1
|
Yu H, Zhou C, Yang S, Yu J, Zhang X, Liang Z, Tan S, Song Y, Wang W, Sun Y, Zan R, Qiu H, Shen L, Zhang X. Mitigation of arteriosclerosis through transcriptional regulation of ferroptosis and lipid metabolism by magnesium. Biomaterials 2025; 319:123135. [PMID: 39985976 DOI: 10.1016/j.biomaterials.2025.123135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 01/21/2025] [Accepted: 01/23/2025] [Indexed: 02/24/2025]
Abstract
Metallic cardiovascular stents are crucial for preventing atherosclerosis-induced infarction by offering mechanical support. However, the effects of metal ions released from these stents on atherosclerosis remain ambiguous. This study evaluates the potential impact posed by the degradation products of magnesium-based stents, with a focus on ferroptosis, a key mechanism driving atherosclerosis. Remarkably, our results demonstrate that Mg effectively inhibits ferroptosis in human umbilical vein endothelial cells and in murine, rat and rabbit models. Our studies reveal that magnesium ions impede the dephosphorylation of ERK proteins, thereby enhancing the expression of SLC7A11 and GCL proteins via activation of the MAPK pathway mechanistically. Additionally, magnesium ions downregulate ACSL4 protein expression, leading to decreased levels of acyl-CoA and ether-phospholipids. Eventually, multiple animal experiments indicate that biodegradable Mg stents can inhibit ferroptosis and decelerate the progression of arteriosclerosis, highlighting the therapeutic potential of Mg stents in treating arteriosclerosis.
Collapse
Affiliation(s)
- Han Yu
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Changyi Zhou
- Department of Cardiology, Zhongshan Hospital, Fudan University, Research Unit of Cardiovascular Techniques and Devices, Chinese Academy of Medical Sciences, Shanghai, 200030, China
| | - Shi Yang
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jinlong Yu
- Orthopaedic Department, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Xiyue Zhang
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Zhaojia Liang
- Stomatologic Hospital and College, Key Laboratory of Oral Diseases Research of Anhui Province, Anhui Medical University, Hefei, Anhui, 230032, China
| | - Shuang Tan
- Stomatologic Hospital and College, Key Laboratory of Oral Diseases Research of Anhui Province, Anhui Medical University, Hefei, Anhui, 230032, China
| | - Yang Song
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Wenhui Wang
- College of Biological Science and Medical Engineering, Donghua University, Shanghai, 201620, China
| | - Yu Sun
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Rui Zan
- Yiwu Research Institute of Fudan University, Fudan University, Yiwu, Zhejiang, 322000, China.
| | - Hua Qiu
- Stomatologic Hospital and College, Key Laboratory of Oral Diseases Research of Anhui Province, Anhui Medical University, Hefei, Anhui, 230032, China.
| | - Li Shen
- Department of Cardiology, Zhongshan Hospital, Fudan University, Research Unit of Cardiovascular Techniques and Devices, Chinese Academy of Medical Sciences, Shanghai, 200030, China.
| | - Xiaonong Zhang
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|
2
|
Tu L, Zou Z, Yang Y, Wang S, Xing B, Feng J, Jin Y, Cheng M. Targeted drug delivery systems for atherosclerosis. J Nanobiotechnology 2025; 23:306. [PMID: 40269931 DOI: 10.1186/s12951-025-03384-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2025] [Accepted: 04/10/2025] [Indexed: 04/25/2025] Open
Abstract
Atherosclerosis is a complex cardiovascular disease driven by multiple factors, including aging, inflammation, oxidative stress, and plaque rupture. The progression of this disease is often covert, emphasizing the need for early biomarkers and effective intervention measures. In recent years, advancements in therapeutic strategies have highlighted the potential of targeting specific processes in atherosclerosis, such as plaque localization, macrophage activity, and key enzymes. Based on this, this review discusses the potential role of targeted drugs in the treatment of atherosclerosis. It also focuses on their clinical efficacy in anti-atherosclerosis treatment and their ability to provide more precise therapeutic approaches. The findings underscore that future research can concentrate on exploring newer drug delivery systems and biomarkers to further refine clinical treatment strategies and enhance the long-term dynamic management of atherosclerosis.
Collapse
Affiliation(s)
- Liangxing Tu
- Jiangxi University of Chinese Medicine, Nanchang, 330006, P.R. China
| | - Zijian Zou
- Jiangxi University of Chinese Medicine, Nanchang, 330006, P.R. China
| | - Ye Yang
- Wenzhou Yining Geriatric Hospital, Wenzhou, 325041, P.R. China
| | - Siying Wang
- Jiangxi University of Chinese Medicine, Nanchang, 330006, P.R. China
| | - Banghuai Xing
- Jiangxi University of Chinese Medicine, Nanchang, 330006, P.R. China
| | - Jianfang Feng
- Jiangxi University of Chinese Medicine, Nanchang, 330006, P.R. China
- Guangxi University of Chinese Medicine, Nanning, 530200, P.R. China
| | - Yi Jin
- Jiangxi University of Chinese Medicine, Nanchang, 330006, P.R. China.
| | - Meng Cheng
- Jiangxi University of Chinese Medicine, Nanchang, 330006, P.R. China.
| |
Collapse
|
3
|
Asemi R, Omidi Najafabadi E, Mahmoudian Z, Reiter RJ, Mansournia MA, Asemi Z. Melatonin as a treatment for atherosclerosis: focus on programmed cell death, inflammation and oxidative stress. J Cardiothorac Surg 2025; 20:194. [PMID: 40221806 PMCID: PMC11993989 DOI: 10.1186/s13019-025-03423-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Accepted: 04/06/2025] [Indexed: 04/14/2025] Open
Abstract
Delaying the development of atherosclerosis (AS) and decreasing cardiac ischemia-reperfusion damage remain serious challenges for the medical community. Chronic arterial disease, i.e., AS, is frequently linked to oxidative stress and inflammation as significant contributing causes. AS risk factors, such as hyperlipidemia, high blood pressure, age, hyperglycemia, smoking, high cholesterol, and irregular sleep patterns, can exacerbate AS in the carotid artery and further shrink its lumen. Finding new approaches that support plaque inhibition or stability is an ongoing problem. The last ten years have shown us that melatonin (MLT) affects the cardiovascular system, although its exact mechanisms of action are yet unknown. MLT's direct free radical scavenger activity, its indirect antioxidant qualities, and its anti-inflammatory capabilities all contribute to its atheroprotective effects on several pathogenic signaling pathways. Herein, we examine the evidence showing that MLT treatment has significant protective effects against AS and AS-related cardiovascular diseases. The numerous pieces of the puzzle that have been as for epigenetic and biogenetic targets for prevention and therapy against the atherosclerotic pathogenic processes are identified.
Collapse
Affiliation(s)
- Reza Asemi
- Department of Internal Medicine, School of Medicine, Cancer Prevention Research Center, Seyyed Al-Shohada Hospital, Isfahan University of Medical Sciences, Isfahan, Iran
| | | | - Zahra Mahmoudian
- Heart Failure Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Russel J Reiter
- Department of Cell Systems and Anatomy, UT Health. Long School of Medicine, San Antonio, TX, USA
| | - Mohammad Ali Mansournia
- Department of Epidemiology and Biostatistics, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
4
|
Saba L, Cau R, Vergallo R, Kooi ME, Staub D, Faa G, Congiu T, Ntaios G, Wasserman BA, Benson J, Nardi V, Kawakami R, Lanzino G, Virmani R, Libby P. Carotid artery atherosclerosis: mechanisms of instability and clinical implications. Eur Heart J 2025; 46:904-921. [PMID: 39791527 DOI: 10.1093/eurheartj/ehae933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 08/25/2024] [Accepted: 12/19/2024] [Indexed: 01/12/2025] Open
Abstract
Cardiovascular disease remains a prominent cause of disability and premature death worldwide. Within this spectrum, carotid artery atherosclerosis is a complex and multifaceted condition, and a prominent precursor of acute ischaemic stroke and other cardiovascular events. The intricate interplay among inflammation, oxidative stress, endothelial dysfunction, lipid metabolism, and immune responses participates in the development of lesions, leading to luminal stenosis and potential plaque instability. Even non-stenotic plaques can precipitate a sudden cerebrovascular event, regardless of the degree of luminal encroachment. In this context, carotid imaging modalities have proved their efficacy in providing in vivo characterization of plaque features, contributing substantially to patient risk stratification and clinical management. This review emphasizes the importance of identifying high-risk individuals by use of current imaging modalities, biomarkers, and risk stratification tools. Such approaches inform early intervention and the implementation of personalized therapeutic strategies, ultimately enhancing patient outcomes in the realm of cardiovascular disease management.
Collapse
Affiliation(s)
- Luca Saba
- Department of Radiology, University of Cagliari, Via Università, 40, 09124 Cagliari, Italy
| | - Riccardo Cau
- Department of Radiology, University of Cagliari, Via Università, 40, 09124 Cagliari, Italy
| | - Rocco Vergallo
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Roma, Italy
| | - M Eline Kooi
- Department of Radiology and Nuclear Medicine, CARIM School for Cardiovascular Diseases, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Daniel Staub
- Vascular Medicine/Angiology, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Gavino Faa
- Department of Pathology, University of Cagliari, Cagliari, Italy
| | - Terenzio Congiu
- Department of Pathology, University of Cagliari, Cagliari, Italy
| | - George Ntaios
- Department of Internal Medicine, School of Health Sciences, University of Thessaly, Larissa University Hospital, Larissa 41132, Greece
| | - Bruce A Wasserman
- Department of Diagnostic Radiology & Nuclear Medicine, University of Maryland School of Medicine, MD, USA
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins Hospital, MD, USA
| | - John Benson
- Department of Radiology, Mayo Clinic, Rochester, MN, USA
| | - Valentina Nardi
- Department of Cardiovascular Diseases, Mayo Clinic, Rochester, MN, USA
| | - Rika Kawakami
- Department of Cardiovascular Pathology, CVPath Institute, Inc., Gaithersburg, MD, USA
| | | | - Renu Virmani
- Department of Cardiovascular Pathology, CVPath Institute, Gaithersburg, MD, USA
| | - Peter Libby
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
5
|
Penna C, Pagliaro P. Endothelial Dysfunction: Redox Imbalance, NLRP3 Inflammasome, and Inflammatory Responses in Cardiovascular Diseases. Antioxidants (Basel) 2025; 14:256. [PMID: 40227195 PMCID: PMC11939635 DOI: 10.3390/antiox14030256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2025] [Revised: 02/17/2025] [Accepted: 02/20/2025] [Indexed: 04/15/2025] Open
Abstract
Endothelial dysfunction (ED) is characterized by an imbalance between vasodilatory and vasoconstrictive factors, leading to impaired vascular tone, thrombosis, and inflammation. These processes are critical in the development of cardiovascular diseases (CVDs) such as atherosclerosis, hypertension and ischemia/reperfusion injury (IRI). Reduced nitric oxide (NO) production and increased oxidative stress are key contributors to ED. Aging further exacerbates ED through mitochondrial dysfunction and increased oxidative/nitrosative stress, heightening CVD risk. Antioxidant systems like superoxide-dismutase (SOD), glutathione-peroxidase (GPx), and thioredoxin/thioredoxin-reductase (Trx/TXNRD) pathways protect against oxidative stress. However, their reduced activity promotes ED, atherosclerosis, and vulnerability to IRI. Metabolic syndrome, comprising insulin resistance, obesity, and hypertension, is often accompanied by ED. Specifically, hyperglycemia worsens endothelial damage by promoting oxidative stress and inflammation. Obesity leads to chronic inflammation and changes in perivascular adipose tissue, while hypertension is associated with an increase in oxidative stress. The NLRP3 inflammasome plays a significant role in ED, being triggered by factors such as reactive oxygen and nitrogen species, ischemia, and high glucose, which contribute to inflammation, endothelial injury, and exacerbation of IRI. Treatments, such as N-acetyl-L-cysteine, SGLT2 or NLRP3 inhibitors, show promise in improving endothelial function. Yet the complexity of ED suggests that multi-targeted therapies addressing oxidative stress, inflammation, and metabolic disturbances are essential for managing CVDs associated with metabolic syndrome.
Collapse
Affiliation(s)
- Claudia Penna
- Department of Clinical and Biological Sciences, University of Turin, 10043 Orbassano, Italy;
- National Institute for Cardiovascular Research (INRC), 40126 Bologna, Italy
| | - Pasquale Pagliaro
- Department of Clinical and Biological Sciences, University of Turin, 10043 Orbassano, Italy;
- National Institute for Cardiovascular Research (INRC), 40126 Bologna, Italy
| |
Collapse
|
6
|
Ahsan R, Paul S, Alam MS, Rahman AFMM. Synthesis, Biological Properties, In Silico ADME, Molecular Docking Studies, and FMO Analysis of Chalcone Derivatives as Promising Antioxidant and Antimicrobial Agents. ACS OMEGA 2025; 10:4367-4387. [PMID: 39959036 PMCID: PMC11822702 DOI: 10.1021/acsomega.4c06897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 12/31/2024] [Accepted: 01/13/2025] [Indexed: 02/18/2025]
Abstract
A series of chalcone derivatives were synthesized and characterized using UV-vis, FT-IR, 1H NMR, and mass spectrometry, followed by the evaluation of their antimicrobial and antioxidant properties. In vitro screening against six bacterial strains (Staphylococcus aureus, Bacillus subtilis, Salmonella typhimurium, Escherichia coli, Pseudomonas aeruginosa, and Citrobacter freundii) and two fungal strains (Aspergillus niger and Trichoderma harzianum) revealed outstanding antibacterial activities, particularly with compound 5b, 5d, and 5e against S. aureus, and compounds 5c and 5h against B. subtilis. Notably, compounds 5f and 5g exhibited significant effects against P. aeruginosa, while compound 5b showed the highest antifungal activity against T. harzianum. All compounds demonstrated remarkable antioxidant activities, with 5h (IC50 values of 0.005 μM) and 5c (IC50 values of 0.006 μM) being the most potent, comparable to ascorbic acid (IC50 values of 0.007 μM). In silico evaluations confirmed favorable drug-likeness and pharmacokinetic properties for all analogues, adhering to both Lipinski's rule of Five and Veber's rule. Molecular docking studies of potent antibacterial compounds (5e and 5h) indicated strong binding affinities to the PBP-1b receptor in S. aureus, while DFT calculations provided valuable insights into their molecular reactivity and biological properties. Ligand-based enzymatic target predictions indicate that chalcone analogues (5a-m) show potential as inhibitors of oxidoreductases, kinases, enzymes, proteases, or ligands for family A GPCR. These findings position chalcone derivatives as promising candidates for therapeutic applications in combating bacterial infections and oxidative stress.
Collapse
Affiliation(s)
- Rashedul Ahsan
- Department
of Chemistry, Jagannath University, Dhaka 1100, Bangladesh
| | - Sumi Paul
- Department
of Chemistry, Jagannath University, Dhaka 1100, Bangladesh
| | | | - A. F. M. Motiur Rahman
- Department
of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
7
|
Wang AYL, Aviña AE, Liu YY, Chang YC, Kao HK. Transcription Factor Blimp-1: A Central Regulator of Oxidative Stress and Metabolic Reprogramming in Chronic Inflammatory Diseases. Antioxidants (Basel) 2025; 14:183. [PMID: 40002370 PMCID: PMC11851694 DOI: 10.3390/antiox14020183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 01/17/2025] [Accepted: 02/03/2025] [Indexed: 02/27/2025] Open
Abstract
B-lymphocyte-induced maturation protein 1 (Blimp-1) is a transcription factor that, among other functions, modulates metabolism and helps to regulate antioxidant pathways, which is important in the context of chronic inflammatory diseases like diabetes, cardiovascular disease, and autoimmune disease. In immune cell function, Blimp-1 has a modulatory role in the orchestration of metabolic reprogramming and as a promoter of anti-inflammatory cytokines, including IL-10, responsible for modulating oxidative stress and immune homeostasis. Moreover, Blimp-1 also modulates key metabolic aspects, such as glycolysis and fatty acid oxidation, which regulate reactive oxygen species levels, as well as tissue protection. This review depicts Blimp-1 as an important regulator of antioxidant defenses and anti-inflammation and suggests that the protein could serve as a therapeutic target in chronic inflammatory and metabolic dysregulation conditions. The modulation of Blimp-1 in diseases such as diabetic coronary heart disease and atherosclerosis could alleviate oxidative stress, augment the protection of tissues, and improve disease outcomes. The therapeutic potential for the development of new treatments for these chronic conditions lies in the synergy between the regulation of Blimp-1 and antioxidant therapies, which are future directions that may be pursued. This review emphasizes Blimp-1's emerging importance as a novel regulator in the pathogenesis of inflammatory diseases, providing new opportunities for therapeutic intervention.
Collapse
Affiliation(s)
- Aline Yen Ling Wang
- Center for Vascularized Composite Allotransplantation, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan; (A.E.A.); (Y.-Y.L.)
| | - Ana Elena Aviña
- Center for Vascularized Composite Allotransplantation, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan; (A.E.A.); (Y.-Y.L.)
