1
|
Morse SV, Rimer S, Geoghegan G, Shah M, Chan N, Yalcin C, Pereira MA, Rohfleisch L, Nkontchou N, Winiarski S, Ee J, Maitra A, Chan TG, Sastre M, Choi JJ. Biological effects of rapid short pulses of focused ultrasound for drug delivery to the brain. J Control Release 2025; 382:113646. [PMID: 40127724 DOI: 10.1016/j.jconrel.2025.113646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 02/28/2025] [Accepted: 03/18/2025] [Indexed: 03/26/2025]
Abstract
Focused ultrasound in combination with intravenously injected microbubbles offers a non-invasive and localised method to deliver drugs across the blood-brain barrier, enabling targeted treatment of brain disorders. Recently, we have shown that applying sequences of Rapid Short-Pulses (RaSP; 5 μs pulses emitted at 1.25 kHz grouped into 10 ms bursts) of ultrasound can deliver drugs with an improved efficacy and safety profile compared with traditionally-used longer pulses (> 10 ms). In this study, we examined the extent to which RaSP sequences allowed the extravasation of endogenous blood proteins, including albumin and immunoglobulin, as well as T cells, into the brain parenchyma. We also investigated the effect of RaSP ultrasound treatments on synaptic connectivity, and the distribution and excretion of fluorescently-labelled 3 kDa dextran delivered to the brain with RaSP. The left hippocampus of mice was sonicated with either a RaSP sequence (5 μs at 1.25 kHz in groups of 10 ms at 0.5 Hz) or a long pulse sequence (10 ms at 0.5 Hz), at 0.35, 0.53 and 0.71 MPa with a 1-MHz center frequency. Significantly less albumin was detected in RaSP-treated brains immediately after treatment and was cleared within 10 min compared to those treated with long pulses, while immunoglobulin was hardly detected in RaSP-treated brains at 0, 10 or 20 min after treatment. No T cells were detected in RaSP-treated brains at 0.35, 0.53 or 0.71 MPa after 0 or 2 h. In long pulse samples, however, T cells did extravasate when using the two higher acoustic pressures, 0.53 and 0.71 MPa, immediately after treatment. Quantification of dendritic spine area revealed no differences between RaSP-treated hippocampi compared to untreated contralateral hippocampi and control mice following three weekly ultrasound treatments. Finally, fluorescently-labelled dextran increasingly moved towards blood vessels and away from the parenchyma once delivered to the brain with both RaSP and long pulse sequences. Uptake of dextran within cells decreased over time with both sequences, and long pulses lead to a larger number of vessels with dextran uptake. This study highlights that RaSP ultrasound sequences can deliver molecules across the blood-brain barrier with minimal extravasation of endogenous proteins and no T cell infiltration, while preserving dendritic spine integrity, thus offering an improved safety profile.
Collapse
Affiliation(s)
- Sophie V Morse
- Department of Bioengineering, Imperial College London, South Kensington, London SW7 2BP, UK; UK Dementia Research Institute at Imperial College London, UK.
| | - Sarah Rimer
- Department of Bioengineering, Imperial College London, South Kensington, London SW7 2BP, UK
| | - Grainne Geoghegan
- Department of Bioengineering, Imperial College London, South Kensington, London SW7 2BP, UK; Department of Brain Sciences, Imperial College London, Hammersmith Campus, London W12 0NN, UK
| | - Manaal Shah
- Department of Bioengineering, Imperial College London, South Kensington, London SW7 2BP, UK; UK Dementia Research Institute at Imperial College London, UK
| | - Nicholas Chan
- Department of Bioengineering, Imperial College London, South Kensington, London SW7 2BP, UK
| | - Ceren Yalcin
- Department of Bioengineering, Imperial College London, South Kensington, London SW7 2BP, UK
| | - Maria Afonso Pereira
- Department of Bioengineering, Imperial College London, South Kensington, London SW7 2BP, UK
| | - Lucia Rohfleisch
- Department of Bioengineering, Imperial College London, South Kensington, London SW7 2BP, UK
| | - Neema Nkontchou
- Department of Bioengineering, Imperial College London, South Kensington, London SW7 2BP, UK
| | - Samuel Winiarski
- Department of Bioengineering, Imperial College London, South Kensington, London SW7 2BP, UK
| | - Jamie Ee
- Department of Bioengineering, Imperial College London, South Kensington, London SW7 2BP, UK
| | - Aurna Maitra
- Department of Bioengineering, Imperial College London, South Kensington, London SW7 2BP, UK
| | - Tiffany G Chan
- Department of Bioengineering, Imperial College London, South Kensington, London SW7 2BP, UK
| | - Magdalena Sastre
- Department of Brain Sciences, Imperial College London, Hammersmith Campus, London W12 0NN, UK
| | - James J Choi
- Department of Bioengineering, Imperial College London, South Kensington, London SW7 2BP, UK
| |
Collapse
|
2
|
Benavides‐Piccione R, Fernaud‐Espinosa I, Kastanauskaite A, DeFelipe J. Principles for Dendritic Spine Size and Density in Human and Mouse Cortical Pyramidal Neurons. J Comp Neurol 2025; 533:e70060. [PMID: 40421877 PMCID: PMC12108034 DOI: 10.1002/cne.70060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 04/25/2025] [Accepted: 05/10/2025] [Indexed: 05/28/2025]
Abstract
Dendritic spines of pyramidal neurons are the targets of most excitatory synapses in the cerebral cortex, and dendritic spine morphology directly reflects their function. However, there are scarce data available regarding both the detailed morphology of these structures for the human cerebral cortex and the extent to which they differ in comparison with other species. Thus, in the present study, we used intracellular injections of Lucifer yellow to reconstruct-in three dimensions-the morphology of basal dendritic spines from pyramidal cells in the human and mouse CA1 hippocampal region and compared these spines with those of the human temporal and cingular cortex. We found that human hippocampal dendrites show lower spine density, larger volume, and longer length of dendritic spines than mouse CA1 spines. Furthermore, human hippocampal dendrites show higher spine density, smaller spine volume, and shorter length compared to dendritic spines from the human temporal and cingular cortex. This morphological diversity suggests an equally large variability of synaptic strength and learning rules across these brain regions in humans and between humans and mice. Nevertheless, a balance between size and density was found in all cases, which may be a cortical rule maintained across cortical areas and species.
Collapse
Affiliation(s)
- Ruth Benavides‐Piccione
- Instituto Cajal (CSIC)MadridSpain
- Laboratorio Cajal de Circuitos Corticales (CTB)Universidad Politécnica de Madrid (UPM), Campus Montegancedo S/NPozuelo de AlarcónMadridSpain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), ISCIIIMadridSpain
| | - Isabel Fernaud‐Espinosa
- Instituto Cajal (CSIC)MadridSpain
- Laboratorio Cajal de Circuitos Corticales (CTB)Universidad Politécnica de Madrid (UPM), Campus Montegancedo S/NPozuelo de AlarcónMadridSpain
| | - Asta Kastanauskaite
- Instituto Cajal (CSIC)MadridSpain
- Laboratorio Cajal de Circuitos Corticales (CTB)Universidad Politécnica de Madrid (UPM), Campus Montegancedo S/NPozuelo de AlarcónMadridSpain
| | - Javier DeFelipe
- Instituto Cajal (CSIC)MadridSpain
- Laboratorio Cajal de Circuitos Corticales (CTB)Universidad Politécnica de Madrid (UPM), Campus Montegancedo S/NPozuelo de AlarcónMadridSpain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), ISCIIIMadridSpain
| |
Collapse
|
3
|
Gao QL, Zha HW, Liu ZJ, Wang MM, Zhang YQ, Bi JR, Wu TY, Liu ZJ, Wu H, Sun D. Hippocampal CA1 neuron, a crucial regulator for chronic stress exacerbating Alzheimer's disease progression. Cell Biosci 2025; 15:73. [PMID: 40448155 DOI: 10.1186/s13578-025-01420-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Accepted: 05/23/2025] [Indexed: 06/02/2025] Open
Abstract
Chronic stress, a common risk factor for psychiatric disorders, is also implicated in the pathogenesis of Alzheimer's disease (AD). However, its underlying mechanisms remain elusive. Here, we provide evidence for chronic restraint stress (CRS), a widely used stress model in rodents, to regulate AD pathology. CRS not only induces prolonged depressive-like behaviors and cognitive deficits in young adult wild type (WT) mice, but also exacerbates a series of AD-related phenotypes in APP/PS1 mice, including impaired spatial learning and memory, increased β-amyloid plaques, promoted glial cells (astrocyte and microglial cell) activation and decreased dendritic spines in CA1 neurons. Single-nucleus RNA-sequencing analysis in hippocampus shows remarkable transcriptional changes in many cell type(s), and identifies oxidative phosphorylation pathway, a major source for adenosine triphosphate (ATP) production, is significantly downregulated in CA1 neurons by CRS stimuli. Furthermore, dysfunctional mitochondria and reduced ATP levels are also observed in CA1 neurons of CRS exposed WT and APP/PS1 mice. Interestingly, infusion of ATP in CA1 region abolishes the deficits in cognition, dendritic spines and glial activation in CRS exposed APP/PS1 mice. Taken together, these results uncover an unrecognized function of CA1 neurons in regulating CRS induced AD pathologies, and suggest ATP as a promising therapeutic strategy to improve brain health under stress condition.
Collapse
Affiliation(s)
- Qing-Lin Gao
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, 2699 Qianjin Street, Room 409, Changchun, Jilin, 130012, China
| | - Hai-Wei Zha
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, 2699 Qianjin Street, Room 409, Changchun, Jilin, 130012, China
| | - Zi-Jie Liu
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, 2699 Qianjin Street, Room 409, Changchun, Jilin, 130012, China
| | - Miao-Miao Wang
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, 2699 Qianjin Street, Room 409, Changchun, Jilin, 130012, China
| | - Yu-Qing Zhang
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, 2699 Qianjin Street, Room 409, Changchun, Jilin, 130012, China
| | - Jia-Rui Bi
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, 2699 Qianjin Street, Room 409, Changchun, Jilin, 130012, China
| | - Tian-Yang Wu
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, 2699 Qianjin Street, Room 409, Changchun, Jilin, 130012, China
| | - Zhen-Jiang Liu
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, 2699 Qianjin Street, Room 409, Changchun, Jilin, 130012, China
- Key Laboratory for Molecular Enzymology and Engineering, School of Life Sciences, The Ministry of Education, Jilin University, Changchun, 130012, China
| | - Hui Wu
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, 2699 Qianjin Street, Room 409, Changchun, Jilin, 130012, China
- Key Laboratory for Molecular Enzymology and Engineering, School of Life Sciences, The Ministry of Education, Jilin University, Changchun, 130012, China
| | - Dong Sun
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, 2699 Qianjin Street, Room 409, Changchun, Jilin, 130012, China.
- Key Laboratory for Molecular Enzymology and Engineering, School of Life Sciences, The Ministry of Education, Jilin University, Changchun, 130012, China.
| |
Collapse
|
4
|
Schünemann KD, Hattingh RM, Verhoog MB, Yang D, Bak AV, Peter S, van Loo KMJ, Wolking S, Kronenberg-Versteeg D, Weber Y, Schwarz N, Raimondo JV, Melvill R, Tromp SA, Butler JT, Höllig A, Delev D, Wuttke TV, Kampa BM, Koch H. Comprehensive analysis of human dendritic spine morphology and density. J Neurophysiol 2025; 133:1086-1102. [PMID: 40013734 DOI: 10.1152/jn.00622.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 01/14/2025] [Accepted: 02/22/2025] [Indexed: 02/28/2025] Open
Abstract
Dendritic spines, small protrusions on neuronal dendrites, play a crucial role in brain function by changing shape and size in response to neural activity. So far, in-depth analysis of dendritic spines in human brain tissue is lacking. This study presents a comprehensive analysis of human dendritic spine morphology and density using a unique dataset from human brain tissue from 27 patients (8 females, 19 males, aged 18-71 yr) undergoing tumor or epilepsy surgery at three neurosurgery sites. We used acute slices and organotypic brain slice cultures to examine dendritic spines, classifying them into the three main morphological subtypes: mushroom, thin, and stubby, via three-dimensional (3-D) reconstruction using ZEISS arivis Pro software. A deep learning model, trained on 39 diverse datasets, automated spine segmentation and 3-D reconstruction, achieving a 74% F1-score and reducing processing time by over 50%. We show significant differences in spine density by sex, dendrite type, and tissue condition. Females had higher spine densities than males, and apical dendrites were denser in spines than basal ones. Acute tissue showed higher spine densities compared with cultured human brain tissue. With time in culture, mushroom spines decreased, whereas stubby and thin spine percentages increased, particularly from 7-9 to 14 days in vitro, reflecting potential synaptic plasticity changes. Our study underscores the importance of using human brain tissue to understand unique synaptic properties and shows that integrating deep learning with traditional methods enables efficient large-scale analysis, revealing key insights into sex- and tissue-specific dendritic spine dynamics relevant to neurological diseases.NEW & NOTEWORTHY This study presents a dataset of nearly 4,000 morphologically reconstructed human dendritic spines across different ages, gender, and tissue conditions. The dataset was further used to evaluate a deep learning algorithm for three-dimensional spine reconstruction, offering a scalable method for semiautomated spine analysis across various tissues and microscopy setups. The findings enhance understanding of human neurology, indicating potential connections between spine morphology, brain function, and the mechanisms of neurological and psychiatric diseases.
Collapse
Affiliation(s)
- Kerstin D Schünemann
- Department of Epileptology, Neurology, University Hospital RWTH Aachen, Aachen, Germany
| | - Roxanne M Hattingh
- Neuroscience Institute, University of Cape Town, Cape Town,South Africa
- Division of Cell Biology, Department of Human Biology, University of Cape Town, Cape Town, South Africa
| | - Matthijs B Verhoog
- Neuroscience Institute, University of Cape Town, Cape Town,South Africa
- Division of Cell Biology, Department of Human Biology, University of Cape Town, Cape Town, South Africa
| | - Danqing Yang
- Institute of Neuroscience and Medicine 10, Research Center Juelich, Juelich, Germany
| | - Aniella V Bak
- Department of Epileptology, Neurology, University Hospital RWTH Aachen, Aachen, Germany
| | - Sabrina Peter
- Department of Epileptology, Neurology, University Hospital RWTH Aachen, Aachen, Germany
| | - Karen M J van Loo
- Department of Epileptology, Neurology, University Hospital RWTH Aachen, Aachen, Germany
- Department of Neurosurgery, University Hospital RWTH Aachen, Aachen, Germany
| | - Stefan Wolking
- Department of Epileptology, Neurology, University Hospital RWTH Aachen, Aachen, Germany
| | - Deborah Kronenberg-Versteeg
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
- Department of Cellular Neurology, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Yvonne Weber
- Department of Epileptology, Neurology, University Hospital RWTH Aachen, Aachen, Germany
| | - Niklas Schwarz
- Department of Neurology and Epileptology, Hertie-Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Joseph V Raimondo
- Neuroscience Institute, University of Cape Town, Cape Town,South Africa
- Division of Cell Biology, Department of Human Biology, University of Cape Town, Cape Town, South Africa
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Roger Melvill
- Division of Neurosurgery, Department of Surgery, University of Cape Town, Cape Town, South Africa
| | - Sean A Tromp
- Division of Neurosurgery, Department of Surgery, University of Cape Town, Cape Town, South Africa
| | - James T Butler
- Neuroscience Institute, University of Cape Town, Cape Town,South Africa
- Division of Neurosurgery, Department of Surgery, University of Cape Town, Cape Town, South Africa
| | - Anke Höllig
- Department of Neurosurgery, University Hospital RWTH Aachen, Aachen, Germany
| | - Daniel Delev
- Department of Neurosurgery, University Hospital RWTH Aachen, Aachen, Germany
- Department of Neurosurgery, University Hospital Erlangen, Friedrich-Alexander University Erlangen Nürnberg, Erlangen, Germany
| | - Thomas V Wuttke
- Department of Neurology and Epileptology, Hertie-Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
- Department of Neurosurgery, University of Tübingen, Tübingen, Germany
| | - Björn M Kampa
- Systems Neurophysiology, Institute of Biology II, RWTH Aachen University, Aachen, Germany
- JARA BRAIN Institute of Neuroscience and Medicine (INM-10), Research Center Juelich, Juelich, Germany
| | - Henner Koch
- Department of Epileptology, Neurology, University Hospital RWTH Aachen, Aachen, Germany
| |
Collapse
|
5
|
Mesa MH, McCabe KJ, Rangamani P. Synaptic cleft geometry modulates NMDAR opening probability by tuning neurotransmitter residence time. Biophys J 2025; 124:1058-1072. [PMID: 39876560 PMCID: PMC11993924 DOI: 10.1016/j.bpj.2025.01.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 12/27/2024] [Accepted: 01/23/2025] [Indexed: 01/30/2025] Open
Abstract
Synaptic morphology plays a critical role in modulating the dynamics of neurotransmitter diffusion and receptor activation in interneuron communication. Central physical aspects of synaptic geometry, such as the curvature of the synaptic cleft, the distance between the presynaptic and postsynaptic membranes, and the surface-area-to-volume ratio of the cleft, crucially influence glutamate diffusion and N-methyl-D-aspartate receptor (NMDAR) opening probabilities. In this study, we developed a stochastic model for receptor activation using realistic synaptic geometries. Our simulations revealed substantial variability in NMDAR activation, showing a significant impact of synaptic structure on receptor activation. Next, we designed a theoretical study with idealized cleft geometries to understand the impact of different biophysical properties on receptor activation. Specifically, we found that increasing the curvature of the synaptic membranes could compensate for reduced NMDAR activation when the synaptic cleft width was large. Additionally, nonparallel membrane configurations, such as convex presynapses or concave postsynaptic densities, maximize NMDAR activation by increasing the surface-area-to-volume ratio, thereby increasing glutamate residence time and reducing glutamate escape. Furthermore, clustering NMDARs within the postsynaptic density significantly increased receptor activation across different geometric conditions and mitigated the effects of synaptic morphology on NMDAR opening probabilities. These findings highlight the complex interplay between synaptic geometry and receptor dynamics and provide important insights into how structural modifications can influence synaptic efficacy and plasticity. By considering the major physical factors that affect neurotransmitter diffusion and receptor activation, our work offers a comprehensive understanding of how variations in synaptic geometry may regulate neurotransmission.
