, Ontario, Canada
| | - Ying Yu
- Key Laboratory of Animal Genetics, Breeding and Reproduction, MARA, National Engineering Laboratory of Animal Breeding, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
| | - Lingzhao Fang
- MRC Human Genetics Unit at the Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, United Kingdom.
| | - Yachun Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction, MARA, National Engineering Laboratory of Animal Breeding, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
44
|
Molinari PC, Dahl GE, Sheldon IM, Bromfield JJ. Effect of calving season on metritis incidence and bacterial content of the vagina in dairy cows. Theriogenology 2022; 191:67-76. [DOI: 10.1016/j.theriogenology.2022.08.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 07/12/2022] [Accepted: 08/01/2022] [Indexed: 11/30/2022]
|
45
|
Park T, Ma L, Gao S, Bu D, Yu Z. Heat stress impacts the multi-domain ruminal microbiota and some of the functional features independent of its effect on feed intake in lactating dairy cows. J Anim Sci Biotechnol 2022; 13:71. [PMID: 35701804 PMCID: PMC9199214 DOI: 10.1186/s40104-022-00717-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 04/10/2022] [Indexed: 11/23/2022] Open
Abstract
Background Heat stress (HS) affects the ruminal microbiota and decreases the lactation performance of dairy cows. Because HS decreases feed intake, the results of previous studies were confounded by the effect of HS on feed intake. This study examined the direct effect of HS on the ruminal microbiota using lactating Holstein cows that were pair-fed and housed in environmental chambers in a 2 × 2 crossover design. The cows were pair-fed the same amount of identical total mixed ration to eliminate the effect of feed or feed intake. The composition and structure of the microbiota of prokaryotes, fungi, and protozoa were analyzed using metataxonomics and compared between two thermal conditions: pair-fed thermoneutrality (PFTN, thermal humidity index: 65.5) and HS (87.2 for daytime and 81.8 for nighttime). Results The HS conditions altered the structure of the prokaryotic microbiota and the protozoal microbiota, but not the fungal microbiota. Heat stress significantly increased the relative abundance of Bacteroidetes (primarily Gram-negative bacteria) while decreasing that of Firmicutes (primarily Gram-positive bacteria) and the Firmicutes-to-Bacteroidetes ratio. Some genera were exclusively found in the heat-stressed cows and thermal control cows. Some co-occurrence and mutual exclusion between some genera were also found exclusively for each thermal condition. Heat stress did not significantly affect the overall functional features predicted using the 16S rRNA gene sequences and ITS1 sequences, but some enzyme-coding genes altered their relative abundance in response to HS. Conclusions Overall, HS affected the prokaryotes, fungi, and protozoa of the ruminal microbiota in lactating Holstein cows to a different extent, but the effect on the structure of ruminal microbiota and functional profiles was limited when not confounded by the effect on feed intake. However, some genera and co-occurrence were exclusively found in the rumen of heat-stressed cows. These effects should be attributed to the direct effect of heat stress on the host metabolism, physiology, and behavior. Some of the “heat-stress resistant” microbes may be useful as potential probiotics for cows under heat stress. Supplementary Information The online version contains supplementary material available at 10.1186/s40104-022-00717-z.
Collapse
Affiliation(s)
- Tansol Park
- Department of Animal Sciences, The Ohio State University, Columbus, OH, USA.,Department of Animal Science and Technology, Chung-Ang University, Anseong-si, Gyeonggi-do, Republic of Korea
| | - Lu Ma
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, People's Republic of China
| | - Shengtao Gao
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, People's Republic of China
| | - Dengpan Bu
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, People's Republic of China. .,CAAS-ICRAF Joint Lab on Agroforestry and Sustainable Animal Husbandry, Beijing, 100193, People's Republic of China.
