1
|
Lan Q, Wu P, Yu Y, Zhou J, Lu H. Metabolic engineering of Kluyveromyces marxianus to produce myo-inositol from starch. BIORESOURCE TECHNOLOGY 2025; 426:132370. [PMID: 40064453 DOI: 10.1016/j.biortech.2025.132370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 03/07/2025] [Accepted: 03/07/2025] [Indexed: 03/15/2025]
Abstract
To efficiently produce myo-inositol from glucose, the PGI1, ZWF1, ITR2, and MIOX5 genes in Kluyveromyces marxianus were knocked out to block glucose metabolism via the Embden-Meyerhof-Parnas (EMP) and pentose phosphate pathways (PPP), prevent myo-inositol oxidative degradation. The metabolically engineered KM-JC4 strain, introduced with myo-inositol synthesis genes, produced 80.7 g/L in a 5 L bioreactor using glucose and glycerol as carbon sources. Subsequently, the starch-fermenting and inositol-producing strain KM-JC5 was constructed by co-expressing BadGlA, an α-glucoamylase from Blastobotrys adeninivorans with high ability to release glucose from soluble starch, and the myo-inositol synthesis enzymes. Using 5% soluble starch and liquefied starch, the myo-inositol yields reached 32.2 g/L and 40.6 g/L, with the starch-to-myo-inositol conversion rates of 64.4% and 81.1%, respectively. This study provides an effective strategy for bioproduction by balancing glycolysis and PPP metabolism in yeast, and the metabolically engineered strain represents a promising platform for inositol production.
Collapse
Affiliation(s)
- Qing Lan
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, 2005 Songhu Road, Shanghai 200438, PR China; Shanghai Engineering Research Center of Industrial Microorganisms, Fudan University, 2005 Songhu Road, Shanghai 200438, PR China.
| | - Pingping Wu
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, 2005 Songhu Road, Shanghai 200438, PR China; Shanghai Engineering Research Center of Industrial Microorganisms, Fudan University, 2005 Songhu Road, Shanghai 200438, PR China.
| | - Yao Yu
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, 2005 Songhu Road, Shanghai 200438, PR China; Shanghai Engineering Research Center of Industrial Microorganisms, Fudan University, 2005 Songhu Road, Shanghai 200438, PR China.
| | - Jungang Zhou
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, 2005 Songhu Road, Shanghai 200438, PR China; Shanghai Engineering Research Center of Industrial Microorganisms, Fudan University, 2005 Songhu Road, Shanghai 200438, PR China.
| | - Hong Lu
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, 2005 Songhu Road, Shanghai 200438, PR China; Shanghai Engineering Research Center of Industrial Microorganisms, Fudan University, 2005 Songhu Road, Shanghai 200438, PR China.
| |
Collapse
|
2
|
Cummer R, Bhatt G, Finn LM, Keller BG, Nagar B, Castagner B. Thiophosphate bioisosteres of inositol hexakisphosphate enhance binding affinity and residence time on bacterial virulence factors. RSC Chem Biol 2025:d4cb00228h. [PMID: 40190842 PMCID: PMC11970527 DOI: 10.1039/d4cb00228h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 03/14/2025] [Indexed: 04/09/2025] Open
Abstract
Inositol phosphates are essential for mammalian cell signalling with critical roles in cellular processes. The fully phosphorylated inositol phosphate, myo-inositol hexakisphosphate (IP6), modulates numerous eukaryotic proteins and bacterial virulence factors. It has been suggested that the high charge density of IP6 causes restructuring of virulence factors in mammalian cells, activating their enzymatic activity. IP6 is challenging to study due to its phytase instability and propensity to precipitate. Here we suggest that the thiophosphate bioisostere, myo-inositol hexakisthiophosphate (IT6), will mitigate these issues, as thiophosphate substitution has been found to be phytase resistant and improve solubility. Assessment of the chemical properties of IT6 has indeed validated these characteristics. In addition, we performed biophysical characterization of IT6 binding to the virulence factors Salmonella enterica serovar Typhimurium AvrA, Vibrio parahaemolyticus VopA, and Clostridioides difficile TcdB. Our data show that the higher charge density of IT6 increased its binding affinity and residence time on the proteins, which improved stabilization of the bound-state. IT6 is a valuable tool for structural biology research and the described biophysical characteristics of thiophosphate substitution are of value in medicinal chemistry.
Collapse
Affiliation(s)
- Rebecca Cummer
- Department of Pharmacology and Therapeutics, McGill University Montréal Québec H3G 1Y6 Canada +514-398-2045 +514-398-2181
| | - Garvit Bhatt
- Department of Pharmacology and Therapeutics, McGill University Montréal Québec H3G 1Y6 Canada +514-398-2045 +514-398-2181
- Department of Biochemistry, McGill University Montréal Québec H3G 1Y6 Canada
| | - Lauren M Finn
- Department of Biology, Chemistry, Pharmacy, Freie Universität Arnimallee 22 14195 Berlin Germany
| | - Bettina G Keller
- Department of Biology, Chemistry, Pharmacy, Freie Universität Arnimallee 22 14195 Berlin Germany
| | - Bhushan Nagar
- Department of Biochemistry, McGill University Montréal Québec H3G 1Y6 Canada
| | - Bastien Castagner
- Department of Pharmacology and Therapeutics, McGill University Montréal Québec H3G 1Y6 Canada +514-398-2045 +514-398-2181
| |
Collapse
|
3
|
Cai Z, Zhong J, Zhu G, Zhang J. Comparative efficacy and safety of antidiabetic agents in Alzheimer's disease: A network meta-analysis of randomized controlled trials. J Prev Alzheimers Dis 2025:100111. [PMID: 40023730 DOI: 10.1016/j.tjpad.2025.100111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2025] [Revised: 02/19/2025] [Accepted: 02/22/2025] [Indexed: 03/04/2025]
Abstract
BACKGROUND Alzheimer's disease (AD) is a progressive neurodegenerative disorder with limited treatment options. Emerging evidence suggests that antidiabetic agents may offer neuroprotective effects by targeting shared pathophysiological mechanisms such as insulin resistance and neuroinflammation. However, the comparative efficacy, and safety of these agents in the treatment of AD remain unclear. OBJECTIVES This study aimed to systematically evaluate and compare the efficacy and safety of antidiabetic agents for improving cognitive outcomes, reducing amyloid-β (Aβ) deposition, and managing adverse effects in patients with AD, using a network meta-analysis of randomized controlled trials (RCTs). METHODS A comprehensive literature search was conducted across multiple databases to identify RCTs examining the effects of antidiabetic agents in patients with AD. The primary outcomes included cognitive performance (e.g., MMSE scores), Aβ deposition (measured via CSF biomarkers), and safety/adverse effects. A network meta-analysis was performed to integrate direct and indirect evidence, ranking interventions using Surface Under the Cumulative Ranking (SUCRA) probabilities. Risk of bias was assessed using the Cochrane risk-of-bias tool. RESULTS A total of 26 studies, involving 7,361 participants, were included in the analysis. The interventions evaluated included insulin detemir (both low-dose and high-dose), liraglutide, exenatide, metformin, and pioglitazone. Both low-dose insulin detemir (mean difference: 2.10, 95 % CI: 1.04 to 3.15), high-dose insulin detemir (mean difference: 1.40, 95 % CI: -0.07 to 2.88), exenatide (mean difference: 1.19, 95 % CI: 0.06 to 2.32), and metformin combined with exenatide (mean difference: 1.06, 95 % CI: -1.68 to 3.80) showed cognitive improvements compared to placebo. Among these, low-dose insulin detemir demonstrated the most significant improvement. In terms of reducing Aβ deposition, metformin ranked highest in effectiveness, with the highest SUCRA score (84.6), followed by high-dose insulin detemir (SUCRA: 54.1). Low-dose insulin detemir (SUCRA: 51.1) also demonstrated moderate efficacy. Low-dose insulin detemir showed some reduction in Aβ deposition (mean difference: -0.31, 95 % CI: -2.82 to 2.20), although statistical significance was limited. Liraglutide exhibited the highest rate of study treatment withdrawal (mean difference: 1.97, 95 % CI: -0.07 to 4.00), while pioglitazone demonstrated the lowest withdrawal rates (mean difference: 0.07, 95 % CI: -0.03 to 0.17). CONCLUSIONS This network meta-analysis provides valuable insights into the comparative efficacy and safety of antidiabetic agents in AD. Low-dose insulin detemir demonstrated the most significant cognitive improvement and a moderate effect on reducing Aβ deposition. Metformin emerged as the most effective agent for reducing Aβ levels, though its effects on cognitive function were less pronounced. Safety profiles varied, with liraglutide associated with the highest rate of treatment withdrawals, while pioglitazone demonstrated the lowest incidence of treatment-related discontinuations. These findings support the potential use of antidiabetic agents, particularly insulin detemir, as a therapeutic option for AD, although further studies are needed to confirm their long-term benefits and safety.
Collapse
Affiliation(s)
- Zixin Cai
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Cardiometabolic Medicine of Hunan Province, Metabolic Syndrome Research Center, The Second Xiangya Hospital of Central South University, Changsha, Hunan, PR China
| | - Jiaxin Zhong
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Cardiometabolic Medicine of Hunan Province, Metabolic Syndrome Research Center, The Second Xiangya Hospital of Central South University, Changsha, Hunan, PR China
| | - Guanghui Zhu
- The Affiliated Children's Hospital of Xiangya Medical School, Central South University (Hunan Children's Hospital), Hunan Provincial Key Laboratory of Pediatric Orthopedics, Changsha, Hunan, China; Furong Laboratory, Changsha, Hunan, China; MOE Key Laboratory of Rare Pediatric Diseases, University of South China, Hengyang, Hunan 421001, PR China; School of Pediatrics, University of South China, Changsha, Hunan 410007, PR China
| | - Jingjing Zhang
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Cardiometabolic Medicine of Hunan Province, Metabolic Syndrome Research Center, The Second Xiangya Hospital of Central South University, Changsha, Hunan, PR China.
| |
Collapse
|
4
|
Younis IY, Sedeek MS, Essa AF, Elgamal AM, Eltanany BM, Goda ZM, Pont L, Benavente F, Mohsen E. Exploring geographic variations in quinoa grains: Unveiling anti-Alzheimer activity via GC-MS, LC-QTOF-MS/MS, molecular networking, and chemometric analysis. Food Chem 2025; 465:141918. [PMID: 39541691 DOI: 10.1016/j.foodchem.2024.141918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 10/28/2024] [Accepted: 11/01/2024] [Indexed: 11/16/2024]
Abstract
Quinoa is an ancient Andean crop with a significant interest due to its nutritional and health benefits. This work provides a comprehensive metabolite profiling of five commercially available quinoa grains from diverse geographical origins. GC-MS analysis of primary metabolites identified sugars, sugar derivatives, and lipids as the predominant classes. LC-QTOF-MS/MS metabolomics and molecular networking facilitated the identification of 151 secondary metabolites, including 20 flavonoids, 14 saponins, and 20 lipids, which were reported for the first time in quinoa. In the AChE inhibition assay, USA white quinoa exhibited the highest activity. Chemometric analyses indicated that flavonoids and saponins were crucial for distinguishing quinoa grains. Notably, flavonoid glycosides and saponins were positively correlated with AChE inhibition. This study represents the first MS-based metabolomics investigation using molecular networking and chemometrics to explore the metabolome heterogeneity of commercial quinoa grains, underscoring their potential as a promising natural source for combating Alzheimer's disease.
Collapse
Affiliation(s)
- Inas Y Younis
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt.
| | - Mohamed S Sedeek
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt; Pharmacognosy Department, Faculty of Pharmacy, King Salman International University, Ras-Sedr, South Sinai, Egypt
| | - Ahmed F Essa
- Chemistry of Natural Compounds Department, National Research Center, 33 El Bohouth St., Dokki, Giza 12622, Egypt; Pharmacognosy Department, Faculty of Pharmacy, Merit University, Sohag, Egypt
| | - Abdelbaset M Elgamal
- Department of Chemistry of Microbial and Natural Products, National Research Centre, 33 ElBohouth St., Dokki, Cairo 12622, Egypt
| | - Basma M Eltanany
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| | - Zeinab M Goda
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| | - Laura Pont
- Department of Chemical Engineering and Analytical Chemistry, Institute for Research on Nutrition and Food Safety (INSA·UB), University of Barcelona, Barcelona 08028, Spain; Serra Húnter Program, Generalitat de Catalunya, Barcelona 08007, Spain
| | - Fernando Benavente
- Department of Chemical Engineering and Analytical Chemistry, Institute for Research on Nutrition and Food Safety (INSA·UB), University of Barcelona, Barcelona 08028, Spain.
| | - Engy Mohsen
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| |
Collapse
|
5
|
Mohan K, Ravichandran N, Rajendran H, Roshni J, Sivakumar M, Velayudam J, Ahmad SF, Al-Mazroua HA, Ahmed SSSJ. Phytoconstituents of Hericium erinaceus Exert Benefits for ADHD Conditions by Targeting SLC6A4: Extraction, Spectroscopic Characterization, Phytochemical Screening, In Vitro, and Computational Perspectives. ACS OMEGA 2025; 10:4261-4275. [PMID: 39959106 PMCID: PMC11822522 DOI: 10.1021/acsomega.4c05522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 01/13/2025] [Accepted: 01/22/2025] [Indexed: 02/18/2025]
Abstract
Attention-deficit/hyperactivity disorder (ADHD) is a persistent neurodevelopmental disorder. Despite pharmacological interventions, there is a need for effective lead molecules and therapeutic targets. Recently, Hericium erinaceus (HE) has been traditionally reported to treat various diseases. Herein, we aimed to explore the noncytotoxic properties, phytochemical composition, and spectroscopic characterization of HE aqueous extract. Additionally, we used computational workflows to identify key therapeutic targets for ADHD and assess HE extract phytoconstituents for potential targeting. Initially, the HE aqueous extract was obtained using Soxhlet extraction, and its cytotoxicity was assessed on SH-SY5Y cells using MTT assays. FTIR spectroscopy characterized the extract's functional groups, while biochemical methods and GC-MS identified its phytochemical constituents. A protein-protein interaction network identified ADHD targets, and molecular docking, dynamics, and QM/MM calculations were used to find potential drug candidates from the HE extract. As a result, the HE extract exhibited no cytotoxicity in SH-SY5Y cells across concentrations (0.625 to 10 μg/mL) after 24 h. FTIR spectroscopic analysis detected 13 different functional groups that hold diverse biological importance. Qualitative phytochemical screening revealed the presence of carbohydrates, flavonoids, anthocyanins, tannins, alkaloids, saponins, steroids, and phenolic compounds. GC-MS profiling identified 17 diverse metabolites. Simultaneously, ADHD-related genes and known therapeutic protein targets were integrated into a network, identifying SLC6A4 as a hub target. Molecular docking of HE extract compounds showed myo-inositol's high binding efficiency (-6.53 kcal/mol). Dynamic simulations demonstrated stable interactions, and QM/MM analysis confirmed myo-inositol's ability to transfer electrons, reinforcing its interaction potential. Overall, the HE aqueous extract shows a potent nontoxic profile and contains phytoconstituents like myo-inositol, offering promising therapeutic potential by targeting SLC6A4 for ADHD.
Collapse
Affiliation(s)
- Kamalaharshini Mohan
- Drug
Discovery and Multi-omics Laboratory, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad
Academy of Research and Education, Kelambakkam, Tamil Nadu 603103, India
| | - Nandhakumar Ravichandran
- Drug
Discovery and Multi-omics Laboratory, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad
Academy of Research and Education, Kelambakkam, Tamil Nadu 603103, India
| | - Harish Rajendran
- Drug
Discovery and Multi-omics Laboratory, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad
Academy of Research and Education, Kelambakkam, Tamil Nadu 603103, India
| | - Jency Roshni
- Drug
Discovery and Multi-omics Laboratory, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad
Academy of Research and Education, Kelambakkam, Tamil Nadu 603103, India
| | - Mahema Sivakumar
- Drug
Discovery and Multi-omics Laboratory, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad
Academy of Research and Education, Kelambakkam, Tamil Nadu 603103, India
| | - Janakiraman Velayudam
- Drug
Discovery and Multi-omics Laboratory, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad
Academy of Research and Education, Kelambakkam, Tamil Nadu 603103, India
| | - Sheikh F. Ahmad
- Department
of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Haneen A. Al-Mazroua
- Department
of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Shiek SSJ Ahmed
- Drug
Discovery and Multi-omics Laboratory, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad
Academy of Research and Education, Kelambakkam, Tamil Nadu 603103, India
| |
Collapse
|
6
|
Aksu K, Ayvaz MÇ, Çelik ÖF, Serdaroğlu G, Üstün E, Kelebekli L. Synthesis, Biological Activities, DFT Calculations, and Molecular Docking Studies of O-Methyl-Inositols. Chem Biodivers 2025:e202402346. [PMID: 39874173 DOI: 10.1002/cbdv.202402346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 01/09/2025] [Accepted: 01/28/2025] [Indexed: 01/30/2025]
Abstract
The concise synthesis of O-methyl-d-inositol derivative and conduritol derivatives was obtained starting from p-benzoquinone. Spectroscopic methods have been performed for the characterization of newly synthesized compounds. Cyclitols are useful molecules with anticancer, antibiotic, antinutrient, and antileukemic activities. Inositol class molecules, known as the most important cyclitol derivatives, were examined in this study for their 1,1-diphenyl-2-picrylhydrazyl (DPPH) and nitric oxide radical scavenging and butyrylcholinesterase (BChE) and glycosidase inhibition activities. It was observed that compound 5, in particular, showed efficacy that competed with the standards in terms of both antioxidant activity and enzyme inhibitor potential. Additionally, compound 5 shows effective antimicrobial activity. The water-soluble characteristics and lipophilic properties of the compounds were also considered and discussed. Moreover, the quantum chemical analyses were performed in light of the DFT/B3LYP/6-311G** level computations to elucidate/compare the studied inositols' possible reactivity directions. Additionally, the interactions of the molecules were analyzed against acetylcholinesterase (AChE), peroxiredoxin 5, and DNA gyrase by molecular docking methods. Cholinesterase inhibitors have an important status as the most important drug group used in the treatment of Alzheimer's disease today. Considering the effects of inhibition of the α-glucosidase enzyme by inhibitors, such molecules can also be used as therapeutic components in the treatment of diabetes.
