1
|
Kulkarni MM, Popovic B, Nolfi AL, Skillen CD, Brown BN. Distinct impacts of aging on the immune responses to extracellular matrix-based versus synthetic biomaterials. Biomaterials 2025; 320:123204. [PMID: 40056612 DOI: 10.1016/j.biomaterials.2025.123204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 02/20/2025] [Accepted: 02/23/2025] [Indexed: 03/10/2025]
Abstract
All implanted materials inevitably trigger an acute inflammatory response. The long-term outcome, however, is dependent on the trajectory of this response. This study investigates the effects of aging on the immune response to two commercially available biomaterials. Extracellular matrix-based urinary bladder matrix (UBM) and synthetic polypropylene mesh (PPM) were implanted in young (4 months) and aged (18 months) C57BL/6J mice. Overall, PPM led to a sustained inflammatory response regardless of the age of the mice. In contrast, UBM induced an initial inflammatory response that matured into a pro-regenerative/remodeling response with time, though aged mice exhibited a delayed resolution of inflammation. The PPM-induced response was predominantly pro-inflammatory with consistently higher M1-like macrophage phenotype, whereas the response to UBM was characterized by an anti-inflammatory M2-like phenotype, especially in young mice. RNA sequencing revealed marked age-related differences in gene transcription. At day 7 post-implantation, the young mice with UBM showed a robust upregulation of both pro- and anti-inflammatory pathways as compared to young mice implanted with PPM, however, by day 14, the gene expression profile transitioned into an anti-inflammatory profile. Intriguingly, in aged mice, the response to UBM was distinct with consistent downregulation of inflammatory genes compared to PPM, while the response to PPM in both young and aged animals was largely consistent. Upstream analysis identified cytokines as key drivers of the host response, with IL-4 and IL-13 in young mice, and TNF-α and IL-1β driving chronic inflammation in aged mice. These findings highlight the importance of host age in biomaterial outcome, and the potential of ECM-based materials to mount a favorable response even in the presence of age-related immune dysregulation.
Collapse
Affiliation(s)
- Mangesh M Kulkarni
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, 15219, USA; Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Branimir Popovic
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, 15219, USA; Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Alexis L Nolfi
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, 15219, USA; Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Clint D Skillen
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, 15219, USA; Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Bryan N Brown
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, 15219, USA; Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, 15261, USA.
| |
Collapse
|
2
|
Therriault MA, Kottapalli S, Artsen A, Knight K, King G, Meyn L, Brown BN, Moalli PA. Profiling of the macrophage response to polypropylene mesh burden in vivo. Biomaterials 2025; 318:123177. [PMID: 39961254 DOI: 10.1016/j.biomaterials.2025.123177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 12/01/2024] [Accepted: 02/07/2025] [Indexed: 03/05/2025]
Abstract
Pelvic organ prolapse (POP) surgical repair with polypropylene mesh (PPM) offers improved anatomical outcomes compared to reconstruction using native tissue. However, PPM repair is hampered by complications, most commonly pain or mesh exposure, occurring in over 10 % of cases. This maladaptive response is, in part, attributed to the host response to a foreign material. Previous studies have demonstrated that mesh properties, such as weight, pore size, and porosity, influence downstream outcomes. In addition, computational models and in vivo mechanistic studies demonstrate that mesh deforms after tensioning in prolapse surgery resulting in collapsed pores and wrinkles. To further investigate the role of pore collapse in mesh complications, PPM was implanted flat, or in configurations that would deform upon tensioning in a POP repair surgery using a non-human primate model. After twelve weeks, we analyzed mesh-tissue complexes to characterize the overall host response, profile the macrophage response, and observe the influence of macrophages in downstream healing outcomes that may lead to complications. The results confirm that mesh deformations reproduce mesh exposure and thinning of vagina. In the PPM configurations with the greatest deformation, mesh burden was the highest, which resulted in an overall decrease in the number of cells within the implantation site. Among the cells that were present, we observed a predominance of M1 pro-inflammatory macrophages. While flat mesh was associated with an organized cellular response, deformed mesh led to an increasingly disorganized response as mesh burden increased. Nearly half of the responding macrophages expressed markers associated both with M1 and M2 phenotypes concurrently, suggesting the possibility of newly recruited macrophages responding even 12 weeks after implantation and/or a repetitive microinjury in which macrophages are continuously recruited and polarized without resolution of the host response. Biochemically, we observed a predominantly M1 pro-inflammatory signaling environment and decreased collagen content as a response to implanted mesh. This study evidences the importance of PPM mesh properties, which may alter mesh burden upon tensioning and impact downstream healing outcomes and emphasizes the need for devices that maintain their geometry following implantation in POP surgical repair.
Collapse
Affiliation(s)
- Marrisa A Therriault
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA, USA; McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA; Magee Womens Research Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Srividya Kottapalli
- Magee Womens Research Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Amanda Artsen
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of Pittsburgh, Pittsburgh, PA, USA; Magee Womens Research Institute, University of Pittsburgh, Pittsburgh, PA, USA; Division of Urogynecology & Reconstructive Pelvic Surgery, University of Pittsburgh Medical Center Magee-Womens Hospital, Pittsburgh, PA, USA
| | - Katrina Knight
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA, USA; Magee Womens Research Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Gabrielle King
- Magee Womens Research Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Leslie Meyn
- Magee Womens Research Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Bryan N Brown
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA, USA; McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA; Department of Obstetrics, Gynecology, and Reproductive Sciences, University of Pittsburgh, Pittsburgh, PA, USA; Magee Womens Research Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Pamela A Moalli
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA, USA; McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA; Department of Obstetrics, Gynecology, and Reproductive Sciences, University of Pittsburgh, Pittsburgh, PA, USA; Magee Womens Research Institute, University of Pittsburgh, Pittsburgh, PA, USA; Division of Urogynecology & Reconstructive Pelvic Surgery, University of Pittsburgh Medical Center Magee-Womens Hospital, Pittsburgh, PA, USA.
| |
Collapse
|
3
|
Barreto Garcia V, Gasparotto LHS, de Araujo AA, Leitão RFC, Brito GAC, Vilar NF, Lima Oliveira E, Guedes PMM, de Araújo Júnior RF. Gold Nanoparticles (AuNPs) Coadministered with a β-Blocker Prevent Liver Fibrosis Caused by Ethanol and Methamphetamine in Rats by Downregulating the Expression of M2 Macrophages. ACS OMEGA 2025; 10:14924-14939. [PMID: 40290979 PMCID: PMC12019731 DOI: 10.1021/acsomega.4c10118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 03/21/2025] [Accepted: 04/02/2025] [Indexed: 04/30/2025]
Abstract
Simultaneous abuse of ethanol and methamphetamine (METH) causes severe liver damage through oxidative stress and inflammation. This study evaluated the antifibrotic effects of gold nanoparticles (AuNPs) coadministered with the β-blocker carvedilol (CARV) against liver damage in rats. Male Wistar rats received 30% ethanol (7 g/kg) daily for 28 days, with METH (10 mg/kg) administered on the 22nd and 28th days. Liver damage was assessed using serum hepatic enzymes, glutathione (GSH) levels, malondialdehyde (MDA) formation, myeloperoxidase (MPO) inhibition, and histopathological analysis, including H&E, Picrosirius Red staining, immunofluorescence, and transmission electron microscopy. Cytokine levels were measured in liver tissue samples. In vitro, RAW 264.7 macrophages were induced to polarize into M1 and M2 phenotypes and cocultured with AuNPs + CARV-treated 3T3 cells, analyzed by rtPCR. AuNPs + CARV effectively protected the liver by modulating interactions between hepatic stellate cells (HSCs) and Kupffer cells, promoting an antifibrotic immune response driven by M1 macrophages. This was indicated by downregulation of profibrotic M2 macrophages and upregulation of M1 macrophages, shown by an increased CD86/CD163 ratio and reduced levels of IL-1β, TNF-α, TGFβ, AKT, and PI3K., pointing an attenuated liver inflammation. These results suggest that AuNPs combined with CARV could potentially serve as a therapy for alcohol and METH-induced liver fibrosis by targeting M2 macrophages.
Collapse
Affiliation(s)
- Vinícius Barreto Garcia
- Inflammation
and Cancer Research Laboratory, Department of Morphology, Federal University of Rio Grande do Norte (UFRN), Natal 59078-970, RN, Brazil
| | - Luiz H. S. Gasparotto
- Institute
of Chemistry, Federal University of Mato
Grosso (UFMT), Cuiaba 78060-900, MT, Brazil
| | - Aurigena A. de Araujo
- Department
of Pharmacology, Federal University of Rio
Grande do Norte (UFRN), Natal 59078-970, RN, Brazil
| | - Renata F. C. Leitão
- Department
of Morphology, Postgraduate Program in Morphology, Federal University of Ceará (UFC), Fortaleza 60355-636, CE, Brazil
| | - Gerly A. C. Brito
- Department
of Morphology, Postgraduate Program in Morphology, Federal University of Ceará (UFC), Fortaleza 60355-636, CE, Brazil
| | - Natalia Feitosa Vilar
- Inflammation
and Cancer Research Laboratory, Department of Morphology, Federal University of Rio Grande do Norte (UFRN), Natal 59078-970, RN, Brazil
| | - Emily Lima Oliveira
- Inflammation
and Cancer Research Laboratory, Department of Morphology, Federal University of Rio Grande do Norte (UFRN), Natal 59078-970, RN, Brazil
| | - Paulo M. M. Guedes
- Department
of Microbiology and Parasitology, Federal
University of Rio Grande do Norte (UFRN), Natal 59078-970, RN, Brazil
| | - Raimundo F. de Araújo Júnior
- Inflammation
and Cancer Research Laboratory, Department of Morphology, Federal University of Rio Grande do Norte (UFRN), Natal 59078-970, RN, Brazil
| |
Collapse
|
4
|
Li C, Fang L, Su X, Zhang J, Xiong H, Yu H, Zhu Z, Lin X, Min K, Wu D, Chen Z, Gong J, Xie CM. Macrophage miR-4524a-5p/TBP promotes β-TrCP -TIM3 complex activation and TGFβ release and aggravates NAFLD-associated fibrosis. Cell Death Dis 2025; 16:315. [PMID: 40251185 PMCID: PMC12008196 DOI: 10.1038/s41419-025-07574-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 03/11/2025] [Accepted: 03/18/2025] [Indexed: 04/20/2025]
Abstract
Macrophages hold a critical position in maintenance of hepatic homeostasis and in injury and repair processes in acute and chronic liver diseases. TIM3 is a promising protector in MCD-induced steatohepatitis in acute liver injury. However, we recently find TIM3 as a driver of fibrosis in MCD/HFD-induced chronic liver injury. This study aims to explore how macrophage TIM3 drivers NAFLD-associated chronic liver injury as well as identify a subtype of fibrotic patients suitable for anti-TIM3 immunotherapy. Here, we found that TIM3 was highly expressed in liver macrophages in a long-term MCD- or HFD-fed mice with fibrotic NASH. Elevated β-TrCP in macrophages promoted TIM3 polyubiquitination and membrane translocation. The ubiquitinated TIM3 then bound with PI3K and followed by inhibition of mTOR and activation of macrophage M2 polarization and TGF-β release, leading to HSC activation and liver fibrosis. Furthermore, elevated TIM3 was attributed to the transcriptional TBP upregulation and miR-4524a-5p downregulation. Targeting of TIM3 significantly attenuated liver fibrosis in mice. In clinical NASH patients, elevated macrophage TIM3 is positively correlated with TBP expression and negatively associated with miR-4524a-5p. Decreased miR-4524a-5p in plasma was a biomarker for the NASH fibrosis patients suitable for anti-TIM3 therapy. In conclusion, this study reveals that miR-4524a-5p/TBP promotes β-TrCP/TIM3 complex activation in macrophages and aggravates chronic NASH fibrosis, providing miR-4524a-5p as an effective blood biomarker for a subtype of chronic NASH patients with fibrosis suitable for anti-TIM3 treatment.
Collapse
Affiliation(s)
- Chunming Li
- Key Laboratory of Hepatobiliary and Pancreatic Surgery, Institute of Hepatobiliary Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Lei Fang
- Key Laboratory of Hepatobiliary and Pancreatic Surgery, Institute of Hepatobiliary Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Xingxing Su
- Key Laboratory of Hepatobiliary and Pancreatic Surgery, Institute of Hepatobiliary Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Jie Zhang
- Key Laboratory of Hepatobiliary and Pancreatic Surgery, Institute of Hepatobiliary Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Haojun Xiong
- Key Laboratory of Hepatobiliary and Pancreatic Surgery, Institute of Hepatobiliary Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Hongqiang Yu
- Key Laboratory of Hepatobiliary and Pancreatic Surgery, Institute of Hepatobiliary Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Zhu Zhu
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiaotong Lin
- Key Laboratory of Hepatobiliary and Pancreatic Surgery, Institute of Hepatobiliary Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Ke Min
- Key Laboratory of Hepatobiliary and Pancreatic Surgery, Institute of Hepatobiliary Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Di Wu
- Key Laboratory of Hepatobiliary and Pancreatic Surgery, Institute of Hepatobiliary Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Zhiyu Chen
- Key Laboratory of Hepatobiliary and Pancreatic Surgery, Institute of Hepatobiliary Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China.
| | - Jianping Gong
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| | - Chuan-Ming Xie
- Key Laboratory of Hepatobiliary and Pancreatic Surgery, Institute of Hepatobiliary Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China.
| |
Collapse
|
5
|
Bos S, Hunter B, McDonald D, Merces G, Sheldon G, Pradère P, Majo J, Pulle J, Vanstapel A, Vanaudenaerde BM, Vos R, Filby AJ, Fisher AJ. High-dimensional tissue profiling of immune cell responses in chronic lung allograft dysfunction. J Heart Lung Transplant 2025; 44:645-658. [PMID: 39608516 DOI: 10.1016/j.healun.2024.11.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 10/16/2024] [Accepted: 11/15/2024] [Indexed: 11/30/2024] Open
Abstract
PURPOSE The immunological drivers of chronic lung allograft dysfunction (CLAD), the major barrier to long-term survival after lung transplantation, are poorly understood at a tissue level. Tissue imaging using mass spectrometry with laser ablation of regions of interest offers single-cell resolution of distinct immune cell populations and their spatial relationships and may improve our understanding of CLAD pathophysiology. METHODS Lung tissue from 23 lung transplant recipients, 20 with and 3 without CLAD, was sectioned and stained with a 40-plex antibody panel before 81 regions of interest from airways, blood vessels and lung parenchyma were laser ablated. RESULTS 190,851 individual segmented cells across 41 mm2 tissue were captured before 26 distinct immune and structural cell populations were identified and interrogated across CLAD phenotypes. CLAD was associated with expansion of cytotoxic T cells, γδ T cells and plasma cells and M2 macrophage polarization compared with non-CLAD. Within CLAD, bronchiolitis obliterans syndrome was characterized by more γδ T cells and fewer Th1 cells than restrictive allograft syndrome. Both adaptive and innate immune cells were involved in the temporal evolution of fibrotic remodeling. Although fibrosis seemed to be partially associated with different factors in restrictive allograft syndrome (M2 macrophages, Th1 cells) and in bronchiolitis obliterans syndrome (γδ T cells). CONCLUSION Imaging mass cytometry enables in-depth analyses of immune cell phenotypes in their local microenvironment. Using this approach, we identified major differences in cell populations in CLAD versus non-CLAD and in BOS versus RAS, with novel insights into the fibrotic progression of CLAD.