Collapse
Affiliation(s)
- María Hernández Mesa
- Department of Computational Physiology, Simula Research Laboratory, 0164 Oslo, Norway; Department of Informatics, University of Oslo, 0373 Oslo, Norway
| | - Kimberly J McCabe
- Department of Computational Physiology, Simula Research Laboratory, 0164 Oslo, Norway
| | - Padmini Rangamani
- Department of Pharmacology, School of Medicine, University of California, San Diego, San Diego, California; Department of Mechanical and Aerospace Engineering, University of California, San Diego, San Diego, California.
| |
Collapse
|
6
|
Celii B, Papadopoulos S, Ding Z, Fahey PG, Wang E, Papadopoulos C, Kunin AB, Patel S, Bae JA, Bodor AL, Brittain D, Buchanan J, Bumbarger DJ, Castro MA, Cobos E, Dorkenwald S, Elabbady L, Halageri A, Jia Z, Jordan C, Kapner D, Kemnitz N, Kinn S, Lee K, Li K, Lu R, Macrina T, Mahalingam G, Mitchell E, Mondal SS, Mu S, Nehoran B, Popovych S, Schneider-Mizell CM, Silversmith W, Takeno M, Torres R, Turner NL, Wong W, Wu J, Yu SC, Yin W, Xenes D, Kitchell LM, Rivlin PK, Rose VA, Bishop CA, Wester B, Froudarakis E, Walker EY, Sinz F, Seung HS, Collman F, da Costa NM, Reid RC, Pitkow X, Tolias AS, Reimer J. NEURD offers automated proofreading and feature extraction for connectomics. Nature 2025; 640:487-496. [PMID: 40205208 PMCID: PMC11981913 DOI: 10.1038/s41586-025-08660-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 01/16/2025] [Indexed: 04/11/2025]
Abstract
We are in the era of millimetre-scale electron microscopy volumes collected at nanometre resolution1,2. Dense reconstruction of cellular compartments in these electron microscopy volumes has been enabled by recent advances in machine learning3-6. Automated segmentation methods produce exceptionally accurate reconstructions of cells, but post hoc proofreading is still required to generate large connectomes that are free of merge and split errors. The elaborate 3D meshes of neurons in these volumes contain detailed morphological information at multiple scales, from the diameter, shape and branching patterns of axons and dendrites, down to the fine-scale structure of dendritic spines. However, extracting these features can require substantial effort to piece together existing tools into custom workflows. Here, building on existing open source software for mesh manipulation, we present Neural Decomposition (NEURD), a software package that decomposes meshed neurons into compact and extensively annotated graph representations. With these feature-rich graphs, we automate a variety of tasks such as state-of-the-art automated proofreading of merge errors, cell classification, spine detection, axonal-dendritic proximities and other annotations. These features enable many downstream analyses of neural morphology and connectivity, making these massive and complex datasets more accessible to neuroscience researchers.
Collapse
Affiliation(s)
- Brendan Celii
- Center for Neuroscience and Artificial Intelligence, Baylor College of Medicine, Houston, TX, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
- Department of Electrical and Computer Engineering, Rice University, Houston, TX, USA
- Research and Exploratory Development Department, Johns Hopkins University Applied Physics Laboratory, Baltimore, MD, USA
| | - Stelios Papadopoulos
- Center for Neuroscience and Artificial Intelligence, Baylor College of Medicine, Houston, TX, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
- Department of Ophthalmology, Stanford University, Stanford, CA, USA
- Byers Eye Institute, Stanford University, Stanford, CA, USA
- Stanford Bio-X, Stanford University, Stanford, CA, USA
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA
| | - Zhuokun Ding
- Center for Neuroscience and Artificial Intelligence, Baylor College of Medicine, Houston, TX, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
- Department of Ophthalmology, Stanford University, Stanford, CA, USA
- Byers Eye Institute, Stanford University, Stanford, CA, USA
- Stanford Bio-X, Stanford University, Stanford, CA, USA
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA
| | - Paul G Fahey
- Center for Neuroscience and Artificial Intelligence, Baylor College of Medicine, Houston, TX, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
- Department of Ophthalmology, Stanford University, Stanford, CA, USA
- Byers Eye Institute, Stanford University, Stanford, CA, USA
- Stanford Bio-X, Stanford University, Stanford, CA, USA
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA
| | - Eric Wang
- Center for Neuroscience and Artificial Intelligence, Baylor College of Medicine, Houston, TX, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Christos Papadopoulos
- Center for Neuroscience and Artificial Intelligence, Baylor College of Medicine, Houston, TX, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Alexander B Kunin
- Center for Neuroscience and Artificial Intelligence, Baylor College of Medicine, Houston, TX, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
- Department of Mathematics, Creighton University, Omaha, NE, USA
| | - Saumil Patel
- Center for Neuroscience and Artificial Intelligence, Baylor College of Medicine, Houston, TX, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
- Department of Ophthalmology, Stanford University, Stanford, CA, USA
- Byers Eye Institute, Stanford University, Stanford, CA, USA
- Stanford Bio-X, Stanford University, Stanford, CA, USA
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA
| | - J Alexander Bae
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
- Electrical and Computer Engineering Department, Princeton University, Princeton, NJ, USA
| | | | | | | | | | - Manuel A Castro
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Erick Cobos
- Center for Neuroscience and Artificial Intelligence, Baylor College of Medicine, Houston, TX, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Sven Dorkenwald
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
- Computer Science Department, Princeton University, Princeton, NJ, USA
| | | | - Akhilesh Halageri
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Zhen Jia
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
- Computer Science Department, Princeton University, Princeton, NJ, USA
| | - Chris Jordan
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Dan Kapner
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Nico Kemnitz
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Sam Kinn
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Kisuk Lee
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
- Brain and Cognitive Sciences Department, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Kai Li
- Computer Science Department, Princeton University, Princeton, NJ, USA
| | - Ran Lu
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Thomas Macrina
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
- Computer Science Department, Princeton University, Princeton, NJ, USA
| | | | - Eric Mitchell
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Shanka Subhra Mondal
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
- Electrical and Computer Engineering Department, Princeton University, Princeton, NJ, USA
| | - Shang Mu
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Barak Nehoran
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
- Computer Science Department, Princeton University, Princeton, NJ, USA
| | - Sergiy Popovych
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
- Computer Science Department, Princeton University, Princeton, NJ, USA
| | | | | | - Marc Takeno
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | - Nicholas L Turner
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
- Computer Science Department, Princeton University, Princeton, NJ, USA
| | - William Wong
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Jingpeng Wu
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Szi-Chieh Yu
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Wenjing Yin
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Daniel Xenes
- Research and Exploratory Development Department, Johns Hopkins University Applied Physics Laboratory, Baltimore, MD, USA
| | - Lindsey M Kitchell
- Research and Exploratory Development Department, Johns Hopkins University Applied Physics Laboratory, Baltimore, MD, USA
| | - Patricia K Rivlin
- Research and Exploratory Development Department, Johns Hopkins University Applied Physics Laboratory, Baltimore, MD, USA
| | - Victoria A Rose
- Research and Exploratory Development Department, Johns Hopkins University Applied Physics Laboratory, Baltimore, MD, USA
| | - Caitlyn A Bishop
- Research and Exploratory Development Department, Johns Hopkins University Applied Physics Laboratory, Baltimore, MD, USA
| | - Brock Wester
- Research and Exploratory Development Department, Johns Hopkins University Applied Physics Laboratory, Baltimore, MD, USA
| | - Emmanouil Froudarakis
- Center for Neuroscience and Artificial Intelligence, Baylor College of Medicine, Houston, TX, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology Hellas, Heraklion, Greece
| | - Edgar Y Walker
- Department of Physiology and Biophysics, University of Washington, Seattle, WA, USA
- UW Computational Neuroscience Center, University of Washington, Seattle, WA, USA
| | - Fabian Sinz
- Center for Neuroscience and Artificial Intelligence, Baylor College of Medicine, Houston, TX, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
- Institute for Bioinformatics and Medical Informatics, University Tübingen, Tübingen, Germany
- Institute of Computer Science and Campus Institute Data Science, University Göttingen, Göttingen, Germany
| | - H Sebastian Seung
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | | | | | - R Clay Reid
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Xaq Pitkow
- Center for Neuroscience and Artificial Intelligence, Baylor College of Medicine, Houston, TX, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
- Department of Electrical and Computer Engineering, Rice University, Houston, TX, USA
- Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA, USA
- Department of Machine Learning, Carnegie Mellon University, Pittsburgh, PA, USA
- Department of Computer Science, Rice University, Houston, TX, USA
- Institute for Artificial and Natural Intelligence, Pittsburgh, PA, USA
| | - Andreas S Tolias
- Center for Neuroscience and Artificial Intelligence, Baylor College of Medicine, Houston, TX, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
- Department of Electrical and Computer Engineering, Rice University, Houston, TX, USA
- Department of Ophthalmology, Stanford University, Stanford, CA, USA
- Byers Eye Institute, Stanford University, Stanford, CA, USA
- Stanford Bio-X, Stanford University, Stanford, CA, USA
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA
- Human-Centered Artificial Intelligence Institute, Stanford University, Stanford, CA, USA
- Department of Electrical Engineering, Stanford University, Stanford, CA, USA
| | - Jacob Reimer
- Center for Neuroscience and Artificial Intelligence, Baylor College of Medicine, Houston, TX, USA.
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
7
|
Hu B, Yin MY, Zhang CY, Shi Z, Wang L, Lei X, Li M, Li SW, Tuo QH. The INO80E at 16p11.2 locus increases risk of schizophrenia in humans and induces schizophrenia-like phenotypes in mice. EBioMedicine 2025; 114:105645. [PMID: 40088626 PMCID: PMC11957503 DOI: 10.1016/j.ebiom.2025.105645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 02/28/2025] [Accepted: 02/28/2025] [Indexed: 03/17/2025] Open
Abstract
BACKGROUND Chromosome 16p11.2 is one of the most significant loci in the genome-wide association studies (GWAS) of schizophrenia. Despite several integrative analyses and functional genomics studies having been carried out to identify possible risk genes, their impacts in the pathogenesis of schizophrenia remain to be fully characterized. METHODS We performed expression quantitative trait loci (eQTL) and summary-data-based Mendelian randomization (SMR) analyses to identify schizophrenia risk genes in the 16p11.2 GWAS locus. We constructed a murine model with dysregulated expression of risk gene in the medial prefrontal cortex (mPFC) using stereotaxic injection of adeno-associated virus (AAV), followed by behavioural assessments, dendritic spine analyses and RNA sequencing. FINDINGS We identified significant associations between elevated INO80E mRNA expression in the frontal cortex and risk of schizophrenia. The mice overexpressing Ino80e in mPFC (Ino80e-OE) exhibited schizophrenia-like behaviours, including increased anxiety behaviour, anhedonia, and impaired prepulse inhibition (PPI) when compared with control group. The neuronal sparse labelling assay showed that the density of stubby spines in the pyramidal neurons of mPFC was significantly increased in Ino80e-OE mice compared with control mice. Transcriptomic analysis in the mPFC revealed significant alterations in the mRNA levels of schizophrenia-related genes and processes related to synapses upon overexpressing Ino80e. INTERPRETATION Our results suggest that upregulation of the Ino80e gene in mPFC may induce schizophrenia-like behaviours in mice, further supporting the hypothesis that INO80E is an authentic risk gene. FUNDING This project received support from the National Key Research and Development Program of China, National Natural Science Foundation of China, Key Research and Development Projects of Hunan Provincial Science and Technology Department, Science and Technology Innovation team of Hunan Province, etc.
Collapse
Affiliation(s)
- Bo Hu
- Hunan Key Laboratory of Vascular Biology and Translational Medicine, Medical School, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Mei-Yu Yin
- Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China; Yunnan Key Laboratory of Animal Models and Human Disease Mechanisms, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Chu-Yi Zhang
- Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China; Yunnan Key Laboratory of Animal Models and Human Disease Mechanisms, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Zhe Shi
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Pharmacy of School, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Lu Wang
- Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China; Yunnan Key Laboratory of Animal Models and Human Disease Mechanisms, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Xiaoming Lei
- Hunan Key Laboratory of Vascular Biology and Translational Medicine, Medical School, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Ming Li
- Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China; Yunnan Key Laboratory of Animal Models and Human Disease Mechanisms, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Shi-Wu Li
- Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China; Yunnan Key Laboratory of Animal Models and Human Disease Mechanisms, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China.
| | - Qin-Hui Tuo
- Hunan Key Laboratory of Vascular Biology and Translational Medicine, Medical School, Hunan University of Chinese Medicine, Changsha, Hunan, China.
| |
Collapse
|
8
|
Le AD, Fu M, Carper A, Zegarowicz E, Kumar R, Zacharias G, Garcia ADR. Astrocyte Modulation of Synaptic Plasticity Mediated by Activity-Dependent Sonic Hedgehog Signaling. J Neurosci 2025; 45:e1336242025. [PMID: 39900499 PMCID: PMC11905353 DOI: 10.1523/jneurosci.1336-24.2025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 01/17/2025] [Accepted: 01/22/2025] [Indexed: 02/05/2025] Open
Abstract
The influence of neural activity on astrocytes and their reciprocal interactions with neurons has emerged as an important modulator of synapse function. Astrocytes exhibit activity-dependent changes in gene expression, yet the molecular mechanisms by which neural activity is coupled to gene expression are not well understood. The molecular signaling pathway, Sonic hedgehog (Shh), mediates neuron-astrocyte communication and regulates the organization of cortical synapses. Here, we demonstrate that neural activity stimulates Shh signaling in cortical astrocytes and upregulates expression of Hevin and SPARC, astrocyte-derived molecules that modify synapses. Whisker stimulation in both male and female mice promotes activity-dependent Shh signaling selectively in the somatosensory, but not in the visual cortex, whereas sensory deprivation reduces Shh activity, demonstrating bidirectional regulation of the pathway by sensory experience. Selective loss of Shh signaling in astrocytes reduces expression of Hevin and SPARC and occludes activity-dependent synaptic plasticity. Taken together, these data identify Shh signaling as an activity-dependent, molecular signaling pathway that regulates astrocyte gene expression and promotes astrocyte modulation of synaptic plasticity.
Collapse
Affiliation(s)
- Anh Duc Le
- Departments of Biology, Drexel University, Philadelphia, Pennsylvania 19104
| | - Marissa Fu
- Departments of Biology, Drexel University, Philadelphia, Pennsylvania 19104
| | - Ashley Carper
- Departments of Biology, Drexel University, Philadelphia, Pennsylvania 19104
| | | | - Riya Kumar
- Departments of Biology, Drexel University, Philadelphia, Pennsylvania 19104
| | - Gloria Zacharias
- Departments of Biology, Drexel University, Philadelphia, Pennsylvania 19104
| | - A Denise R Garcia
- Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, Pennsylvania 19129
| |
Collapse
|
9
|
Pokorny C, Awile O, Isbister JB, Kurban K, Wolf M, Reimann MW. A connectome manipulation framework for the systematic and reproducible study of structure-function relationships through simulations. Netw Neurosci 2025; 9:207-236. [PMID: 40161987 PMCID: PMC11949583 DOI: 10.1162/netn_a_00429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 11/17/2024] [Indexed: 04/02/2025] Open
Abstract
Synaptic connectivity at the neuronal level is characterized by highly nonrandom features. Hypotheses about their role can be developed by correlating structural metrics to functional features. But, to prove causation, manipulations of connectivity would have to be studied. However, the fine-grained scale at which nonrandom trends are expressed makes this approach challenging to pursue experimentally. Simulations of neuronal networks provide an alternative route to study arbitrarily complex manipulations in morphologically and biophysically detailed models. Here, we present Connectome-Manipulator, a Python framework for rapid connectome manipulations of large-scale network models in Scalable Open Network Architecture TemplAte (SONATA) format. In addition to creating or manipulating the connectome of a model, it provides tools to fit parameters of stochastic connectivity models against existing connectomes. This enables rapid replacement of any existing connectome with equivalent connectomes at different levels of complexity, or transplantation of connectivity features from one connectome to another, for systematic study. We employed the framework in the detailed model of the rat somatosensory cortex in two exemplary use cases: transplanting interneuron connectivity trends from electron microscopy data and creating simplified connectomes of excitatory connectivity. We ran a series of network simulations and found diverse shifts in the activity of individual neuron populations causally linked to these manipulations.
