1
|
Jiang Y, Zhou T, Zhang S, Leng J, Li L, Zhao W. β-Glucan-based superabsorbent hydrogel ameliorates obesity-associated metabolic disorders via delaying gastric emptying, improving intestinal barrier function, and modulating gut microbiota. Int J Biol Macromol 2025; 304:140846. [PMID: 39933677 DOI: 10.1016/j.ijbiomac.2025.140846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 01/25/2025] [Accepted: 02/07/2025] [Indexed: 02/13/2025]
Abstract
The global obesity epidemic and its associated metabolic syndrome highlight the urgent need for new weight-loss therapies that provide high efficacy and patient compliance. Herein, we propose a novel, noninvasive approach using an orally administered β-glucan-based superabsorbent hydrogel (βC-MA hydrogel) to improve obesity-associated metabolic disorders. Results demonstrated that βC-MA hydrogel functioned as a dynamic exoskeleton within the gastrointestinal tract, slowing gastric emptying and reducing the digestion and absorption of ingested food. Furthermore, βC-MA hydrogel alleviated hepatic lipid accumulation and prevented hepatic steatosis and fibrosis by regulating the expression levels of key genes involved in lipid metabolism, including Cd36, SREBP 1c, FAS, ACC1, Cpt1a, and HSL, thereby limiting the progression of nonalcoholic fatty liver disease. In addition, βC-MA hydrogel reduced intestinal inflammation by lowering tumor necrosis factor-α and interleukin-6 levels while enhancing gut barrier function through increased expression of claudin-1, ZO-1, and MUC2. Finally, βC-MA hydrogel, enriched with obesity-negative probiotics such as Akkermansia, norank_f__Muribaculaceae, and Faecalibaculum, promoted the production of short-chain fatty acids. Consequently, βC-MA hydrogel significantly reduced body weight and fat accumulation and improved blood glucose and lipid levels, with efficacy comparable to semaglutide therapy and superior to β-glucan and sodium carboxymethylcellulose interventions. Overall, these findings suggest that βC-MA hydrogel could serve as a promising next-generation ingestible medical device for alleviating diet-induced obesity and related metabolic disorders by modulating food digestion and absorption, improving intestinal inflammation and barrier function, and regulating gut microbiota composition.
Collapse
Affiliation(s)
- Yiming Jiang
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Tingyi Zhou
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Shiqi Zhang
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Juncai Leng
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Li Li
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Wei Zhao
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China.
| |
Collapse
|
2
|
Casillas-Ramírez A, Maroto-Serrat C, Sanus F, Micó-Carnero M, Rojano-Alfonso C, Cabrer M, Peralta C. Regulation of Adiponectin and Resistin in Liver Transplantation Protects Grafts from Extended-Criteria Donors. THE AMERICAN JOURNAL OF PATHOLOGY 2025; 195:494-527. [PMID: 39566822 DOI: 10.1016/j.ajpath.2024.10.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 09/04/2024] [Accepted: 10/16/2024] [Indexed: 11/22/2024]
Abstract
The donor shortage increases liver transplantation (LT) waiting lists, making it crucial to consider extended-criteria donors, such as steatotic donors after brain death (DBDs) or cardiocirculatory death (DCDs). Nevertheless, steatosis, brain death, and cardiocirculatory death are key risk factors for poor LT outcomes. Herein, the role and therapeutic usefulness of several adipocytokines was investigated to protect such grafts from extended-criteria donors. Sprague rats with nutritionally induced steatosis were used in an experimental LT model with grafts from DBDs or DCDs. Adiponectin, resistin, and visfatin were measured and pharmacologically modulated, and effects on liver injury were assessed. Visfatin played no role under conditions of either DBD or DCD LT. Brain death increased adiponectin and reduced resistin. Adiponectin harmed steatotic and nonsteatotic DBD grafts, via a resistin-dependent mechanism; restraining adiponectin increased resistin, reducing damage. Resistin treatment protected both types of DBD grafts, whereas suppressing it increased damage. This adiponectin-resistin pathway was dependent on protein kinase C. In DCD LT, adiponectin and resistin were not modified in nonsteatotic grafts, but reduced in steatotic ones. Adiponectin or resistin treatments protected steatotic grafts: hepatic adiponectin activated AMP-activated protein kinase ; hepatic resistin increased phosphatidylinositol 3-kinase-Akt. Concomitant administration of both adipocytokines increased both signaling pathways, intensifying protection. These data suggest that pharmacologic modulation of adiponectin and resistin as therapies might potentially be translated to clinical studies to improve surgical outcomes for LT from extended-criteria donors.
Collapse
Affiliation(s)
- Araní Casillas-Ramírez
- Hospital Regional de Alta Especialidad de Ciudad Victoria, Servicios de Salud del Instituto Mexicano de Seguro Social para el Bienestar, Ciudad Victoria, Mexico; Faculty of Medicine of Matamoros, Autonomous University of Tamaulipas, Matamoros, Mexico
| | - Cristina Maroto-Serrat
- Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain; Barcelona University, Barcelona, Spain
| | - Francisco Sanus
- Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
| | - Marc Micó-Carnero
- Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain; Barcelona University, Barcelona, Spain
| | - Carlos Rojano-Alfonso
- Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain; Barcelona University, Barcelona, Spain
| | - Margalida Cabrer
- Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
| | - Carmen Peralta
- Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain.
| |
Collapse
|
3
|
Fornari Laurindo L, Minniti G, Rodrigues VD, Fornari Laurindo L, Strozze Catharin VMC, Baisi Chagas EF, Dos Anjos VD, de Castro MVM, Baldi Júnior E, Ferraroni Sanches RC, Mendez-Sanchez N, Maria Barbalho S. Exploring the Logic and Conducting a Comprehensive Evaluation of the Adiponectin Receptor Agonists AdipoRon and AdipoAI's Impacts on Bone Metabolism and Repair-A Systematic Review. Curr Med Chem 2025; 32:1168-1194. [PMID: 39206478 DOI: 10.2174/0109298673308301240821052742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 05/17/2024] [Accepted: 07/05/2024] [Indexed: 09/04/2024]
Abstract
INTRODUCTION Adiponectin replacement therapy shows promising outcomes in various diseases, especially for bone-related disorders. Challenges in using the complete protein have led to alternative approaches, with AdipoRon and AdipoAI emerging as extensively researched drug candidates. Their influence on models of bone-related disorders has progressed considerably but there has been no review of their effectiveness in modulating bone metabolism and repair. METHODS This systematic review seeks to address this knowledge gap. Based on preclinical evidence from PubMed, EMBASE, and COCHRANE, ten studies were included following PRISMA guidelines. The JBI Checklist Critical Appraisal Tool assessed the quality of this systematic review. The studies encompassed various animal models, addressing bone defects, osseointegration, diabetes-associated periodontitis, fracture repair, growth retardation, and diabetes-associated peri-implantitis. RESULTS AdipoRon and AdipoAI demonstrated effectiveness in modulating bone metabolism and repair through diverse pathways, including the activation of AdipoR1/APPL1, inhibition of F-actin ring formation, suppression of IκB-α phosphorylation, p65 nuclear translocation and Wnt5a-Ror2 signaling pathway, reduction of CCL2 secretion and expression, regulation of autophagy via LC3A/B expression, modulation of SDF-1 production, activation of the ERK1/2 signaling pathway, modulation of bone integration-related markers and osteokines such as RANKL, BMP-2, OPG, OPN, and Runx2, inhibition of RANKL in osteoblasts, and inhibition of podosome formation via the activation of AMPK. CONCLUSION While preclinical studies show promise, human trials are crucial to confirm the clinical safety and effectiveness of AdipoRon and AdipoAI. Caution is necessary due to potential off-target effects, especially in bone therapy with multi-target approaches. Structural biology and computational methods can help predict and understand these effects.
Collapse
Affiliation(s)
- Lucas Fornari Laurindo
- Department of Biochemistry and Pharmacology, School of Medicine, Faculdade de Medicina de Marília (FAMEMA), Marília 17519-030, São Paulo, Brazil
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), Marília 17525-902, São Paulo, Brazil
| | - Giulia Minniti
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), Marília 17525-902, São Paulo, Brazil
| | - Victoria Dogani Rodrigues
- Department of Biochemistry and Pharmacology, School of Medicine, Faculdade de Medicina de Marília (FAMEMA), Marília 17519-030, São Paulo, Brazil
| | - Lívia Fornari Laurindo
- Medical Department, School of Medicine, Faculdade de Medicina de São José do Rio Preto (FAMERP), São José do Rio Preto 15090-000, São Paulo, Brazil
| | - Virginia Maria Cavallari Strozze Catharin
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), Marília 17525-902, São Paulo, Brazil
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, School of Medicine, Universidade de Marília (UNIMAR), Marília 17525-902, São Paulo, Brazil
| | - Eduardo Federighi Baisi Chagas
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, School of Medicine, Universidade de Marília (UNIMAR), Marília 17525-902, São Paulo, Brazil
| | - Vinicius Dias Dos Anjos
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, School of Medicine, Universidade de Marília (UNIMAR), Marília 17525-902, São Paulo, Brazil
| | - Marcela Vialogo Marques de Castro
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, School of Medicine, Universidade de Marília (UNIMAR), Marília 17525-902, São Paulo, Brazil
| | - Edgar Baldi Júnior
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), Marília 17525-902, São Paulo, Brazil
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, School of Medicine, Universidade de Marília (UNIMAR), Marília 17525-902, São Paulo, Brazil
| | - Raquel Cristina Ferraroni Sanches
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, School of Medicine, Universidade de Marília (UNIMAR), Marília 17525-902, São Paulo, Brazil
| | - Nahum Mendez-Sanchez
- Liver Research Unit, Medica Sur Clinic & Foundation, Mexico City 14050, Mexico
- Faculty of Medicine, National Autonomous University of Mexico, Mexico City 04510, Mexico
| | - Sandra Maria Barbalho
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), Marília 17525-902, São Paulo, Brazil
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, School of Medicine, Universidade de Marília (UNIMAR), Marília 17525-902, São Paulo, Brazil
- Department of Biochemistry and Nutrition, School of Food and Technology of Marília (FATEC), Marília 17500-000, São Paulo, Brazil
| |
Collapse
|
4
|
Qi L, Groeger M, Sharma A, Goswami I, Chen E, Zhong F, Ram A, Healy K, Hsiao EC, Willenbring H, Stahl A. Adipocyte inflammation is the primary driver of hepatic insulin resistance in a human iPSC-based microphysiological system. Nat Commun 2024; 15:7991. [PMID: 39266553 PMCID: PMC11393072 DOI: 10.1038/s41467-024-52258-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 08/28/2024] [Indexed: 09/14/2024] Open
Abstract
Interactions between adipose tissue, liver and immune system are at the center of metabolic dysfunction-associated steatotic liver disease and type 2 diabetes. To address the need for an accurate in vitro model, we establish an interconnected microphysiological system (MPS) containing white adipocytes, hepatocytes and proinflammatory macrophages derived from isogenic human induced pluripotent stem cells. Using this MPS, we find that increasing the adipocyte-to-hepatocyte ratio moderately affects hepatocyte function, whereas macrophage-induced adipocyte inflammation causes lipid accumulation in hepatocytes and MPS-wide insulin resistance, corresponding to initiation of metabolic dysfunction-associated steatotic liver disease. We also use our MPS to identify and characterize pharmacological intervention strategies for hepatic steatosis and systemic insulin resistance and find that the glucagon-like peptide-1 receptor agonist semaglutide improves hepatocyte function by acting specifically on adipocytes. These results establish our MPS modeling the adipose tissue-liver axis as an alternative to animal models for mechanistic studies or drug discovery in metabolic diseases.
Collapse
Affiliation(s)
- Lin Qi
- Department of Nutritional Science and Toxicology, College of Natural Resources, University of California Berkeley, Berkeley, CA, 94720, USA
| | - Marko Groeger
- Division of Transplant Surgery, Department of Surgery, University of California San Francisco, San Francisco, CA, 94143, USA
- Eli and Edythe Broad Center for Regeneration Medicine, University of California San Francisco, San Francisco, CA, 94143, USA
| | - Aditi Sharma
- Eli and Edythe Broad Center for Regeneration Medicine, University of California San Francisco, San Francisco, CA, 94143, USA
- Division of Endocrinology and Metabolism, Department of Medicine, University of California San Francisco, San Francisco, CA, 94143, USA
- Institute for Human Genetics, University of California San Francisco, San Francisco, CA, 94143, USA
| | - Ishan Goswami
- Department of Bioengineering, College of Engineering, University of California Berkeley, Berkeley, CA, 94720, USA
| | - Erzhen Chen
- Department of Nutritional Science and Toxicology, College of Natural Resources, University of California Berkeley, Berkeley, CA, 94720, USA
| | - Fenmiao Zhong
- Department of Nutritional Science and Toxicology, College of Natural Resources, University of California Berkeley, Berkeley, CA, 94720, USA
| | - Apsara Ram
- Eli and Edythe Broad Center for Regeneration Medicine, University of California San Francisco, San Francisco, CA, 94143, USA
- Division of Endocrinology and Metabolism, Department of Medicine, University of California San Francisco, San Francisco, CA, 94143, USA
- Institute for Human Genetics, University of California San Francisco, San Francisco, CA, 94143, USA
| | - Kevin Healy
- Department of Bioengineering, College of Engineering, University of California Berkeley, Berkeley, CA, 94720, USA
- Department of Materials Science and Engineering, College of Engineering, University of California Berkeley, Berkeley, CA, 94720, USA
| | - Edward C Hsiao
- Eli and Edythe Broad Center for Regeneration Medicine, University of California San Francisco, San Francisco, CA, 94143, USA
- Division of Endocrinology and Metabolism, Department of Medicine, University of California San Francisco, San Francisco, CA, 94143, USA
- Institute for Human Genetics, University of California San Francisco, San Francisco, CA, 94143, USA
| | - Holger Willenbring
- Division of Transplant Surgery, Department of Surgery, University of California San Francisco, San Francisco, CA, 94143, USA.
- Eli and Edythe Broad Center for Regeneration Medicine, University of California San Francisco, San Francisco, CA, 94143, USA.
- Liver Center, University of California San Francisco, San Francisco, CA, 94143, USA.
| | - Andreas Stahl
- Department of Nutritional Science and Toxicology, College of Natural Resources, University of California Berkeley, Berkeley, CA, 94720, USA.
| |
Collapse
|
5
|
Khatoon S, Das N, Chattopadhyay S, Joharapurkar A, Singh A, Patel V, Nirwan A, Kumar A, Mugale MN, Mishra DP, Kumaravelu J, Guha R, Jain MR, Chattopadhyay N, Sanyal S. Apigenin-6-C-glucoside ameliorates MASLD in rodent models via selective agonism of adiponectin receptor 2. Eur J Pharmacol 2024; 978:176800. [PMID: 38950835 DOI: 10.1016/j.ejphar.2024.176800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 06/13/2024] [Accepted: 06/28/2024] [Indexed: 07/03/2024]
Abstract
Adiponectin plays key roles in energy metabolism and ameliorates inflammation, oxidative stress, and mitochondrial dysfunction via its primary receptors, adiponectin receptors -1 and 2 (AdipoR1 and AdipoR2). Systemic depletion of adiponectin causes various metabolic disorders, including MASLD; however adiponectin supplementation is not yet achievable owing to its large size and oligomerization-associated complexities. Small-molecule AdipoR agonists, thus, may provide viable therapeutic options against metabolic disorders. Using a novel luciferase reporter-based assay here, we have identified Apigenin-6-C-glucoside (ACG), but not apigenin, as a specific agonist for the liver-rich AdipoR isoform, AdipoR2 (EC50: 384 pM) with >10000X preference over AdipoR1. Immunoblot analysis in HEK-293 overexpressing AdipoR2 or HepG2 and PLC/PRF/5 liver cell lines revealed rapid AMPK, p38 activation and induction of typical AdipoR targets PGC-1α and PPARα by ACG at a pharmacologically relevant concentration of 100 nM (reported cMax in mouse; 297 nM). ACG-mediated AdipoR2 activation culminated in a favorable modulation of key metabolic events, including decreased inflammation, oxidative stress, mitochondrial dysfunction, de novo lipogenesis, and increased fatty acid β-oxidation as determined by immunoblotting, QRT-PCR and extracellular flux analysis. AdipoR2 depletion or AMPK/p38 inhibition dampened these effects. The in vitro results were recapitulated in two different murine models of MASLD, where ACG at 10 mg/kg body weight robustly reduced hepatic steatosis, fibrosis, proinflammatory macrophage numbers, and increased hepatic glycogen content. Together, using in vitro experiments and rodent models, we demonstrate a proof-of-concept for AdipoR2 as a therapeutic target for MASLD and provide novel chemicobiological insights for the generation of translation-worthy pharmacological agents.