Collapse
Affiliation(s)
- Saskia Bos
- Newcastle University Translational and Clinical Research Institute, Newcastle upon Tyne, UK; Institute of Transplantation, Newcastle Upon Tyne Hospitals NHS Trust, Newcastle upon Tyne, UK.
| | - Bethany Hunter
- Flow Cytometry Core and Innovation, Methodology and Application Research Theme, Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - David McDonald
- Flow Cytometry Core and Innovation, Methodology and Application Research Theme, Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - George Merces
- Image Analysis Unit, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Georgia Sheldon
- Medical School, Newcastle University, Newcaste upon Tyne, UK
| | - Pauline Pradère
- Newcastle University Translational and Clinical Research Institute, Newcastle upon Tyne, UK; Hôpital Marie Lannelongue, Groupe Hospitalier Paris Saint Joseph and Paris Saclay University, Department of Respiratory Diseases, Paris, France
| | - Joaquim Majo
- Department of Cellular Pathology, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Julian Pulle
- Department of Cellular Pathology, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Arno Vanstapel
- Department of Pathology, University Hospitals Leuven, Leuven, Belgium
| | - Bart M Vanaudenaerde
- Department of CHROMETA, Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), KU Leuven, Leuven, Belgium
| | - Robin Vos
- Department of CHROMETA, Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), KU Leuven, Leuven, Belgium; Department of Respiratory Diseases, University Hospitals Leuven, Leuven, Belgium
| | - Andrew J Filby
- Flow Cytometry Core and Innovation, Methodology and Application Research Theme, Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Andrew J Fisher
- Newcastle University Translational and Clinical Research Institute, Newcastle upon Tyne, UK; Institute of Transplantation, Newcastle Upon Tyne Hospitals NHS Trust, Newcastle upon Tyne, UK
| |
Collapse
|
6
|
Chen L, Yao K, Fu QL. Potential immune involvement in cataract: from mechanisms to future scope of therapies. Int J Ophthalmol 2025; 18:541-548. [PMID: 40103951 PMCID: PMC11865660 DOI: 10.18240/ijo.2025.03.22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 11/28/2024] [Indexed: 03/20/2025] Open
Abstract
The immune system is involved in many age-related pathological changes, also plays an important role in tissue regeneration after injury. But no immune involvement has been discussed regarding cataract since it is presumed that lens has no source of immune cells as an avascular zone. Latest research has challenged the longstanding view of the lens as an immune-privileged tissue, revealing the presence of resident immune cells and active immune responses within the lens. Thus, we summarized the immune involvement in maintaining lens homeostasis, which may be a deleterious role in the induction of lens opacification if inappropriately activated. Furthermore, bioengineer-based immunomodulatory therapies to fine-tune the micro immune environment within lens may be future strategies for in situ lens regeneration, as a novel treatment for cataract.
Collapse
Affiliation(s)
- Lu Chen
- Eye Center, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, Zhejiang Province, China
- Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, Hangzhou 310009, Zhejiang Province, China
| | - Ke Yao
- Eye Center, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, Zhejiang Province, China
- Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, Hangzhou 310009, Zhejiang Province, China
| | - Qiu-Li Fu
- Eye Center, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, Zhejiang Province, China
- Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, Hangzhou 310009, Zhejiang Province, China
| |
Collapse
|
7
|
Navarro-Ledesma S. Frozen Shoulder as a Metabolic and Immune Disorder: Potential Roles of Leptin Resistance, JAK-STAT Dysregulation, and Fibrosis. J Clin Med 2025; 14:1780. [PMID: 40095902 PMCID: PMC11901274 DOI: 10.3390/jcm14051780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 03/02/2025] [Accepted: 03/06/2025] [Indexed: 03/19/2025] Open
Abstract
Frozen shoulder (FS) is a complex and multifactorial condition characterized by persistent inflammation, fibrosis, and metabolic dysregulation. Despite extensive research, the underlying drivers of FS remain poorly understood. Recent findings indicate the coexistence of pro-inflammatory and fibrosis-resolving macrophages within affected tissues, suggesting a dysregulated immune response influenced by metabolic and neuroendocrine factors. This review proposes that leptin resistance, a hallmark of metabolic syndrome and chronic inflammation, may play a central role in FS pathogenesis by impairing macrophage polarization, perpetuating inflammation, and disrupting fibrosis resolution. The JAK-STAT signaling pathway, critically modulated by leptin resistance, may further contribute to immune dysregulation by sustaining inflammatory macrophage activation and interfering with tissue remodeling. Additionally, FS shares pathogenic features with fibrotic diseases driven by TGF-β signaling, mitochondrial dysfunction, and circadian disruption, further linking systemic metabolic dysfunction to localized fibrotic pathology. Beyond immune and metabolic regulation, alterations in gut microbiota, bacterial translocation, and chronic psychosocial stress may further exacerbate systemic inflammation and neuroendocrine imbalances, intensifying JAK-STAT dysregulation and leptin resistance. By examining the intricate interplay between metabolism, immune function, and fibrotic remodeling, this review highlights targeting leptin sensitivity, JAK-STAT modulation, and mitochondrial restoration as novel therapeutic strategies for FS treatment. Future research should explore these interconnections to develop integrative interventions that address both the metabolic and immune dysregulation underlying FS, ultimately improving clinical outcomes.
Collapse
Affiliation(s)
- Santiago Navarro-Ledesma
- Department of Physiotherapy, Faculty of Health Sciences, Campus of Melilla, University of Granada, Querol Street 5, 52004 Melilla, Spain
| |
Collapse
|
8
|
Nazari M, Taremi S, Elahi R, Mostanadi P, Esmeilzadeh A. Therapeutic Properties of M2 Macrophages in Chronic Wounds: An Innovative Area of Biomaterial-Assisted M2 Macrophage Targeted Therapy. Stem Cell Rev Rep 2025; 21:390-422. [PMID: 39556244 DOI: 10.1007/s12015-024-10806-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/16/2024] [Indexed: 11/19/2024]
Abstract
Wound healing is a dynamic, multi-stage process essential for restoring skin integrity. Dysregulated wound healing is often linked to impaired macrophage function, particularly in individuals with chronic underlying conditions. Macrophages, as key regulators of wound healing, exhibit significant phenotypic diversity, ranging from the pro-healing M2 phenotype to the pro-inflammatory M1 phenotype. Imbalances in the M1/M2 ratio or hyperactivation of the M1 phenotype can delay the normal healing. Consequently, strategies aimed at suppressing the M1 phenotype or promoting the shift of local skin macrophages toward the M2 phenotype can potentially treat chronic non-healing wounds. This manuscript provides an overview of macrophages' role in normal and pathological wound-healing processes. It examines various therapeutic approaches targeting M2 macrophages, such as ex vivo-activated macrophage therapy, immunopharmacological strategies, and biomaterial-directed macrophage polarization. However, it also highlights that M2 macrophage therapies and immunopharmacological interventions may have drawbacks, including rapid phenotypic changes, adverse effects on other skin cells, biotoxicity, and concerns related to biocompatibility, stability, and drug degradation. Therefore, there is a need for more targeted macrophage-based therapies that ensure optimal biosafety, allowing for effective reprogramming of dysregulated macrophages and improved therapeutic outcomes. Recent advances in nano-biomaterials have demonstrated promising regenerative potential compared to traditional treatments. This review discusses the progress of biomaterial-assisted macrophage targeting in chronic wound repair and addresses the challenges faced in its clinical application. Additionally, it explores novel design concepts for combinational therapies, such as incorporating regenerative particles like exosomes into dressing materials or encapsulating them in microneedling systems to enhance wound healing rates.
Collapse
Affiliation(s)
- Mahdis Nazari
- School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Siavash Taremi
- School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Reza Elahi
- School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Parsa Mostanadi
- School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Abdolreza Esmeilzadeh
- Department of Immunology, Zanjan University of Medical Sciences, Zanjan, Iran.
- Cancer Gene Therapy Research Center, Zanjan University of Medical Sciences, Zanjan, Iran.
| |
Collapse
|
9
|
Heimberg G, Kuo T, DePianto DJ, Salem O, Heigl T, Diamant N, Scalia G, Biancalani T, Turley SJ, Rock JR, Corrada Bravo H, Kaminker J, Vander Heiden JA, Regev A. A cell atlas foundation model for scalable search of similar human cells. Nature 2025; 638:1085-1094. [PMID: 39566551 PMCID: PMC11864978 DOI: 10.1038/s41586-024-08411-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Accepted: 11/14/2024] [Indexed: 11/22/2024]
Abstract
Single-cell RNA sequencing has profiled hundreds of millions of human cells across organs, diseases, development and perturbations to date. Mining these growing atlases could reveal cell-disease associations, identify cell states in unexpected tissue contexts and relate in vivo biology to in vitro models. These require a common measure of cell similarity across the body and an efficient way to search. Here we develop SCimilarity, a metric-learning framework to learn a unified and interpretable representation that enables rapid queries of tens of millions of cell profiles from diverse studies for cells that are transcriptionally similar to an input cell profile or state. We use SCimilarity to query a 23.4-million-cell atlas of 412 single-cell RNA-sequencing studies for macrophage and fibroblast profiles from interstitial lung disease1 and reveal similar cell profiles across other fibrotic diseases and tissues. The top scoring in vitro hit for the macrophage query was a 3D hydrogel system2, which we experimentally demonstrated reproduces this cell state. SCimilarity serves as a foundation model for single-cell profiles that enables researchers to query for similar cellular states across the human body, providing a powerful tool for generating biological insights from the Human Cell Atlas.
Collapse
Affiliation(s)
- Graham Heimberg
- Biology Research, AI Development, gRED Computational Sciences, Genentech, San Francisco, CA, USA.
- Department of Immunology Discovery, Genentech, San Francisco, CA, USA.
| | - Tony Kuo
- Roche Informatics, F. Hoffmann-La Roche, Mississauga, Ontario, Canada
| | - Daryle J DePianto
- Department of Immunology Discovery, Genentech, San Francisco, CA, USA
| | - Omar Salem
- Biology Research, AI Development, gRED Computational Sciences, Genentech, San Francisco, CA, USA
| | - Tobias Heigl
- Department of Immunology Discovery, Genentech, San Francisco, CA, USA
| | - Nathaniel Diamant
- Biology Research, AI Development, gRED Computational Sciences, Genentech, San Francisco, CA, USA
| | - Gabriele Scalia
- Biology Research, AI Development, gRED Computational Sciences, Genentech, San Francisco, CA, USA
| | - Tommaso Biancalani
- Biology Research, AI Development, gRED Computational Sciences, Genentech, San Francisco, CA, USA
| | - Shannon J Turley
- Department of Immunology Discovery, Genentech, San Francisco, CA, USA
- Department of Regenerative Medicine, Genentech, San Francisco, CA, USA
| | - Jason R Rock
- Department of Immunology Discovery, Genentech, San Francisco, CA, USA
- Department of Regenerative Medicine, Genentech, San Francisco, CA, USA
| | - Héctor Corrada Bravo
- Biology Research, AI Development, gRED Computational Sciences, Genentech, San Francisco, CA, USA
| | - Josh Kaminker
- OMNI Bioinformatics, gRED Computational Sciences, Genentech, San Francisco, CA, USA.
| | - Jason A Vander Heiden
- Biology Research, AI Development, gRED Computational Sciences, Genentech, San Francisco, CA, USA.
- Department of Immunology Discovery, Genentech, San Francisco, CA, USA.
| | - Aviv Regev
- Research and Early Development, Genentech, San Francisco, CA, USA.
| |
Collapse
|
10
|
Barbalho SM, Leme Boaro B, da Silva Camarinha Oliveira J, Patočka J, Barbalho Lamas C, Tanaka M, Laurindo LF. Molecular Mechanisms Underlying Neuroinflammation Intervention with Medicinal Plants: A Critical and Narrative Review of the Current Literature. Pharmaceuticals (Basel) 2025; 18:133. [PMID: 39861194 PMCID: PMC11768729 DOI: 10.3390/ph18010133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 01/16/2025] [Accepted: 01/17/2025] [Indexed: 01/27/2025] Open
Abstract
Neuroinflammation is a key factor in the progression of neurodegenerative diseases, driven by the dysregulation of molecular pathways and activation of the brain's immune system, resulting in the release of pro-inflammatory and oxidative molecules. This chronic inflammation is exacerbated by peripheral leukocyte infiltration into the central nervous system. Medicinal plants, with their historical use in traditional medicine, have emerged as promising candidates to mitigate neuroinflammation and offer a sustainable alternative for addressing neurodegenerative conditions in a green healthcare framework. This review evaluates the effects of medicinal plants on neuroinflammation, emphasizing their mechanisms of action, effective dosages, and clinical implications, based on a systematic search of databases such as PubMed, SCOPUS, and Web of Science. The key findings highlight that plants like Cleistocalyx nervosum var. paniala, Curcuma longa, Cannabis sativa, and Dioscorea nipponica reduce pro-inflammatory cytokines (TNF-α, IL-6, and IL-1β), inhibit enzymes (COX-2 and iNOS), and activate antioxidant pathways, particularly Nrf2. NF-κB emerged as the primary pro-inflammatory pathway inhibited across studies. While the anti-inflammatory potential of these plants is significant, the variability in dosages and phytochemical compositions limits clinical translation. Here, we highlight that medicinal plants are effective modulators of neuroinflammation, underscoring their therapeutic potential. Future research should focus on animal models, standardized protocols, and safety assessments, integrating advanced methodologies, such as genetic studies and nanotechnology, to enhance their applicability in neurodegenerative disease management.
Collapse
Affiliation(s)
- Sandra Maria Barbalho
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), Marília 17525-902, São Paulo, Brazil; (S.M.B.); (L.F.L.)
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, School of Medicine, Universidade de Marília (UNIMAR), Marília 17525-902, São Paulo, Brazil
| | - Beatriz Leme Boaro
- Department of Biochemistry and Pharmacology, School of Medicine, Faculdade de Medicina de Marília (FAMEMA), Marília 17519-030, São Paulo, Brazil
| | - Jéssica da Silva Camarinha Oliveira
- Department of Biochemistry and Pharmacology, School of Medicine, Faculdade de Medicina de Marília (FAMEMA), Marília 17519-030, São Paulo, Brazil
| | - Jiří Patočka
- Faculty of Health and Social Studies, Institute of Radiology, Toxicology and Civil Protection, University of South Bohemia Ceske Budejovice, 37005 Ceske Budejovice, Czech Republic
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, 50003 Hradec Kralove, Czech Republic
| | - Caroline Barbalho Lamas
- Department of Gerontology, School of Gerontology, Universidade Federal de São Carlos (UFSCar), São Carlos 13565-905, São Paulo, Brazil
| | - Masaru Tanaka
- Danube Neuroscience Research Laboratory, HUN-REN-SZTE Neuroscience Research Group, Hungarian Research Network, University of Szeged (HUN-REN-SZTE), Tisza Lajos Krt. 113, H-6725 Szeged, Hungary
| | - Lucas Fornari Laurindo
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), Marília 17525-902, São Paulo, Brazil; (S.M.B.); (L.F.L.)
| |
Collapse
|
11
|
Fernandes VAR, dos Santos GP, Iatecola A, Buchaim DV, Garcia IJF, Reis CHB, Bueno LMM, Pagani BT, Buchaim RL, da Cunha MR. Evaluation of Creatine Monohydrate Supplementation on the Gastrocnemius Muscle of Mice with Muscular Dystrophy: A Preliminary Study. PATHOPHYSIOLOGY 2025; 32:2. [PMID: 39846639 PMCID: PMC11755625 DOI: 10.3390/pathophysiology32010002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 12/09/2024] [Accepted: 12/12/2024] [Indexed: 01/24/2025] Open
Abstract
Background/Objectives: Duchenne muscular dystrophy (DMD) is a genetic disease characterized by a lack of dystrophin caused by mutations in the DMD gene, and some minor cases are due to decreased levels of dystrophin, leading to muscle weakness and motor impairment. Creatine supplementation has demonstrated several benefits for the muscle, such as increased strength, enhanced tissue repair, and improved ATP resynthesis. This preliminary study aimed to investigate the effects of creatine on the gastrocnemius muscle in dystrophy muscle (MDX) and healthy C57BL/10 mice. Methods: Twenty MDX and C57Bl/10 mice were organized into groups and supplemented or not with creatine in a dosage of 0.3 mg for 8 weeks. Gastrocnemius tissue was analyzed using histomorphology and histomorphometric techniques. Results: The results demonstrated potential anti-inflammatory effects of creatine, with less observation of inflammatory infiltrates, the preservation of intramuscular glycogen, and reduction in tissue fibrosis in supplemented animals. Conclusions: These findings suggest that creatine may enhance tissue function and slow the progression of DMD. However, further research, with more analysis, is needed to elucidate molecular mechanisms underlying creatine's effects on reducing mononuclear leukocytes and its role in mitigating tissue fibrosis.