Collapse
Affiliation(s)
- Kadir Aksu
- Department of Chemistry, Faculty of Sciences and Arts, Ordu University, Ordu, Türkiye
| | - Melek Çol Ayvaz
- Department of Chemistry, Faculty of Sciences and Arts, Ordu University, Ordu, Türkiye
| | - Ömer Faruk Çelik
- Department of Food Engineering, Faculty of Agriculture, Ordu University, Ordu, Türkiye
| | - Goncagül Serdaroğlu
- Faculty of Education, Math and Science Education, Sivas Cumhuriyet University, Sivas, Türkiye
| | - Elvan Üstün
- Department of Chemistry, Faculty of Sciences and Arts, Ordu University, Ordu, Türkiye
| | - Latif Kelebekli
- Department of Chemistry, Faculty of Sciences and Arts, Ordu University, Ordu, Türkiye
| |
Collapse
|
7
|
Zhou L, Li R, Wang F, Zhou R, Xia Y, Jiang X, Cheng S, Wang F, Li D, Zhang J, Mao L, Cai X, Zhang H, Qiu J, Tian X, Zou Z, Chen C. N6-methyladenosine demethylase FTO regulates neuronal oxidative stress via YTHDC1-ATF3 axis in arsenic-induced cognitive dysfunction. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:135736. [PMID: 39265400 DOI: 10.1016/j.jhazmat.2024.135736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 08/25/2024] [Accepted: 09/01/2024] [Indexed: 09/14/2024]
Abstract
Excessive exposure to metals in daily life has been proposed as an environmental risk factor for neurological disorders. Oxidative stress is an inevitable stage involved in the neurotoxic effects induced by metals, nevertheless, the underlying mechanisms are still unclear. In this study, we used arsenic as a representative environmental heavy metal to induce neuronal oxidative stress and demonstrated that both in vitro and in vivo exposure to arsenic significantly increased the level of N6-methyladenosine (m6A) by down-regulating its demethylase FTO. Importantly, the results obtained from FTO transgenic mice and FTO overexpressed/knockout cells indicated that FTO likely regulated neuronal oxidative stress by modulating activating transcription factor 3 (ATF3) in a m6A-dependent manner. We also identified the specific m6A reader protein, YTHDC1, which interacted with ATF3 and thereby affecting its regulatory effects on oxidative stress. To further explore potential intervention strategies, cerebral metabolomics was conducted and we newly identified myo-inositol as a metabolite that exhibited potential in protecting against arsenic-induced oxidative stress and cognitive dysfunction. Overall, these findings provide new insights into the importance of the FTO-ATF3 signaling axis in neuronal oxidative stress from an m6A perspective, and highlight a beneficial metabolite that can counteract the oxidative stress induced by arsenic.
Collapse
Affiliation(s)
- Lixiao Zhou
- Department of Occupational and Environmental Health, School of Public Health, Chongqing Medical University, Chongqing 400016, China
| | - Renjie Li
- Department of Occupational and Environmental Health, School of Public Health, Chongqing Medical University, Chongqing 400016, China
| | - Fu Wang
- Department of Occupational and Environmental Health, School of Public Health, Chongqing Medical University, Chongqing 400016, China
| | - Ruiqi Zhou
- Department of Occupational and Environmental Health, School of Public Health, Chongqing Medical University, Chongqing 400016, China
| | - Yinyin Xia
- Department of Occupational and Environmental Health, School of Public Health, Chongqing Medical University, Chongqing 400016, China
| | - Xuejun Jiang
- Center of Experimental Teaching for Public Health, Experimental Teaching and Management Center, Chongqing Medical University, Chongqing 400016, China
| | - Shuqun Cheng
- Department of Occupational and Environmental Health, School of Public Health, Chongqing Medical University, Chongqing 400016, China
| | - Fanghong Wang
- Department of Occupational and Environmental Health, School of Public Health, Chongqing Medical University, Chongqing 400016, China
| | - Danyang Li
- Department of Occupational and Environmental Health, School of Public Health, Chongqing Medical University, Chongqing 400016, China
| | - Jun Zhang
- Molecular Biology Laboratory of Respiratory Disease, Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China; Research Center for Environment and Human Health, Chongqing Medical University, Chongqing 400016, China
| | - Lejiao Mao
- Molecular Biology Laboratory of Respiratory Disease, Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Xuemei Cai
- Department of Occupational and Environmental Health, School of Public Health, Chongqing Medical University, Chongqing 400016, China
| | - Hongyang Zhang
- Research Center for Environment and Human Health, Chongqing Medical University, Chongqing 400016, China; Department of Health Laboratory Technology, School of Public Health, Chongqing Medical University, Chongqing 400016, China
| | - Jingfu Qiu
- Research Center for Environment and Human Health, Chongqing Medical University, Chongqing 400016, China; Department of Health Laboratory Technology, School of Public Health, Chongqing Medical University, Chongqing 400016, China
| | - Xin Tian
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| | - Zhen Zou
- Molecular Biology Laboratory of Respiratory Disease, Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China; Research Center for Environment and Human Health, Chongqing Medical University, Chongqing 400016, China.
| | - Chengzhi Chen
- Department of Occupational and Environmental Health, School of Public Health, Chongqing Medical University, Chongqing 400016, China; Research Center for Environment and Human Health, Chongqing Medical University, Chongqing 400016, China.
| |
Collapse
|
8
|
Medina-Vera D, López-Gambero AJ, Verheul-Campos J, Navarro JA, Morelli L, Galeano P, Suárez J, Sanjuan C, Pacheco-Sánchez B, Rivera P, Pavon-Morón FJ, Rosell-Valle C, Fonseca FRD. Therapeutic Efficacy of the Inositol D-Pinitol as a Multi-Faceted Disease Modifier in the 5×FAD Humanized Mouse Model of Alzheimer's Amyloidosis. Nutrients 2024; 16:4186. [PMID: 39683582 DOI: 10.3390/nu16234186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 11/27/2024] [Accepted: 11/28/2024] [Indexed: 12/18/2024] Open
Abstract
BACKGROUND/OBJECTIVES Alzheimer's disease (AD), a leading cause of dementia, lacks effective long-term treatments. Current therapies offer temporary relief or fail to halt its progression and are often inaccessible due to cost. AD involves multiple pathological processes, including amyloid beta (Aβ) deposition, insulin resistance, tau protein hyperphosphorylation, and systemic inflammation accelerated by gut microbiota dysbiosis originating from a leaky gut. Given this context, exploring alternative therapeutic interventions capable of addressing the multifaceted components of AD etiology is essential. METHODS This study suggests D-Pinitol (DPIN) as a potential treatment modifier for AD. DPIN, derived from carob pods, demonstrates insulin-sensitizing, tau hyperphosphorylation inhibition, and antioxidant properties. To test this hypothesis, we studied whether chronic oral administration of DPIN (200 mg/kg/day) could reverse the AD-like disease progression in the 5×FAD mice. RESULTS Results showed that treatment of 5×FAD mice with DPIN improved cognition, reduced hippocampal Aβ and hyperphosphorylated tau levels, increased insulin-degrading enzyme (IDE) expression, enhanced pro-cognitive hormone circulation (such as ghrelin and leptin), and normalized the PI3K/Akt insulin pathway. This enhancement may be mediated through the modulation of cyclin-dependent kinase 5 (CDK5). DPIN also protected the gut barrier and microbiota, reducing the pro-inflammatory impact of the leaky gut observed in 5×FAD mice. DPIN reduced bacterial lipopolysaccharide (LPS) and LPS-associated inflammation, as well as restored intestinal proteins such as Claudin-3. This effect was associated with a modulation of gut microbiota towards a more balanced bacterial composition. CONCLUSIONS These findings underscore DPIN's promise in mitigating cognitive decline in the early AD stages, positioning it as a potential disease modifier.
Collapse
Affiliation(s)
- Dina Medina-Vera
- Grupo de Neuropsicofarmacología, Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, Unidades Clínicas de Neurología y Salud Mental, 29010 Málaga, Spain
- Facultad de Ciencias, Universidad de Málaga, 29010 Málaga, Spain
- Unidad de Gestión Clínica del Corazón-CIBERCV (Enfermedades Cardiovasculares), Hospital Universitario Virgen de la Victoria, 29010 Málaga, Spain
| | - Antonio J López-Gambero
- Grupo de Neuropsicofarmacología, Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, Unidades Clínicas de Neurología y Salud Mental, 29010 Málaga, Spain
- INSERM, Neurocentre Magendie, University of Bordeaux, 33000 Bordeaux, France
| | - Julia Verheul-Campos
- Grupo de Neuropsicofarmacología, Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, Unidades Clínicas de Neurología y Salud Mental, 29010 Málaga, Spain
| | - Juan A Navarro
- Grupo de Neuropsicofarmacología, Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, Unidades Clínicas de Neurología y Salud Mental, 29010 Málaga, Spain
- Facultad de Medicina, Universidad de Málaga, 29010 Málaga, Spain
| | - Laura Morelli
- Laboratory of Brain Aging and Neurodegeneration, Fundación Instituto Leloir (IIBBA-CONICET), Av. Patricias Argentinas 435, Ciudad Autónoma de Buenos Aires C1405BWE, Argentina
| | - Pablo Galeano
- Laboratory of Brain Aging and Neurodegeneration, Fundación Instituto Leloir (IIBBA-CONICET), Av. Patricias Argentinas 435, Ciudad Autónoma de Buenos Aires C1405BWE, Argentina
| | - Juan Suárez
- Grupo de Neuropsicofarmacología, Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, Unidades Clínicas de Neurología y Salud Mental, 29010 Málaga, Spain
- Departamento de Anatomía Humana, Medicina Legal e Historia de la Ciencia, Facultad de Medicina, Universidad de Málaga, 29071 Málaga, Spain
- Andalusian Network for Clinical and Translational Research in Neurology [NEURO-RECA], 29001 Málaga, Spain
| | - Carlos Sanjuan
- Euronutra S.L. Calle Johannes Kepler, 3, 29590 Málaga, Spain
| | - Beatriz Pacheco-Sánchez
- Grupo de Neuropsicofarmacología, Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, Unidades Clínicas de Neurología y Salud Mental, 29010 Málaga, Spain
| | - Patricia Rivera
- Grupo de Neuropsicofarmacología, Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, Unidades Clínicas de Neurología y Salud Mental, 29010 Málaga, Spain
| | - Francisco J Pavon-Morón
- Grupo de Neuropsicofarmacología, Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, Unidades Clínicas de Neurología y Salud Mental, 29010 Málaga, Spain
- Unidad de Gestión Clínica del Corazón-CIBERCV (Enfermedades Cardiovasculares), Hospital Universitario Virgen de la Victoria, 29010 Málaga, Spain
| | - Cristina Rosell-Valle
- Grupo de Neuropsicofarmacología, Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, Unidades Clínicas de Neurología y Salud Mental, 29010 Málaga, Spain
| | - Fernando Rodríguez de Fonseca
- Grupo de Neuropsicofarmacología, Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, Unidades Clínicas de Neurología y Salud Mental, 29010 Málaga, Spain
- Andalusian Network for Clinical and Translational Research in Neurology [NEURO-RECA], 29001 Málaga, Spain
| |
Collapse
|
9
|
Goutas A, Goutzourelas N, Kevrekidou A, Kevrekidis DP, Malea P, Virgiliou C, Assimopoulou AN, Trachana V, Kollatos N, Moustafa T, Liu M, Lin X, Komiotis D, Stagos D. Hypnea musciformis Seaweed Extract Protected Human Mesenchymal Stem Cells From Oxidative Stress Through NRF2 Activation. Food Sci Nutr 2024; 12:10816-10835. [PMID: 39723057 PMCID: PMC11666820 DOI: 10.1002/fsn3.4615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 10/06/2024] [Accepted: 11/02/2024] [Indexed: 12/28/2024] Open
Abstract
Previous studies have shown that Hypnea musciformis seaweed extracts (HMEs) possess antioxidant properties, but the molecular mechanisms accounting for this activity are not known. Thus, the present study investigated the molecular mechanisms through which HME exerted its antioxidant activity in human mesenchymal stem cells (WJ-MSCs). After the isolation of HME, its chemical composition was analyzed with gas chromatography mass spectrometry, indicating that it contained amino acids, organic acids, organic amides, sugar alcohols, saturated fatty acids, hydrogenated diterpene alcohols, and other organic compounds. Afterward, HME was shown in vitro to scavenge DPPH·, ABTS·+, ·OH, and O2 ·- radicals, possess reducing activity, and protect from ROO·-induced DNA strand breakage. Finally, the results showed that HME treatment of WJ-MSCs prevented H2O2-induced oxidative stress by decreasing lipid peroxidation, protein oxidation, reactive oxygen species levels, and DNA damage and by increasing glutathione levels. Moreover, our findings showed for the first time that HME's antioxidant activity in WJ-MSCs was mediated through the activation of NRF2, which upregulated the expression of the antioxidant proteins GCLC, GSR, HMOX1, SOD1, TXN, and GPX1. These results provide new insights into H. musciformis' antioxidant properties, which could help substantially its use as a food supplement or for developing biofunctional foods.
Collapse
Affiliation(s)
- Andreas Goutas
- Department of Biochemistry and Biotechnology, School of Health SciencesUniversity of ThessalyLarissaGreece
- Department of Biology, Faculty of MedicineUniversity of ThessalyLarissaGreece
| | - Nikolaos Goutzourelas
- Department of Biochemistry and Biotechnology, School of Health SciencesUniversity of ThessalyLarissaGreece
| | - Alkistis Kevrekidou
- Laboratory of Organic Chemistry, School of Chemical EngineeringAristotle University of ThessalonikiThessalonikiGreece
- Environmental Engineering Laboratory, Department of Chemical EngineeringAristotle University of ThessalonikiThessalonikiGreece
| | - Dimitrios Phaedon Kevrekidis
- Laboratory of Forensic Medicine and Toxicology, Department of MedicineAristotle University of ThessalonikiThessalonikiGreece
| | - Paraskevi Malea
- Department of Botany, School of BiologyAristotle University of ThessalonikiThessalonikiGreece
| | - Christina Virgiliou
- Laboratory of Analytical Chemistry, School of Chemical EngineeringAristotle University of ThessalonikiThessalonikiGreece
| | - Andreana N. Assimopoulou
- Laboratory of Organic Chemistry, School of Chemical EngineeringAristotle University of ThessalonikiThessalonikiGreece
| | - Varvara Trachana
- Department of Biology, Faculty of MedicineUniversity of ThessalyLarissaGreece
| | - Nikolaos Kollatos
- Department of Biochemistry and Biotechnology, School of Health SciencesUniversity of ThessalyLarissaGreece
| | - Tafa Moustafa
- Department of Biochemistry and Biotechnology, School of Health SciencesUniversity of ThessalyLarissaGreece
| | - Ming Liu
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and PharmacyOcean University of ChinaQingdaoChina
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and TechnologyQingdaoChina
| | - Xiukun Lin
- Department of Pharmacology, School of PharmacySouthwest Medical UniversityLuzhouChina
| | - Dimitrios Komiotis
- Department of Biochemistry and Biotechnology, School of Health SciencesUniversity of ThessalyLarissaGreece
| | - Dimitrios Stagos
- Department of Biochemistry and Biotechnology, School of Health SciencesUniversity of ThessalyLarissaGreece
| |
Collapse
|
10
|
Stickland CA, Sztranyovszky Z, Rickard JJS, Goldberg Oppenheimer P. Validation of optimised intracranial spectroscopic probe for instantaneous in-situ monitoring and classification of traumatic brain injury. Exp Neurol 2024; 382:114960. [PMID: 39299676 DOI: 10.1016/j.expneurol.2024.114960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 09/02/2024] [Accepted: 09/13/2024] [Indexed: 09/22/2024]
Abstract
The development of an optical interface to directly distinguish the brain tissue's biochemistry is the next step in understanding traumatic brain injury (TBI) pathophysiology and the best and most appropriate treatment in cases where in-hospital intracranial access is required. Despite TBI being a globally leading cause of morbidity and mortality in patients under 40, there is still a lack of objective diagnostical tools. Further, given its pathophysiological complexity the majority of treatments provided are purely symptomatic without standardized therapeutic targets. Our tailor-engineered prototype of the intracranial Raman spectroscopy probe (Intra-RSP) is designed to bridge the gap and provide real-time spectroscopic insights to monitor TBI and its evolution as well as identify patient-specific molecular targets for timely intervention. Raman spectroscopy being rapid, label-free and non-destructive, renders it an ideal portable diagnostics tool. In combination with our in-house developed software, using machine learning algorithms for multivariate analysis, the Intra-RSP is shown to accurately differentiate simulated TBI conditions in rat brains from the healthy controls, directly from the brain surface as well as through the rat's skull. Using clinically pre-established methods of cranial entry, the Intra-RSP can be inserted into a 2-piece optimised cranial bolt with integrated focussing and correctly identify a sample in real-life conditions with an accuracy >80 %. To further validate the Intra-RSP's efficiency as a TBI monitoring device, rat brains mildly damaged from inflicted spinal cord injury were found to be correctly classified with 94.5 % accuracy. Through optimization and rigorous in-vivo validation, the Intra-RSP prototype is envisioned to seamlessly integrate into existing standards of neurological care, serving as a minimally invasive, in-situ neuromonitoring tool. This transformative approach has the potential to revolutionize the landscape of neurological care by providing clinicians with unprecedented insights into the nature of brain injuries and fostering targeted, timely and effective therapeutic interventions.
Collapse
Affiliation(s)
- Clarissa A Stickland
- School of Chemical Engineering, College of Engineering and Physical Science, University of Birmingham, B15 2TT, UK
| | - Zoltan Sztranyovszky
- School of Chemical Engineering, College of Engineering and Physical Science, University of Birmingham, B15 2TT, UK
| | - Jonathan J S Rickard
- School of Chemical Engineering, College of Engineering and Physical Science, University of Birmingham, B15 2TT, UK; Department of Physics, Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, UK
| | - Pola Goldberg Oppenheimer
- School of Chemical Engineering, College of Engineering and Physical Science, University of Birmingham, B15 2TT, UK; Institute of Healthcare Technologies, Mindelsohn Way, Birmingham B15 2TH, UK.
| |
Collapse
|
11
|
Maria DDB, Vieira SL, Horn RM, Marchi MLA, Favero A. Phytase Improves Zinc Utilization by Broiler Chickens. Animals (Basel) 2024; 14:3423. [PMID: 39682388 DOI: 10.3390/ani14233423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 10/15/2024] [Accepted: 10/19/2024] [Indexed: 12/18/2024] Open
Abstract
The study aimed to evaluate phytase effects on the availability of zinc (Zn) from corn and soybean meal feeds for broiler chickens, whereas, in parallel, Zn requirements were investigated. A total of 640 Cobb × Cobb 500 male chicks were fed a Zn-deficient diet (18.87 ± 0.87 mg/kg Zn) until 7 days of age. The experiment was a 2 × 5 factorial with 10 treatments (feeds with or without phytase × 5 increasing dietary Zn levels) with 8 replications of 8 birds each. Supplemental Zn sulfate heptahydrate was used (measurements of the Zn analyzed in the feeds were 30.1 ± 0.73, 61.6 ± 0.13, 90.4 ± 1.60, 123.6 ± 1.99, and 151.9 ± 1.84 mg/kg, respectively). There were no interactions between phytase and Zn for any evaluated response. Phytase improved broiler performance and increased plasma myo-inositol, Zn content in the liver and tibia, Zn retention, and digestible energy (p < 0.05). No significant impact of dietary Zn was found on broiler performance (p > 0.05) except for Zn excretion and tibia Zn content. Adding phytase at 4000 FYT increased the apparent ileal Zn digestibility by 98% and Zn retention by 13.7%, whereas Zn supplementation of up to 151.9 mg/kg did not impact broiler performance.