Collapse
Affiliation(s)
- Shamima Khatoon
- Division of Biochemistry and Structural Biology, CSIR-Central Drug Research Institute, Lucknow, 226031, India
| | - Nabanita Das
- Division of Biochemistry and Structural Biology, CSIR-Central Drug Research Institute, Lucknow, 226031, India
| | - Sourav Chattopadhyay
- Division of Biochemistry and Structural Biology, CSIR-Central Drug Research Institute, Lucknow, 226031, India
| | | | - Abhinav Singh
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India; Division of Pharmacology, CSIR-Central Drug Research Institute, Lucknow, 226031, India
| | - Vishal Patel
- Zydus Research Center, Moraiya, Ahmedabad, 382213, Gujarat, India
| | - Abhishek Nirwan
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India; Division of Endocrinology, CSIR-Central Drug Research Institute, Lucknow, 226031, India
| | - Akhilesh Kumar
- Division of Toxicology and Experimental Medicine, CSIR-Central Drug Research Institute, Lucknow, 226031, India
| | - Madhav Nilakanth Mugale
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India; Division of Toxicology and Experimental Medicine, CSIR-Central Drug Research Institute, Lucknow, 226031, India
| | - Durga Prasad Mishra
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India; Division of Endocrinology, CSIR-Central Drug Research Institute, Lucknow, 226031, India
| | - Jagavelu Kumaravelu
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India; Division of Pharmacology, CSIR-Central Drug Research Institute, Lucknow, 226031, India
| | - Rajdeep Guha
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India; Laboratory Animal Facility, CSIR-Central Drug Research Institute, Lucknow, 226031, India
| | | | - Naibedya Chattopadhyay
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India; Division of Endocrinology, CSIR-Central Drug Research Institute, Lucknow, 226031, India
| | - Sabyasachi Sanyal
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
6
|
Chung SW, Moon HS, Shin H, Han H, Park S, Cho H, Park J, Hur MH, Park MK, Won SH, Lee YB, Cho EJ, Yu SJ, Kim DK, Yoon JH, Lee JH, Kim YJ. Inhibition of sodium-glucose cotransporter-2 and liver-related complications in individuals with diabetes: a Mendelian randomization and population-based cohort study. Hepatology 2024; 80:633-648. [PMID: 38466796 DOI: 10.1097/hep.0000000000000837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 02/19/2024] [Indexed: 03/13/2024]
Abstract
BACKGROUND AND AIMS No medication has been found to reduce liver-related events. We evaluated the effect of sodium-glucose cotransporter-2 inhibitor (SGLT2i) on liver-related outcomes. APPROACH AND RESULTS Single nucleotide polymorphisms associated with SGLT2 inhibition were identified, and a genetic risk score (GRS) was computed using the UK Biobank data (n=337,138). Two-sample Mendelian randomization (MR) was conducted using the FinnGen (n=218,792) database and the UK Biobank data. In parallel, a nationwide population-based study using the Korean National Health Insurance Service (NHIS) database was conducted. The development of liver-related complications (ie, hepatic decompensation, HCC, liver transplantation, and death) was compared between individuals with type 2 diabetes mellitus and steatotic liver diseases treated with SGLT2i (n=13,208) and propensity score-matched individuals treated with dipeptidyl peptidase-4 inhibitor (n=70,342). After computing GRS with 6 single nucleotide polymorphisms (rs4488457, rs80577326, rs11865835, rs9930811, rs34497199, and rs35445454), GRS-based MR showed that SGLT2 inhibition (per 1 SD increase of GRS, 0.1% lowering of HbA1c) was negatively associated with cirrhosis development (adjusted odds ratio=0.83, 95% CI=0.70-0.98, p =0.03) and this was consistent in the 2-sample MR (OR=0.73, 95% CI=0.60-0.90, p =0.003). In the Korean NHIS database, the risk of liver-related complications was significantly lower in the SGLT2i group than in the dipeptidyl peptidase-4 inhibitor group (adjusted hazard ratio=0.88, 95% CI=0.79-0.97, p =0.01), and this difference remained significant (adjusted hazard ratio=0.72-0.89, all p <0.05) across various sensitivity analyses. CONCLUSIONS Both MRs using 2 European cohorts and a Korean nationwide population-based cohort study suggest that SGLT2 inhibition is associated with a lower risk of liver-related events.
Collapse
Affiliation(s)
- Sung Won Chung
- Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, Seoul, South Korea
- Division of Gastroenterology, Liver Center, Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | | | - Hyunjae Shin
- Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, Seoul, South Korea
| | - Hyein Han
- Department of Public Health Sciences, Graduate School of Public Health, Seoul National University, Seoul, South Korea
| | - Sehoon Park
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, South Korea
| | - Heejin Cho
- Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, Seoul, South Korea
| | - Jeayeon Park
- Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, Seoul, South Korea
| | - Moon Haeng Hur
- Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, Seoul, South Korea
| | - Min Kyung Park
- Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, Seoul, South Korea
| | - Sung-Ho Won
- RexSoft Inc., Seoul, South Korea
- Department of Public Health Sciences, Graduate School of Public Health, Seoul National University, Seoul, South Korea
- Interdisciplinary Program for Bioinformatics, College of Natural Science, Seoul National University, Seoul, South Korea
- Institute of Health and Environment, Seoul National University, Seoul, South Korea
| | - Yun Bin Lee
- Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, Seoul, South Korea
| | - Eun Ju Cho
- Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, Seoul, South Korea
| | - Su Jong Yu
- Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, Seoul, South Korea
| | - Dong Ki Kim
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, South Korea
| | - Jung-Hwan Yoon
- Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, Seoul, South Korea
| | - Jeong-Hoon Lee
- Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, Seoul, South Korea
- Inocras, Inc., San Diego, California, USA
| | - Yoon Jun Kim
- Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, Seoul, South Korea
| |
Collapse
|
7
|
Harrison SA, Rolph T, Knott M, Dubourg J. FGF21 agonists: An emerging therapeutic for metabolic dysfunction-associated steatohepatitis and beyond. J Hepatol 2024; 81:562-576. [PMID: 38710230 DOI: 10.1016/j.jhep.2024.04.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 03/26/2024] [Accepted: 04/29/2024] [Indexed: 05/08/2024]
Abstract
The worldwide epidemics of obesity, hypertriglyceridemia, dyslipidaemia, type 2 diabetes, and metabolic dysfunction-associated steatotic liver disease (MASLD)/metabolic dysfunction-associated steatohepatitis (MASH) represent a major economic burden on healthcare systems. Patients with at-risk MASH, defined as MASH with moderate or significant fibrosis, are at higher risk of comorbidity/mortality, with a significant risk of cardiovascular diseases and/or major adverse liver outcomes. Despite a high unmet medical need, there is only one drug approved for MASH. Several drug candidates have reached the phase III development stage and could lead to several potential conditional drug approvals in the coming years. Within the armamentarium of future treatment options, FGF21 analogues hold an interesting position thanks to their pleiotropic effects in addition to their significant effect on both MASH resolution and fibrosis improvement. In this review, we summarise preclinical and clinical data from FGF21 analogues for MASH and explore additional potential therapeutic indications.
Collapse
Affiliation(s)
- Stephen A Harrison
- Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 9DU UK; Pinnacle Clinical Research, San Antonio, Texas, USA
| | - Tim Rolph
- Akero Therapeutics, South San Francisco, California, USA
| | | | | |
Collapse
|
8
|
Baldelli S, Aiello G, Mansilla Di Martino E, Campaci D, Muthanna FMS, Lombardo M. The Role of Adipose Tissue and Nutrition in the Regulation of Adiponectin. Nutrients 2024; 16:2436. [PMID: 39125318 PMCID: PMC11313710 DOI: 10.3390/nu16152436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/21/2024] [Accepted: 07/25/2024] [Indexed: 08/12/2024] Open
Abstract
Adipose tissue (AT), composed mainly of adipocytes, plays a critical role in lipid control, metabolism, and energy storage. Once considered metabolically inert, AT is now recognized as a dynamic endocrine organ that regulates food intake, energy homeostasis, insulin sensitivity, thermoregulation, and immune responses. This review examines the multifaceted role of adiponectin, a predominant adipokine released by AT, in glucose and fatty acid metabolism. We explore the regulatory mechanisms of adiponectin, its physiological effects and its potential as a therapeutic target for metabolic diseases such as type 2 diabetes, cardiovascular disease and fatty liver disease. Furthermore, we analyze the impact of various dietary patterns, specific nutrients, and physical activities on adiponectin levels, highlighting strategies to improve metabolic health. Our comprehensive review provides insights into the critical functions of adiponectin and its importance in maintaining systemic metabolic homeostasis.
Collapse
Affiliation(s)
- Sara Baldelli
- Department for the Promotion of Human Science and Quality of Life, San Raffaele Open University, Via di Val Cannuta, 247, 00166 Rome, Italy (E.M.D.M.)
- IRCCS San Raffaele Roma, 00166 Rome, Italy
| | - Gilda Aiello
- Department for the Promotion of Human Science and Quality of Life, San Raffaele Open University, Via di Val Cannuta, 247, 00166 Rome, Italy (E.M.D.M.)
| | - Eliana Mansilla Di Martino
- Department for the Promotion of Human Science and Quality of Life, San Raffaele Open University, Via di Val Cannuta, 247, 00166 Rome, Italy (E.M.D.M.)
| | - Diego Campaci
- Department for the Promotion of Human Science and Quality of Life, San Raffaele Open University, Via di Val Cannuta, 247, 00166 Rome, Italy (E.M.D.M.)
| | - Fares M. S. Muthanna
- Pharmacy Department, Faculty of Medicine and Health Sciences, University of Science and Technology-Aden, Alshaab Street, Enmaa City 22003, Yemen
| | - Mauro Lombardo
- Department for the Promotion of Human Science and Quality of Life, San Raffaele Open University, Via di Val Cannuta, 247, 00166 Rome, Italy (E.M.D.M.)
| |
Collapse
|
9
|
Varra FN, Varras M, Varra VK, Theodosis-Nobelos P. Molecular and pathophysiological relationship between obesity and chronic inflammation in the manifestation of metabolic dysfunctions and their inflammation‑mediating treatment options (Review). Mol Med Rep 2024; 29:95. [PMID: 38606791 PMCID: PMC11025031 DOI: 10.3892/mmr.2024.13219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 01/17/2024] [Indexed: 04/13/2024] Open
Abstract
Obesity reaches up to epidemic proportions globally and increases the risk for a wide spectrum of co‑morbidities, including type‑2 diabetes mellitus (T2DM), hypertension, dyslipidemia, cardiovascular diseases, non‑alcoholic fatty liver disease, kidney diseases, respiratory disorders, sleep apnea, musculoskeletal disorders and osteoarthritis, subfertility, psychosocial problems and certain types of cancers. The underlying inflammatory mechanisms interconnecting obesity with metabolic dysfunction are not completely understood. Increased adiposity promotes pro‑inflammatory polarization of macrophages toward the M1 phenotype, in adipose tissue (AT), with subsequent increased production of pro‑inflammatory cytokines and adipokines, inducing therefore an overall, systemic, low‑grade inflammation, which contributes to metabolic syndrome (MetS), insulin resistance (IR) and T2DM. Targeting inflammatory mediators could be alternative therapies to treat obesity, but their safety and efficacy remains to be studied further and confirmed in future clinical trials. The present review highlights the molecular and pathophysiological mechanisms by which the chronic low‑grade inflammation in AT and the production of reactive oxygen species lead to MetS, IR and T2DM. In addition, focus is given on the role of anti‑inflammatory agents, in the resolution of chronic inflammation, through the blockade of chemotactic factors, such as monocytes chemotractant protein‑1, and/or the blockade of pro‑inflammatory mediators, such as IL‑1β, TNF‑α, visfatin, and plasminogen activator inhibitor‑1, and/or the increased synthesis of adipokines, such as adiponectin and apelin, in obesity‑associated metabolic dysfunction.
Collapse
Affiliation(s)
- Fani-Niki Varra
- Department of Pharmacy, School of Health Sciences, Frederick University, Nicosia 1036, Cyprus
- Medical School, Dimocritus University of Thrace, Alexandroupolis 68100, Greece
| | - Michail Varras
- Fourth Department of Obstetrics and Gynecology, ‘Elena Venizelou’ General Hospital, Athens 11521, Greece
| | | | | |
Collapse
|
10
|
Nguyen MLT, Pham C, Pham VT, Nham PLT, Ta BT, Le DT, Le QV, Hoang XC, Bozko P, Nguyen LT, Bui KC. Adiponectin Receptor Agonist Effectively Suppresses Hepatocellular Carcinoma Growth. Cell Biochem Biophys 2024; 82:687-695. [PMID: 38243102 DOI: 10.1007/s12013-024-01217-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 01/04/2024] [Indexed: 01/21/2024]
Abstract
Hepatocellular carcinoma (HCC) is the second lethal cancer. Short overall survival, low five-year survival rate, and unimproved treatment efficacy urge the need to improve HCC prognosis. Adiponectin is key protector against cancer and hepatic abnormalities. Hypoadiponectinemia occurs in and promotes carcinogenesis and hepatic diseases. Adiponectin reactivation by different methods showed impressive effect against cancer and hepatic diseases. Recently, AdipoRon, an adiponectin receptor agonist, can interact with both Adiponectin receptors. AdipoRon showed promising anti-cancer effect in some cancers, but no study on HCC yet. The in vitro effect of AdipoRon on HCC was investigated by cell viability, migration, invasion, colony formation and apoptosis assays. The signalling alteration was determined by RT-qPCR and Western blot. The effect of treatment was interpreted by comparison between treatments and control. The difference between two cell lines was relatively compared. Our results showed significant in vitro anti-cancer effect of AdipoRon via AMPK- and dose-dependent manner. Huh7 cells showed a lower level of AdipoR1/2 and a superior proliferation and aggressiveness, compared to Hep3B. In addition, Huh7 cells were more sensitive to AdipoRon treatment (lower IC50, less cell growth, migration, invasion and colonies upon AdipoRon treatment) than Hep3B cells. In conclusion, AdipoRon effectively inhibited HCC growth and invasiveness in vitro. The deficient expression of adiponectin receptors affects efficacy of AdipoRon and aggressiveness of HCC cells.
Collapse
Affiliation(s)
- Mai Ly Thi Nguyen
- Vietnam Military Medical University, Hanoi, Vietnam
- Department of Biochemistry, Military Hospital 103, Hanoi, Vietnam
| | - Chi Pham
- Laboratory Animal Research Centre, Vietnam Military Medical University, Hanoi, Vietnam
| | - Van Tran Pham
- Vietnam Military Medical University, Hanoi, Vietnam
- Department of Biochemistry, Military Hospital 103, Hanoi, Vietnam
| | - Phuong Linh Thi Nham
- Laboratory Animal Research Centre, Vietnam Military Medical University, Hanoi, Vietnam
| | - Ba Thang Ta
- Vietnam Military Medical University, Hanoi, Vietnam
- Respiratory Centre, Military Hospital 103, Hanoi, Vietnam
| | - Dinh Tuan Le
- Vietnam Military Medical University, Hanoi, Vietnam
- Department of Rheumatology and Endocrinology, Military Hospital 103, Hanoi, Vietnam
| | - Quoc Vuong Le
- Vietnam Military Medical University, Hanoi, Vietnam
- Department of Medical Examination, Le Huu Trac National Burn Hospital, Hanoi, Vietnam
| | | | - Przemyslaw Bozko
- Department of Internal medicine I, Universitätsklinikum Tübingen, Tübingen, Germany
- The M3 Research Institute, Tübingen, Germany
| | - Linh Toan Nguyen
- Vietnam Military Medical University, Hanoi, Vietnam
- Department of Pathophysiology, Vietnam Military Medical University, Hanoi, Vietnam
- Vietnamese-German Center for Medical Research (VG-CARE), Hanoi, Vietnam
| | - Khac Cuong Bui
- Vietnam Military Medical University, Hanoi, Vietnam.