Collapse
Affiliation(s)
- Victor Augusto Ramos Fernandes
- Postgraduate Program in Health Sciences, Faculty of Medicine of Jundiaí (FMJ), Jundiaí 13202-550, Brazil;
- Neurobiology Study Group, Nossa Senhora do Patrocínio University Center (CEUNSP), Itu 13300-200, Brazil; (G.P.d.S.); (A.I.)
| | - Gabriela Pereira dos Santos
- Neurobiology Study Group, Nossa Senhora do Patrocínio University Center (CEUNSP), Itu 13300-200, Brazil; (G.P.d.S.); (A.I.)
| | - Amilton Iatecola
- Neurobiology Study Group, Nossa Senhora do Patrocínio University Center (CEUNSP), Itu 13300-200, Brazil; (G.P.d.S.); (A.I.)
| | - Daniela Vieira Buchaim
- Graduate Program in Anatomy of Domestic and Wild Animals, Faculty of Veterinary Medicine and Animal Science, University of Sao Paulo (FMVZ/USP), Sao Paulo 05508-270, Brazil; (D.V.B.); (R.L.B.)
- Medical and Dentistry School, University Center of Adamantina (FAI), Adamantina 17800-000, Brazil; (I.J.F.G.); (L.M.M.B.)
| | - Ionaly Judith Faria Garcia
- Medical and Dentistry School, University Center of Adamantina (FAI), Adamantina 17800-000, Brazil; (I.J.F.G.); (L.M.M.B.)
| | | | - Lívia Maluf Menegazzo Bueno
- Medical and Dentistry School, University Center of Adamantina (FAI), Adamantina 17800-000, Brazil; (I.J.F.G.); (L.M.M.B.)
| | - Bruna Trazzi Pagani
- Dentistry School, University of Marilia (UNIMAR), Marilia 17525-902, Brazil;
| | - Rogerio Leone Buchaim
- Graduate Program in Anatomy of Domestic and Wild Animals, Faculty of Veterinary Medicine and Animal Science, University of Sao Paulo (FMVZ/USP), Sao Paulo 05508-270, Brazil; (D.V.B.); (R.L.B.)
- Department of Biological Sciences, Bauru School of Dentistry (FOB/USP), University of Sao Paulo, Bauru 17012-901, Brazil
| | - Marcelo Rodrigues da Cunha
- Postgraduate Program in Health Sciences, Faculty of Medicine of Jundiaí (FMJ), Jundiaí 13202-550, Brazil;
- Neurobiology Study Group, Nossa Senhora do Patrocínio University Center (CEUNSP), Itu 13300-200, Brazil; (G.P.d.S.); (A.I.)
| |
Collapse
|
12
|
Fischer A, Han W, Hu S, Mück-Häusl M, Wannemacher J, Kadri S, Lin Y, Dai R, Christ S, Su Y, Dasgupta B, Sardogan A, Deisenhofer C, Dutta S, Kadri A, Güney TG, Correa-Gallegos D, Mayr CH, Hatz R, Stoleriu MG, Lindner M, Hilgendorff A, Adler H, Machens HG, Schiller HB, Hauck SM, Rinkevich Y. Targeting pleuro-alveolar junctions reverses lung fibrosis in mice. Nat Commun 2025; 16:173. [PMID: 39747171 PMCID: PMC11696612 DOI: 10.1038/s41467-024-55596-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 12/13/2024] [Indexed: 01/04/2025] Open
Abstract
Lung fibrosis development utilizes alveolar macrophages, with mechanisms that are incompletely understood. Here, we fate map connective tissue during mouse lung fibrosis and observe disassembly and transfer of connective tissue macromolecules from pleuro-alveolar junctions (PAJs) into deep lung tissue, to activate fibroblasts and fibrosis. Disassembly and transfer of PAJ macromolecules into deep lung tissue occurs by alveolar macrophages, activating cysteine-type proteolysis on pleural mesothelium. The PAJ niche and the disassembly cascade is active in patient lung biopsies, persists in chronic fibrosis models, and wanes down in acute fibrosis models. Pleural-specific viral therapeutic carrying the cysteine protease inhibitor Cystatin A shuts down PAJ disassembly, reverses fibrosis and regenerates chronic fibrotic lungs. Targeting PAJ disassembly by targeting the pleura may provide a unique therapeutic avenue to treat lung fibrotic diseases.
Collapse
Affiliation(s)
- Adrian Fischer
- Institute for Diabetes and Obesity (IDO), Helmholtz Diabetes Center (HDC), Helmholtz Zentrum München, Neuherberg, Germany
- Institute of Regenerative Biology and Medicine(IRBM), Helmholtz Zentrum München, Munich, Germany
| | - Wei Han
- Institute of Regenerative Biology and Medicine(IRBM), Helmholtz Zentrum München, Munich, Germany.
- Member of the German Center of Lung Research (DZL), Munich, Germany.
- Faculty of Medicine, Ludwig-Maximilians-University Munich, Munich, Germany.
| | - Shaoping Hu
- Institute of Regenerative Biology and Medicine(IRBM), Helmholtz Zentrum München, Munich, Germany
- Member of the German Center of Lung Research (DZL), Munich, Germany
- Faculty of Medicine, Ludwig-Maximilians-University Munich, Munich, Germany
- Zhangzhou Health Vocational College, Zhangzhou, China
| | - Martin Mück-Häusl
- Institute of Regenerative Biology and Medicine(IRBM), Helmholtz Zentrum München, Munich, Germany
- Helmholtz Munich, Research Unit for Precision Regenerative Medicine (PRM), Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Juliane Wannemacher
- Institute of Regenerative Biology and Medicine(IRBM), Helmholtz Zentrum München, Munich, Germany
- Member of the German Center of Lung Research (DZL), Munich, Germany
| | - Safwen Kadri
- Institute of Regenerative Biology and Medicine(IRBM), Helmholtz Zentrum München, Munich, Germany
- Helmholtz Munich, Research Unit for Precision Regenerative Medicine (PRM), Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Yue Lin
- Institute of Regenerative Biology and Medicine(IRBM), Helmholtz Zentrum München, Munich, Germany
- Member of the German Center of Lung Research (DZL), Munich, Germany
| | - Ruoxuan Dai
- Institute of Regenerative Biology and Medicine(IRBM), Helmholtz Zentrum München, Munich, Germany
- Member of the German Center of Lung Research (DZL), Munich, Germany
| | - Simon Christ
- Institute of Regenerative Biology and Medicine(IRBM), Helmholtz Zentrum München, Munich, Germany
- Member of the German Center of Lung Research (DZL), Munich, Germany
| | - Yiqun Su
- Institute of Regenerative Biology and Medicine(IRBM), Helmholtz Zentrum München, Munich, Germany
- Member of the German Center of Lung Research (DZL), Munich, Germany
| | - Bikram Dasgupta
- Institute of Regenerative Biology and Medicine(IRBM), Helmholtz Zentrum München, Munich, Germany
- Member of the German Center of Lung Research (DZL), Munich, Germany
| | - Aydan Sardogan
- Institute of Regenerative Biology and Medicine(IRBM), Helmholtz Zentrum München, Munich, Germany
- Member of the German Center of Lung Research (DZL), Munich, Germany
| | - Christoph Deisenhofer
- Institute of Regenerative Biology and Medicine(IRBM), Helmholtz Zentrum München, Munich, Germany
- Member of the German Center of Lung Research (DZL), Munich, Germany
| | - Subhasree Dutta
- Institute of Regenerative Biology and Medicine(IRBM), Helmholtz Zentrum München, Munich, Germany
- Member of the German Center of Lung Research (DZL), Munich, Germany
| | - Amal Kadri
- Institute of Regenerative Biology and Medicine(IRBM), Helmholtz Zentrum München, Munich, Germany
- Member of the German Center of Lung Research (DZL), Munich, Germany
| | - Tankut Gökhan Güney
- Institute of Regenerative Biology and Medicine(IRBM), Helmholtz Zentrum München, Munich, Germany
- Member of the German Center of Lung Research (DZL), Munich, Germany
| | - Donovan Correa-Gallegos
- Institute for Stroke and Dementia Research (ISD), LMU University Hospital, LMU Munich, Munich, Germany
| | - Christoph H Mayr
- Helmholtz Munich, Research Unit for Precision Regenerative Medicine (PRM), Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Rudolf Hatz
- Asklepios Fachkliniken in Munich-Gauting, Munich, Germany
| | | | - Michael Lindner
- Asklepios Fachkliniken in Munich-Gauting, Munich, Germany
- University Department of Visceral and Thoracic Surgery Salzburg, Paracelsus Medical University, Salzburg, Austria
| | - Anne Hilgendorff
- Helmholtz Zentrum München, Institute of Lung Biology & Disease, Group Mechanism of Neonatal Chronic Lung Disease, Member of the German Center of Lung Research (DZL), Munich, Germany
- Comprehensive Pneumology Center with the CPC-M bioArchive and Institute of Lung Health and Immunity, Helmholtz-Zentrum München, Member of the German Center of Lung Research (DZL), Munich, Germany
| | - Heiko Adler
- Member of the German Center of Lung Research (DZL), Munich, Germany
- Institute of Asthma and Allergy Prevention, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- Walther-Straub-Institute of Pharmacology and Toxicology, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Hans-Günther Machens
- Department of Plastic and Hand Surgery, Technical University of Munich, School of Medicine and Health, Klinikum rechts der Isar, Munich, Germany
| | - Herbert B Schiller
- Helmholtz Munich, Research Unit for Precision Regenerative Medicine (PRM), Member of the German Center for Lung Research (DZL), Munich, Germany
- Institute of Experimental Pneumology, LMU University Hospital, Ludwig-Maximilians University, Munich, Germany
| | - Stefanie M Hauck
- Metabolomics and Proteomics Core, Helmholtz Zentrum München, Munich, Germany
| | - Yuval Rinkevich
- Institute of Regenerative Biology and Medicine, Chinese Institutes for Medical Research, Beijing, China.
- Capital Medical University, Beijing, China.
| |
Collapse
|
13
|
Helissey C, Cavallero S, Guitard N, Thery H, Parnot C, Schernberg A, Aissa I, Raffin F, Le Coz C, Mondot S, Christopoulos C, Malek K, Malaurie E, Blanchard P, Chargari C, Francois S. Correlation Between Electronic Patient-Reported Outcomes and Biological Markers of Key Parameters in Acute Radiation Cystitis Among Patients With Prostate Cancer (RABBIO): Prospective Observational Study. JMIR Cancer 2024; 10:e48225. [PMID: 39665773 PMCID: PMC11656992 DOI: 10.2196/48225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 06/22/2024] [Accepted: 06/24/2024] [Indexed: 12/13/2024] Open
Abstract
Background Despite advances in radiation techniques, radiation cystitis (RC) remains a significant cause of morbidity from pelvic radiotherapy, which may affect patients' quality of life (QoL). The pathophysiology of RC is not well understood, which limits the development of effective treatments. Objective The Radiotoxicity Bladder Biomarkers study aims to investigate the correlation between blood and urinary biomarkers and the intensity of acute RC symptoms and QoL in patients undergoing localized prostate cancer radiotherapy. Methods This study included patients with low- or intermediate-risk localized prostate cancer who were eligible for localized radiotherapy. Blood and urinary biomarkers were analyzed before radiotherapy was initiated and at weeks 4 and 12 of radiation therapy. Patients completed questionnaires related to RC symptoms and QoL (International Prostate Symptom Score and Functional Assessment of Cancer Therapy-Prostate [FACT-P]) using a digital remote monitoring platform. The information was processed by means of an algorithm, which classified patients according to the severity of symptoms and adverse events reported. Levels of blood and urinary biomarkers were tested with the severity of acute RC symptoms and patient-reported QoL. Results A total of 401 adverse events questionnaires were collected over the duration of this study from 20 patients. The most frequently reported adverse events at week 4 were pollakiuria, constipation, and diarrhea. In comparison with baseline, the mean FACT-P score decreased at week 4. A significant increase in the proportion of M2 phenotype cells (CD206+, CD163+, CD204+) at W12 compared to W0 was observed. An increase in serum and urine levels of macrophage colony-stimulating factor (M-CSF), hepatocyte growth factor, and macrophagic inflammatory protein was observed at week 12 compared to baseline levels. Baseline serum and urine M-CSF concentrations showed a significant negative correlation with FACT-P scores at weeks 4 and 12 (r=-0.65, P=.04, and r=-0.76, P=.02, respectively). Conclusions The Radiotoxicity Bladder Biomarkers study is the first to explore the overexpression of inflammatory proteins in blood and urine of patients with symptoms of acute RC. These preliminary findings suggest that serum and urine levels of hepatocyte growth factor, M-CSF, and macrophagic inflammatory protein, as well as macrophage polarization, are mobilized after prostate radiotherapy. The elevated M-CSF levels in serum and urine at baseline were associated with the deterioration of QoL during radiotherapy. The results of this study may help to develop mitigation strategies to limit radiation damage to the bladder.