Collapse
Affiliation(s)
- Douglas Drebes Brunhaus Maria
- Department of Animal Science, Federal University of Rio Grande do Sul, Av. Bento Gonçalves, 7712, Porto Alegre 91540-000, RS, Brazil
| | - Sergio Luiz Vieira
- Department of Animal Science, Federal University of Rio Grande do Sul, Av. Bento Gonçalves, 7712, Porto Alegre 91540-000, RS, Brazil
| | - Raquel Medeiros Horn
- Department of Animal Science, Federal University of Rio Grande do Sul, Av. Bento Gonçalves, 7712, Porto Alegre 91540-000, RS, Brazil
| | - Maria Luísa Adachi Marchi
- Department of Animal Science, Federal University of Rio Grande do Sul, Av. Bento Gonçalves, 7712, Porto Alegre 91540-000, RS, Brazil
| | - Andre Favero
- Department of Animal Science, Federal University of Rio Grande do Sul, Av. Bento Gonçalves, 7712, Porto Alegre 91540-000, RS, Brazil
| |
Collapse
|
12
|
Placidi M, Casoli G, Tatone C, Di Emidio G, Bevilacqua A. Myo-Inositol and Its Derivatives: Their Roles in the Challenges of Infertility. BIOLOGY 2024; 13:936. [PMID: 39596891 PMCID: PMC11592302 DOI: 10.3390/biology13110936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 11/11/2024] [Accepted: 11/13/2024] [Indexed: 11/29/2024]
Abstract
Myo-inositol (MYO) and D-chiro-inositol (DCI) are the two most significant isomeric forms of inositol, playing a critical role in intracellular signaling. MYO is the most abundant form of inositol in nature; DCI is produced from MYO through epimerization by an insulin-dependent enzyme. Recently, it has been demonstrated that inositol may influence oocyte maturation and improve intracellular Ca2+ oscillation in the oocytes, and it has been proposed as a potential intervention for restoring spontaneous ovulation. The MYO concentration in human follicular fluid is considered a bioindicator of oocyte quality. In the ovary, DCI modulates the activity of aromatase, thus regulating androgen synthesis. Under physiological conditions, the MYO/DCI ratio is maintained at 40:1 in plasma. In women with PCOS, the MYO/DCI ratio is lowered to 0:2:1, contributing to elevated androgen production. By regulating FSH signaling, MYO administration increases the number of high-quality embryos available for transfer in poor responder patients. Finally, by acting downstream to insulin signaling, inositol administration during pregnancy may represent a novel strategy for counteracting gestational diabetes. These findings show that diet supplementation with inositol may be a promising strategy to address female infertility and sustain a healthy pregnancy.
Collapse
Affiliation(s)
- Martina Placidi
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (M.P.); (G.C.); (C.T.)
| | - Giovanni Casoli
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (M.P.); (G.C.); (C.T.)
| | - Carla Tatone
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (M.P.); (G.C.); (C.T.)
| | - Giovanna Di Emidio
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (M.P.); (G.C.); (C.T.)
- The Experts Group on Inositol in Basic and Clinical Research and on PCOS (EGOI-PCOS), 00156 Rome, Italy;
| | - Arturo Bevilacqua
- The Experts Group on Inositol in Basic and Clinical Research and on PCOS (EGOI-PCOS), 00156 Rome, Italy;
- Department of Dynamic, Clinical Psychology and Health Studies, Sapienza University of Rome, Via Dei Marsi 78, 00185 Rome, Italy
- The Experts Group on Inositols in Basic and Clinical Research (EGOI), Systems Biology Group Lab, Research Center in Neurobiology Daniel Bovet (CRiN), 00173 Rome, Italy
| |
Collapse
|
13
|
Barbaro F, Conza GD, Quartulli FP, Quarantini E, Quarantini M, Zini N, Fabbri C, Mosca S, Caravelli S, Mosca M, Vescovi P, Sprio S, Tampieri A, Toni R. Correlation between tooth decay and insulin resistance in normal weight males prompts a role for myo-inositol as a regenerative factor in dentistry and oral surgery: a feasibility study. Front Bioeng Biotechnol 2024; 12:1374135. [PMID: 39144484 PMCID: PMC11321979 DOI: 10.3389/fbioe.2024.1374135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 07/01/2024] [Indexed: 08/16/2024] Open
Abstract
Background In an era of precision and stratified medicine, homogeneity in population-based cohorts, stringent causative entry, and pattern analysis of datasets are key elements to investigate medical treatments. Adhering to these principles, we collected in vivo and in vitro data pointing to an insulin-sensitizing/insulin-mimetic effect of myo-inositol (MYO) relevant to cell regeneration in dentistry and oral surgery. Confirmation of this possibility was obtained by in silico analysis of the relation between in vivo and in vitro results (the so-called bed-to-benchside reverse translational approach). Results Fourteen subjects over the 266 screened were young adult, normal weight, euglycemic, sedentary males having normal appetite, free diet, with a regular three-times-a-day eating schedule, standard dental hygiene, and negligible malocclusion/enamel defects. Occlusal caries were detected by fluorescence videoscanning, whereas body composition and energy balance were estimated with plicometry, predictive equations, and handgrip. Statistically significant correlations (Pearson r coefficient) were found between the number of occlusal caries and anthropometric indexes predicting insulin resistance (IR) in relation to the abdominal/visceral fat mass, fat-free mass, muscular strength, and energy expenditure adjusted to the fat and muscle stores. This indicated a role for IR in affecting dentin reparative processes. Consistently, in vitro administration of MYO to HUVEC and Swiss NIH3T3 cells in concentrations corresponding to those administered in vivo to reduce IR resulted in statistically significant cell replication (ANOVA/Turkey tests), suggesting that MYO has the potential to counteract inhibitory effects of IR on dental vascular and stromal cells turnover. Finally, in in silico experiments, quantitative evaluation (WOE and information value) of a bioinformatic Clinical Outcome Pathway confirmed that in vitro trophic effects of MYO could be transferred in vivo with high predictability, providing robust credence of its efficacy for oral health. Conclusion Our reverse bed-to-benchside data indicate that MYO might antagonize the detrimental effects of IR on tooth decay. This provides feasibility for clinical studies on MYO as a regenerative factor in dentistry and oral surgery, including dysmetabolic/aging conditions, bone reconstruction in oral destructive/necrotic disorders, dental implants, and for empowering the efficacy of a number of tissue engineering methodologies in dentistry and oral surgery.
Collapse
Affiliation(s)
- Fulvio Barbaro
- Department of Medicine and Surgery - DIMEC, Laboratory of Regenerative Morphology and Bioartificial Structures (Re.Mo.Bio.S.), Museum and Historical Library of Biomedicine - BIOMED, University of Parma, Parma, Italy
| | - Giusy Di Conza
- Department of Medicine and Surgery - DIMEC, Laboratory of Regenerative Morphology and Bioartificial Structures (Re.Mo.Bio.S.), Museum and Historical Library of Biomedicine - BIOMED, University of Parma, Parma, Italy
| | - Francesca Pia Quartulli
- Department of Medicine and Surgery - DIMEC, Laboratory of Regenerative Morphology and Bioartificial Structures (Re.Mo.Bio.S.), Museum and Historical Library of Biomedicine - BIOMED, University of Parma, Parma, Italy
| | - Enrico Quarantini
- Odontostomatology Unit, and R&D Center for Artificial Intelligence in Biomedicine and Odontostomatology (A.I.B.O), Galliera Medical Center, San Venanzio di Galliera, Italy
| | - Marco Quarantini
- Odontostomatology Unit, and R&D Center for Artificial Intelligence in Biomedicine and Odontostomatology (A.I.B.O), Galliera Medical Center, San Venanzio di Galliera, Italy
| | - Nicoletta Zini
- CNR Institute of Molecular Genetics “Luigi Luca Cavalli-Sforza”, Unit of Bologna, Bologna, Italy
| | - Celine Fabbri
- Course on Odontostomatology, University Vita-Salute San Raffaele, Milan, Italy
| | - Salvatore Mosca
- Course on Disorders of the Locomotor System, Fellow Program in Orthopaedics and Traumatology, University Vita-Salute San Raffaele, Milan, Italy
| | - Silvio Caravelli
- O.U. Orthopedics Bentivoglio, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Massimiliano Mosca
- O.U. Orthopedics Bentivoglio, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Paolo Vescovi
- Department of Medicine and Surgery - DIMEC, Odontostomatology Section, University of Parma, Parma, Italy
| | | | | | - Roberto Toni
- CNR - ISSMC, Faenza, Italy
- Academy of Sciences of the Institute of Bologna, Section IV - Medical Sciences, Bologna, Italy
- Endocrinology, Diabetes, and Nutrition Disorders Outpatient Clinic - OSTEONET (Osteoporosis, Nutrition, Endocrinology, and Innovative Therapies) and R&D Center A.I.B.O, Centro Medico Galliera, San Venanzio di Galliera, Italy
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Tufts Medical Center - Tufts University School of Medicine, Boston, MA, United States
| |
Collapse
|
14
|
E M, Zhang Z, Ji P, Liu Q, Qi H, Hou T, Su H, Wang Z, Li X. A novel mechanism of major ginsenosides from Panax ginseng against multiple organ aging in middle-aged mice: Phosphatidylcholine-myo-inositol metabolism based on metabolomic analysis. Biochem Biophys Res Commun 2024; 719:150027. [PMID: 38749089 DOI: 10.1016/j.bbrc.2024.150027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 04/18/2024] [Accepted: 04/26/2024] [Indexed: 06/05/2024]
Abstract
Aging is a complex, degenerative process associated with various metabolic abnormalities. Ginsenosides (GS) is the main active components of Panax ginseng, which has anti-aging effects and improves metabolism. However, the anti-aging effect and the mechanism of GS in middle-aged mice has not been elucidated. In this study, GS after 3-month treatment significantly improved the grip strength, fatigue resistance, cognitive indices, and cardiac function of 15-month-old mice. Meanwhile, GS treatment reduced the fat content and obviously inhibited histone H2AX phosphorylation at Ser 139 (γ-H2AX), a marker of DNA damage in major organs, especially in the heart and liver. Further, the correlation analysis of serum metabolomics combined with aging phenotype suggested that myo-inositol (MI) upregulated by GS was positively correlated with left ventricular ejection fraction (LVEF) and left ventricular fractional shortening (LVFS), the main indicators of cardiac function. More importantly, liver tissue metabolomic analysis showed that GS increased MI content by promoting the synthesis pathway from phosphatidylcholine (PC) to MI for the inhibition of liver aging. Finally, we proved that MI reduced the percentage of senescence-associated β-galactosidase staining, γ-H2AX immunofluorescence staining, p21 expression, and the production of reactive oxygen species in H2O2-induced cardiomyocytes. These results suggest that GS can enhance multiple organ functions, especially cardiac function for promoting the healthspan of aging mice, which is mediated by the conversion of PC to MI in the liver and the increase of MI level in the serum. Our study might provide new insights into the potential mechanisms of ginsenosides for prolonging the healthspan of natural aging mice.
Collapse
Affiliation(s)
- Mingyao E
- Northeast Asia Research Institute of Traditional Chinese Medicine, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Jilin, 130117, China.
| | - Zepeng Zhang
- Research Center of Traditional Chinese Medicine, College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Jilin, 130021, China
| | - Peng Ji
- Northeast Asia Research Institute of Traditional Chinese Medicine, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Jilin, 130117, China
| | - Qing Liu
- Northeast Asia Research Institute of Traditional Chinese Medicine, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Jilin, 130117, China
| | - Hongyu Qi
- Northeast Asia Research Institute of Traditional Chinese Medicine, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Jilin, 130117, China
| | - Tong Hou
- Northeast Asia Research Institute of Traditional Chinese Medicine, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Jilin, 130117, China
| | - Hang Su
- Northeast Asia Research Institute of Traditional Chinese Medicine, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Jilin, 130117, China
| | - Zeyu Wang
- Northeast Asia Research Institute of Traditional Chinese Medicine, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Jilin, 130117, China.
| | - Xiangyan Li
- Northeast Asia Research Institute of Traditional Chinese Medicine, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Jilin, 130117, China.
| |
Collapse
|
15
|
Collée M, Rajkumar R, Farrher E, Hagen J, Ramkiran S, Schnellbächer GJ, Khudeish N, Shah NJ, Veselinović T, Neuner I. Predicting performance in attention by measuring key metabolites in the PCC with 7T MRS. Sci Rep 2024; 14:17099. [PMID: 39048626 PMCID: PMC11269673 DOI: 10.1038/s41598-024-67866-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 07/16/2024] [Indexed: 07/27/2024] Open
Abstract
The posterior cingulate cortex (PCC) is a key hub of the default mode network and is known to play an important role in attention. Using ultra-high field 7 Tesla magnetic resonance spectroscopy (MRS) to quantify neurometabolite concentrations, this exploratory study investigated the effect of the concentrations of myo-inositol (Myo-Ins), glutamate (Glu), glutamine (Gln), aspartate or aspartic acid (Asp) and gamma-amino-butyric acid (GABA) in the PCC on attention in forty-six healthy participants. Each participant underwent an MRS scan and cognitive testing, consisting of a trail-making test (TMT A/B) and a test of attentional performance. After a multiple regression analysis and bootstrapping for correction, the findings show that Myo-Ins and Asp significantly influence (p < 0.05) attentional tasks. On one hand, Myo-Ins shows it can improve the completion times of both TMT A and TMT B. On the other hand, an increase in aspartate leads to more mistakes in Go/No-go tasks and shows a trend towards enhancing reaction time in Go/No-go tasks and stability of alertness without signal. No significant (p > 0.05) influence of Glu, Gln and GABA was observed.
Collapse
Affiliation(s)
- M Collée
- Department of Psychiatry, Psychotherapy and Psychosomatics, RWTH Aachen University, Aachen, Germany
- Institute of Neuroscience and Medicine 4, INM-4, Forschungszentrum Jülich GmbH, 52425, Jülich, Germany
| | - R Rajkumar
- Department of Psychiatry, Psychotherapy and Psychosomatics, RWTH Aachen University, Aachen, Germany
- Institute of Neuroscience and Medicine 4, INM-4, Forschungszentrum Jülich GmbH, 52425, Jülich, Germany
- JARA - BRAIN - Translational Medicine, Aachen, Germany
| | - E Farrher
- Institute of Neuroscience and Medicine 4, INM-4, Forschungszentrum Jülich GmbH, 52425, Jülich, Germany
| | - J Hagen
- Department of Psychiatry, Psychotherapy and Psychosomatics, RWTH Aachen University, Aachen, Germany
- Institute of Neuroscience and Medicine 4, INM-4, Forschungszentrum Jülich GmbH, 52425, Jülich, Germany
| | - S Ramkiran
- Department of Psychiatry, Psychotherapy and Psychosomatics, RWTH Aachen University, Aachen, Germany
- Institute of Neuroscience and Medicine 4, INM-4, Forschungszentrum Jülich GmbH, 52425, Jülich, Germany
| | - G J Schnellbächer
- Department of Psychiatry, Psychotherapy and Psychosomatics, RWTH Aachen University, Aachen, Germany
- Institute of Neuroscience and Medicine 4, INM-4, Forschungszentrum Jülich GmbH, 52425, Jülich, Germany
| | - N Khudeish
- Department of Psychiatry, Psychotherapy and Psychosomatics, RWTH Aachen University, Aachen, Germany
- Institute of Neuroscience and Medicine 4, INM-4, Forschungszentrum Jülich GmbH, 52425, Jülich, Germany
| | - N J Shah
- Department of Psychiatry, Psychotherapy and Psychosomatics, RWTH Aachen University, Aachen, Germany
- Institute of Neuroscience and Medicine 4, INM-4, Forschungszentrum Jülich GmbH, 52425, Jülich, Germany
- JARA - BRAIN - Translational Medicine, Aachen, Germany
- Institute of Neuroscience and Medicine 11, INM-11, Forschungszentrum Jülich, Jülich, Germany
- Department of Neurology, RWTH Aachen University, Aachen, Germany
| | - T Veselinović
- Department of Psychiatry, Psychotherapy and Psychosomatics, RWTH Aachen University, Aachen, Germany
- Institute of Neuroscience and Medicine 4, INM-4, Forschungszentrum Jülich GmbH, 52425, Jülich, Germany
- JARA - BRAIN - Translational Medicine, Aachen, Germany
| | - I Neuner
- Department of Psychiatry, Psychotherapy and Psychosomatics, RWTH Aachen University, Aachen, Germany.
- Institute of Neuroscience and Medicine 4, INM-4, Forschungszentrum Jülich GmbH, 52425, Jülich, Germany.
- JARA - BRAIN - Translational Medicine, Aachen, Germany.
| |
Collapse
|
16
|
Nadam IS, Bellamine A, Salom R, Guilera S, Inarejos-Garcia AM, Pillar G. Effects of the active botanical blend "WKUP GT" on attention and cognitive functions after lunch in healthy volunteers. Hum Psychopharmacol 2024; 39:e2895. [PMID: 38367243 DOI: 10.1002/hup.2895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 01/29/2024] [Accepted: 01/31/2024] [Indexed: 02/19/2024]
Abstract
OBJECTIVES "WKUP GT", a low caffeine beverage consisting of carob, Guarana, Green Tea and Elderberry extracts was studied on attention and cognitive functions post-lunch in a pilot randomized double blind placebo controlled trial. METHODS Thirty healthy volunteers were included in a crossover design trial, presenting five beverages randomly assigned to the following groups: placebo, "WKUP GT" (single, double or triple doses), or "caffeine" as an active control. Hemodynamic measurements were assessed as safety outcomes. The Cambridge Neuropsychological Test Automated Battery (CANTAB), was used to evaluate the patients when beverages were consumed 30 and 120 min after lunch (respectively Delta30 and Delta120 considering baseline). RESULTS Drinking "caffeine" or "WKUP GT" after lunch, showed significant improvement (p < 0.05) in rapid visual information processing compared to placebo (Delta120 of "caffeine", "WKUP" single and double). In addition, improvement in Multitasking Test (Delta30 for "WKUP" double, and Delta120 for "caffeine" and "WKUP" triple compared to placebo) was observed. "WKUP" triple also showed significant improvement for "memory" when compared to placebo (Delta120). Compared to "caffeine", WKUP GT did not increase systolic blood pressure. CONCLUSION "WKUP GT" showed improvements for attention, memory, psychomotor and executive function tasks after lunch without increase in pulse rate.