- Laboratory Animal Research Centre, Vietnam Military Medical University, Hanoi, Vietnam.
- Department of Internal medicine I, Universitätsklinikum Tübingen, Tübingen, Germany.
- Department of Pathophysiology, Vietnam Military Medical University, Hanoi, Vietnam.
- Vietnamese-German Center for Medical Research (VG-CARE), Hanoi, Vietnam.
| |
Collapse
|
11
|
Han Y, Sun Q, Chen W, Gao Y, Ye J, Chen Y, Wang T, Gao L, Liu Y, Yang Y. New advances of adiponectin in regulating obesity and related metabolic syndromes. J Pharm Anal 2024; 14:100913. [PMID: 38799237 PMCID: PMC11127227 DOI: 10.1016/j.jpha.2023.12.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 11/18/2023] [Accepted: 12/07/2023] [Indexed: 05/29/2024] Open
Abstract
Obesity and related metabolic syndromes have been recognized as important disease risks, in which the role of adipokines cannot be ignored. Adiponectin (ADP) is one of the key adipokines with various beneficial effects, including improving glucose and lipid metabolism, enhancing insulin sensitivity, reducing oxidative stress and inflammation, promoting ceramides degradation, and stimulating adipose tissue vascularity. Based on those, it can serve as a positive regulator in many metabolic syndromes, such as type 2 diabetes (T2D), cardiovascular diseases, non-alcoholic fatty liver disease (NAFLD), sarcopenia, neurodegenerative diseases, and certain cancers. Therefore, a promising therapeutic approach for treating various metabolic diseases may involve elevating ADP levels or activating ADP receptors. The modulation of ADP genes, multimerization, and secretion covers the main processes of ADP generation, providing a comprehensive orientation for the development of more appropriate therapeutic strategies. In order to have a deeper understanding of ADP, this paper will provide an all-encompassing review of ADP.
Collapse
Affiliation(s)
- Yanqi Han
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
- Beijing Key laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Qianwen Sun
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
- Beijing Key laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Wei Chen
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
- Beijing Key laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Yue Gao
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
- Beijing Key laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Jun Ye
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
- Beijing Key laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Yanmin Chen
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
- Beijing Key laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Tingting Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
- Beijing Key laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Lili Gao
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
- Beijing Key laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Yuling Liu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
- Beijing Key laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Yanfang Yang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
- Beijing Key laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| |
Collapse
|
12
|
Etzion O, Bareket-Samish A, Yardeni D, Fishman P. Namodenoson at the Crossroad of Metabolic Dysfunction-Associated Steatohepatitis and Hepatocellular Carcinoma. Biomedicines 2024; 12:848. [PMID: 38672201 PMCID: PMC11047856 DOI: 10.3390/biomedicines12040848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/02/2024] [Accepted: 04/08/2024] [Indexed: 04/28/2024] Open
Abstract
Namodenoson (CF102) is a small, orally available, anti-inflammatory, and anti-cancer drug candidate currently in phase 2B trial for the treatment of metabolic dysfunction-associated steatohepatitis (MASH; formerly known as non-alcoholic steatohepatitis (NASH)) and in phase 3 pivotal clinical trial for the treatment of hepatocellular carcinoma (HCC). In both MASH and HCC, the mechanism-of-action of namodenoson involves targeting the A3 adenosine receptor (A3AR), resulting in deregulation of downstream signaling pathways and leading to inhibition of inflammatory cytokines (TNF-α, IL-1, IL-6, and IL-8) and stimulation of positive cytokines (G-CSF and adiponectin). Subsequently, inhibition of liver inflammation, steatosis, and fibrosis were documented in MASH experimental models, and inhibition of HCC growth was observed in vitro, in vivo, and in clinical studies. This review discusses the evidence related to the multifaceted mechanism of action of namodenoson, and how this mechanism is reflected in the available clinical data in MASH and HCC.
Collapse
Affiliation(s)
- Ohad Etzion
- Department of Gastroenterology and Liver Diseases, Sorkoa University Medical Center, Beer Sheva 84101, Israel; (O.E.); (D.Y.)
| | | | - David Yardeni
- Department of Gastroenterology and Liver Diseases, Sorkoa University Medical Center, Beer Sheva 84101, Israel; (O.E.); (D.Y.)
| | | |
Collapse
|
13
|
Laurindo LF, Sosin AF, Lamas CB, de Alvares Goulart R, Dos Santos Haber JF, Detregiachi CRP, Barbalho SM. Exploring the logic and conducting a comprehensive evaluation of AdipoRon-based adiponectin replacement therapy against hormone-related cancers-a systematic review. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:2067-2082. [PMID: 37864589 DOI: 10.1007/s00210-023-02792-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 10/13/2023] [Indexed: 10/23/2023]
Abstract
The potential benefits of adiponectin replacement therapy extend to numerous human diseases, with current research showing particular interest in its effectiveness against specific cancer forms, especially hormone-related. However, limitations in the pharmacological use of the intact protein have led to a focus on alternative options. AdipoRon is an extensively studied non-peptidic drug candidate for adiponectin replacement therapy. While researchers have explored the efficacy and therapeutic applications of AdipoRon in various disease conditions, their effects against cancer models advanced more, with no review regarding AdipoRon's efficacy against hormone-related cancers being published. The present systematic review aims to fill this gap. Preclinical evidence was compiled from PubMed, EMBASE, COCHRANE, and Google Scholar following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines, and the manuscript's quality assessment was conducted using the Joanna Briggs Institute (JBI) Checklist Critical Appraisal Tool for Systematic Reviews' Quality. The included nine studies incorporated various cell and animal models of the pancreas, gynaecological system, and osteosarcoma cancers. AdipoRon demonstrated effectiveness against pancreatic cancer by activating p44/42 MAPK, mitochondrial dysfunction, and AMPK-mediated inhibition of ACC1. In gynaecological cancers, it exhibited promising anticancer effects through the activation of AMPK, potential inhibition of mTOR, and modulation of the SET1B/BOD1/AdipoR1 signaling cascade. Against osteosarcoma, AdipoRon worked by perturbing ERK1/2 signaling and reducing p70S6K phosphorylation. AdipoRon shows promise in preclinical studies, but human trials are crucial for clinical safety and effectiveness. Caution is needed due to potential off-target effects, especially in cancer therapy with multi-target approaches. Structural biology and computational methods can help predict these effects.
Collapse
Affiliation(s)
- Lucas Fornari Laurindo
- Department of Biochemistry and Pharmacology, School of Medicine, Faculdade de Medicina de Marília (FAMEMA), Marília, São Paulo, 17519-030, Brazil.
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo, 17525-902, Brazil.
| | - Andreline Franchi Sosin
- Department of Biochemistry and Pharmacology, School of Medicine, Faculdade de Medicina de Marília (FAMEMA), Marília, São Paulo, 17519-030, Brazil
| | - Caroline Barbalho Lamas
- Department of Gerontology, School of Gerontology, Universidade Federal de São Carlos (UFSCar), São Carlos, São Paulo, 13565-905, Brazil
| | - Ricardo de Alvares Goulart
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo, 17525-902, Brazil
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo, 17525-902, Brazil
| | | | - Claudia Rucco Penteado Detregiachi
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo, 17525-902, Brazil
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo, 17525-902, Brazil
| | - Sandra Maria Barbalho
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo, 17525-902, Brazil
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo, 17525-902, Brazil
- Department of Biochemistry and Nutrition, School of Food and Technology of Marília (FATEC), Marília, São Paulo, 17500-000, Brazil
| |
Collapse
|
14
|
Chondrogianni ME, Kyrou I, Androutsakos T, Flessa CM, Menenakos E, Chatha KK, Aranan Y, Papavassiliou AG, Kassi E, Randeva HS. Anti-osteoporotic treatments in the era of non-alcoholic fatty liver disease: friend or foe. Front Endocrinol (Lausanne) 2024; 15:1344376. [PMID: 38524631 PMCID: PMC10957571 DOI: 10.3389/fendo.2024.1344376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Accepted: 01/05/2024] [Indexed: 03/26/2024] Open
Abstract
Over the last years non-alcoholic fatty liver disease (NAFLD) has grown into the most common chronic liver disease globally, affecting 17-38% of the general population and 50-75% of patients with obesity and/or type 2 diabetes mellitus (T2DM). NAFLD encompasses a spectrum of chronic liver diseases, ranging from simple steatosis (non-alcoholic fatty liver, NAFL) and non-alcoholic steatohepatitis (NASH; or metabolic dysfunction-associated steatohepatitis, MASH) to fibrosis and cirrhosis with liver failure or/and hepatocellular carcinoma. Due to its increasing prevalence and associated morbidity and mortality, the disease-related and broader socioeconomic burden of NAFLD is substantial. Of note, currently there is no globally approved pharmacotherapy for NAFLD. Similar to NAFLD, osteoporosis constitutes also a silent disease, until an osteoporotic fracture occurs, which poses a markedly significant disease and socioeconomic burden. Increasing emerging data have recently highlighted links between NAFLD and osteoporosis, linking the pathogenesis of NAFLD with the process of bone remodeling. However, clinical studies are still limited demonstrating this associative relationship, while more evidence is needed towards discovering potential causative links. Since these two chronic diseases frequently co-exist, there are data suggesting that anti-osteoporosis treatments may affect NAFLD progression by impacting on its pathogenetic mechanisms. In the present review, we present on overview of the current understanding of the liver-bone cross talk and summarize the experimental and clinical evidence correlating NAFLD and osteoporosis, focusing on the possible effects of anti-osteoporotic drugs on NAFLD.
Collapse
Affiliation(s)
- Maria Eleni Chondrogianni
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, Athens, Greece
- Endocrine Unit, 1st Department of Propaupedic Internal Medicine, Laiko Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Ioannis Kyrou
- Laboratory of Dietetics and Quality of Life, Department of Food Science and Human Nutrition, School of Food and Nutritional Sciences, Agricultural University of Athens, Athens, Greece
- Warwickshire Institute for the Study of Diabetes, Endocrinology and Metabolism (WISDEM), University Hospitals Coventry and Warwickshire NHS Trust, Coventry, United Kingdom
- Institute for Cardiometabolic Medicine, University Hospitals Coventry and Warwickshire NHS Trust, Coventry, United Kingdom
- Warwick Medical School, University of Warwick, Coventry, United Kingdom
- Centre for Health & Life Sciences, Coventry University, Coventry, United Kingdom
- Aston Medical School, College of Health and Life Sciences, Aston University, Birmingham, United Kingdom
- College of Health, Psychology and Social Care, University of Derby, Derby, United Kingdom
| | - Theodoros Androutsakos
- Department of Pathophysiology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Christina-Maria Flessa
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Evangelos Menenakos
- 5th Surgical Clinic, Department of Surgery, ‘Evgenidion Hospital’, National and Kapodistrian University of Athens Medical School, Athens, Greece
| | - Kamaljit Kaur Chatha
- Institute for Cardiometabolic Medicine, University Hospitals Coventry and Warwickshire NHS Trust, Coventry, United Kingdom
- Warwick Medical School, University of Warwick, Coventry, United Kingdom
- Department of Biochemistry and Immunology, University Hospitals Coventry and Warwickshire NHS Trust, Coventry, United Kingdom
| | - Yekaterina Aranan
- Warwickshire Institute for the Study of Diabetes, Endocrinology and Metabolism (WISDEM), University Hospitals Coventry and Warwickshire NHS Trust, Coventry, United Kingdom
- Institute for Cardiometabolic Medicine, University Hospitals Coventry and Warwickshire NHS Trust, Coventry, United Kingdom
| | - Athanasios G. Papavassiliou
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Eva Kassi
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, Athens, Greece
- Endocrine Unit, 1st Department of Propaupedic Internal Medicine, Laiko Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Harpal S. Randeva
- Warwickshire Institute for the Study of Diabetes, Endocrinology and Metabolism (WISDEM), University Hospitals Coventry and Warwickshire NHS Trust, Coventry, United Kingdom
- Institute for Cardiometabolic Medicine, University Hospitals Coventry and Warwickshire NHS Trust, Coventry, United Kingdom
- Warwick Medical School, University of Warwick, Coventry, United Kingdom
- Centre for Health & Life Sciences, Coventry University, Coventry, United Kingdom
| |
Collapse
|
15
|
Leciejewska N, Jędrejko K, Gómez-Renaud VM, Manríquez-Núñez J, Muszyńska B, Pokrywka A. Selective androgen receptor modulator use and related adverse events including drug-induced liver injury: Analysis of suspected cases. Eur J Clin Pharmacol 2024; 80:185-202. [PMID: 38059982 PMCID: PMC10847181 DOI: 10.1007/s00228-023-03592-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 11/02/2023] [Indexed: 12/08/2023]
Abstract
PURPOSE Selective androgen receptor modulators (SARMs) have demonstrated agonist activity on the androgen receptor in various tissues, stimulating muscle mass growth and improving bone reconstruction. Despite being in clinical trials, none has been approved by the Food and Drug Administration (FDA) or European Medicines Agency for pharmacotherapy. Still, SARMs are very popular as performance-enhancing drugs. The FDA has issued warnings about the health risks associated with SARMs, but the long-term exposure and possible adverse events still need to be fully understood. This review aims to evaluate the adverse events associated with using SARMs by humans. METHODS PubMed database was searched from September 16, 2022, to October 2, 2023. In total, 20 records were included in the final review. Data from preclinical and clinical studies supported the review. RESULTS Since 2020, 20 reports of adverse events, most described as drug-induced liver injury associated with the use of SARM agonists, have been published. The main symptoms mentioned were cholestatic or hepatocellular liver injury and jaundice. Limited data are related to the dosages and purity of SARM supplements. CONCLUSION Promoting SARMs as an anabolic agent in combination with other performance-enhancing drugs poses a risk to users not only due to doping controls but also to health safety. The lack of quality control of consumed supplements makes it very difficult to assess the direct impact of SARMs on the liver and their potential hepatotoxic effects. Therefore, more detailed analyses are needed to determine the safety of using SARMs.
Collapse
Affiliation(s)
- Natalia Leciejewska
- Department of Animal Physiology, Biochemistry and Biostructure, Poznań University of Life Sciences, 60-637, Poznan, Poland
| | - Karol Jędrejko
- Department of Pharmaceutical Botany, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9 Street, 30-688, Kraków, Poland.
| | - Víctor M Gómez-Renaud
- Human Performance Laboratory, School of Physical Education, Autonomous University of Nuevo Leon, San Nicolas de los Garza, Mexico
| | - Josué Manríquez-Núñez
- Department of Research and Graduate Studies in Food Sciences, School of Chemistry, Autonomous University of Queretaro, Santiago de Queretaro, Mexico
| | - Bożena Muszyńska
- Department of Pharmaceutical Botany, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9 Street, 30-688, Kraków, Poland
| | - Andrzej Pokrywka
- Department of Biochemistry and Pharmacogenomics, Faculty of Pharmacy, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
16
|
Tu WJ, Zhang YH, Wang XT, Zhang M, Jiang KY, Jiang S. Osteocalcin activates lipophagy via the ADPN-AMPK/PPARα-mTOR signaling pathway in chicken embryonic hepatocyte. Poult Sci 2024; 103:103293. [PMID: 38070403 PMCID: PMC10757024 DOI: 10.1016/j.psj.2023.103293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 10/31/2023] [Accepted: 11/13/2023] [Indexed: 01/02/2024] Open
Abstract
Fatty liver hemorrhage syndrome (FLHS) is the leading cause of noninfectious mortality in caged layers worldwide. Osteocalcin (OCN) is a protein secreted by osteoblasts, and its undercarboxylated form (ucOCN) acts as a multifunctional hormone that protects laying hens from FLHS. Lipophagy is a form of selective autophagy that breaks down lipid droplets (LDs) through lysosomes, and defective lipophagy is associated with FLHS. The aim of this study was to investigate the effects of ucOCN on the lipophagy of chicken embryonic hepatocytes and associated the function of the adiponectin (ADPN) signaling pathway. In this study, chicken embryonic hepatocytes were divided into 5 groups: control (CONT), fat emulsion (FE, 10% FE, v/v), FE with ucOCN at 1 ng/mL (FE-LOCN), 3 ng/mL (FE-MOCN), and 9 ng/mL (FE-HOCN). In addition, 4 μM AdipoRon, an adiponectin receptor agonist, was used to investigate the function of ADPN. The results showed that compared with CONT group, FE promoted the levels of phosphorylation of mammalian target of rapamycin (p-mTOR) (P < 0.05) and decreased the mRNA expression of ADNP receptors (AdipoR1 and AdipoR2). Compared with FE group, 3 and 9 ng/mL ucOCN inhibited the levels of autophagy adaptor p62 and p-mTOR (P < 0.05), increased the ratios of LC3-II/LC3-I (P < 0.05) and phosphorylated adenosine 5'-monophosphate-activated protein kinase (p-AMPK)/AMPK (P < 0.05), as well as the levels of peroxisome proliferator-activated receptor α (PPAR-α) and ADPN (P < 0.05). In addition, ucOCN at the tested concentrations increased the colocalization of LC3 and LDs in fatty hepatocytes. Administrated 4 μM AdipoRon activated AdipoR1 and AidpoR2 mRNA expression (P < 0.05), decreased the concentrations of triglyceride (P < 0.05), without effects on cell viability (P > 0.05). AdipoRon also increased the LC3-II/LC3-I ratio (P < 0.05) and the levels of p-AMPK/AMPK and PPAR-α (P < 0.05). In conclusion, the results reveal that ucOCN regulates lipid metabolism by activating lipophagy via the ADPN-AMPK/PPARα-mTOR signaling pathway in chicken embryonic hepatocytes. The results may provide new insights for controlling FLHS in laying hens.