- International PhD Program in Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
| | - Yen-Yu Liu
- Center for Vascularized Composite Allotransplantation, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan; (A.E.A.); (Y.-Y.L.)
| | - Yun-Ching Chang
- Department of Health Industry Technology Management, Chung Shan Medical University, Taichung 402, Taiwan;
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung 402, Taiwan
| | - Huang-Kai Kao
- Department of Plastic and Reconstructive Surgery, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan;
- College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| |
Collapse
|
8
|
Karaduman AB, Ilgın S, Aykaç Ö, Yeşilkaya M, Levent S, Özdemir AÖ, Girgin G. Assessment of Inflammatory and Oxidative Stress Biomarkers for Predicting of Patients with Asymptomatic Carotid Artery Stenosis. J Clin Med 2025; 14:755. [PMID: 39941424 PMCID: PMC11818673 DOI: 10.3390/jcm14030755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Revised: 01/15/2025] [Accepted: 01/17/2025] [Indexed: 02/16/2025] Open
Abstract
Background/Objectives: Asymptomatic carotid artery stenosis is usually detected by physicians in patients, coincidentally, during an ultrasound examination of the neck. Therefore, measurable biomarkers in blood are needed to define the presence and severity of atherosclerotic plaque in patients to identify and manage it. We hypothesized that biomarkers that indicate pathways related to the pathogenesis of atherosclerosis could be used to identify the presence and severity of atherosclerotic plaque. For this purpose, the levels of participants' inflammatory and oxidative stress biomarkers were determined. Kynurenine/tryptophan and neopterin levels were measured as relatively new biomarkers of inflammation in this study. Methods: Our study included 57 patients diagnosed with asymptomatic carotid artery stenosis and 28 healthy volunteers. Blood kynurenine and tryptophan levels were measured with LCMS/MS. Blood catalase, total superoxide dismutase (t-SOD), glutathione peroxidase (GPx), malondialdehyde, and neopterin levels were measured using the ELISA assay method. Result: The kynurenine/tryptophan ratio reflecting IDO activity was higher in patients than in healthy volunteers. Decreased tryptophan levels and increased kynurenine and neopterin levels were observed in patients who underwent carotid endarterectomy. In patients, catalase, t-SOD, and malondialdehyde levels were higher, while GPx activity was lower. These differences were found to be more significant in patients who underwent carotid endarterectomy. Conclusions: Increased kynurenine/tryptophan ratio and neopterin levels in patients with asymptomatic carotid artery stenosis were associated with the inflammatory status of the patients. Oxidative stress and inflammatory biomarkers can be considered effective diagnostic and severity indicators for asymptomatic carotid artery stenosis.
Collapse
Affiliation(s)
- Abdullah Burak Karaduman
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Anadolu University, Eskisehir 26470, Turkey;
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Hacettepe University, Ankara 06800, Turkey;
| | - Sinem Ilgın
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Anadolu University, Eskisehir 26470, Turkey;
| | - Özlem Aykaç
- Department of Neurology, Faculty of Medicine, Eskisehir Osmangazi University, Eskisehir 26040, Turkey; (Ö.A.); (M.Y.); (A.Ö.Ö.)
| | - Mehmetcan Yeşilkaya
- Department of Neurology, Faculty of Medicine, Eskisehir Osmangazi University, Eskisehir 26040, Turkey; (Ö.A.); (M.Y.); (A.Ö.Ö.)
| | - Serkan Levent
- Department of Analytical Chemistry, Faculty of Pharmacy, Anadolu University, Eskisehir 26470, Turkey;
| | - Atilla Özcan Özdemir
- Department of Neurology, Faculty of Medicine, Eskisehir Osmangazi University, Eskisehir 26040, Turkey; (Ö.A.); (M.Y.); (A.Ö.Ö.)
| | - Gozde Girgin
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Hacettepe University, Ankara 06800, Turkey;
| |
Collapse
|
9
|
Li X, Zhang M, Chen A, Wang X, Yang L, Zhu Y, Li Z. Lipoic Acid Nanoparticles Exert Effective Antiatherosclerosis Effects through Anti-Inflammatory and Antioxidant Pathways. ACS OMEGA 2024; 9:48642-48649. [PMID: 39676958 PMCID: PMC11635690 DOI: 10.1021/acsomega.4c07745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 11/08/2024] [Accepted: 11/19/2024] [Indexed: 12/17/2024]
Abstract
Oxidative stress and inflammation are key pathological features of atherosclerotic plaques. Numerous nanomedicines have been developed to alleviate oxidative stress and reduce inflammation within plaques. However, nonbioactive carrier materials reduce the bioavailability of nanomedicines and may pose potential biological toxicity. In this study, we utilized the unique amphiphilic chemical structure of lipoic acid (LA) to prepare LA nanoparticles (LA NPs) via a self-assembly method. Leveraging the inherent anti-inflammatory and antioxidant properties of LA, these NPs were used for the treatment of atherosclerosis. In an inflammatory macrophage model, LA NPs exhibited superior anti-inflammatory activity compared to free LA. Through ultrasound imaging and pathological methods, we discovered that LA NPs demonstrated nice antiatherosclerotic effects in an atherosclerotic mice model. Immunofluorescence analysis further indicated that the antiatherosclerotic effects of LA were associated with the alleviation of oxidative stress within the plaques, reduced macrophage infiltration, and downregulation of inflammatory cytokine levels. Therefore, LA NPs offer a promising therapeutic strategy for the treatment of atherosclerosis.
Collapse
Affiliation(s)
- Xinyi Li
- Department
of Ultrasound, Jiading Branch of Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201803, China
- School
of Life Sciences, Hubei University, Wuhan, Hubei 430061, China
| | - Mengjiao Zhang
- Department
of Ultrasound, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
- School
of Medical Imaging, Shandong Second Medical
University, Weifang, Shandong 261053, China
| | - Anni Chen
- Department
of Ultrasound, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
- School
of Medical Imaging, Shandong Second Medical
University, Weifang, Shandong 261053, China
| | - Xinqi Wang
- Department
of Ultrasound, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
- Medical
Imaging Technology, First Clinical College, Fujian University of Traditional Chinese Medicine, Fuzhou 350108, China
| | - Lan Yang
- Department
of Ultrasound, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
- College of
Laboratory, Chengdu Medical College, Chengdu, Sichuan 610083, China
| | - Yingjian Zhu
- Department
of Urology, Jiading Branch of Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201803, China
| | - Zhaojun Li
- Department
of Ultrasound, Jiading Branch of Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201803, China
- Department
of Ultrasound, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| |
Collapse
|
10
|
Liu H, Wei G, Wang T, Hou Y, Hou B, Li X, Wang C, Sun M, Su M, Guo Z, Wang L, Kang N, Li M, Jia Z. Angelica keiskei water extract Mitigates Age-Associated Physiological Decline in Mice. Redox Rep 2024; 29:2305036. [PMID: 38390941 PMCID: PMC10896161 DOI: 10.1080/13510002.2024.2305036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2024] Open
Abstract
OBJECTIVE Angelica keiskei is a medicinal and edible plant that has been reported to possess potent antioxidant properties in several in vitro models, but its effectiveness on naturally aging organisms is still lacking. This study explores the antioxidant and health-promoting effects of Angelica keiskei in naturally aging mice. METHODS We treated 48-week-old mice with Angelica keiskei water extract (AKWE) 30 days, and measured indicators related to aging and antioxidants. In addition, we conducted network pharmacology analysis, component-target molecular docking, real-time PCR, and MTS assays to investigate relevant factors. RESULTS The results indicated that administration of AKWE to mice led to decrease blood glucose levels, improve muscle fiber structure, muscle strength, gait stability, and increase levels of glutathione and superoxide dismutase in serum. Additionally, it decreased pigmentation of the heart tissues. Angelica keiskei combats oxidative stress by regulating multiple redox signaling pathways, and its ingredients Coumarin and Flavonoids have the potential to bind to SIRT3 and SIRT5. CONCLUSIONS Our findings indicated the potential of Angelica keiskei as a safe and effective dietary supplement to combat aging and revealed the broad prospects of medicinal and edible plants for addressing aging and age-related chronic diseases.
Collapse
Affiliation(s)
- Huan Liu
- Key Laboratory of State Administration of TCM (Cardio-Cerebral Vessel Collateral Disease), Shijiazhuang, People’s Republic of China
- Hebei Provincial Key Laboratory of Luobing, Shijiazhuang, People’s Republic of China
| | - Gang Wei
- Key Laboratory of State Administration of TCM (Cardio-Cerebral Vessel Collateral Disease), Shijiazhuang, People’s Republic of China
- Hebei Provincial Key Laboratory of Luobing, Shijiazhuang, People’s Republic of China
- National Key Laboratory for Innovation and Transformation of Luobing Theory, Shijiazhuang, People’s Republic of China
| | - Tongxing Wang
- Key Laboratory of State Administration of TCM (Cardio-Cerebral Vessel Collateral Disease), Shijiazhuang, People’s Republic of China
- National Key Laboratory for Innovation and Transformation of Luobing Theory, Shijiazhuang, People’s Republic of China
| | - Yunlong Hou
- Key Laboratory of State Administration of TCM (Cardio-Cerebral Vessel Collateral Disease), Shijiazhuang, People’s Republic of China
- National Key Laboratory for Innovation and Transformation of Luobing Theory, Shijiazhuang, People’s Republic of China
| | - Bin Hou
- Key Laboratory of State Administration of TCM (Cardio-Cerebral Vessel Collateral Disease), Shijiazhuang, People’s Republic of China
| | - Xiaoyan Li
- Key Laboratory of State Administration of TCM (Cardio-Cerebral Vessel Collateral Disease), Shijiazhuang, People’s Republic of China
| | - Chao Wang
- Key Laboratory of State Administration of TCM (Cardio-Cerebral Vessel Collateral Disease), Shijiazhuang, People’s Republic of China
| | - Mingzhe Sun
- College of Food Science & Nutritional Engineering, China Agricultural University, Beijing, People’s Republic of China
| | - Min Su
- Key Laboratory of State Administration of TCM (Cardio-Cerebral Vessel Collateral Disease), Shijiazhuang, People’s Republic of China
- Hebei Provincial Key Laboratory of Luobing, Shijiazhuang, People’s Republic of China
- National Key Laboratory for Innovation and Transformation of Luobing Theory, Shijiazhuang, People’s Republic of China
| | - Zhifang Guo
- Key Laboratory of State Administration of TCM (Cardio-Cerebral Vessel Collateral Disease), Shijiazhuang, People’s Republic of China
- Hebei Provincial Key Laboratory of Luobing, Shijiazhuang, People’s Republic of China
- National Key Laboratory for Innovation and Transformation of Luobing Theory, Shijiazhuang, People’s Republic of China
| | - Lu Wang
- Key Laboratory of State Administration of TCM (Cardio-Cerebral Vessel Collateral Disease), Shijiazhuang, People’s Republic of China
- Hebei Provincial Key Laboratory of Luobing, Shijiazhuang, People’s Republic of China
- National Key Laboratory for Innovation and Transformation of Luobing Theory, Shijiazhuang, People’s Republic of China
| | - Ning Kang
- Key Laboratory of State Administration of TCM (Cardio-Cerebral Vessel Collateral Disease), Shijiazhuang, People’s Republic of China
- Hebei Provincial Key Laboratory of Luobing, Shijiazhuang, People’s Republic of China
- National Key Laboratory for Innovation and Transformation of Luobing Theory, Shijiazhuang, People’s Republic of China
| | - Mengnan Li
- Key Laboratory of State Administration of TCM (Cardio-Cerebral Vessel Collateral Disease), Shijiazhuang, People’s Republic of China
- National Key Laboratory for Innovation and Transformation of Luobing Theory, Shijiazhuang, People’s Republic of China
| | - Zhenhua Jia
- Key Laboratory of State Administration of TCM (Cardio-Cerebral Vessel Collateral Disease), Shijiazhuang, People’s Republic of China
- National Key Laboratory for Innovation and Transformation of Luobing Theory, Shijiazhuang, People’s Republic of China
- Hebei Academy of Integrated Traditional Chinese and Western Medicine, Shijiazhuang, People’s Republic of China
- High-Level TCM Key Disciplines of National Administration of Traditional Chinese, Shijiazhuang, People's Republic of China
| |
Collapse
|
11
|
Abu-Alghayth MH, Al-Kuraishy HM, Al-Gareeb AI, Alexiou A, Papadakis M, Bahaa MM, Afifi M, Al-Farga A, Wahsh E, Batiha GES. Atheroprotective role of vinpocetine: an old drug with new indication. Inflammopharmacology 2024; 32:3669-3678. [PMID: 39141151 PMCID: PMC11550280 DOI: 10.1007/s10787-024-01529-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 03/22/2024] [Indexed: 08/15/2024]
Abstract
Endothelial dysfunction is considered one of the main causes of atherosclerosis and elevated blood pressure. Atherosclerosis (AS) formation is enhanced by different mechanisms including cytokine generation, vascular smooth muscle cell proliferation, and migration. One of the recent treatment toward endothelial dysfunction is vinpocetine (VPN). VPN is an ethyl apovincaminate used in the management of different cerebrovascular disorders and endothelial dysfunction through inhibition of atherosclerosis formation. VPN is a potent inhibitor of phosphodiesterase enzyme 1 (PDE1) as well it has anti-inflammatory and antioxidant effects through inhibition of the expression of nuclear factor kappa B (NF-κB). VPN has been shown to be effective against development and progression of AS. However, the underlying molecular mechanism was not fully clarified. Consequently, objective of the present narrative review was to clarify the mechanistic role of VPN in AS. Most of pro-inflammatory cytokines released from macrophages are inhibited by the action of VPN via NF-κB-dependent mechanism. VPN blocks monocyte adhesion and migration by inhibiting the expression of pro-inflammatory cytokines. As well, VPN is effective in reducing oxidative stress, a cornerstone in the pathogenesis of AS, through inhibition of NF-κB and PDE1. VPN promotes plaque stability and prevent erosion and rupture of atherosclerotic plaque. In conclusion, VPN through mitigation of inflammatory and oxidative stress with plaque stability effects could be effective agent in the management of endothelial dysfunction through inhibition of atherosclerosis mediators.
Collapse
Affiliation(s)
- Mohammed H Abu-Alghayth
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, University of Bisha, P.O. Box 255, 67714, Bisha, Saudi Arabia
| | - Hayder M Al-Kuraishy
- Department of Clinical Pharmacology and Medicine, College of Medicine, Mustansiriyah University, Baghdad, Iraq
| | - Ali I Al-Gareeb
- Department of Clinical Pharmacology and Medicine, College of Medicine, Mustansiriyah University, Baghdad, Iraq
| | - Athanasios Alexiou
- University Centre for Research and Development, Chandigarh University, Chandigarh-Ludhiana highway, Mohali, Punjab, India
- Department of Research and Development, Funogen, 11741, Athens, Greece
- Department of Research and Development, AFNP Med, 1030, Vienna, Austria
- Department of Science and Engineering, Novel Global Community Educational Foundation, Hebersham, NSW, 2770, Australia
| | - Marios Papadakis
- Department of Surgery II, University Hospital Witten-Herdecke, University of Witten-Herdecke, Heusnerstrasse 40, 42283, Wuppertal, Germany.
| | - Mostafa M Bahaa
- Pharmacy Practice Department, Faculty of Pharmacy, Horus University, New Damietta, Egypt
| | - Mohammed Afifi
- Department of Biochemistry, College of Sciences, University of Jeddah, Jeddah, Saudi Arabia
| | - Ammar Al-Farga
- Department of Biochemistry, College of Sciences, University of Jeddah, Jeddah, Saudi Arabia
| | - Eman Wahsh
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Sinai University, Arish Campus, Arish, 45511, Egypt
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, 22511, AlBeheira, Egypt
| |
Collapse
|
12
|
Shilenok I, Kobzeva K, Soldatov V, Deykin A, Bushueva O. C11orf58 (Hero20) Gene Polymorphism: Contribution to Ischemic Stroke Risk and Interactions with Other Heat-Resistant Obscure Chaperones. Biomedicines 2024; 12:2603. [PMID: 39595169 PMCID: PMC11592265 DOI: 10.3390/biomedicines12112603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 11/11/2024] [Accepted: 11/12/2024] [Indexed: 11/28/2024] Open
Abstract
Background: Recently identified Hero proteins, which possess chaperone-like functions, are promising candidates for research into atherosclerosis-related diseases, including ischemic stroke (IS). Methods: 2204 Russian subjects (917 IS patients and 1287 controls) were genotyped for fifteen common SNPs in Hero20 gene C11orf58 using probe-based PCR and the MassArray-4 system. Results: Six C11orf58 SNPs were significantly associated with an increased risk of IS in the overall group (OG) and significantly modified by smoking (SMK) and low fruit/vegetable intake (LFVI): rs10766342 (effect allele (EA) A; P(OG = 0.02; SMK = 0.009; LFVI = 0.04)), rs11024032 (EA T; P(OG = 0.01; SMK = 0.01; LFVI = 0.036)), rs11826990 (EA G; P(OG = 0.007; SMK = 0.004; LFVI = 0.03)), rs3203295 (EA C; P(OG = 0.016; SMK = 0.01; LFVI = 0.04)), rs10832676 (EA G; P(OG = 0.006; SMK = 0.002; LFVI = 0.01)), rs4757429 (EA T; P(OG = 0.02; SMK = 0.04; LFVI = 0.04)). The top ten intergenic interactions of Hero genes (two-, three-, and four-locus models) involved exclusively polymorphic loci of C11orf58 and C19orf53 and were characterized by synergic and additive (independent) effects between SNPs. Conclusions: Thus, C11orf58 gene polymorphism represents a major risk factor for IS. Bioinformatic analysis showed the involvement of C11orf58 SNPs in molecular mechanisms of IS mediated by their role in the regulation of redox homeostasis, inflammation, vascular remodeling, apoptosis, vasculogenesis, neurogenesis, lipid metabolism, proteostasis, hypoxia, cell signaling, and stress response. In terms of intergenic interactions, C11orf58 interacts most closely with C19orf53.