Collapse
Affiliation(s)
- Carole Helissey
- Clinical Unit Research, Military Hospital Begin, 69 avenue de Paris, Saint-Mandé, 94240, France, 33 679526487
- Department of Radiation Biological Effects, French Armed Forces Biomedical Research Institute, IRBA, Brétigny-sur-Orge, France
| | - Sophie Cavallero
- Department of Radiation Biological Effects, French Armed Forces Biomedical Research Institute, IRBA, Brétigny-sur-Orge, France
| | - Nathalie Guitard
- Department of Radiation Biological Effects, French Armed Forces Biomedical Research Institute, IRBA, Brétigny-sur-Orge, France
| | - Hélène Thery
- Department of Radiation Biological Effects, French Armed Forces Biomedical Research Institute, IRBA, Brétigny-sur-Orge, France
| | | | - Antoine Schernberg
- Clinical Unit Research, Military Hospital Begin, 69 avenue de Paris, Saint-Mandé, 94240, France, 33 679526487
| | | | - Florent Raffin
- Department of Radiation Biological Effects, French Armed Forces Biomedical Research Institute, Brétigny-sur-Orge, France
| | - Christine Le Coz
- Department of Radiation Biological Effects, French Armed Forces Biomedical Research Institute, Brétigny-sur-Orge, France
| | - Stanislas Mondot
- Paris-Saclay University, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | | | - Karim Malek
- Department of Radiotherapy, Le Raincy Montfermeil General Hospital, Montfermeil, France
| | - Emmanuelle Malaurie
- Department of Radiotherapy, Centre Hospitalier Intercommunal de Créteil, Créteil, France
| | - Pierre Blanchard
- Department of Radiation Oncology, Gustave Roussy Cancer Campus, Université Paris-Saclay, Oncostat U1018 INSERM, Gustave-Roussy, Villejuif, France
| | - Cyrus Chargari
- Department of Radiation Oncology, Pitié Salpêtrière University Hospital, Paris, France
| | - Sabine Francois
- Department of Radiation Biological Effects, French Armed Forces Biomedical Research Institute, Brétigny-sur-Orge, France
| |
Collapse
|
14
|
Wiejak J, Murphy FA, Barker G, Maffia P, Yarwood SJ. Non-cyclic nucleotide EPAC1 activators suppress lipopolysaccharide-regulated gene expression, signalling and intracellular communication in differentiated macrophage-like THP-1 cells. Cell Signal 2024; 124:111444. [PMID: 39368792 DOI: 10.1016/j.cellsig.2024.111444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 09/24/2024] [Accepted: 09/30/2024] [Indexed: 10/07/2024]
Abstract
This study explores the anti-inflammatory effects of non-cyclic nucleotide EPAC1 activators, PW0577 and SY007, on lipopolysaccharide (LPS)-induced responses in differentiated THP-1 macrophage-like cells. Both activators were found to selectively activate EPAC1 in THP-1 macrophages, leading to the activation of the key down-stream effector, Rap1. RNA sequencing analysis of LPS-stimulated THP-1 macrophages, revealed that treatment with PW0577 or SY007 significantly modulates gene expression related to fibrosis and inflammation, including the suppression of NLRP3, IL-1β, and caspase 1 protein expression in LPS-stimulated cells. Notably, these effects were independent of p65 NFκB phosphorylation at Serine 536, indicating a distinct mechanism of action. The study further identified a shared influence of both activators on LPS signalling pathways, particularly impacting extracellular matrix (ECM) components and NFκB-regulated genes. Additionally, in a co-culture model involving THP-1 macrophages, vascular smooth muscle cells, and human coronary artery endothelial cells, EPAC1 activators modulated immune-vascular interactions, suggesting a broader role in regulating cellular communication between macrophages and endothelial cells. These findings enhance our understanding of EPAC1's role in inflammation and propose EPAC1 activators as potential therapeutic agents for treating inflammatory and fibrotic conditions through targeted modulation of Rap1 and associated signalling pathways.
Collapse
Affiliation(s)
- Jolanta Wiejak
- Heriot-Watt University, Institute of Biological Chemistry, Biophysics and Bioengineering, Edinburgh EH14 4AS, United Kingdom
| | - Fiona A Murphy
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, United Kingdom
| | - Graeme Barker
- Heriot-Watt University, Institute of Chemical Sciences, Edinburgh EH14 4AS, United Kingdom
| | - Pasquale Maffia
- University of Glasgow, School of Infection & Immunity, College of Medical, Veterinary and Life Sciences, Glasgow G12 8TA, United Kingdom; University of Naples Federico II, Department of Pharmacy, School of Medicine and Surgery, Naples, 80131, Italy; Africa-Europe Cluster of Research Excellence in Non-Communicable Diseases & Multimorbidity, African Research Universities Alliance (ARUA) & The Guild of European Research-intensive Universities, Glasgow G12 8TA, United Kingdom
| | - Stephen J Yarwood
- Heriot-Watt University, Institute of Biological Chemistry, Biophysics and Bioengineering, Edinburgh EH14 4AS, United Kingdom.
| |
Collapse
|
15
|
Jonny J, Sitepu EC, Lister INE, Chiuman L, Putranto TA. The Potential of Anti-Inflammatory DC Immunotherapy in Improving Proteinuria in Type 2 Diabetes Mellitus. Vaccines (Basel) 2024; 12:972. [PMID: 39340004 PMCID: PMC11435532 DOI: 10.3390/vaccines12090972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/19/2024] [Accepted: 08/23/2024] [Indexed: 09/30/2024] Open
Abstract
A typical consequence of type 2 diabetes mellitus, diabetic kidney disease (DKD) is a significant risk factor for end-stage renal disease. The pathophysiology of diabetic kidney disease (DKD) is mainly associated with the immune system, which involves adhesion molecules and growth factors disruption, excessive expression of inflammatory mediators, decreased levels of anti-inflammatory mediators, and immune cell infiltration in the kidney. Dendritic cells are professional antigen-presenting cells acting as a bridge connecting innate and adaptive immune responses. The anti-inflammatory subset of DCs is also capable of modulating inflammation. Autologous anti-inflammatory dendritic cells can be made by in vitro differentiation of peripheral blood monocytes and utilized as a cell-based therapy. Treatment with anti-inflammatory cytokines, immunosuppressants, and substances derived from pathogens can induce tolerogenic or anti-inflammatory features in ex vivo-generated DCs. It has been established that targeting inflammation can alleviate the progression of DKD. Recent studies have focused on the potential of dendritic cell-based therapies to modulate immune responses favorably. By inducing a tolerogenic phenotype in dendritic cells, it is possible to decrease the inflammatory response and subsequent kidney damage. This article highlights the possibility of using anti-inflammatory DCs as a cell-based therapy for DKD through its role in controlling inflammation.
Collapse
Affiliation(s)
- Jonny Jonny
- Indonesia Army Cellcure Center, Gatot Soebroto Central Army Hospital, Jakarta 10410, Indonesia; (E.C.S.)
- Faculty of Medicine, Dentistry, and Health Sciences, University Prima Indonesia, Medan 20118, Indonesia
- Faculty of Military Medicine, Indonesia Defense University, Jakarta 16810, Indonesia
- Faculty of Medicine, University of Pembangunan Nasional “Veteran” Jakarta, Jakarta 12450, Indonesia
| | - Enda Cindylosa Sitepu
- Indonesia Army Cellcure Center, Gatot Soebroto Central Army Hospital, Jakarta 10410, Indonesia; (E.C.S.)
| | - I Nyoman Ehrich Lister
- Faculty of Medicine, Dentistry, and Health Sciences, University Prima Indonesia, Medan 20118, Indonesia
| | - Linda Chiuman
- Faculty of Medicine, Dentistry, and Health Sciences, University Prima Indonesia, Medan 20118, Indonesia
| | - Terawan Agus Putranto
- Indonesia Army Cellcure Center, Gatot Soebroto Central Army Hospital, Jakarta 10410, Indonesia; (E.C.S.)
| |
Collapse
|
16
|
Mesa-Restrepo A, Byers E, Brown JL, Ramirez J, Allain JP, Posada VM. Osteointegration of Ti Bone Implants: A Study on How Surface Parameters Control the Foreign Body Response. ACS Biomater Sci Eng 2024; 10:4662-4681. [PMID: 39078702 DOI: 10.1021/acsbiomaterials.4c00114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
The integration of titanium (Ti)-based implants with bone is limited, resulting in implant failure. This lack of osteointegration is due to the foreign body response (FBR) that occurs after the implantation of biodevices. The process begins with protein adsorption, which is governed by implant surface properties, e.g., chemistry, charge, wettability, and/or topography. The distribution and composition of the protein layer in turn influence the recruitment, differentiation, and modulation of immune and bone cells. The subsequent events that occur at the bone-material interface will ultimately determine whether the implant is encapsulated or will integrate with bone. Despite the numerous studies evaluating the influence of surface properties in the various stages of the FBR, the factors that affect tissue-material interactions are often studied in isolation or in small correlations due to the technical challenges involved in assessing them in vitro or in vivo. Consequently, the influence of protein conformation on the Ti bone implant surface design remains an unresolved research question. The objective of this review is to comprehensively evaluate the existing literature on the effect of surface parameters of Ti and its alloys in the stages of FBR, with a particular focus on protein adsorption and osteoimmunomodulation. This evaluation aims to systematically describe these effects on bone formation.
Collapse
Affiliation(s)
- Andrea Mesa-Restrepo
- Department of Biomedical Engineering, Pennsylvania State University, State College, Pennsylvania 16802, United States
| | - Elizabeth Byers
- Department of Biomedical Engineering, Pennsylvania State University, State College, Pennsylvania 16802, United States
| | - Justin L Brown
- Department of Biomedical Engineering, Pennsylvania State University, State College, Pennsylvania 16802, United States
| | - Juan Ramirez
- Departamento de Ingeniería Mecánica, Universidad Nacional de Colombia, Cra 64C nro 73-120, 050024 Medellin, Colombia
| | - Jean Paul Allain
- Department of Biomedical Engineering, Pennsylvania State University, State College, Pennsylvania 16802, United States
- Ken and Mary Alice Lindquist Department of Nuclear Engineering, Pennsylvania State University, State College, Pennsylvania 16802, United States
- Department of Materials Science and Engineering, Pennsylvania State University, State College, Pennsylvania 16802, United States
| | - Viviana M Posada
- Ken and Mary Alice Lindquist Department of Nuclear Engineering, Pennsylvania State University, State College, Pennsylvania 16802, United States
| |
Collapse
|
17
|
Streutker EM, Devamoglu U, Vonk MC, Verdurmen WPR, Le Gac S. Fibrosis-on-Chip: A Guide to Recapitulate the Essential Features of Fibrotic Disease. Adv Healthc Mater 2024; 13:e2303991. [PMID: 38536053 DOI: 10.1002/adhm.202303991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 03/15/2024] [Indexed: 05/05/2024]
Abstract
Fibrosis, which is primarily marked by excessive extracellular matrix (ECM) deposition, is a pathophysiological process associated with many disorders, which ultimately leads to organ dysfunction and poor patient outcomes. Despite the high prevalence of fibrosis, currently there exist few therapeutic options, and importantly, there is a paucity of in vitro models to accurately study fibrosis. This review discusses the multifaceted nature of fibrosis from the viewpoint of developing organ-on-chip (OoC) disease models, focusing on five key features: the ECM component, inflammation, mechanical cues, hypoxia, and vascularization. The potential of OoC technology is explored for better modeling these features in the context of studying fibrotic diseases and the interplay between various key features is emphasized. This paper reviews how organ-specific fibrotic diseases are modeled in OoC platforms, which elements are included in these existing models, and the avenues for novel research directions are highlighted. Finally, this review concludes with a perspective on how to address the current gap with respect to the inclusion of multiple features to yield more sophisticated and relevant models of fibrotic diseases in an OoC format.
Collapse
Affiliation(s)
- Emma M Streutker
- Department of Medical BioSciences, Radboud University Medical Center, Geert Grooteplein 28, Nijmegen, 6525 GA, The Netherlands
| | - Utku Devamoglu
- Applied Microfluidics for BioEngineering Research, MESA+ Institute for Nanotechnoloygy and TechMed Centre, Organ-on-Chip Centre, University of Twente, Drienerlolaan 5, Enschede, 7522 NB, The Netherlands
| | - Madelon C Vonk
- Department of Rheumatology, Radboud University Medical Center, Nijmegen, PO Box 9101, Nijmegen, 6500 HB, The Netherlands
| | - Wouter P R Verdurmen
- Department of Medical BioSciences, Radboud University Medical Center, Geert Grooteplein 28, Nijmegen, 6525 GA, The Netherlands
| | - Séverine Le Gac
- Applied Microfluidics for BioEngineering Research, MESA+ Institute for Nanotechnoloygy and TechMed Centre, Organ-on-Chip Centre, University of Twente, Drienerlolaan 5, Enschede, 7522 NB, The Netherlands
| |
Collapse
|
18
|
Ganguly K, Luthfikasari R, Randhawa A, Dutta SD, Patil TV, Acharya R, Lim KT. Stimuli-Mediated Macrophage Switching, Unraveling the Dynamics at the Nanoplatforms-Macrophage Interface. Adv Healthc Mater 2024; 13:e2400581. [PMID: 38637323 DOI: 10.1002/adhm.202400581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 04/01/2024] [Indexed: 04/20/2024]
Abstract
Macrophages play an essential role in immunotherapy and tissue regeneration owing to their remarkable plasticity and diverse functions. Recent bioengineering developments have focused on using external physical stimuli such as electric and magnetic fields, temperature, and compressive stress, among others, on micro/nanostructures to induce macrophage polarization, thereby increasing their therapeutic potential. However, it is difficult to find a concise review of the interaction between physical stimuli, advanced micro/nanostructures, and macrophage polarization. This review examines the present research on physical stimuli-induced macrophage polarization on micro/nanoplatforms, emphasizing the synergistic role of fabricated structure and stimulation for advanced immunotherapy and tissue regeneration. A concise overview of the research advancements investigating the impact of physical stimuli, including electric fields, magnetic fields, compressive forces, fluid shear stress, photothermal stimuli, and multiple stimulations on the polarization of macrophages within complex engineered structures, is provided. The prospective implications of these strategies in regenerative medicine and immunotherapeutic approaches are highlighted. This review will aid in creating stimuli-responsive platforms for immunomodulation and tissue regeneration.
Collapse
Affiliation(s)
- Keya Ganguly
- Department of Biosystems Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea
- Institute of Forest Science, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Rachmi Luthfikasari
- Department of Biosystems Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Aayushi Randhawa
- Department of Biosystems Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea
- Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Sayan Deb Dutta
- Department of Biosystems Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Tejal V Patil
- Department of Biosystems Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea
- Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Rumi Acharya
- Department of Biosystems Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea
- Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Ki-Taek Lim
- Department of Biosystems Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea
- Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon, 24341, Republic of Korea
| |
Collapse
|
19
|
Li E, Cheung HCZ, Ma S. CTHRC1 + fibroblasts and SPP1 + macrophages synergistically contribute to pro-tumorigenic tumor microenvironment in pancreatic ductal adenocarcinoma. Sci Rep 2024; 14:17412. [PMID: 39075108 PMCID: PMC11286765 DOI: 10.1038/s41598-024-68109-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 07/19/2024] [Indexed: 07/31/2024] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is an extremely lethal cancer that accounts for over 90% of all pancreatic cancer cases. With a 5-year survival rate of only 13%, PDAC has proven to be extremely desmoplastic and immunosuppressive to most current therapies, including chemotherapy and surgical resection. In recent years, focus has shifted to understanding the tumor microenvironment (TME) around PDAC, enabling a greater understanding of biological pathways and intercellular interactions that can ultimately lead to potential for future drug targets. In this study, we leverage a combination of single-cell and spatial transcriptomics to further identify cellular populations and interactions within the highly heterogeneous TME. We demonstrate that SPP1+APOE+ tumor-associated macrophages (TAM) and CTHRC1+GREM1+ cancer-associated myofibroblasts (myCAF) not only act synergistically to promote an immune-suppressive TME through active extracellular matrix (ECM) deposition and epithelial mesenchymal transition (EMT), but are spatially colocalized and correlated, leading to worse prognosis. Our results highlight the crosstalk between stromal and myeloid cells as a significant area of study for future therapeutic targets to treat cancer.