Collapse
Affiliation(s)
- Christoph Pokorny
- Blue Brain Project, École Polytechnique Fédérale de Lausanne (EPFL), Campus Biotech, Geneva, Switzerland
| | - Omar Awile
- Blue Brain Project, École Polytechnique Fédérale de Lausanne (EPFL), Campus Biotech, Geneva, Switzerland
| | - James B. Isbister
- Blue Brain Project, École Polytechnique Fédérale de Lausanne (EPFL), Campus Biotech, Geneva, Switzerland
| | - Kerem Kurban
- Blue Brain Project, École Polytechnique Fédérale de Lausanne (EPFL), Campus Biotech, Geneva, Switzerland
| | - Matthias Wolf
- Blue Brain Project, École Polytechnique Fédérale de Lausanne (EPFL), Campus Biotech, Geneva, Switzerland
| | - Michael W. Reimann
- Blue Brain Project, École Polytechnique Fédérale de Lausanne (EPFL), Campus Biotech, Geneva, Switzerland
| |
Collapse
|
10
|
Tennin M, Matkins HT, Rexrode L, Bollavarapu R, Asplund SD, Pareek T, Kroeger D, Pantazopoulos H, Gisabella B. Sleep Deprivation Alters Hippocampal Dendritic Spines in a Contextual Fear Memory Engram. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.02.641043. [PMID: 40093122 PMCID: PMC11908145 DOI: 10.1101/2025.03.02.641043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
Sleep is critically involved in strengthening memories. However, our understanding of the morphological changes underlying this process is still emerging. Recent studies suggest that specific subsets of dendritic spines are strengthened during sleep in specific neurons involved in recent learning. Contextual memories associated with traumatic experiences are involved in post-traumatic stress disorder (PTSD) and represent recent learning that may be strengthened during sleep. We tested the hypothesis that dendritic spines encoding contextual fear memories are selectively strengthened during sleep. Furthermore, we tested how sleep deprivation after initial fear learning impacts dendritic spines following re-exposure to fear conditioning. We used ArcCreERT2 mice to visualize neurons that encode contextual fear learning (Arc+ neurons), and concomitantly labeled neurons that did not encode contextual fear learning (Arc- neurons). Dendritic branches of Arc+ and Arc- neurons were sampled using confocal imaging to assess spine densities using three-dimensional image analysis from either sleep deprived (SD) or control mice allowed to sleep normally. Mushroom spines in Arc+ branches displayed decreased density in SD mice, indicating upscaling of mushroom spines during sleep following fear learning. In comparison, no changes were observed in dendritic spines from Arc- branches. When animals were re-exposed to contextual fear conditioning 4 weeks later, we observed lower density of mushroom spines in both Arc+ and Arc- branches, as well as lower density of thin spines in Arc- branches in mice that were SD following the initial fear conditioning trial. Our findings indicate that sleep strengthens dendritic spines in neurons that recently encoded fear memory, and sleep deprivation following initial fear learning impairs dendritic spine strengthening initially and following later re-exposure. SD following a traumatic experience thus may be a viable strategy in weakening the strength of contextual memories associated with trauma and PTSD.
Collapse
Affiliation(s)
- Matthew Tennin
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS, USA
| | - Hunter T. Matkins
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS, USA
| | - Lindsay Rexrode
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS, USA
| | - Ratna Bollavarapu
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS, USA
| | - Samuel D. Asplund
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS, USA
| | - Tanya Pareek
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS, USA
| | - Daniel Kroeger
- Department of Anatomy, Physiology, and Pharmacology, College of Veterinary Medicine, Auburn University
| | - Harry Pantazopoulos
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS, USA
- Program in Neuroscience, University of Mississippi Medical Center, Jackson, MS, USA
| | - Barbara Gisabella
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS, USA
- Program in Neuroscience, University of Mississippi Medical Center, Jackson, MS, USA
| |
Collapse
|
11
|
Caffino L, Targa G, Mottarlini F, Thielens S, Rizzi B, Villers A, Ris L, Gainetdinov RR, Leo D, Fumagalli F. Memantine-induced functional rewiring of the glutamate synapse in the striatum of dopamine transporter knockout rats. Br J Pharmacol 2025; 182:1377-1393. [PMID: 39653030 DOI: 10.1111/bph.17403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 09/27/2024] [Accepted: 10/29/2024] [Indexed: 02/11/2025] Open
Abstract
BACKGROUND AND PURPOSE Slow-acting biogenic amines, such as dopamine, are known to modulate fast neurotransmitters e.g. glutamate. In the striatum, dopamine (DA) interacts with glutamate, influencing neural excitability and promoting synaptic plasticity. The exact mechanism of such interaction is not fully understood. This study investigates, in detail, how dopamine overactivity in dopamine transporter knockout (DAT-/-) rats, alters the homeostasis of the striatal glutamate synapse from a molecular, behavioural and functional point of view. EXPERIMENTAL APPROACH The expression, localisation, retention and electrophysiological properties of N-methyl-D-aspartate (NMDA) receptors as well as dendritic spine density and morphology were investigated in the striatum of DAT-/- rats, at baseline and after treatment with the non-competitive NMDA receptor antagonist memantine (30 mg kg-1). KEY RESULTS Dopamine overactivity dramatically reorganises the striatal glutamate synapse, redistributing NMDA receptors in the synapse as typified by reduced synaptic availability and reduced expression of NMDA scaffolding proteins, as well as by increased GluN2B-containing NMDA receptors in the extra synapse. Such changes are accompanied by reduced spine density, suggesting dopamine-induced structural rearrangements. These results converge into a compromised plasticity, as shown by the impaired ability to promote long-term depression (LTD) in the striatum of DAT-/-rats. Notably, memantine counteracts hyperlocomotion, reverses spine alterations and abolishes the extrasynaptic movements of NMDA receptors in the striatum of DAT-/- rats, thus restoring functional LTD. CONCLUSION AND IMPLICATIONS A hyperdopaminergic condition seems to alter striatal homeostasis by increasing extrasynaptic NMDA receptors. These findings may be relevant to manipulate disorders characterised by elevated dopaminergic activity.
Collapse
Affiliation(s)
- Lucia Caffino
- Department of Pharmacological and Biomolecular Sciences 'Rodolfo Paoletti', Università degli Studi di Milano, Milan, Italy
| | - Giorgia Targa
- Department of Pharmacological and Biomolecular Sciences 'Rodolfo Paoletti', Università degli Studi di Milano, Milan, Italy
| | - Francesca Mottarlini
- Department of Pharmacological and Biomolecular Sciences 'Rodolfo Paoletti', Università degli Studi di Milano, Milan, Italy
| | - Sarah Thielens
- Department of Neurosciences, University of Mons, Mons, Belgium
| | - Beatrice Rizzi
- Department of Pharmacological and Biomolecular Sciences 'Rodolfo Paoletti', Università degli Studi di Milano, Milan, Italy
- Center for Neuroscience, University of Camerino, Camerino, Italy
| | - Agnes Villers
- Department of Neurosciences, University of Mons, Mons, Belgium
| | - Laurence Ris
- Department of Neurosciences, University of Mons, Mons, Belgium
| | - Raul R Gainetdinov
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia
- St. Petersburg University Hospital, St. Petersburg State University, St. Petersburg, Russia
| | - Damiana Leo
- Department of Neurosciences, University of Mons, Mons, Belgium
| | - Fabio Fumagalli
- Department of Pharmacological and Biomolecular Sciences 'Rodolfo Paoletti', Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
12
|
Ziółkowska M, Sotoudeh N, Cały A, Puchalska M, Pagano R, Śliwińska MA, Salamian A, Radwanska K. Projections from thalamic nucleus reuniens to hippocampal CA1 area participate in context fear extinction by affecting extinction-induced molecular remodeling of excitatory synapses. eLife 2025; 13:RP101736. [PMID: 39846718 PMCID: PMC11756855 DOI: 10.7554/elife.101736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2025] Open
Abstract
The ability to extinguish contextual fear in a changing environment is crucial for animal survival. Recent data support the role of the thalamic nucleus reuniens (RE) and its projections to the dorsal hippocampal CA1 area (RE→dCA1) in this process. However, it remains poorly understood how RE impacts dCA1 neurons during contextual fear extinction (CFE). Here, we reveal that the RE→dCA1 pathway contributes to the extinction of contextual fear by affecting CFE-induced molecular remodeling of excitatory synapses. Anatomical tracing and chemogenetic manipulation in mice demonstrate that RE neurons form synapses and regulate synaptic transmission in the stratum oriens (SO) and lacunosum-moleculare (SLM) of the dCA1 area, but not in the stratum radiatum (SR). We also observe CFE-specific structural changes of excitatory synapses and expression of the synaptic scaffold protein, PSD-95, in both strata innervated by RE, but not in SR. Interestingly, only the changes in SLM are specific for the dendrites innervated by RE. To further support the role of the RE→dCA1 projection in CFE, we demonstrate that brief chemogenetic inhibition of the RE→dCA1 pathway during a CFE session persistently impairs the formation of CFE memory and CFE-induced changes of PSD-95 levels in SLM. Thus, our data indicate that RE participates in CFE by regulating CFE-induced molecular remodeling of dCA1 synapses.
Collapse
Affiliation(s)
- Magdalena Ziółkowska
- Laboratory of Molecular Basis of Behavior, Nencki Institute of Experimental Biology of Polish Academy of SciencesWarsawPoland
| | - Narges Sotoudeh
- Laboratory of Molecular Basis of Behavior, Nencki Institute of Experimental Biology of Polish Academy of SciencesWarsawPoland
| | - Anna Cały
- Laboratory of Molecular Basis of Behavior, Nencki Institute of Experimental Biology of Polish Academy of SciencesWarsawPoland
| | - Monika Puchalska
- Laboratory of Molecular Basis of Behavior, Nencki Institute of Experimental Biology of Polish Academy of SciencesWarsawPoland
| | - Roberto Pagano
- Laboratory of Molecular Basis of Behavior, Nencki Institute of Experimental Biology of Polish Academy of SciencesWarsawPoland
| | - Malgorzata Alicja Śliwińska
- Laboratory of Molecular Basis of Behavior, Nencki Institute of Experimental Biology of Polish Academy of SciencesWarsawPoland
| | - Ahmad Salamian
- Laboratory of Molecular Basis of Behavior, Nencki Institute of Experimental Biology of Polish Academy of SciencesWarsawPoland
| | - Kasia Radwanska
- Laboratory of Molecular Basis of Behavior, Nencki Institute of Experimental Biology of Polish Academy of SciencesWarsawPoland
| |
Collapse
|
13
|
Yazi S, Sehirli US, Gulhan R, Onat F, Kirazli O. Evaluation of dendrite morphology in Wistar and genetic absence epileptic rats. Brain Struct Funct 2024; 230:5. [PMID: 39681662 DOI: 10.1007/s00429-024-02868-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 11/06/2024] [Indexed: 12/18/2024]
Abstract
OBJECTIVE Genetic Absence Epilepsy Rat from Strasbourg (GAERS), a rodent model genetically predisposed to absence epilepsy, serves as an experimental tool to elucidate the neuronal mechanisms underlying human absence epilepsy. This study aimed to investigate the morphological features of dendrites and dendritic spines of pyramidal neurons in somatosensory cortex and hippocampus of Wistar and GAERS rats. MATERIAL AND METHOD Adult male GAERS (n = 5) and control Wistar (n = 5) rats were sacrificed by transcardial perfusion and brains were removed. Brain tissues were processed by Golgi impregnation method using FD Rapid GolgiStain Kit. Coronal sections were obtained with a cryostat. Pyramidal neurons in layers V-VI of the somatosensory cortex and the CA1 region of the hippocampus were examined using a light microscope and Neurolucida 360 software. Dendrite nodes, dendrite segments (dendritic branching), dendrite terminations, total dendrite length, dendritic spine density, and dendritic spine types were analyzed. RESULTS Compared to Wistar, GAERS exhibited significantly higher numbers of nodes (p = 0.0053, p = 0.0047), segments (p = 0.0036, p = 0.0036), and terminations (p = 0.0033, p = 0.0029) in the dendrites of the somatosensory cortex and the hippocampus, respectively. Furthermore, the total dendrite length (µm) (p = 0.0002, p = 0.0007) and the density of dendritic spines (1/µm) (p = 0.0168, p = 0.0120) were significantly high in GAERS compared to Wistar. When dendritic spine types were evaluated separately, stubby-type dendritic spines in the hippocampus were higher in GAERS compared to Wistar (p = 0.0045). CONCLUSION Intense synaptic connections in the somatosensory cortex and the hippocampus of genetic absence epileptic rats led to morphological alterations in the dendrites and the dendritic spines of pyramidal neurons in these regions, potentially contributing to the pathophysiology of absence seizures.
Collapse
Affiliation(s)
- Sevdenur Yazi
- Department of Anatomy, School of Medicine, Marmara University, Istanbul, Turkey
| | - Umit S Sehirli
- Department of Anatomy, School of Medicine, Marmara University, Istanbul, Turkey
| | - Rezzan Gulhan
- Department of Medical Pharmacology, School of Medicine, Marmara University, Istanbul, Turkey
| | - Filiz Onat
- Department of Medical Pharmacology, School of Medicine, Acıbadem Mehmet Ali Aydınlar University, Istanbul, Turkey
| | - Ozlem Kirazli
- Department of Anatomy, School of Medicine, Marmara University, Istanbul, Turkey.
| |
Collapse
|
14
|
Ducote AL, Voglewede RL, Mostany R. Dendritic Spines of Layer 5 Pyramidal Neurons of the Aging Somatosensory Cortex Exhibit Reduced Volumetric Remodeling. J Neurosci 2024; 44:e1378242024. [PMID: 39448263 PMCID: PMC11638818 DOI: 10.1523/jneurosci.1378-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 09/19/2024] [Accepted: 10/11/2024] [Indexed: 10/26/2024] Open
Abstract
Impairments in synaptic dynamics and stability are observed both in neurodegenerative disorders and in the healthy aging cortex, which exhibits elevated dendritic spine turnover and decreased long-term stability of excitatory connections at baseline, as well as an altered response to plasticity induction. In addition to the discrete gain and loss of synapses, spines also change in size and strength both during learning and in the absence of neural activity, and synaptic volume has been associated with stability and incorporation into memory traces. Furthermore, intrinsic dynamics, an apparently stochastic component of spine volume changes, may serve as a homeostatic mechanism to prevent stabilization of superfluous connections. However, the effects of age on modulation of synaptic weights remain unknown. Using two-photon excitation (2PE) microscopy of spines during chemical plasticity induction in vitro and analyzing longitudinal in vivo 2PE images after a plasticity-inducing manipulation, we characterize the effects of age on volumetric changes of spines of the apical tuft of layer 5 pyramidal neurons of mouse primary somatosensory cortex. Aged mice exhibit decreased volumetric volatility and delayed rearrangement of synaptic weights of persistent connections, as well as greater susceptibility to spine shrinkage in response to chemical long-term depression. These results suggest a deficit in the aging brain's ability to fine-tune synaptic weights to properly incorporate and retain novel memories. This research provides the first evidence of alterations in spine volumetric dynamics in healthy aging and may support a model of impaired processing and learning in the aged somatosensory system.
Collapse
Affiliation(s)
- Alexis Lionel Ducote
- Neuroscience Program, Tulane University School of Science and Engineering, New Orleans, Louisiana 70118
- Tulane Brain Institute, Tulane University, New Orleans, Louisiana 70118
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, Louisiana, 70112
| | - Rebecca Lynn Voglewede
- Neuroscience Program, Tulane University School of Science and Engineering, New Orleans, Louisiana 70118
- Tulane Brain Institute, Tulane University, New Orleans, Louisiana 70118
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, Louisiana, 70112
| | - Ricardo Mostany
- Tulane Brain Institute, Tulane University, New Orleans, Louisiana 70118
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, Louisiana, 70112
| |
Collapse
|
15
|
Parker EM, Kindja NL, DeGiosio RA, Salisbury RB, Krivinko JM, Cheetham CEJ, MacDonald ML, Fan W, Cheng B, Sweet RA. Impacts of CACNB4 overexpression on dendritic spine density in both sexes and relevance to schizophrenia. Transl Psychiatry 2024; 14:484. [PMID: 39632796 PMCID: PMC11618769 DOI: 10.1038/s41398-024-03181-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 06/23/2024] [Accepted: 11/07/2024] [Indexed: 12/07/2024] Open
Abstract
The voltage-gated calcium channel (VGCC) subunit complex is comprised of the α1 subunit, the ion-permeable channel, and three auxiliary subunits: β, α2δ, and γ. β is the most extensively studied auxiliary subunit and is necessary for forward trafficking of the α1 subunit to the plasma membrane. VGCCs mediate voltage-dependent movement of calcium ions into neuronal cytoplasm, including at dendrites, where intracellular calcium spikes initiate signaling cascades that shape the structural plasticity of dendritic spines. Genetic studies strongly implicate calcium signaling dysfunction in the etiology of neurodevelopmental disorders including schizophrenia. Dendritic spine density is significantly decreased in schizophrenia in the primary auditory cortex where it is driven by the loss of small spines, and small spine loss associated with increased peptide levels of ALFDFLK found in the VGCC β subunit β4. Overexpressing the gene that encodes the voltage-gated calcium channel subunit β4, CACNB4, selectively reduced small spine density in vitro. In the current study we extended this observation in an intact mammalian system within a relevant neurodevelopmental context. We overexpressed CACNB4 in early development, assessed spine density and morphology in adult male and female mouse cortex, and characterized β1-4 protein levels and β4 protein-protein interactions. Overexpression reduced small spine density in females. This effect was not dependent on the estrous stage. Instead, it corresponded to sex differences in the murine β4 interactome. The VGCC subunit β1b was significantly enriched in the β4 interactome of male relative to female mice, and thus may have served to mitigate VGCC overexpression-mediated spine loss in male mice.