Collapse
Affiliation(s)
| | | | - Rafael Salom
- Department of Functional Extracts, ADM® Valencia, Valencia, Spain
| | - Sonia Guilera
- Department of Functional Extracts, ADM® Valencia, Valencia, Spain
| | | | - Giora Pillar
- Carmel Medical Center and Technion Faculty of Medicine, Haifa, Israel
| |
Collapse
|
17
|
Yoshida KI, Bott M. Microbial synthesis of health-promoting inositols. Curr Opin Biotechnol 2024; 87:103114. [PMID: 38520822 DOI: 10.1016/j.copbio.2024.103114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 03/03/2024] [Accepted: 03/04/2024] [Indexed: 03/25/2024]
Abstract
D-chiro-inositol and scyllo-inositol are known for their health-promoting properties and promising as ingredients for functional foods. Strains of Bacillus subtilis and Corynebacterium glutamicum were created by metabolic engineering capable of inexpensive production of these two rare inositols from myo-inositol, which is the most common inositol in nature. In addition, further modifications have enabled the synthesis of the two rare inositols from the much-cheaper carbon sources, glucose or sucrose.
Collapse
Affiliation(s)
- Ken-Ichi Yoshida
- Graduate School of Science, Technology and Innovation, University of Kobe, Kobe, Japan.
| | - Michael Bott
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich, Jülich, Germany.
| |
Collapse
|
18
|
Snytnikova O, Telegina D, Savina E, Tsentalovich Y, Kolosova N. Quantitative Metabolomic Analysis of the Rat Hippocampus: Effects of Age and of the Development of Alzheimer's Disease-Like Pathology. J Alzheimers Dis 2024; 99:S327-S344. [PMID: 37980669 DOI: 10.3233/jad-230706] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2023]
Abstract
Background Alzheimer's disease (AD) is the most common type of dementia in the elderly. Incomplete knowledge about the pathogenesis of this disease determines the absence of medications for the treatment of AD today. Animal models can provide the necessary knowledge to understand the mechanisms of biochemical processes occurring in the body in health and disease. Objective To identify the most promising metabolomic predictors and biomarkers reflecting metabolic disorders in the development of AD signs. Methods High resolution 1H NMR spectroscopy was used for quantitative metabolomic profiling of the hippocampus of OXYS rats, an animal model of sporadic AD, which demonstrates key characteristics of this disease. Animals were examined during several key periods: 20 days group corresponds to the "preclinical" period preceding the development of AD signs, during their manifestation (3 months), and active progression (18 months). Wistar rats of the same age were used as control. Results Ranges of variation and mean concentrations were established for 59 brain metabolites. The main metabolic patterns during aging, which are involved in energy metabolism pathways and metabolic shifts of neurotransmitters, have been established. Of particular note is the significant increase of scyllo-inositol and decrease of hypotaurine in the hippocampus of OXYS rats as compared to Wistars for all studied age groups. Conclusions We suggest that the accumulation of scyllo-inositol and the reduction of hypotaurine in the brain, even at an early age, can be considered as predictors and potential biomarkers of the development of AD signs in OXYS rats and, probably, in humans.
Collapse
Affiliation(s)
- Olga Snytnikova
- International Tomography Center, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Darya Telegina
- The Federal Research Center Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Ekaterina Savina
- International Tomography Center, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Yuri Tsentalovich
- International Tomography Center, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Nataliya Kolosova
- The Federal Research Center Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| |
Collapse
|
19
|
Kurano M, Saito Y, Yatomi Y. Comprehensive Analysis of Metabolites in Postmortem Brains of Patients with Alzheimer's Disease. J Alzheimers Dis 2024; 97:1139-1159. [PMID: 38250775 DOI: 10.3233/jad-230942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2024]
Abstract
BACKGROUND Disturbed metabolism has been proposed as being involved in the pathogenesis of Alzheimer's disease (AD), and more evidence from human AD brains is required. OBJECTIVE In this study, we attempted to identify or confirm modulations in the levels of metabolites associated with AD in postmortem AD brains. METHODS We performed metabolomics analyses using a gas chromatography mass spectrometry system in postmortem brains of patients with confirmed AD, patients with CERAD score B, and control subjects. RESULTS Impaired phosphorylation of glucose and elevation of several tricarboxylic acid (TCA) metabolites, except citrate, were observed and the degree of impaired phosphorylation and elevation in the levels of the TCA cycle metabolites were negatively and positively correlated, respectively, with the clinical phenotypes of AD. The levels of uronic acid pathway metabolites were modulated in AD and correlated positively with the amyloid-β content. The associations of nucleic acid synthesis and amino acid metabolites with AD depended on the kinds of metabolites; in particular, the contents of ribose 5-phosphate, serine and glycine were negatively correlated, while those of ureidosuccinic acid and indole-3-acetic acid were positively modulated in AD. Comprehensive statistical analyses suggested that alterations in the inositol pathway were most closely associated with AD. CONCLUSIONS The present study revealed many novel associations between metabolites and AD, suggesting that some of these might serve as novel potential therapeutic targets for AD.
Collapse
Affiliation(s)
- Makoto Kurano
- Department of Clinical Laboratory Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yuko Saito
- Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology, Tokyo, Japan
| | - Yutaka Yatomi
- Department of Clinical Laboratory Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
20
|
Zhang M, Xu Z, Shao L, Wang J, He Z, Jiang Y, Zhang Y, Wang H. D-pinitol ameliorated H 2O 2-induced oxidative damage in PC12 cells and prolonged the lifespan by IIS pathway in Caenorhabditis elegans. Comp Biochem Physiol C Toxicol Pharmacol 2023; 274:109755. [PMID: 37734471 DOI: 10.1016/j.cbpc.2023.109755] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 08/30/2023] [Accepted: 09/18/2023] [Indexed: 09/23/2023]
Abstract
D-pinitol (DP) has been extensively regarded as the main active component of legumes for anti-aging. In this study, we intended to explore the anti-aging mechanism of DP, utilizing computer modeling techniques. The results demonstrated that DP significantly delayed H2O2-induced cellular senescence. Model PC12 cells treated with DP exhibited increased cell viability, increased antioxidant enzyme activity (SOD, CAT), and reduced ROS and MDA levels. Furthermore, DP was discovered to have a positive effect on healthy longevity. In C. elegans, DP treatment enhanced lifespan, stress capacity, antioxidant capacity (T-SOD/CAT/GSH-Px/MDA/ROS), and altered aging-related indicators of lipofuscin accumulation, pharyngeal pump rate, motility, and reproduction. Moreover, DP could reduce the toxicity Aβ in transgenic C. elegans CL4176, CL2355, and CL2331. Further mechanistic studies indicated DP increased transcription factor (daf-16, skn-1, hsf-1) expression of insulin/insulin-like growth factor-1 signaling (IIS) pathway. As expected, DP also extended the downstream target genes of the three transcription factors (sod-3, ctl-1, ctl-2, gst-4, hsp-16.1, and hsp-16.2). Further mutant lifespan experiments, network pharmacology, and molecular docking revealed that DP might be life-extending through the IIS pathway. DP deserves extensive investigation and development as a potential anti-aging drug in the future.
Collapse
Affiliation(s)
- Miaosi Zhang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology (TUST), Tianjin 300457, China
| | - Zhe Xu
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology (TUST), Tianjin 300457, China
| | - Liangyong Shao
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology (TUST), Tianjin 300457, China
| | - Jilite Wang
- Department of Agriculture, Hetao College, Inner Mongolia Bayannur, China
| | - Zouyan He
- Department of Nutrition and Food Hygiene, School of Public Health, Guangxi Medical University, Nanning 530021, Guangxi, China.
| | - Yumei Jiang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology (TUST), Tianjin 300457, China.
| | - Ye Zhang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology (TUST), Tianjin 300457, China.
| | - Hao Wang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology (TUST), Tianjin 300457, China.
| |
Collapse
|
21
|
Kathrani A, Yen S, Hall EJ, Swann JR. The effects of a hydrolyzed protein diet on the plasma, fecal and urine metabolome in cats with chronic enteropathy. Sci Rep 2023; 13:19979. [PMID: 37968311 PMCID: PMC10652014 DOI: 10.1038/s41598-023-47334-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 11/12/2023] [Indexed: 11/17/2023] Open
Abstract
Hydrolyzed protein diets are extensively used to treat chronic enteropathy (CE) in cats. However, the biochemical effects of such a diet on feline CE have not been characterized. In this study an untargeted 1H nuclear magnetic resonance spectroscopy-based metabolomic approach was used to compare the urinary, plasma, and fecal metabolic phenotypes of cats with CE to control cats with no gastrointestinal signs recruited at the Royal Veterinary College (RVC). In addition, the biomolecular consequences of a hydrolyzed protein diet in cats with CE was also separately determined in cats recruited from the RVC (n = 16) and the University of Bristol (n = 24) and whether these responses differed between dietary responders and non-responders. Here, plasma metabolites related to energy and amino acid metabolism significantly varied between CE and control cats in the RVC cohort. The hydrolyzed protein diet modulated the urinary metabolome of cats with CE (p = 0.005) in both the RVC and Bristol cohort. In the RVC cohort, the urinary excretion of phenylacetylglutamine, p-cresyl-sulfate, creatinine and taurine at diagnosis was predictive of dietary response (p = 0.025) although this was not observed in the Bristol cohort. Conversely, in the Bristol cohort plasma betaine, glycerol, glutamine and alanine at diagnosis was predictive of outcome (p = 0.001), but these same results were not observed in the RVC cohort. The biochemical signature of feline CE in the RVC cohort was consistent with that identified in human and animal models of inflammatory bowel disease. The hydrolyzed protein diet had the same effect on the urinary metabolome of cats with CE at both sites. However, biomarkers that were predictive of dietary response at diagnosis differed between the 2 sites. This may be due to differences in disease severity, disease heterogeneity, factors unrelated to the disease or small sample size at both sites. As such, further studies utilizing larger number of cats are needed to corroborate these findings.
Collapse
Affiliation(s)
- Aarti Kathrani
- Royal Veterinary College, Hawkshead Lane, Hertfordshire, AL9 7TA, UK.
| | - Sandi Yen
- Oxford Centre for Microbiome Studies, Kennedy Institute of Rheumatology, University of Oxford, Oxford, OX3 7FY, UK
| | - Edward J Hall
- Bristol Veterinary School, University of Bristol, Langford, Bristol, BS40 5DU, UK
| | - Jonathan R Swann
- School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, SO16 6YD, UK
- Department of Metabolism, Digestion, and Reproduction, Imperial College London, London, SW7 2AZ, UK
| |
Collapse
|
22
|
Roques S, Deborde C, Skiba-Cassy S, Médale F, Dupont-Nivet M, Lefevre F, Bugeon J, Labbé L, Marchand Y, Moing A, Fauconneau B. New alternative ingredients and genetic selection are the next game changers in rainbow trout nutrition: a metabolomics appraisal. Sci Rep 2023; 13:19634. [PMID: 37949954 PMCID: PMC10638236 DOI: 10.1038/s41598-023-46809-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 11/05/2023] [Indexed: 11/12/2023] Open
Abstract
The formulation of sustainable fish feeds based on plant ingredients supplemented by alternative ingredients to plant (insect, micro-algae, yeast) and genetic selection of fish for plant-based diets were tested on rainbow trout in two separate experiments. Plant-based diets and corresponding diets supplemented with an ingredient mix: insect, micro-algae and yeast in Experiment A, and insect and yeast in Experiment B were compared to commercial-like diets. In experiment A, the mix-supplemented diet was successful in compensating the altered growth performance of fish fed their respective plant-based diet compared to those fed the commercial diet, by restoring feed conversion. In experiment B, the selected line demonstrated improved growth performances of fish fed mix-supplemented and plant-based diets compared to the non-selected line. Metabolomics demonstrated a plasma compositional stability in fish fed mix-supplemented and basal plant-based diets comprising an amino acid accumulation and a glucose depletion, compared to those fed commercial diets. The selected line fed mix-supplemented and commercial diets showed changes in inositol, ethanol and methanol compared to the non-selected line, suggesting an involvement of microbiota. Changes in plasma glycine-betaine content in fish fed the mix-supplemented diet suggest the ability of the selected line to adapt to alternative ingredients.
Collapse
Affiliation(s)
- Simon Roques
- INRAE, Univ. Pau & Pays Adour, E2S UPPA, Nutrition, Métabolisme et Aquaculture, UMR 1419, 64310, Saint Pée sur Nivelle, France
- Phileo by Lesaffre, 59700, Marcq-en-Barœul, France
- Université Clermont Auvergne, INRAE, VetAgro Sup, UMR Herbivores, 63122, Saint-Genes-Champanelle, France
| | - Catherine Deborde
- Bordeaux Metabolome, MetaboHUB, Centre INRAE de Nouvelle-Aquitaine Bordeaux, 33140, Villenave d'Ornon, France
- Centre INRAE de Nouvelle-Aquitaine Bordeaux, INRAE, Univ. Bordeaux, Biologie du Fruit et Pathologie, UMR 1332, 33140, Villenave d'Ornon, France
- INRAE, Biopolymères Interactions Assemblages, UR1268, 44300, Nantes, France
- INRAE, BIBS Facility, Centre INRAE Pays de Loire - Nantes, 44000, Nantes, France
| | - Sandrine Skiba-Cassy
- INRAE, Univ. Pau & Pays Adour, E2S UPPA, Nutrition, Métabolisme et Aquaculture, UMR 1419, 64310, Saint Pée sur Nivelle, France
| | - Françoise Médale
- INRAE, Univ. Pau & Pays Adour, E2S UPPA, Nutrition, Métabolisme et Aquaculture, UMR 1419, 64310, Saint Pée sur Nivelle, France
| | - Mathilde Dupont-Nivet
- Université Paris-Saclay, INRAE, AgroParisTech, Génétique Animale et Biologie Intégrative, UMR 1313, 78350, Jouy-en-Josas, France
| | - Florence Lefevre
- INRAE, Laboratoire de Physiologie et Génomique des Poissons, UR 1037, 35000, Rennes, France
| | - Jérome Bugeon
- INRAE, Laboratoire de Physiologie et Génomique des Poissons, UR 1037, 35000, Rennes, France
| | | | | | - Annick Moing
- Bordeaux Metabolome, MetaboHUB, Centre INRAE de Nouvelle-Aquitaine Bordeaux, 33140, Villenave d'Ornon, France
- Centre INRAE de Nouvelle-Aquitaine Bordeaux, INRAE, Univ. Bordeaux, Biologie du Fruit et Pathologie, UMR 1332, 33140, Villenave d'Ornon, France
| | - Benoit Fauconneau
- INRAE, Univ. Pau & Pays Adour, E2S UPPA, Nutrition, Métabolisme et Aquaculture, UMR 1419, 64310, Saint Pée sur Nivelle, France.
| |
Collapse
|
23
|
Harris G, Stickland CA, Lim M, Goldberg Oppenheimer P. Raman Spectroscopy Spectral Fingerprints of Biomarkers of Traumatic Brain Injury. Cells 2023; 12:2589. [PMID: 37998324 PMCID: PMC10670390 DOI: 10.3390/cells12222589] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/02/2023] [Accepted: 11/06/2023] [Indexed: 11/25/2023] Open
Abstract
Traumatic brain injury (TBI) affects millions of people of all ages around the globe. TBI is notoriously hard to diagnose at the point of care, resulting in incorrect patient management, avoidable death and disability, long-term neurodegenerative complications, and increased costs. It is vital to develop timely, alternative diagnostics for TBI to assist triage and clinical decision-making, complementary to current techniques such as neuroimaging and cognitive assessment. These could deliver rapid, quantitative TBI detection, by obtaining information on biochemical changes from patient's biofluids. If available, this would reduce mis-triage, save healthcare providers costs (both over- and under-triage are expensive) and improve outcomes by guiding early management. Herein, we utilize Raman spectroscopy-based detection to profile a panel of 18 raw (human, animal, and synthetically derived) TBI-indicative biomarkers (N-acetyl-aspartic acid (NAA), Ganglioside, Glutathione (GSH), Neuron Specific Enolase (NSE), Glial Fibrillary Acidic Protein (GFAP), Ubiquitin C-terminal Hydrolase L1 (UCHL1), Cholesterol, D-Serine, Sphingomyelin, Sulfatides, Cardiolipin, Interleukin-6 (IL-6), S100B, Galactocerebroside, Beta-D-(+)-Glucose, Myo-Inositol, Interleukin-18 (IL-18), Neurofilament Light Chain (NFL)) and their aqueous solution. The subsequently derived unique spectral reference library, exploiting four excitation lasers of 514, 633, 785, and 830 nm, will aid the development of rapid, non-destructive, and label-free spectroscopy-based neuro-diagnostic technologies. These biomolecules, released during cellular damage, provide additional means of diagnosing TBI and assessing the severity of injury. The spectroscopic temporal profiles of the studied biofluid neuro-markers are classed according to their acute, sub-acute, and chronic temporal injury phases and we have further generated detailed peak assignment tables for each brain-specific biomolecule within each injury phase. The intensity ratios of significant peaks, yielding the combined unique spectroscopic barcode for each brain-injury marker, are compared to assess variance between lasers, with the smallest variance found for UCHL1 (σ2 = 0.000164) and the highest for sulfatide (σ2 = 0.158). Overall, this work paves the way for defining and setting the most appropriate diagnostic time window for detection following brain injury. Further rapid and specific detection of these biomarkers, from easily accessible biofluids, would not only enable the triage of TBI, predict outcomes, indicate the progress of recovery, and save healthcare providers costs, but also cement the potential of Raman-based spectroscopy as a powerful tool for neurodiagnostics.