Collapse
Affiliation(s)
- Evan Li
- Worcester Academy, Worcester, MA, USA.
| | | | - Shuangge Ma
- Department of Biostatistics, Yale University, New Haven, CT, USA.
| |
Collapse
|
20
|
Jiang Y, Chen Y, Fu J, Zhao R, Xu J, Liu Y. Bone morphogenetic protein 4 alleviates pulmonary fibrosis by regulating macrophages. Int Immunopharmacol 2024; 139:112530. [PMID: 39053231 DOI: 10.1016/j.intimp.2024.112530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 05/27/2024] [Accepted: 06/17/2024] [Indexed: 07/27/2024]
Abstract
Fibrosis is a pathological change mainly characterized by an increase of fibrous connective tissue and decrease of parenchymal cells. Its continuous progress may lead to the destruction of organ structure and function decline. An excess of alternatively activated M2 macrophages have been considered crucial candidates in the progression of fibrosis. Bone morphogenetic proteins (BMPs), a group of multifunctional growth factors, are essential for organ development and pathophysiological process, however, the roles that BMPs play in innate immune homeostasis in the development of fibrosis and the downstream signals have not been fully explored. In the current study, we firstly found that the expression of BMP4 was significantly down-regulated in human and mouse fibrosis samples. Then we investigated the effects of BMP4 on macrophage polarization in IL-4 environment and related molecular mechanisms, and found that BMP4 caused a decrease in polarized response towards M2, reflected in the expression of the markers Fizz1, Ym1 and Arg1, together with an inhibition in Stat6 phosphorylation. This relied on the Smad1/5/8 signaling, which had a crosstalk with Stat6. Moreover, the in vivo study showed that BMP4 treatment can reduce collagen deposition and delay the development of experimental pulmonary fibrosis in mice by inhibiting M2 macrophages through adoptive transfer experiment. These findings revealed a novel role of BMP4 in regulating macrophages, offering potential strategies for treating pulmonary fibrosis.
Collapse
Affiliation(s)
- Yiyang Jiang
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, PR China
| | - Yingyi Chen
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, PR China
| | - Jingfei Fu
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, PR China
| | - Rui Zhao
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, PR China
| | - Junji Xu
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, PR China.
| | - Yi Liu
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, PR China.
| |
Collapse
|
21
|
Ullm F, Renner A, Freudenberg U, Werner C, Pompe T. The Influence of Sulfation Degree of Glycosaminoglycan-Functionalized 3D Collagen I Networks on Cytokine Profiles of In Vitro Macrophage-Fibroblast Cocultures. Gels 2024; 10:450. [PMID: 39057473 PMCID: PMC11276094 DOI: 10.3390/gels10070450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/01/2024] [Accepted: 07/03/2024] [Indexed: 07/28/2024] Open
Abstract
Cell-cell interactions between fibroblasts and immune cells, like macrophages, are influenced by interaction with the surrounding extracellular matrix during wound healing. In vitro hydrogel models that mimic and modulate these interactions, especially of soluble mediators like cytokines, may allow for a more detailed investigation of immunomodulatory processes. In the present study, a biomimetic extracellular matrix model based on fibrillar 3D collagen I networks with a functionalization with heparin or 6-ON-desulfated heparin, as mimics of naturally occurring heparan sulfate, was developed to modulate cytokine binding effects with the hydrogel matrix. The constitution and microstructure of the collagen I network were found to be stable throughout the 7-day culture period. A coculture study of primary human fibroblasts/myofibroblasts and M-CSF-stimulated macrophages was used to show its applicability to simulate processes of progressed wound healing. The quantification of secreted cytokines (IL-8, IL-10, IL-6, FGF-2) in the cell culture supernatant demonstrated the differential impact of glycosaminoglycan functionalization of the collagen I network. Most prominently, IL-6 and FGF-2 were shown to be regulated by the cell culture condition and network constitution, indicating changes in paracrine and autocrine cell-cell communication of the fibroblast-macrophage coculture. From this perspective, we consider our newly established in vitro hydrogel model suitable for mechanistic coculture analyses of primary human cells to unravel the role of extracellular matrix factors in key events of tissue regeneration and beyond.
Collapse
Affiliation(s)
- Franziska Ullm
- Institute of Biochemistry, Leipzig University, Johannisallee 21-23, 04103 Leipzig, Germany; (F.U.); (A.R.)
| | - Alexander Renner
- Institute of Biochemistry, Leipzig University, Johannisallee 21-23, 04103 Leipzig, Germany; (F.U.); (A.R.)
| | - Uwe Freudenberg
- Max Bergmann Center of Biomaterials, Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Strasse 6, 01069 Dresden, Germany; (U.F.); (C.W.)
| | - Carsten Werner
- Max Bergmann Center of Biomaterials, Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Strasse 6, 01069 Dresden, Germany; (U.F.); (C.W.)
| | - Tilo Pompe
- Institute of Biochemistry, Leipzig University, Johannisallee 21-23, 04103 Leipzig, Germany; (F.U.); (A.R.)
- Max Bergmann Center of Biomaterials, Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Strasse 6, 01069 Dresden, Germany; (U.F.); (C.W.)
| |
Collapse
|
22
|
Hwang S, Cho JM, Yoon YJ, Seo S, Hong Y, Lim JY. Retroductal dexamethasone administration promotes the recovery from obstructive and inflammatory salivary gland dysfunction. Front Immunol 2024; 15:1418703. [PMID: 39044831 PMCID: PMC11263033 DOI: 10.3389/fimmu.2024.1418703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 06/12/2024] [Indexed: 07/25/2024] Open
Abstract
Introduction Salivary gland dysfunction, often resulting from salivary gland obstruction-induced inflammation, is a prevalent condition. Corticosteroid, known for its anti-inflammatory and immunomodulatory properties, is commonly prescribed in clinics. This study investigates the therapeutic implications and potential side effects of dexamethasone on obstructive sialadenitis recovery using duct ligation mice and salivary gland organoid models. Methods Functional and pathological changes were assessed after administering dexamethasone to the duct following deligation 2 weeks after maintaining ligation of the mouse submandibular duct. Additionally, lipopolysaccharide- and tumor necrosis factor-induced salivary gland organoid inflammation models were established to investigate the effects and underlying mechanisms of action of dexamethasone. Results Dexamethasone administration facilitated SG function restoration, by increasing salivary gland weight and saliva volume while reducing saliva lag time. Histological evaluation revealed, reduced acinar cell atrophy and fibrosis with dexamethasone treatment. Additionally, dexamethasone suppressed pro-inflammatory cytokines IL-1β and TNF expression. In a model of inflammation in salivary gland organoids induced by inflammatory substances, dexamethasone restored acinar markers such as AQP5 gene expression levels, while inhibiting pro-inflammatory cytokines TNF and IL6, as well as chemokines CCL2, CXCL5, and CXCL12 induction. Macrophages cultured in inflammatory substance-treated media from salivary gland organoid cultures exhibited pro-inflammatory polarization. However, treatment with dexamethasone shifted them towards an anti-inflammatory phenotype by reducing M1 markers (Tnf, Il6, Il1b, and Cd86) and elevating M2 markers (Ym1, Il10, Cd163, and Klf4). However, high-dose or prolonged dexamethasone treatment induced acino-ductal metaplasia and had side effects in both in vivo and in vitro models. Conclusions Our findings suggest the effectiveness of corticosteroids in treating obstructive sialadenitis-induced salivary gland dysfunction by regulating pro-inflammatory cytokines.
Collapse
Affiliation(s)
- Seungyeon Hwang
- Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jae-Min Cho
- Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Yeo-Jun Yoon
- Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Sunyoung Seo
- Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Yongpyo Hong
- Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jae-Yol Lim
- Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul, Republic of Korea
- Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
23
|
Du Q, Dickinson A, Nakuleswaran P, Maghami S, Alagoda S, Hook AL, Ghaemmaghami AM. Targeting Macrophage Polarization for Reinstating Homeostasis following Tissue Damage. Int J Mol Sci 2024; 25:7278. [PMID: 39000385 PMCID: PMC11242417 DOI: 10.3390/ijms25137278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 06/24/2024] [Accepted: 06/27/2024] [Indexed: 07/16/2024] Open
Abstract
Tissue regeneration and remodeling involve many complex stages. Macrophages are critical in maintaining micro-environmental homeostasis by regulating inflammation and orchestrating wound healing. They display high plasticity in response to various stimuli, showing a spectrum of functional phenotypes that vary from M1 (pro-inflammatory) to M2 (anti-inflammatory) macrophages. While transient inflammation is an essential trigger for tissue healing following an injury, sustained inflammation (e.g., in foreign body response to implants, diabetes or inflammatory diseases) can hinder tissue healing and cause tissue damage. Modulating macrophage polarization has emerged as an effective strategy for enhancing immune-mediated tissue regeneration and promoting better integration of implantable materials in the host. This article provides an overview of macrophages' functional properties followed by discussing different strategies for modulating macrophage polarization. Advances in the use of synthetic and natural biomaterials to fabricate immune-modulatory materials are highlighted. This reveals that the development and clinical application of more effective immunomodulatory systems targeting macrophage polarization under pathological conditions will be driven by a detailed understanding of the factors that regulate macrophage polarization and biological function in order to optimize existing methods and generate novel strategies to control cell phenotype.
Collapse
Affiliation(s)
- Qiran Du
- Immuno-Bioengineering Group, School of Life Sciences, University of Nottingham, Nottingham NG7 2RD, UK;
| | - Anna Dickinson
- Medical School, Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham NG7 2RD, UK; (A.D.); (P.N.); (S.A.)
| | - Pruthvi Nakuleswaran
- Medical School, Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham NG7 2RD, UK; (A.D.); (P.N.); (S.A.)
| | - Susan Maghami
- Hull York Medical School, University of York, York YO10 5DD, UK;
| | - Savindu Alagoda
- Medical School, Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham NG7 2RD, UK; (A.D.); (P.N.); (S.A.)
| | - Andrew L. Hook
- School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK;
| | - Amir M. Ghaemmaghami
- Immuno-Bioengineering Group, School of Life Sciences, University of Nottingham, Nottingham NG7 2RD, UK;
| |
Collapse
|
24
|
Shaikh TB, Chandra Y, Andugulapati SB, Sistla R. Vistusertib improves pulmonary inflammation and fibrosis by modulating inflammatory/oxidative stress mediators via suppressing the mTOR signalling. Inflamm Res 2024; 73:1223-1237. [PMID: 38789791 DOI: 10.1007/s00011-024-01894-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/06/2024] [Accepted: 05/15/2024] [Indexed: 05/26/2024] Open
Abstract
INTRODUCTION Inflammation and oxidative stress are key factors in the development of pulmonary fibrosis (PF) by promoting the differentiation of fibroblasts through modulating various pathways including Wnt/β-catenin, TGF-β and mTOR signalling. OBJECTIVE AND METHODS This study aimed to evaluate the effects and elucidate the mechanisms of vistusertib (VSB) in treating pulmonary inflammation/fibrosis, specifically by targeting the mTOR pathway using various in vitro and in vivo models. RESULTS Lipopolysaccharide (LPS)-induced inflammation model in macrophages (RAW 264.7), epithelial (BEAS-2B) and endothelial (HMVEC-L) cells revealed that treatment with VSB significantly reduced the IL-6, TNF-α, CCL2, and CCL7 expression. TGF-β induced differentiation was also significantly reduced upon VSB treatment in fibrotic cells (LL29 and DHLF). Further, bleomycin-induced inflammation and fibrosis models demonstrated that treatment with VSB significantly ameliorated the severe inflammation, and lung architectural distortion, by reducing the inflammatory markers expression/levels, inflammatory cells and oxidative stress indicators. Further, fibrosis model results exhibited that, VSB treatment significantly reduced the α-SMA, collagen and TGF-β expressions, improved the lung architecture and restored lung functions. CONCLUSION Overall, this study uncovers the anti-inflammatory/anti-fibrotic effects of VSB by modulating the mTOR activation. Although VSB was tested for lung fibrosis, it can be tested for other fibrotic disorders to improve the patient's survival and quality of life.
Collapse
Affiliation(s)
- Taslim B Shaikh
- Division of Applied Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad, Telangana, 500 007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201 002, India
| | - Yogesh Chandra
- Division of Applied Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad, Telangana, 500 007, India
| | - Sai Balaji Andugulapati
- Division of Applied Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad, Telangana, 500 007, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201 002, India.
| | - Ramakrishna Sistla
- Division of Applied Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad, Telangana, 500 007, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201 002, India.
| |
Collapse
|
25
|
Metwali N, Stapleton EM, Hadina S, Thorne PS. Exposure to structurally unique β-d-glucans differentially affects inflammatory responses in male mouse lungs. Physiol Rep 2024; 12:e16115. [PMID: 38923221 PMCID: PMC11194181 DOI: 10.14814/phy2.16115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 06/07/2024] [Accepted: 06/07/2024] [Indexed: 06/28/2024] Open
Abstract
Pro-inflammatory fungal β-d-glucan (BDG) polysaccharides cause respiratory pathology. However, specific immunological effects of unique BDG structures on pulmonary inflammation are understudied. We characterized the effect of four unique fungal BDGs with unique branching patterns, solubility, and molecular weights in murine airways. Scleroglucan (1 → 3)(1 → 6)-highly branched BDG, laminarin (1 → 3)(1 → 6)-branched BDG, curdlan (1 → 3)-linear BDG, and pustulan (1 → 6)-linear BDG were assessed by nuclear magnetic resonance spectroscopy. Each BDG was tested by inhalation model with C3HeB/FeJ mice and compared to saline-exposed control mice and unexposed sentinels (n = 3-19). Studies were performed ±heat-inactivation (1 h autoclave) to increase BDG solubility. Outcomes included bronchoalveolar lavage (BAL) differential cell counts (macrophages, neutrophils, lymphocytes, eosinophils), cytokines, serum IgE, and IgG2a (multiplex and ELISA). Ex vivo primary cells removed from lungs and plated at monolayer were stimulated (BDG, lipopolysaccharide (LPS), anti-CD3), and cytokines compared to unstimulated cells. Right lung histology was performed. Inhalation of BDGs with distinct branching patterns exhibited varying inflammatory potency and immunogenicity. Lichen-derived (1 → 6)-linear pustulan was the most pro-inflammatory BDG, increasing inflammatory infiltrate (BAL), serum IgE and IgG2a, and cytokine production. Primed lung cells responded to secondary LPS stimulation with a T-cell-specific response to pustulan. Glucan source and solubility should be considered in exposure and toxicological studies.
Collapse
Affiliation(s)
- Nervana Metwali
- Department of Occupational and Environmental HealthCollege of Public Health, University of IowaIowa CityIowaUSA
| | - Emma M. Stapleton
- Division of Pulmonary Critical Care and Occupational Medicine, Department of Internal MedicineUniversity of IowaIowa CityIowaUSA
| | - Suzana Hadina
- Department of Occupational and Environmental HealthCollege of Public Health, University of IowaIowa CityIowaUSA
- Present address:
Department of Microbiology & Infectious Disease with ClinicFaculty of Veterinary Medicine, University of ZagrebZagrebCroatia
| | - Peter S. Thorne
- Department of Occupational and Environmental HealthCollege of Public Health, University of IowaIowa CityIowaUSA
| |
Collapse
|
26
|
Salminen A, Kaarniranta K, Kauppinen A. Tissue fibroblasts are versatile immune regulators: An evaluation of their impact on the aging process. Ageing Res Rev 2024; 97:102296. [PMID: 38588867 DOI: 10.1016/j.arr.2024.102296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 03/26/2024] [Accepted: 04/03/2024] [Indexed: 04/10/2024]
Abstract
Fibroblasts are abundant stromal cells which not only control the integrity of extracellular matrix (ECM) but also act as immune regulators. It is known that the structural cells within tissues can establish an organ-specific immunity expressing many immune-related genes and closely interact with immune cells. In fact, fibroblasts can modify their immune properties to display both pro-inflammatory and immunosuppressive activities in a context-dependent manner. After acute insults, fibroblasts promote tissue inflammation although they concurrently recruit immunosuppressive cells to enhance the resolution of inflammation. In chronic pathological states, tissue fibroblasts, especially senescent fibroblasts, can display many pro-inflammatory and immunosuppressive properties and stimulate the activities of different immunosuppressive cells. In return, immunosuppressive cells, such as M2 macrophages and myeloid-derived suppressor cells (MDSC), evoke an excessive conversion of fibroblasts into myofibroblasts, thus aggravating the severity of tissue fibrosis. Single-cell transcriptome studies on fibroblasts isolated from aged tissues have confirmed that tissue fibroblasts express many genes coding for cytokines, chemokines, and complement factors, whereas they lose some fibrogenic properties. The versatile immune properties of fibroblasts and their close cooperation with immune cells indicate that tissue fibroblasts have a crucial role in the aging process and age-related diseases.