Collapse
Affiliation(s)
- W J Tu
- Joint International Research Laboratory of Animal Health and Animal Food Safety, College of Veterinary Medicine, Southwest University, Chongqing 400715, China
| | - Y H Zhang
- Joint International Research Laboratory of Animal Health and Animal Food Safety, College of Veterinary Medicine, Southwest University, Chongqing 400715, China
| | - X T Wang
- Joint International Research Laboratory of Animal Health and Animal Food Safety, College of Veterinary Medicine, Southwest University, Chongqing 400715, China
| | - M Zhang
- Sichuan Sanhe College of Professionals, Sichuan, China
| | - K Y Jiang
- Joint International Research Laboratory of Animal Health and Animal Food Safety, College of Veterinary Medicine, Southwest University, Chongqing 400715, China
| | - S Jiang
- Joint International Research Laboratory of Animal Health and Animal Food Safety, College of Veterinary Medicine, Southwest University, Chongqing 400715, China.
| |
Collapse
|
17
|
Elfaki I, Mir R, Tayeb F, Alalawy AI, Barnawi J, Dabla PK, Moawadh MS. Potential Association of The Pathogenic Kruppel-like Factor 14 (KLF14) and Adiponectin (ADIPOQ) SNVs with Susceptibility to T2DM. Endocr Metab Immune Disord Drug Targets 2024; 24:1090-1100. [PMID: 38031795 DOI: 10.2174/0118715303258744231117064253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 09/15/2023] [Accepted: 10/10/2023] [Indexed: 12/01/2023]
Abstract
AIM To evaluate the associations of the pathogenic variants in Kruppel-like Factor 14 (KLF 14) and Adiponectin (ADIPOQ) with susceptibility to type 2 diabetes mellitus (T2DM). BACKGROUND Type 2 diabetes mellitus (T2DM) is a pandemic metabolic disease characterized by increased blood sugar and caused by resistance to insulin in peripheral tissues and damage to pancreatic beta cells. Kruppel-like Factor 14 (KLF-14) is proposed to be a regulator of metabolic diseases, such as diabetes mellitus (DM) and obesity. Adiponectin (ADIPOQ) is an adipocytokine produced by the adipocytes and other tissues and was reported to be involved in T2DM. OBJECTIVES To study the possible association of the KLF-14 rs972283 and ADIPOQ-rs266729 with the risk of T2DM in the Saudi population. METHODS We have evaluated the association of KLF-14 rs972283 C>T and ADIPOQ-rs266729 C>G SNV with the risk to T2D in the Saudi population using the Amplification Refractory Mutation System PCR (ARMS-PCR), and blood biochemistry analysis. For the KLF-14 rs972283 C>T SNV we included 115 cases and 116 healthy controls, and ADIPOQ-rs266729 C>G SNV, 103 cases and 104 healthy controls were included. RESULTS Results indicated that the KLF-14 rs972283 GA genotype and A allele were associated with T2D risk with OR=2.14, p-value= 0.014 and OR=1.99, p-value=0.0003, respectively. Results also ADIPOQ-rs266729 CG genotype and C allele were associated with an elevated T2D risk with an OR=2.53, p=0.003 and OR=1.66, p-value =0.012, respectively. CONCLUSION We conclude that SNVs in KLF-14 and ADIPOQ are potential loci for T2D risk. Future large-scale studies to verify these findings are recommended. These results need further verifications in protein functional and large-scale case control studies before being introduced for genetic testing.
Collapse
Affiliation(s)
- Imadeldin Elfaki
- Department of Biochemistry, Faculty of Science, University of Tabuk, Tabuk 47713, Saudi Arabia
| | - Rashid Mir
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk 47713, Saudi Arabia
| | - Faris Tayeb
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk 47713, Saudi Arabia
| | - Adel I Alalawy
- Department of Biochemistry, Faculty of Science, University of Tabuk, Tabuk 47713, Saudi Arabia
| | - Jameel Barnawi
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk 47713, Saudi Arabia
| | - Pradeep Kumar Dabla
- Department of Biochemistry, Govind Ballabh Pant Institute of Postgraduate Medical Education & Research (GIPMER), Associated to Maulana Azad Medical College, Delhi 110002, India
| | - Mamdoh Shafig Moawadh
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk 47713, Saudi Arabia
| |
Collapse
|
18
|
Avtanski D, Stojchevski R. Significance of Adipose Tissue as an Endocrine Organ. CONTEMPORARY ENDOCRINOLOGY 2024:1-46. [DOI: 10.1007/978-3-031-72570-8_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
19
|
Boachie J, Zammit V, Saravanan P, Adaikalakoteswari A. Metformin Inefficiency to Lower Lipids in Vitamin B12 Deficient HepG2 Cells Is Alleviated via Adiponectin-AMPK Axis. Nutrients 2023; 15:5046. [PMID: 38140305 PMCID: PMC10745523 DOI: 10.3390/nu15245046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 11/25/2023] [Accepted: 11/28/2023] [Indexed: 12/24/2023] Open
Abstract
Background: Prolonged metformin treatment decreases vitamin B12 (B12) levels, whereas low B12 is associated with dyslipidaemia. Some studies have reported that metformin has no effect on intrahepatic triglyceride (TG) levels. Although AMP-activated protein kinase (AMPK) activation via adiponectin lowers hepatic TG content, its role in B12 deficiency and metformin has not been explored. We investigated whether low B12 impairs the beneficial effect of metformin on hepatic lipid metabolism via the AMPK-adiponectin axis. Methods: HepG2 was cultured using custom-made B12-deficient Eagle's Minimal Essential Medium (EMEM) in different B12-medium concentrations, followed by a 24-h metformin/adiponectin treatment. Gene and protein expressions and total intracellular TG were measured, and radiochemical analysis of TG synthesis and seahorse mitochondria stress assay were undertaken. Results: With low B12, total intracellular TG and synthesized radiolabelled TG were increased. Regulators of lipogenesis, cholesterol and genes regulating fatty acids (FAs; TG; and cholesterol biosynthesis were increased. FA oxidation (FAO) and mitochondrial function were decreased, with decreased pAMPKα and pACC levels. Following metformin treatment in hepatocytes with low B12, the gene and protein expression of the above targets were not alleviated. However, in the presence of adiponectin, intrahepatic lipid levels with low B12 decreased via upregulated pAMPKα and pACC levels. Again, combined adiponectin and metformin treatment ameliorated the low B12 effect and resulted in increased pAMPKα and pACC, with a subsequent reduction in lipogenesis, increased FAO and mitochondrion function. Conclusions: Adiponectin co-administration with metformin induced a higher intrahepatic lipid-lowering effect. Overall, we emphasize the potential therapeutic implications for hepatic AMPK activation via adiponectin for a clinical condition associated with B12 deficiency and metformin treatment.
Collapse
Affiliation(s)
- Joseph Boachie
- Division of Metabolic and Vascular Health, Clinical Sciences Research Laboratories, Warwick Medical School, University of Warwick, University Hospital-Walsgrave Campus, Coventry CV2 2DX, UK; (J.B.); (V.Z.); (P.S.)
| | - Victor Zammit
- Division of Metabolic and Vascular Health, Clinical Sciences Research Laboratories, Warwick Medical School, University of Warwick, University Hospital-Walsgrave Campus, Coventry CV2 2DX, UK; (J.B.); (V.Z.); (P.S.)
| | - Ponnusamy Saravanan
- Division of Metabolic and Vascular Health, Clinical Sciences Research Laboratories, Warwick Medical School, University of Warwick, University Hospital-Walsgrave Campus, Coventry CV2 2DX, UK; (J.B.); (V.Z.); (P.S.)
- Diabetes Centre, George Eliot Hospital NHS Trust, College Street, Nuneaton CV10 7DJ, UK
- Populations, Evidence and Technologies, Division of Health Sciences, Warwick Medical School, University of Warwick, Coventry CV4 7HL, UK
| | - Antonysunil Adaikalakoteswari
- Division of Metabolic and Vascular Health, Clinical Sciences Research Laboratories, Warwick Medical School, University of Warwick, University Hospital-Walsgrave Campus, Coventry CV2 2DX, UK; (J.B.); (V.Z.); (P.S.)
- Department of Bioscience, School of Science and Technology, Nottingham Trent University, Nottingham NG11 8NS, UK
| |
Collapse
|
20
|
Barbalho SM, Méndez-Sánchez N, Fornari Laurindo L. AdipoRon and ADP355, adiponectin receptor agonists, in Metabolic-associated Fatty Liver Disease (MAFLD) and Nonalcoholic Steatohepatitis (NASH): A systematic review. Biochem Pharmacol 2023; 218:115871. [PMID: 37866803 DOI: 10.1016/j.bcp.2023.115871] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/17/2023] [Accepted: 10/18/2023] [Indexed: 10/24/2023]
Abstract
Adiponectin replacement therapy holds the potential to benefit numerous human diseases, and ongoing research applies particular interest in how adiponectin acts against Metabolic-associated Fatty Liver Disease (MAFLD) and Nonalcoholic Steatohepatitis (NASH). However, the pharmacological limitations of the intact protein have prompted a focus on alternative options, specifically peptidic and small molecule agonists targeting the adiponectin receptor. AdipoRon is an extensively researched non-peptidic drug candidate in adiponectin replacement therapy. In turn, ADP355 is an adiponectin-based active short peptide. They have garnered significant attention due to their potential as substitutes for adiponectin. Researchers have studied AdipoRon's and ADP355's efficacy and therapeutic applications in various disease conditions. However, the effects of AdipoRon and ADP355 against NAFLD and NASH models advanced more, and no systematic review explored this area before. This systematic review was conceived to address the deficiency mentioned above and consider the lack of clinical evidence. The Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines were utilized. To assess the risk of bias in systematic review, The Joanna Briggs Institute (JBI) Critical Appraisal Checklist was employed. Results from pre-clinical evidence show that AdipoRon and ADP355 represent promising effects in NAFLD and NASH-related models, including reducing hepatic steatosis, modulating inflammation, improving insulin sensitivity, enhancing mitochondrial function, and protecting against liver fibrosis. While AdipoRon and ADP355 exhibit promise in pre-clinical studies and experimental models, additional clinical trials are necessary to assess their effectiveness, safety, and potential translational therapeutic potential uses in NAFLD and NASH human cases.
Collapse
Affiliation(s)
- Sandra Maria Barbalho
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), São Paulo, Brazil; Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marília (UNIMAR), São Paulo, Brazil.
| | - Nahum Méndez-Sánchez
- Liver Research Unit, Medica Sur Clinic & Foundation, Mexico City, Mexico; Faculty of Medicine, National Autonomous University of Mexico, Mexico City, Mexico
| | - Lucas Fornari Laurindo
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), São Paulo, Brazil; Department of Biochemistry and Pharmacology, School of Medicine, Faculdade de Medicina de Marília (FAMEMA), Marília, São Paulo, Brazil
| |
Collapse
|
21
|
Gliniak CM, Pedersen L, Scherer PE. Adipose tissue fibrosis: the unwanted houseguest invited by obesity. J Endocrinol 2023; 259:e230180. [PMID: 37855264 PMCID: PMC11648981 DOI: 10.1530/joe-23-0180] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 09/27/2023] [Indexed: 09/28/2023]
Abstract
The prevalence of obesity is increasing exponentially across the globe. The lack of effective treatment options for long-term weight loss has magnified the enormity of this problem. Studies continue to demonstrate that adipose tissue holds a biological memory, one of the most important determinant of long-term weight maintenance. This phenomenon is consistent with the metabolically dynamic role of adipose tissue: it adapts and expands to store for excess energy and serves as an endocrine organ capable of synthesizing a number of biologically active molecules that regulate metabolic homeostasis. An important component of the plasticity of adipose tissue is the extracellular matrix, essential for structural support, mechanical stability, cell signaling and function. Chronic obesity upends a delicate balance of extracellular matrix synthesis and degradation, and the ECM accumulates in such a way that prevents the plasticity and function of the diverse cell types in adipose tissue. A series of maladaptive responses among the cells in adipose tissue leads to inflammation and fibrosis, major mechanisms that explain the link between obesity and insulin resistance, risk of type 2 diabetes, cardiovascular disease, and nonalcoholic fatty liver disease. Adipose tissue fibrosis persists after weight loss and further enhances adipose tissue dysfunction if weight is regained. Here, we highlight the current knowledge of the cellular events governing adipose tissue ECM remodeling during the development of obesity. Our goal is to delineate the relationship more clearly between adipose tissue ECM and metabolic disease, an important step toward better defining the pathophysiology of dysfunctional adipose tissue.
Collapse
Affiliation(s)
- Christy M Gliniak
- Touchstone Diabetes Center, The University of Texas Southwestern Medical Center, Dallas, Texas, United States
| | - Line Pedersen
- Touchstone Diabetes Center, The University of Texas Southwestern Medical Center, Dallas, Texas, United States
| | - Philipp E Scherer
- Touchstone Diabetes Center, The University of Texas Southwestern Medical Center, Dallas, Texas, United States
| |
Collapse
|
22
|
Burger K, Jung F, Baumann A, Brandt A, Staltner R, Sánchez V, Bergheim I. TNFα is a key trigger of inflammation in diet-induced non-obese MASLD in mice. Redox Biol 2023; 66:102870. [PMID: 37683301 PMCID: PMC10493600 DOI: 10.1016/j.redox.2023.102870] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 08/28/2023] [Accepted: 08/31/2023] [Indexed: 09/10/2023] Open
Abstract
Tumor necrosis factor alpha (TNFα) is thought to be a critical factor in the development of metabolic dysfunction-associated steatotic liver disease (MASLD). Here, we determined the effects of a treatment with the anti-TNFα antibody infliximab and a genetic deletion of TNFα, respectively, in the development of non-obese diet-induced early metabolic dysfunction-associated steatohepatitis (MASH) in mice. The treatment with infliximab improved markers of liver damage in mice with pre-existing early MASH. In TNFα-/- mice, the development of early signs of MASH and insulin resistance was significantly attenuated compared to wild-type animals. While mRNA expression of proinflammatory cytokines like interleukin 1β (Il1b) and interleukin 6 (Il6) were significantly lower in livers of MASH-diet-fed TNFα-/- mice compared to wild-type mice with early MASH, markers of intestinal barrier function were similarly impaired in both MASH-diet-fed groups compared to controls. Our data suggest that TNFα is a key regulator of hepatic inflammation and insulin resistance associated with the development of early non-obese MASH.