Collapse
Affiliation(s)
- Emily M Parker
- Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, USA
- Translational Neuroscience Program, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Nathan L Kindja
- Translational Neuroscience Program, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Rebecca A DeGiosio
- Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, USA
- Translational Neuroscience Program, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Ryan B Salisbury
- Translational Neuroscience Program, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Josh M Krivinko
- Translational Neuroscience Program, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Claire E J Cheetham
- Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA, USA
- Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA, USA
| | - Matthew L MacDonald
- Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, USA
- Translational Neuroscience Program, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Weijia Fan
- Department of Biostatistics, Columbia University, New York, NY, USA
| | - Bin Cheng
- Department of Biostatistics, Columbia University, New York, NY, USA
| | - Robert A Sweet
- Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, USA.
- Translational Neuroscience Program, University of Pittsburgh, Pittsburgh, PA, USA.
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
16
|
Bhembre N, Paolino A, Das SS, Guntupalli S, Fenlon LR, Anggono V. Learning-induced remodelling of inhibitory synapses in the motor cortex. Open Biol 2024; 14:240109. [PMID: 39532150 PMCID: PMC11557243 DOI: 10.1098/rsob.240109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 08/09/2024] [Accepted: 09/26/2024] [Indexed: 11/16/2024] Open
Abstract
Robust structural and functional plasticity occurs at excitatory synapses in the motor cortex in response to learning. It is well established that local spinogenesis and the subsequent maintenance of newly formed spines are crucial for motor learning. However, despite local synaptic inhibition being essential for shaping excitatory synaptic input, less is known about the structural rearrangement of inhibitory synapses following learning. In this study, we co-expressed the structural marker tdTomato and a mEmerald-tagged intrabody against gephyrin to visualize inhibitory synapses in layer 2/3 cortical neurons of wild-type CD1 mice. We found that a 1-day accelerated rotarod paradigm induced robust motor learning in male and female adult CD1 mice. Histological analyses revealed a significant increase in the surface area of gephyrin puncta in neurons within the motor cortex but not in the somatosensory cortex upon motor learning. Furthermore, this learning-induced reorganization of inhibitory synapses only occurred in dendritic shafts and not in the spines. These data suggest that learning induces experience-dependent remodelling of existing inhibitory synapses to fine-tune intrinsic plasticity and input-specific modulation of excitatory connections in the motor cortex.
Collapse
Affiliation(s)
- Nishita Bhembre
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, University of Queensland, Brisbane, Queensland4072, Australia
| | - Annalisa Paolino
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, University of Queensland, Brisbane, Queensland4072, Australia
- School of Biomedical Sciences, Faculty of Medicine, University of Queensland, Brisbane, Queensland4072, Australia
| | - Sooraj S. Das
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, University of Queensland, Brisbane, Queensland4072, Australia
| | - Sumasri Guntupalli
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, University of Queensland, Brisbane, Queensland4072, Australia
| | - Laura R. Fenlon
- School of Biomedical Sciences, Faculty of Medicine, University of Queensland, Brisbane, Queensland4072, Australia
| | - Victor Anggono
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, University of Queensland, Brisbane, Queensland4072, Australia
| |
Collapse
|
17
|
Caiola HO, Wu Q, Li J, Wang XF, Soni S, Monahan K, Wagner GC, Pang ZP, Zhang H. Neuronal connectivity, behavioral, and transcriptional alterations associated with the loss of MARK2. FASEB J 2024; 38:e70124. [PMID: 39436150 DOI: 10.1096/fj.202400454r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 09/03/2024] [Accepted: 10/07/2024] [Indexed: 10/23/2024]
Abstract
Neuronal connectivity is essential for adaptive brain responses and can be modulated by dendritic spine plasticity and the intrinsic excitability of individual neurons. Dysregulation of these processes can lead to aberrant neuronal activity, which has been associated with numerous neurological disorders including autism, epilepsy, and Alzheimer's disease. Nonetheless, the molecular mechanisms underlying abnormal neuronal connectivity remain unclear. We previously found that the serine/threonine kinase Microtubule Affinity Regulating Kinase 2 (MARK2), also known as Partitioning Defective 1b (Par1b), is important for the formation of dendritic spines in vitro. However, despite its genetic association with several neurological disorders, the in vivo impact of MARK2 on neuronal connectivity and cognitive functions remains unclear. Here, we demonstrate that the loss of MARK2 in vivo results in changes to dendritic spine morphology, which in turn leads to a decrease in excitatory synaptic transmission. Additionally, the loss of MARK2 produces substantial impairments in learning and memory, reduced anxiety, and defective social behavior. Notably, MARK2 deficiency results in heightened seizure susceptibility. Consistent with this observation, electrophysiological analysis of hippocampal slices indicates underlying neuronal hyperexcitability in MARK2-deficient neurons. Finally, RNAseq analysis reveals transcriptional changes in genes regulating synaptic transmission and ion homeostasis. These results underscore the in vivo role of MARK2 in governing synaptic connectivity, neuronal excitability, and cognitive functions.
Collapse
Affiliation(s)
- Hanna O Caiola
- Department of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical School, Piscataway, New Jersey, USA
| | - Qian Wu
- Department of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical School, Piscataway, New Jersey, USA
| | - Junlong Li
- Department of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical School, Piscataway, New Jersey, USA
- Child Health Institute of New Jersey, New Brunswick, New Jersey, USA
| | - Xue-Feng Wang
- Department of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical School, Piscataway, New Jersey, USA
- Child Health Institute of New Jersey, New Brunswick, New Jersey, USA
| | - Shaili Soni
- Department of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical School, Piscataway, New Jersey, USA
| | - Kevin Monahan
- Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, New Jersey, USA
| | - George C Wagner
- Department of Psychology, Rutgers University, Piscataway, New Jersey, USA
| | - Zhiping P Pang
- Department of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical School, Piscataway, New Jersey, USA
- Child Health Institute of New Jersey, New Brunswick, New Jersey, USA
| | - Huaye Zhang
- Department of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical School, Piscataway, New Jersey, USA
| |
Collapse
|
18
|
Kim S, Sohn S, Choe ES. Cofilin linked to GluN2B subunits of NMDA receptors is required for behavioral sensitization by changing the dendritic spines of neurons in the caudate and putamen after repeated nicotine exposure. BEHAVIORAL AND BRAIN FUNCTIONS : BBF 2024; 20:27. [PMID: 39402674 PMCID: PMC11479554 DOI: 10.1186/s12993-024-00253-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 09/30/2024] [Indexed: 10/19/2024]
Abstract
BACKGROUND Nicotine dependence is associated with glutamatergic neurotransmission in the caudate and putamen (CPu) of the forebrain which includes alterations in the structure of dendritic spines at glutamate synapses. These changes after nicotine exposure can lead to the development of habitual behaviors such as smoking. The present study investigated the hypothesis that cofilin, an actin-binding protein that is linked to the GluN2B subunits of N-methyl-D-aspartate (NMDA) receptors regulates the morphology of dendritic spines in the neurons of the CPu after repeated exposure to nicotine. RESULTS Adult male rats received subcutaneous injections of nicotine (0.3 mg/kg/day) or vehicle for seven consecutive days. DiI staining was conducted to observe changes in dendritic spine morphology. Repeated subcutaneous injections of nicotine decreased the phosphorylation of cofilin while increasing the formation of thin spines and filopodia in the dendrites of medium spiny neurons (MSN) in the CPu of rats. Bilateral intra-CPu infusion of the cofilin inhibitor, cytochalasin D (12.5 µg/µL/side), restored the thin spines and filopodia from mushroom types after repeated exposure to nicotine. Similar results were obtained from the bilateral intra-CPu infusion of the selective GluN2B subunit antagonist, Ro 25-6981 (4 µM/µL/side). Bilateral intra-CPu infusion of cytochalasin D that interferes with the actin-cofilin interaction attenuated the repeated nicotine-induced increase in locomotor sensitization in rats. CONCLUSIONS These findings suggest that active cofilin alters the structure of spine heads from mushroom to thin spine/filopodia by potentiating actin turnover, contributing to behavioral sensitization after nicotine exposure.
Collapse
Affiliation(s)
- Sunghyun Kim
- Department of Biological Sciences, Pusan National University, 63-2 Busandaehak-ro, Geumjeong-gu, Busan, 46241, Republic of Korea
| | - Sumin Sohn
- Department of Biological Sciences, Pusan National University, 63-2 Busandaehak-ro, Geumjeong-gu, Busan, 46241, Republic of Korea
| | - Eun Sang Choe
- Department of Biological Sciences, Pusan National University, 63-2 Busandaehak-ro, Geumjeong-gu, Busan, 46241, Republic of Korea.
| |
Collapse
|
19
|
Ding Z, Fahey PG, Papadopoulos S, Wang EY, Celii B, Papadopoulos C, Chang A, Kunin AB, Tran D, Fu J, Ding Z, Patel S, Ntanavara L, Froebe R, Ponder K, Muhammad T, Alexander Bae J, Bodor AL, Brittain D, Buchanan J, Bumbarger DJ, Castro MA, Cobos E, Dorkenwald S, Elabbady L, Halageri A, Jia Z, Jordan C, Kapner D, Kemnitz N, Kinn S, Lee K, Li K, Lu R, Macrina T, Mahalingam G, Mitchell E, Mondal SS, Mu S, Nehoran B, Popovych S, Schneider-Mizell CM, Silversmith W, Takeno M, Torres R, Turner NL, Wong W, Wu J, Yin W, Yu SC, Yatsenko D, Froudarakis E, Sinz F, Josić K, Rosenbaum R, Sebastian Seung H, Collman F, da Costa NM, Clay Reid R, Walker EY, Pitkow X, Reimer J, Tolias AS. Functional connectomics reveals general wiring rule in mouse visual cortex. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.03.13.531369. [PMID: 36993398 PMCID: PMC10054929 DOI: 10.1101/2023.03.13.531369] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Understanding the relationship between circuit connectivity and function is crucial for uncovering how the brain implements computation. In the mouse primary visual cortex (V1), excitatory neurons with similar response properties are more likely to be synaptically connected, but previous studies have been limited to within V1, leaving much unknown about broader connectivity rules. In this study, we leverage the millimeter-scale MICrONS dataset to analyze synaptic connectivity and functional properties of individual neurons across cortical layers and areas. Our results reveal that neurons with similar responses are preferentially connected both within and across layers and areas - including feedback connections - suggesting the universality of the 'like-to-like' connectivity across the visual hierarchy. Using a validated digital twin model, we separated neuronal tuning into feature (what neurons respond to) and spatial (receptive field location) components. We found that only the feature component predicts fine-scale synaptic connections, beyond what could be explained by the physical proximity of axons and dendrites. We also found a higher-order rule where postsynaptic neuron cohorts downstream of individual presynaptic cells show greater functional similarity than predicted by a pairwise like-to-like rule. Notably, recurrent neural networks (RNNs) trained on a simple classification task develop connectivity patterns mirroring both pairwise and higher-order rules, with magnitude similar to those in the MICrONS data. Lesion studies in these RNNs reveal that disrupting 'like-to-like' connections has a significantly greater impact on performance compared to lesions of random connections. These findings suggest that these connectivity principles may play a functional role in sensory processing and learning, highlighting shared principles between biological and artificial systems.
Collapse
Affiliation(s)
- Zhuokun Ding
- Department of Neuroscience & Center for Neuroscience and Artificial Intelligence, Baylor College of Medicine, Houston, TX, USA
- Department of Ophthalmology, Byers Eye Institute, Stanford University School of Medicine, Stanford, CA, USA
- Stanford Bio-X, Stanford University, Stanford, CA, USA
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA
| | - Paul G Fahey
- Department of Neuroscience & Center for Neuroscience and Artificial Intelligence, Baylor College of Medicine, Houston, TX, USA
- Department of Ophthalmology, Byers Eye Institute, Stanford University School of Medicine, Stanford, CA, USA
- Stanford Bio-X, Stanford University, Stanford, CA, USA
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA
| | - Stelios Papadopoulos
- Department of Neuroscience & Center for Neuroscience and Artificial Intelligence, Baylor College of Medicine, Houston, TX, USA
- Department of Ophthalmology, Byers Eye Institute, Stanford University School of Medicine, Stanford, CA, USA
- Stanford Bio-X, Stanford University, Stanford, CA, USA
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA
| | - Eric Y Wang
- Department of Neuroscience & Center for Neuroscience and Artificial Intelligence, Baylor College of Medicine, Houston, TX, USA
| | - Brendan Celii
- Department of Neuroscience & Center for Neuroscience and Artificial Intelligence, Baylor College of Medicine, Houston, TX, USA
- Department of Electrical and Computer Engineering, Rice University, Houston, USA
| | - Christos Papadopoulos
- Department of Neuroscience & Center for Neuroscience and Artificial Intelligence, Baylor College of Medicine, Houston, TX, USA
| | - Andersen Chang
- Department of Neuroscience & Center for Neuroscience and Artificial Intelligence, Baylor College of Medicine, Houston, TX, USA
| | - Alexander B Kunin
- Department of Neuroscience & Center for Neuroscience and Artificial Intelligence, Baylor College of Medicine, Houston, TX, USA
- Department of Mathematics, Creighton University, Omaha, USA
| | - Dat Tran
- Department of Neuroscience & Center for Neuroscience and Artificial Intelligence, Baylor College of Medicine, Houston, TX, USA
| | - Jiakun Fu
- Department of Neuroscience & Center for Neuroscience and Artificial Intelligence, Baylor College of Medicine, Houston, TX, USA
| | - Zhiwei Ding
- Department of Neuroscience & Center for Neuroscience and Artificial Intelligence, Baylor College of Medicine, Houston, TX, USA
| | - Saumil Patel
- Department of Neuroscience & Center for Neuroscience and Artificial Intelligence, Baylor College of Medicine, Houston, TX, USA
- Department of Ophthalmology, Byers Eye Institute, Stanford University School of Medicine, Stanford, CA, USA
- Stanford Bio-X, Stanford University, Stanford, CA, USA
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA
| | - Lydia Ntanavara
- Department of Neuroscience & Center for Neuroscience and Artificial Intelligence, Baylor College of Medicine, Houston, TX, USA
- Department of Ophthalmology, Byers Eye Institute, Stanford University School of Medicine, Stanford, CA, USA
- Stanford Bio-X, Stanford University, Stanford, CA, USA
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA
| | - Rachel Froebe
- Department of Neuroscience & Center for Neuroscience and Artificial Intelligence, Baylor College of Medicine, Houston, TX, USA
- Department of Ophthalmology, Byers Eye Institute, Stanford University School of Medicine, Stanford, CA, USA
- Stanford Bio-X, Stanford University, Stanford, CA, USA
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA
| | - Kayla Ponder
- Department of Neuroscience & Center for Neuroscience and Artificial Intelligence, Baylor College of Medicine, Houston, TX, USA
| | - Taliah Muhammad
- Department of Neuroscience & Center for Neuroscience and Artificial Intelligence, Baylor College of Medicine, Houston, TX, USA
| | - J Alexander Bae
- Princeton Neuroscience Institute, Princeton University, Princeton, USA
- Electrical and Computer Engineering Department, Princeton University, Princeton, USA
| | | | | | | | | | - Manuel A Castro
- Princeton Neuroscience Institute, Princeton University, Princeton, USA
| | - Erick Cobos
- Department of Neuroscience & Center for Neuroscience and Artificial Intelligence, Baylor College of Medicine, Houston, TX, USA
| | - Sven Dorkenwald
- Princeton Neuroscience Institute, Princeton University, Princeton, USA
- Computer Science Department, Princeton University, Princeton, USA
| | | | - Akhilesh Halageri
- Princeton Neuroscience Institute, Princeton University, Princeton, USA
| | - Zhen Jia
- Princeton Neuroscience Institute, Princeton University, Princeton, USA
- Computer Science Department, Princeton University, Princeton, USA
| | - Chris Jordan
- Princeton Neuroscience Institute, Princeton University, Princeton, USA
| | - Dan Kapner
- Allen Institute for Brain Science, Seattle, USA
| | - Nico Kemnitz
- Princeton Neuroscience Institute, Princeton University, Princeton, USA
| | - Sam Kinn
- Allen Institute for Brain Science, Seattle, USA
| | - Kisuk Lee
- Princeton Neuroscience Institute, Princeton University, Princeton, USA
- Brain & Cognitive Sciences Department, Massachusetts Institute of Technology, Cambridge, USA
| | - Kai Li
- Computer Science Department, Princeton University, Princeton, USA
| | - Ran Lu
- Princeton Neuroscience Institute, Princeton University, Princeton, USA
| | - Thomas Macrina
- Princeton Neuroscience Institute, Princeton University, Princeton, USA
- Computer Science Department, Princeton University, Princeton, USA
| | | | - Eric Mitchell
- Princeton Neuroscience Institute, Princeton University, Princeton, USA
| | - Shanka Subhra Mondal
- Princeton Neuroscience Institute, Princeton University, Princeton, USA
- Electrical and Computer Engineering Department, Princeton University, Princeton, USA
| | - Shang Mu
- Princeton Neuroscience Institute, Princeton University, Princeton, USA
| | - Barak Nehoran
- Princeton Neuroscience Institute, Princeton University, Princeton, USA
- Computer Science Department, Princeton University, Princeton, USA
| | - Sergiy Popovych
- Princeton Neuroscience Institute, Princeton University, Princeton, USA
- Computer Science Department, Princeton University, Princeton, USA
| | | | | | - Marc Takeno
- Allen Institute for Brain Science, Seattle, USA
| | | | - Nicholas L Turner
- Princeton Neuroscience Institute, Princeton University, Princeton, USA
- Computer Science Department, Princeton University, Princeton, USA
| | - William Wong
- Princeton Neuroscience Institute, Princeton University, Princeton, USA
| | - Jingpeng Wu
- Princeton Neuroscience Institute, Princeton University, Princeton, USA
| | - Wenjing Yin
- Allen Institute for Brain Science, Seattle, USA
| | - Szi-Chieh Yu
- Princeton Neuroscience Institute, Princeton University, Princeton, USA
| | - Dimitri Yatsenko
- Department of Neuroscience & Center for Neuroscience and Artificial Intelligence, Baylor College of Medicine, Houston, TX, USA
- DataJoint Inc., Houston, TX, USA
| | - Emmanouil Froudarakis
- Department of Neuroscience & Center for Neuroscience and Artificial Intelligence, Baylor College of Medicine, Houston, TX, USA
- Department of Basic Sciences, Faculty of Medicine, University of Crete, Heraklion, Greece
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology Hellas, Heraklion, Greece
| | - Fabian Sinz
- Department of Neuroscience & Center for Neuroscience and Artificial Intelligence, Baylor College of Medicine, Houston, TX, USA
- Institute for Bioinformatics and Medical Informatics, University Tübingen, Tübingen, Germany
- Institute for Computer Science and Campus Institute Data Science, University Göttingen, Göttingen, Germany
| | - Krešimir Josić
- Departments of Mathematics, Biology and Biochemistry, University of Houston, Houston, USA
| | - Robert Rosenbaum
- Departments of Applied and Computational Mathematics and Statistics and Biological Sciences, University of Notre Dame, Notre Dame, USA
| | - H Sebastian Seung
- Princeton Neuroscience Institute, Princeton University, Princeton, USA
| | | | | | - R Clay Reid
- Allen Institute for Brain Science, Seattle, USA
| | - Edgar Y Walker
- Department of Neurobiology & Biophysics, University of Washington, Seattle, USA
- Computational Neuroscience Center, University of Washington, Seattle, USA
| | - Xaq Pitkow
- Department of Neuroscience & Center for Neuroscience and Artificial Intelligence, Baylor College of Medicine, Houston, TX, USA
- Department of Electrical and Computer Engineering, Rice University, Houston, USA
- Department of Computer Science, Rice University, Houston, TX, USA
- Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA, USA
- Department of Machine Learning, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Jacob Reimer
- Department of Neuroscience & Center for Neuroscience and Artificial Intelligence, Baylor College of Medicine, Houston, TX, USA
| | - Andreas S Tolias
- Department of Neuroscience & Center for Neuroscience and Artificial Intelligence, Baylor College of Medicine, Houston, TX, USA
- Department of Ophthalmology, Byers Eye Institute, Stanford University School of Medicine, Stanford, CA, USA
- Stanford Bio-X, Stanford University, Stanford, CA, USA
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA
- Department of Electrical and Computer Engineering, Rice University, Houston, USA
- Department of Electrical Engineering, Stanford University, Stanford, CA, USA
| |
Collapse
|
20
|
Colom M, Kraev I, Stramek AK, Loza IB, Rostron CL, Heath CJ, Dommett EJ, Singer BF. Conditioning- and reward-related dendritic and presynaptic plasticity of nucleus accumbens neurons in male and female sign-tracker rats. Eur J Neurosci 2024; 60:5694-5717. [PMID: 39193632 DOI: 10.1111/ejn.16513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 07/22/2024] [Accepted: 08/12/2024] [Indexed: 08/29/2024]
Abstract
For a subset of individuals known as sign-trackers, discrete Pavlovian cues associated with rewarding stimuli can acquire incentive properties and exert control over behaviour. Because responsiveness to cues is a feature of various neuropsychiatric conditions, rodent models of sign-tracking may prove useful for exploring the neurobiology of individual variation in psychiatric vulnerabilities. Converging evidence points towards the involvement of dopaminergic neurotransmission in the nucleus accumbens core (NAc) in the development of sign-tracking, yet whether this phenotype is associated with specific accumbal postsynaptic properties is unknown. Here, we examined dendritic spine structural organisation, as well as presynaptic and postsynaptic markers of activity, in the NAc core of male and female rats following a Pavlovian-conditioned approach procedure. In contrast to our prediction that cue re-exposure would increase spine density, experiencing the discrete lever-cue without reward delivery resulted in lower spine density than control rats for which the lever was unpaired with reward during training; this effect was tempered in the most robust sign-trackers. Interestingly, this same behavioural test (lever presentation without reward) resulted in increased levels of a marker of presynaptic activity (synaptophysin), and this effect was greatest in female rats. Whilst some behavioural differences were observed in females during initial Pavlovian training, final conditioning scores did not differ from males and were unaffected by the oestrous cycle. This work provides novel insights into how conditioning impacts the neuronal plasticity of the NAc core, whilst highlighting the importance of studying the behaviour and neurobiology of both male and female rats.