Collapse
Affiliation(s)
- Irina Shilenok
- Laboratory of Genomic Research, Research Institute for Genetic and Molecular Epidemiology, Kursk State Medical University, 305041 Kursk, Russia
- Division of Neurology, Kursk Emergency Hospital, 305035 Kursk, Russia
| | - Ksenia Kobzeva
- Laboratory of Genomic Research, Research Institute for Genetic and Molecular Epidemiology, Kursk State Medical University, 305041 Kursk, Russia
| | - Vladislav Soldatov
- Laboratory of Genome Editing for Biomedicine and Animal Health, Belgorod State National Research University, 308015 Belgorod, Russia
- Department of Pharmacology and Clinical Pharmacology, Belgorod State National Research University, 308015 Belgorod, Russia
| | - Alexey Deykin
- Laboratory of Genome Editing for Biomedicine and Animal Health, Belgorod State National Research University, 308015 Belgorod, Russia
- Department of Pharmacology and Clinical Pharmacology, Belgorod State National Research University, 308015 Belgorod, Russia
| | - Olga Bushueva
- Laboratory of Genomic Research, Research Institute for Genetic and Molecular Epidemiology, Kursk State Medical University, 305041 Kursk, Russia
- Department of Biology, Medical Genetics and Ecology, Kursk State Medical University, 305041 Kursk, Russia
| |
Collapse
|
13
|
Luca CD, Boieriu A, Neculoiu D, Țînț D. Cardioprotection in coronary artery bypass graft surgery: the impact of remote ischemic preconditioning on modulating LOX-1 and SOD-1 to counteract oxidative stress. Front Cardiovasc Med 2024; 11:1502326. [PMID: 39526181 PMCID: PMC11543419 DOI: 10.3389/fcvm.2024.1502326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 10/11/2024] [Indexed: 11/16/2024] Open
Abstract
Background Coronary artery bypass grafting (CABG) is frequently used to treat severe coronary artery disease (CAD), but it can lead to increased oxidative stress and inflammation, worsening patient outcomes. Remote ischemic preconditioning (RIPC) has been suggested as a potential strategy to protect against these effects by modulating oxidative stress and inflammatory responses, though its impact on specific biomarkers requires further investigation. This study aims to assess the effects of remote ischemic preconditioning on inflammation markers and oxidative stress in patients with severe CAD undergoing coronary artery bypass grafting. Methods We conducted a case-control study involving 80 patients with severe coronary artery disease (CAD) scheduled for coronary artery bypass grafting (CABG). Fifty percent of these patients received ischemic preconditioning prior to surgery. Plasma levels of Lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1) and Superoxide dismutase-1 (SOD-1) levels were measured in all individuals using the ELISA method at three important time points: before surgery (visit 1 or V1), immediately post-operatively (visit 2 or V2), and one week post-operatively (visit 3 or V3). Results We enrolled 80 patients, of which 40 were assigned to the studied group receiving remote ischemic preconditioning (RIPC) and 40 to the control group. There were no statistically significant differences between the groups regarding baseline, clinical, or operative characteristics. RIPC treatment significantly reduced plasma levels of Lectin-like oxidized low-density lipoprotein (LDL) receptor-1 (LOX-1) (p < 0.05) as well as significantly increasing total values of Superoxide dismutase-1 (SOD-1) (p < 0.05, respectively). There were notable differences between the studied and control groups at V2 and V3. The studied group had higher SOD-1 levels (p < 0.05) and significantly lower LOX-1 levels at both time points (p < 0.05). Conclusion The significant changes in plasma levels of both LOX-1 and SOD-1 observed in this study strongly suggest that remote ischemic preconditioning (RIPC) plays an important role in reducing oxidative stress and enhancing the antioxidative status of patients. This is evidenced by the marked decrease in LOX-1 levels, alongside a corresponding increase in SOD-1 levels, indicating that RIPC may contribute to improved cardioprotection through these mechanisms.
Collapse
Affiliation(s)
- Cezar-Dumitrel Luca
- Faculty of Medicine, “Transilvania” University, Brașov, România
- Cardiology Department, Cardiovascular Rehabilitation Hospital, “Dr. Benedek Geza”, Covasna, România
| | - Alexandra Boieriu
- Faculty of Medicine, “Transilvania” University, Brașov, România
- Cardiology Department, Emergency Clinical County Hospital, Brașov, România
| | - Daniela Neculoiu
- Faculty of Medicine, “Transilvania” University, Brașov, România
- Clinical Laboratory Department, Emergency Clinical County Hospital, Brașov, România
| | - Diana Țînț
- Faculty of Medicine, “Transilvania” University, Brașov, România
- Cardiology Department, Clinicco Hospital, Brașov, România
| |
Collapse
|
14
|
Mosalmanzadeh N, Pence BD. Oxidized Low-Density Lipoprotein and Its Role in Immunometabolism. Int J Mol Sci 2024; 25:11386. [PMID: 39518939 PMCID: PMC11545486 DOI: 10.3390/ijms252111386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 10/04/2024] [Accepted: 10/17/2024] [Indexed: 11/16/2024] Open
Abstract
Modified cholesterols such as oxidized low-density lipoprotein (OxLDL) contribute to atherosclerosis and other disorders through the promotion of foam cell formation and inflammation. In recent years, it has become evident that immune cell responses to inflammatory molecules such as OxLDLs depend on cellular metabolic functions. This review examines the known effects of OxLDL on immunometabolism and immune cell responses in atherosclerosis and several other diseases. We additionally provide context on the relationship between OxLDL and aging/senescence and identify gaps in the literature and our current understanding in these areas.
Collapse
Affiliation(s)
| | - Brandt D. Pence
- College of Health Sciences and Center for Nutraceutical and Dietary Supplement Research, University of Memphis, Memphis, TN 38111, USA
| |
Collapse
|
15
|
Kim JH, Lee ME, Hwang SM, Lee JJ, Kwon YS. Association between Dietary Antioxidants and Atherosclerotic Cardiovascular Disease in South Korea: Insights from a Comprehensive Cross-Sectional Analysis. J Clin Med 2024; 13:6068. [PMID: 39458017 PMCID: PMC11508850 DOI: 10.3390/jcm13206068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/02/2024] [Accepted: 10/10/2024] [Indexed: 10/28/2024] Open
Abstract
Background/Objectives: The multifactorial nature of atherosclerotic cardiovascular disease (ASCVD) implicates genetic, environmental, and dietary habits. Antioxidants found in foods have garnered attention for their potential role in mitigating ASCVD risk by combating oxidative stress. This study seeks to confirm the findings of previous research through a large-scale cross-sectional analysis performed in a unique population with Korea National Health and Nutrition Examination Survey data to explore the association between the composite dietary antioxidant index (CDAI) and ASCVD prevalence among middle- and old-aged individuals in South Korea. Methods: This study includes data from 2016 to 2021. The CDAI was calculated based on nutrition intake, including zinc, beta-carotene, vitamin A, vitamin C, vitamin E, and docosahexaenoic acid. This cross-sectional analysis explored the relationship between the CDAI and ASCVD after adjusting for relevant covariates. Logistic regression models were employed, and subgroup analyses by sex were conducted to discern sex-specific effects. Results: A total of 19,818 individuals were analyzed, with 7.0% of them diagnosed with ASCVD. CDAI distribution and antioxidant analyses revealed higher CDAI levels in non-ASCVD individuals. Standardized antioxidant values increased across CDAI quartiles. Initially, a significant association (odds ratio [95% confidence interval]: 0.96 [0.94-0.99]) was found between the CDAI and ASCVD, which was attenuated after adjusting for covariates (1.0 [0.98-1.02]). Subgroup analyses by sex showed nuanced associations, with the CDAI potentially reducing the risk of ASCVD in men (0.71 [0.53-0.94]) while increasing it in women (1.4 [1.01-1.95]). Conclusions: This study provides valuable insights into the association between dietary antioxidant intake and the risk of ASCVD, highlighting sex-specific differences.
Collapse
Affiliation(s)
- Jong-Ho Kim
- Institute of New Frontier Research, College of Medicine, Hallym University, Chuncheon 24253, Republic of Korea; (J.-H.K.); (M.E.L.)
- Big Data Center, Chuncheon Sacred Heart Hospital, College of Medicine, Hallym University, Chuncheon 24253, Republic of Korea
- Department of Anesthesiology and Pain Medicine, Chuncheon Sacred Heart Hospital, College of Medicine, Hallym University, Chuncheon 24253, Republic of Korea;
| | - Myeong Eun Lee
- Institute of New Frontier Research, College of Medicine, Hallym University, Chuncheon 24253, Republic of Korea; (J.-H.K.); (M.E.L.)
| | - Sung-Mi Hwang
- Department of Anesthesiology and Pain Medicine, Chuncheon Sacred Heart Hospital, College of Medicine, Hallym University, Chuncheon 24253, Republic of Korea;
| | - Jae-Jun Lee
- Institute of New Frontier Research, College of Medicine, Hallym University, Chuncheon 24253, Republic of Korea; (J.-H.K.); (M.E.L.)
- Department of Anesthesiology and Pain Medicine, Chuncheon Sacred Heart Hospital, College of Medicine, Hallym University, Chuncheon 24253, Republic of Korea;
| | - Young-Suk Kwon
- Institute of New Frontier Research, College of Medicine, Hallym University, Chuncheon 24253, Republic of Korea; (J.-H.K.); (M.E.L.)
- Big Data Center, Chuncheon Sacred Heart Hospital, College of Medicine, Hallym University, Chuncheon 24253, Republic of Korea
- Department of Anesthesiology and Pain Medicine, Chuncheon Sacred Heart Hospital, College of Medicine, Hallym University, Chuncheon 24253, Republic of Korea;
| |
Collapse
|
16
|
Kanu VR, Pulakuntla S, Kuruvalli G, Aramgam SL, Marthadu SB, Pannuru P, Hebbani AV, Desai PPD, Badri KR, Vaddi DR. Anti-atherogenic role of green tea (Camellia sinensis) in South Indian smokers. JOURNAL OF ETHNOPHARMACOLOGY 2024; 332:118298. [PMID: 38714238 DOI: 10.1016/j.jep.2024.118298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 03/22/2024] [Accepted: 05/04/2024] [Indexed: 05/09/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Green tea (Camellia sinensis) is a popular beverage consumed all over the world due to its health benefits. Many of these beneficial effects of green tea are attributed to polyphenols, particularly catechins. AIM OF THE STUDY The present study focuses on underlying anti-platelet aggregation, anti-thrombotic, and anti-lipidemic molecular mechanisms of green tea in South Indian smokers. MATERIALS AND METHODS We selected 120 South Indian male volunteers for this study to collect the blood and categorised them into four groups; control group individuals (Controls), smokers, healthy control individuals consuming green tea, and smokers consuming green tea. Smokers group subjects have been smoking an average 16-18 cigarettes per day for the last 7 years or more. The subjects (green tea consumed groups) consumed 100 mL of green tea each time, thrice a day for a one-year period. RESULTS LC-MS analysis revealed the presence of multiple phytocompounds along with catechins in green tea extract. Increased plasma lipid peroxidation (LPO), protein carbonyls, cholesterol, triglycerides, and LDL-cholesterol with decreased HDL-cholesterol levels were observed in smokers compared to the control group and the consumption of green tea showed beneficial effect. Furthermore, docking studies revealed that natural compounds of green tea had high binding capacity with 3-hydroxy-3-methyl-glutaryl-CoA reductase (HMG-CoA) when compared to their positive controls, whereas (-) epigallocatechin-3-gallate (EGCG) and (-) epicatechin-gallate (ECG) had high binding capacity with sterol regulatory element-binding transcription factor 1 (SREBP1c). Further, our ex vivo studies showed that green tea extract (GTE) significantly inhibited platelet aggregation and increased thrombolytic activity in a dose dependent manner. CONCLUSION In conclusion, in smokers, catechins synergistically lowered oxidative stress, platelet aggregation and modified the aberrant lipid profile. Furthermore, molecular docking studies supported green tea catechins' antihyperlipidemic efficacy through strong inhibitory activity on HMG-CoA reductase and SREBP1c. The mitigating effects of green tea on cardiovascular disease risk factors in smokers that have been reported can be attributed majorly to catechins or to their synergistic effects.
Collapse
Affiliation(s)
| | - Swetha Pulakuntla
- School of Applied Sciences, REVA University, Bengaluru (Bangalore), 560064, KA, India
| | - Gouthami Kuruvalli
- School of Applied Sciences, REVA University, Bengaluru (Bangalore), 560064, KA, India
| | - Sree Latha Aramgam
- School of Applied Sciences, REVA University, Bengaluru (Bangalore), 560064, KA, India; Department of Neurobiology, Morehouse School of Medicine, GA, Atlanta, 30310, USA
| | | | - Padmavathi Pannuru
- School of Applied Sciences, REVA University, Bengaluru (Bangalore), 560064, KA, India
| | | | | | - Kameswara Rao Badri
- Department of Pharmacology and Toxicology, Cardiovascular Research Institute, Morehouse School of Medicine, GA, Atlanta, 30310, USA; Clinical Analytical Chemistry Laboratory, Clinical Research Center, Morehouse School of Medicine, GA, Atlanta, 30310, USA.
| | - Damodara Reddy Vaddi
- School of Applied Sciences, REVA University, Bengaluru (Bangalore), 560064, KA, India; Department of Biochemistry, Sri Krishnadevaraya University, Anantapuramu, 515003, AP, India.
| |
Collapse
|
17
|
Lei S, Liu C, Zheng TX, Fu W, Huang MZ. The relationship of redox signaling with the risk for atherosclerosis. Front Pharmacol 2024; 15:1430293. [PMID: 39148537 PMCID: PMC11324460 DOI: 10.3389/fphar.2024.1430293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 07/09/2024] [Indexed: 08/17/2024] Open
Abstract
Oxidative balance plays a pivotal role in physiological homeostasis, and many diseases, particularly age-related conditions, are closely associated with oxidative imbalance. While the strategic role of oxidative regulation in various diseases is well-established, the specific involvement of oxidative stress in atherosclerosis remains elusive. Atherosclerosis is a chronic inflammatory disorder characterized by plaque formation within the arteries. Alterations in the oxidative status of vascular tissues are linked to the onset, progression, and outcome of atherosclerosis. This review examines the role of redox signaling in atherosclerosis, including its impact on risk factors such as dyslipidemia, hyperglycemia, inflammation, and unhealthy lifestyle, along with dysregulation, vascular homeostasis, immune system interaction, and therapeutic considerations. Understanding redox signal transduction and the regulation of redox signaling will offer valuable insights into the pathogenesis of atherosclerosis and guide the development of novel therapeutic strategies.
Collapse
Affiliation(s)
- Sujuan Lei
- Department of General Surgery (Hepatopancreatobiliary Surgery), The Affiliated Hospital, Southwest Medical University, Luzhou, China
| | - Chen Liu
- Department of General Surgery (Hepatopancreatobiliary Surgery), The Affiliated Hospital, Southwest Medical University, Luzhou, China
| | - Tian-Xiang Zheng
- Metabolic Hepatobiliary and Pancreatic Diseases Key Laboratory of Luzhou City, Academician (Expert) Workstation of Sichuan Province, Department of General Surgery (Hepatopancreatobiliary Surgery), Chongqing, Sichuan, China
| | - Wenguang Fu
- Department of General Surgery (Hepatopancreatobiliary Surgery), The Affiliated Hospital, Southwest Medical University, Luzhou, China
- Metabolic Hepatobiliary and Pancreatic Diseases Key Laboratory of Luzhou City, Academician (Expert) Workstation of Sichuan Province, Department of General Surgery (Hepatopancreatobiliary Surgery), Chongqing, Sichuan, China
| | - Mei-Zhou Huang
- Department of General Surgery (Hepatopancreatobiliary Surgery), The Affiliated Hospital, Southwest Medical University, Luzhou, China
- Metabolic Hepatobiliary and Pancreatic Diseases Key Laboratory of Luzhou City, Academician (Expert) Workstation of Sichuan Province, Department of General Surgery (Hepatopancreatobiliary Surgery), Chongqing, Sichuan, China
| |
Collapse
|
18
|
Turkistani A, Al‐Kuraishy HM, Al‐Gareeb AI, Alexiou A, Papadakis M, Bahaa MM, Al‐Windy S, Batiha GE. Pharmacological characterization of the antidiabetic drug metformin in atherosclerosis inhibition: A comprehensive insight. Immun Inflamm Dis 2024; 12:e1346. [PMID: 39092773 PMCID: PMC11295104 DOI: 10.1002/iid3.1346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 05/05/2024] [Accepted: 07/06/2024] [Indexed: 08/04/2024] Open
Abstract
BACKGROUND Atherosclerosis (AS) is a progressive disease that interferes with blood flow, leading to cardiovascular complications such as hypertension, ischemic heart disease, ischemic stroke, and vascular ischemia. The progression of AS is correlated with inflammation, oxidative stress, and endothelial dysfunction. Various signaling pathways, like nuclear erythroid-related factor 2 (Nrf2) and Kruppel-like factor 2 (KLF2), are involved in the pathogenesis of AS. Nrf2 and KLF2 have anti-inflammatory and antioxidant properties. Thus, activation of these pathways may reduce the development of AS. Metformin, an insulin-sensitizing drug used in the management of type 2 diabetes mellitus (T2DM), increases the expression of Nrf2 and KLF2. AS is a common long-term macrovascular complication of T2DM. Thus, metformin, through its pleiotropic anti-inflammatory effect, may attenuate the development and progression of AS. AIMS Therefore, this review aims to investigate the possible role of metformin in AS concerning its effect on Nrf2 and KLF2 and inhibition of reactive oxygen species (ROS) formation. In addition to its antidiabetic effect, metformin can reduce cardiovascular morbidities and mortalities compared to other antidiabetic agents, even with similar blood glucose control by the Nrf2/KLF2 pathway activation. CONCLUSION In conclusion, metformin is an effective therapeutic strategy against the development and progression of AS, mainly through activation of the KLF2/Nrf2 axis.