Collapse
Affiliation(s)
- Katharina Burger
- Department of Nutritional Sciences, Molecular Nutritional Science, University of Vienna, Vienna, Austria
| | - Finn Jung
- Department of Nutritional Sciences, Molecular Nutritional Science, University of Vienna, Vienna, Austria
| | - Anja Baumann
- Department of Nutritional Sciences, Molecular Nutritional Science, University of Vienna, Vienna, Austria
| | - Annette Brandt
- Department of Nutritional Sciences, Molecular Nutritional Science, University of Vienna, Vienna, Austria
| | - Raphaela Staltner
- Department of Nutritional Sciences, Molecular Nutritional Science, University of Vienna, Vienna, Austria
| | - Victor Sánchez
- Department of Nutritional Sciences, Molecular Nutritional Science, University of Vienna, Vienna, Austria
| | - Ina Bergheim
- Department of Nutritional Sciences, Molecular Nutritional Science, University of Vienna, Vienna, Austria.
| |
Collapse
|
23
|
Dubuisson N, Versele R, Davis-López de Carrizosa MA, Selvais CM, Noel L, Planchon C, Van den Bergh PYK, Brichard SM, Abou-Samra M. The Adiponectin Receptor Agonist, ALY688: A Promising Therapeutic for Fibrosis in the Dystrophic Muscle. Cells 2023; 12:2101. [PMID: 37626911 PMCID: PMC10453606 DOI: 10.3390/cells12162101] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/11/2023] [Accepted: 08/17/2023] [Indexed: 08/27/2023] Open
Abstract
Duchenne muscular dystrophy (DMD) is one of the most devastating myopathies, where severe inflammation exacerbates disease progression. Previously, we demonstrated that adiponectin (ApN), a hormone with powerful pleiotropic effects, can efficiently improve the dystrophic phenotype. However, its practical therapeutic application is limited. In this study, we investigated ALY688, a small peptide ApN receptor agonist, as a potential novel treatment for DMD. Four-week-old mdx mice were subcutaneously treated for two months with ALY688 and then compared to untreated mdx and wild-type mice. In vivo and ex vivo tests were performed to assess muscle function and pathophysiology. Additionally, in vitro tests were conducted on human DMD myotubes. Our results showed that ALY688 significantly improved the physical performance of mice and exerted potent anti-inflammatory, anti-oxidative and anti-fibrotic actions on the dystrophic muscle. Additionally, ALY688 hampered myonecrosis, partly mediated by necroptosis, and enhanced the myogenic program. Some of these effects were also recapitulated in human DMD myotubes. ALY688's protective and beneficial properties were mainly mediated by the AMPK-PGC-1α axis, which led to suppression of NF-κβ and TGF-β. Our results demonstrate that an ApN mimic may be a promising and effective therapeutic prospect for a better management of DMD.
Collapse
Affiliation(s)
- Nicolas Dubuisson
- Endocrinology, Diabetes and Nutrition Unit, Institute of Experimental and Clinical Research (IREC), Medical Sector, Université Catholique de Louvain (UCLouvain), Avenue Hippocrate 55, 1200 Brussels, Belgium; (N.D.); (R.V.); (M.A.D.-L.d.C.); (C.M.S.); (L.N.); (C.P.); (S.M.B.)
- Neuromuscular Reference Center, Department of Neurology, Cliniques Universitaires Saint-Luc, Avenue Hippocrate 10, 1200 Brussels, Belgium;
| | - Romain Versele
- Endocrinology, Diabetes and Nutrition Unit, Institute of Experimental and Clinical Research (IREC), Medical Sector, Université Catholique de Louvain (UCLouvain), Avenue Hippocrate 55, 1200 Brussels, Belgium; (N.D.); (R.V.); (M.A.D.-L.d.C.); (C.M.S.); (L.N.); (C.P.); (S.M.B.)
| | - Maria A. Davis-López de Carrizosa
- Endocrinology, Diabetes and Nutrition Unit, Institute of Experimental and Clinical Research (IREC), Medical Sector, Université Catholique de Louvain (UCLouvain), Avenue Hippocrate 55, 1200 Brussels, Belgium; (N.D.); (R.V.); (M.A.D.-L.d.C.); (C.M.S.); (L.N.); (C.P.); (S.M.B.)
- Departamento de Fisiología, Facultad de Biología, Universidad de Sevilla, 41012 Seville, Spain
| | - Camille M. Selvais
- Endocrinology, Diabetes and Nutrition Unit, Institute of Experimental and Clinical Research (IREC), Medical Sector, Université Catholique de Louvain (UCLouvain), Avenue Hippocrate 55, 1200 Brussels, Belgium; (N.D.); (R.V.); (M.A.D.-L.d.C.); (C.M.S.); (L.N.); (C.P.); (S.M.B.)
| | - Laurence Noel
- Endocrinology, Diabetes and Nutrition Unit, Institute of Experimental and Clinical Research (IREC), Medical Sector, Université Catholique de Louvain (UCLouvain), Avenue Hippocrate 55, 1200 Brussels, Belgium; (N.D.); (R.V.); (M.A.D.-L.d.C.); (C.M.S.); (L.N.); (C.P.); (S.M.B.)
| | - Chloé Planchon
- Endocrinology, Diabetes and Nutrition Unit, Institute of Experimental and Clinical Research (IREC), Medical Sector, Université Catholique de Louvain (UCLouvain), Avenue Hippocrate 55, 1200 Brussels, Belgium; (N.D.); (R.V.); (M.A.D.-L.d.C.); (C.M.S.); (L.N.); (C.P.); (S.M.B.)
| | - Peter Y. K. Van den Bergh
- Neuromuscular Reference Center, Department of Neurology, Cliniques Universitaires Saint-Luc, Avenue Hippocrate 10, 1200 Brussels, Belgium;
| | - Sonia M. Brichard
- Endocrinology, Diabetes and Nutrition Unit, Institute of Experimental and Clinical Research (IREC), Medical Sector, Université Catholique de Louvain (UCLouvain), Avenue Hippocrate 55, 1200 Brussels, Belgium; (N.D.); (R.V.); (M.A.D.-L.d.C.); (C.M.S.); (L.N.); (C.P.); (S.M.B.)
| | - Michel Abou-Samra
- Endocrinology, Diabetes and Nutrition Unit, Institute of Experimental and Clinical Research (IREC), Medical Sector, Université Catholique de Louvain (UCLouvain), Avenue Hippocrate 55, 1200 Brussels, Belgium; (N.D.); (R.V.); (M.A.D.-L.d.C.); (C.M.S.); (L.N.); (C.P.); (S.M.B.)
| |
Collapse
|
24
|
Hua H, Liu L, Zhu T, Cheng F, Qian H, Shen F, Liu Y. Healthy regulation of Tibetan Brassica rapa L. polysaccharides on alleviating hyperlipidemia: A rodent study. FOOD CHEMISTRY. MOLECULAR SCIENCES 2023; 6:100171. [PMID: 37179738 PMCID: PMC10172908 DOI: 10.1016/j.fochms.2023.100171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 03/27/2023] [Accepted: 04/08/2023] [Indexed: 05/15/2023]
Abstract
Hyperlipidemia is a common metabolic disorder, which can lead to obesity, hypertension, diabetes, atherosclerosis and other diseases. Studies have shown that polysaccharides absorbed by the intestinal tract can regulate blood lipids and facilitate the growth of intestinal flora. This article aims to investigate whether Tibetan turnip polysaccharide (TTP) plays a protective role in blood lipid and intestinal health via hepatic and intestinal axes. Here we show that TTP helps to reduce the size of adipocytes and the accumulation of liver fat, playing a dose-dependent effect on ADPN levels, suggesting an effect on lipid metabolism regulation. Meantime, TTP intervention results in the downregulation of intercellular cell adhesion molecule-1 (ICAM-1), vascular cell adhesion molecule-1 (VCAM-1) and serum inflammatory factors (interleukin-6 (IL-6), interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α)), implying that TTP suppresses the progression of inflammation in the body. The expression of key enzymes associated with cholesterol and triglyceride synthesis, such as 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGCR), cholesterol 7α-hydroxylase (CYP7A1), peroxisome proliferator-activated receptors γ (PPARγ), acetyl-CoA carboxylase (ACC), fatty acid synthetase (FAS) and sterol-regulatory element binding proteins-1c (SREBP-1c), can be modulated by TTP. Furthermore, TTP also alleviates the damage to intestinal tissues caused by high-fat diet, restores the integrity of the intestinal barrier, improves the composition and abundance of the intestinal flora and increases the levels of SCFAs. This study provides a theoretical basis for the regulation of body rhythm by functional foods and potential intervention in patients with hyperlipidemia.
Collapse
Affiliation(s)
- Hanyi Hua
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China
| | - Lin Liu
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China
| | - Tao Zhu
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China
| | - Fengyue Cheng
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China
| | - He Qian
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China
- Corresponding author at: School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
| | - Fanglin Shen
- Fudan University, China
- School of Environmental Engineering, Wuxi University, Wuxi 214105, China
- Corresponding author at: School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
| | - Yu Liu
- Departments of Orthopaedics, Wuxi 9th People's Hospital Affiliated to Soochow University, Wuxi, Jiangsu 214062, China
- Corresponding author at: School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
25
|
Drapkina OM, Elkina AY, Sheptulina AF, Kiselev AR. Non-Alcoholic Fatty Liver Disease and Bone Tissue Metabolism: Current Findings and Future Perspectives. Int J Mol Sci 2023; 24:ijms24098445. [PMID: 37176153 PMCID: PMC10178980 DOI: 10.3390/ijms24098445] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/26/2023] [Accepted: 05/04/2023] [Indexed: 05/15/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is reaching epidemic proportions worldwide. Moreover, the prevalence of this liver disease is expected to increase rapidly in the near future, aligning with the rise in obesity and the aging of the population. The pathogenesis of NAFLD is considered to be complex and to include the interaction between genetic, metabolic, inflammatory, and environmental factors. It is now well documented that NAFLD is linked to the other conditions common to insulin resistance, such as abnormal lipid levels, metabolic syndrome, and type 2 diabetes mellitus. Additionally, it is considered that the insulin resistance may be one of the main mechanisms determining the disturbances in both bone tissue metabolism and skeletal muscles quality and functions in patients with NAFLD. To date, the association between NAFLD and osteoporosis has been described in several studies, though it worth noting that most of them included postmenopausal women or elderly patients and originated from Asia. However, taking into account the health and economic burdens of NAFLD, and the increasing prevalence of obesity in children and adolescents worldwide, further investigation of the relationship between osteopenia, osteoporosis and sarcopenia in NAFLD, including in young and middle-aged patients, is of great importance. In addition, this will help to justify active screening and surveillance of osteopenia and osteoporosis in patients with NAFLD. In this review, we will discuss various pathophysiological mechanisms and possible biologically active molecules that may interplay between NAFLD and bone tissue metabolism.
Collapse
Affiliation(s)
- Oxana M Drapkina
- Department of Fundamental and Applied Aspects of Obesity, National Medical Research Center for Therapy and Preventive Medicine, 101990 Moscow, Russia
- Department of Therapy and Preventive Medicine, A.I. Evdokimov Moscow State University of Medicine and Dentistry, 127473 Moscow, Russia
| | - Anastasia Yu Elkina
- Department of Intermediate Level Therapy, Saratov State Medical University, 410012 Saratov, Russia
| | - Anna F Sheptulina
- Department of Fundamental and Applied Aspects of Obesity, National Medical Research Center for Therapy and Preventive Medicine, 101990 Moscow, Russia
- Department of Therapy and Preventive Medicine, A.I. Evdokimov Moscow State University of Medicine and Dentistry, 127473 Moscow, Russia
| | - Anton R Kiselev
- Coordinating Center for Fundamental Research, National Medical Research Center for Therapy and Preventive Medicine, 101990 Moscow, Russia
| |
Collapse
|
26
|
Tu W, Zhang Y, Jiang K, Jiang S. Osteocalcin and Its Potential Functions for Preventing Fatty Liver Hemorrhagic Syndrome in Poultry. Animals (Basel) 2023; 13:ani13081380. [PMID: 37106943 PMCID: PMC10135196 DOI: 10.3390/ani13081380] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 03/20/2023] [Accepted: 04/14/2023] [Indexed: 04/29/2023] Open
Abstract
Osteocalcin (OCN) is synthesized and secreted by differentiating osteoblasts. In addition to its role in bone, OCN acts as a hormone in the pancreas, liver, muscle, fat, and other organs to regulate multiple pathophysiological processes including glucose homeostasis and adipic acid metabolism. Fat metabolic disorder, such as excessive fat buildup, is related to non-alcoholic fatty liver disease (NAFLD) in humans. Similarly, fatty liver hemorrhage syndrome (FLHS) is a metabolic disease in laying hens, resulting from lipid accumulation in hepatocytes. FLHS affects hen health with significant impact on poultry egg production. Many studies have proposed that OCN has protective function in mammalian NAFLD, but its function in chicken FLHS and related mechanism have not been completely clarified. Recently, we have revealed that OCN prevents laying hens from FLHS through regulating the JNK pathway, and some pathways related to the disease progression have been identified through both in vivo and vitro investigations. In this view, we discussed the current findings for predicting the strategy for using OCN to prevent or reduce FLHS impact on poultry production.
Collapse
Affiliation(s)
- Wenjun Tu
- Joint International Research Laboratory of Animal Health and Animal Food Safety, College of Veterinary Medicine, Southwest University, Chongqing 400715, China
| | - Yuhan Zhang
- Joint International Research Laboratory of Animal Health and Animal Food Safety, College of Veterinary Medicine, Southwest University, Chongqing 400715, China
| | - Kunyu Jiang
- Joint International Research Laboratory of Animal Health and Animal Food Safety, College of Veterinary Medicine, Southwest University, Chongqing 400715, China
| | - Sha Jiang
- Joint International Research Laboratory of Animal Health and Animal Food Safety, College of Veterinary Medicine, Southwest University, Chongqing 400715, China
- Immunology Research Center, Medical Research Institute, Southwest University, Chongqing 402460, China
| |
Collapse
|
27
|
Salama RM, Abbas SS, Darwish SF, Sallam AA, Elmongy NF, El Wakeel SA. Regulation of NOX/p38 MAPK/PPARα pathways and miR-155 expression by boswellic acids reduces hepatic injury in experimentally-induced alcoholic liver disease mouse model: novel mechanistic insight. Arch Pharm Res 2023; 46:323-338. [PMID: 36959348 PMCID: PMC10123034 DOI: 10.1007/s12272-023-01441-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 02/28/2023] [Indexed: 03/25/2023]
Abstract
Alcoholic liver disease (ALD) refers to hepatic ailments induced by excessive alcohol intake. The pathogenesis of ALD comprises a complex interplay between various mechanistic pathways, among which inflammation and oxidative stress are key players. Boswellic acids (BAs), found in Boswellia serrata, have shown hepatoprotective effects owing to their antioxidant and anti-inflammatory activities, nevertheless, their therapeutic potential against ALD has not been previously investigated. Hence, this study was performed to depict the possible protective effect of BAs and detect their underlying mechanism of action in an experimentally-induced ALD mouse model. Male BALB/c mice were equally categorized into six groups: control, BAs-treated, ALD, and ALD that received BAs at three-dose levels (125, 250, and 500 mg/kg) by oral gavage for 14 days. Results showed that the high dose of BAs had the most protective impact against ALD according to histopathology examination, blood alcohol concentration (BAC), and liver function enzymes. Mechanistic investigations revealed that BAs (500 mg/kg) caused a significant decrease in cytochrome P450 2E1(CYP2E1), nicotine adenine dinucleotide phosphate oxidase (NOX) 1/2/4, p38 mitogen-activated protein kinase (MAPK), and sterol regulatory element-binding protein-1c (SREBP-1c) levels, and the expression of miR-155, yet increased peroxisome proliferator-activated receptor alpha (PPARα) levels. This led to an improvement in lipid profile and reduced hepatic inflammation, oxidative stress, and apoptosis indices. In summary, our study concludes that BAs can protect against ethanol-induced hepatic injury, via modulating NOX/p38 MAPK/PPARα pathways and miR-155 expression.