Collapse
Affiliation(s)
- Morgane Colom
- School of Life, Health and Chemical Sciences, The Open University, Milton Keynes, UK
- King's College, Institute of Psychiatry, Psychology and Neuroscience, London, UK
- Department of Psychology, University of Cambridge, Cambridge, UK
| | - Igor Kraev
- School of Life, Health and Chemical Sciences, The Open University, Milton Keynes, UK
| | - Agata K Stramek
- School of Life, Health and Chemical Sciences, The Open University, Milton Keynes, UK
| | - Iwona B Loza
- School of Life, Health and Chemical Sciences, The Open University, Milton Keynes, UK
| | - Claire L Rostron
- School of Life, Health and Chemical Sciences, The Open University, Milton Keynes, UK
| | - Christopher J Heath
- School of Life, Health and Chemical Sciences, The Open University, Milton Keynes, UK
| | - Eleanor J Dommett
- School of Life, Health and Chemical Sciences, The Open University, Milton Keynes, UK
- King's College, Institute of Psychiatry, Psychology and Neuroscience, London, UK
| | - Bryan F Singer
- School of Life, Health and Chemical Sciences, The Open University, Milton Keynes, UK
- School of Psychology, Sussex Neuroscience, Sussex Addiction Research and Intervention Centre, University of Sussex, Brighton, UK
| |
Collapse
|
21
|
Yun Y, Jeong H, Laboute T, Martemyanov KA, Lee HH. Cryo-EM structure of human class C orphan GPCR GPR179 involved in visual processing. Nat Commun 2024; 15:8299. [PMID: 39333506 PMCID: PMC11437087 DOI: 10.1038/s41467-024-52584-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 09/12/2024] [Indexed: 09/29/2024] Open
Abstract
GPR179, an orphan class C GPCR, is expressed at the dendritic tips of ON-bipolar cells in the retina. It plays a pivotal role in the initial synaptic transmission of visual signals from photoreceptors, and its deficiency is known to be the cause of complete congenital stationary night blindness. Here, we present the cryo-electron microscopy structure of human GPR179. Notably, the transmembrane domain (TMD) of GPR179 forms a homodimer through the TM1/7 interface with a single inter-protomer disulfide bond, adopting a noncanonical dimerization mode. Furthermore, the TMD dimer exhibits architecture well-suited for the highly curved membrane of the dendritic tip and distinct from the flat membrane arrangement observed in other class C GPCR dimers. Our structure reveals unique structural features of GPR179 TMD, setting it apart from other class C GPCRs. These findings provide a foundation for understanding signal transduction through GPR179 in visual processing and offers insights into the underlying causes of ocular diseases.
Collapse
Affiliation(s)
- Yaejin Yun
- Department of Chemistry, College of Natural Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Hyeongseop Jeong
- Center for Research Equipment, Korea Basic Science Institute, Chungcheongbuk-do, 28119, Republic of Korea
| | - Thibaut Laboute
- Department of Neuroscience, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, University of Florida, Jupiter, FL, 33458, USA
- Université de Tours, INSERM, Imaging Brain & Neuropsychiatry iBraiN U1253, 37032, Tours, France
| | - Kirill A Martemyanov
- Department of Neuroscience, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, University of Florida, Jupiter, FL, 33458, USA.
| | - Hyung Ho Lee
- Department of Chemistry, College of Natural Sciences, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
22
|
Celii B, Papadopoulos S, Ding Z, Fahey PG, Wang E, Papadopoulos C, Kunin A, Patel S, Bae JA, Bodor AL, Brittain D, Buchanan J, Bumbarger DJ, Castro MA, Cobos E, Dorkenwald S, Elabbady L, Halageri A, Jia Z, Jordan C, Kapner D, Kemnitz N, Kinn S, Lee K, Li K, Lu R, Macrina T, Mahalingam G, Mitchell E, Mondal SS, Mu S, Nehoran B, Popovych S, Schneider-Mizell CM, Silversmith W, Takeno M, Torres R, Turner NL, Wong W, Wu J, Yu SC, Yin W, Xenes D, Kitchell LM, Rivlin PK, Rose VA, Bishop CA, Wester B, Froudarakis E, Walker EY, Sinz FH, Seung HS, Collman F, da Costa NM, Reid RC, Pitkow X, Tolias AS, Reimer J. NEURD offers automated proofreading and feature extraction for connectomics. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.03.14.532674. [PMID: 36993282 PMCID: PMC10055177 DOI: 10.1101/2023.03.14.532674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
We are now in the era of millimeter-scale electron microscopy (EM) volumes collected at nanometer resolution. Dense reconstruction of cellular compartments in these EM volumes has been enabled by recent advances in Machine Learning (ML). Automated segmentation methods produce exceptionally accurate reconstructions of cells, but post-hoc proofreading is still required to generate large connectomes free of merge and split errors. The elaborate 3-D meshes of neurons in these volumes contain detailed morphological information at multiple scales, from the diameter, shape, and branching patterns of axons and dendrites, down to the fine-scale structure of dendritic spines. However, extracting these features can require substantial effort to piece together existing tools into custom workflows. Building on existing open-source software for mesh manipulation, here we present "NEURD", a software package that decomposes meshed neurons into compact and extensively-annotated graph representations. With these feature-rich graphs, we automate a variety of tasks such as state of the art automated proofreading of merge errors, cell classification, spine detection, axon-dendritic proximities, and other annotations. These features enable many downstream analyses of neural morphology and connectivity, making these massive and complex datasets more accessible to neuroscience researchers focused on a variety of scientific questions.
Collapse
|
23
|
Kniffin AR, Briand LA. Sex differences in glutamate transmission and plasticity in reward related regions. Front Behav Neurosci 2024; 18:1455478. [PMID: 39359325 PMCID: PMC11445661 DOI: 10.3389/fnbeh.2024.1455478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 08/30/2024] [Indexed: 10/04/2024] Open
Abstract
Disruptions in glutamate homeostasis within the mesolimbic reward circuitry may play a role in the pathophysiology of various reward related disorders such as major depressive disorders, anxiety, and substance use disorders. Clear sex differences have emerged in the rates and symptom severity of these disorders which may result from differing underlying mechanisms of glutamatergic signaling. Indeed, preclinical models have begun to uncover baseline sex differences throughout the brain in glutamate transmission and synaptic plasticity. Glutamatergic synaptic strength can be assessed by looking at morphological features of glutamatergic neurons including spine size, spine density, and dendritic branching. Likewise, electrophysiology studies evaluate properties of glutamatergic neurons to provide information of their functional capacity. In combination with measures of glutamatergic transmission, synaptic plasticity can be evaluated using protocols that induce long-term potentiation or long-term depression. This review will consider preclinical rodent literature directly comparing glutamatergic transmission and plasticity in reward related regions of males and females. Additionally, we will suggest which regions are exhibiting evidence for sexually dimorphic mechanisms, convergent mechanisms, or no sex differences in glutamatergic transmission and plasticity and highlight gaps in the literature for future investigation.
Collapse
Affiliation(s)
- Alyssa R. Kniffin
- Department of Psychology & Neuroscience, Temple University, Philadelphia, PA, United States
| | - Lisa A. Briand
- Department of Psychology & Neuroscience, Temple University, Philadelphia, PA, United States
- Neuroscience Program, Temple University, Philadelphia, PA, United States
| |
Collapse
|
24
|
Reimer ML, Kauer SD, Benson CA, King JF, Patwa S, Feng S, Estacion MA, Bangalore L, Waxman SG, Tan AM. A FAIR, open-source virtual reality platform for dendritic spine analysis. PATTERNS (NEW YORK, N.Y.) 2024; 5:101041. [PMID: 39568639 PMCID: PMC11573899 DOI: 10.1016/j.patter.2024.101041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 05/13/2024] [Accepted: 07/16/2024] [Indexed: 11/22/2024]
Abstract
Neuroanatomy is fundamental to understanding the nervous system, particularly dendritic spines, which are vital for synaptic transmission and change in response to injury or disease. Advancements in imaging have allowed for detailed three-dimensional (3D) visualization of these structures. However, existing tools for analyzing dendritic spine morphology are limited. To address this, we developed an open-source virtual reality (VR) structural analysis software ecosystem (coined "VR-SASE") that offers a powerful, intuitive approach for analyzing dendritic spines. Our validation process confirmed the method's superior accuracy, outperforming recognized gold-standard neural reconstruction techniques. Importantly, the VR-SASE workflow automatically calculates key morphological metrics, such as dendritic spine length, volume, and surface area, and reliably replicates established datasets from published dendritic spine studies. By integrating the Neurodata Without Borders (NWB) data standard, VR-SASE datasets can be preserved/distributed through DANDI Archives, satisfying the NIH data sharing mandate.
Collapse
Affiliation(s)
- Marike L. Reimer
- Department of Neurology and Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, CT, USA
- Rehabilitation Research Center, US Department of Veterans Affairs, West Haven, CT, USA
| | - Sierra D. Kauer
- Department of Neurology and Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, CT, USA
- Rehabilitation Research Center, US Department of Veterans Affairs, West Haven, CT, USA
| | - Curtis A. Benson
- Department of Neurology and Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, CT, USA
- Rehabilitation Research Center, US Department of Veterans Affairs, West Haven, CT, USA
| | - Jared F. King
- Department of Neurology and Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, CT, USA
- Rehabilitation Research Center, US Department of Veterans Affairs, West Haven, CT, USA
| | - Siraj Patwa
- Department of Neurology and Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, CT, USA
- Rehabilitation Research Center, US Department of Veterans Affairs, West Haven, CT, USA
| | - Sarah Feng
- Department of Neurology and Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, CT, USA
- Rehabilitation Research Center, US Department of Veterans Affairs, West Haven, CT, USA
| | - Maile A. Estacion
- Department of Neurology and Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, CT, USA
- Rehabilitation Research Center, US Department of Veterans Affairs, West Haven, CT, USA
| | - Lakshmi Bangalore
- Department of Neurology and Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, CT, USA
- Rehabilitation Research Center, US Department of Veterans Affairs, West Haven, CT, USA
| | - Stephen G. Waxman
- Department of Neurology and Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, CT, USA
- Rehabilitation Research Center, US Department of Veterans Affairs, West Haven, CT, USA
| | - Andrew M. Tan
- Department of Neurology and Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, CT, USA
- Rehabilitation Research Center, US Department of Veterans Affairs, West Haven, CT, USA
| |
Collapse
|
25
|
Steiner AM, Roscoe RF, Booze RM, Mactutus CF. Motivational dysregulation with melanocortin 4 receptor haploinsufficiency. NEUROIMMUNE PHARMACOLOGY AND THERAPEUTICS 2024; 3:237-250. [PMID: 39741559 PMCID: PMC11683877 DOI: 10.1515/nipt-2024-0011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Accepted: 10/18/2024] [Indexed: 01/03/2025]
Abstract
Obesity, by any standard, is a global health crisis. Both genetic and dietary contributions to the development and maintenance of obesity were integral factors of our experimental design. As mutations of the melanocortin 4 receptors (MC4R) are the leading monogenetic cause of obesity, MC4R haploinsufficient rats were fed a range of dietary fat (0-12 %) in a longitudinal design. Physiological and motivational assessments were performed using a locomotor task, a 5-choice sucrose preference task, an operant task with fixed and progressive ratios, as well as a distraction operant task. Dendritic spine morphology of medium spiny neurons (MSNs) of the nucleus accumbens (NAc), cells with ample D1 and D2 receptors, was also assessed. The percentage of lipid deposits in the liver of each rat was also analyzed using the Area Fraction Fractionator probe for stereological measurements. MC4R haploinsufficiency resulted in a phenotypic resemblance for adult-onset obesity that was exacerbated by the consumption of a high-fat diet. Results from the operant tasks indicate that motivational deficits due to MC4R haploinsufficiency were apparent prior to the onset of obesity and exacerbated by dietary fat consumption after obesity was well established. Moreover, MSN morphology shifted to longer spines with smaller head diameters for the MC4R+/- animals under the high-fat diet, suggesting a potential mechanism for the dysregulation of motivation to work for food. Increasing our knowledge of the neural circuitry/mechanisms responsible for the rewarding properties of food has significant implications for understanding energy balance and the development of obesity.