Collapse
Affiliation(s)
- Areej Turkistani
- Department of Pharmacology and Toxicology, College of MedicineTaif UniversityTaifSaudi Arabia
| | - Haydar M. Al‐Kuraishy
- Department of Clinical Pharmacology and Medicine, College of MedicineMustansiriyah UniversityBaghdadIraq
| | - Ali I. Al‐Gareeb
- Department of Clinical Pharmacology and Medicine, College of MedicineMustansiriyah UniversityBaghdadIraq
- Department of Clinical Pharmacology and MedicineJabir ibn Hayyan Medical UniversityKufaIraq
| | - Athanasios Alexiou
- Department of Science and EngineeringNovel Global Community Educational FoundationHebershamNew South WalesAustralia
- AFNP MedWienAustria
- Department of Research & DevelopmentFunogenAthensGreece
- University Centre for Research & DevelopmentChandigarh UniversityPunjabIndia
| | - Marios Papadakis
- Department of Surgery II, University Hospital Witten‐HerdeckeUniversity of Witten‐HerdeckeWuppertalGermany
| | - Mostafa M. Bahaa
- Pharmacy Practice Department, Faculty of PharmacyHorus UniversityNew DamiettaEgypt
| | - Salah Al‐Windy
- Department of Biology, College of ScienceBaghdad UniversityBaghdadIraq
| | - Gaber El‐Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary MedicineDamanhour UniversityDamanhourEgypt
| |
Collapse
|
19
|
Al-Kuraishy HM, Al-Gareeb AI, Elekhnawy E, Batiha GES. Possible role of LCZ696 in atherosclerosis: new inroads and perspective. Mol Cell Biochem 2024; 479:1895-1908. [PMID: 37526794 DOI: 10.1007/s11010-023-04816-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 07/15/2023] [Indexed: 08/02/2023]
Abstract
LCZ696 blocks both angiotensin receptor type 1 (ATR1) and neprilysin (NEP), which are intricate in the degradation of natriuretic peptides (NPs) and other endogenous peptides. It has been shown NEP inhibitors and LCZ696 could be effectively in the management of atherosclerosis (AS). However, the underlying mechanism of LCZ696 in AS is needed to be clarified entirely. Hence, this review is directed to reconnoiter the mechanistic role of LCZ696 in AS. The anti-inflammatory role of LCZ696 is related to the inhibition of transforming growth factor beta (TGF-β)-activated kinase 1 (TAK) and nod-like receptor pyrin 3 receptor (NLRP3) inflammasome. Moreover, LCZ696, via inhibition of pro-inflammatory cytokines, oxidative stress, apoptosis and endothelial dysfunction can attenuate the development and progression of AS. In conclusion, LCZ696 could be effective in the management of AS through modulation of inflammatory and oxidative signaling. Preclinical and clinical studies are recommended in this regard.
Collapse
Affiliation(s)
- Hayder M Al-Kuraishy
- Department of Clinical Pharmacology and Medicine, College of Medicine, AL-Mustansiriyia University, Baghdad, Iraq
| | - Ali I Al-Gareeb
- Department of Clinical Pharmacology and Medicine, College of Medicine, AL-Mustansiriyia University, Baghdad, Iraq
| | - Engy Elekhnawy
- Pharmaceutical Microbiology Department, Faculty of Pharmacy, Tanta University, Tanta, 31527, Egypt.
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, 22511, AL Beheira, Egypt.
| |
Collapse
|
20
|
Kong X, Gao X, Wang W. Oxidative balance score and associations with dyslipidemia and mortality among US adults: A mortality follow-up study of a cross-sectional cohort. JPEN J Parenter Enteral Nutr 2024; 48:735-745. [PMID: 38922706 DOI: 10.1002/jpen.2661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/29/2024] [Accepted: 05/29/2024] [Indexed: 06/28/2024]
Abstract
BACKGROUND Oxidative stress has been implicated in the pathogenesis and progression of dyslipidemia. We aimed to investigate the association between the oxidative balance score, and dyslipidemia, as well as to assess the mortality risk associated with oxidative balance score in patients with dyslipidemia. METHODS We performed a mortality follow-up study of a cross-sectional cohort of 26,118 adults from the National Health and Nutrition Examination Survey 1999-2018. The total oxidative balance score was calculated by 16 dietary nutrients (dietary oxidative balance score) and four lifestyle factors (lifestyle oxidative balance score). Weighted Cox proportional hazard model was applied to determine the relationship between oxidative balance score and all-cause or cardiovascular disease (CVD) mortality within the dyslipidemia group. RESULTS During a median follow-up of 118 months, 2448 all-cause deaths (766 CVD-related) occurred. A significant negative correlation was observed between total oxidative balance score, dietary oxidative balance score, lifestyle oxidative balance score, and dyslipidemia. The multivariable-adjusted odds ratios and 95% CIs for dyslipidemia were 0.86 (0.77-0.97), 0.80 (0.72-0.91), and 0.63 (0.56-0.70), respectively, when comparing the second, third, and fourth quartiles of total oxidative balance score to the reference lowest quartile (P for trend <0.0001). Increasing total oxidative balance score was inversely associated with all-cause (hazard ratio [HR] = 0.98, 95% CI 0.98-0.99) and CVD-specific mortality (HR = 0.98, 95% CI 0.97-0.99) in participants with dyslipidemia. CONCLUSIONS Oxidative balance score is inversely associated with dyslipidemia and linked to all-cause and CVD-related mortality, highlighting the potentially protective role of an antioxidant-rich diet against dyslipidemia.
Collapse
Affiliation(s)
- Xiufang Kong
- Department of Rheumatology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xinghui Gao
- Center for Single-Cell Omics and Tumor Liquid Biopsy, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Wei Wang
- Department of Nephrology, Shanghai Tenth People's Hospital, Shanghai, China
| |
Collapse
|
21
|
Alomair BM, Al-Kuraishy HM, Al-Gareeb AI, Alshammari MA, Alexiou A, Papadakis M, Saad HM, Batiha GES. Increased thyroid stimulating hormone (TSH) as a possible risk factor for atherosclerosis in subclinical hypothyroidism. Thyroid Res 2024; 17:13. [PMID: 38880884 PMCID: PMC11181570 DOI: 10.1186/s13044-024-00199-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 05/08/2024] [Indexed: 06/18/2024] Open
Abstract
Primary hypothyroidism (PHT) is associated with an increased risk for the development of atherosclerosis (AS) and other cardiovascular disorders. PHT induces atherosclerosis (AS) through the induction of endothelial dysfunction, and insulin resistance (IR). PHT promotes vasoconstriction and the development of hypertension. However, patients with subclinical PHT with normal thyroid hormones (THs) are also at risk for cardiovascular complications. In subclinical PHT, increasing thyroid stimulating hormone (TSH) levels could be one of the causative factors intricate in the progression of cardiovascular complications including AS. Nevertheless, the mechanistic role of PHT in AS has not been fully clarified in relation to increased TSH. Therefore, in this review, we discuss the association between increased TSH and AS, and how increased TSH may be involved in the pathogenesis of AS. In addition, we also discuss how L-thyroxine treatment affects the development of AS.
Collapse
Affiliation(s)
- Basil Mohammed Alomair
- Assistant Professor, Internal Medicine and Endocrinology, Department of Medicine, College of Medicine, Jouf University, Sakakah, 04631, Kingdom of Saudi Arabia
| | - Hayder M Al-Kuraishy
- Department of Clinical Pharmacology and Medicine, College of Medicine, Mustansiriyah University, Baghdad, Iraq
| | - Ali I Al-Gareeb
- Department of Clinical Pharmacology and Medicine, College of Medicine, Mustansiriyah University, Baghdad, Iraq
| | - Majed Ayed Alshammari
- Department of Medicine, Prince Mohammed Bin Abdulaziz Medical City, Al Jouf-Sakkaka, 42421, Saudi Arabia
| | - Athanasios Alexiou
- University Centre for Research & Development, Chandigarh University, Chandigarh-Ludhiana Highway, Mohali, Punjab, India
- Department of Research & Development, Funogen, Athens, Greece
- Department of Research & Development, AFNP Med, Vienna, 1030, Austria
- Department of Science and Engineering, Novel Global Community Educational Foundation, Hebersham, 2770, NSW, Australia
| | - Marios Papadakis
- Department of Surgery II, University Hospital Witten-Herdecke, University of Witten-Herdecke, Heusnerstrasse 40, Wuppertal, 42283, Germany.
| | - Hebatallah M Saad
- Department of Pathology, Faculty of Veterinary Medicine, Matrouh University, Marsa Matruh, 51744, Egypt.
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, 22511, AlBeheira, Egypt.
| |
Collapse
|
22
|
Alshehri AA, Al-Kuraishy HM, Al-Gareeb AI, Jawad SF, Khawagi WY, Alexiou A, Papadakis M, Assiri AA, Elhadad H, El-Saber Batiha G. The anti-inflammatory properties of vinpocetine mediates its therapeutic potential in management of atherosclerosis. J Inflamm (Lond) 2024; 21:19. [PMID: 38858751 PMCID: PMC11165849 DOI: 10.1186/s12950-024-00394-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 05/15/2024] [Indexed: 06/12/2024] Open
Abstract
Atherosclerosis (AS) formation is enhanced by different mechanisms including cytokine generation, vascular smooth muscle cell proliferation, and migration. One of the recent treatments towards endothelial dysfunction and AS is Vinpocetine (VPN). VPN is a potent inhibitor of phosphodiesterase enzyme 1 (PDE-1) and has anti-inflammatory and antioxidant effects through inhibition the expression of nuclear factor kappa B (NF-κB). VPN has been shown to be effective against the development and progression of AS. However, the underlying molecular mechanism was not fully clarified. Consequently, objective of the present review was to discuss the mechanistic role of VPN in the pathogenesis AS. Most of pro-inflammatory cytokines that released from macrophages are inhibited by action of VPN through NF-κB-dependent mechanism. VPN blocks monocyte adhesion and migration by constraining the expression and action of pro-inflammatory cytokines. As well, VPN is effective in reducing of oxidative stress a cornerstone in the pathogenesis of AS through inhibition of NF-κB and PDE1. VPN promotes plaque stability and prevents the erosion and rupture of atherosclerotic plaque. In conclusion, VPN through mitigation of inflammatory and oxidative stress, and improvement of plaque stability effects could be effective agent in the management of AS.
Collapse
Affiliation(s)
- Abdullah A Alshehri
- Department of Clinical Pharmacy, College of Pharmacy, Taif University, Al Huwaya, Taif, Saudi Arabia
| | - Hayder M Al-Kuraishy
- Department of Clinical Pharmacology and Medicine, College of Medicine, Al-Mustansiriya University, Baghdad, Iraq
| | - Ali I Al-Gareeb
- Jabir ibn Hayyan Medical University, PO.Box13, Al-Ameer Qu./Najaf, Iraq
| | - Sabrean F Jawad
- Department of Pharmacy, Al-Mustaqbal University College, Hillah, Babylon, 51001, Iraq
| | - Wael Y Khawagi
- Department of Clinical Pharmacy, College of Pharmacy, Taif University, Al Huwaya, Taif, Saudi Arabia
| | - Athanasios Alexiou
- Department of Science and Engineering, Novel Global Community Educational Foundation, Hebersham, NSW, 2770, Australia
- AFNP Med, Wien, 1030, Austria
- University Centre for Research & Development, Chandigarh University, Chandigarh-Ludhiana Highway, Mohali, Punjab, India
- Department of Research & Development, Funogen, Athens, 11741, Greece
| | - Marios Papadakis
- Department of Surgery II, University Hospital Witten-Herdecke, Universityof Witten-Herdecke, Heusnerstrasse 40, 42283, Wuppertal, Germany.
| | - Abdullah A Assiri
- Department of Clinical Pharmacy, College of Pharmacy, King Khalid University Abha, Abha, Saudi Arabia
| | - Heba Elhadad
- Department of Parasitology, Medical Research Institute, Alexandria University, Alexandria, Egypt
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, AlBeheira, 22511, Egypt
| |
Collapse
|
23
|
Zhang H, Tian W, Qi G, Zhou B, Sun Y. Interactive association of the dietary oxidative balance score and cardiovascular disease with mortality in older adults: evidence from NHANES. Food Funct 2024; 15:6164-6173. [PMID: 38768319 DOI: 10.1039/d4fo01515k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Objectives: We conducted an assessment to explore potential associations of the dietary oxidative balance score (DOBS), cardiovascular disease (CVD), with all-cause mortality among older adults, while also exploring the potential moderating effect of DOBS on the relationship between CVD and mortality. Methods: This study included 9059 older adults (≥60 years) from NHANES 2003-2014. Determination of DOBS involves scoring the combination of 16 nutrients, comprising 2 pro-oxidants and 14 anti-oxidants. Cox regression analysis was used to assess the individual associations of CVD and DOBS status with all-cause mortality. Additional evaluations were conducted to assess the combined impact of CVD and DOBS status on mortality, and the interaction were estimated. Sensitivity analyses were performed by excluding participants who died within two years. Results: The findings demonstrated a significant association between pro-oxidant diet (lower DOBS) or CVD and elevated mortality risk among older adults. It is also suggested that older adults with CVD and pro-oxidant diet exhibit the highest risk of all-cause mortality (HR = 1.96, 95% CI: 1.64-2.34), compared to individuals without CVD who follow an antioxidant-rich diet. Further stratified analysis based on CVD status revealed a different pattern in the correlation between pro-oxidant diet and all-cause mortality risk (P for interaction = 0.015). The results of sensitivity analysis were consistent. Conclusions: The lower levels of DOBS and/or CVD were significantly associated with an increased risk of all-cause mortality in older adults. Notably, we also identified a significant interaction between DOBS and CVD affecting all-cause mortality.
Collapse
Affiliation(s)
- HuanRui Zhang
- Department of Geriatric, The First Hospital of China Medical University, No. 155 Nanjing North Street, Heping Ward, Shenyang 110001, China.
| | - Wen Tian
- Department of Geriatric, The First Hospital of China Medical University, No. 155 Nanjing North Street, Heping Ward, Shenyang 110001, China.
| | - GuoXian Qi
- Department of Geriatric, The First Hospital of China Medical University, No. 155 Nanjing North Street, Heping Ward, Shenyang 110001, China.
| | - BaoSen Zhou
- Department of Clinical Epidemiology and Evidence-Based Medicine, The First Hospital of China Medical University, No. 155 Nanjing North Street, Heping Ward, Shenyang 110001, China
| | - YuJiao Sun
- Department of Geriatric, The First Hospital of China Medical University, No. 155 Nanjing North Street, Heping Ward, Shenyang 110001, China.
| |
Collapse
|
24
|
Vineetha VP, Tejaswi HN, Sooraj NS, Das S, Pillai D. Implications of deltamethrin on hematology, cardiac pathology, and gene expression in Nile tilapia (Oreochromis niloticus) and its possible amelioration with Shatavari (Asparagus racemosus). Vet Res Commun 2024; 48:811-826. [PMID: 37930611 DOI: 10.1007/s11259-023-10251-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Accepted: 10/30/2023] [Indexed: 11/07/2023]
Abstract
Deltamethrin (DM) is one of the extensively used pyrethroids for controlling ectoparasites. Unfortunately, DM is highly toxic to fish as it primarily targets the sodium channels of the plasma membrane thereby affecting their cardiac and nervous systems. The present study investigated the protective efficacy of Shatavari (Asparagus racemosus) against DM-induced cardiotoxicity in Nile tilapia (Oreochromis niloticus). The fish were segregated into nine groups having 36 fish/group maintained in triplicates exposed to DM (1 µg/L) and fed with a diet containing three different concentrations (10 g, 20 g, and 30 g/kg feed) of aqueous extract of A. racemosus (ARE) for 21 days. DM caused significant alterations in the blood and serum parameters, and expression of cardiac and apoptotic genes compared to the control group. The ARE cotreatment significantly reduced the increase in serum transaminases, creatine kinase, and lactate dehydrogenase levels induced by DM. ARE facilitated the regain of electrolyte (sodium, potassium, chloride) homeostasis and antioxidants such as catalase, superoxide dismutase, glutathione peroxidase, and glutathione in DM-exposed fish. The cardiac histology exhibited loose separation of the cardiomyocytes and myofibrillar loss in the DM group which was ameliorated in the DM-ARE cotreatment group. Significant modulations were observed in the expression of cardiac-specific genes (gata4, myh6, tnT, cox1) and apoptosis signaling genes and proteins (HSP70, bax, bcl-2, caspase3), in the cotreatment group compared to the DM-exposed group. The current study suggests that ARE possesses potential cardioprotective properties that are effective in mitigating the toxic effects induced by DM via ameliorating oxidative stress, electrolyte imbalance, and apoptosis in tilapia.