Collapse
Affiliation(s)
- Antero Salminen
- Department of Neurology, Institute of Clinical Medicine, University of Eastern Finland, P.O. Box 1627, Kuopio FI-70211, Finland.
| | - Kai Kaarniranta
- Department of Ophthalmology, Institute of Clinical Medicine, University of Eastern Finland, P.O. Box 1627, Kuopio FI-70211, Finland; Department of Ophthalmology, Kuopio University Hospital, P.O. Box 100, KYS FI-70029, Finland
| | - Anu Kauppinen
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, P.O. Box 1627, Kuopio FI-70211, Finland
| |
Collapse
|
27
|
Liu N, Sun W, Gao W, Yan S, Yang C, Zhang J, Ni B, Zhang L, Zang J, Zhang S, Xu D. CD300e: Emerging role and mechanism as an immune-activating receptor. Int Immunopharmacol 2024; 133:112055. [PMID: 38677094 DOI: 10.1016/j.intimp.2024.112055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 04/06/2024] [Accepted: 04/07/2024] [Indexed: 04/29/2024]
Abstract
As a transmembrane protein, CD300e is primarily expressed in myeloid cells. It belongs to the CD300 glycoprotein family, functioning as an immune-activating receptor. Dysfunction of CD300e has been suggested in many diseases, such as infections, immune disorders, obesity, and diabetes, signifying its potential as a key biomarker for disease diagnosis and treatment. This review is aimed to explore the roles and potential mechanisms of CD300e in regulating oxidative stress, immune cell activation, tissue damage and repair, and lipid metabolism, shedding light on its role as a diagnostic marker or a therapeutic target, particularly for infections and autoimmune disorders.
Collapse
Affiliation(s)
- Na Liu
- Central Laboratory of the First Affiliated Hospital & the First Clinical College, Shandong Second Medical University, Weifang 261000, China
| | - Wenchang Sun
- Central Laboratory of the First Affiliated Hospital & the First Clinical College, Shandong Second Medical University, Weifang 261000, China
| | - Weixing Gao
- Office of the First Clinical Medical College, Shandong Second Medical University, Weifang 261000, China
| | - Shushan Yan
- Department of Colorectal and Anal Surgery of the First Affiliated Hospital & the First Clinical College, Shandong Second Medical University, Weifang 261000, China
| | - Chunjuan Yang
- Central Laboratory of the First Affiliated Hospital & the First Clinical College, Shandong Second Medical University, Weifang 261000, China; Department of Rheumatology of the Affiliated Hospital, Shandong Second Medical University, Weifang, 261053, China
| | - Jin Zhang
- Department of Colorectal and Anal Surgery of the First Affiliated Hospital & the First Clinical College, Shandong Second Medical University, Weifang 261000, China
| | - Biao Ni
- Central Laboratory of the First Affiliated Hospital & the First Clinical College, Shandong Second Medical University, Weifang 261000, China
| | - Lili Zhang
- Central Laboratory of the First Affiliated Hospital & the First Clinical College, Shandong Second Medical University, Weifang 261000, China
| | - Jie Zang
- Central Laboratory of the First Affiliated Hospital & the First Clinical College, Shandong Second Medical University, Weifang 261000, China
| | - Sue Zhang
- Department of Anesthesiology, Weifang People's Hospital, Weifang 261000, China.
| | - Donghua Xu
- Central Laboratory of the First Affiliated Hospital & the First Clinical College, Shandong Second Medical University, Weifang 261000, China; Department of Rheumatology of the Affiliated Hospital, Shandong Second Medical University, Weifang, 261053, China; Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA, 70112, USA.
| |
Collapse
|
28
|
Zhu Y, Tan J, Wang Y, Gong Y, Zhang X, Yuan Z, Lu X, Tang H, Zhang Z, Jiang X, Zhu W, Gong L. Atg5 deficiency in macrophages protects against kidney fibrosis via the CCR6-CCL20 axis. Cell Commun Signal 2024; 22:223. [PMID: 38594728 PMCID: PMC11003172 DOI: 10.1186/s12964-024-01600-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 03/28/2024] [Indexed: 04/11/2024] Open
Abstract
BACKGROUND Autophagy is a lysosome-dependent degradation pathway that regulates macrophage activation, differentiation, and polarization. Autophagy related 5 (Atg5) is a key protein involved in phagocytic membrane elongation in autophagic vesicles that forms a complex with Atg12 and Atg16L1. Alterations in Atg5 are related to both acute and chronic kidney diseases in experimental models. However, the role of macrophage-expressed Atg5 in acute kidney injury remains unclear. METHODS Using a myeloid cell-specific Atg5 knockout (MΦ atg5-/-) mouse, we established renal ischemia/reperfusion and unilateral ureteral obstruction models to evaluate the role of macrophage Atg5 in renal macrophage migration and fibrosis. RESULTS Based on changes in the serum urea nitrogen and creatinine levels, Atg5 deletion had a minimal effect on renal function in the early stages after mild injury; however, MΦ atg5-/- mice had reduced renal fibrosis and reduced macrophage recruitment after 4 weeks of ischemia/reperfusion injury and 2 weeks of unilateral ureteral obstruction injury. Atg5 deficiency impaired the CCL20-CCR6 axis after severe ischemic kidneys. Chemotactic responses of bone marrow-derived monocytes (BMDMs) from MΦ atg5-/- mice to CCL20 were significantly attenuated compared with those of wild-type BMDMs, and this might be caused by the inhibition of PI3K, AKT, and ERK1/2 activation. CONCLUSIONS Our data indicate that Atg5 deficiency decreased macrophage migration by impairing the CCL20-CCR6 axis and inhibited M2 polarization, thereby improving kidney fibrosis.
Collapse
Affiliation(s)
- Yufeng Zhu
- Experimental Animal Center, Nanfang Hospital, Southern Medical University, No. 1838, North Guangzhou Avenue, Baiyun District, Guangzhou, 510515, China
| | - Jiexing Tan
- Experimental Animal Center, Nanfang Hospital, Southern Medical University, No. 1838, North Guangzhou Avenue, Baiyun District, Guangzhou, 510515, China
| | - Yuanzhan Wang
- Experimental Animal Center, Nanfang Hospital, Southern Medical University, No. 1838, North Guangzhou Avenue, Baiyun District, Guangzhou, 510515, China
| | - Yuhong Gong
- Experimental Animal Center, Nanfang Hospital, Southern Medical University, No. 1838, North Guangzhou Avenue, Baiyun District, Guangzhou, 510515, China
| | - Xiaoyong Zhang
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Ziguo Yuan
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Xinyu Lu
- Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Huifang Tang
- Department of Pharmacology, School of Basic Medical Sciences, Zhejiang University, Hangzhou, China
| | - Zhiming Zhang
- Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xiaotao Jiang
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Proteomics, Guangzhou, China
| | - Wei Zhu
- Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Li Gong
- Experimental Animal Center, Nanfang Hospital, Southern Medical University, No. 1838, North Guangzhou Avenue, Baiyun District, Guangzhou, 510515, China.
| |
Collapse
|
29
|
Dirand Z, Maraux M, Tissot M, Chatelain B, Supp D, Viennet C, Perruche S, Rolin G. Macrophage phenotype is determinant for fibrosis development in keloid disease. Matrix Biol 2024; 128:79-92. [PMID: 38485100 DOI: 10.1016/j.matbio.2024.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 02/28/2024] [Accepted: 03/06/2024] [Indexed: 04/02/2024]
Abstract
Keloid refers to a fibroproliferative disorder characterized by an accumulation of extracellular matrix (ECM) components at the dermis level, overgrowth beyond initial wound, and formation of tumor-like nodule areas. Treating keloid is still an unmet clinical need and the lack of an efficient therapy is clearly related to limited knowledge about keloid etiology, despite the growing interest of the scientific community in this pathology. In past decades, keloids were often studied in vitro through the sole prism of fibroblasts considered as the major effector of ECM deposition. Nevertheless, development of keloids results from cross-interactions of keloid fibroblasts (KFs) and their surrounding microenvironment, including immune cells such as macrophages. Our study aimed to evaluate the effect of M1 and M2 monocyte-derived macrophages on KFs in vitro. We focused on the effects of the macrophage secretome on fibrosis-related criteria in KFs, including proliferation, migration, differentiation, and ECM synthesis. First, we demonstrated that M2-like macrophages enhanced the fibrogenic profile of KFs in culture. Then, we surprisingly founded that M1-like macrophages can have an anti-fibrogenic effect on KFs, even in a pro-fibrotic environment. These results demonstrate, for the first time, that M1 and M2 macrophage subsets differentially impact the fibrotic fate of KFs in vitro, and suggest that restoring the M1/M2 balance to favor M1 in keloids could be an efficient therapeutic lever to prevent or treat keloid fibrosis.
Collapse
Affiliation(s)
- Zélie Dirand
- Université de Franche-Comté, EFS, INSERM, UMR RIGHT, 25000 Besançon, France
| | - Mélissa Maraux
- Université de Franche-Comté, EFS, INSERM, UMR RIGHT, 25000 Besançon, France
| | - Marion Tissot
- Université de Franche-Comté, EFS, INSERM, UMR RIGHT, 25000 Besançon, France; DImaCell Imaging Resource Center, 25000 Besançon, France
| | - Brice Chatelain
- Service de Chirurgie Maxillo-faciale, Stomatologie et Odontologie Hospitalière, CHU Besançon, 25000 Besançon, France
| | - Dorothy Supp
- Department of Surgery, University of Cincinnati College of Medicine, Cincinnati, OH, USA; Scientific Staff, Shriners Children's Ohio, Dayton, Ohio, USA
| | - Céline Viennet
- Université de Franche-Comté, EFS, INSERM, UMR RIGHT, 25000 Besançon, France; DImaCell Imaging Resource Center, 25000 Besançon, France
| | - Sylvain Perruche
- Université de Franche-Comté, EFS, INSERM, UMR RIGHT, 25000 Besançon, France; MED'INN'Pharma 25000 Besançon, France
| | - Gwenaël Rolin
- Université de Franche-Comté, EFS, INSERM, UMR RIGHT, 25000 Besançon, France; DImaCell Imaging Resource Center, 25000 Besançon, France; INSERM CIC-1431, CHU Besançon, 25000 Besançon, France.
| |
Collapse
|
30
|
Kitagawa T, Kawahata H, Kudo S. Effect of Low-Intensity Pulsed Ultrasound on Macrophage Properties and Fibrosis in the Infrapatellar Fat Pad in a Carrageenan-Induced Knee Osteoarthritis Rat Model. Cureus 2024; 16:e59246. [PMID: 38813293 PMCID: PMC11134478 DOI: 10.7759/cureus.59246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/28/2024] [Indexed: 05/31/2024] Open
Abstract
BACKGROUND In the progression of knee osteoarthritis (KOA), fibrosis of the infrapatellar fat pad (IFP) is a key pathological change. Low-intensity pulsed ultrasound (LIPUS) inhibits IFP fibrosis by decreasing the gene expression and activity of hypoxia-inducible factor (HIF-1α), which is a protein involved in IFP fibrosis in KOA rat models. On the other hand, macrophages play an important role in the progression of fibrosis in various tissues, and LIPUS irradiation suppresses macrophage infiltration and inflammatory cytokine secretion. However, whether LIPUS suppresses macrophage polarity and IFP fibrosis in KOA remains unclear. Therefore, we investigated the effect of LIPUS on macrophage polarity and IFP fibrosis. MATERIALS AND METHODS A KOA model was created by injecting carrageenin into the bilateral knee joints of Wistar rats (eight weeks old). Tissues were harvested over time for histological and molecular biological analysis. The KOA model was also subjected to LIPUS irradiation for two weeks following the injection of carrageenin. RESULTS RM-4-positive cells were widely distributed in IFP two weeks after carrageenin administration, but M2 macrophages were significantly increased, and the Sirius red area was decreased in the LIPUS-irradiated group compared with those in the non-irradiated group. The gene expression of M1 macrophage markers was significantly decreased and that of M2 macrophage markers was significantly increased in the LIPUS-irradiated group. The expression of transforming growth factor-β (TGF-β) and type 1 collagen was also significantly decreased. CONCLUSION These results suggest that LIPUS may serve as a novel approach for the treatment of KOA through its effect on M1 macrophages and suppression of TGF-β expression.
Collapse
Affiliation(s)
- Takashi Kitagawa
- Graduate School of Health Sciences, Morinomiya University of Medical Sciences, Osaka, JPN
- Department of Rehabilitation, Higashiosaka Hospital, Osaka, JPN
| | - Hirohisa Kawahata
- Graduate School of Health Sciences, Morinomiya University of Medical Sciences, Osaka, JPN
- Inclusive Medical Sciences Research Institute, Morinomiya University of Medical Sciences, Osaka, JPN
| | - Shintarou Kudo
- Graduate School of Health Sciences, Morinomiya University of Medical Sciences, Osaka, JPN
- Inclusive Medical Sciences Research Institute, Morinomiya University of Medical Sciences, Osaka, JPN
| |
Collapse
|
31
|
Huang Y, Luo W, Yang Z, Lan T, Wei X, Wu H. Machine learning and experimental validation identified autophagy signature in hepatic fibrosis. Front Immunol 2024; 15:1337105. [PMID: 38481992 PMCID: PMC10933073 DOI: 10.3389/fimmu.2024.1337105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Accepted: 02/14/2024] [Indexed: 04/10/2024] Open
Abstract
Background The molecular mechanisms of hepatic fibrosis (HF), closely related to autophagy, remain unclear. This study aimed to investigate autophagy characteristics in HF. Methods Gene expression profiles (GSE6764, GSE49541 and GSE84044) were downloaded, normalized, and merged. Autophagy-related differentially expressed genes (ARDEGs) were determined using the limma R package and the Wilcoxon rank sum test and then analyzed by GO, KEGG, GSEA and GSVA. The infiltration of immune cells, molecular subtypes and immune types of healthy control (HC) and HF were analyzed. Machine learning was carried out with two methods, by which, core genes were obtained. Models of liver fibrosis in vivo and in vitro were constructed to verify the expression of core genes and corresponding immune cells. Results A total of 69 ARDEGs were identified. Series functional cluster analysis showed that ARDEGs were significantly enriched in autophagy and immunity. Activated CD4 T cells, CD56bright natural killer cells, CD56dim natural killer cells, eosinophils, macrophages, mast cells, neutrophils, and type 17 T helper (Th17) cells showed significant differences in infiltration between HC and HF groups. Among ARDEGs, three core genes were identified, that were ATG5, RB1CC1, and PARK2. Considerable changes in the infiltration of immune cells were observed at different expression levels of the three core genes, among which the expression of RB1CC1 was significantly associated with the infiltration of macrophage, Th17 cell, natural killer cell and CD56dim natural killer cell. In the mouse liver fibrosis experiment, ATG5, RB1CC1, and PARK2 were at higher levels in HF group than those in HC group. Compared with HC group, HF group showed low positive area in F4/80, IL-17 and CD56, indicating decreased expression of macrophage, Th17 cell, natural killer cell and CD56dim natural killer cell. Meanwhile, knocking down RB1CC1 was found to inhibit the activation of hepatic stellate cells and alleviate liver fibrosis. Conclusion ATG5, RB1CC1, and PARK2 are promising autophagy-related therapeutic biomarkers for HF. This is the first study to identify RB1CC1 in HF, which may promote the progression of liver fibrosis by regulating macrophage, Th17 cell, natural killer cell and CD56dim natural killer cell.