| | - Zhongtang Yu
- Department of Animal Sciences, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
46
|
Skibiel AL, Koh J, Zhu N, Zhu F, Yoo MJ, Laporta J. Carry-over effects of dry period heat stress on the mammary gland proteome and phosphoproteome in the subsequent lactation of dairy cows. Sci Rep 2022; 12:6637. [PMID: 35459770 PMCID: PMC9033811 DOI: 10.1038/s41598-022-10461-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 04/01/2022] [Indexed: 11/15/2022] Open
Abstract
Exposure to heat stress during a cow's dry period disrupts mammary gland remodeling, impairing mammary function and milk production during the subsequent lactation. Yet, proteomic changes in the mammary gland underlying these effects are not yet known. We investigated alterations in the mammary proteome and phosphoproteome during lactation as a result of dry period heat stress using an isobaric tag for relative and absolute quantitation (iTRAQ)-based approach. Cows were cooled (CL; n = 12) with fans and water soakers in a free stall setting or were heat stressed through lack of access to cooling devices (HT; n = 12) during the entire dry period (approximately 46 days). All cows were cooled postpartum. Mammary biopsies were harvested from a subset of cows (n = 4 per treatment) at 14, 42, and 84 days in milk. Overall, 251 proteins and 224 phosphorylated proteins were differentially abundant in the lactating mammary gland of HT compared to CL cows. Top functions of differentially abundant proteins and phosphoproteins affected were related to immune function and inflammation, amino acid metabolism, reactive oxygen species production and metabolism, tissue remodeling, and cell stress response. Patterns of protein expression and phosphorylation are indicative of increased oxidative stress, mammary gland restructuring, and immune dysregulation due to prior exposure to dry period heat stress. This study provides insights into the molecular underpinnings of disrupted mammary function and health during lactation arising from prior exposure to dry period heat stress, which might have led to lower milk yields.
Collapse
Affiliation(s)
- Amy L Skibiel
- Department of Animal, Veterinary and Food Sciences, University of Idaho, Moscow, ID, 83844, USA
| | - Jin Koh
- Interdisciplinary Center for Biotechnology Research, Proteomics and Mass Spectrometry Core, University of Florida, Gainesville, FL, 32611, USA
| | - Ning Zhu
- Interdisciplinary Center for Biotechnology Research, Proteomics and Mass Spectrometry Core, University of Florida, Gainesville, FL, 32611, USA
| | - Fanchao Zhu
- Interdisciplinary Center for Biotechnology Research, Proteomics and Mass Spectrometry Core, University of Florida, Gainesville, FL, 32611, USA
| | - Mi-Jeong Yoo
- Department of Biology, Clarkson University, Potsdam, NY, 13699, USA
| | - Jimena Laporta
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, WI, 53715, USA.
| |
Collapse
|
47
|
Guo H, Liu R, He J, Yao W, Zheng W. Heat Stress Modulates a Placental Immune Response Associated With Alterations in the Development of the Fetal Intestine and Its Innate Immune System in Late Pregnant Mouse. Front Physiol 2022; 13:841149. [PMID: 35444558 PMCID: PMC9014288 DOI: 10.3389/fphys.2022.841149] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 03/09/2022] [Indexed: 11/25/2022] Open
Abstract
The placenta is critical for the regulation of fetal innate immune function. Maternal heat stress (HS) impairs the immune function and the intestinal barrier in the offspring. However, the effects of maternal HS on the placental immune response and the development of the fetal intestine and its innate immune system remain unclear. Fetal mice were divided into the utero control (IUTN) and heat stress (IUHS) groups according to the maternal ambient temperature. Transcriptome analysis revealed that the expressions of placental immune response–related genes such as macrophage antigen CD68 and Fc gamma receptors 1 and 3 (fcgγ1 and fcgγ3) were increased, but the mRNA expression and protein levels of colony-stimulating factor-1 (Csf1) were decreased in the HS group compared with the TN group (p < 0.05). Furthermore, there was no significant difference in the intestinal length normalized to pup weight between the IUTN and IUHS groups. The expression of genes (such as alpi and ttr) involved in fetal duodenum and jejunum development was downregulated by maternal HS, whereas the expression of genes enriched in the cell cycle was increased. The mRNA expression and protein levels of cell division cycle 6 (Cdc6) in the fetal duodenum and jejunum were much higher in the IUHS group than in the IUTN group (p < 0.05). Maternal HS also down-regulated the expression of genes enriched in the innate immune system in the fetal duodenum and jejunum. The mRNA expression and protein levels of interleukin 1 alpha (IL1a) were reduced in the IUHS group compared with the IUTN group (p < 0.05). Taken together, these data demonstrated that maternal HS modulated the expression of genes in the placenta related to the immune response and inhibited the development of the fetal intestine and its innate immune system.