Collapse
Affiliation(s)
- Vadavanath Prabhakaran Vineetha
- Department of Aquatic Animal Health Management, Kerala University of Fisheries and Ocean Studies, Kochi, Kerala, 682 506, India
| | - Hemla Naik Tejaswi
- Department of Aquatic Animal Health Management, Kerala University of Fisheries and Ocean Studies, Kochi, Kerala, 682 506, India
| | - Nediyirippil Suresh Sooraj
- Department of Aquatic Animal Health Management, Kerala University of Fisheries and Ocean Studies, Kochi, Kerala, 682 506, India
| | - Sweta Das
- Department of Aquatic Animal Health Management, Kerala University of Fisheries and Ocean Studies, Kochi, Kerala, 682 506, India
| | - Devika Pillai
- Department of Aquatic Animal Health Management, Kerala University of Fisheries and Ocean Studies, Kochi, Kerala, 682 506, India.
| |
Collapse
|
25
|
Moumou M, Mokhtari I, Tayebi A, Milenkovic D, Amrani S, Harnafi H. Immature carob pods extract and its fractions prevent lipid metabolism disorders and lipoprotein-rich plasma oxidation in mice: A phytochemical and pharmacological study. JOURNAL OF ETHNOPHARMACOLOGY 2024; 322:117557. [PMID: 38072291 DOI: 10.1016/j.jep.2023.117557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/30/2023] [Accepted: 12/04/2023] [Indexed: 12/25/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE In Morocco carob fruits are used traditionally to treat hypercholesterolemia, diabetes and related diseases. AIMS This study was designed to evaluate the hypolipidemic activity of Ceratonia siliqua green pods extract and its fractions in Triton WR-1339 and high fat/cholesterol diet (HFCD) induced hyperlipidemia mice, as well as their ability to prevent lipoproteins oxidation in vitro. MATERIALS AND METHODS High performance liquid chromatography (HPLC) analysis was used to determine the phenolic composition of the immature carob pods extract (HWCE). Antioxidant activities were evaluated using the DPPH radical scavenging test as well as MDA measurement in oxidized lipoprotein rich plasma. Plasma lipids, glucose and biliary total cholesterol, as well as lipids level in liver and feces, were analyzed. The acute oral toxicity was performed in mice single dosed with the HWCE at 2000 and 5000 mg/kg body weight. RESULTS HPLC analysis shows that gallic acid is the main phenolic compound in the HWCE. The acute oral toxicity assessment revealed that the HWCE is not toxic (LD50 is greater than 5000 mg/kg body weight). In the acute hypolipidemic study, mice treated with the HWCE and its fractions exhibited a significant (P < 0.001) reduction in plasma total cholesterol (TC), triglycerides (TG) and low density lipoprotein-cholesterol (LDL-C) levels. Importantly, immature carob aqueous extract was more effective in lowering mice hypercholesterolemia than its fractions. Indeed, mice fed the HFCD for 12 weeks showed a significant raise in plasma TC, TG and LDL-C, as well as in hepatic and fecal TC and TG levels. The HWCE at 100 and 200 mg/kg body weight significantly (P < 0.001) reversed the plasmatic levels of these lipid parameters, increased plasma HDL-C level, reduced hepatic lipids accumulation, but increased cholesterol level in the bile and fecal lipids excretion. The HWCE decreased also the atherogenic index, the LDL-C/HDL-C ratio and plasma glucose level after 12 weeks' experiment. On the other hand, the HWCE was more effective in preventing mice lipoprotein-rich plasma oxidation than its fractions, with a concentration-dependent manner. CONCLUSION C. siliqua green fruits extract could be effective in preventing atherosclerosis and related cardiovascular complications through the inhibition of lipoprotein oxidation and cholesterol clearance.
Collapse
Affiliation(s)
- Mohammadine Moumou
- Laboratory of Bioresources, Biotechnologies, Ethnopharmacology and Health, Faculty of Sciences, University Mohammed First, Oujda, 60000, Morocco
| | - Imane Mokhtari
- Laboratory of Bioresources, Biotechnologies, Ethnopharmacology and Health, Faculty of Sciences, University Mohammed First, Oujda, 60000, Morocco
| | - Amani Tayebi
- Laboratory of Bioresources, Biotechnologies, Ethnopharmacology and Health, Faculty of Sciences, University Mohammed First, Oujda, 60000, Morocco
| | - Dragan Milenkovic
- Department of Nutrition, College of Agricultural and Environmental Sciences, University of California Davis, Davis, CA, 95616, USA
| | - Souliman Amrani
- Laboratory of Bioresources, Biotechnologies, Ethnopharmacology and Health, Faculty of Sciences, University Mohammed First, Oujda, 60000, Morocco
| | - Hicham Harnafi
- Laboratory of Bioresources, Biotechnologies, Ethnopharmacology and Health, Faculty of Sciences, University Mohammed First, Oujda, 60000, Morocco.
| |
Collapse
|
26
|
Henriques J, Amaro AM, Piedade AP. Biomimicking Atherosclerotic Vessels: A Relevant and (Yet) Sub-Explored Topic. Biomimetics (Basel) 2024; 9:135. [PMID: 38534820 DOI: 10.3390/biomimetics9030135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 02/20/2024] [Accepted: 02/21/2024] [Indexed: 03/28/2024] Open
Abstract
Atherosclerosis represents the etiologic source of several cardiovascular events, including myocardial infarction, cerebrovascular accidents, and peripheral artery disease, which remain the leading cause of mortality in the world. Numerous strategies are being delineated to revert the non-optimal projections of the World Health Organization, by both designing new diagnostic and therapeutic approaches or improving the interventional procedures performed by physicians. Deeply understanding the pathological process of atherosclerosis is, therefore, mandatory to accomplish improved results in these trials. Due to their availability, reproducibility, low expensiveness, and rapid production, biomimicking physical models are preferred over animal experimentation because they can overcome some limitations, mainly related to replicability and ethical issues. Their capability to represent any atherosclerotic stage and/or plaque type makes them valuable tools to investigate hemodynamical, pharmacodynamical, and biomechanical behaviors, as well as to optimize imaging systems and, thus, obtain meaningful prospects to improve the efficacy and effectiveness of treatment on a patient-specific basis. However, the broadness of possible applications in which these biomodels can be used is associated with a wide range of tissue-mimicking materials that are selected depending on the final purpose of the model and, consequently, prioritizing some materials' properties over others. This review aims to summarize the progress in fabricating biomimicking atherosclerotic models, mainly focusing on using materials according to the intended application.
Collapse
Affiliation(s)
- Joana Henriques
- University of Coimbra, CEMMPRE, ARISE, Department of Mechanical Engineering, 3030-788 Coimbra, Portugal
| | - Ana M Amaro
- University of Coimbra, CEMMPRE, ARISE, Department of Mechanical Engineering, 3030-788 Coimbra, Portugal
| | - Ana P Piedade
- University of Coimbra, CEMMPRE, ARISE, Department of Mechanical Engineering, 3030-788 Coimbra, Portugal
| |
Collapse
|
27
|
Wang X, Sharma A, Liu Y, Wang X, Kumari D, Kainth R. Evaluation of Flavonoid-rich Fraction of Portulaca Grandiflora Aerial Part Extract in Atherogenic Diet-induced Atherosclerosis. Comb Chem High Throughput Screen 2024; 27:1394-1402. [PMID: 37807415 DOI: 10.2174/0113862073267025230925062407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/24/2023] [Accepted: 08/08/2023] [Indexed: 10/10/2023]
Abstract
BACKGROUND Portulaca grandiflora is a tiny, upright herb that contains a variety of chemical components, including alkaloids, glycosides, mucilage, proteins, tannins, flavonoids, saponins, polysaccharides, and triterpenoids possessing properties that may help with atherosclerosis. The reported pharmacological properties of Portulaca grandiflora are antioxidant, antidiabetic, antiasthmatic, antibacterial, antiulcer and anti-inflammatory properties. OBJECTIVES The yield of methanol extract is higher than that of ethanol and acetone, and its phytoconstituents, like flavonoids and polyphenols, and has potent antioxidant properties. In order to determine the effectiveness of Portulaca grandiflora methanol extract fraction against high-fat diet (HFD)-induced hyperlipidemia, hemodynamic change, antioxidant levels, and vascular dysfunction in rats, a study was carried out on a flavonoid-rich methanol extract fraction of the aerial part of Portulaca grandiflora Hook. METHODS This method involves a study of 30 days involving male Wistar rats (240-250 g) (n=5) that were fed with an Ath diet. Study groups were divided into (i) The Control Group, (ii) the Diseases Control Group, (iii) Disease + Standard drug (Atorvastatin 20mg/kg, orally, (iv) Disease + Test Extract dose 1 (Portulaca grandiflora 200 mg/kg orally), and (v) Disease + Test Extract dose 2 (Portulaca grandiflora 400 mg/kg orally). Both the test drug Portulaca grandiflora and the standard drug Atorvastatin were given orally for 30 days. RESULTS At the end of the study, blood samples were taken to measure the serum lipid profile, alanine aminotransferase, aspartate aminotransferase, lactate dehydrogenase, and levels of oxidative tissue stress. Hemodynamic parameters and aortic staining were performed. Portulaca grandiflora treatment improved the lipid profile and considerably reduced oxidative stress levels. Aortic staining examination revealed a marked reduction in atherosclerotic lesions. CONCLUSION These results revealed that Portulaca grandiflora is an effective treatment approach in preventing atherosclerotic lesion progression, which is attributed to its protection against oxidative stress and various enzymatic activities in the Atherogenic model.
Collapse
Affiliation(s)
- Xiuping Wang
- Department of Health Management, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710000, China
| | - Aishwarya Sharma
- Department of Pharmacology, Amar Shaheed Baba Ajit Singh Jujhar Singh Memorial College of Pharmacy Bela, Ropar, Punjab, 140111, India
| | - Yongchao Liu
- Department of Health Management, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710000, China
| | - Xiaoying Wang
- Department of Health Management, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710000, China
| | - Deepika Kumari
- Department of Pharmacology, Amar Shaheed Baba Ajit Singh Jujhar Singh Memorial College of Pharmacy Bela, Ropar, Punjab, 140111, India
| | - Ritu Kainth
- Department of Pharmacology, Amar Shaheed Baba Ajit Singh Jujhar Singh Memorial College of Pharmacy Bela, Ropar, Punjab, 140111, India
| |
Collapse
|
28
|
Mishra BP, Mishra J, Paital B, Rath PK, Jena MK, Reddy BVV, Pati PK, Panda SK, Sahoo DK. Properties and physiological effects of dietary fiber-enriched meat products: a review. Front Nutr 2023; 10:1275341. [PMID: 38099188 PMCID: PMC10720595 DOI: 10.3389/fnut.2023.1275341] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 11/06/2023] [Indexed: 12/17/2023] Open
Abstract
Meat is a rich source of high biological proteins, vitamins, and minerals, but it is devoid of dietary fiber, an essential non-digestible carbohydrate component such as cellulose, hemicellulose, pectin, lignin, polysaccharides, and oligosaccharides. Dietary fibers are basically obtained from various cereals, legumes, fruits, vegetables, and their by-products and have numerous nutritional, functional, and health-benefiting properties. So, these fibers can be added to meat products to enhance their physicochemical properties, chemical composition, textural properties, and organoleptic qualities, as well as biological activities in controlling various lifestyle ailments such as obesity, certain cancers, type-II diabetes, cardiovascular diseases, and bowel disorders. These dietary fibers can also be used in meat products as an efficient extender/binder/filler to reduce the cost of production by increasing the cooking yield as well as by reducing the lean meat content and also as a fat replacer to minimize unhealthy fat content in the developed meat products. So, growing interest has been observed among meat processors, researchers, and scientists in exploring various new sources of dietary fibers for developing dietary fiber-enriched meat products in recent years. In the present review, various novel sources of dietary fibers, their physiological effects, their use in meat products, and their impact on various physicochemical, functional, and sensory attributes have been focused.
Collapse
Affiliation(s)
- Bidyut Prava Mishra
- Department of Livestock Products Technology, College of Veterinary Science and Animal Husbandry, Odisha University of Agriculture and Technology, Bhubaneswar, Odisha, India
| | | | - Biswaranjan Paital
- Redox Regulation Laboratory, Department of Zoology, College of Basic Science and Humanities, Odisha University of Agriculture and Technology, Bhubaneswar, India
| | - Prasana Kumar Rath
- Department of Veterinary Pathology, College of Veterinary Science and Animal Husbandry, Odisha University of Agriculture and Technology, Bhubaneswar, Odisha, India
| | - Manoj Kumar Jena
- Department of Biotechnology, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, India
| | - B. V. Vivekananda Reddy
- Department of Livestock Products Technology, NTR College of Veterinary Science, Gannavaram, India
| | - Prasad Kumar Pati
- Department of Livestock Products Technology, College of Veterinary Science and Animal Husbandry, Odisha University of Agriculture and Technology, Bhubaneswar, Odisha, India
| | - Susen Kumar Panda
- College of Veterinary Science and Animal Husbandry, Odisha University of Agriculture and Technology, Bhubaneswar, Odisha, India
| | - Dipak Kumar Sahoo
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA, United States
| |
Collapse
|
29
|
Li F, Zhang Y, Pan L, Chen H. Effects of dietary patterns on the all-cause mortality and cardiovascular disease mortality in patients with hypertension: A cohort study based on the NHANES database. Clin Cardiol 2023; 46:1353-1370. [PMID: 37587785 PMCID: PMC10642326 DOI: 10.1002/clc.24118] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 07/27/2023] [Accepted: 08/01/2023] [Indexed: 08/18/2023] Open
Abstract
BACKGROUND Hypertension (HTN) patients have higher risk of all-cause and cardiovascular disease (CVD)-specific mortality. Dietary patterns have been reported related to the risk of mortality, but their roles in HTN patients is unclear. HYPOTHESIS To explore the relationships between different dietary patterns and all-cause/CVD-specific mortality and provide dietary guidance for HTN patients' prognosis improvement. METHODS Data of 27 618 HTN patients were extracted from the National Health and Nutrition Examination Survey (NHANES) database in this retrospective cohort study. The associations between Healthy Eating Index (HEI)-2015, Alternate Healthy Eating Index (AHEI)-2010, Dietary Approaches to Stop Hypertension (DASH), and Mediterranean (MED) diet and all-cause and CVD-specific mortality were explored using univariate and multivariate Cox regression analyses with hazard ratios (HRs) and 95% confidence intervals (CIs). Subgroup analyses of age, gender, body mass index, and comorbidity were also performed. RESULTS The median follow-up time was 83 months. A total of 3462 patients died for all-cause and 1064 died due to CVD. After adjusting for covariates, we found that high adherence to AHEI-2010 (HR = 0.84 for all-cause; HR = 0.72 for CVD), and MED (HR = 0.84 for all-cause; HR = 0.77 for CVD) diet were associated with decreased risks of both all-cause and CVD-specific mortality. In patients who aged ≥65 years old, were normal/overweight, without complications, the relationships between different dietary patterns and risk of mortality were different. CONCLUSION High scores of AHEI-2010 and MED may be associated with decreased risks of all-cause and CVD-specific mortality in patients with HTN.
Collapse
Affiliation(s)
- Fang Li
- Department of CardiologyThe Second Hospital of Hebei Medical UniversityShijiazhuangHebeiPeople's Republic of China
| | - Yanping Zhang
- Department of Urological SurgeryThe Second Hospital of Hebei Medical UniversityShijiazhuangHebeiPeople's Republic of China
| | - Lina Pan
- Department of Internal MedicineWuji County People's HospitalShijiazhuangHebeiPeople's Republic of China
| | - Hui Chen
- Department of CardiologyThe Second Hospital of Hebei Medical UniversityShijiazhuangHebeiPeople's Republic of China
| |
Collapse
|
30
|
Vekic J, Stromsnes K, Mazzalai S, Zeljkovic A, Rizzo M, Gambini J. Oxidative Stress, Atherogenic Dyslipidemia, and Cardiovascular Risk. Biomedicines 2023; 11:2897. [PMID: 38001900 PMCID: PMC10669174 DOI: 10.3390/biomedicines11112897] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 10/20/2023] [Accepted: 10/23/2023] [Indexed: 11/26/2023] Open
Abstract
Oxidative stress is the consequence of an overproduction of reactive oxygen species (ROS) that exceeds the antioxidant defense mechanisms. Increased levels of ROS contribute to the development of cardiovascular disorders through oxidative damage to macromolecules, particularly by oxidation of plasma lipoproteins. One of the most prominent features of atherogenic dyslipidemia is plasma accumulation of small dense LDL (sdLDL) particles, characterized by an increased susceptibility to oxidation. Indeed, a considerable and diverse body of evidence from animal models and epidemiological studies was generated supporting oxidative modification of sdLDL particles as the earliest event in atherogenesis. Lipid peroxidation of LDL particles results in the formation of various bioactive species that contribute to the atherosclerotic process through different pathophysiological mechanisms, including foam cell formation, direct detrimental effects, and receptor-mediated activation of pro-inflammatory signaling pathways. In this paper, we will discuss recent data on the pathophysiological role of oxidative stress and atherogenic dyslipidemia and their interplay in the development of atherosclerosis. In addition, a special focus will be placed on the clinical applicability of novel, promising biomarkers of these processes.