Collapse
Affiliation(s)
- Georgia Harris
- Advanced Nanomaterials Structures and Applications Laboratories, School of Chemical Engineering, College of Engineering and Physical Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Clarissa A. Stickland
- Advanced Nanomaterials Structures and Applications Laboratories, School of Chemical Engineering, College of Engineering and Physical Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Matthias Lim
- Advanced Nanomaterials Structures and Applications Laboratories, School of Chemical Engineering, College of Engineering and Physical Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Pola Goldberg Oppenheimer
- Advanced Nanomaterials Structures and Applications Laboratories, School of Chemical Engineering, College of Engineering and Physical Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
- Institute of Healthcare Technologies, Mindelsohn Way, Birmingham B15 2TH, UK
| |
Collapse
|
24
|
Cogorno L, Formisano E, Vignati A, Prigione A, Tramacere A, Borgarelli C, Sukkar SG, Pisciotta L. Non-alcoholic fatty liver disease: Dietary and nutraceutical approaches. LIVER RESEARCH 2023; 7:216-227. [PMID: 39958388 PMCID: PMC11791914 DOI: 10.1016/j.livres.2023.08.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 07/20/2023] [Accepted: 08/24/2023] [Indexed: 02/18/2025]
Abstract
Non-alcoholic fatty liver disease (NAFLD), defined as the presence of fat accumulation in imaging or histology in more than 5% of hepatocytes and exclusion of other causes for secondary hepatic fat accumulation, is one of the major causes of chronic liver disease worldwide. Metabolic syndrome is associated with an increased risk of progression from NAFLD to non-alcoholic steatohepatitis (NASH), fibrosis, and forthcoming liver failure. Also, genetic predisposition contributes to the risk of NAFLD development. This review explores the role of diets and nutraceuticals in delaying the development and the evolution of NAFLD to chronic liver disease. The Mediterranean diet, high-protein diet, low-carbohydrate/high-fat diet, high-carbohydrate/low-fat diet, and intermittent fasting are the dietary approaches investigated given the presence of relevant literature data. Moreover, this review focused on nutraceuticals with proven efficacy in ameliorating NAFLD and grouped them into four different categories: plant-based nutraceuticals (Ascophyllum nodosum and Fucus vesiculosus, Silymarin, Berberine, Curcumin, Resveratrol, Nigella sativa, Quercetin), vitamin-like substances (vitamin E, vitamin D, vitamin C, coenzyme Q10, inositol), fatty acids (omega-3), and microbiota-management tools (probiotics).
Collapse
Affiliation(s)
- Ludovica Cogorno
- Department of Experimental Medicine-Medical Pathophysiology, Food Science and Endocrinology Section, Sapienza University of Rome, Rome, Italy
| | - Elena Formisano
- Department of Internal Medicine, University of Genoa, Genoa, Italy
- Dietetics and Clinical Nutrition Unit, IRCCS Policlinic Hospital San Martino, Genoa, Italy
| | - Andrea Vignati
- Department of Internal Medicine, University of Genoa, Genoa, Italy
| | - Amalia Prigione
- Department of Internal Medicine, University of Genoa, Genoa, Italy
| | | | | | - Samir Giuseppe Sukkar
- Dietetics and Clinical Nutrition Unit, IRCCS Policlinic Hospital San Martino, Genoa, Italy
| | - Livia Pisciotta
- Department of Internal Medicine, University of Genoa, Genoa, Italy
- Dietetics and Clinical Nutrition Unit, IRCCS Policlinic Hospital San Martino, Genoa, Italy
| |
Collapse
|
25
|
Ramp P, Mack C, Wirtz A, Bott M. Alternative routes for production of the drug candidate d-chiro-inositol with Corynebacterium glutamicum using endogenous or promiscuous plant enzymes. Metab Eng 2023; 78:1-10. [PMID: 37146873 DOI: 10.1016/j.ymben.2023.04.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 04/05/2023] [Accepted: 04/23/2023] [Indexed: 05/07/2023]
Abstract
d-chiro-Inositol (DCI) is a promising drug candidate for treating insulin resistance and associated diseases such as type 2 diabetes or polycystic ovary syndrome. In this study, we developed two production processes for DCI using Corynebacterium glutamicum as host. In the first process, myo-inositol (MI) is oxidized to 2-keto-myo-inositol (2KMI) by the inositol dehydrogenase (IDH) IolG and then isomerized to 1-keto-d-chiro-inositol (1KDCI) by the isomerases Cg0212 or Cg2312, both of which were identified in this work. 1KDCI is then reduced to DCI by IolG. Overproduction of IolG and Cg0212 in a chassis strain unable to degrade inositols allowed the production of 1.1 g/L DCI from 10 g/L MI. As both reactions involved are reversible, only a partial conversion of MI to DCI can be achieved. To enable higher conversion ratios, a novel route towards DCI was established by utilizing the promiscuous activity of two plant-derived enzymes, the NAD+-dependent d-ononitol dehydrogenase MtOEPa and the NADPH-dependent d-pinitol dehydrogenase MtOEPb from Medicago truncatula (barrelclover). Heterologous production of these enzymes in the chassis strain led to the production of 1.6 g/L DCI from 10 g/L MI. For replacing the substrate MI by glucose, the two plant genes were co-expressed with the endogenous myo-inositol-1-phosphate synthase gene ino1 either as a synthetic operon or using a novel, bicistronic T7-based expression vector. With the single operon construct, 0.75 g/L DCI was formed from 20 g/L glucose, whereas with the bicistronic construct 1.2 g/L DCI was obtained, disclosing C. glutamicum as an attractive host for of d-chiro-inositol production.
Collapse
Affiliation(s)
- Paul Ramp
- IBG-1: Biotechnology, Institute of Bio- and Geosciences, Forschungszentrum Jülich, Jülich, Germany
| | - Christina Mack
- IBG-1: Biotechnology, Institute of Bio- and Geosciences, Forschungszentrum Jülich, Jülich, Germany
| | - Astrid Wirtz
- IBG-1: Biotechnology, Institute of Bio- and Geosciences, Forschungszentrum Jülich, Jülich, Germany
| | - Michael Bott
- IBG-1: Biotechnology, Institute of Bio- and Geosciences, Forschungszentrum Jülich, Jülich, Germany.
| |
Collapse
|
26
|
Derkaczew M, Martyniuk P, Osowski A, Wojtkiewicz J. Cyclitols: From Basic Understanding to Their Association with Neurodegeneration. Nutrients 2023; 15:2029. [PMID: 37432155 DOI: 10.3390/nu15092029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 04/18/2023] [Accepted: 04/19/2023] [Indexed: 07/12/2023] Open
Abstract
One of the most common cyclitols found in eukaryotic cells-Myo-inositol (MI) and its derivatives play a key role in many cellular processes such as ion channel physiology, signal transduction, phosphate storage, cell wall formation, membrane biogenesis and osmoregulation. The aim of this paper is to characterize the possibility of neurodegenerative disorders treatment using MI and the research of other therapeutic methods linked to MI's derivatives. Based on the reviewed literature the researchers focus on the most common neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease, Huntington's disease and Spinocerebellar ataxias, but there are also works describing other seldom encountered diseases. The use of MI, d-pinitol and other methods altering MI's metabolism, although research on this topic has been conducted for years, still needs much closer examination. The dietary supplementation of MI shows a promising effect on the treatment of neurodegenerative disorders and can be of great help in alleviating the accompanying depressive symptoms.
Collapse
Affiliation(s)
- Maria Derkaczew
- Department of Human Physiology and Pathophysiology, School of Medicine, Collegium Medicum, University of Warmia and Mazury, 10-082 Olsztyn, Poland
- Students' Scientific Club of Pathophysiologists, Department of Human Physiology and Pathophysiology, School of Medicine, University of Warmia and Mazury, 10-082 Olsztyn, Poland
| | - Piotr Martyniuk
- Department of Human Physiology and Pathophysiology, School of Medicine, Collegium Medicum, University of Warmia and Mazury, 10-082 Olsztyn, Poland
- Students' Scientific Club of Pathophysiologists, Department of Human Physiology and Pathophysiology, School of Medicine, University of Warmia and Mazury, 10-082 Olsztyn, Poland
| | - Adam Osowski
- Department of Human Physiology and Pathophysiology, School of Medicine, Collegium Medicum, University of Warmia and Mazury, 10-082 Olsztyn, Poland
| | - Joanna Wojtkiewicz
- Department of Human Physiology and Pathophysiology, School of Medicine, Collegium Medicum, University of Warmia and Mazury, 10-082 Olsztyn, Poland
| |
Collapse
|
27
|
Bal-Prylypko L, Nikolaenko M, Volkhova T, Holembovska N, Tyshchenko L, Ivaniuta A, Israelian V, Menchynska A, Shynkaruk O, Melnik V. The study of functional and technological properties of vegetarian ice cream. POTRAVINARSTVO 2023. [DOI: 10.5219/1798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023] Open
Abstract
The use perspective and expediency of plant-based milk, enriched with fiber when combined with organic products, biobased products, and sugar substitute products, has been substantiated in the manufacturing process of vegetarian ice cream. When combined with pumpkin fiber, stevia, bananas, pistachios, coconut oil, and coffee beans with different functional and technological properties, rice milk has a purposeful influence on organoleptic and Physico-chemical properties of food products. Accordingly, the expediency of added rice milk (62%) has been determined to optimize vegetarian ice cream's vitamin and mineral composition. The optimal component ratio has been determined employing experimental studies and multi-criteria optimization: for ice cream "Banana & Pistachio": rice milk – 62%, pumpkin fiber – 2.5%, – 0.5%, banana – 16%, pistachio – 6.8%, coconut oil – 12.2%; “Coffee and chocolate”: rice milk – 62%, pumpkin fiber – 4.8%, stevia – 4%, cocoa powder – 7%, coffee beans – 8%, coconut oil – 14.2%, It has been found that the main physicochemical parameters of the vegetarian ice cream depend on the chemical composition of the ice cream mixture and its freezing conditions. Thus, when the fat content increases, the stability of air bubbles increases, but their sizes decrease. The study results make it clear that the increase in the fat amount is good for the ice cream structure and consistency, while the distance between the fat balls decreases, which, in turn, helps to obtain the product with the smaller ice crystals.
Collapse
|
28
|
Ashokcoomar S, Reedoy KS, Loots DT, Beukes D, van Reenen M, Pillay B, Pillay M. M. tuberculosis curli pili (MTP) facilitates a reduction of microbicidal activity of infected THP-1 macrophages during early stages of infection. Comp Immunol Microbiol Infect Dis 2022; 90-91:101907. [DOI: 10.1016/j.cimid.2022.101907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 10/30/2022] [Accepted: 11/01/2022] [Indexed: 11/06/2022]
|
29
|
Hanbouch L, Schaack B, Kasri A, Fontaine G, Gkanatsiou E, Brinkmalm G, Camporesi E, Portelius E, Blennow K, Mourier G, Gilles N, Millan MJ, Marquer C, Zetterberg H, Boussicault L, Potier MC. Specific Mutations in the Cholesterol-Binding Site of APP Alter Its Processing and Favor the Production of Shorter, Less Toxic Aβ Peptides. Mol Neurobiol 2022; 59:7056-7073. [PMID: 36076005 PMCID: PMC9525381 DOI: 10.1007/s12035-022-03025-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 08/31/2022] [Indexed: 12/05/2022]
Abstract
Excess brain cholesterol is strongly implicated in the pathogenesis of Alzheimer's disease (AD). Here we evaluated how the presence of a cholesterol-binding site (CBS) in the transmembrane and juxtamembrane regions of the amyloid precursor protein (APP) regulates its processing. We generated nine point mutations in the APP gene, changing the charge and/or hydrophobicity of the amino-acids which were previously shown as part of the CBS. Most mutations triggered a reduction of amyloid-β peptides Aβ40 and Aβ42 secretion from transiently transfected HEK293T cells. Only the mutations at position 28 of Aβ in the APP sequence resulted in a concomitant significant increase in the production of shorter Aβ peptides. Mass spectrometry (MS) confirmed the predominance of Aβx-33 and Aβx-34 with the APPK28A mutant. The enzymatic activity of α-, β-, and γ-secretases remained unchanged in cells expressing all mutants. Similarly, subcellular localization of the mutants in early endosomes did not differ from the APPWT protein. A transient increase of plasma membrane cholesterol enhanced the production of Aβ40 and Aβ42 by APPWT, an effect absent in APPK28A mutant. Finally, WT but not CBS mutant Aβ derived peptides bound to cholesterol-rich exosomes. Collectively, the present data revealed a major role of juxtamembrane amino acids of the APP CBS in modulating the production of toxic Aβ species. More generally, they underpin the role of cholesterol in the pathophysiology of AD.
Collapse
Affiliation(s)
- Linda Hanbouch
- Paris Brain Institute, ICM, CNRS UMR7225-INSERM U1127-Sorbonne University Hôpital de La Pitié-Salpêtrière, 47 Bd de l'Hôpital, 75013, Paris, France
| | - Béatrice Schaack
- Univ. Grenoble Alpes, CNRS, INP, TheRex Team, TIMC-IMAG, 38700, La Tronche, France
- Univ. Grenoble Alpes, CEA, CNRS, IBS, 38044, Grenoble, France
| | - Amal Kasri
- Paris Brain Institute, ICM, CNRS UMR7225-INSERM U1127-Sorbonne University Hôpital de La Pitié-Salpêtrière, 47 Bd de l'Hôpital, 75013, Paris, France
| | - Gaëlle Fontaine
- Paris Brain Institute, ICM, CNRS UMR7225-INSERM U1127-Sorbonne University Hôpital de La Pitié-Salpêtrière, 47 Bd de l'Hôpital, 75013, Paris, France
| | - Eleni Gkanatsiou
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience & Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, S-431 80, Sweden
| | - Gunnar Brinkmalm
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience & Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, S-431 80, Sweden
| | - Elena Camporesi
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience & Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, S-431 80, Sweden
| | - Erik Portelius
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience & Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, S-431 80, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, S-431 80, Mölndal, Sweden
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience & Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, S-431 80, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, S-431 80, Mölndal, Sweden
| | - Gilles Mourier
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, S-431 80, Mölndal, Sweden
- Département Médicaments Et Technologies Pour La Santé (DMTS), Université Paris Saclay, CEA, INRAE, SIMoS, 91191, Gif-sur-Yvette, France
| | - Nicolas Gilles
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, S-431 80, Mölndal, Sweden
- Département Médicaments Et Technologies Pour La Santé (DMTS), Université Paris Saclay, CEA, INRAE, SIMoS, 91191, Gif-sur-Yvette, France
| | - Mark J Millan
- Neuroscience Inflammation Thérapeutic Area, IDR Servier, 125 Chemin de Ronde, 78290, Croissy-sur-Seine, France
- Institute of Neuroscience and Psychology, College of Medicine, Vet and Life Sciences, Glasgow University, 62 Hillhead Street, Glasgow, G12 8QB, Scotland
| | - Catherine Marquer
- Paris Brain Institute, ICM, CNRS UMR7225-INSERM U1127-Sorbonne University Hôpital de La Pitié-Salpêtrière, 47 Bd de l'Hôpital, 75013, Paris, France
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience & Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, S-431 80, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, S-431 80, Mölndal, Sweden
- Department of Neurodegenerative Disease, UCL Institute of Neurology, London, WC1N 3BG, UK
- UK Dementia Research Institute at UCL, London, WC1E 6BT, UK
| | - Lydie Boussicault
- Paris Brain Institute, ICM, CNRS UMR7225-INSERM U1127-Sorbonne University Hôpital de La Pitié-Salpêtrière, 47 Bd de l'Hôpital, 75013, Paris, France
| | - Marie-Claude Potier
- Paris Brain Institute, ICM, CNRS UMR7225-INSERM U1127-Sorbonne University Hôpital de La Pitié-Salpêtrière, 47 Bd de l'Hôpital, 75013, Paris, France.
| |
Collapse
|
30
|
Physiological, Biochemical, and Structural Bioinformatic Analysis of the Multiple Inositol Dehydrogenases from Corynebacterium glutamicum. Microbiol Spectr 2022; 10:e0195022. [PMID: 36094194 PMCID: PMC9603128 DOI: 10.1128/spectrum.01950-22] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Inositols (cyclohexanehexols) comprise nine isomeric cyclic sugar alcohols, several of which occur in all domains of life with various functions. Many bacteria can utilize inositols as carbon and energy sources via a specific pathway involving inositol dehydrogenases (IDHs) as the first step of catabolism. The microbial cell factory Corynebacterium glutamicum can grow with myo-inositol as a sole carbon source. Interestingly, this species encodes seven potential IDHs, raising the question of the reason for this multiplicity. We therefore investigated the seven IDHs to determine their function, activity, and selectivity toward the biologically most important isomers myo-, scyllo-, and d-chiro-inositol. We created an ΔIDH strain lacking all seven IDH genes, which could not grow on the three inositols. scyllo- and d-chiro-inositol were identified as novel growth substrates of C. glutamicum. Complementation experiments showed that only four of the seven IDHs (IolG, OxiB, OxiD, and OxiE) enabled growth of the ΔIDH strain on two of the three inositols. The kinetics of the four purified enzymes agreed with the complementation results. IolG and OxiD are NAD+-dependent IDHs accepting myo- and d-chiro-inositol but not scyllo-inositol. OxiB is an NAD+-dependent myo-IDH with a weak activity also for scyllo-inositol but not for d-chiro-inositol. OxiE on the other hand is an NAD+-dependent scyllo-IDH showing also good activity for myo-inositol and a very weak activity for d-chiro-inositol. Structural models, molecular docking experiments, and sequence alignments enabled the identification of the substrate binding sites of the active IDHs and of residues allowing predictions on the substrate specificity. IMPORTANCE myo-, scyllo-, and d-chiro-inositol are C6 cyclic sugar alcohols with various biological functions, which also serve as carbon sources for microbes. Inositol catabolism starts with an oxidation to keto-inositols catalyzed by inositol dehydrogenases (IDHs). The soil bacterium C. glutamicum encodes seven potential IDHs. Using a combination of microbiological, biochemical, and modeling approaches, we analyzed the function of these enzymes and identified four IDHs involved in the catabolism of inositols. They possess distinct substrate preferences for the three isomers, and modeling and sequence alignments allowed the identification of residues important for substrate specificity. Our results expand the knowledge of bacterial inositol metabolism and provide an important basis for the rational development of producer strains for these valuable inositols, which show pharmacological activities against, e.g., Alzheimer's disease, polycystic ovarian syndrome, or type II diabetes.