Collapse
Affiliation(s)
- Rania M Salama
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Misr International University (MIU), KM 28, Cairo-Ismailia Road, Ahmed Orabi District, Cairo, Egypt.
| | - Samah S Abbas
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Misr International University (MIU), KM 28, Cairo-Ismailia Road, Ahmed Orabi District, Cairo, Egypt
| | - Samar F Darwish
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Cairo, Egypt
| | - Al Aliaa Sallam
- Biochemistry Department, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Noura F Elmongy
- Physiology Department, Damietta Faculty of Medicine, Al-Azhar University, Damietta, Egypt
| | - Sara A El Wakeel
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Misr International University (MIU), KM 28, Cairo-Ismailia Road, Ahmed Orabi District, Cairo, Egypt
| |
Collapse
|
28
|
Badr AM, Sherif IO, Mahran YF, Attia HA. Role of Renin-Angiotensin System in the Pathogenesis and Progression of Non-alcoholic Fatty Liver. ADVANCES IN BIOCHEMISTRY IN HEALTH AND DISEASE 2023:179-197. [DOI: 10.1007/978-3-031-23621-1_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2023]
|
29
|
Onyango AN. Excessive gluconeogenesis causes the hepatic insulin resistance paradox and its sequelae. Heliyon 2022; 8:e12294. [PMID: 36582692 PMCID: PMC9792795 DOI: 10.1016/j.heliyon.2022.e12294] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 11/18/2022] [Accepted: 12/05/2022] [Indexed: 12/23/2022] Open
Abstract
Background Hepatic insulin signaling suppresses gluconeogenesis but promotes de novo lipid synthesis. Paradoxically, hepatic insulin resistance (HIR) enhances both gluconeogenesis and de novo lipid synthesis. Elucidation of the etiology of this paradox, which participates in the pathogenesis of non-alcoholic fatty liver disease (NAFLD), cardiovascular disease, the metabolic syndrome and hepatocellular carcinoma, has not been fully achieved. Scope of review This article briefly outlines the previously proposed hypotheses on the etiology of the HIR paradox. It then discusses literature consistent with an alternative hypothesis that excessive gluconeogenesis, the direct effect of HIR, is responsible for the aberrant lipogenesis. The mechanisms involved therein are explained, involving de novo synthesis of fructose and uric acid, promotion of glutamine anaplerosis, and induction of glucagon resistance. Thus, gluconeogenesis via lipogenesis promotes hepatic steatosis, a component of NAFLD, and dyslipidemia. Gluconeogenesis-centred mechanisms for the progression of NAFLD from simple steatosis to non-alcoholic steatohepatitis (NASH) and fibrosis are suggested. That NAFLD often precedes and predicts type 2 diabetes is explained by the ability of lipogenesis to cushion against blood glucose dysregulation in the earlier stages of NAFLD. Major conclusions HIR-induced excessive gluconeogenesis is a major cause of the HIR paradox and its sequelae. Such involvement of gluconeogenesis in lipid synthesis rationalizes the fact that several types of antidiabetic drugs ameliorate NAFLD. Thus, dietary, lifestyle and pharmacological targeting of HIR and hepatic gluconeogenesis may be a most viable approach for the prevention and management of the HIR-associated network of diseases.
Collapse
|
30
|
Nehme R, Diab-Assaf M, Decombat C, Delort L, Caldefie-Chezet F. Targeting Adiponectin in Breast Cancer. Biomedicines 2022; 10:2958. [PMID: 36428526 PMCID: PMC9687473 DOI: 10.3390/biomedicines10112958] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/10/2022] [Accepted: 11/14/2022] [Indexed: 11/19/2022] Open
Abstract
Obesity and breast cancer are two major health issues that could be categorized as sincere threats to human health. In the last few decades, the relationship between obesity and cancer has been well established and extensively investigated. There is strong evidence that overweight and obesity increase the risk of postmenopausal breast cancer, and adipokines are the central players in this relationship. Produced and secreted predominantly by white adipose tissue, adiponectin is a bioactive molecule that exhibits numerous protective effects and is considered the guardian angel of adipokine. In the obesity-cancer relationship, more and more evidence shows that adiponectin may prevent and protect individuals from developing breast cancer. Recently, several updates have been published on the implication of adiponectin in regulating tumor development, progression, and metastases. In this review, we provide an updated overview of the metabolic signaling linking adiponectin and breast cancer in all its stages. On the other hand, we critically summarize all the available promising candidates that may reactivate these pathways mainly by targeting adiponectin receptors. These molecules could be synthetic small molecules or plant-based proteins. Interestingly, the advances in genomics have made it possible to create peptide sequences that could specifically replace human adiponectin, activate its receptor, and mimic its function. Thus, the obvious anti-cancer activity of adiponectin on breast cancer should be better exploited, and adiponectin must be regarded as a serious biomarker that should be targeted in order to confront this threatening disease.
Collapse
Affiliation(s)
- Rawan Nehme
- Université Clermont-Auvergne, INRAE, UNH Unité de Nutrition Humaine, CRNH-Auvergne, 63000 Clermont-Ferrand, France
| | - Mona Diab-Assaf
- Equipe Tumorigénèse Moléculaire et Pharmacologie Anticancéreuse, Faculté des Sciences II, Université Libanaise Fanar, Beyrouth 1500, Lebanon
| | - Caroline Decombat
- Université Clermont-Auvergne, INRAE, UNH Unité de Nutrition Humaine, CRNH-Auvergne, 63000 Clermont-Ferrand, France
| | - Laetitia Delort
- Université Clermont-Auvergne, INRAE, UNH Unité de Nutrition Humaine, CRNH-Auvergne, 63000 Clermont-Ferrand, France
| | - Florence Caldefie-Chezet
- Université Clermont-Auvergne, INRAE, UNH Unité de Nutrition Humaine, CRNH-Auvergne, 63000 Clermont-Ferrand, France
| |
Collapse
|
31
|
Dong ML, Wen X, He X, Ren JH, Yu HB, Qin YP, Yang Z, Yang ML, Zhou CY, Zhang H, Cheng ST, Chen J. HBx Mediated Increase of DDX17 Contributes to HBV-Related Hepatocellular Carcinoma Tumorigenesis. Front Immunol 2022; 13:871558. [PMID: 35784274 PMCID: PMC9243429 DOI: 10.3389/fimmu.2022.871558] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 05/09/2022] [Indexed: 11/13/2022] Open
Abstract
HBV is strongly associated with HCC development and DEAD-box RNA helicase 17 (DDX17) is a very important member of the DEAD box family that plays key roles in HCC development by promoting cancer metastasis. However, the important role of DDX17 in the pathogenesis of HBV-related HCC remains unclear. In this study, we investigated the role of DDX17 in the replication of HBV and the development of HBV-associated HCC. Based on data from the GEO database and HBV-infected cells, we found that DDX17 was upregulated by the HBV viral protein X (HBx). Mechanistically, increased DDX17 expression promoted HBV replication and transcription by upregulating ZWINT. Further study showed that DDX17 could promote HBx-mediated HCC metastasis. Finally, the promotive effect of DDX17 on HBV and HBV-related HCC was confirmed in vivo. In summary, the results revealed the novel role of DDX17 in the replication of HBV and the metastasis of HBV-associated HCC.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Juan Chen
- *Correspondence: Juan Chen, ; Sheng-Tao Cheng,
| |
Collapse
|
32
|
High Iron Exposure from the Fetal Stage to Adulthood in Mice Alters Lipid Metabolism. Nutrients 2022; 14:nu14122451. [PMID: 35745181 PMCID: PMC9227341 DOI: 10.3390/nu14122451] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 06/02/2022] [Accepted: 06/07/2022] [Indexed: 12/11/2022] Open
Abstract
Iron supplementation is recommended during pregnancy and fetal growth. However, excess iron exposure may increase the risk of abnormal fetal development. We investigated the potential side effects of high iron levels in fetuses and through their adult life. C57BL/6J pregnant mice from 2 weeks of gestation and their offspring until 30 weeks were fed a control (CTRL, FeSO4 0 g/1 kg) or high iron (HFe, FeSO4 9.9 g/1 kg) diets. HFe group showed higher iron accumulation in the liver with increased hepcidin, reduced TfR1/2 mRNAs, and lowered ferritin heavy chain (FTH) proteins in both liver and adipose tissues despite iron loading. HFe decreased body weight, fat weight, adipocyte size, and triglyceride levels in the blood and fat, along with downregulation of lipogenesis genes, including PPARγ, C/EBPα, SREBP1c, FASN, and SCD1, and fatty acid uptake and oxidation genes, such as CD36 and PPARα. UCP2, adiponectin, and mRNA levels of antioxidant genes such as GPX4, HO-1, and NQO1 were increased in the HFe group, while total glutathione was reduced. We conclude that prolonged exposure to high iron from the fetal stage to adulthood may decrease fat accumulation by altering ferritin expression, adipocyte differentiation, and triglyceride metabolism, resulting in an alteration in normal growth.
Collapse
|
33
|
Jiang C, Liu Y, Wang Y, Su E, Du L, Tang Y, Xie J, Wei D. Hypolipidemic effects of the fermented soymilk with a novel
Lactiplantibacillus plantarum
strain X7021 on mice via modulating lipid metabolism and gut microbiota. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Chentian Jiang
- State Key Laboratory of Bioreactor Engineering Department of Food Science and Technology School of Biotechnology East China University of Science and Technology Shanghai 200237 China
| | - Yafan Liu
- State Key Laboratory of Bioreactor Engineering Department of Food Science and Technology School of Biotechnology East China University of Science and Technology Shanghai 200237 China
| | - Yijia Wang
- State Key Laboratory of Bioreactor Engineering Department of Food Science and Technology School of Biotechnology East China University of Science and Technology Shanghai 200237 China
| | - Erzheng Su
- College of Light Industry and Food Engineering Nanjing Forestry University Nanjing 210037 China
| | - Lei Du
- State Key Laboratory of Bioreactor Engineering Department of Food Science and Technology School of Biotechnology East China University of Science and Technology Shanghai 200237 China
| | - Ya‐Jie Tang
- State Key Laboratory of Microbial Technology Shandong University Qingdao 266237 China
| | - Jingli Xie
- State Key Laboratory of Bioreactor Engineering Department of Food Science and Technology School of Biotechnology East China University of Science and Technology Shanghai 200237 China
- Shanghai Collaborative Innovation Center for Biomanufacturing (SCICB) Shanghai 200237 China
| | - Dongzhi Wei
- State Key Laboratory of Bioreactor Engineering Department of Food Science and Technology School of Biotechnology East China University of Science and Technology Shanghai 200237 China
- Shanghai Collaborative Innovation Center for Biomanufacturing (SCICB) Shanghai 200237 China
| |
Collapse
|
34
|
Bezuidenhout MC, Conradie-Smit M, Dave JA, de Vries E, Ross IL, Zemlin AE. Reference intervals for biochemical analytes in transgender individuals on hormone therapy. Ann Clin Biochem 2022; 59:183-192. [PMID: 35044249 DOI: 10.1177/00045632211066777] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Hormone therapy in transgender individuals may impact processes that lead to changes in biochemical analytes, and therefore reference intervals. Currently, few reference interval studies are available for the transgender population. We determined biochemical reference intervals for transgender individuals receiving hormone therapy. METHODS Our retrospective, laboratory-based, observational study included healthy transgender males (N = 24) and transgender females (N = 84) on hormone therapy. Various biochemical reference intervals were established for each cohort and compared to their cisgender counterparts. RESULTS We detected significant differences in reference intervals for sodium, 139-142 mmol/L vs. 136-145 mmol/L when comparing transgender males (TM) with cisgender males (CM). The following significant changes in upper reference limits (URL) for TM versus CM were detected, ALP (URL: 96 U/L vs. 128 U/L), GGT (URL: 27 U/L vs. 67 U/L) and testosterone (URL: 46.7 nmol/L vs. 29.0 nmol/L), respectively. Moreover, when comparing transgender female (TF) to cisgender female (CF), significant differences in creatinine (URL: 117 μmol/L vs. 90 μmol/L), albumin (lower reference limit: 41 g/L, vs. 35 g/L), AST (URL: 50 U/L vs. 35 U/L), ALP (URL: 118 U/L vs. 98 U/L) and oestradiol (URL: 934 pmol/L vs. 213 pmol/L) were noted, respectively. Significantly higher LDL-C was observed for TM on hormone treatment, compared to baseline (2.9 mmol/L vs. 2.2 mmol/L, p <0.01). CONCLUSIONS Biochemical results for TM and TF receiving hormone therapy can be evaluated against our transgender-specific reference intervals for some analytes, while others can be compared to their identified gender reference intervals.
Collapse
Affiliation(s)
- Morné C Bezuidenhout
- Division of Chemical Pathology, Department of Pathology, Stellenbosch University and National Health Laboratory Service, Tygerberg Hospital, Cape Town, South Africa
| | - Marli Conradie-Smit
- Division of Endocrinology, Department of Medicine, 121470Stellenbosch University, Tygerberg Hospital, Cape Town, South Africa
| | - Joel A Dave
- Division of Endocrinology, Department of Medicine, 63726University of Cape Town, Groote Schuur Hospital, Cape Town, South Africa
| | - Elma de Vries
- Division of Family Medicine, School of Public Health and Family Medicine, 63726University of Cape Town, Cape Town, South Africa
| | - Ian L Ross
- Division of Endocrinology, Department of Medicine, 121470Stellenbosch University, Tygerberg Hospital, Cape Town, South Africa
| | - Annalise E Zemlin
- Division of Chemical Pathology, Department of Pathology, Stellenbosch University and National Health Laboratory Service, Tygerberg Hospital, Cape Town, South Africa
| |
Collapse
|
35
|
Styrylpyrones from Phellinus linteus Mycelia Alleviate Non-Alcoholic Fatty Liver by Modulating Lipid and Glucose Metabolic Homeostasis in High-Fat and High-Fructose Diet-Fed Mice. Antioxidants (Basel) 2022; 11:antiox11050898. [PMID: 35624762 PMCID: PMC9137645 DOI: 10.3390/antiox11050898] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 04/28/2022] [Accepted: 04/28/2022] [Indexed: 11/17/2022] Open
Abstract
Phellinus linteus (PL), an edible and medicinal mushroom containing a diversity of styrylpyrone-type polyphenols, has been shown to have a broad spectrum of bioactivities. In this study, the submerged liquid culture in a 1600-L working volume of fermentor was used for the large-scale production of PL mycelia. Whether PL mycelia extract is effective against nonalcoholic fatty liver disease (NAFLD) is still unclear. In the high fat/high fructose diet (HFD)-induced NAFLD C57BL/6 mice study, the dietary supplementation of ethyl acetate fraction from PL mycelia (PL-EA) for four weeks significantly attenuated an increase in body weight, hepatic lipid accumulation and fasting glucose levels. Mechanistically, PL-EA markedly upregulated the pgc-1α, sirt1 genes and adiponectin, downregulated gck and srebp-1c; upregulated proteins PPARγ, pAMPK, and PGC-1α, and downregulated SREBP-1 and NF-κB in the liver of HFD-fed mice. Furthermore, the major purified compounds of hispidin and hypholomine B in PL-EA significantly reduced the level of oleic and palmitic acids (O/P)-induced lipid accumulation through the inhibition of up-regulated lipogenesis and the energy-metabolism related genes, ampk and pgc-1α, in the HepG2 cells. Consequently, these findings suggest that the application of PL-EA is deserving of further investigation for treating NAFLD.
Collapse
|
36
|
Ghezelbash B, Shahrokhi N, Khaksari M, Asadikaram G, Shahrokhi M, Shirazpour S. Protective Roles of Shilajit in Modulating Resistin, Adiponectin, and Cytokines in Rats with Non-alcoholic Fatty Liver Disease. Chin J Integr Med 2022; 28:531-537. [PMID: 35258780 DOI: 10.1007/s11655-022-3307-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/26/2021] [Indexed: 02/06/2023]
Abstract
OBJECTIVE To evaluate the effect of Shilajit, a medicine of Ayurveda, on the serum changes in cytokines and adipokines caused by non-alcoholic fatty liver disease (NAFLD). METHODS After establishing fatty liver models by feeding a high-fat diet (HFD) for 12 weeks, 35 Wistar male rats were randomly divided into 5 groups, including control (standard diet), Veh (HFD + vehicle), high-dose Shilajit [H-Sh, HFD + 250 mg/(kg·d) Shilajit], low-dose Shilajit [L-Sh, HFD + 150 mg/(kg·d) Shilajit], and pioglitazone [HFD + 10 mg/(kg·d) pioglitazone] groups, 7 rats in each group. After 2-week of gavage administration, serum levels of glucose, insulin, interleukin 1beta (IL-1β), IL-6, IL-10, tumor necrosis factor-alpha (TNF-α), adiponectin, and resistin were measured, and insulin resistance index (HOMA-IR) was calculated. RESULTS After NAFLD induction, the serum level of IL-10 significantly increased and serum IL-1β, TNF-α levels significantly decreased by injection of both doses of Shilajit and pioglitazone (P<0.05). Increases in serum glucose level and homeostasis model of HOMA-IR were reduced by L-Sh and H-Sh treatment in NAFLD rats (P<0.05). Both doses of Shilajit increased adiponectin and decreased serum resistin levels (P<0.05). CONCLUSION The probable protective role of Shilajit in NAFLD model rats may be via modulating the serum levels of IL-1β, TNF-α, IL-10, adipokine and resistin, and reducing of HOMA-IR.