Collapse
Affiliation(s)
- Jelena Vekic
- Department of Medical Biochemistry, University of Belgrade-Faculty of Pharmacy, 11000 Belgrade, Serbia; (J.V.); (A.Z.)
| | - Kristine Stromsnes
- Department of Physiology, Faculty of Medicine, University of Valencia, 46010 Valencia, Spain; (K.S.); (S.M.); (J.G.)
| | - Stefania Mazzalai
- Department of Physiology, Faculty of Medicine, University of Valencia, 46010 Valencia, Spain; (K.S.); (S.M.); (J.G.)
| | - Aleksandra Zeljkovic
- Department of Medical Biochemistry, University of Belgrade-Faculty of Pharmacy, 11000 Belgrade, Serbia; (J.V.); (A.Z.)
| | - Manfredi Rizzo
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, University of Palermo, 90100 Palermo, Italy
| | - Juan Gambini
- Department of Physiology, Faculty of Medicine, University of Valencia, 46010 Valencia, Spain; (K.S.); (S.M.); (J.G.)
| |
Collapse
|
31
|
Afzal S, Abdul Manap AS, Attiq A, Albokhadaim I, Kandeel M, Alhojaily SM. From imbalance to impairment: the central role of reactive oxygen species in oxidative stress-induced disorders and therapeutic exploration. Front Pharmacol 2023; 14:1269581. [PMID: 37927596 PMCID: PMC10622810 DOI: 10.3389/fphar.2023.1269581] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 10/02/2023] [Indexed: 11/07/2023] Open
Abstract
Increased production and buildup of reactive oxygen species (ROS) can lead to various health issues, including metabolic problems, cancers, and neurological conditions. Our bodies counteract ROS with biological antioxidants such as SOD, CAT, and GPx, which help prevent cellular damage. However, if there is an imbalance between ROS and these antioxidants, it can result in oxidative stress. This can cause genetic and epigenetic changes at the molecular level. This review delves into how ROS plays a role in disorders caused by oxidative stress. We also look at animal models used for researching ROS pathways. This study offers insights into the mechanism, pathology, epigenetic changes, and animal models to assist in drug development and disease understanding.
Collapse
Affiliation(s)
- Sheryar Afzal
- Department of Biomedical Sciences, College of Veterinary Medicine, King Faisal University, Al-Ahsa, Saudi Arabia
| | - Aimi Syamima Abdul Manap
- Department of Biomedical Sciences, College of Veterinary Medicine, King Faisal University, Al-Ahsa, Saudi Arabia
| | - Ali Attiq
- Discipline of Pharmacology, School of Pharmaceutical Sciences, Universiti Sains Malaysia, Minden, Malaysia
| | - Ibrahim Albokhadaim
- Department of Biomedical Sciences, College of Veterinary Medicine, King Faisal University, Al-Ahsa, Saudi Arabia
| | - Mahmoud Kandeel
- Department of Biomedical Sciences, College of Veterinary Medicine, King Faisal University, Al-Ahsa, Saudi Arabia
- Department of Pharmacology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Sameer M. Alhojaily
- Department of Biomedical Sciences, College of Veterinary Medicine, King Faisal University, Al-Ahsa, Saudi Arabia
| |
Collapse
|
32
|
Černiauskas L, Mažeikienė A, Mazgelytė E, Petrylaitė E, Linkevičiūtė-Dumčė A, Burokienė N, Karčiauskaitė D. Malondialdehyde, Antioxidant Defense System Components and Their Relationship with Anthropometric Measures and Lipid Metabolism Biomarkers in Apparently Healthy Women. Biomedicines 2023; 11:2450. [PMID: 37760891 PMCID: PMC10525661 DOI: 10.3390/biomedicines11092450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 08/27/2023] [Accepted: 09/01/2023] [Indexed: 09/29/2023] Open
Abstract
Cardiovascular diseases are the leading cause of mortality worldwide. Since atherosclerosis, an inflammatory, lipid-driven disease, is an underlying basis for the development of cardiovascular disease, it is important to understand its relationship with confounding factors, such as oxidative lipid degradation. In contrast, circulating antioxidants prevent oxidative lipid damage, and therefore, may be associated with reduced development of atherosclerosis. We aimed to assess oxidative lipid degradation biomarker malondialdehyde (MDA) and antioxidant defense system components, total antioxidant capacity (TAC) and superoxide dismutase (SOD) inhibition rate levels, in healthy women and evaluate their relationships with age, anthropometric measures, and lipid metabolism biomarkers. The study included 86 healthy middle-aged women. MDA in human serum samples was evaluated by HPLC, and the TAC and SOD inhibition rates were measured by photometric methods. MDA was found to be associated with age, total cholesterol, non-HDL cholesterol, apolipoprotein B and triacylglycerols. TAC was shown to be associated with age, BMI, and waist circumference, as well as lipid metabolism biomarkers apolipoprotein B and triacylglycerol, while SOD inhibition rate was only associated with total cholesterol, apolipoprotein B and triacylglycerols. In conclusion, the association of oxidative status indices, MDA, TAC and SOD, with cardiovascular risk factors suggests that they could be additional useful biomarkers in the research of aging, obesity, and atherosclerosis pathogenesis.
Collapse
Affiliation(s)
- Linas Černiauskas
- Department of Physiology, Biochemistry, Microbiology and Laboratory Medicine, Institute of Biomedical Sciences, Faculty of Medicine, Vilnius University, M. K. Čiurlionio St. 21, LT-03101 Vilnius, Lithuania; (A.M.); (E.M.); (A.L.-D.); (D.K.)
| | - Asta Mažeikienė
- Department of Physiology, Biochemistry, Microbiology and Laboratory Medicine, Institute of Biomedical Sciences, Faculty of Medicine, Vilnius University, M. K. Čiurlionio St. 21, LT-03101 Vilnius, Lithuania; (A.M.); (E.M.); (A.L.-D.); (D.K.)
| | - Eglė Mazgelytė
- Department of Physiology, Biochemistry, Microbiology and Laboratory Medicine, Institute of Biomedical Sciences, Faculty of Medicine, Vilnius University, M. K. Čiurlionio St. 21, LT-03101 Vilnius, Lithuania; (A.M.); (E.M.); (A.L.-D.); (D.K.)
| | - Eglė Petrylaitė
- Department of Physiology, Biochemistry, Microbiology and Laboratory Medicine, Institute of Biomedical Sciences, Faculty of Medicine, Vilnius University, M. K. Čiurlionio St. 21, LT-03101 Vilnius, Lithuania; (A.M.); (E.M.); (A.L.-D.); (D.K.)
| | - Aušra Linkevičiūtė-Dumčė
- Department of Physiology, Biochemistry, Microbiology and Laboratory Medicine, Institute of Biomedical Sciences, Faculty of Medicine, Vilnius University, M. K. Čiurlionio St. 21, LT-03101 Vilnius, Lithuania; (A.M.); (E.M.); (A.L.-D.); (D.K.)
| | - Neringa Burokienė
- Clinics of Internal Diseases, Family Medicine and Oncology, Institute of Clinical Medicine, Faculty of Medicine, Vilnius University, LT-03101 Vilnius, Lithuania;
| | - Dovilė Karčiauskaitė
- Department of Physiology, Biochemistry, Microbiology and Laboratory Medicine, Institute of Biomedical Sciences, Faculty of Medicine, Vilnius University, M. K. Čiurlionio St. 21, LT-03101 Vilnius, Lithuania; (A.M.); (E.M.); (A.L.-D.); (D.K.)
| |
Collapse
|
33
|
Peng H, Zhu M, Kong W, Tang C, Du J, Huang Y, Jin H. L-cystathionine protects against oxidative stress and DNA damage induced by oxidized low-density lipoprotein in THP-1-derived macrophages. Front Pharmacol 2023; 14:1161542. [PMID: 37560474 PMCID: PMC10408194 DOI: 10.3389/fphar.2023.1161542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 07/13/2023] [Indexed: 08/11/2023] Open
Abstract
Introduction: Oxidative stress in monocyte-derived macrophages is a significant pathophysiological process in atherosclerosis. L-cystathionine (L-Cth) acts as a scavenger for oxygen free radicals. However, the impact of L-Cth on macrophage oxidative stress during atherogenesis has remained unclear. This study aimed to investigate whether L-Cth affects oxidative stress in THP-1-derived macrophages and its subsequent effects on DNA damage and cell apoptosis. Methods: We established a cellular model of oxLDL-stimulated macrophages. The content of superoxide anion, H2O2, NO, and H2S in the macrophage were in situ detected by the specific fluorescence probe, respectively. The activities of SOD, GSH-Px, and CAT were measured by colorimetrical assay. The protein expressions of SOD1, SOD2, and iNOS were detected using western blotting. The DNA damage and apoptosis in the macrophage was evaluated using an fluorescence kit. Results: The results demonstrated that oxLDL significantly increased the content of superoxide anion and H2O2, the expression of iNOS protein, and NO production in macrophages. Conversely, oxLDL decreased the activity of antioxidants GSH-Px, SOD, and CAT, and downregulated the protein expressions of SOD1 and SOD2 in macrophages. However, treatment with L-Cth reduced the levels of superoxide anion, H2O2, and NO, as well as the protein expression of iNOS induced by oxLDL. Moreover, L-Cth treatment significantly enhanced GSH-Px, SOD, and CAT activity, and upregulated the expressions of SOD1 and SOD2 proteins in macrophages treated with oxLDL. Furthermore, both L-Cth supplementation and activation of endogenous L-Cth production suppressed DNA damage and cell apoptosis in oxLDL-injured macrophages, whereas inhibition of endogenous L-Cth exacerbated the deleterious effects of oxLDL. Conclusion: These findings suggest that L-Cth exerts a pronounced inhibitory effect on the oxidative stress, subsequent DNA damage and cell apoptosis in oxLDL-stimulated THP-1 monocytes. This study deepens our understanding of the pathogenesis of macrophage-related cardiovascular pathology.
Collapse
Affiliation(s)
- Hanlin Peng
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Mingzhu Zhu
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Wei Kong
- Department of Physiology and Pathophysiology, Peking University Health Science Center, Beijing, China
| | - Chaoshu Tang
- Department of Physiology and Pathophysiology, Peking University Health Science Center, Beijing, China
- State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, China
| | - Junbao Du
- Department of Pediatrics, Peking University First Hospital, Beijing, China
- State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, China
| | - Yaqian Huang
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Hongfang Jin
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| |
Collapse
|
34
|
Mahdinia E, Shokri N, Taheri AT, Asgharzadeh S, Elahimanesh M, Najafi M. Cellular crosstalk in atherosclerotic plaque microenvironment. Cell Commun Signal 2023; 21:125. [PMID: 37254185 DOI: 10.1186/s12964-023-01153-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 04/28/2023] [Indexed: 06/01/2023] Open
Abstract
Atherosclerosis is an underlying pathology of many vascular diseases as a result of cellular, structural and molecular dysfunctions within the sub-endothelial space. This review deals with the events involved in the formation, growth and remodeling of plaque, including the cell recruitment, cell polarization, and cell fat droplets. It also describes cross talking between endothelial cells, macrophages, and vascular smooth muscle cells, as well as the cellular pathways involved in plaque development in the plaque microenvironment. Finally, it describes the plaque structural components and the role of factors involved in the rupture and erosion of plaques in the vessel. Video Abstract.
Collapse
Affiliation(s)
- Elmira Mahdinia
- Department of Clinical Biochemistry, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Nafiseh Shokri
- Department of Clinical Biochemistry, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Abdolkarim Talebi Taheri
- Department of Clinical Biochemistry, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sahar Asgharzadeh
- Department of Clinical Biochemistry, Faculty of Medicine, Ghazvin University of Medical Sciences, Ghazvin, Iran
| | - Mohammad Elahimanesh
- Department of Clinical Biochemistry, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Najafi
- Department of Clinical Biochemistry, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
- Microbial Biotechnology Center, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
35
|
Swiderski J, Sakkal S, Apostolopoulos V, Zulli A, Gadanec LK. Combination of Taurine and Black Pepper Extract as a Treatment for Cardiovascular and Coronary Artery Diseases. Nutrients 2023; 15:nu15112562. [PMID: 37299525 DOI: 10.3390/nu15112562] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 05/21/2023] [Accepted: 05/25/2023] [Indexed: 06/12/2023] Open
Abstract
The shift in modern dietary regimens to "Western style" and sedentary lifestyles are believed to be partly responsible for the increase in the global burden of cardiovascular diseases. Natural products have been used throughout human history as treatments for a plethora of pathological conditions. Taurine and, more recently, black pepper have gained attention for their beneficial health effects while remaining non-toxic even when ingested in excess. Taurine, black pepper, and the major terpene constituents found in black pepper (i.e., β-caryophyllene; α-pinene; β-pinene; α-humulene; limonene; and sabinene) that are present in PhytoCann BP® have been shown to have cardioprotective effects based on anti-inflammatory, antioxidative, anti-hypertensive and anti-atherosclerotic mechanisms. This comprehensive review of the literature focuses on determining whether the combination of taurine and black pepper extract is an effective natural treatment for reducing cardiovascular diseases risk factors (i.e., hypertension and hyperhomocysteinemia) and for driving anti-inflammatory, antioxidative and anti-atherosclerotic mechanisms to combat coronary artery disease, heart failure, myocardial infarction, and atherosclerotic disease.
Collapse
Affiliation(s)
- Jordan Swiderski
- Institute for Health and Sport, Victoria University, Melbourne, VIC 3030, Australia
| | - Samy Sakkal
- Institute for Health and Sport, Victoria University, Melbourne, VIC 3030, Australia
| | - Vasso Apostolopoulos
- Institute for Health and Sport, Victoria University, Melbourne, VIC 3030, Australia
- Immunology Program, Australian Institute for Musculoskeletal Science, Melbourne, VIC 3021, Australia
| | - Anthony Zulli
- Institute for Health and Sport, Victoria University, Melbourne, VIC 3030, Australia
| | - Laura Kate Gadanec
- Institute for Health and Sport, Victoria University, Melbourne, VIC 3030, Australia
| |
Collapse
|
36
|
Tanase DM, Valasciuc E, Gosav EM, Ouatu A, Buliga-Finis ON, Floria M, Maranduca MA, Serban IL. Portrayal of NLRP3 Inflammasome in Atherosclerosis: Current Knowledge and Therapeutic Targets. Int J Mol Sci 2023; 24:ijms24098162. [PMID: 37175869 PMCID: PMC10179095 DOI: 10.3390/ijms24098162] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 04/26/2023] [Accepted: 05/01/2023] [Indexed: 05/15/2023] Open
Abstract
We are witnessing the globalization of a specific type of arteriosclerosis with rising prevalence, incidence and an overall cardiovascular disease burden. Currently, atherosclerosis increasingly affects the younger generation as compared to previous decades. While early preventive medicine has seen improvements, research advances in laboratory and clinical investigation promise to provide us with novel diagnosis tools. Given the physio-pathological complexity and epigenetic patterns of atherosclerosis and the discovery of new molecules involved, the therapeutic field of atherosclerosis has room for substantial growth. Thus, the scientific community is currently investigating the role of nucleotide-binding and oligomerization domain-like receptor family pyrin domain-containing 3 (NLRP3) inflammasome, a crucial component of the innate immune system in different inflammatory disorders. NLRP3 is activated by distinct factors and numerous cellular and molecular events which trigger NLRP3 inflammasome assembly with subsequent cleavage of pro-interleukin (IL)-1β and pro-IL-18 pathways via caspase-1 activation, eliciting endothelial dysfunction, promotion of oxidative stress and the inflammation process of atherosclerosis. In this review, we introduce the basic cellular and molecular mechanisms of NLRP3 inflammasome activation and its role in atherosclerosis. We also emphasize its promising therapeutic pharmaceutical potential.
Collapse
Affiliation(s)
- Daniela Maria Tanase
- Department of Internal Medicine, "Grigore T. Popa" University of Medicine and Pharmacy, 700115 Iasi, Romania
- Internal Medicine Clinic, "St. Spiridon" County Clinical Emergency Hospital Iasi, 700111 Iasi, Romania
| | - Emilia Valasciuc
- Department of Internal Medicine, "Grigore T. Popa" University of Medicine and Pharmacy, 700115 Iasi, Romania
- Internal Medicine Clinic, "St. Spiridon" County Clinical Emergency Hospital Iasi, 700111 Iasi, Romania
| | - Evelina Maria Gosav
- Department of Internal Medicine, "Grigore T. Popa" University of Medicine and Pharmacy, 700115 Iasi, Romania
- Internal Medicine Clinic, "St. Spiridon" County Clinical Emergency Hospital Iasi, 700111 Iasi, Romania
| | - Anca Ouatu
- Department of Internal Medicine, "Grigore T. Popa" University of Medicine and Pharmacy, 700115 Iasi, Romania
- Internal Medicine Clinic, "St. Spiridon" County Clinical Emergency Hospital Iasi, 700111 Iasi, Romania
| | - Oana Nicoleta Buliga-Finis
- Department of Internal Medicine, "Grigore T. Popa" University of Medicine and Pharmacy, 700115 Iasi, Romania
- Internal Medicine Clinic, "St. Spiridon" County Clinical Emergency Hospital Iasi, 700111 Iasi, Romania
| | - Mariana Floria
- Department of Internal Medicine, "Grigore T. Popa" University of Medicine and Pharmacy, 700115 Iasi, Romania
- Internal Medicine Clinic, "St. Spiridon" County Clinical Emergency Hospital Iasi, 700111 Iasi, Romania
| | - Minela Aida Maranduca
- Internal Medicine Clinic, "St. Spiridon" County Clinical Emergency Hospital Iasi, 700111 Iasi, Romania
- Department of Morpho-Functional Sciences II, Discipline of Physiology, "Grigore T. Popa" University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Ionela Lacramioara Serban
- Department of Morpho-Functional Sciences II, Discipline of Physiology, "Grigore T. Popa" University of Medicine and Pharmacy, 700115 Iasi, Romania
| |
Collapse
|
37
|
Zhao K, Han D, He SR, Wu LY, Liu WY, Zhong ZM. N-acetyl-L-cysteine attenuates oxidative stress-induced bone marrow endothelial cells apoptosis by inhibiting BAX/caspase 3 pathway. Biochem Biophys Res Commun 2023; 656:115-121. [PMID: 36963348 DOI: 10.1016/j.bbrc.2023.03.045] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 03/16/2023] [Indexed: 03/19/2023]
Abstract
Bone marrow endothelial cells (BMECs) play a crucial role in the maintenance of bone homeostasis. The decline in BMECs is associated with abnormal bone development and loss. At present, the mechanism of age-related oxidative stress enhancement in BMEC dysfunction remains unclear. Our experiment explored injury caused by oxidative stress enhancement in BMECs both in vivo and in vitro. The BMECs, indicators of oxidative stress, bone mass, and apoptosis-related proteins were analyzed in different age groups. We also evaluated the ability of N-Acetyl-L-cysteine (NAC) attenuate oxidative stress injury in BMECs. NAC treatment attenuated reactive oxygen species (ROS) overgeneration and apoptosis in BMECs in vitro and alleviated the loss of BMECs and bone mass in vivo. In conclusion, this study could improve our understanding of the mechanism of oxidative stress-induced BMECs injury and whether NAC has therapeutic potential in senile osteoporosis.