Collapse
|
31
|
Pharmacokinetics and Endocrine Effects of an Oral Dose of D-Pinitol in Human Fasting Healthy Volunteers. Nutrients 2022; 14:nu14194094. [PMID: 36235746 PMCID: PMC9572189 DOI: 10.3390/nu14194094] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 09/20/2022] [Accepted: 09/26/2022] [Indexed: 11/17/2022] Open
Abstract
The present study characterizes the oral pharmacokinetics of D-Pinitol, a natural insulin mimetic inositol, in human healthy volunteers (14 males and 11 females). D-Pinitol absorption was studied in (a) subjects receiving a single oral dose of 15 mg/kg (n = 10), or (b) 5 mg/kg pure D-Pinitol (n = 6), and (c) subjects receiving D-Pinitol as part of carbohydrate-containing carob pods-derived syrup with a 3.2% D-Pinitol (Dose of 1600 mg/subject, n = 9). The volunteers received a randomly assigned single dose of either D-Pinitol or carob pod-derived syrup. Blood samples were collected at 0, 15, 30, 45, 60, 90, 120, 180, 240, 360 and 1440 min after intake. Plasma concentration of D-Pinitol was measured and pharmacokinetic parameters obtained. The data indicate that when given alone, the oral absorption of D-Pinitol is dose-dependent and of extended duration, with a Tmax reached after almost 4 h, and a half-life greater than 5 h. When the source of D-Pinitol was a carob pods-derived syrup, Cmax was reduced to 40% of the expected based on the data of D-Pinitol alone, suggesting a reduced absorption probably because of competition with monosaccharide transport. In this group, Tmax was reached before that of D-Pinitol alone, but the estimated half-life remained the same. In the D-Pinitol groups, plasma concentrations of glucose, insulin, glucagon, ghrelin, free fatty acids, and pituitary hormones were additionally measured. A dose of 15 mg/kg of D-Pinitol did not affect glucose levels in healthy volunteers, but reduced insulin and increased glucagon and ghrelin concentrations. D-Pinitol did not increase other hormones known to enhance plasma glucose, such as cortisol or GH, which were surprisingly reduced after the ingestion of this inositol. Other pituitary hormones (gonadotropins, prolactin, and thyroid-stimulating hormone) were not affected after D-Pinitol ingestion. In a conclusion, D-Pinitol is absorbed through the oral route, having an extended half-life and displaying the pharmacological profile of an endocrine pancreas protector, a pharmacological activity of potential interest for the treatment or prevention of insulin resistance-associated conditions.
Collapse
|
32
|
Vakili O, Asili P, Babaei Z, Mirahmad M, Keshavarzmotamed A, Asemi Z, Mafi A. Circular RNAs in Alzheimer's Disease: A New Perspective of Diagnostic and Therapeutic Targets. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2022; 22:CNSNDDT-EPUB-125997. [PMID: 36043720 DOI: 10.2174/1871527321666220829164211] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 06/06/2022] [Accepted: 06/20/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Circular RNAs (circRNAs), as covalently closed single-stranded noncoding RNA molecules, have been recently identified to involve in several biological processes, principally through targeting microRNAs. Among various neurodegenerative diseases (NDs), accumulating evidence has proposed key roles for circRNAs in the pathogenesis of Alzheimer's disease (AD); although the exact relationship between these RNA molecules and AD progression is not clear, they have been believed to mostly act as miRNA sponges or gene transcription modulators through correlating with multiple proteins, involved in the accumulation of Amyloid β (Aβ) peptides, as well as tau protein, as AD's pathological hallmark. More interestingly, circRNAs have also been reported to play diagnostic and therapeutic roles during AD progression. OBJECTIVE Literature review indicated that circRNAs could essentially contribute to the onset and development of AD. Thus, in the current review, the circRNAs' biogenesis and functions are addressed at first, and then the interplay between particular circRNAs and AD is comprehensively discussed. Eventually, the diagnostic and therapeutic significance of these noncoding RNAs is highlighted in brief. RESULTS A large number of circRNAs are expressed in the brain. Thereby, these RNA molecules are noticed as potential regulators of neural functions in healthy circumstances, as well as neurological disorders. Moreover, circRNAs have also been reported to have potential diagnostic and therapeutic capacities in relation to AD, the most prevalent ND. CONCLUSION CircRNAs have been shown to act as sponges for miRNAs, thereby regulating the function of related miRNAs, including oxidative stress, reduction of neuroinflammation, and the formation and metabolism of Aβ, all of which developed in AD. CircRNAs have also been proposed as biomarkers that have potential diagnostic capacities in AD. Despite these characteristics, the use of circRNAs as therapeutic targets and promising diagnostic biomarkers will require further investigation and characterization of the function of these RNA molecules in AD.
Collapse
Affiliation(s)
- Omid Vakili
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Pooria Asili
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Zeinab Babaei
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Maryam Mirahmad
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Alireza Mafi
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
33
|
Navarro JA, Decara J, Medina-Vera D, Tovar R, Lopez-Gambero AJ, Suarez J, Pavón FJ, Serrano A, de Ceglia M, Sanjuan C, Baltasar YA, Baixeras E, Rodríguez de Fonseca F. Endocrine and Metabolic Impact of Oral Ingestion of a Carob-Pod-Derived Natural-Syrup-Containing D-Pinitol: Potential Use as a Novel Sweetener in Diabetes. Pharmaceutics 2022; 14:pharmaceutics14081594. [PMID: 36015220 PMCID: PMC9416495 DOI: 10.3390/pharmaceutics14081594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 07/26/2022] [Accepted: 07/28/2022] [Indexed: 02/05/2023] Open
Abstract
The widespread use of added sugars or non-nutritive sweeteners in processed foods is a challenge for addressing the therapeutics of obesity and diabetes. Both types of sweeteners generate health problems, and both are being blamed for multiple complications associated with these prevalent diseases. As an example, fructose is proven to contribute to obesity and liver steatosis, while non-nutritive sweeteners generate gut dysbiosis that complicates the metabolic control exerted by the liver. The present work explores an alternative approach for sweetening through the use of a simple carob-pod-derived syrup. This sweetener consists of a balanced mixture of fructose (47%) and glucose (45%), as sweetening sugars, and a functional natural ingredient (D-Pinitol) at a concentration (3%) capable of producing active metabolic effects. The administration of this syrup to healthy volunteers (50 g of total carbohydrates) resulted in less persistent glucose excursions, a lower insulin response to the hyperglycemia produced by its ingestion, and an enhanced glucagon/insulin ratio, compared to that observed after the ingestion of 50 g of glucose. Daily administration of the syrup to Wistar rats for 10 days lowered fat depots in the liver, reduced liver glycogen, promoted fat oxidation, and was devoid of toxic effects. In addition, this repeated administration of the syrup improved glucose handling after a glucose (2 g/kg) load. Overall, this alternative functional sweetener retains the natural palatability of a glucose/fructose syrup while displaying beneficial metabolic effects that might serve to protect against the progression towards complicated obesity, especially the development of liver steatosis.
Collapse
Affiliation(s)
- Juan A. Navarro
- Laboratorio de Medicina Regenerativa, Unidad de Gestión Clínica de Salud Mental, Instituto de Investigación Biomédica de Málaga-IBIMA, Hospital Regional Universitario de Málaga, 29010 Málaga, Spain; (J.A.N.); (J.D.); (D.M.-V.); (R.T.); (A.J.L.-G.); (J.S.); (F.J.P.); (A.S.); (M.d.C.)
- Facultad de Medicina, Campus de Teatinos s/n, Universidad de Málaga, 29010 Málaga, Spain
| | - Juan Decara
- Laboratorio de Medicina Regenerativa, Unidad de Gestión Clínica de Salud Mental, Instituto de Investigación Biomédica de Málaga-IBIMA, Hospital Regional Universitario de Málaga, 29010 Málaga, Spain; (J.A.N.); (J.D.); (D.M.-V.); (R.T.); (A.J.L.-G.); (J.S.); (F.J.P.); (A.S.); (M.d.C.)
| | - Dina Medina-Vera
- Laboratorio de Medicina Regenerativa, Unidad de Gestión Clínica de Salud Mental, Instituto de Investigación Biomédica de Málaga-IBIMA, Hospital Regional Universitario de Málaga, 29010 Málaga, Spain; (J.A.N.); (J.D.); (D.M.-V.); (R.T.); (A.J.L.-G.); (J.S.); (F.J.P.); (A.S.); (M.d.C.)
- Facultad de Medicina, Campus de Teatinos s/n, Universidad de Málaga, 29010 Málaga, Spain
- Unidad de Gestión del Corazón, Hospital Universitario Virgen de la Victoria, 29010 Málaga, Spain
- Facultad de Ciencias, Campus de Teatinos s/n, Universidad de Málaga, 29010 Málaga, Spain
| | - Ruben Tovar
- Laboratorio de Medicina Regenerativa, Unidad de Gestión Clínica de Salud Mental, Instituto de Investigación Biomédica de Málaga-IBIMA, Hospital Regional Universitario de Málaga, 29010 Málaga, Spain; (J.A.N.); (J.D.); (D.M.-V.); (R.T.); (A.J.L.-G.); (J.S.); (F.J.P.); (A.S.); (M.d.C.)
- Facultad de Medicina, Campus de Teatinos s/n, Universidad de Málaga, 29010 Málaga, Spain
| | - Antonio J. Lopez-Gambero
- Laboratorio de Medicina Regenerativa, Unidad de Gestión Clínica de Salud Mental, Instituto de Investigación Biomédica de Málaga-IBIMA, Hospital Regional Universitario de Málaga, 29010 Málaga, Spain; (J.A.N.); (J.D.); (D.M.-V.); (R.T.); (A.J.L.-G.); (J.S.); (F.J.P.); (A.S.); (M.d.C.)
- Facultad de Ciencias, Campus de Teatinos s/n, Universidad de Málaga, 29010 Málaga, Spain
| | - Juan Suarez
- Laboratorio de Medicina Regenerativa, Unidad de Gestión Clínica de Salud Mental, Instituto de Investigación Biomédica de Málaga-IBIMA, Hospital Regional Universitario de Málaga, 29010 Málaga, Spain; (J.A.N.); (J.D.); (D.M.-V.); (R.T.); (A.J.L.-G.); (J.S.); (F.J.P.); (A.S.); (M.d.C.)
- Departamento de Anatomía Humana, Medicina Legal e Historia de la Ciencia, Universidad de Málaga, 29010 Málaga, Spain
| | - Francisco Javier Pavón
- Laboratorio de Medicina Regenerativa, Unidad de Gestión Clínica de Salud Mental, Instituto de Investigación Biomédica de Málaga-IBIMA, Hospital Regional Universitario de Málaga, 29010 Málaga, Spain; (J.A.N.); (J.D.); (D.M.-V.); (R.T.); (A.J.L.-G.); (J.S.); (F.J.P.); (A.S.); (M.d.C.)
- Unidad de Gestión del Corazón, Hospital Universitario Virgen de la Victoria, 29010 Málaga, Spain
| | - Antonia Serrano
- Laboratorio de Medicina Regenerativa, Unidad de Gestión Clínica de Salud Mental, Instituto de Investigación Biomédica de Málaga-IBIMA, Hospital Regional Universitario de Málaga, 29010 Málaga, Spain; (J.A.N.); (J.D.); (D.M.-V.); (R.T.); (A.J.L.-G.); (J.S.); (F.J.P.); (A.S.); (M.d.C.)
| | - Marialuisa de Ceglia
- Laboratorio de Medicina Regenerativa, Unidad de Gestión Clínica de Salud Mental, Instituto de Investigación Biomédica de Málaga-IBIMA, Hospital Regional Universitario de Málaga, 29010 Málaga, Spain; (J.A.N.); (J.D.); (D.M.-V.); (R.T.); (A.J.L.-G.); (J.S.); (F.J.P.); (A.S.); (M.d.C.)
| | - Carlos Sanjuan
- Euronutra S.L. Calle Johannes Kepler, 3, 29590 Málaga, Spain; (C.S.); (Y.A.B.)
| | | | - Elena Baixeras
- Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad de Málaga, 29010 Málaga, Spain
- Correspondence: (E.B.); (F.R.d.F.); Tel.: +34-655373093 (E.B.); +34-669426548 (F.R.d.F.)
| | - Fernando Rodríguez de Fonseca
- Laboratorio de Medicina Regenerativa, Unidad de Gestión Clínica de Salud Mental, Instituto de Investigación Biomédica de Málaga-IBIMA, Hospital Regional Universitario de Málaga, 29010 Málaga, Spain; (J.A.N.); (J.D.); (D.M.-V.); (R.T.); (A.J.L.-G.); (J.S.); (F.J.P.); (A.S.); (M.d.C.)
- Correspondence: (E.B.); (F.R.d.F.); Tel.: +34-655373093 (E.B.); +34-669426548 (F.R.d.F.)
| |
Collapse
|
34
|
Medina-Vera D, Navarro JA, Rivera P, Rosell-Valle C, Gutiérrez-Adán A, Sanjuan C, López-Gambero AJ, Tovar R, Suárez J, Pavón FJ, Baixeras E, Decara J, Rodríguez de Fonseca F. d-Pinitol promotes tau dephosphorylation through a cyclin-dependent kinase 5 regulation mechanism: A new potential approach for tauopathies? Br J Pharmacol 2022; 179:4655-4672. [PMID: 35760415 PMCID: PMC9544772 DOI: 10.1111/bph.15907] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 03/28/2022] [Accepted: 04/21/2022] [Indexed: 12/30/2022] Open
Abstract
Background and Purpose Recent evidence links brain insulin resistance with neurodegenerative diseases, where hyperphosphorylated tau protein contributes to neuronal cell death. In the present study, we aimed to evaluate if d‐pinitol inositol, which acts as an insulin sensitizer, affects the phosphorylation status of tau protein. Experimental Approach We studied the pharmacological effect of d‐pinitol on insulin signalling and tau phosphorylation in the hippocampus of Wistar and Zucker rats. To this end, we evaluated by western blotting the Akt pathway and its downstream proteins as being one of the main insulin‐mediator pathways. Also, we explored the functional status of additional kinases phosphorylating tau, including PKA, ERK1/2, AMPK and CDK5. We utilized the 3xTg mouse model as a control for tauopathy, since it carries tau mutations that promote phosphorylation and aggregation. Key Results Surprisingly, we discovered that oral d‐pinitol treatment lowered tau phosphorylation significantly, but not through the expected kinase GSK‐3 regulation. An extensive search for additional kinases phosphorylating tau revealed that this effect was mediated through a mechanism dependent on the reduction of the activity of the CDK5, affecting both its p35 and p25 subunits. This effect disappeared in leptin‐deficient Zucker rats, uncovering that the association of leptin deficiency, obesity, dyslipidaemia and hyperinsulinaemia abrogates d‐pinitol actions on tau phosphorylation. The 3xTg mice confirmed d‐pinitol effectiveness in a genetic AD‐tauopathy. Conclusion and Implications The present findings suggest that d‐pinitol, by regulating CDK5 activity through a decrease of CDK5R1, is a potential drug for developing treatments for neurological disorders such as tauopathies.
Collapse
Affiliation(s)
- Dina Medina-Vera
- Instituto de Investigación Biomédica de Málaga-IBIMA, Hospital Universitario Regional de Málaga, UGC Salud Mental, Málaga, Spain.,Facultad de Ciencias, Universidad de Málaga, Málaga, Spain.,Facultad de Medicina, Universidad de Málaga, Málaga, Spain.,Instituto de Investigación Biomédica de Málaga-IBIMA and CIBER Enfermedades Cardiovasculares (CIBERCV), Hospital Universitario Virgen de la Victoria, UGC del Corazón, Málaga, Spain
| | - Juan Antonio Navarro
- Instituto de Investigación Biomédica de Málaga-IBIMA, Hospital Universitario Regional de Málaga, UGC Salud Mental, Málaga, Spain.,Facultad de Medicina, Universidad de Málaga, Málaga, Spain
| | - Patricia Rivera
- Instituto de Investigación Biomédica de Málaga-IBIMA, Hospital Universitario Regional de Málaga, UGC Salud Mental, Málaga, Spain
| | - Cristina Rosell-Valle
- Instituto de Investigación Biomédica de Málaga-IBIMA, Hospital Universitario Regional de Málaga, UGC Salud Mental, Málaga, Spain
| | - Alfonso Gutiérrez-Adán
- Departamento de Reproducción Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Madrid, Spain
| | - Carlos Sanjuan
- Euronutra S.L., Parque Tecnológico de Andalucía, Málaga, Spain
| | - Antonio Jesús López-Gambero
- Instituto de Investigación Biomédica de Málaga-IBIMA, Hospital Universitario Regional de Málaga, UGC Salud Mental, Málaga, Spain.,Facultad de Ciencias, Universidad de Málaga, Málaga, Spain
| | - Rubén Tovar
- Instituto de Investigación Biomédica de Málaga-IBIMA, Hospital Universitario Regional de Málaga, UGC Salud Mental, Málaga, Spain.,Facultad de Medicina, Universidad de Málaga, Málaga, Spain
| | - Juan Suárez
- Instituto de Investigación Biomédica de Málaga-IBIMA, Hospital Universitario Regional de Málaga, UGC Salud Mental, Málaga, Spain.,Departamento de Anatomía Humana, Medicina Legal e Historia de la Ciencia, Universidad de Málaga, Málaga, Spain
| | - Francisco Javier Pavón
- Instituto de Investigación Biomédica de Málaga-IBIMA, Hospital Universitario Regional de Málaga, UGC Salud Mental, Málaga, Spain.,Instituto de Investigación Biomédica de Málaga-IBIMA and CIBER Enfermedades Cardiovasculares (CIBERCV), Hospital Universitario Virgen de la Victoria, UGC del Corazón, Málaga, Spain
| | - Elena Baixeras
- Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad de Málaga, Málaga, Spain
| | - Juan Decara
- Instituto de Investigación Biomédica de Málaga-IBIMA, Hospital Universitario Regional de Málaga, UGC Salud Mental, Málaga, Spain
| | - Fernando Rodríguez de Fonseca
- Instituto de Investigación Biomédica de Málaga-IBIMA, Hospital Universitario Regional de Málaga, UGC Salud Mental, Málaga, Spain
| |
Collapse
|
35
|
Zhang Q, Wang X, Luo H, Wang Y, Wang Y, Tu T, Qin X, Su X, Huang H, Yao B, Bai Y, Zhang J. Metabolic engineering of Pichia pastoris for myo-inositol production by dynamic regulation of central metabolism. Microb Cell Fact 2022; 21:112. [PMID: 35659241 PMCID: PMC9166411 DOI: 10.1186/s12934-022-01837-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Accepted: 05/25/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The methylotrophic budding yeast Pichia pastoris GS115 is a powerful expression system and hundreds of heterologous proteins have been successfully expressed in this strain. Recently, P. pastoris has also been exploited as an attractive cell factory for the production of high-value biochemicals due to Generally Recognized as Safe (GRAS) status and high growth rate of this yeast strain. However, appropriate regulation of metabolic flux distribution between cell growth and product biosynthesis is still a cumbersome task for achieving efficient biochemical production. RESULTS In this study, P. pastoris was exploited for high inositol production using an effective dynamic regulation strategy. Through enhancing native inositol biosynthesis pathway, knocking out inositol transporters, and slowing down carbon flux of glycolysis, an inositol-producing mutant was successfully developed and low inositol production of 0.71 g/L was obtained. The inositol production was further improved by 12.7% through introduction of heterologous inositol-3-phosphate synthase (IPS) and inositol monophosphatase (IMP) which catalyzed the rate-limiting steps for inositol biosynthesis. To control metabolic flux distribution between cell growth and inositol production, the promoters of glucose-6-phosphate dehydrogenase (ZWF), glucose-6-phosphate isomerase (PGI) and 6-phosphofructokinase (PFK1) genes were replaced with a glycerol inducible promoter. Consequently, the mutant strain could be switched from growth mode to production mode by supplementing glycerol and glucose sequentially, leading to an increase of about 4.9-fold in inositol formation. Ultimately, the dissolved oxygen condition in high-cell-density fermentation was optimized, resulting in a high production of 30.71 g/L inositol (~ 40-fold higher than the baseline strain). CONCLUSIONS The GRAS P. pastoris was engineered as an efficient inositol producer for the first time. Dynamic regulation of cell growth and inositol production was achieved via substrate-dependent modulation of glycolysis and pentose phosphate pathways and the highest inositol titer reported to date by a yeast cell factory was obtained. Results from this study provide valuable guidance for engineering of P. pastoris for the production of other high-value bioproducts.