Collapse
Affiliation(s)
- Alex M. Steiner
- Cognitive and Neural Science Program, Department of Psychology, Barnwell College, University of South Carolina, Columbia, SC, USA
| | - Robert F. Roscoe
- Cognitive and Neural Science Program, Department of Psychology, Barnwell College, University of South Carolina, Columbia, SC, USA
| | - Rosemarie M. Booze
- Cognitive and Neural Science Program, Department of Psychology, Barnwell College, University of South Carolina, Columbia, SC, USA
| | - Charles F. Mactutus
- Cognitive and Neural Science Program, Department of Psychology, Barnwell College, University of South Carolina, Columbia, SC, USA
| |
Collapse
|
26
|
Asad Z, Fakheir Y, Abukhaled Y, Khalil R. Implications of altered pyramidal cell morphology on clinical symptoms of neurodevelopmental disorders. Eur J Neurosci 2024; 60:4877-4892. [PMID: 39054743 DOI: 10.1111/ejn.16484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 05/26/2024] [Accepted: 07/13/2024] [Indexed: 07/27/2024]
Abstract
The prevalence of pyramidal cells (PCs) in the mammalian cerebral cortex underscore their value as they play a crucial role in various brain functions, ranging from cognition, sensory processing, to motor output. PC morphology significantly influences brain connectivity and plays a critical role in maintaining normal brain function. Pathological alterations to PC morphology are thought to contribute to the aetiology of neurodevelopmental disorders such as autism spectrum disorder (ASD) and schizophrenia. This review explores the relationship between abnormalities in PC morphology in key cortical areas and the clinical manifestations in schizophrenia and ASD. We focus largely on human postmortem studies and provide evidence that dendritic segment length, complexity and spine density are differentially affected in these disorders. These morphological alterations can lead to disruptions in cortical connectivity, potentially contributing to the cognitive and behavioural deficits observed in these disorders. Furthermore, we highlight the importance of investigating the functional and structural characteristics of PCs in these disorders to illuminate the underlying pathogenesis and stimulate further research in this area.
Collapse
Affiliation(s)
- Zummar Asad
- School of Medicine, Royal College of Surgeons in Ireland (RCSI), Dublin, Ireland
| | - Yara Fakheir
- College of Medicine and Health Sciences, Khalifa University, Abu Dhabi, United Arab Emirates
| | - Yara Abukhaled
- College of Medicine and Health Sciences, Khalifa University, Abu Dhabi, United Arab Emirates
| | - Reem Khalil
- Department of Biology, Chemistry and Environmental Sciences, American University of Sharjah, Sharjah, United Arab Emirates
| |
Collapse
|
27
|
Krüssel S, Deb I, Son S, Ewall G, Chang M, Lee HK, Heo WD, Kwon HB. H-Ras induces exuberant de novo dendritic protrusion growth in mature neurons regardless of cell type. iScience 2024; 27:110535. [PMID: 39220408 PMCID: PMC11365382 DOI: 10.1016/j.isci.2024.110535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 05/03/2024] [Accepted: 07/15/2024] [Indexed: 09/04/2024] Open
Abstract
Dendritic protrusions, mainly spines and filopodia, correlate with excitatory synapses in pyramidal neurons (PyNs), but this relationship may not apply universally. We found that ectopic H-Ras expression increased protrusions across various cortical cell types, including layer 2/3 PyNs, parvalbumin (PV)-, and vasoactive intestinal peptide (VIP)-positive interneurons (INs) in the primary motor cortex. The probability of detecting protrusions correlated with local H-Ras activity, indicating its role in protrusion formation. H-Ras overexpression led to high turnover rates by adding protrusions. Two-photon photolysis of glutamate induced de novo spine formation in mature H-Ras expressing neurons, suggesting H-Ras's effect is not limited to early development. In PyNs and PV-INs, but not VIP-INs, spine neck lengths shifted to filopodia-like phenotypes. H-Ras primarily induced filopodia in PyNs and spines in PV- and VIP-INs. Increased protrusions in H-Ras-transfected PyNs lacked key excitatory synaptic proteins and did not affect miniature excitatory postsynaptic currents (mEPSCs), suggesting multifaceted roles beyond excitatory synapses.
Collapse
Affiliation(s)
- Sarah Krüssel
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Ishana Deb
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Seungkyu Son
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Gabrielle Ewall
- Solomon H. Snyder Department of Neuroscience, Zanvyl-Krieger Mind/Brain Institute, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Minhyeok Chang
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Hey-Kyoung Lee
- Solomon H. Snyder Department of Neuroscience, Zanvyl-Krieger Mind/Brain Institute, Johns Hopkins School of Medicine, Baltimore, MD, USA
- Kavli Neuroscience Discovery Institute, Johns Hopkins University, Baltimore, MD, USA
| | - Won Do Heo
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Hyung-Bae Kwon
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
28
|
Parkins EV, Gross C. Small Differences and Big Changes: The Many Variables of MicroRNA Expression and Function in the Brain. J Neurosci 2024; 44:e0365242024. [PMID: 39111834 PMCID: PMC11308354 DOI: 10.1523/jneurosci.0365-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 05/15/2024] [Accepted: 05/23/2024] [Indexed: 08/10/2024] Open
Abstract
MicroRNAs are emerging as crucial regulators within the complex, dynamic environment of the synapse, and they offer a promising new avenue for the treatment of neurological disease. These small noncoding RNAs modify gene expression in several ways, including posttranscriptional modulation via binding to complementary and semicomplementary sites on target mRNAs. This rapid, finely tuned regulation of gene expression is essential to meet the dynamic demands of the synapse. Here, we provide a detailed review of the multifaceted world of synaptic microRNA regulation. We discuss the many mechanisms by which microRNAs regulate gene expression at the synapse, particularly in the context of neuronal plasticity. We also describe the various factors, such as age, sex, and neurological disease, that can influence microRNA expression and activity in neurons. In summary, microRNAs play a crucial role in the intricate and quickly changing functional requirements of the synapse, and context is essential in the study of microRNAs and their potential therapeutic applications.
Collapse
Affiliation(s)
- Emma V Parkins
- University of Cincinnati Neuroscience Graduate Program, Cincinnati, Ohio 45229
- Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229
| | - Christina Gross
- University of Cincinnati Neuroscience Graduate Program, Cincinnati, Ohio 45229
- Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio 45229
| |
Collapse
|
29
|
Hyun SA, Ka M. Bisphenol A (BPA) and neurological disorders: An overview. Int J Biochem Cell Biol 2024; 173:106614. [PMID: 38944234 DOI: 10.1016/j.biocel.2024.106614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 06/10/2024] [Accepted: 06/17/2024] [Indexed: 07/01/2024]
Abstract
The human body is commonly exposed to bisphenol A (BPA), which is widely used in consumer and industrial products. BPA is an endocrine-disrupting chemical that has adverse effects on human health. In particular, many studies have shown that BPA can cause various neurological disorders by affecting brain development and neural function during prenatal, infancy, childhood, and adulthood exposure. In this review, we discussed the correlation between BPA and neurological disorders based on molecular cell biology, neurophysiology, and behavioral studies of the effects of BPA on brain development and function. Recent studies, both animal and epidemiological, strongly indicate that BPA significantly impacts brain development and function. It hinders neural processes, such as proliferation, migration, and differentiation during development, affecting synaptic formation and activity. As a result, BPA is implicated in neurodevelopmental and neuropsychiatric disorders like autism spectrum disorder (ASD), attention-deficit hyperactivity disorder (ADHD), and schizophrenia.
Collapse
Affiliation(s)
- Sung-Ae Hyun
- Department of Advanced Toxicology Research, Korea Institute of Toxicology, KRICT, Daejeon 34114, Republic of Korea
| | - Minhan Ka
- Department of Advanced Toxicology Research, Korea Institute of Toxicology, KRICT, Daejeon 34114, Republic of Korea.
| |
Collapse
|
30
|
Hong Y, Hu J, Zhang S, Liu J, Yan F, Yang H, Hu H. Integrative analysis identifies region- and sex-specific gene networks and Mef2c as a mediator of anxiety-like behavior. Cell Rep 2024; 43:114455. [PMID: 38990717 DOI: 10.1016/j.celrep.2024.114455] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 05/20/2024] [Accepted: 06/21/2024] [Indexed: 07/13/2024] Open
Abstract
The molecular mechanisms underlying multi-brain region origins and sexual dimorphism of anxiety remain unclear. Here, we leverage large-scale transcriptomics from seven brain regions in mouse models of anxiety and extensive experiments to dissect brain-region- and sex-specific gene networks. We identify 4,840 genes with sex-specific expression alterations across seven brain regions, organized into ten network modules with sex-biased expression patterns. Modular analysis prioritizes 86 sex-specific mediators of anxiety susceptibility, including myocyte-specific enhancer factor 2c (Mef2c) in the CA3 region of male mice. Mef2c expression is decreased in the pyramidal neurons (PyNs) of susceptible male mice. Up-regulating Mef2c in CA3 PyNs significantly alleviates anxiety-like behavior, whereas down-regulating Mef2c induces anxiety-like behavior in male mice. The anxiolytic effect of Mef2c up-regulation is associated with enhanced neuronal excitability and synaptic transmission. In summary, this study uncovers brain-region- and sex-specific networks and identifies Mef2c in CA3 PyNs as a critical mediator of anxiety in male mice.
Collapse
Affiliation(s)
- Yizhou Hong
- Research Center of Biostatistics and Computational Pharmacy, China Pharmaceutical University, Nanjing, China; State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Jiameng Hu
- School of Life Science and Technology, Chongqing Innovation Institute of China Pharmaceutical University, China Pharmaceutical University, Nanjing, China
| | - Shiya Zhang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China; College of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Jiaxin Liu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China; College of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Fangrong Yan
- Research Center of Biostatistics and Computational Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Hua Yang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China.
| | - Haiyang Hu
- School of Life Science and Technology, Chongqing Innovation Institute of China Pharmaceutical University, China Pharmaceutical University, Nanjing, China; Central Laboratory, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China.
| |
Collapse
|
31
|
Manning A, Bender PTR, Boyd-Pratt H, Mendelson BZ, Hruska M, Anderson CT. Trans-synaptic Association of Vesicular Zinc Transporter 3 and Shank3 Supports Synapse-Specific Dendritic Spine Structure and Function in the Mouse Auditory Cortex. J Neurosci 2024; 44:e0619242024. [PMID: 38830758 PMCID: PMC11236586 DOI: 10.1523/jneurosci.0619-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/17/2024] [Accepted: 05/23/2024] [Indexed: 06/05/2024] Open
Abstract
Shank3 is a synaptic scaffolding protein that assists in tethering and organizing structural proteins and glutamatergic receptors in the postsynaptic density of excitatory synapses. The localization of Shank3 at excitatory synapses and the formation of stable Shank3 complexes is regulated by the binding of zinc to the C-terminal sterile-alpha-motif (SAM) domain of Shank3. Mutations in the SAM domain of Shank3 result in altered synaptic function and morphology, and disruption of zinc in synapses that express Shank3 leads to a reduction of postsynaptic proteins important for synaptic structure and function. This suggests that zinc supports the localization of postsynaptic proteins via Shank3. Many regions of the brain are highly enriched with free zinc inside glutamatergic vesicles at presynaptic terminals. At these synapses, zinc transporter 3 (ZnT3) moves zinc into vesicles where it is co-released with glutamate. Alterations in ZnT3 are implicated in multiple neurodevelopmental disorders, and ZnT3 knock-out (KO) mice-which lack synaptic zinc-show behavioral deficits associated with autism spectrum disorder and schizophrenia. Here we show that male and female ZnT3 KO mice have smaller dendritic spines and miniature excitatory postsynaptic current amplitudes than wildtype (WT) mice in the auditory cortex. Additionally, spine size deficits in ZnT3 KO mice are restricted to synapses that express Shank3. In WT mice, synapses that express both Shank3 and ZnT3 have larger spines compared to synapses that express Shank3 but not ZnT3. Together these findings suggest a mechanism whereby presynaptic ZnT3-dependent zinc supports postsynaptic structure and function via Shank3 in a synapse-specific manner.
Collapse
Affiliation(s)
- Abbey Manning
- Department of Neuroscience, West Virginia University School of Medicine, Morgantown, WV 26506
- Rockefeller Neuroscience Institute, West Virginia University School of Medicine, Morgantown, WV 26506
| | - Philip T R Bender
- Department of Neuroscience, West Virginia University School of Medicine, Morgantown, WV 26506
- Rockefeller Neuroscience Institute, West Virginia University School of Medicine, Morgantown, WV 26506
| | - Helen Boyd-Pratt
- Department of Neuroscience, West Virginia University School of Medicine, Morgantown, WV 26506
- Rockefeller Neuroscience Institute, West Virginia University School of Medicine, Morgantown, WV 26506
- Clinical and Translational Science Institute, West Virginia University School of Medicine, Morgantown, WV 26506
| | - Benjamin Z Mendelson
- Department of Neuroscience, West Virginia University School of Medicine, Morgantown, WV 26506
- Rockefeller Neuroscience Institute, West Virginia University School of Medicine, Morgantown, WV 26506
| | - Martin Hruska
- Department of Neuroscience, West Virginia University School of Medicine, Morgantown, WV 26506
- Rockefeller Neuroscience Institute, West Virginia University School of Medicine, Morgantown, WV 26506
| | - Charles T Anderson
- Department of Neuroscience, West Virginia University School of Medicine, Morgantown, WV 26506
- Rockefeller Neuroscience Institute, West Virginia University School of Medicine, Morgantown, WV 26506
| |
Collapse
|
32
|
Tekin M, Shen H, Smith SS. Sex differences in motor learning flexibility are accompanied by sex differences in mushroom spine pruning of the mouse primary motor cortex during adolescence. Front Neurosci 2024; 18:1420309. [PMID: 39040633 PMCID: PMC11262054 DOI: 10.3389/fnins.2024.1420309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 06/24/2024] [Indexed: 07/24/2024] Open
Abstract
Background Although males excel at motor tasks requiring strength, females exhibit greater motor learning flexibility. Cognitive flexibility is associated with low baseline mushroom spine densities achieved by pruning which can be triggered by α4βδ GABAA receptors (GABARs); defective synaptic pruning impairs this process. Methods We investigated sex differences in adolescent pruning of mushroom spine pruning of layer 5 pyramidal cells of primary motor cortex (L5M1), a site essential for motor learning, using microscopic evaluation of Golgi stained sections. We assessed α4GABAR expression using immunohistochemical and electrophysiological techniques (whole cell patch clamp responses to 100 nM gaboxadol, selective for α4βδ GABARs). We then compared performance of groups with different post-pubertal mushroom spine densities on motor learning (constant speed) and learning flexibility (accelerating speed following constant speed) rotarod tasks. Results Mushroom spines in proximal L5M1 of female mice decreased >60% from PND35 (puberty onset) to PND56 (Pubertal: 2.23 ± 0.21 spines/10 μm; post-pubertal: 0.81 ± 0.14 spines/10 μm, P < 0.001); male mushroom spine density was unchanged. This was due to greater α4βδ GABAR expression in the female (P < 0.0001) because α4 -/- mice did not exhibit mushroom spine pruning. Although motor learning was similar for all groups, only female wild-type mice (low mushroom spine density) learned the accelerating rotarod task after the constant speed task (P = 0.006), a measure of motor learning flexibility. Conclusions These results suggest that optimal motor learning flexibility of female mice is associated with low baseline levels of post-pubertal mushroom spine density in L5M1 compared to male and female α4 -/- mice.
Collapse
Affiliation(s)
- Michael Tekin
- Department of Physiology and Pharmacology, SUNY Downstate Medical Center, Brooklyn, NY, United States
- Graduate Program in Neural and Behavioral Science, SUNY Downstate Medical Center, Brooklyn, NY, United States
| | - Hui Shen
- School of Biomedical Engineering, Tianjin Medical University, Tianjin, China
| | - Sheryl S. Smith
- Department of Physiology and Pharmacology, SUNY Downstate Medical Center, Brooklyn, NY, United States
| |
Collapse
|
33
|
Le AD, Fu M, Kumar R, Zacharias G, Garcia ADR. Astrocyte modulation of synaptic plasticity mediated by activity-dependent Sonic hedgehog signaling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.05.588352. [PMID: 38915525 PMCID: PMC11195099 DOI: 10.1101/2024.04.05.588352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
The influence of neural activity on astrocytes and their reciprocal interactions with neurons has emerged as an important modulator of synapse function. Astrocytes exhibit activity-dependent changes in gene expression, yet the molecular mechanisms by which they accomplish this have remained largely unknown. The molecular signaling pathway, Sonic hedgehog (Shh), mediates neuron-astrocyte communication and regulates the organization of cortical synapses. Here, we demonstrate that neural activity stimulates Shh signaling in cortical astrocytes and upregulates expression of Hevin and SPARC, astrocyte derived molecules that modify synapses. Whisker stimulation and chemogenetic activation both increase Shh activity in deep layers of the somatosensory cortex, where neuron-astrocyte Shh signaling is predominantly found. Experience-dependent Hevin and SPARC require intact Shh signaling and selective loss of pathway activity in astrocytes occludes experience-dependent structural plasticity. Taken together, these data identify Shh signaling as an activity-dependent, neuronal derived cue that stimulates astrocyte interactions with synapses and promotes synaptic plasticity.