Collapse
Affiliation(s)
- Kai Zhao
- Division of Spine Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, PR China; Department of Orthopaedics, First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, PR China
| | - Dong Han
- Division of Spine Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, PR China
| | - Si-Rui He
- Department of Orthopaedics, First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, PR China
| | - Long-Yan Wu
- Ganzhou People's Hospital, Ganzhou, PR China
| | - Wu-Yang Liu
- Department of Orthopaedics, First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, PR China.
| | - Zhao-Ming Zhong
- Division of Spine Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, PR China.
| |
Collapse
|
38
|
Regulatory mechanism of icariin in cardiovascular and neurological diseases. Biomed Pharmacother 2023; 158:114156. [PMID: 36584431 DOI: 10.1016/j.biopha.2022.114156] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/14/2022] [Accepted: 12/21/2022] [Indexed: 12/29/2022] Open
Abstract
Cardiovascular diseases (CVDs) and neurological diseases are widespread diseases with substantial rates of morbidity and mortality around the world. For the past few years, the preventive effects of Chinese herbal medicine on CVDs and neurological diseases have attracted a great deal of attention. Icariin (ICA), the main constituent of Epimedii Herba, is a flavonoid. It has been shown to provide neuroprotection, anti-tumor, anti-osteoporosis, and cardiovascular protection. The endothelial protection, anti-inflammatory, hypolipidemic, antioxidative stress, and anti-apoptosis properties of ICA can help stop the progression of CVDs and neurological diseases. Therefore, our review summarized the known mechanisms and related studies of ICA in the prevention and treatment of cardio-cerebrovascular diseases (CCVDs), to better understand its therapeutic potential.
Collapse
|
39
|
Oxidative Stress Modulation by ncRNAs and Their Emerging Role as Therapeutic Targets in Atherosclerosis and Non-Alcoholic Fatty Liver Disease. Antioxidants (Basel) 2023; 12:antiox12020262. [PMID: 36829822 PMCID: PMC9952114 DOI: 10.3390/antiox12020262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/18/2023] [Accepted: 01/20/2023] [Indexed: 01/27/2023] Open
Abstract
Atherosclerosis and non-alcoholic fatty liver disease (NAFLD) are pathologies related to ectopic fat accumulation, both of which are continuously increasing in prevalence. These threats are prompting researchers to develop effective therapies for their clinical management. One of the common pathophysiological alterations that underlies both diseases is oxidative stress (OxS), which appears as a result of lipid deposition in affected tissues. However, the molecular mechanisms that lead to OxS generation are different in each disease. Non-coding RNAs (ncRNAs) are RNA transcripts that do not encode proteins and function by regulating gene expression. In recent years, the involvement of ncRNAs in OxS modulation has become more recognized. This review summarizes the most recent advances regarding ncRNA-mediated regulation of OxS in atherosclerosis and NAFLD. In both diseases, ncRNAs can exert pro-oxidant or antioxidant functions by regulating gene targets and even other ncRNAs, positioning them as potential therapeutic targets. Interestingly, both diseases have common altered ncRNAs, suggesting that the same molecule can be targeted simultaneously when both diseases coexist. Finally, since some ncRNAs have already been used as therapeutic agents, their roles as potential drugs for the clinical management of atherosclerosis and NAFLD are analyzed.
Collapse
|
40
|
Batty M, Bennett MR, Yu E. The Role of Oxidative Stress in Atherosclerosis. Cells 2022; 11:3843. [PMID: 36497101 PMCID: PMC9735601 DOI: 10.3390/cells11233843] [Citation(s) in RCA: 143] [Impact Index Per Article: 47.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 11/28/2022] [Accepted: 11/28/2022] [Indexed: 12/02/2022] Open
Abstract
Atherosclerosis is a chronic inflammatory disease of the vascular system and is the leading cause of cardiovascular diseases worldwide. Excessive generation of reactive oxygen species (ROS) leads to a state of oxidative stress which is a major risk factor for the development and progression of atherosclerosis. ROS are important for maintaining vascular health through their potent signalling properties. However, ROS also activate pro-atherogenic processes such as inflammation, endothelial dysfunction and altered lipid metabolism. As such, considerable efforts have been made to identify and characterise sources of oxidative stress in blood vessels. Major enzymatic sources of vascular ROS include NADPH oxidases, xanthine oxidase, nitric oxide synthases and mitochondrial electron transport chains. The production of ROS is balanced by ROS-scavenging antioxidant systems which may become dysfunctional in disease, contributing to oxidative stress. Changes in the expression and function of ROS sources and antioxidants have been observed in human atherosclerosis while in vitro and in vivo animal models have provided mechanistic insight into their functions. There is considerable interest in utilising antioxidant molecules to balance vascular oxidative stress, yet clinical trials are yet to demonstrate any atheroprotective effects of these molecules. Here we will review the contribution of ROS and oxidative stress to atherosclerosis and will discuss potential strategies to ameliorate these aspects of the disease.
Collapse
Affiliation(s)
| | | | - Emma Yu
- Section of Cardiorespiratory Medicine, University of Cambridge, Cambridge CB2 0BB, UK
| |
Collapse
|
41
|
Lu YW, Chang CC, Chou RH, Tsai YL, Liu LK, Chen LK, Huang PH, Lin SJ. Sex difference in the association between pathological albuminuria and subclinical atherosclerosis: insights from the I-Lan longitudinal aging study. Aging (Albany NY) 2022; 14:8001-8012. [PMID: 36227142 PMCID: PMC9596222 DOI: 10.18632/aging.204331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 09/23/2022] [Indexed: 11/25/2022]
Abstract
Background: Pathological albuminuria (PAU) (urinary albumin creatinine ratio [UACR] ≥30 mg/g) is an independent risk factor of cardiovascular disease. PAU is more prevalent in men than women. We aimed to compare the association of PAU and the early phase of subclinical atherosclerosis (SA) between sexes. Methods: 1228 subjects aged 50–90 years were stratified by sex and UACR (normal or PAU). SA was defined as mean carotid intima-media thickness ≥75th percentile of the cohort. Demographics and SA prevalence were compared between groups. Multivariate logistic regression was performed to assess the relationship between PAU and SA. Results: Both men and women with PAU had increased prevalence of hypertension, anti-hypertensive therapy, and metabolic syndrome than controls. Men with PAU were older and had greater waist circumference and total body fat percentage. Sex disparity was observed in associations between waist-to-height ratio, total body fat, and UACR. After adjusting for traditional risk factors, multivariate logistic regression disclosed that PAU was independently associated with SA in men (adjusted odds ratio 1.867, 95% CI 1.066–3.210) but not in women. Conclusion: The relationship of PAU and SA differed between sexes. This result may highlight the need for sex-specific risk management strategies to prevent atherosclerosis.
Collapse
Affiliation(s)
- Ya-Wen Lu
- Division of Cardiology, Department of Medicine, Taichung Veterans General Hospital, Taichung, Taiwan.,Cardiovascular Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Chun-Chin Chang
- Cardiovascular Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Ruey-Hsing Chou
- Cardiovascular Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan.,Department of Critical Care Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Yi-Lin Tsai
- Cardiovascular Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Li-Kuo Liu
- Center for Geriatrics and Gerontology, Taipei Veterans General Hospital, Taipei, Taiwan.,Aging and Health Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Liang-Kung Chen
- Center for Geriatrics and Gerontology, Taipei Veterans General Hospital, Taipei, Taiwan.,Aging and Health Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Institute of Public Health, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Taipei Municipal Gan-Dau Hospital, Taipei, Taiwan
| | - Po-Hsun Huang
- Cardiovascular Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan.,Department of Critical Care Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Shing-Jong Lin
- Cardiovascular Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan.,Taipei Municipal Gan-Dau Hospital, Taipei, Taiwan.,Taipei Heart Institute, Taipei Medical University, Taipei, Taiwan.,Division of Cardiology, Heart Center, Cheng-Hsin General Hospital, Taipei, Taiwan
| |
Collapse
|
42
|
Li Y, Yuan H, Li Q, Geng S, Chen X, Zhu Y, Jiang H. Lifestyle-based oxidative balance score and its association with cardiometabolic health of the community-dwelling elderly: A cross-sectional secondary analysis. Front Cardiovasc Med 2022; 9:1000546. [PMID: 36237896 PMCID: PMC9551053 DOI: 10.3389/fcvm.2022.1000546] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 09/06/2022] [Indexed: 12/05/2022] Open
Abstract
Background Cardiometabolic diseases, the main disease burden in older adults, are largely caused by oxidative stress resulting from lifestyle factors. This study investigated the relationship between lifestyle-based oxidative balance scores and cardiometabolic health among the community-dwelling elderly. Methods This work conducted a secondary analysis of previous cross-sectional research data and constructed a lifestyle-based oxidative balance score (LOBS) including 4 components (higher scores were considered more antioxidant). Linear regression models and logistic regression models were used to evaluate the associations with cardiometabolic biomarkers and the number of cardiometabolic risk factors. Besides, we investigated whether these associations differed by covariates. Results A total of 710 individuals (60.99% female, median age 70.0 years) were recruited. The inverse associations of LOBS with SBP and TG and the positive association with HDLC were statistically significant in both linear and logistic regression models. In contrast, an inverse association of LOBS with DBP was significant only in the linear regression model (all P < 0.05). The associations of LOBS with TG and HDLC were not affected by age, gender, or socioeconomic level. A significant inverse association was observed between LOBS and the number of cardiometabolic risk factors. Compared with the lowest LOBS, the ORs for more cardiometabolic risk factors in the second and third intervals were 0.577 (0.422, 0.788) and 0.460 (0.301, 0.703) (both P < 0.001). Conclusion In summary, this study shows that antioxidant-predominant lifestyle exposure yields a better cardiometabolic health status. We recommend that general practitioners should offer comprehensive healthy lifestyle management to community-dwelling elderly.
Collapse
Affiliation(s)
- Yang Li
- Department of General Practice, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
- Department of Geriatrics, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Huixiao Yuan
- Department of General Practice, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
- Department of Geriatrics, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Qingqing Li
- Department of General Practice, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
- Department of Geriatrics, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Shasha Geng
- Department of General Practice, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
- Department of Geriatrics, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xin Chen
- Department of General Practice, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
- Department of Geriatrics, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yingqian Zhu
- Department of General Practice, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
- Department of Geriatrics, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Hua Jiang
- Department of General Practice, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
- Department of Geriatrics, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
- *Correspondence: Hua Jiang
| |
Collapse
|
43
|
Tanase DM, Valasciuc E, Gosav EM, Floria M, Costea CF, Dima N, Tudorancea I, Maranduca MA, Serban IL. Contribution of Oxidative Stress (OS) in Calcific Aortic Valve Disease (CAVD): From Pathophysiology to Therapeutic Targets. Cells 2022; 11:cells11172663. [PMID: 36078071 PMCID: PMC9454630 DOI: 10.3390/cells11172663] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 08/23/2022] [Accepted: 08/24/2022] [Indexed: 11/16/2022] Open
Abstract
Calcific aortic valve disease (CAVD) is a major cause of cardiovascular mortality and morbidity, with increased prevalence and incidence. The underlying mechanisms behind CAVD are complex, and are mainly illustrated by inflammation, mechanical stress (which induces prolonged aortic valve endothelial dysfunction), increased oxidative stress (OS) (which trigger fibrosis), and calcification of valve leaflets. To date, besides aortic valve replacement, there are no specific pharmacological treatments for CAVD. In this review, we describe the mechanisms behind aortic valvular disease, the involvement of OS as a fundamental element in disease progression with predilection in AS, and its two most frequent etiologies (calcific aortic valve disease and bicuspid aortic valve); moreover, we highlight the potential of OS as a future therapeutic target.
Collapse
Affiliation(s)
- Daniela Maria Tanase
- Department of Internal Medicine, Grigore T. Popa University of Medicine and Pharmacy, 700115 Iasi, Romania
- Internal Medicine Clinic, St. Spiridon County Clinical Emergency Hospital Iasi, 700111 Iasi, Romania
| | - Emilia Valasciuc
- Department of Internal Medicine, Grigore T. Popa University of Medicine and Pharmacy, 700115 Iasi, Romania
- Internal Medicine Clinic, St. Spiridon County Clinical Emergency Hospital Iasi, 700111 Iasi, Romania
| | - Evelina Maria Gosav
- Department of Internal Medicine, Grigore T. Popa University of Medicine and Pharmacy, 700115 Iasi, Romania
- Internal Medicine Clinic, St. Spiridon County Clinical Emergency Hospital Iasi, 700111 Iasi, Romania
| | - Mariana Floria
- Department of Internal Medicine, Grigore T. Popa University of Medicine and Pharmacy, 700115 Iasi, Romania
- Internal Medicine Clinic, St. Spiridon County Clinical Emergency Hospital Iasi, 700111 Iasi, Romania
- Correspondence:
| | - Claudia Florida Costea
- Department of Ophthalmology, Faculty of Medicine, Grigore T. Popa University of Medicine and Pharmacy, 700115 Iasi, Romania
- 2nd Ophthalmology Clinic, Prof. Dr. Nicolae Oblu Emergency Clinical Hospital, 700309 Iasi, Romania
| | - Nicoleta Dima
- Department of Internal Medicine, Grigore T. Popa University of Medicine and Pharmacy, 700115 Iasi, Romania
- Internal Medicine Clinic, St. Spiridon County Clinical Emergency Hospital Iasi, 700111 Iasi, Romania
| | - Ionut Tudorancea
- Department of Morpho-Functional Sciences II, Discipline of Physiology, Grigore T. Popa University of Medicine and Pharmacy, 700115 Iasi, Romania
- Cardiology Clinic St. Spiridon County Clinical Emergency Hospital, 700111 Iasi, Romania
| | - Minela Aida Maranduca
- Internal Medicine Clinic, St. Spiridon County Clinical Emergency Hospital Iasi, 700111 Iasi, Romania
- Department of Morpho-Functional Sciences II, Discipline of Physiology, Grigore T. Popa University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Ionela Lacramioara Serban
- Department of Morpho-Functional Sciences II, Discipline of Physiology, Grigore T. Popa University of Medicine and Pharmacy, 700115 Iasi, Romania
| |
Collapse
|
44
|
Wang L, Cong HL, Zhang JX, Li XM, Hu YC, Wang C, Lang JC, Zhou BY, Li TT, Liu CW, Yang H, Ren LB, Qi W, Li WY. Prognostic performance of multiple biomarkers in patients with acute coronary syndrome without standard cardiovascular risk factors. Front Cardiovasc Med 2022; 9:916085. [PMID: 35966532 PMCID: PMC9363620 DOI: 10.3389/fcvm.2022.916085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 07/04/2022] [Indexed: 11/29/2022] Open
Abstract
Background and aims Acute coronary syndrome (ACS) without standard modifiable cardiovascular risk factors (SMuRFs) represents a special case of ACS. Multiple biomarkers have been shown to improve risk stratification in patients with ACS. However, the utility of biomarkers for prognostic stratification in patients with ACS without SMuRFs remains uncertain. The aim of the present study was to evaluate the prognostic value of various biomarkers in patents with ACS without SMuRFs. Methods Data of consecutive patients with ACS without SMuRFs who underwent coronary angiography in Tianjin Chest Hospital between January 2014 and December 2017 were retrospectively collected. The primary outcome was the occurrence of major adverse cardiovascular event (MACE), defined as a composite of cardiovascular death, myocardial infarction and stroke. Seven candidate biomarkers analyses were analyzed using models adjusted for established risk factors. Results During a median 5-year follow-up, 81 of the 621 patients experienced a MACE. After adjustment for important covariates, elevated fibrinogen, D-dimer, N-terminal proB-type natriuretic peptide (NT-proBNP), and lipoprotein (a) [Lp(a)] were found to be individually associated with MACE. However, only D-dimer, NT-proBNP and Lp(a) significantly improved risk reclassification for MACE (all P < 0.05). The multimarker analysis showed that there was a clear increase in the risk of MACE with an increasing number of elevated biomarkers and a higher multimarker score. The adjusted hazard ratio- for MACE (95% confidential intervals) for patients with 4 elevated biomarkers was 6.008 (1.9650–18.367) relative to those without any elevated biomarker-. Adding- the 4 biomarkers or the multimarker score to the basic model significantly improved the C-statistic value, the net reclassification index and the integrated discrimination index (all P < 0.05). Conclusion Fibrinogen, D-dimer, NT-proBNP and Lp(a) provided valuable prognostic information for MACE when applied to patients with ACS without SMuRFs. The multimarker strategy, which combined multiple biomarkers reflecting different pathophysiological process with traditional risk factors improved the cardiovascular risk stratification.