Collapse
Affiliation(s)
- Qiquan Zhang
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, No.2 Yuanmingyuan West Road, Haidian district, Beijing, 100193, China
| | - Xiaolu Wang
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, No.2 Yuanmingyuan West Road, Haidian district, Beijing, 100193, China
| | - Huiying Luo
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, No.2 Yuanmingyuan West Road, Haidian district, Beijing, 100193, China
| | - Yaru Wang
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, No.2 Yuanmingyuan West Road, Haidian district, Beijing, 100193, China
| | - Yuan Wang
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, No.2 Yuanmingyuan West Road, Haidian district, Beijing, 100193, China
| | - Tao Tu
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, No.2 Yuanmingyuan West Road, Haidian district, Beijing, 100193, China
| | - Xing Qin
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, No.2 Yuanmingyuan West Road, Haidian district, Beijing, 100193, China
| | - Xiaoyun Su
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, No.2 Yuanmingyuan West Road, Haidian district, Beijing, 100193, China
| | - Huoqing Huang
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, No.2 Yuanmingyuan West Road, Haidian district, Beijing, 100193, China
| | - Bin Yao
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, No.2 Yuanmingyuan West Road, Haidian district, Beijing, 100193, China
| | - Yingguo Bai
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, No.2 Yuanmingyuan West Road, Haidian district, Beijing, 100193, China.
| | - Jie Zhang
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, No.2 Yuanmingyuan West Road, Haidian district, Beijing, 100193, China.
| |
Collapse
|
36
|
López-Gambero AJ, Pacheco-Sánchez B, Rosell-Valle C, Medina-Vera D, Navarro JA, Fernández-Arjona MDM, de Ceglia M, Sanjuan C, Simon V, Cota D, Rivera P, Rodríguez de Fonseca F, Suárez J. Dietary administration of D-chiro-inositol attenuates sex-specific metabolic imbalances in the 5xFAD mouse model of Alzheimer's disease. Biomed Pharmacother 2022; 150:112994. [PMID: 35483188 DOI: 10.1016/j.biopha.2022.112994] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 04/13/2022] [Accepted: 04/17/2022] [Indexed: 11/02/2022] Open
Abstract
Increasing evidence shows that hypothalamic dysfunction, insulin resistance, and weight loss precede and progress along with the cognitive decline in sporadic Alzheimer's Disease (AD) with sex differences. This study aimed to determine the effect of oral dietary administration of D-Chiro-inositol (DCI), an inositol used against insulin resistance associated with polycystic ovary, on the occurrence of metabolic disorders in the transgenic 5xFAD mouse model of AD (FAD: Family Alzheimer's Disease). DCI was administered from 6 to 10 months of age to male and female 5xFAD mice and control (non-Tg) littermates. Energy balance and multiple metabolic and inflammatory parameters in the hypothalamus, liver and plasma were evaluated to assess the central and peripheral effects of DCI. Results indicated that weight loss and reduced food intake in 5xFAD mice were associated with decreased neuropeptides controlling food intake and the appearance of a pro-inflammatory state in the hypothalamus. Oral administration of DCI partially restored energy balance and hypothalamic parameters, highlighting an increased expression of Npy and Agrp and female-specific downregulation of Gfap and Igf1. DCI also partially normalized impaired insulin signaling and circulating insulin, GLP-1, and GIP deficiencies in 5xFAD mice. Principal component analysis of metabolic parameters indicated the presence of a female-specific fatty liver in 5xFAD mice: DCI administration reversed hepatic fat accumulation, β-oxidation, inflammation and increased GOT and GPT levels. Our study depicts that metabolic impairment along with the cognitive decline in a mouse model of AD, which is exacerbated in females, can be ameliorated by oral supplementation with insulin-sensitizing DCI.
Collapse
Affiliation(s)
- Antonio J López-Gambero
- Instituto de investigación Biomédica de Málaga-IBIMA, 29010 Málaga, Spain; UGC Salud Mental, Hospital Regional Universitario de Málaga, 29010 Málaga, Spain; Universidad de Málaga, Andalucia Tech, Departamento de Biología Celular, Genética y Fisiología, Campus de Teatinos s/n, 29071 Málaga, Spain.
| | | | | | - Dina Medina-Vera
- Instituto de investigación Biomédica de Málaga-IBIMA, 29010 Málaga, Spain; Universidad de Málaga, Andalucia Tech, Departamento de Biología Celular, Genética y Fisiología, Campus de Teatinos s/n, 29071 Málaga, Spain; Universidad de Málaga, Andalucia Tech, Facultad de Medicina, Campus de Teatinos s/n, 29071 Málaga, Spain; UGC Corazón, Hospital Universitario Virgen de la Victoria, 29010 Málaga, Spain.
| | - Juan Antonio Navarro
- Instituto de investigación Biomédica de Málaga-IBIMA, 29010 Málaga, Spain; UGC Salud Mental, Hospital Regional Universitario de Málaga, 29010 Málaga, Spain; Universidad de Málaga, Andalucia Tech, Facultad de Medicina, Campus de Teatinos s/n, 29071 Málaga, Spain.
| | - María Del Mar Fernández-Arjona
- Instituto de investigación Biomédica de Málaga-IBIMA, 29010 Málaga, Spain; UGC Salud Mental, Hospital Regional Universitario de Málaga, 29010 Málaga, Spain.
| | - Marialuisa de Ceglia
- Instituto de investigación Biomédica de Málaga-IBIMA, 29010 Málaga, Spain; UGC Salud Mental, Hospital Regional Universitario de Málaga, 29010 Málaga, Spain.
| | - Carlos Sanjuan
- EURONUTRA S.L, Parque Tecnológico de Andalucía, Campanillas, 29590, Spain.
| | - Vincent Simon
- University of Bordeaux, INSERM, Neurocentre Magendie, U1215, 33000 Bordeaux, France.
| | - Daniela Cota
- University of Bordeaux, INSERM, Neurocentre Magendie, U1215, 33000 Bordeaux, France.
| | - Patricia Rivera
- Instituto de investigación Biomédica de Málaga-IBIMA, 29010 Málaga, Spain; UGC Salud Mental, Hospital Regional Universitario de Málaga, 29010 Málaga, Spain.
| | - Fernando Rodríguez de Fonseca
- Instituto de investigación Biomédica de Málaga-IBIMA, 29010 Málaga, Spain; UGC Salud Mental, Hospital Regional Universitario de Málaga, 29010 Málaga, Spain.
| | - Juan Suárez
- Instituto de investigación Biomédica de Málaga-IBIMA, 29010 Málaga, Spain; Universidad de Málaga, Andalucia Tech, Facultad de Medicina, Campus de Teatinos s/n, 29071 Málaga, Spain; Departamento de Anatomía Humana, Medicina Legal e Historia de la Ciencia, Universidad de Málaga, 29071 Málaga, Spain.
| |
Collapse
|
37
|
Safety aspects of natural food additives frequently used at their maximum levels in South Korea. Mol Cell Toxicol 2022. [DOI: 10.1007/s13273-021-00191-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
38
|
Azab A. D-Pinitol-Active Natural Product from Carob with Notable Insulin Regulation. Nutrients 2022; 14:nu14071453. [PMID: 35406064 PMCID: PMC9003036 DOI: 10.3390/nu14071453] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 03/28/2022] [Accepted: 03/29/2022] [Indexed: 02/06/2023] Open
Abstract
Carob is one of the major food trees for peoples of the Mediterranean basin, but it has also been traditionally used for medicinal purposes. Carob contains many nutrients and active natural products, and D-Pinitol is clearly one of the most important of these. D-Pinitol has been reported in dozens of scientific publications and its very diverse medicinal properties are still being studied. Presently, more than thirty medicinal activities of D-Pinitol have been reported. Among these, many publications have reported the strong activities of D-Pinitol as a natural antidiabetic and insulin regulator, but also as an active anti-Alzheimer, anticancer, antioxidant, and anti-inflammatory, and is also immune- and hepato-protective. In this review, we will present a brief introduction of the nutritional and medicinal importance of Carob, both traditionally and as found by modern research. In the introduction, we will present Carob’s major active natural products. The structures of inositols will be presented with a brief literature summary of their medicinal activities, with special attention to those inositols in Carob, as well as D-Pinitol’s chemical structure and its medicinal and other properties. D-Pinitol antidiabetic and insulin regulation activities will be extensively presented, including its proposed mechanism of action. Finally, a discussion followed by the conclusions and future vision will summarize this article.
Collapse
|
39
|
Siracusa L, Napoli E, Ruberto G. Novel Chemical and Biological Insights of Inositol Derivatives in Mediterranean Plants. Molecules 2022; 27:1525. [PMID: 35268625 PMCID: PMC8912080 DOI: 10.3390/molecules27051525] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 02/17/2022] [Accepted: 02/22/2022] [Indexed: 12/12/2022] Open
Abstract
Inositols (Ins) are natural compounds largely widespread in plants and animals. Bio-sinthetically they derive from sugars, possessing a molecular structure very similar to the simple sugars, and this aspect concurs to define them as primary metabolites, even though it is much more correct to place them at the boundary between primary and secondary metabolites. This dichotomy is well represented by the fact that as primary metabolites they are essential cellular components in the form of phospholipid derivatives, while as secondary metabolites they are involved in a plethora of signaling pathways playing an important role in the surviving of living organisms. myo-Inositol is the most important and widespread compound of this family, it derives directly from d-glucose, and all known inositols, including stereoisomers and derivatives, are the results of metabolic processes on this unique molecule. In this review, we report the new insights of these compounds and their derivatives concerning their occurrence in Nature with a particular emphasis on the plant of the Mediterranean area, as well as the new developments about their biological effectiveness.
Collapse
Affiliation(s)
| | | | - Giuseppe Ruberto
- Istituto di Chimica Biomolecolare, Consiglio Nazionale delle Ricerche, Via Paolo Gaifami 18, 95126 Catania, Italy; (L.S.); (E.N.)
| |
Collapse
|
40
|
Płonka J, Szablińska-Piernik J, Buszewski B, Baranowska I, Lahuta LB. Analyses of Antioxidative Properties of Selected Cyclitols and Their Mixtures with Flavanones and Glutathione. Molecules 2021; 27:158. [PMID: 35011390 PMCID: PMC8746988 DOI: 10.3390/molecules27010158] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 12/23/2021] [Accepted: 12/26/2021] [Indexed: 12/20/2022] Open
Abstract
The conditions for determining the antioxidant properties of cyclitols (d-pinitol, l-quebrachitol, myo-, l-chiro-, and d-chiro-inositol), selected flavanones (hesperetin, naringenin, eriodictyol, and liquiritigenin) and glutathione by spectrophotometric methods-CUPRAC and with DPPH radical, and by a chromatographic method DPPH-UHPLC-UV, have been identified. Interactions of the tested compounds and their impact on the ox-red properties were investigated. The RSA (%) of the compounds tested was determined. Very low antioxidative properties of cyclitols, compared with flavanones and glutathione alone, were revealed. However, a significant increase in the determined antioxidative properties of glutathione by methyl-ether derivatives of cyclitols (d-pinitol and l-quebrachitol) was demonstrated for the first time. Thus, cyclitols seem to be a good candidate for creating drugs for the treatment of many diseases associated with reactive oxygen species (ROS) generation.
Collapse
Affiliation(s)
- Joanna Płonka
- Department of Inorganic Chemistry, Analytical Chemistry and Electrochemistry, Faculty of Chemistry, Silesian University of Technology, B. Krzywoustego 6, 44-100 Gliwice, Poland; (J.P.); (I.B.)
| | - Joanna Szablińska-Piernik
- Department of Plant Physiology, Genetics and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A/103A, 10-719 Olsztyn, Poland;
| | - Bogusław Buszewski
- Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University, Gagarina 7, 87-100 Toruń, Poland;
- Interdisciplinary Centre of Modern Technologies, Nicolaus Copernicus University, Wileńska 4, 87-100 Toruń, Poland
| | - Irena Baranowska
- Department of Inorganic Chemistry, Analytical Chemistry and Electrochemistry, Faculty of Chemistry, Silesian University of Technology, B. Krzywoustego 6, 44-100 Gliwice, Poland; (J.P.); (I.B.)
| | - Lesław B. Lahuta
- Department of Plant Physiology, Genetics and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A/103A, 10-719 Olsztyn, Poland;
| |
Collapse
|
41
|
Gambioli R, Montanino Oliva M, Nordio M, Chiefari A, Puliani G, Unfer V. New Insights into the Activities of D-Chiro-Inositol: A Narrative Review. Biomedicines 2021; 9:biomedicines9101378. [PMID: 34680494 PMCID: PMC8533370 DOI: 10.3390/biomedicines9101378] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 09/29/2021] [Accepted: 09/30/2021] [Indexed: 12/14/2022] Open
Abstract
D-chiro-inositol (DCI) is a natural compound detectable in cell membranes, which is highly conserved as a biological signaling molecule. In mammals, its function is primarily characterized in the intracellular transduction cascade of insulin. In particular, insulin signal promotes the release of pivotal DCI-containing molecules. In fact, impaired release of DCI is a common feature of insulin-resistant tissues, and insulin-sensitizing pharmaceuticals induce higher concentrations of free DCI. Moreover, it also plays important roles in several other processes. DCI is involved in the regulation of steroidogenesis, due to its regulatory effects on steroidogenic enzymes, including 17α-hydroxylase, 3β-hydroxysteroid dehydrogenase, and aromatase. Such regulation of various enzymes indicates a mechanism by which the body regulates different processes via a single molecule, depending on its concentration. DCI also reduces the expression of integrin β3, which is an adhesion molecule involved in embryo implantation and cellular phenomena such as survival, stemness, and invasiveness. In addition, DCI seems to have important anti-inflammatory activities, like its 3-O-methyl-ether, called pinitol. In vitro evidence demonstrates that treatment with both compounds induces a reduction in pro-inflammatory factors—such as Nf-κB—and cytokines—such as TNF-α. DCI then plays important roles in several fundamental processes in physiology. Therefore, research on such molecule is of primary importance.
Collapse
Affiliation(s)
| | - Mario Montanino Oliva
- The Experts Group on Inositol in Basic and Clinical Research (EGOI), 00161 Rome, Italy; (M.M.O.); (M.N.)
- Department of Obstetrics and Gynecology, Santo Spirito Hospital, 00193 Rome, Italy
| | - Maurizio Nordio
- The Experts Group on Inositol in Basic and Clinical Research (EGOI), 00161 Rome, Italy; (M.M.O.); (M.N.)
- Department of Experimental Medicine, Sapienza University, 00185 Rome, Italy
| | - Alfonsina Chiefari
- Oncological Endocrinology Unit, IRCCS Regina Elena National Cancer Institute, 00144 Rome, Italy; (A.C.); (G.P.)
| | - Giulia Puliani
- Oncological Endocrinology Unit, IRCCS Regina Elena National Cancer Institute, 00144 Rome, Italy; (A.C.); (G.P.)
| | - Vittorio Unfer
- The Experts Group on Inositol in Basic and Clinical Research (EGOI), 00161 Rome, Italy; (M.M.O.); (M.N.)
- System Biology Group Lab, 00161 Rome, Italy
- Correspondence:
| |
Collapse
|
42
|
Chan HJ, Yanshree, Roy J, Tipoe GL, Fung ML, Lim LW. Therapeutic Potential of Human Stem Cell Implantation in Alzheimer's Disease. Int J Mol Sci 2021; 22:10151. [PMID: 34576314 PMCID: PMC8471075 DOI: 10.3390/ijms221810151] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 09/14/2021] [Accepted: 09/15/2021] [Indexed: 12/27/2022] Open
Abstract
Alzheimer's disease (AD) is a progressive debilitating neurodegenerative disease and the most common form of dementia in the older population. At present, there is no definitive effective treatment for AD. Therefore, researchers are now looking at stem cell therapy as a possible treatment for AD, but whether stem cells are safe and effective in humans is still not clear. In this narrative review, we discuss both preclinical studies and clinical trials on the therapeutic potential of human stem cells in AD. Preclinical studies have successfully differentiated stem cells into neurons in vitro, indicating the potential viability of stem cell therapy in neurodegenerative diseases. Preclinical studies have also shown that stem cell therapy is safe and effective in improving cognitive performance in animal models, as demonstrated in the Morris water maze test and novel object recognition test. Although few clinical trials have been completed and many trials are still in phase I and II, the initial results confirm the outcomes of the preclinical studies. However, limitations like rejection, tumorigenicity, and ethical issues are still barriers to the advancement of stem cell therapy. In conclusion, the use of stem cells in the treatment of AD shows promise in terms of effectiveness and safety.
Collapse
Affiliation(s)
| | | | | | | | | | - Lee Wei Lim
- School of Biomedical, Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China; (H.J.C.); (Y.); (J.R.); (G.L.T.); (M.-L.F.)
| |
Collapse
|
43
|
Medina-Vera D, Navarro JA, Tovar R, Rosell-Valle C, Gutiérrez-Adan A, Ledesma JC, Sanjuan C, Pavón FJ, Baixeras E, Rodríguez de Fonseca F, Decara J. Activation of PI3K/Akt Signaling Pathway in Rat Hypothalamus Induced by an Acute Oral Administration of D-Pinitol. Nutrients 2021; 13:2268. [PMID: 34209137 PMCID: PMC8308282 DOI: 10.3390/nu13072268] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 06/23/2021] [Accepted: 06/25/2021] [Indexed: 12/12/2022] Open
Abstract
D-Pinitol (DPIN) is a natural occurring inositol capable of activating the insulin pathway in peripheral tissues, whereas this has not been thoroughly studied in the central nervous system. The present study assessed the potential regulatory effects of DPIN on the hypothalamic insulin signaling pathway. To this end we investigated the Phosphatidylinositol-3-kinase (PI3K)/Protein Kinase B (Akt) signaling cascade in a rat model following oral administration of DPIN. The PI3K/Akt-associated proteins were quantified by Western blot in terms of phosphorylation and total expression. Results indicate that the acute administration of DPIN induced time-dependent phosphorylation of PI3K/Akt and its related substrates within the hypothalamus, indicating an activation of the insulin signaling pathway. This profile is consistent with DPIN as an insulin sensitizer since we also found a decrease in the circulating concentration of this hormone. Overall, the present study shows the pharmacological action of DPIN in the hypothalamus through the PI3K/Akt pathway when giving in fasted animals. These findings suggest that DPIN might be a candidate to treat brain insulin-resistance associated disorders by activating insulin response beyond the insulin receptor.