Collapse
Affiliation(s)
- Yushen Huang
- Department of Pharmacy, Liuzhou Workers Hospital, Liuzhou, Guangxi, China
| | - Wen Luo
- Department of Gastrointestinal Surgery, Liuzhou Workers Hospital, Liuzhou, Guangxi, China
| | - Zhijie Yang
- Department of Pharmacy, Liuzhou Workers Hospital, Liuzhou, Guangxi, China
| | - Tian Lan
- Department of Pharmacy, Liuzhou Workers Hospital, Liuzhou, Guangxi, China
| | - Xiaomou Wei
- Department of Scientific Research, Liuzhou Workers Hospital, Liuzhou, Guangxi, China
| | - Hongwen Wu
- Department of Pharmacy, Liuzhou Workers Hospital, Liuzhou, Guangxi, China
| |
Collapse
|
32
|
Wang Y, Chen S, Bao S, Yao L, Wen Z, Xu L, Chen X, Guo S, Pang H, Zhou Y, Zhou P. Deciphering the fibrotic process: mechanism of chronic radiation skin injury fibrosis. Front Immunol 2024; 15:1338922. [PMID: 38426100 PMCID: PMC10902513 DOI: 10.3389/fimmu.2024.1338922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 02/02/2024] [Indexed: 03/02/2024] Open
Abstract
This review explores the mechanisms of chronic radiation-induced skin injury fibrosis, focusing on the transition from acute radiation damage to a chronic fibrotic state. It reviewed the cellular and molecular responses of the skin to radiation, highlighting the role of myofibroblasts and the significant impact of Transforming Growth Factor-beta (TGF-β) in promoting fibroblast-to-myofibroblast transformation. The review delves into the epigenetic regulation of fibrotic gene expression, the contribution of extracellular matrix proteins to the fibrotic microenvironment, and the regulation of the immune system in the context of fibrosis. Additionally, it discusses the potential of biomaterials and artificial intelligence in medical research to advance the understanding and treatment of radiation-induced skin fibrosis, suggesting future directions involving bioinformatics and personalized therapeutic strategies to enhance patient quality of life.
Collapse
Affiliation(s)
- Yiren Wang
- School of Nursing, Southwest Medical University, Luzhou, China
- Wound Healing Basic Research and Clinical Application Key Laboratory of Luzhou, Southwest Medical University, Luzhou, China
| | - Shouying Chen
- School of Nursing, Southwest Medical University, Luzhou, China
- Wound Healing Basic Research and Clinical Application Key Laboratory of Luzhou, Southwest Medical University, Luzhou, China
| | - Shuilan Bao
- School of Nursing, Southwest Medical University, Luzhou, China
- Wound Healing Basic Research and Clinical Application Key Laboratory of Luzhou, Southwest Medical University, Luzhou, China
| | - Li Yao
- School of Nursing, Southwest Medical University, Luzhou, China
- Wound Healing Basic Research and Clinical Application Key Laboratory of Luzhou, Southwest Medical University, Luzhou, China
| | - Zhongjian Wen
- School of Nursing, Southwest Medical University, Luzhou, China
- Wound Healing Basic Research and Clinical Application Key Laboratory of Luzhou, Southwest Medical University, Luzhou, China
| | - Lixia Xu
- School of Nursing, Southwest Medical University, Luzhou, China
| | - Xiaoman Chen
- School of Nursing, Southwest Medical University, Luzhou, China
| | - Shengmin Guo
- Department of Nursing, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Haowen Pang
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Yun Zhou
- School of Medical Information and Engineering, Southwest Medical University, Luzhou, China
| | - Ping Zhou
- Wound Healing Basic Research and Clinical Application Key Laboratory of Luzhou, Southwest Medical University, Luzhou, China
- Department of Radiology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| |
Collapse
|
33
|
Hua R, Gao H, He C, Xin S, Wang B, Zhang S, Gao L, Tao Q, Wu W, Sun F, Xu J. An emerging view on vascular fibrosis molecular mediators and relevant disorders: from bench to bed. Front Cardiovasc Med 2023; 10:1273502. [PMID: 38179503 PMCID: PMC10764515 DOI: 10.3389/fcvm.2023.1273502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 11/27/2023] [Indexed: 01/06/2024] Open
Abstract
Vascular fibrosis is a widespread pathologic condition that arises during vascular remodeling in cardiovascular dysfunctions. According to previous studies, vascular fibrosis is characterized by endothelial matrix deposition and vascular wall thickening. The RAAS and TGF-β/Smad signaling pathways have been frequently highlighted. It is, however, far from explicit in terms of understanding the cause and progression of vascular fibrosis. In this review, we collected and categorized a large number of molecules which influence the fibrosing process, in order to acquire a better understanding of vascular fibrosis, particularly of pathologic dysfunction. Furthermore, several mediators that prevent vascular fibrosis are discussed in depth in this review, with the aim that this will contribute to the future prevention and treatment of related conditions.
Collapse
Affiliation(s)
- Rongxuan Hua
- Department of Clinical Medicine, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Han Gao
- Department of Clinical Laboratory, Aerospace Center Hospital, Peking University, Beijing, China
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Chengwei He
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Shuzi Xin
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Boya Wang
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Beijing Key Laboratory of Carcinogenesis and Translational Research, Peking University Cancer Hospital & Institute, Beijing, China
| | - Sitian Zhang
- Department of Clinical Medicine, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Lei Gao
- Department of Biomedical Informatics, School of Biomedical Engineering, Capital Medical University, Beijing, China
| | - Qiang Tao
- Department of Biomedical Informatics, School of Biomedical Engineering, Capital Medical University, Beijing, China
| | - Wenqi Wu
- Experimental Center for Morphological Research Platform, Capital Medical University, Beijing, China
| | - Fangling Sun
- Department of Experimental Animal Laboratory, Xuan-Wu Hospital of Capital Medical University, Beijing, China
| | - Jingdong Xu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| |
Collapse
|
34
|
Xie L, Cheng Y, Du W, Fu L, Wei Z, Guan Y, Wang Y, Mei C, Hao C, Chen M, Gu X. Activation of GPER1 in macrophages ameliorates UUO-induced renal fibrosis. Cell Death Dis 2023; 14:818. [PMID: 38086848 PMCID: PMC10716282 DOI: 10.1038/s41419-023-06338-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 11/09/2023] [Accepted: 11/23/2023] [Indexed: 12/18/2023]
Abstract
Numerous studies have proven the critical role of macrophages in the renal fibrosis process. Notably, G Protein-coupled Estrogen Receptor 1 (GPER1), a novel estrogen receptor, has been shown to play a ubiquitous role in regulating macrophage activities and proinflammatory pathways. However, the precise role of GPER1 in macrophage-mediated renal fibrosis is unknown. In this study, we aimed to investigate the function of macrophage GPER1 in the UUO-induced renal fibrosis model. Compared to vehicle-treated ovariectomized (OVX) female and male unilateral ureteral obstruction (UUO) models, we observed that G-1 (GPER1 agonist)-treated OVX female and male UUO mice had fewer renal fibrotic lesions and less M1 and M2 macrophage infiltration in the kidney tissues. Conversely, Gper1 deletion in male UUO mice accelerated renal fibrosis and increased inflammation. In vitro studies also revealed that GPER1 activation reduced M0 macrophage polarization towards M1 or M2 phenotypes. The RNA-sequencing analysis and immunoblotting indicated that GPER1 activation was primarily involved in downregulating immune pathways activation and inactivating MAPK pathways. Tubular epithelial cells co-cultured with G-1-pretreated M1 macrophages exhibited fewer injuries and immune activation. In addition, fibroblasts co-cultured with G-1-pretreated M2 macrophages showed downregulated extracellular matrix expression. Overall, this is the first study to demonstrate the effect of GPER1 on macrophage-mediated renal fibrosis via inhibition of M1 and M2 macrophage activation. These findings indicate that GPER1 may be a promising therapeutic target for treating renal fibrosis.
Collapse
Affiliation(s)
- Lin Xie
- Department of Nephrology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China
- Department of Nephrology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200025, China
| | - Ye Cheng
- Department of Nephrology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China
- Department of Nephrology, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Wen Du
- Department of Nephrology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200025, China
| | - Lili Fu
- Department of Nephrology, Changzheng Hospital, Naval Medical University, Shanghai, 200001, China
| | - Zhaonan Wei
- Department of Nephrology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200025, China
| | - Yuting Guan
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Yi Wang
- Department of Nephrology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China
| | - Changlin Mei
- Department of Nephrology, Changzheng Hospital, Naval Medical University, Shanghai, 200001, China
| | - Chuanming Hao
- Department of Nephrology, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Min Chen
- Department of Nephrology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China.
| | - Xiangchen Gu
- Department of Nephrology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China.
- Department of Nephrology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200025, China.
- Department of Medicine, Shanghai Hospital of Civil Aviation Administration of China, Shanghai, 201201, China.
| |
Collapse
|
35
|
Pinkston R, Penn AL, Noël A. Increased oxidative stress responses in murine macrophages exposed at the air-liquid interface to third- and fourth-generation electronic nicotine delivery system (ENDS) aerosols. Toxicol Rep 2023; 11:40-57. [PMID: 37405056 PMCID: PMC10315815 DOI: 10.1016/j.toxrep.2023.06.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 06/06/2023] [Accepted: 06/14/2023] [Indexed: 07/06/2023] Open
Abstract
Background New fourth generation electronic nicotine delivery system (ENDS) devices contain high levels of nicotine salt (up to 60 mg/mL), whose cellular and molecular effects on immune cells are currently unknown. Here, we used a physiologically-relevant in vitro air-liquid interface (ALI) exposure model to assess the toxicity of distinct ENDS, a 3rd-generation electronic-cigarette (e-cig) and two 4th-generation ENDS devices (JUUL and Posh Plus). Methods Murine macrophages (RAW 264.7) were exposed at the ALI to either air, Menthol or Crème Brûlée-flavored ENDS aerosols generated from those devices for 1-hour per day for 1 or 3 consecutive days. Cellular and molecular toxicity was evaluated 24 h post-exposure. Results 1-day of Menthol-flavored JUUL aerosol exposure significantly decreased cell viability and significantly increased lactate dehydrogenase (LDH) levels compared to air controls. Further, JUUL Menthol elicited significantly increased reactive oxygen species (ROS) and nitric oxide (NO) production compared to air controls. Posh Crème Brûlée-flavored aerosols displayed significant cytotoxicity - decreased cell viability and increased LDH levels -after 1- and 3-day exposures, while the Crème Brûlée-flavored aerosol produced by the 3rd-generation e-cig device only displayed significant cytotoxicity after 3 days compared to air controls. Further, both Posh and third-generation e-cig Crème Brûlée flavored-aerosols elicited significantly increased ROS plus high levels of 8-isoprostane after 1 and 3 days compared to air controls, indicating increased oxidative stress. Posh and third-generation e-cig Crème Brûlée flavored-aerosols elicited reduction in NO levels after one day, but elicited increase in NO after 3 days. Genes in common dysregulated by both devices after 1 day included α7nAChR, Cyp1a1, Ahr, Mmp12, and iNos. Conclusion Our results suggest that ENDS Menthol and Crème Brûlée-flavored aerosol exposures from both 3rd- and 4th-generation ENDS devices are cytotoxic to macrophages and cause oxidative stress. This can translate into macrophage dysfunction. Although 4th-generation disposable ENDS devices have no adjustable operational settings and are considered low-powered ENDS devices, their aerosols can induce cellular toxicity compared to air-exposed control cells. This study provides scientific evidence for regulation of nicotine salt-based disposable ENDS products.
Collapse
Affiliation(s)
- Rakeysha Pinkston
- Department of Environmental Toxicology, Southern University and A & M College, Baton Rouge, LA 70813, USA
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, 1909 Skip Bertman Drive, Baton Rouge, LA 70803, USA
| | - Arthur L. Penn
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, 1909 Skip Bertman Drive, Baton Rouge, LA 70803, USA
| | - Alexandra Noël
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, 1909 Skip Bertman Drive, Baton Rouge, LA 70803, USA
| |
Collapse
|
36
|
d'Amati A, Ronca R, Maccarinelli F, Turati M, Lorusso L, De Giorgis M, Tamma R, Ribatti D, Annese T. PTX3 shapes profibrotic immune cells and epithelial/fibroblast repair and regeneration in a murine model of pulmonary fibrosis. Pathol Res Pract 2023; 251:154901. [PMID: 37922722 DOI: 10.1016/j.prp.2023.154901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/11/2023] [Accepted: 10/19/2023] [Indexed: 11/07/2023]
Abstract
The long pentraxin 3 (PTX3) is protective in different pathologies but was not analyzed in-depth in Idiopathic Pulmonary Fibrosis (IPF). Here, we have explored the influence of PTX3 in the bleomycin (BLM)-induced murine model of IPF by looking at immune cells (macrophages, mast cells, T cells) and stemness/regenerative markers of lung epithelium (SOX2) and fibro-blasts/myofibroblasts (CD44) at different time points that retrace the progression of the disease from onset at day 14, to full-blown disease at day 21, to incomplete regression at day 28. We took advantage of transgenic PTX3 overexpressing mice (Tie2-PTX3) and Ptx3 null ones (PTX3-KO) in which pulmonary fibrosis was induced. Our data have shown that PTX3 overexpression in Tie2-PTX3 compared to WT or PTX3-KO: reduced CD68+ and CD163+ macrophages and the Tryptase+ mast cells during the whole experimental time; on the contrary, CD4+ T cells are consistently present on day 14 and dramatically decreased on day 21; CD8+ T cells do not show significant differences on day 14, but are significantly reduced on day 21; SOX2 is reduced on days 14 and 21; CD44 is reduced on day 21. Therefore, PTX3 could act on the proimmune and fibrogenic microenvironment to prevent fibrosis in BLM-treated mice.
Collapse
Affiliation(s)
- Antonio d'Amati
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, University of Bari Medical School, Bari, Italy; Section of Pathology, Department of Emergency and Organ Transplantation, University of Bari, 70124 Bari, Italy
| | - Roberto Ronca
- Department of Molecular and Translational Medicine, School of Medicine, University of Brescia, 25123 Brescia, Italy
| | - Federica Maccarinelli
- Department of Molecular and Translational Medicine, School of Medicine, University of Brescia, 25123 Brescia, Italy
| | - Marta Turati
- Department of Molecular and Translational Medicine, School of Medicine, University of Brescia, 25123 Brescia, Italy
| | - Loredana Lorusso
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, University of Bari Medical School, Bari, Italy
| | - Michelina De Giorgis
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, University of Bari Medical School, Bari, Italy
| | - Roberto Tamma
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, University of Bari Medical School, Bari, Italy
| | - Domenico Ribatti
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, University of Bari Medical School, Bari, Italy
| | - Tiziana Annese
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, University of Bari Medical School, Bari, Italy; Department of Medicine and Surgery, LUM University, Casamassima, 70010 Bari, Italy.
| |
Collapse
|
37
|
Ghosh K, Shome DK, Kulkarni B, Ghosh MK, Ghosh K. Fibrosis and bone marrow: understanding causation and pathobiology. J Transl Med 2023; 21:703. [PMID: 37814319 PMCID: PMC10561412 DOI: 10.1186/s12967-023-04393-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 07/28/2023] [Indexed: 10/11/2023] Open
Abstract
Bone marrow fibrosis represents an important structural change in the marrow that interferes with some of its normal functions. The aetiopathogenesis of fibrosis is not well established except in its primary form. The present review consolidates current understanding of marrow fibrosis. We searched PubMed without time restriction using key words: bone marrow and fibrosis as the main stem against the terms: growth factors, cytokines and chemokines, morphology, megakaryocytes and platelets, myeloproliferative disorders, myelodysplastic syndrome, collagen biosynthesis, mesenchymal stem cells, vitamins and minerals and hormones, and mechanism of tissue fibrosis. Tissue marrow fibrosis-related papers were short listed and analysed for the review. It emerged that bone marrow fibrosis is the outcome of complex interactions between growth factors, cytokines, chemokines and hormones together with their facilitators and inhibitors. Fibrogenesis is initiated by mobilisation of special immunophenotypic subsets of mesenchymal stem cells in the marrow that transform into fibroblasts. Fibrogenic stimuli may arise from neoplastic haemopoietic or non-hematopoietic cells, as well as immune cells involved in infections and inflammatory conditions. Autoimmunity is involved in a small subset of patients with marrow fibrosis. Megakaryocytes and platelets are either directly involved or are important intermediaries in stimulating mesenchymal stem cells. MMPs, TIMPs, TGF-β, PDGRF, and basic FGF and CRCXL4 chemokines are involved in these processes. Genetic and epigenetic changes underlie many of these conditions.