Collapse
Affiliation(s)
- Anh Duc Le
- Department of Biology, Drexel University
| | - Marissa Fu
- Department of Biology, Drexel University
| | - Riya Kumar
- Department of Biology, Drexel University
| | | | - A Denise R Garcia
- Department of Neurobiology and Anatomy, Drexel University College of Medicine
| |
Collapse
|
34
|
Kaizuka T, Takumi T. Alteration of synaptic protein composition during developmental synapse maturation. Eur J Neurosci 2024; 59:2894-2914. [PMID: 38571321 DOI: 10.1111/ejn.16304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 01/02/2024] [Accepted: 02/07/2024] [Indexed: 04/05/2024]
Abstract
The postsynaptic density (PSD) is a collection of specialized proteins assembled beneath the postsynaptic membrane of dendritic spines. The PSD proteome comprises ~1000 proteins, including neurotransmitter receptors, scaffolding proteins and signalling enzymes. Many of these proteins have essential roles in synaptic function and plasticity. During brain development, changes are observed in synapse density and in the stability and shape of spines, reflecting the underlying molecular maturation of synapses. Synaptic protein composition changes in terms of protein abundance and the assembly of protein complexes, supercomplexes and the physical organization of the PSD. Here, we summarize the developmental alterations of postsynaptic protein composition during synapse maturation. We describe major PSD proteins involved in postsynaptic signalling that regulates synaptic plasticity and discuss the effect of altered expression of these proteins during development. We consider the abnormality of synaptic profiles and synaptic protein composition in the brain in neurodevelopmental disorders such as autism spectrum disorders. We also explain differences in synapse development between rodents and primates in terms of synaptic profiles and protein composition. Finally, we introduce recent findings related to synaptic diversity and nanoarchitecture and discuss their impact on future research. Synaptic protein composition can be considered a major determinant and marker of synapse maturation in normality and disease.
Collapse
Affiliation(s)
- Takeshi Kaizuka
- Department of Physiology and Cell Biology, Kobe University School of Medicine, Kobe, Japan
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Toru Takumi
- Department of Physiology and Cell Biology, Kobe University School of Medicine, Kobe, Japan
- RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| |
Collapse
|
35
|
Abstract
Neuropathic pain is a debilitating form of pain arising from injury or disease of the nervous system that affects millions of people worldwide. Despite its prevalence, the underlying mechanisms of neuropathic pain are still not fully understood. Dendritic spines are small protrusions on the surface of neurons that play an important role in synaptic transmission. Recent studies have shown that dendritic spines reorganize in the superficial and deeper laminae of the spinal cord dorsal horn with the development of neuropathic pain in multiple models of disease or injury. Given the importance of dendritic spines in synaptic transmission, it is possible that studying dendritic spines could lead to new therapeutic approaches for managing intractable pain. In this review article, we highlight the emergent role of dendritic spines in neuropathic pain, as well as discuss the potential for studying dendritic spines for the development of new therapeutics.
Collapse
Affiliation(s)
- Curtis A Benson
- Department of Neurology and Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, CT, USA
- Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, CT, USA
| | - Jared F King
- Department of Neurology and Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, CT, USA
- Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, CT, USA
| | - Marike L Reimer
- Department of Neurology and Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, CT, USA
- Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, CT, USA
| | - Sierra D Kauer
- Department of Neurology and Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, CT, USA
- Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, CT, USA
| | - Stephen G Waxman
- Department of Neurology and Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, CT, USA
- Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, CT, USA
| | - Andrew M Tan
- Department of Neurology and Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, CT, USA
- Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, CT, USA
| |
Collapse
|
36
|
Jabra S, Rietsche M, Muellerleile J, O'Leary A, Slattery DA, Deller T, Fellenz M. Sex- and cycle-dependent changes in spine density and size in hippocampal CA2 neurons. Sci Rep 2024; 14:12252. [PMID: 38806649 PMCID: PMC11133407 DOI: 10.1038/s41598-024-62951-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 05/22/2024] [Indexed: 05/30/2024] Open
Abstract
Sex hormones affect structural and functional plasticity in the rodent hippocampus. However, hormone levels not only differ between males and females, but also fluctuate across the female estrous cycle. While sex- and cycle-dependent differences in dendritic spine density and morphology have been found in the rodent CA1 region, but not in the CA3 or the dentate gyrus, comparable structural data on CA2, i.e. the hippocampal region involved in social recognition memory, is so far lacking. In this study, we, therefore, used wildtype male and female mice in diestrus or proestrus to analyze spines on dendritic segments from identified CA2 neurons. In basal stratum oriens, we found no differences in spine density, but a significant shift towards larger spine head areas in male mice compared to females. Conversely, in apical stratum radiatum diestrus females had a significantly higher spine density, and females in either cycle stage had a significant shift towards larger spine head areas as compared to males, with diestrus females showing the larger shift. Our results provide further evidence for the sexual dimorphism of hippocampal area CA2, and underscore the importance of considering not only the sex, but also the stage of the estrous cycle when interpreting morphological data.
Collapse
Affiliation(s)
- Sharif Jabra
- Institute of Clinical Neuroanatomy, Neuroscience Center, Goethe University Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany
| | - Michael Rietsche
- Institute of Clinical Neuroanatomy, Neuroscience Center, Goethe University Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany
| | - Julia Muellerleile
- Institute of Clinical Neuroanatomy, Neuroscience Center, Goethe University Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany
| | - Aet O'Leary
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, Goethe University Frankfurt, University Hospital, Heinrich-Hoffmann-Straße 10, 60528, Frankfurt am Main, Germany
| | - David A Slattery
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, Goethe University Frankfurt, University Hospital, Heinrich-Hoffmann-Straße 10, 60528, Frankfurt am Main, Germany
| | - Thomas Deller
- Institute of Clinical Neuroanatomy, Neuroscience Center, Goethe University Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany
| | - Meike Fellenz
- Institute of Clinical Neuroanatomy, Neuroscience Center, Goethe University Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany.
| |
Collapse
|
37
|
Zhou H, Bi GQ, Liu G. Intracellular magnesium optimizes transmission efficiency and plasticity of hippocampal synapses by reconfiguring their connectivity. Nat Commun 2024; 15:3406. [PMID: 38649706 PMCID: PMC11035601 DOI: 10.1038/s41467-024-47571-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 04/02/2024] [Indexed: 04/25/2024] Open
Abstract
Synapses at dendritic branches exhibit specific properties for information processing. However, how the synapses are orchestrated to dynamically modify their properties, thus optimizing information processing, remains elusive. Here, we observed at hippocampal dendritic branches diverse configurations of synaptic connectivity, two extremes of which are characterized by low transmission efficiency, high plasticity and coding capacity, or inversely. The former favors information encoding, pertinent to learning, while the latter prefers information storage, relevant to memory. Presynaptic intracellular Mg2+ crucially mediates the dynamic transition continuously between the two extreme configurations. Consequently, varying intracellular Mg2+ levels endow individual branches with diverse synaptic computations, thus modulating their ability to process information. Notably, elevating brain Mg2+ levels in aging animals restores synaptic configuration resembling that of young animals, coincident with improved learning and memory. These findings establish intracellular Mg2+ as a crucial factor reconfiguring synaptic connectivity at dendrites, thus optimizing their branch-specific properties in information processing.
Collapse
Affiliation(s)
- Hang Zhou
- Faculty of Life and Health Sciences, Shenzhen University of Advanced Technology, Shenzhen, 518107, China.
- Interdisciplinary Center for Brain Information, Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
| | - Guo-Qiang Bi
- Faculty of Life and Health Sciences, Shenzhen University of Advanced Technology, Shenzhen, 518107, China
- Interdisciplinary Center for Brain Information, Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- Shenzhen-Hong Kong Institute of Brain Science, Shenzhen, 518055, China
- Hefei National Laboratory for Physical Sciences at the Microscale, and School of Life Sciences, University of Science and Technology of China, Hefei, 230031, China
| | - Guosong Liu
- School of Medicine, Tsinghua University, Beijing, 100084, China.
- NeuroCentria Inc., Walnut Creek, CA, 94596, USA.
| |
Collapse
|
38
|
Ferreira A, Constantinescu VS, Malvaut S, Saghatelyan A, Hardy SV. Distinct forms of structural plasticity of adult-born interneuron spines in the mouse olfactory bulb induced by different odor learning paradigms. Commun Biol 2024; 7:420. [PMID: 38582915 PMCID: PMC10998910 DOI: 10.1038/s42003-024-06115-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 03/27/2024] [Indexed: 04/08/2024] Open
Abstract
The morpho-functional properties of neural networks constantly adapt in response to environmental stimuli. The olfactory bulb is particularly prone to constant reshaping of neural networks because of ongoing neurogenesis. It remains unclear whether the complexity of distinct odor-induced learning paradigms and sensory stimulation induces different forms of structural plasticity. In the present study, we automatically reconstructed spines in 3D from confocal images and performed unsupervised clustering based on morphometric features. We show that while sensory deprivation decreased the spine density of adult-born neurons without affecting the morphometric properties of these spines, simple and complex odor learning paradigms triggered distinct forms of structural plasticity. A simple odor learning task affected the morphometric properties of the spines, whereas a complex odor learning task induced changes in spine density. Our work reveals distinct forms of structural plasticity in the olfactory bulb tailored to the complexity of odor-learning paradigms and sensory inputs.
Collapse
Affiliation(s)
- Aymeric Ferreira
- CERVO Brain Research Center, Quebec City, QC, G1J 2G3, Canada
- Department of Biochemistry, Microbiology, and Bioinformatics, Université Laval, Quebec City, QC, G1V 0A6, Canada
| | - Vlad-Stefan Constantinescu
- CERVO Brain Research Center, Quebec City, QC, G1J 2G3, Canada
- Department of Psychiatry and Neuroscience, Université Laval, Quebec City, QC, G1V 0A6, Canada
| | - Sarah Malvaut
- CERVO Brain Research Center, Quebec City, QC, G1J 2G3, Canada
- Department of Psychiatry and Neuroscience, Université Laval, Quebec City, QC, G1V 0A6, Canada
| | - Armen Saghatelyan
- CERVO Brain Research Center, Quebec City, QC, G1J 2G3, Canada.
- Department of Psychiatry and Neuroscience, Université Laval, Quebec City, QC, G1V 0A6, Canada.
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, K1N 6N5, Canada.
| | - Simon V Hardy
- CERVO Brain Research Center, Quebec City, QC, G1J 2G3, Canada.
- Department of Biochemistry, Microbiology, and Bioinformatics, Université Laval, Quebec City, QC, G1V 0A6, Canada.
- Department of Computer Science and Software Engineering, Université Laval, Quebec City, QC, G1V 0A6, Canada.
| |
Collapse
|
39
|
González-Burgos I, Velázquez-Zamora DA, González-Tapia D. Estradiol-mediated modulation of memory and of the underlying dendritic spine plasticity through the life span. Histol Histopathol 2024; 39:411-423. [PMID: 37966087 DOI: 10.14670/hh-18-672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2023]
Abstract
The morphophysiology of the nervous system changes and adapts in response to external environmental inputs and the experiences of individuals throughout their lives. Other changes in the organisms internal environment can also contribute to nervous system restructuring in the form of plastic changes that underlie its capacity to adapt to emerging psychophysiological conditions. These adaptive processes lead to subtle modifications of the organisms internal homeostasis which is closely related with the activity of chemical messengers, such as neurotransmitters and hormones. Hormones reach the brain through the bloodstream, where they activate specific receptors through which certain biochemical, physiological, and morphological changes take place in numerous regions. Fetal development, infancy, puberty, and adulthood are all periods of substantial hormone-mediated brain remodeling in both males and females. Adulthood, specifically, is associated with a broad range of life events, including reproductive cycles in both sexes, and pregnancy and menopause in women. Events of this kind occur concomitantly with eventual modifications in behavioral performance and, especially, in cognitive abilities like learning and memory that underlie, at least in part, plastic changes in the dendritic spines of the neuronal cells in cerebral areas involved in processing cognitive information. Estrogens form a family that consists of three molecules [17β-estradiol (E2), estrone, estriol] which are deeply involved in regulating numerous bodily functions in different stages of the life-cycle, including the modulation of cognitive performance. This review addresses the effects of E2 on the dendritic spine-mediated synaptic organization of cognitive performance throughout the life span.
Collapse
Affiliation(s)
| | | | - David González-Tapia
- Department of Health-disease as an individual and collective process, Health Division, Tlajomulco University Centre, University of Guadalajara, Tlajomulco de Zúñiga, Jalisco, México
| |
Collapse
|
40
|
Caznok Silveira AC, Antunes ASLM, Athié MCP, da Silva BF, Ribeiro dos Santos JV, Canateli C, Fontoura MA, Pinto A, Pimentel-Silva LR, Avansini SH, de Carvalho M. Between neurons and networks: investigating mesoscale brain connectivity in neurological and psychiatric disorders. Front Neurosci 2024; 18:1340345. [PMID: 38445254 PMCID: PMC10912403 DOI: 10.3389/fnins.2024.1340345] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 01/29/2024] [Indexed: 03/07/2024] Open
Abstract
The study of brain connectivity has been a cornerstone in understanding the complexities of neurological and psychiatric disorders. It has provided invaluable insights into the functional architecture of the brain and how it is perturbed in disorders. However, a persistent challenge has been achieving the proper spatial resolution, and developing computational algorithms to address biological questions at the multi-cellular level, a scale often referred to as the mesoscale. Historically, neuroimaging studies of brain connectivity have predominantly focused on the macroscale, providing insights into inter-regional brain connections but often falling short of resolving the intricacies of neural circuitry at the cellular or mesoscale level. This limitation has hindered our ability to fully comprehend the underlying mechanisms of neurological and psychiatric disorders and to develop targeted interventions. In light of this issue, our review manuscript seeks to bridge this critical gap by delving into the domain of mesoscale neuroimaging. We aim to provide a comprehensive overview of conditions affected by aberrant neural connections, image acquisition techniques, feature extraction, and data analysis methods that are specifically tailored to the mesoscale. We further delineate the potential of brain connectivity research to elucidate complex biological questions, with a particular focus on schizophrenia and epilepsy. This review encompasses topics such as dendritic spine quantification, single neuron morphology, and brain region connectivity. We aim to showcase the applicability and significance of mesoscale neuroimaging techniques in the field of neuroscience, highlighting their potential for gaining insights into the complexities of neurological and psychiatric disorders.
Collapse
Affiliation(s)
- Ana Clara Caznok Silveira
- National Laboratory of Biosciences, Brazilian Center for Research in Energy and Materials, Campinas, Brazil
- School of Electrical and Computer Engineering, University of Campinas, Campinas, Brazil
| | | | - Maria Carolina Pedro Athié
- National Laboratory of Biosciences, Brazilian Center for Research in Energy and Materials, Campinas, Brazil
| | - Bárbara Filomena da Silva
- National Laboratory of Biosciences, Brazilian Center for Research in Energy and Materials, Campinas, Brazil
| | | | - Camila Canateli
- National Laboratory of Biosciences, Brazilian Center for Research in Energy and Materials, Campinas, Brazil
| | - Marina Alves Fontoura
- National Laboratory of Biosciences, Brazilian Center for Research in Energy and Materials, Campinas, Brazil
| | - Allan Pinto
- Brazilian Synchrotron Light Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, Brazil
| | | | - Simoni Helena Avansini
- National Laboratory of Biosciences, Brazilian Center for Research in Energy and Materials, Campinas, Brazil
| | - Murilo de Carvalho
- National Laboratory of Biosciences, Brazilian Center for Research in Energy and Materials, Campinas, Brazil
- Brazilian Synchrotron Light Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, Brazil
| |
Collapse
|
41
|
Calabrese B, Halpain S. MARCKS and PI(4,5)P 2 reciprocally regulate actin-based dendritic spine morphology. Mol Biol Cell 2024; 35:ar23. [PMID: 38088877 PMCID: PMC10881156 DOI: 10.1091/mbc.e23-09-0370] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/27/2023] [Accepted: 12/07/2023] [Indexed: 01/14/2024] Open
Abstract
Myristoylated, alanine-rich C-kinase substrate (MARCKS) is an F-actin and phospholipid binding protein implicated in numerous cellular activities, including the regulation of morphology in neuronal dendrites and dendritic spines. MARCKS contains a lysine-rich effector domain that mediates its binding to plasma membrane phosphatidylinositol-4,5-biphosphate (PI(4,5)P2) in a manner controlled by PKC and calcium/calmodulin. In neurons, manipulations of MARCKS concentration and membrane targeting strongly affect the numbers, shapes, and F-actin properties of dendritic spines, but the mechanisms remain unclear. Here, we tested the hypothesis that the effects of MARCKS on dendritic spine morphology are due to its capacity to regulate the availability of plasma membrane PI(4,5)P2. We observed that the concentration of free PI(4,5)P2 on the dendritic plasma membrane was inversely proportional to the concentration of MARCKS. Endogenous PI(4,5)P2 levels were increased or decreased, respectively, by acutely overexpressing either phosphatidylinositol-4-phosphate 5-kinase (PIP5K) or inositol polyphosphate 5-phosphatase (5ptase). PIP5K, like MARCKS depletion, induced severe spine shrinkage; 5ptase, like constitutively membrane-bound MARCKS, induced aberrant spine elongation. These phenotypes involved changes in actin properties driven by the F-actin severing protein cofilin. Collectively, these findings support a model in which neuronal activity regulates actin-dependent spine morphology through antagonistic interactions of MARCKS and PI(4,5)P2.