Collapse
|
45
|
Moldovan R, Mitrea DR, Florea A, Chiş IC, Suciu Ş, David L, Moldovan BE, Mureşan LE, Lenghel M, Ungur RA, Opriş RV, Decea N, Clichici SV. Effects of Gold Nanoparticles Functionalized with Bioactive Compounds from Cornus mas Fruit on Aorta Ultrastructural and Biochemical Changes in Rats on a Hyperlipid Diet-A Preliminary Study. Antioxidants (Basel) 2022; 11:antiox11071343. [PMID: 35883833 PMCID: PMC9311980 DOI: 10.3390/antiox11071343] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 07/01/2022] [Accepted: 07/06/2022] [Indexed: 02/04/2023] Open
Abstract
Cornus mas L. extract (CM) presents hypolipidemic, antioxidant and anti-inflammatory activity. Gold nanoparticles (AuNPs) are considered potent delivery systems and may be used to release pharmaceutical compounds at the level of injury. In our study, we used gold nanoparticles functionalized with bioactive compounds from Cornus mas L. (AuNPsCM) in an experimental model of a high-fat diet (HFD), and we assessed their effects on aorta wall but also in the serum, as compared to Cornus mas (CM) administration. Sprague Dawley female rats were fed for 9 months with an HFD. During the last month of the experiment, we randomly allocated the animals into three groups that received, by oral gavage: saline solution, CM solution (0.158 mg/mL polyphenols) or AuNPsCM solution (260 μg Au/kg/day), while a Control group received a standard diet and saline solution. At the end of the experiment, we performed an ultrasonography of the aorta and left ventricle and a histology and transmission electron microscopy of the aorta walls; we investigated the oxidative stress and inflammation in aorta homogenates and in serum and, in addition, the lipid profile. AuNPsCM presented better effects in comparison with the natural extract (CM) on lipid peroxidation (p < 0.01) and TNF-alpha (p < 0.001) in aorta homogenates. In serum, both CM and AuNPsCM decreased the triglycerides (p < 0.001) and C-reactive protein (CM, p < 0.01; AuNPsCM, p < 0.001) and increased the antioxidant protection (p < 0.001), in comparison with the HFD group. In intima, AuNPsCM produced ultrastructural lesions, with the disorganization of intima and subendothelial connective layer, whereas CM administration preserved the intima normal aspect, but with a thinned subendothelial connective layer. AuNPsCM oral administration presented certain antioxidant, anti-inflammatory and hypolipidemic effects in an experimental model of HFD, but with a negative impact on the ultrastructure of aorta walls, highlighted by the intima disorganization.
Collapse
Affiliation(s)
- Remus Moldovan
- Department of Physiology, Iuliu Hatieganu University of Medicine and Pharmacy, 1-3 Clinicilor Street, 400006 Cluj-Napoca, Romania; (R.M.); (I.-C.C.); (Ş.S.); (N.D.); (S.V.C.)
| | - Daniela-Rodica Mitrea
- Department of Physiology, Iuliu Hatieganu University of Medicine and Pharmacy, 1-3 Clinicilor Street, 400006 Cluj-Napoca, Romania; (R.M.); (I.-C.C.); (Ş.S.); (N.D.); (S.V.C.)
- Correspondence:
| | - Adrian Florea
- Department of Cell and Molecular Biology, Iuliu Hatieganu University of Medicine and Pharmacy, 6 Pasteur Street, 400349 Cluj-Napoca, Romania; (A.F.); (R.V.O.)
| | - Irina-Camelia Chiş
- Department of Physiology, Iuliu Hatieganu University of Medicine and Pharmacy, 1-3 Clinicilor Street, 400006 Cluj-Napoca, Romania; (R.M.); (I.-C.C.); (Ş.S.); (N.D.); (S.V.C.)
| | - Şoimiţa Suciu
- Department of Physiology, Iuliu Hatieganu University of Medicine and Pharmacy, 1-3 Clinicilor Street, 400006 Cluj-Napoca, Romania; (R.M.); (I.-C.C.); (Ş.S.); (N.D.); (S.V.C.)
| | - Luminiţa David
- Research Center for Advanced Chemical Analysis, Instrumentation and Chemometrics, Faculty of Chemistry and Chemical Engineering, Babes-Bolyai University, 11 Arany Janos Street, 400028 Cluj-Napoca, Romania; (L.D.); (B.E.M.)
| | - Bianca Elena Moldovan
- Research Center for Advanced Chemical Analysis, Instrumentation and Chemometrics, Faculty of Chemistry and Chemical Engineering, Babes-Bolyai University, 11 Arany Janos Street, 400028 Cluj-Napoca, Romania; (L.D.); (B.E.M.)
| | - Laura Elena Mureşan
- Raluca Ripan Institute of Research in Chemistry, Babes-Bolyai University, 30 Fantanele Street, 400294 Cluj-Napoca, Romania;
| | - Manuela Lenghel
- Radiology Department, Iuliu Hatieganu University of Medicine and Pharmacy, 1–3 Clinicilor Street, 400006 Cluj-Napoca, Romania;
| | - Rodica Ana Ungur
- Department of Rehabilitation, Iuliu Hatieganu University of Medicine and Pharmacy, 8 Victor Babes Street, 400012 Cluj-Napoca, Romania;
| | - Răzvan Vlad Opriş
- Department of Cell and Molecular Biology, Iuliu Hatieganu University of Medicine and Pharmacy, 6 Pasteur Street, 400349 Cluj-Napoca, Romania; (A.F.); (R.V.O.)
| | - Nicoleta Decea
- Department of Physiology, Iuliu Hatieganu University of Medicine and Pharmacy, 1-3 Clinicilor Street, 400006 Cluj-Napoca, Romania; (R.M.); (I.-C.C.); (Ş.S.); (N.D.); (S.V.C.)
| | - Simona Valeria Clichici
- Department of Physiology, Iuliu Hatieganu University of Medicine and Pharmacy, 1-3 Clinicilor Street, 400006 Cluj-Napoca, Romania; (R.M.); (I.-C.C.); (Ş.S.); (N.D.); (S.V.C.)
| |
Collapse
|
46
|
Evaluation of Oxidative Status in Elderly Patients with Multiple Cerebral Infarctions and Multiple Chronic Total Coronary Occlusions. DISEASE MARKERS 2022; 2022:2083990. [PMID: 35801004 PMCID: PMC9256345 DOI: 10.1155/2022/2083990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/26/2022] [Accepted: 06/15/2022] [Indexed: 11/18/2022]
Abstract
Background. Oxidative stress plays a key role in atherosclerosis. Acting via high level of reactive oxygen species, an increase of oxidative stress is involved in the pathogenesis and progression of atherosclerostic stenosis or occlusion of arteries. Oxidative stress leads to an accumulation of oxidized low-density lipoprotein, which plays important roles in steno-occlusion of cerebral and coronary arteries. However, the exact reasons for multiple cerebral and coronary artery steno-occlusion in elderly patients remain unclear. The aim was to evaluate the effects of imbalance of oxidative/antioxidative status on concomitant multiple brain infarcts and multiple chronic total coronary occlusions in elderly patients. Methods. We measured the circulating levels of malondialdehyde (MDA), reactive oxygen species (ROS), thiobarbituric acid reactive substance (TBARS), advanced oxidation protein products (AOPP), superoxide dismutase 1 (SOD 1), superoxide dismutase 2 (SOD 2), superoxide dismutase 3 (SOD 3), and paraoxonase 1 (PON 1) in patients with concomitant multiple cerebral infarcts and multiple chronic total coronary occlusions. Results. Circulating levels of oxidative stress markers (MDA, ROS, TBARS, and AOPP) were increased (
) and antioxidative stress markers (SOD 1, SOD 2, SOD 3, and PON 1) were decreased (
) in elderly patients with concomitant multiple brain infarcts and multiple chronic total coronary occlusions. Conclusions. The findings suggested that the imbalance of oxidative/antioxidative status may be associated with multiple cerebral infarcts and multiple chronic total coronary occlusions and may contribute to the development of concomitant multiple brain infarcts and multiple chronic total coronary occlusions in elderly patients.
Collapse
|
47
|
Li L, Li H, Shi L, Shi L, Li T. Tin Porphyrin-Based Nanozymes with Unprecedented Superoxide Dismutase-Mimicking Activities. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:7272-7279. [PMID: 35638128 DOI: 10.1021/acs.langmuir.2c00778] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
As the oxidative stress is related to human aging and many diseases, a diversity of antioxidant biomimetic enzymes to eliminate reactive oxygen species in vivo and maintain the redox balance has attracted intensive attention. Of particular interest are superoxide dismutase (SOD)-mimicking artificial enzymes that bear inherent characteristics of natural counterparts but overcome their deficiencies in thermal and acidic stability. Inspired by the metallized active center of natural SODs, here, we engineered different groups of metalloporphyrins and found that Sn-metallized porphyrins can act as novel SOD mimics, in which Sn-metallized meso-tetra(4-carboxyphenyl) porphine (Sn-TCPP) can more effectively catalyze the disproportionation of superoxide radical anions (•O2-) into hydrogen peroxide and oxygen. Especially, Sn-TCPP-based metal-organic frame nanozyme (Sn-PCN222) displays an unusually high catalytic activity that remarkably exceeds those of commonly used counterparts. Such unprecedented catalytic behaviors are proposed to depend on the Sn(IV)/Sn(II) transition at the center of Sn-TCPP. In addition, the metal-organic framework (MOF) nanozymes also display higher thermal and acidic stability than natural SODs. Interestingly, we find that Sn-complexed methylated tetra-(4-aminophenyl) porphyrin shows an aggregation-induced SOD activity in an acidic environment, whereas conventional SOD mimics do not function well in this case. Given these unique features, our reported Sn-porphyrin-based nanozymes would be potent alternatives for natural SODs to be widely used in clinical treatments of oxidative stress-related diseases.
Collapse
Affiliation(s)
- Ling Li
- Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
| | - Huan Li
- Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
| | - Lin Shi
- Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
| | - Lili Shi
- Department of Chemistry, Anhui University, 111 Jiulong Road, Hefei, Anhui 230601, China
| | - Tao Li
- Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
| |
Collapse
|
48
|
Nisar J, Shah SMA, Akram M, Ayaz S, Rashid A. Phytochemical Screening, Antioxidant, and Inhibition Activity of Picrorhiza kurroa Against α-Amylase and α-Glucosidase. Dose Response 2022; 20:15593258221095960. [PMID: 35558871 PMCID: PMC9087273 DOI: 10.1177/15593258221095960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 04/01/2022] [Indexed: 11/24/2022] Open
Abstract
Picrorhiza kurroa (P.K) usually familiar as kutki is a
well-known plant in the Ayurvedic system of medicine due to its reported
activities including antidiabetic, antibacterial, antioxidant, antitumor,
anti-inflammatory, and hepatoprotective. The current research was intended to
evaluate the antioxidant, inhibition activity of the ethanolic, methanolic, and
aqueous extracts of P.K roots against α-amylase and α-glucosidase in vitro,
after the phytochemical analysis. For this purpose, P.K roots
were extracted with ethanol (EthPk), methanol (MthPk), and distilled water
(AqPk) and phytochemical study of the extracts were performed to recognize the
total phenolic content (TPC) and total flavonoids content (TFC). Antioxidant
capability of the extracts was assessed by FRAP, ABTS, and DPPH assay. α-amylase
inhibitory and α-glucosidase inhibitory activities were also determined.
Software SPSS-23 was used to statistically analyze with One Way ANOVA and
results were stated as mean standard deviation. Result of the study showed that
MthPk contained the maximum concentration of TPC and TFC than EthPk and AqEh.
Antioxidants in terms of DPPH (lowest IC50 = .894 ± .57), FRAP
(612.54 ± 11.73) and ABTS (406.42 ± 4.02) assay was also maximum in MthPk. MthPk
was also showed maximum inhibition activity against α-amylase and α-glucosidase
with lowest IC50 (.39 ± .41; .61 ± .24), respectively. The extracts
α-amylase and α-glucosidase inhibitory activities order was as MthPk >
EthPk> AqPk. Results clearly specified that the methanolic extract of
Picrorhiza kurroa have the maximum antioxidant, α-amylase,
and α-glucosidase inhibitory activities. A positive correlation of TPC, TFC with
antioxidant, and α-amylase and α-glucosidase inhibition activities of the P.K
roots were also shown. The plant has capability to diminish the oxidative stress
and can be used to treat diabetes by inhibiting α-amylase and α-glucosidase
actions.
Collapse
Affiliation(s)
- Jaweria Nisar
- Department of Eastern Medicine, Government College University Faisalabad, Faisalabad, Pakistan
| | - Syed Muhammad A. Shah
- Department of Eastern Medicine, Government College University Faisalabad, Faisalabad, Pakistan
| | - Muhammad Akram
- Department of Eastern Medicine, Government College University Faisalabad, Faisalabad, Pakistan
| | - Sultan Ayaz
- Department of Eastern Medicine, Government College University Faisalabad, Faisalabad, Pakistan
| | - Abid Rashid
- Faculty of Medical Science, Government College University Faisalabad, Faisalabad, Pakistan
| |
Collapse
|
49
|
Reynolds AN, Akerman A, Kumar S, Diep Pham HT, Coffey S, Mann J. Dietary fibre in hypertension and cardiovascular disease management: systematic review and meta-analyses. BMC Med 2022; 20:139. [PMID: 35449060 PMCID: PMC9027105 DOI: 10.1186/s12916-022-02328-x] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 03/09/2022] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Higher dietary fibre intakes are associated with a reduced risk of developing cardiovascular disease (CVD), and increasing intake has been shown to reduce blood pressure and other cardiometabolic risk factors. The extent to which dietary fibre can further reduce risk for those with CVD and treated with cardioprotective drugs has not been clearly established. We have examined the evidence for dietary fibre as adjunct therapy in those with CVD or hypertension. METHODS Ovid MEDLINE, Embase, PubMed, and CENTRAL were searched to June 2021. Prospective observational studies reporting on fibre intakes and mortality in those with pre-existing CVD and controlled trials of increasing fibre intakes on cardiometabolic risk factors in those with CVD or hypertension were eligible. Outcomes were mortality (studies) and cardiometabolic risk factors (trials). Data synthesis was with random effects and dose response. Certainty of evidence was assessed using GRADE. RESULTS Three prospective studies including 7469 adults with CVD, and 12 trials of 878 adults with CVD or hypertension were identified. Moderate certainty evidence indicates reduced all-cause mortality (relative risk, RR0.75 (95% confidence interval, CI 0.58-0.97)) when comparing higher with lower fibre intakes. Low certainty evidence from trials of adults with cardiovascular disease indicates increasing fibre intakes reduced total (mean difference, MD - 0.42 mmol/L (95%CI - 0.78 to - 0.05) and low-density lipoprotein (LDL) cholesterol (MD - 0.47mmol/L (95%CI - 0.85 to - 0.10)). High certainty evidence from trials of adults with hypertension indicates increasing fibre intakes reduces systolic (MD 4.3 mmHg (95% CI 2.2 to 5.8)) and diastolic blood pressure (MD 3.1 mmHg (95% CI 1.7 to 4.4)). Moderate and low certainty evidence indicated improvements in fasting blood glucose (MD 0.48 mmol/L (- 0.91 to - 0.05)) and LDL cholesterol (MD 0.29 mmol/L (95% CI 0.17 to 0.40)). Benefits were observed irrespective of cardioprotective drug use. CONCLUSIONS These findings emphasise the likely benefits of promoting greater dietary fibre intakes for patients with CVD and hypertension. Further trials and cohort analyses in this area would increase confidence in these results.
Collapse
Affiliation(s)
- Andrew N Reynolds
- Department of Medicine, University of Otago, Dunedin, New Zealand.
- Riddet Institute, Palmerston North, New Zealand.
| | - Ashley Akerman
- Department of Medicine, University of Otago, Dunedin, New Zealand
| | - Shiristi Kumar
- Department of Medicine, University of Otago, Dunedin, New Zealand
| | | | - Sean Coffey
- Department of Medicine, University of Otago, Dunedin, New Zealand
| | - Jim Mann
- Department of Medicine, University of Otago, Dunedin, New Zealand
- Riddet Institute, Palmerston North, New Zealand
| |
Collapse
|
50
|
Abstract
Coronary atherosclerosis is a chronic inflammatory disease that can lead to varying degrees of blood flow obstruction and a common pathophysiological basis of cardiovascular disease. Inflammatory factors run through the whole process of atherosclerotic lesions. Macrophages, T cells, and neutrophils play important roles in the process of atherosclerotic inflammation. Considering the evolutionary characteristics, atherosclerosis can be divided into different stages as early atherosclerotic plaque, plaque formation stage, and plaque rupture stage. In this paper, the changes in inflammatory cells at different stages of lesions and their related mechanisms are discussed, which can provide new insights from a clinical to bench perspective for atherosclerosis me chanism.
Collapse
|