Collapse
Affiliation(s)
- Dina Medina-Vera
- Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Universitario Regional de Málaga, UGC Salud Mental, Avda. Carlos Haya 82, Pabellón de Gobierno, 29010 Málaga, Spain; (D.M.-V.); (J.A.N.); (R.T.); (C.R.-V.); (J.C.L.); (F.J.P.)
- Facultad de Ciencias, Universidad de Málaga, 29010 Málaga, Spain
- Facultad de Medicina, Universidad de Málaga, 29010 Málaga, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), UGC del Corazón, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Universitario Virgen de la Victoria, Universidad de Málaga, 29010 Málaga, Spain
| | - Juan Antonio Navarro
- Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Universitario Regional de Málaga, UGC Salud Mental, Avda. Carlos Haya 82, Pabellón de Gobierno, 29010 Málaga, Spain; (D.M.-V.); (J.A.N.); (R.T.); (C.R.-V.); (J.C.L.); (F.J.P.)
- Facultad de Medicina, Universidad de Málaga, 29010 Málaga, Spain
| | - Rubén Tovar
- Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Universitario Regional de Málaga, UGC Salud Mental, Avda. Carlos Haya 82, Pabellón de Gobierno, 29010 Málaga, Spain; (D.M.-V.); (J.A.N.); (R.T.); (C.R.-V.); (J.C.L.); (F.J.P.)
- Facultad de Medicina, Universidad de Málaga, 29010 Málaga, Spain
| | - Cristina Rosell-Valle
- Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Universitario Regional de Málaga, UGC Salud Mental, Avda. Carlos Haya 82, Pabellón de Gobierno, 29010 Málaga, Spain; (D.M.-V.); (J.A.N.); (R.T.); (C.R.-V.); (J.C.L.); (F.J.P.)
| | - Alfonso Gutiérrez-Adan
- Departamento de Reproducción Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, 28040 Madrid, Spain;
| | - Juan Carlos Ledesma
- Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Universitario Regional de Málaga, UGC Salud Mental, Avda. Carlos Haya 82, Pabellón de Gobierno, 29010 Málaga, Spain; (D.M.-V.); (J.A.N.); (R.T.); (C.R.-V.); (J.C.L.); (F.J.P.)
| | - Carlos Sanjuan
- Euronutra S.L. Calle Johannes Kepler, 3, 29590 Málaga, Spain;
| | - Francisco Javier Pavón
- Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Universitario Regional de Málaga, UGC Salud Mental, Avda. Carlos Haya 82, Pabellón de Gobierno, 29010 Málaga, Spain; (D.M.-V.); (J.A.N.); (R.T.); (C.R.-V.); (J.C.L.); (F.J.P.)
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), UGC del Corazón, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Universitario Virgen de la Victoria, Universidad de Málaga, 29010 Málaga, Spain
| | - Elena Baixeras
- Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad de Málaga, 29010 Málaga, Spain;
| | - Fernando Rodríguez de Fonseca
- Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Universitario Regional de Málaga, UGC Salud Mental, Avda. Carlos Haya 82, Pabellón de Gobierno, 29010 Málaga, Spain; (D.M.-V.); (J.A.N.); (R.T.); (C.R.-V.); (J.C.L.); (F.J.P.)
| | - Juan Decara
- Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Universitario Regional de Málaga, UGC Salud Mental, Avda. Carlos Haya 82, Pabellón de Gobierno, 29010 Málaga, Spain; (D.M.-V.); (J.A.N.); (R.T.); (C.R.-V.); (J.C.L.); (F.J.P.)
| |
Collapse
|
44
|
Wee Y, Yang C, Chen S, Yen Y, Wang C. Inositol hexaphosphate modulates the behavior of macrophages through alteration of gene expression involved in pathways of pro- and anti-inflammatory responses, and resolution of inflammation pathways. Food Sci Nutr 2021; 9:3240-3249. [PMID: 34136188 PMCID: PMC8194914 DOI: 10.1002/fsn3.2286] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 03/13/2021] [Accepted: 03/25/2021] [Indexed: 12/19/2022] Open
Abstract
Inositol hexaphosphate (IP6) is a dietary compound commonly obtained from corn, rice, etc. Although we may consume significant amount of IP6 daily, it is unclear whether this diet will impact macrophages' fate and function. Therefore, we characterized the underlying relationship between IP6 and macrophage polarization in this study. We specifically examined the signature gene expression profiles associated with pro- and anti-inflammatory responses, and resolution of inflammation pathways in macrophages under the influence of IP6. Interestingly, our data suggested that IP6 polarizes bone marrow-derived macrophages (BMDM) into an M2a-like subtype. Our results also demonstrated that IP6 reduces lipopolysaccharide-induced apoptosis and pro-inflammatory responses in macrophages. In contrast, the expression levels of genes related to anti-inflammatory responses and resolution of inflammation pathways are upregulated. Our findings collectively demonstrated that IP6 has profound modulation effects on macrophages, which warrant further research on the therapeutic benefits of IP6 for inflammatory diseases.
Collapse
Affiliation(s)
- Yinshen Wee
- Department of PathologyUniversity of UtahSalt Lake CityUTUSA
| | | | - Shau‐Kwaun Chen
- Institute of NeuroscienceNational Chengchi UniversityTaipeiTaiwan
| | - Yu‐Chun Yen
- Biostatistics CenterOffice of Data ScienceTaipei Medical UniversityTaipeiTaiwan
| | - Ching‐Shuen Wang
- School of DentistryCollege of Oral MedicineTaipei Medical UniversityTaipeiTaiwan
| |
Collapse
|
45
|
A Negative Energy Balance Is Associated with Metabolic Dysfunctions in the Hypothalamus of a Humanized Preclinical Model of Alzheimer's Disease, the 5XFAD Mouse. Int J Mol Sci 2021; 22:ijms22105365. [PMID: 34065168 PMCID: PMC8161294 DOI: 10.3390/ijms22105365] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/15/2021] [Accepted: 05/16/2021] [Indexed: 12/19/2022] Open
Abstract
Increasing evidence links metabolic disorders with neurodegenerative processes including Alzheimer’s disease (AD). Late AD is associated with amyloid (Aβ) plaque accumulation, neuroinflammation, and central insulin resistance. Here, a humanized AD model, the 5xFAD mouse model, was used to further explore food intake, energy expenditure, neuroinflammation, and neuroendocrine signaling in the hypothalamus. Experiments were performed on 6-month-old male and female full transgenic (Tg5xFAD/5xFAD), heterozygous (Tg5xFAD/-), and non-transgenic (Non-Tg) littermates. Although histological analysis showed absence of Aβ plaques in the hypothalamus of 5xFAD mice, this brain region displayed increased protein levels of GFAP and IBA1 in both Tg5xFAD/- and Tg5xFAD/5xFAD mice and increased expression of IL-1β in Tg5xFAD/5xFAD mice, suggesting neuroinflammation. This condition was accompanied by decreased body weight, food intake, and energy expenditure in both Tg5xFAD/- and Tg5xFAD/5xFAD mice. Negative energy balance was associated with altered circulating levels of insulin, GLP-1, GIP, ghrelin, and resistin; decreased insulin and leptin hypothalamic signaling; dysregulation in main metabolic sensors (phosphorylated IRS1, STAT5, AMPK, mTOR, ERK2); and neuropeptides controlling energy balance (NPY, AgRP, orexin, MCH). These results suggest that glial activation and metabolic dysfunctions in the hypothalamus of a mouse model of AD likely result in negative energy balance, which may contribute to AD pathogenesis development.
Collapse
|
46
|
Editorial of Special Issue "Crosstalk between Depression, Anxiety, and Dementia: Comorbidity in Behavioral Neurology and Neuropsychiatry". Biomedicines 2021; 9:biomedicines9050517. [PMID: 34066395 PMCID: PMC8148149 DOI: 10.3390/biomedicines9050517] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 04/18/2021] [Indexed: 12/11/2022] Open
|
47
|
Balogh L, Tanaka M, Török N, Vécsei L, Taguchi S. Crosstalk between Existential Phenomenological Psychotherapy and Neurological Sciences in Mood and Anxiety Disorders. Biomedicines 2021; 9:biomedicines9040340. [PMID: 33801765 PMCID: PMC8066576 DOI: 10.3390/biomedicines9040340] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 03/24/2021] [Accepted: 03/25/2021] [Indexed: 02/07/2023] Open
Abstract
Psychotherapy is a comprehensive biological treatment modifying complex underlying cognitive, emotional, behavioral, and regulatory responses in the brain, leading patients with mental illness to a new interpretation of the sense of self and others. Psychotherapy is an art of science integrated with psychology and/or philosophy. Neurological sciences study the neurological basis of cognition, memory, and behavior as well as the impact of neurological damage and disease on these functions, and their treatment. Both psychotherapy and neurological sciences deal with the brain; nevertheless, they continue to stay polarized. Existential phenomenological psychotherapy (EPP) has been in the forefront of meaning-centered counseling for almost a century. The phenomenological approach in psychotherapy originated in the works of Martin Heidegger, Ludwig Binswanger, Medard Boss, and Viktor Frankl, and it has been committed to accounting for the existential possibilities and limitations of one's life. EPP provides philosophically rich interpretations and empowers counseling techniques to assist mentally suffering individuals by finding meaning and purpose to life. The approach has proven to be effective in treating mood and anxiety disorders. This narrative review article demonstrates the development of EPP, the therapeutic methodology, evidence-based accounts of its curative techniques, current understanding of mood and anxiety disorders in neurological sciences, and a possible converging path to translate and integrate meaning-centered psychotherapy and neuroscience, concluding that the EPP may potentially play a synergistic role with the currently prevailing medication-based approaches for the treatment of mood and anxiety disorders.
Collapse
Affiliation(s)
- Lehel Balogh
- Center for Applied Ethics and Philosophy, Hokkaido University, North 10, West 7, Kita-ku, Sapporo 060-0810, Japan
- Correspondence: ; Tel.: +81-80-8906-4263
| | - Masaru Tanaka
- MTA-SZTE, Neuroscience Research Group, Semmelweis u. 6, H-6725 Szeged, Hungary; (M.T.); (N.T.); (L.V.)
- Department of Neurology, Interdisciplinary Excellence Centre, Faculty of Medicine, University of Szeged, Semmelweis u. 6, H-6725 Szeged, Hungary
| | - Nóra Török
- MTA-SZTE, Neuroscience Research Group, Semmelweis u. 6, H-6725 Szeged, Hungary; (M.T.); (N.T.); (L.V.)
- Department of Neurology, Interdisciplinary Excellence Centre, Faculty of Medicine, University of Szeged, Semmelweis u. 6, H-6725 Szeged, Hungary
| | - László Vécsei
- MTA-SZTE, Neuroscience Research Group, Semmelweis u. 6, H-6725 Szeged, Hungary; (M.T.); (N.T.); (L.V.)
- Department of Neurology, Interdisciplinary Excellence Centre, Faculty of Medicine, University of Szeged, Semmelweis u. 6, H-6725 Szeged, Hungary
| | - Shigeru Taguchi
- Faculty of Humanities and Human Sciences & Center for Human Nature, Artificial Intelligence, and Neuroscience (CHAIN), Hokkaido University, Kita 12, Nishi 7, Kita-ku, Sapporo 060-0812, Japan;
| |
Collapse
|
48
|
Liu W, Guo P, Dai T, Shi X, Shen G, Feng J. Metabolic Interactions and Differences between Coronary Heart Disease and Diabetes Mellitus: A Pilot Study on Biomarker Determination and Pathogenesis. J Proteome Res 2021; 20:2364-2373. [PMID: 33751888 DOI: 10.1021/acs.jproteome.0c00879] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Comprehensive understanding of plasma metabotype of diabetes mellitus (DM), coronary heart disease (CHD), and especially diabetes mellitus with coronary heart disease (CHDDM) is still lacking. In this work, the plasma metabolic differences and links of DM, CHD, and CHDDM patients were investigated by the strategy of comparative metabolomics based on 1H NMR spectroscopy combined with network analysis for revealing their metabolic differences. A total of 17 metabolites are related to three diseases, among which valine, alanine, leucine, isoleucine, and N-acetyl-glycoprotein are positively correlated with CHD and CHDDM (odds ratios (OR) > 1). The trimethylamine oxide, glycerol, lactose, indoleacetate, and scyllo-inositol are closely related to the development of DM to CHDDM (OR > 1), and indoleactate (OR: 1.06, 95% confidence interval (CI): 1.01-1.12) and lactose (OR: 2.46, 95% CI: 1.67-3.25) are particularly prominent in CHDDM. We identified three multi-biomarkers types that were significantly associated with glycosylated hemoglobin (HbA1C) at baseline. All diseases demonstrated dysregulated glycolysis/gluconeogenesis and amino acid biosynthesis pathway. In addition, enrichment in tryptophan metabolism observed in CHDDM, enrichment in inositol phosphate metabolism observed in DM, and the metabolites related to microbiota metabolism were dysregulated in both DM and CHDDM. The comparative metabolomics strategy of multi-diseases offers a new perspective in disease-specific markers and pathogenic pathways.
Collapse
Affiliation(s)
- Wuping Liu
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Xiamen University, Xiamen 361005, China
| | - Pengfei Guo
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Xiamen University, Xiamen 361005, China
| | - Tao Dai
- Third Affiliated Hospital, Henan University of Science and Technology, Luoyang 471003, China
| | - Xiulin Shi
- The Xiamen Diabetes Institute and Department of Endocrinology and Diabetes, the First Affiliated Hospital of Xiamen University, Xiamen 361003, China
| | - Guiping Shen
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Xiamen University, Xiamen 361005, China
| | - Jianghua Feng
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Xiamen University, Xiamen 361005, China
| |
Collapse
|
49
|
Purton T, Staskova L, Lane MM, Dawson SL, West M, Firth J, Clarke G, Cryan JF, Berk M, O'Neil A, Dean O, Hadi A, Honan C, Marx W. Prebiotic and probiotic supplementation and the tryptophan-kynurenine pathway: A systematic review and meta analysis. Neurosci Biobehav Rev 2021; 123:1-13. [PMID: 33482244 DOI: 10.1016/j.neubiorev.2020.12.026] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 12/18/2020] [Accepted: 12/19/2020] [Indexed: 12/20/2022]
Abstract
This systematic review aimed to synthesise the results from studies investigating the effects of prebiotics and probiotics on kynurenine pathway metabolism. Thirteen studies were identified for inclusion, comprising 12 probiotic and two prebiotic arms. Participants included healthy individuals and individuals with various clinical conditions. Twelve metabolites were examined across the studies, using a range of biological samples. Across all interventions, 11 reported an effect on ≤ metabolite. Although limited by clinical and methodological heterogeneity, pooled analysis (n = 253) found probiotics to significantly affect serum kynurenine (g = 0.315, CI = 0.070 to 0.560, p = 0.012, 4 studies, I2 = 0%) and the kynurenine:tryptophan ratio (g = 0.442, CI = 0.074 to 0.810, p = 0.018, 4 studies, I2 = 42 %). Risk of bias across the studies was generally low. The results provide preliminary evidence that probiotics can modulate kynurenine pathway metabolism, with less evidence available regarding prebiotics. Future studies which further consider methodological confounds and sample characteristics are required, to establish intervention efficacy. PROSPERO registration #CRD42019154677.
Collapse
Affiliation(s)
- Terry Purton
- School of Psychological Sciences, College of Health and Medicine, University of Tasmania, Locked Bag 1342, Launceston, Tasmania, 7250, Australia.
| | - Lada Staskova
- Murdoch Children's Research Institute, Royal Children's Hospital, Environmental & Genetic Epidemiology Research, Parkville, Australia; RMIT University, School of Science, Melbourne, Australia; Florey Institute for Neuroscience and Mental Health, Parkville, Australia
| | - Melissa M Lane
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia
| | - Samantha L Dawson
- Murdoch Children's Research Institute, Royal Children's Hospital, Environmental & Genetic Epidemiology Research, Parkville, Australia; Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia
| | - Madeline West
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia
| | - Joseph Firth
- Division of Psychology and Mental Health, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK; NICM Health Research Institute, Western Sydney University, Westmead, Australia
| | - Gerard Clarke
- Department of Psychiatry and Neurobehavioural Science, and APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - John F Cryan
- Department of Anatomy and Neuroscience, and APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Michael Berk
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia; Orygen, The National Centre of Excellence in Youth Mental Health, Centre for Youth Mental Health, and the Department of Psychiatry, The University of Melbourne, Melbourne, Australia; Florey Institute for Neuroscience and Mental Health, Parkville, Australia
| | - Adrienne O'Neil
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia
| | - Olivia Dean
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia; Florey Institute for Neuroscience and Mental Health, Parkville, Australia
| | - Amir Hadi
- Halal Research Center of IRI, FDA, Tehran, Iran
| | - Cynthia Honan
- School of Psychological Sciences, College of Health and Medicine, University of Tasmania, Locked Bag 1342, Launceston, Tasmania, 7250, Australia
| | - Wolfgang Marx
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia
| |
Collapse
|
50
|
Mitochondria, Oxidative Stress, cAMP Signalling and Apoptosis: A Crossroads in Lymphocytes of Multiple Sclerosis, a Possible Role of Nutraceutics. Antioxidants (Basel) 2020; 10:antiox10010021. [PMID: 33379309 PMCID: PMC7823468 DOI: 10.3390/antiox10010021] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 12/13/2020] [Accepted: 12/15/2020] [Indexed: 12/11/2022] Open
Abstract
Multiple sclerosis (MS) is a complex inflammatory and neurodegenerative chronic disease that involves the immune and central nervous systems (CNS). The pathogenesis involves the loss of blood–brain barrier integrity, resulting in the invasion of lymphocytes into the CNS with consequent tissue damage. The MS etiology is probably a combination of immunological, genetic, and environmental factors. It has been proposed that T lymphocytes have a main role in the onset and propagation of MS, leading to the inflammation of white matter and myelin sheath destruction. Cyclic AMP (cAMP), mitochondrial dysfunction, and oxidative stress exert a role in the alteration of T lymphocytes homeostasis and are involved in the apoptosis resistance of immune cells with the consequent development of autoimmune diseases. The defective apoptosis of autoreactive lymphocytes in patients with MS, allows these cells to perpetuate, within the CNS, a continuous cycle of inflammation. In this review, we discuss the involvement in MS of cAMP pathway, mitochondria, reactive oxygen species (ROS), apoptosis, and their interaction in the alteration of T lymphocytes homeostasis. In addition, we discuss a series of nutraceutical compounds that could influence these aspects.
Collapse
|