Collapse
Affiliation(s)
- Barbara Calabrese
- Department of Neurobiology, School of Biological Sciences, University of California San Diego and Sanford Consortium for Regenerative Medicine, La Jolla, CA 92037
| | - Shelley Halpain
- Department of Neurobiology, School of Biological Sciences, University of California San Diego and Sanford Consortium for Regenerative Medicine, La Jolla, CA 92037
| |
Collapse
|
42
|
Eberhardt F. Ion-concentration gradients induced by synaptic input increase the voltage depolarization in dendritic spines. J Comput Neurosci 2024; 52:1-19. [PMID: 38349479 PMCID: PMC10924734 DOI: 10.1007/s10827-024-00864-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 11/30/2023] [Accepted: 01/28/2024] [Indexed: 03/10/2024]
Abstract
The vast majority of excitatory synaptic connections occur on dendritic spines. Due to their extremely small volume and spatial segregation from the dendrite, even moderate synaptic currents can significantly alter ionic concentrations. This results in chemical potential gradients between the dendrite and the spine head, leading to measurable electrical currents. In modeling electric signals in spines, different formalisms were previously used. While the cable equation is fundamental for understanding the electrical potential along dendrites, it only considers electrical currents as a result of gradients in electrical potential. The Poisson-Nernst-Planck (PNP) equations offer a more accurate description for spines by incorporating both electrical and chemical potential. However, solving PNP equations is computationally complex. In this work, diffusion currents are incorporated into the cable equation, leveraging an analogy between chemical and electrical potential. For simulating electric signals based on this extension of the cable equation, a straightforward numerical solver is introduced. The study demonstrates that this set of equations can be accurately solved using an explicit finite difference scheme. Through numerical simulations, this study unveils a previously unrecognized mechanism involving diffusion currents that amplify electric signals in spines. This discovery holds crucial implications for both numerical simulations and experimental studies focused on spine neck resistance and calcium signaling in dendritic spines.
Collapse
Affiliation(s)
- Florian Eberhardt
- Faculty of Biology, Ludwig-Maximilians-Universität München, Großhaderner Straße 2, Planegg-Martinsried, 82152, Germany.
- Bernstein Center for Computational Neuroscience, Großhaderner Straße 2, Planegg-Martinsried, 82152, Germany.
| |
Collapse
|
43
|
Mohrmann L, Seebach J, Missler M, Rohlmann A. Distinct Alterations in Dendritic Spine Morphology in the Absence of β-Neurexins. Int J Mol Sci 2024; 25:1285. [PMID: 38279285 PMCID: PMC10817056 DOI: 10.3390/ijms25021285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/12/2024] [Accepted: 01/18/2024] [Indexed: 01/28/2024] Open
Abstract
Dendritic spines are essential for synaptic function because they constitute the postsynaptic compartment of the neurons that receives the most excitatory input. The extracellularly shorter variant of the presynaptic cell adhesion molecules neurexins, β-neurexin, has been implicated in various aspects of synaptic function, including neurotransmitter release. However, its role in developing or stabilizing dendritic spines as fundamental computational units of excitatory synapses has remained unclear. Here, we show through morphological analysis that the deletion of β-neurexins in hippocampal neurons in vitro and in hippocampal tissue in vivo affects presynaptic dense-core vesicles, as hypothesized earlier, and, unexpectedly, alters the postsynaptic spine structure. Specifically, we observed that the absence of β-neurexins led to an increase in filopodial-like protrusions in vitro and more mature mushroom-type spines in the CA1 region of adult knockout mice. In addition, the deletion of β-neurexins caused alterations in the spine head dimension and an increase in spines with perforations of their postsynaptic density but no changes in the overall number of spines or synapses. Our results indicate that presynaptic β-neurexins play a role across the synaptic cleft, possibly by aligning with postsynaptic binding partners and glutamate receptors via transsynaptic columns.
Collapse
Affiliation(s)
| | | | - Markus Missler
- Institute of Anatomy and Molecular Neurobiology, University Münster, 48149 Münster, Germany; (L.M.); (J.S.)
| | - Astrid Rohlmann
- Institute of Anatomy and Molecular Neurobiology, University Münster, 48149 Münster, Germany; (L.M.); (J.S.)
| |
Collapse
|
44
|
Clavet-Fournier V, Lee C, Wegner W, Brose N, Rhee J, Willig KI. Pre- and postsynaptic nanostructures increase in size and complexity after induction of long-term potentiation. iScience 2024; 27:108679. [PMID: 38213627 PMCID: PMC10783556 DOI: 10.1016/j.isci.2023.108679] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 11/09/2023] [Accepted: 12/05/2023] [Indexed: 01/13/2024] Open
Abstract
Synapses, specialized contact sites between neurons, are the fundamental elements of neuronal information transfer. Synaptic plasticity involves changes in synaptic morphology and the number of neurotransmitter receptors, and is thought to underlie learning and memory. However, it is not clear how these structural and functional changes are connected. We utilized time-lapse super-resolution STED microscopy of organotypic hippocampal brain slices and cultured neurons to visualize structural changes of the synaptic nano-organization of the postsynaptic scaffolding protein PSD95, the presynaptic scaffolding protein Bassoon, and the GluA2 subunit of AMPA receptors by chemically induced long-term potentiation (cLTP) at the level of single synapses. We found that the nano-organization of all three proteins increased in complexity and size after cLTP induction. The increase was largely synchronous, peaking at ∼60 min after stimulation. Therefore, both the size and complexity of individual pre- and post-synaptic nanostructures serve as substrates for tuning and determining synaptic strength.
Collapse
Affiliation(s)
- Valérie Clavet-Fournier
- Group of Optical Nanoscopy in Neuroscience, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Göttingen Graduate Center for Neurosciences, Biophysics, und Molecular Biosciences (GGNB), Göttingen, Germany
| | - ChungKu Lee
- Department of Molecular Neurobiology, Synaptic Physiology Group, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Waja Wegner
- Group of Optical Nanoscopy in Neuroscience, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Center for Nanoscale Microscopy and Molecular Physiology of the Brain, University Medical Center Göttingen, Göttingen, Germany
| | - Nils Brose
- Department of Molecular Neurobiology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - JeongSeop Rhee
- Department of Molecular Neurobiology, Synaptic Physiology Group, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Katrin I. Willig
- Group of Optical Nanoscopy in Neuroscience, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Center for Nanoscale Microscopy and Molecular Physiology of the Brain, University Medical Center Göttingen, Göttingen, Germany
| |
Collapse
|
45
|
Sun H, Lai HM, Wu W. Three-dimensional visualization and analysis of dendritic spines in human brain tissue. Biotechniques 2024; 76:37-42. [PMID: 37994419 DOI: 10.2144/btn-2023-0078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2023] Open
Abstract
We developed a simple yet powerful technique to visualize neuronal morphology in human brain tissues. By ballistically shooting DiI (1,1'-dioctadecyl-3,3,3'3'-tetramethylindocarbocyanine perchlorate)-coated tungsten particles to randomly label neurons, then clearing tissues with OPTIClear, we demonstrated the tracing of branched dendritic trees and spines in three dimensions. High-resolution imaging revealed dendrites up to 300 μm long and spine necks down to 200 nm across. Quantitative analyses of 1304 dendritic spines showed no decrease in spine density with imaging depth, indicating excellent clearing and tracing. Segmentation and modeling of dendritic spines enabled morphological characterization. This technique enables assumption-free, high-resolution and cost-efficient visualization of neuronal morphology in human tissues. Combined with immunohistochemistry and electron microscopy, it could provide new perspectives for studying human neuroanatomy and pathology.
Collapse
Affiliation(s)
- Haitao Sun
- Clinical Biobank Center, Microbiome Medicine Center, Department of Laboratory Medicine, Guangdong Provincial Clinical Research Center for Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis & Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair & Regeneration, The Neurosurgery Institute of Guangdong Province Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Hei Ming Lai
- Department of Psychiatry, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
- Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Wutian Wu
- Re-Stem Biotechnology, Suzhou, Jiangsu, China
- GHM Institute of CNS Regeneration, Jinan University, Guangzhou, China
| |
Collapse
|
46
|
O'Rawe JF, Zhou Z, Li AJ, LaFosse PK, Goldbach HC, Histed MH. Excitation creates a distributed pattern of cortical suppression due to varied recurrent input. Neuron 2023; 111:4086-4101.e5. [PMID: 37865083 PMCID: PMC10872553 DOI: 10.1016/j.neuron.2023.09.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 05/14/2023] [Accepted: 09/08/2023] [Indexed: 10/23/2023]
Abstract
Dense local, recurrent connections are a major feature of cortical circuits, yet how they affect neurons' responses has been unclear, with some studies reporting weak recurrent effects, some reporting amplification, and others indicating local suppression. Here, we show that optogenetic input to mouse V1 excitatory neurons generates salt-and-pepper patterns of both excitation and suppression. Responses in individual neurons are not strongly predicted by that neuron's direct input. A balanced-state network model reconciles a set of diverse observations: the observed dynamics, suppressed responses, decoupling of input and output, and long tail of excited responses. The model shows recurrent excitatory-excitatory connections are strong and also variable across neurons. Together, these results demonstrate that excitatory recurrent connections can have major effects on cortical computations by shaping and changing neurons' responses to input.
Collapse
Affiliation(s)
- Jonathan F O'Rawe
- National Institute of Mental Health Intramural Program, NIH, Bethesda, MD, USA
| | - Zhishang Zhou
- National Institute of Mental Health Intramural Program, NIH, Bethesda, MD, USA
| | - Anna J Li
- National Institute of Mental Health Intramural Program, NIH, Bethesda, MD, USA
| | - Paul K LaFosse
- National Institute of Mental Health Intramural Program, NIH, Bethesda, MD, USA; NIH-University of Maryland Graduate Partnerships Program, Bethesda, MD, USA; Neuroscience and Cognitive Science Program, University of Maryland, College Park, MD, USA
| | - Hannah C Goldbach
- National Institute of Mental Health Intramural Program, NIH, Bethesda, MD, USA
| | - Mark H Histed
- National Institute of Mental Health Intramural Program, NIH, Bethesda, MD, USA.
| |
Collapse
|
47
|
Karbowski J, Urban P. Information encoded in volumes and areas of dendritic spines is nearly maximal across mammalian brains. Sci Rep 2023; 13:22207. [PMID: 38097675 PMCID: PMC10721930 DOI: 10.1038/s41598-023-49321-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 12/06/2023] [Indexed: 12/17/2023] Open
Abstract
Many experiments suggest that long-term information associated with neuronal memory resides collectively in dendritic spines. However, spines can have a limited size due to metabolic and neuroanatomical constraints, which should effectively limit the amount of encoded information in excitatory synapses. This study investigates how much information can be stored in the population of sizes of dendritic spines, and whether it is optimal in any sense. It is shown here, using empirical data for several mammalian brains across different regions and physiological conditions, that dendritic spines nearly maximize entropy contained in their volumes and surface areas for a given mean size in cortical and hippocampal regions. Although both short- and heavy-tailed fitting distributions approach [Formula: see text] of maximal entropy in the majority of cases, the best maximization is obtained primarily for short-tailed gamma distribution. We find that most empirical ratios of standard deviation to mean for spine volumes and areas are in the range [Formula: see text], which is close to the theoretical optimal ratios coming from entropy maximization for gamma and lognormal distributions. On average, the highest entropy is contained in spine length ([Formula: see text] bits per spine), and the lowest in spine volume and area ([Formula: see text] bits), although the latter two are closer to optimality. In contrast, we find that entropy density (entropy per spine size) is always suboptimal. Our results suggest that spine sizes are almost as random as possible given the constraint on their size, and moreover the general principle of entropy maximization is applicable and potentially useful to information and memory storing in the population of cortical and hippocampal excitatory synapses, and to predicting their morphological properties.
Collapse
Affiliation(s)
- Jan Karbowski
- Institute of Applied Mathematics and Mechanics, University of Warsaw, Warsaw, Poland.
| | - Paulina Urban
- Laboratory of Functional and Structural Genomics, Centre of New Technologies, University of Warsaw, Warsaw, Poland
- College of Inter-Faculty Individual Studies in Mathematics and Natural Sciences, University of Warsaw, Warsaw, Poland
- Laboratory of Databases and Business Analytics, National Information Processing Institute, National Research Institute, Warsaw, Poland
| |
Collapse
|
48
|
Parkins EV, Brager DH, Rymer JK, Burwinkel JM, Rojas D, Tiwari D, Hu YC, Gross C. Mir324 knockout regulates the structure of dendritic spines and impairs hippocampal long-term potentiation. Sci Rep 2023; 13:21919. [PMID: 38082035 PMCID: PMC10713680 DOI: 10.1038/s41598-023-49134-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 12/04/2023] [Indexed: 12/18/2023] Open
Abstract
MicroRNAs are an emerging class of synaptic regulators. These small noncoding RNAs post-transcriptionally regulate gene expression, thereby altering neuronal pathways and shaping cell-to-cell communication. Their ability to rapidly alter gene expression and target multiple pathways makes them interesting candidates in the study of synaptic plasticity. Here, we demonstrate that the proconvulsive microRNA miR-324-5p regulates excitatory synapse structure and function in the hippocampus of mice. Both Mir324 knockout (KO) and miR-324-5p antagomir treatment significantly reduce dendritic spine density in the hippocampal CA1 subregion, and Mir324 KO, but not miR-324-5p antagomir treatment, shift dendritic spine morphology, reducing the proportion of thin, "unstable" spines. Western blot and quantitative Real-Time PCR revealed changes in protein and mRNA levels for potassium channels, cytoskeletal components, and synaptic markers, including MAP2 and Kv4.2, which are important for long-term potentiation (LTP). In line with these findings, slice electrophysiology revealed that LTP is severely impaired in Mir324 KO mice, while neurotransmitter release probability remains unchanged. Overall, this study demonstrates that miR-324-5p regulates dendritic spine density, morphology, and plasticity in the hippocampus, potentially via multiple cytoskeletal and synaptic modulators.
Collapse
Affiliation(s)
- Emma V Parkins
- University of Cincinnati Neuroscience Graduate Program, Cincinnati, OH, 45229, USA
- Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Darrin H Brager
- Center for Learning and Memory, Department of Neuroscience, The University of Texas at Austin, Austin, USA
| | - Jeffrey K Rymer
- Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - John M Burwinkel
- Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Diego Rojas
- Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Durgesh Tiwari
- University of Cincinnati Neuroscience Graduate Program, Cincinnati, OH, 45229, USA
- Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, 45229, USA
| | - Yueh-Chiang Hu
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, 45229, USA
- Transgenic Animal and Genome Editing Core Facility, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Christina Gross
- University of Cincinnati Neuroscience Graduate Program, Cincinnati, OH, 45229, USA.
- Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA.
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, 45229, USA.
| |
Collapse
|
49
|
Caiola HO, Wu Q, Soni S, Wang XF, Monahan K, Pang ZP, Wagner GC, Zhang H. Neuronal connectivity, behavioral, and transcriptional alterations associated with the loss of MARK2. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.05.569759. [PMID: 38105965 PMCID: PMC10723285 DOI: 10.1101/2023.12.05.569759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Neuronal connectivity is essential for adaptive brain responses and can be modulated by dendritic spine plasticity and the intrinsic excitability of individual neurons. Dysregulation of these processes can lead to aberrant neuronal activity, which has been associated with numerous neurological disorders including autism, epilepsy, and Alzheimer's disease. Nonetheless, the molecular mechanisms underlying aberrant neuronal connectivity remains unclear. We previously found that the serine/threonine kinase Microtubule Affinity Regulating Kinase 2 (MARK2), also known as Partitioning Defective 1b (Par1b), is important for the formation of dendritic spines in vitro. However, despite its genetic association with several neurological disorders, the in vivo impact of MARK2 on neuronal connectivity and cognitive functions remains unclear. Here, we demonstrate that loss of MARK2 in vivo results in changes to dendritic spine morphology, which in turn leads to a decrease in excitatory synaptic transmission. Additionally, loss of MARK2 produces substantial impairments in learning and memory, anxiety, and social behavior. Notably, MARK2 deficiency results in heightened seizure susceptibility. Consistent with this observation, RNAseq analysis reveals transcriptional changes in genes regulating synaptic transmission and ion homeostasis. These findings underscore the in vivo role of MARK2 in governing synaptic connectivity, cognitive functions, and seizure susceptibility.
Collapse
|
50
|
Knobloch JA, Laurent G, Lauterbach MA. STED microscopy reveals dendrite-specificity of spines in turtle cortex. Prog Neurobiol 2023; 231:102541. [PMID: 37898315 DOI: 10.1016/j.pneurobio.2023.102541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 10/20/2023] [Accepted: 10/21/2023] [Indexed: 10/30/2023]
Abstract
Dendritic spines are key structures for neural communication, learning and memory. Spine size and shape probably reflect synaptic strength and learning. Imaging with superresolution STED microscopy the detailed shape of the majority of the spines of individual neurons in turtle cortex (Trachemys scripta elegans) revealed several distinguishable shape classes. Dendritic spines of a given class were not distributed randomly, but rather decorated significantly more often some dendrites than others. The individuality of dendrites was corroborated by significant inter-dendrite differences in other parameters such as spine density and length. In addition, many spines were branched or possessed spinules. These findings may have implications for the role of individual dendrites in this cortex.
Collapse
Affiliation(s)
- Jan A Knobloch
- Department of Molecular Imaging, Center for Integrative Physiology and Molecular Medicine, Saarland University, Building 48, 66421 Homburg, Germany
| | - Gilles Laurent
- Max Planck Institute for Brain Research, Max-von-Laue-Str. 4, 60438 Frankfurt am Main, Germany
| | - Marcel A Lauterbach
- Department of Molecular Imaging, Center for Integrative Physiology and Molecular Medicine, Saarland University, Building 48, 66421 Homburg, Germany; Max Planck Institute for Brain Research, Max-von-Laue-Str. 4, 60438 Frankfurt am Main, Germany.
| |
Collapse
|