Collapse
Affiliation(s)
- Huiduo Guo
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
- College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China
| | - Riliang Liu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Jianwen He
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
- Clinical Research Center, Affiliated Hospital of Shaanxi University of Chinese Medicine, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Wen Yao
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
- Key Lab of Animal Physiology and Biochemistry, Ministry of Agriculture and Rural Affairs of the People’s Republic of China, Nanjing Agricultural University, Nanjing, China
| | - Weijiang Zheng
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
- *Correspondence: Weijiang Zheng,
| |
Collapse
|
48
|
Wang Z, Liu L, Pang F, Zheng Z, Teng Z, Miao T, Fu T, Rushdi HE, Yang L, Gao T, Lin F, Liu S. Novel insights into heat tolerance using metabolomic and high-throughput sequencing analysis in dairy cows rumen fluid. Animal 2022; 16:100478. [PMID: 35247705 DOI: 10.1016/j.animal.2022.100478] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 01/29/2022] [Accepted: 01/31/2022] [Indexed: 01/10/2023] Open
Abstract
Heat stress influences rumen fermentative processes with effects on the physiology and production of dairy cows. However, the underlying relationship between rumen microbiota and its associated metabolism with heat tolerance in cows have not been extensively described yet. Therefore, the main objective of this study was to investigate differential heat resistance in Holstein cows using rumen bacterial and metabolome analyses. We performed both principal component analysis and membership function analysis to select seven heat-tolerant (HT) and seven heat-sensitive (HS) cows. Under heat stress conditions, the HT cows had a significantly (P < 0.05) higher propionic acid content than the HS cows; while measures of the respiratory rate, acetic, and butyric acid in the HT cows were significantly (P < 0.05) lower compared with the HS cows. Also, the HT cows showed lower (P < 0.01) rectal temperature and acetic acid to propionic acid ratio than the HS group of cows. Omics sequencing revealed that the relative abundances of Muribaculaceae, Rikenellaceae, Acidaminococcaceae, Christensenellaceae, Rikenellaceae_RC9_gut_group, Succiniclasticum, Ruminococcaceae_NK4A214_group and Christensenellaceae_R-7_group were significantly (P < 0.01) higher in the HT cows; whereas Prevotellaceae, Prevotella_1, Ruminococcaceae_UCG-014, and Shuttleworthia were significantly (P < 0.01) lower in HT cows compared to HS cows. Substances mainly involved in carbohydrate metabolism, including glycerol, mannitol, and maltose, showed significantly higher content in the HT cows (P < 0.05) compared to that in the HS cows. Simultaneously, distinct metabolites were significantly correlated with differential bacteria, suggesting that glycerol, mannitol, and maltose could serve as potential biomarkers for determining heat resistance that require further study. Overall, distinct changes in the rumen microbiota and metabolomics in the HT cows may be associated with a better adaptability to heat stress. These findings suggest their use as diagnostic tools of heat tolerance in dairy cattle breeding schemes.
Collapse
Affiliation(s)
- Z Wang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, Henan, People's Republic of China
| | - L Liu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, Henan, People's Republic of China
| | - F Pang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, Henan, People's Republic of China
| | - Z Zheng
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, Henan, People's Republic of China
| | - Z Teng
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, People's Republic of China
| | - T Miao
- Henan Huahua Niu Dairy Co., Ltd, Zhengzhou, People's Republic of China
| | - T Fu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, Henan, People's Republic of China
| | - H E Rushdi
- Department of Animal Production, Faculty of Agriculture, Cairo University, 12613 Giza, Egypt
| | - L Yang
- College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - T Gao
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, Henan, People's Republic of China
| | - F Lin
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, Henan, People's Republic of China
| | - S Liu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, Henan, People's Republic of China.
| |
Collapse
|
49
|
Cartwright S, Schmied J, Livernois A, Mallard B. Effect of In-vivo Heat Challenge on Physiological Parameters and Function of Peripheral Blood Mononuclear Cells in Immune Phenotyped Dairy Cattle. Vet Immunol Immunopathol 2022; 246:110405. [DOI: 10.1016/j.vetimm.2022.110405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 03/01/2022] [Accepted: 03/03/2022] [Indexed: 10/18/2022]
|
50
|
Zamorano-Algandar R, Medrano JF, Thomas MG, Enns RM, Speidel SE, Sánchez-Castro MA, Luna-Nevárez G, Leyva-Corona JC, Luna-Nevárez P. Effect of calving season on the parameters and components of the lactation curve in Holstein dairy cows managed in a semi-desert climate. Trop Anim Health Prod 2022; 54:88. [DOI: 10.1007/s11250-022-03098-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 02/01/2022] [Indexed: 11/29/2022]
|