Collapse
Affiliation(s)
- Baran Ghezelbash
- Physiology Research Center, Kerman University of Medical Sciences, Kerman, 7616914115, Iran
| | - Nader Shahrokhi
- Physiology Research Center, Kerman University of Medical Sciences, Kerman, 7616914115, Iran.
| | - Mohammad Khaksari
- Endocrinology, and Metabolism Research Center, Kerman University of Medical Sciences, Kerman, 7616914115, Iran
| | - Gholamreza Asadikaram
- Department of Biochemistry, School of Medicine, Kerman University of Medical Sciences, Kerman, 7616914115, Iran
| | - Maryam Shahrokhi
- Department of Medical Science, School of Dentistry, Shiraz University of Medical Sciences, Shiraz, 713414336, Iran
| | - Sara Shirazpour
- Department of Physiology and Pharmacology, Faculty of Medicine, Kerman University of Medical Sciences, Kerman, 7616914115, Iran
| |
Collapse
|
37
|
Guo XF, Wang C, Yang T, Ma WJ, Zhai J, Zhao T, Xu TC, Li J, Liu H, Sinclair AJ, Li D. Concentrated fish oil ameliorates non-alcoholic fatty liver disease by regulating FGF21-adiponectin axis. Nutrition 2022; 99-100:111659. [DOI: 10.1016/j.nut.2022.111659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 03/14/2022] [Accepted: 03/15/2022] [Indexed: 10/18/2022]
|
38
|
Cao Z, Ma B, Cui C, Zhao J, Liu S, Qiu Y, Zheng Y, Gao M, Luan X. Protective effects of AdipoRon on the liver of Huoyan goose fed a high-fat diet. Poult Sci 2022; 101:101708. [PMID: 35150940 PMCID: PMC8844248 DOI: 10.1016/j.psj.2022.101708] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/04/2022] [Accepted: 01/06/2022] [Indexed: 02/07/2023] Open
Abstract
Adiponectin can participate in the regulation of glucose and lipid metabolism, energy regulation, immune response, resistance to inflammation, oxidative stress, and apoptosis. Studies in rodents demonstrated that the small molecule compound adiponectin receptor agonist AdipoRon could activate the adiponectin receptor and played the same biological role as adiponectin. To explore the influence and regulation of AdipoRon on lipid metabolism disorder in Huoyan goose liver, in this study, goslings were fed a high-fat diet and then administered different dosages of AdipoRon. Subsequently, goose body weight, liver index, liver histopathological changes, blood glucose, blood and liver lipid, biochemical indexes related to liver function and oxidative stress, and the expression levels of genes related to lipid metabolism, inflammation, apoptosis, and autophagy, adiponectin and its receptors, key molecules of adiponectin involved signal pathway, and transcription factors in the liver, were detected using H&E and Oil red O staining, ELISA, and qRT-PCR methods. The results indicated that AdipoRon could alter the expression of lipid metabolism-related genes, inflammatory factors, apoptosis and autophagy genes, and adiponectin and its receptor genes in liver tissues through signaling pathways such as AMPK and p38 MAPK, as well as the involvement of transcription factors such as PPARα, PPARγ, SIRT1, and FOXO1, reduce the lipid content in blood and liver tissues of geese fed high-fat diets, improve liver antioxidant capacity, regulate apoptosis and autophagy of hepatocytes, and reduce liver inflammatory injury. Our study suggests that AdipoRon has a protective effect on fatty liver injury in goslings fed a high-fat diet.
Collapse
Affiliation(s)
- Zhongzan Cao
- College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, P.R. China
| | - Ben Ma
- College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, P.R. China
| | - Chengyu Cui
- College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, P.R. China
| | - Jiahui Zhao
- College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, P.R. China
| | - Sidi Liu
- College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, P.R. China
| | - Yunqiao Qiu
- College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, P.R. China
| | - Yan Zheng
- College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, P.R. China
| | - Ming Gao
- College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, P.R. China
| | - Xinhong Luan
- College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, P.R. China.
| |
Collapse
|
39
|
Iacob SA, Iacob DG. Non-Alcoholic Fatty Liver Disease in HIV/HBV Patients - a Metabolic Imbalance Aggravated by Antiretroviral Therapy and Perpetuated by the Hepatokine/Adipokine Axis Breakdown. Front Endocrinol (Lausanne) 2022; 13:814209. [PMID: 35355551 PMCID: PMC8959898 DOI: 10.3389/fendo.2022.814209] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 01/10/2022] [Indexed: 12/11/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is strongly associated with the metabolic syndrome and is one of the most prevalent comorbidities in HIV and HBV infected patients. HIV plays an early and direct role in the development of metabolic syndrome by disrupting the mechanism of adipogenesis and synthesis of adipokines. Adipokines, molecules that regulate the lipid metabolism, also contribute to the progression of NAFLD either directly or via hepatic organokines (hepatokines). Most hepatokines play a direct role in lipid homeostasis and liver inflammation but their role in the evolution of NAFLD is not well defined. The role of HBV in the pathogenesis of NAFLD is controversial. HBV has been previously associated with a decreased level of triglycerides and with a protective role against the development of steatosis and metabolic syndrome. At the same time HBV displays a high fibrogenetic and oncogenetic potential. In the HIV/HBV co-infection, the metabolic changes are initiated by mitochondrial dysfunction as well as by the fatty overload of the liver, two interconnected mechanisms. The evolution of NAFLD is further perpetuated by the inflammatory response to these viral agents and by the variable toxicity of the antiretroviral therapy. The current article discusses the pathogenic changes and the contribution of the hepatokine/adipokine axis in the development of NAFLD as well as the implications of HIV and HBV infection in the breakdown of the hepatokine/adipokine axis and NAFLD progression.
Collapse
Affiliation(s)
- Simona Alexandra Iacob
- Department of Infectious Diseases, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
- Department of Infectious Diseases, National Institute of Infectious Diseases “Prof. Dr. Matei Bals”, Bucharest, Romania
| | - Diana Gabriela Iacob
- Department of Infectious Diseases, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
- Department of Infectious Diseases, Emergency University Hospital, Bucharest, Romania
- *Correspondence: Diana Gabriela Iacob,
| |
Collapse
|
40
|
Veronda AC, Kline CE, Irish LA. The impact of circadian timing on energy balance: an extension of the energy balance model. Health Psychol Rev 2021; 16:161-203. [PMID: 34387140 DOI: 10.1080/17437199.2021.1968310] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
A significant proportion of the population is classified as having overweight or obesity. One framework which has attempted to explain biobehavioral mechanisms influencing the development of overweight and obesity is the energy balance model. According to this model, the body continually attempts to balance energy intake with energy expenditure. When energy intake and energy expenditure become imbalanced, there is an increase in homeostatic and allostatic pressure, generally to either increase energy intake or decrease energy expenditure, so as to restore energy homeostasis.Recent research has indicated that circadian aspects of energy intake and energy expenditure may influence energy balance. This paper provides a narrative review of existing evidence of the role of circadian timing on components of energy balance. Research on the timing of food intake, physical activity, and sleep indicates that unhealthy timing is likely to increase risk of weight gain. Public health guidelines focus on how much individuals eat and sleep, what foods are consumed, and the type and frequency of exercise, but the field of circadian science has begun to demonstrate that when these behaviors occur may also influence overweight and obesity prevention and treatment efforts.
Collapse
Affiliation(s)
- Allison C Veronda
- Department of Psychology, North Dakota State University, Fargo, ND, USA
| | - Christopher E Kline
- Department of Health and Human Development, University of Pittsburgh, Pittsburgh, PA, USA
| | - Leah A Irish
- Department of Psychology, North Dakota State University, Fargo, ND, USA.,Sanford Center for Biobehavioral Research, Sanford Research, Fargo, ND, USA
| |
Collapse
|
41
|
Rivera-Gonzalez O, Wilson NA, Coats LE, Taylor EB, Speed JS. Endothelin receptor antagonism improves glucose handling, dyslipidemia, and adipose tissue inflammation in obese mice. Clin Sci (Lond) 2021; 135:1773-1789. [PMID: 34278410 PMCID: PMC8650556 DOI: 10.1042/cs20210549] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 07/13/2021] [Accepted: 07/16/2021] [Indexed: 12/11/2022]
Abstract
Endothelin-1 (ET-1) is elevated in patients with obesity; however, its contribution to the pathophysiology related to obesity is not fully understood. We hypothesized that high ET-1 levels cause dyslipidemia, inflammation, and insulin resistance within the adipose tissue of obese mice. To test this hypothesis, male C57BL/6J mice were fed either normal diet (NMD) or high-fat diet (HFD) for 8 weeks followed by 2 weeks of treatment with either vehicle, atrasentan (ETA receptor antagonist, 10 mg/kg/day) or bosentan (ETA/ETB receptor antagonist, 100 mg/kg/day). Atrasentan and bosentan lowered circulating non-esterified free fatty acids and triglycerides seen in HFD mice, while atrasentan-treated mice had significantly lower liver triglycerides compared with non-treated HFD mice. ET-1 receptor blockade significantly improved insulin tolerance compared with insulin-resistant HFD mice and lowered expression of genes in epididymal white adipose tissue (eWAT) associated with insulin resistance and inflammation. Flow cytometric analyses of eWAT indicated that HFD mice had significantly higher percentages of both CD4+ and CD8+ T cells compared with NMD mice, which was attenuated by treatment with atrasentan or bosentan. Atrasentan treatment also abolished the decrease in eosinophils seen in HFD mice. Taken together, these data indicate that ETA and ETA/ETB receptor blockade improves peripheral glucose homeostasis, dyslipidemia and liver triglycerides, and also attenuates the pro-inflammatory immune profile in eWAT of mice fed HFD. These data suggest a potential use for ETA and ETA/ETB receptor blockers in the treatment of obesity-associated dyslipidemia and insulin resistance.
Collapse
Affiliation(s)
- Osvaldo Rivera-Gonzalez
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS 39216, U.S.A
| | - Natalie A Wilson
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS 39216, U.S.A
| | - Laura E Coats
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS 39216, U.S.A
| | - Erin B Taylor
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS 39216, U.S.A
| | - Joshua S Speed
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS 39216, U.S.A
| |
Collapse
|
42
|
Yu Q, Chen X, Sun X, Li W, Liu T, Zhang X, Li Y, Li T, Li S. Pectic Oligogalacturonide Facilitates the Synthesis and Activation of Adiponectin to Improve Hepatic Lipid Oxidation. Mol Nutr Food Res 2021; 65:e2100167. [PMID: 34268878 DOI: 10.1002/mnfr.202100167] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 05/18/2021] [Indexed: 11/06/2022]
Abstract
SCOPE Adiponectin (ADPN), a kind of adipokines, plays an important role in the regulation of lipid metabolism. The objective of this study is focused on the ADPN to investigate the functional mechanisms of pectin oligosaccharide (POS) from hawthorn fruit in the improvement of hepatic fatty acid oxidation. METHOD AND RESULTS High-fat fed mice are used in this experiment. POS is administrated with the doses of 0.25, 0.75, and 1.5 g kg-1 diet, respectively. The results demonstrate that gene and protein expressions of ADPN synthesis regulators involved in PKA/ERK/CREB and C/EBPα/PPARγ pathways are upregulated by POS administration. POS also activates the AdiopR1/AMPKα/PGC1 and AdipoR2/PPARα signaling pathways to improve the fatty acid oxidation in the liver, which is further accelerated by the enhancement of mitochondrial functions. CONCLUSION POS can act as an ADPN activator to improve lipid metabolism, leading it to the applications of biomedical and functional foods for ameliorating chronic liver diseases resulted from a high-energy diet.
Collapse
Affiliation(s)
- Qianhui Yu
- College of Food Science, Shenyang Agricultural University, 120 Dongling Road, Shenhe District, Shenyang, 110866, China
| | - Xuejiao Chen
- College of Food Science, Shenyang Agricultural University, 120 Dongling Road, Shenhe District, Shenyang, 110866, China
| | - Xiao Sun
- Shenyang Women's and Children's Hospital, 87 Dashun Street, Shenhe District, Shenyang, 110011, China
| | - Wenjie Li
- Shenyang Women's and Children's Hospital, 87 Dashun Street, Shenhe District, Shenyang, 110011, China
| | - Tianzhi Liu
- College of Food Science, Shenyang Agricultural University, 120 Dongling Road, Shenhe District, Shenyang, 110866, China
| | - Xiushan Zhang
- College of Food Science, Shenyang Agricultural University, 120 Dongling Road, Shenhe District, Shenyang, 110866, China
| | - Yuqing Li
- College of Food Science, Shenyang Agricultural University, 120 Dongling Road, Shenhe District, Shenyang, 110866, China
| | - Tuoping Li
- College of Food Science, Shenyang Agricultural University, 120 Dongling Road, Shenhe District, Shenyang, 110866, China
| | - Suhong Li
- College of Food Science, Shenyang Agricultural University, 120 Dongling Road, Shenhe District, Shenyang, 110866, China
| |
Collapse
|
43
|
Lu KY, Lin SZ, Primus Dass KT, Lin WJ, Liu SP, Harn HJ. 3-N-butylphthalide protects against high-fat-diet-induced obesity in C57BL/6 mice and increases metabolism in lipid-accumulating cells. Biomed Pharmacother 2021; 139:111687. [PMID: 34243611 DOI: 10.1016/j.biopha.2021.111687] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 04/27/2021] [Accepted: 04/29/2021] [Indexed: 12/25/2022] Open
Abstract
Obesity is one of the world's largest health problems, and 3-N-butylphthalide (NBP), a bioactive compound in celery, has been used in dieting and weight management programs. In this study, NBP prevented high-fat-diet-induced weight gain, reduced the food efficiency ratio, altered the blood biochemical profile, and reduced the obesity-related index. NBP reduced adiposity, white fat depots, liver weight, and hepatic steatosis in obese mice. NBP ameliorated the diabetic state by decreasing glucose levels and improving glucose and insulin tolerance. NBP increased uncoupling protein-1 expression in white adipose tissue and upregulated thermogenesis by enhancing mitochondrial respiration. NBP inhibited white adipocyte development by prohibiting lipid accumulation in human adipose-derived stem cells. NBP increased free fatty acid uptake and the oxygen consumption rate in beige adipocytes. Our results suggest that NBP could be used as functional natural supplement against obesity and its associated disorders.
Collapse
Affiliation(s)
- Kang-Yun Lu
- Buddhist Tzu Chi Bioinnovation Center, Buddhist Tzu Chi Medical Foundation, Hualien 970, Taiwan; Graduate Institute of Basic Medical Science, China Medical University, Taichung 404, Taiwan.
| | - Shinn-Zong Lin
- Buddhist Tzu Chi Bioinnovation Center, Buddhist Tzu Chi Medical Foundation, Hualien 970, Taiwan; Department of Neurosurgery, Hualien Tzu Chi Hospital, Hualien 970, Taiwan.
| | | | - Wei-Ju Lin
- Buddhist Tzu Chi Bioinnovation Center, Buddhist Tzu Chi Medical Foundation, Hualien 970, Taiwan
| | - Shih-Ping Liu
- Ph. D. Program for Aging, College of Medicine, China Medical University, Taichung 404, Taiwan; Center for Translational Medicine, China Medical University Hospital, Taichung 404, Taiwan; Department of Social Work, Asia University, Taichung 404, Taiwan.
| | - Horng-Jyh Harn
- Buddhist Tzu Chi Bioinnovation Center, Buddhist Tzu Chi Medical Foundation, Hualien 970, Taiwan; Department of Pathology, Hualien Tzu Chi Hospital and Tzu Chi University, Hualien 970, Taiwan.
| |
Collapse
|
44
|
Roy B, Palaniyandi SS. Tissue-specific role and associated downstream signaling pathways of adiponectin. Cell Biosci 2021; 11:77. [PMID: 33902691 PMCID: PMC8073961 DOI: 10.1186/s13578-021-00587-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 04/07/2021] [Indexed: 12/12/2022] Open
Abstract
According to the World Health Organization, metabolic syndrome (MetS) can be defined as a pathological condition characterized by abdominal obesity, insulin resistance, hypertension, and hyperlipidemia. The incidence of MetS keeps rising, as at least 35% of the USA population suffers from MetS. One of the worst comorbidities of metabolic syndrome are cardiovascular diseases that significantly amplifies the mortality associated with this syndrome. There is an urgent need to understand the pathophysiology of MetS to find novel diagnosis, treatment and management to mitigate the MetS and associated complications. Altered circulatory adiponectin levels have been implicated in MetS. Adiponectin has numerous biologic functions including antioxidative, anti-nitrative, anti-inflammatory, and cardioprotective effects. Being a pleiotropic hormone of multiple tissues, tissue-specific key signaling pathways of adiponectin will help finding specific target/s to blunt the pathophysiology of metabolic syndrome and associated disorders. The purpose of this review is to elucidate tissue-specific signaling pathways of adiponectin and possibly identify potential therapeutic targets for MetS as well as to evaluate the potential of adiponectin as a biomarker/therapeutic option in MetS.
Collapse
Affiliation(s)
- Bipradas Roy
- Division of Hypertension and Vascular Research, Department of Internal Medicine, Henry Ford Health System, Integrative Biosciences Center (IBio), Room #3402, 6135 Woodward, Detroit, MI 48202 USA
- Department of Physiology, Wayne State University, Detroit, MI 48202 USA
| | - Suresh Selvaraj Palaniyandi
- Division of Hypertension and Vascular Research, Department of Internal Medicine, Henry Ford Health System, Integrative Biosciences Center (IBio), Room #3402, 6135 Woodward, Detroit, MI 48202 USA
- Department of Physiology, Wayne State University, Detroit, MI 48202 USA
| |
Collapse
|
45
|
Iron at the Interface of Hepatocellular Carcinoma. Int J Mol Sci 2021; 22:ijms22084097. [PMID: 33921027 PMCID: PMC8071427 DOI: 10.3390/ijms22084097] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 04/06/2021] [Accepted: 04/13/2021] [Indexed: 12/12/2022] Open
Abstract
Cancer incidence and mortality are rapidly growing, with liver cancer being the sixth most diagnosed cancer worldwide and the third leading cause of cancer death in 2020. A number of risk factors have been identified that trigger the progression to hepatocellular carcinoma. In this review, we focus on iron as a potential risk factor for liver carcinogenesis. Molecules involved in the regulation of iron metabolism are often upregulated in cancer cells, in order to provide a supply of this essential trace element for all stages of tumor development, survival, proliferation, and metastasis. Thus, cellular and systemic iron levels must be tightly regulated to prevent or delay liver cancer progression. Disorders associated with dysregulated iron metabolism are characterized with increased susceptibility to hepatocellular carcinoma. This review discusses the association of iron with metabolic disorders such as hereditary hemochromatosis, non-alcoholic fatty liver disease, obesity, and type 2 diabetes, in the background of hepatocellular carcinoma.
Collapse
|
46
|
Mavilia MG, Wu GY. Liver and serum adiponectin levels in non-alcoholic fatty liver disease. J Dig Dis 2021; 22:214-221. [PMID: 33675573 DOI: 10.1111/1751-2980.12980] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 02/13/2021] [Accepted: 03/03/2021] [Indexed: 02/06/2023]
Abstract
OBJECTIVE Adiponectin is an adipokine that has anti-steatotic, anti-inflammatory and anti-fibrotic effects. The impact of these different activities impact on the development and progression of non-alcoholic fatty liver disease (NAFLD) is not well understood. The aim of this study was to evaluate both liver and serum adiponectin levels in patients with and without NAFLD and determine any clinical correlations. METHODS Liver tissue and serum samples were collected from patients undergoing liver biopsy between April 2014 and July 2020, and categorized based on histopathological diagnosis into hepatic steatosis (HS), non-alcoholic steatohepatitis (NASH), and hepatitis control (HC). A Luminex xMAP assay was performed on both liver and serum samples to measure adiponectin levels. Statistical analysis compared liver adiponectin (LA) and serum adiponectin (SA) levels between groups. RESULTS A total of 48 participants were included in the analysis. The mean LA level was lowest in the HS group, followed by the NASH group and the HC group (P = 0.036). The mean SA level was 3.61 μg/mL for the NAFLD group and was significantly lower than that in the HC (7.51 μg/mL; P = 0.001). CONCLUSION Adiponectin levels are lower in NAFLD compared to HC in both serum and liver tissue. LA levels in patients with HS were significantly lower than in both the NASH and HC groups, suggesting that adiponectin is related to inflammation in the liver and probably reflects its role in the pathogenesis of NAFLD.
Collapse
Affiliation(s)
- Marianna G Mavilia
- Department of Gastroenterology and Hepatology, University of Connecticut Health Center, Farmington, Connecticut, USA
| | - George Y Wu
- Department of Gastroenterology and Hepatology, University of Connecticut Health Center, Farmington, Connecticut, USA
| |
Collapse
|
47
|
Zhang J, Ling N, Lei Y, Peng M, Hu P, Chen M. Multifaceted Interaction Between Hepatitis B Virus Infection and Lipid Metabolism in Hepatocytes: A Potential Target of Antiviral Therapy for Chronic Hepatitis B. Front Microbiol 2021; 12:636897. [PMID: 33776969 PMCID: PMC7991784 DOI: 10.3389/fmicb.2021.636897] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 02/18/2021] [Indexed: 12/17/2022] Open
Abstract
Hepatitis B virus (HBV) is considered a “metabolic virus” and affects many hepatic metabolic pathways. However, how HBV affects lipid metabolism in hepatocytes remains uncertain yet. Accumulating clinical studies suggested that compared to non-HBV-infected controls, chronic HBV infection was associated with lower levels of serum total cholesterol and triglycerides and a lower prevalence of hepatic steatosis. In patients with chronic HBV infection, high ALT level, high body mass index, male gender, or old age was found to be positively correlated with hepatic steatosis. Furthermore, mechanisms of how HBV infection affected hepatic lipid metabolism had also been explored in a number of studies based on cell lines and mouse models. These results demonstrated that HBV replication or expression induced extensive and diverse changes in hepatic lipid metabolism, by not only activating expression of some critical lipogenesis and cholesterolgenesis-related proteins but also upregulating fatty acid oxidation and bile acid synthesis. Moreover, increasing studies found some potential targets to inhibit HBV replication or expression by decreasing or enhancing certain lipid metabolism-related proteins or metabolites. Therefore, in this article, we comprehensively reviewed these publications and revealed the connections between clinical observations and experimental findings to better understand the interaction between hepatic lipid metabolism and HBV infection. However, the available data are far from conclusive, and there is still a long way to go before clarifying the complex interaction between HBV infection and hepatic lipid metabolism.
Collapse
Affiliation(s)
- Jiaxuan Zhang
- Key Laboratory of Molecular Biology for Infectious Diseases, Ministry of Education, Department of Infectious Diseases, Institute for Viral Hepatitis, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Ning Ling
- Key Laboratory of Molecular Biology for Infectious Diseases, Ministry of Education, Department of Infectious Diseases, Institute for Viral Hepatitis, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yu Lei
- Key Laboratory of Molecular Biology for Infectious Diseases, Ministry of Education, Department of Infectious Diseases, Institute for Viral Hepatitis, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Mingli Peng
- Key Laboratory of Molecular Biology for Infectious Diseases, Ministry of Education, Department of Infectious Diseases, Institute for Viral Hepatitis, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Peng Hu
- Key Laboratory of Molecular Biology for Infectious Diseases, Ministry of Education, Department of Infectious Diseases, Institute for Viral Hepatitis, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Min Chen
- Key Laboratory of Molecular Biology for Infectious Diseases, Ministry of Education, Department of Infectious Diseases, Institute for Viral Hepatitis, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
48
|
García-Roche M, Cañibe G, Casal A, Mattiauda DA, Ceriani M, Jasinsky A, Cassina A, Quijano C, Carriquiry M. Glucose and Fatty Acid Metabolism of Dairy Cows in a Total Mixed Ration or Pasture-Based System During Lactation. FRONTIERS IN ANIMAL SCIENCE 2021. [DOI: 10.3389/fanim.2021.622500] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
In this study, we explored mechanisms related to glucose and fatty acid metabolism in Holstein–Friesian multiparous dairy cows during lactation under two feeding strategies. From 0 to 180 days postpartum, cows were fed total mixed ration (TMR) ad libitum (non-grazing group, G0) or grazed Festuca arundinacea or Medicago sativa and were supplemented with 5.4 kg DM/d of an energy-protein concentrate (grazing group, G1). From 180 to 250 days postpartum, all cows grazed F. arundinacea and were supplemented with TMR. Plasma samples and liver biopsies were collected at −14, 35, 60, 110, 180, and 250 days in milk (DIM) for metabolite, hormone, gene expression, and western blot analysis. Our results showed increased levels of negative energy balance markers: plasma non-esterified fatty acids (NEFA), liver triglyceride and plasma β-hydroxybutyrate (BHB) (P < 0.01), triglyceride and β-hydroxybutyrate concentration were especially elevated for G1 cows. Also, hepatic mRNA expression of gluconeogenic enzymes was upregulated during early lactation (P < 0.05). In particular, methymalonyl-CoA mutase expression was increased for G0 cows (P < 0.05) while pyruvate carboxylase (PC) expression was increased for G1 cows (P < 0.05), suggesting differential gluconeogenic precursors for different feeding strategies. Phosphorylation of AMP-activated protein kinase was increased in early lactation vs. late lactation (P < 0.01) and negatively correlated with PC mRNA levels. The positive association of gluconeogenic genes with proliferator-activated receptor gamma coactivator 1-alpha (PPARGC1A) hepatic expression supported the importance of this transcription factor in glucose metabolism. The peroxisome proliferator-activated receptor alpha (PPARA) mRNA was increased during early lactation (P < 0.05), and was positively associated to PPARGC1A, carnitine palmitoyl-transferase 1, and hydroxymethylglutaryl-CoA synthase 2 (HMGCS2) mRNA expression. Alongside, hepatic mRNA expression of FABP was decreased for G1 vs. G0 cows (P < 0.05), possibly linked to impaired fatty acid transport and related to accumulation of liver triglycerides, evidencing G1 cows fail to adapt to the demands of early lactation. In sum, our results showed that metabolic adaptations related to early lactation negative energy balance can be affected by feeding strategy and might be regulated by the metabolic sensors AMPK, SIRT1, and coordinated by transcription factors PPARGC1A and PPARA.
Collapse
|
49
|
Kucukoglu O, Sowa JP, Mazzolini GD, Syn WK, Canbay A. Hepatokines and adipokines in NASH-related hepatocellular carcinoma. J Hepatol 2021; 74:442-457. [PMID: 33161047 DOI: 10.1016/j.jhep.2020.10.030] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 10/26/2020] [Accepted: 10/28/2020] [Indexed: 12/12/2022]
Abstract
The incidence of hepatocellular carcinoma (HCC) is increasing in industrialised societies; this is likely secondary to the increasing burden of non-alcoholic fatty liver disease (NAFLD), its progressive form non-alcoholic steatohepatitis (NASH), and the metabolic syndrome. Cumulative studies suggest that NAFLD-related HCC may also develop in non-cirrhotic livers. However, prognosis and survival do not differ between NAFLD- or virus-associated HCC. Thus, research has increasingly focused on NAFLD-related risk factors to better understand the biology of hepatocarcinogenesis and to develop new diagnostic, preventive, and therapeutic strategies. One important aspect thereof is the role of hepatokines and adipokines in NAFLD/NASH-related HCC. In this review, we compile current data supporting the use of hepatokines and adipokines as potential markers of disease progression in NAFLD or as early markers of NAFLD-related HCC. While much work must be done to elucidate the mechanisms and interactions underlying alterations to hepatokines and adipokines, current data support the possible utility of these factors - in particular, angiopoietin-like proteins, fibroblast growth factors, and apelin - for detection or even as therapeutic targets in NAFLD-related HCC.
Collapse
Affiliation(s)
- Ozlem Kucukoglu
- Department of Gastroenterology, Hepatology, and Infectious Diseases, Otto-von-Guericke University Magdeburg, 39120 Magdeburg, Germany
| | - Jan-Peter Sowa
- Department of Medicine, Ruhr University Bochum, University Hospital Knappschaftskrankenhaus Bochum, 44892 Bochum, Germany
| | - Guillermo Daniel Mazzolini
- Laboratory of Gene Therapy, Instituto de Investigaciones en Medicina Traslacional, CONICET-Universidad Austral, Buenos Aires 999071, Argentina; Liver Unit, Hospital Universitario Austral, Universidad Austral, Argentina
| | - Wing-Kin Syn
- Section of Gastroenterology, Ralph H. Johnson Veterans Affairs Medical Center, Charleston, SC, USA; Division of Gastroenterology and Hepatology, Medical University of South Carolina, Charleston, SC, USA; Department of Physiology, Faculty of Medicine and Nursing, University of Basque Country UPV/EHU, 48940 Leioa, Vizcaya, Spain
| | - Ali Canbay
- Department of Gastroenterology, Hepatology, and Infectious Diseases, Otto-von-Guericke University Magdeburg, 39120 Magdeburg, Germany; Department of Medicine, Ruhr University Bochum, University Hospital Knappschaftskrankenhaus Bochum, 44892 Bochum, Germany.
| |
Collapse
|
50
|
Bunbupha S, Pakdeechote P, Maneesai P, Prasarttong P. Nobiletin alleviates high-fat diet-induced nonalcoholic fatty liver disease by modulating AdipoR1 and gp91 phox expression in rats. J Nutr Biochem 2021; 87:108526. [PMID: 33096235 DOI: 10.1016/j.jnutbio.2020.108526] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 09/13/2020] [Accepted: 10/07/2020] [Indexed: 02/07/2023]
Abstract
Nobiletin, one of the polymethoxylated flavonoids isolated from citrus peels, is reported to possess various biological activities. The current study investigates the effect and possible mechanisms of nobiletin on nonalcoholic fatty liver disease (NAFLD) in high-fat diet (HFD)-fed rats. Male Sprague-Dawley rats were administrated with HFD and fructose (15%) in drinking water for 16 weeks to induce NAFLD. HFD-fed rats were treated with nobiletin (20 or 40 mg/kg/day) or vehicle for the last 4 weeks. Treatment of HFD-fed rats with nobiletin significantly reduced systolic blood pressure, adiposity, hyperlipidemia, insulin resistance, hepatic lipids content, NAFLD activity score and liver fibrosis. Nobiletin significantly increased plasma adiponectin levels, together with up-regulation of liver adiponectin receptor 1 (AdipoR1) expression. Additionally, decreased malondialdehyde levels and increased superoxide dismutase activity in plasma and hepatic tissue, consistent with down-regulation of liver NADPH oxidase subunit gp91phox expression, were also observed after nobiletin treatment. Furthermore, high dose of nobiletin exhibited higher therapeutic effect as a compared to low dose. These findings suggest that nobiletin alleviates HFD-induced NAFLD and metabolic dysfunction in rats. There might be an association between the observed inhibitory effect of nobiletin on NAFLD and modulation of AdipoR1 and gp91phox.
Collapse
Affiliation(s)
- Sarawoot Bunbupha
- Faculty of Medicine, Mahasarakham University, Maha Sarakham, Thailand.
| | - Poungrat Pakdeechote
- Department of Physiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand; Cardiovascular Research Group, Khon Kaen University, Khon Kaen, Thailand
| | - Putcharawipa Maneesai
- Department of Physiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand; Cardiovascular Research Group, Khon Kaen University, Khon Kaen, Thailand
| | - Patoomporn Prasarttong
- Department of Physiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand; Cardiovascular Research Group, Khon Kaen University, Khon Kaen, Thailand
| |
Collapse
|