Collapse
Affiliation(s)
- Kanjaksha Ghosh
- National Institute of Immunohaematology, 13 Th Fl KEM Hospital, Parel, Mumbai, 400012, India.
| | - Durjoy K Shome
- Department of Pathophysiology, American University of Antigua College of Medicine, Coolidge, Antigua and Barbuda
| | - Bipin Kulkarni
- Department of Molecular Biology and Haemostasis, National Institute of Immunohaematology, 13Th Fl KEM Hospital, Parel, Mumbai, 400012, India
| | - Malay K Ghosh
- Department of Haematology, Nilratan Sarkar Medical College, Kolkata, 700014, West Bengal, India
| | - Kinjalka Ghosh
- Department of Clinical Biochemistry, Tata Medical Centre and Homi Bhaba National Institute, Parel, Mumbai, 400012, India
| |
Collapse
|
38
|
Thuner J, Coutant F. IFN-γ: An overlooked cytokine in dermatomyositis with anti-MDA5 antibodies. Autoimmun Rev 2023; 22:103420. [PMID: 37625674 DOI: 10.1016/j.autrev.2023.103420] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Accepted: 08/22/2023] [Indexed: 08/27/2023]
Abstract
Dermatomyositis with anti-melanoma differentiation-associated gene 5 antibody (anti-MDA5 DM) is a rare autoimmune disease, often complicated by life-threatening, rapidly progressive interstitial lung disease. Additional manifestations of the disease include skin lesions, vascular abnormalities, joints and muscles pain. Despite its clinical significance, the pathogenesis of anti-MDA5 DM remains largely unknown. Currently, the disease is perceived as driven by type I interferon (IFN) whose expression is increased in most of the patients. Importantly, the regulation of IFN-γ is also altered in anti-MDA5 DM as evidenced by the presence of IFN-γ positive histiocytes in the lungs of patients, and the identification of autoantibodies that directly stimulate the production of IFN-γ by mononuclear cells. This review critically examines the pathogenesis of the disease, shedding light on recent findings that emphasize a potential role of IFN-γ. A novel conceptual framework is proposed, which integrates the molecular mechanisms altering IFN-γ regulation in anti-MDA5 DM with the known functional effects of IFN-γ on key tissues affected during the disease, such as the lungs, skin, and vessels. Understanding the precise role and relevance of IFN-γ in the pathogenesis of the disease will not only enhance the selection of available therapies for anti-MDA5 DM patients but also pave the way for the development of new therapeutic approaches targeting the altered molecular pathways.
Collapse
Affiliation(s)
- Jonathan Thuner
- Immunogenomics and Inflammation Research Team, University of Lyon, Edouard Herriot Hospital, Lyon, France; Internal medicine Department, Lyon-Sud Hospital, Hospices Civils de Lyon, Pierre-Bénite, France
| | - Frédéric Coutant
- Immunogenomics and Inflammation Research Team, University of Lyon, Edouard Herriot Hospital, Lyon, France; Immunology Department, Lyon-Sud Hospital, Hospices Civils de Lyon, Pierre-Bénite, France.
| |
Collapse
|
39
|
Macias-Ceja DC, Mendoza-Ballesteros MT, Ortega-Albiach M, Barrachina MD, Ortiz-Masià D. Role of the epithelial barrier in intestinal fibrosis associated with inflammatory bowel disease: relevance of the epithelial-to mesenchymal transition. Front Cell Dev Biol 2023; 11:1258843. [PMID: 37822869 PMCID: PMC10562728 DOI: 10.3389/fcell.2023.1258843] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 09/14/2023] [Indexed: 10/13/2023] Open
Abstract
In inflammatory bowel disease (IBD), chronic inflammation in the gastrointestinal tract can lead to tissue damage and remodelling, which can ultimately result in fibrosis. Prolonged injury and inflammation can trigger the activation of fibroblasts and extracellular matrix (ECM) components. As fibrosis progresses, the tissue becomes increasingly stiff and less functional, which can lead to complications such as intestinal strictures, obstructive symptoms, and eventually, organ dysfunction. Epithelial cells play a key role in fibrosis, as they secrete cytokines and growth factors that promote fibroblast activation and ECM deposition. Additionally, epithelial cells can undergo a process called epithelial-mesenchymal transition, in which they acquire a more mesenchymal-like phenotype and contribute directly to fibroblast activation and ECM deposition. Overall, the interactions between epithelial cells, immune cells, and fibroblasts play a critical role in the development and progression of fibrosis in IBD. Understanding these complex interactions may provide new targets for therapeutic interventions to prevent or treat fibrosis in IBD. In this review, we have collected and discussed the recent literature highlighting the contribution of epithelial cells to the pathogenesis of the fibrotic complications of IBD, including evidence of EMT, the epigenetic control of the EMT, the potential influence of the intestinal microbiome in EMT, and the possible therapeutic strategies to target EMT. Finally we discuss the pro-fibrotic interactions epithelial-immune cells and epithelial-fibroblasts cells.
Collapse
Affiliation(s)
- Dulce C. Macias-Ceja
- Departamento de Farmacología and CIBEREHD, Facultad de Medicina, Universidad de Valencia, Valencia, Spain
| | | | | | - M. Dolores Barrachina
- Departamento de Farmacología and CIBEREHD, Facultad de Medicina, Universidad de Valencia, Valencia, Spain
| | - Dolores Ortiz-Masià
- Departamento de Farmacología and CIBEREHD, Facultad de Medicina, Universidad de Valencia, Valencia, Spain
- Departamento de Medicina, Facultad de Medicina, Universidad de Valencia, Valencia, Spain
| |
Collapse
|
40
|
Tseng YH, Chen IC, Li WC, Hsu JH. Regulatory Cues in Pulmonary Fibrosis-With Emphasis on the AIM2 Inflammasome. Int J Mol Sci 2023; 24:10876. [PMID: 37446052 DOI: 10.3390/ijms241310876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/21/2023] [Accepted: 06/27/2023] [Indexed: 07/15/2023] Open
Abstract
Pulmonary fibrosis (PF) is a chronic lung disorder characterized by the presence of scarred and thickened lung tissues. Although the Food and Drug Administration approved two antifibrotic drugs, pirfenidone, and nintedanib, that are currently utilized for treating idiopathic PF (IPF), the clinical therapeutic efficacy remains unsatisfactory. It is crucial to develop new drugs or treatment schemes that combine pirfenidone or nintedanib to achieve more effective outcomes for PF patients. Understanding the complex mechanisms underlying PF could potentially facilitate drug discovery. Previous studies have found that the activation of inflammasomes, including nucleotide-binding and oligomerization domain (NOD)-like receptor protein (NLRP)1, NLRP3, NOD-like receptor C4, and absent in melanoma (AIM)2, contributes to lung inflammation and fibrosis. This article aims to summarize the cellular and molecular regulatory cues that contribute to PF with a particular emphasis on the role of AIM2 inflammasome in mediating pathophysiologic events during PF development. The insights gained from this research may pave the way for the development of more effective strategies for the prevention and treatment of PF.
Collapse
Affiliation(s)
- Yu-Hsin Tseng
- Department of Pediatrics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80756, Taiwan
| | - I-Chen Chen
- Department of Pediatrics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80756, Taiwan
- Department of Pediatrics, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Wan-Chun Li
- Institute of Oral Biology, College of Dentistry, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan
| | - Jong-Hau Hsu
- Department of Pediatrics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80756, Taiwan
- Department of Pediatrics, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| |
Collapse
|
41
|
Neuber S, Ermer MR, Emmert MY, Nazari-Shafti TZ. Treatment of Cardiac Fibrosis with Extracellular Vesicles: What Is Missing for Clinical Translation? Int J Mol Sci 2023; 24:10480. [PMID: 37445658 PMCID: PMC10342089 DOI: 10.3390/ijms241310480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/17/2023] [Accepted: 06/19/2023] [Indexed: 07/15/2023] Open
Abstract
Heart failure is the leading cause of morbidity and mortality and currently affects more than 60 million people worldwide. A key feature in the pathogenesis of almost all forms of heart failure is cardiac fibrosis, which is characterized by excessive accumulation of extracellular matrix components in the heart. Although cardiac fibrosis is beneficial in the short term after acute myocardial injury to preserve the structural and functional integrity of the heart, persistent cardiac fibrosis contributes to pathological cardiac remodeling, leading to mechanical and electrical dysfunction of the heart. Despite its high prevalence, standard therapies specifically targeting cardiac fibrosis are not yet available. Cell-based approaches have been extensively studied as potential treatments for cardiac fibrosis, but several challenges have been identified during clinical translation. The observation that extracellular vesicles (EVs) derived from stem and progenitor cells exhibit some of the therapeutic effects of the parent cells has paved the way to overcome limitations associated with cell therapy. However, to make EV-based products a reality, standardized methods for EV production, isolation, characterization, and storage must be established, along with concrete evidence of their safety and efficacy in clinical trials. This article discusses EVs as novel therapeutics for cardiac fibrosis from a translational perspective.
Collapse
Affiliation(s)
- Sebastian Neuber
- Department of Cardiothoracic and Vascular Surgery, Deutsches Herzzentrum der Charité (DHZC), 13353 Berlin, Germany; (M.R.E.); (M.Y.E.); (T.Z.N.-S.)
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 13353 Berlin, Germany
- BIH Center for Regenerative Therapies (BCRT), Berlin Institute of Health at Charité-Universitätsmedizin Berlin, 13353 Berlin, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Berlin, 13353 Berlin, Germany
| | - Miriam R. Ermer
- Department of Cardiothoracic and Vascular Surgery, Deutsches Herzzentrum der Charité (DHZC), 13353 Berlin, Germany; (M.R.E.); (M.Y.E.); (T.Z.N.-S.)
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 13353 Berlin, Germany
- BIH Center for Regenerative Therapies (BCRT), Berlin Institute of Health at Charité-Universitätsmedizin Berlin, 13353 Berlin, Germany
| | - Maximilian Y. Emmert
- Department of Cardiothoracic and Vascular Surgery, Deutsches Herzzentrum der Charité (DHZC), 13353 Berlin, Germany; (M.R.E.); (M.Y.E.); (T.Z.N.-S.)
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 13353 Berlin, Germany
- BIH Center for Regenerative Therapies (BCRT), Berlin Institute of Health at Charité-Universitätsmedizin Berlin, 13353 Berlin, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Berlin, 13353 Berlin, Germany
- Institute for Regenerative Medicine, University of Zurich, 8044 Zurich, Switzerland
| | - Timo Z. Nazari-Shafti
- Department of Cardiothoracic and Vascular Surgery, Deutsches Herzzentrum der Charité (DHZC), 13353 Berlin, Germany; (M.R.E.); (M.Y.E.); (T.Z.N.-S.)
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 13353 Berlin, Germany
- BIH Center for Regenerative Therapies (BCRT), Berlin Institute of Health at Charité-Universitätsmedizin Berlin, 13353 Berlin, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Berlin, 13353 Berlin, Germany
| |
Collapse
|
42
|
Macias-Ceja DC, Barrachina MD, Ortiz-Masià D. Autophagy in intestinal fibrosis: relevance in inflammatory bowel disease. Front Pharmacol 2023; 14:1170436. [PMID: 37397491 PMCID: PMC10307973 DOI: 10.3389/fphar.2023.1170436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 06/06/2023] [Indexed: 07/04/2023] Open
Abstract
Chronic inflammation is often associated with fibrotic disorders in which an excessive deposition of extracellular matrix is a hallmark. Long-term fibrosis starts with tissue hypofunction and finally ends in organ failure. Intestinal fibrosis is not an exception, and it is a frequent complication of inflammatory bowel disease (IBD). Several studies have confirmed the link between deregulated autophagy and fibrosis and the presence of common prognostic markers; indeed, both up- and downregulation of autophagy are presumed to be implicated in the progression of fibrosis. A better knowledge of the role of autophagy in fibrosis may lead to it becoming a potential target of antifibrotic therapy. In this review we explore novel advances in the field that highlight the relevance of autophagy in fibrosis, and give special focus to fibrosis in IBD patients.
Collapse
Affiliation(s)
- Dulce C. Macias-Ceja
- Departamento de Farmacología and CIBER, Facultad de Medicina y Odontología, Universitat de Valencia, Valencia, Spain
| | - María D. Barrachina
- Departamento de Farmacología and CIBER, Facultad de Medicina y Odontología, Universitat de Valencia, Valencia, Spain
| | - Dolores Ortiz-Masià
- Departamento de Farmacología and CIBER, Facultad de Medicina y Odontología, Universitat de Valencia, Valencia, Spain
- Departamento de Medicina, Facultad de Medicina y Odontología, Universitat de Valencia, Valencia, Spain
| |
Collapse
|
43
|
Mitsui Y, Yamabe F, Hori S, Uetani M, Kobayashi H, Nagao K, Nakajima K. Molecular Mechanisms and Risk Factors Related to the Pathogenesis of Peyronie's Disease. Int J Mol Sci 2023; 24:10133. [PMID: 37373277 PMCID: PMC10299070 DOI: 10.3390/ijms241210133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 05/25/2023] [Accepted: 06/03/2023] [Indexed: 06/29/2023] Open
Abstract
Peyronie's disease (PD) is a benign condition caused by plaque formation on the tunica albuginea of the penis. It is associated with penile pain, curvature, and shortening, and contributes to erectile dysfunction, which worsens patient quality of life. In recent years, research into understanding of the detailed mechanisms and risk factors involved in the development of PD has been increasing. In this review, the pathological mechanisms and several closely related signaling pathways, including TGF-β, WNT/β-catenin, Hedgehog, YAP/TAZ, MAPK, ROCK, and PI3K/AKT, are described. Findings regarding cross-talk among these pathways are then discussed to elucidate the complicated cascade behind tunica albuginea fibrosis. Finally, various risk factors including the genes involved in the development of PD are presented and their association with the disease summarized. The purpose of this review is to provide a better understanding regarding the involvement of risk factors in the molecular mechanisms associated with PD pathogenesis, as well as to provide insight into disease prevention and novel therapeutic interventions.
Collapse
Affiliation(s)
- Yozo Mitsui
- Department of Urology, Toho University Faculty of Medicine, Tokyo 143-8540, Japan; (F.Y.); (S.H.); (M.U.); (H.K.); (K.N.); (K.N.)
| | | | | | | | | | | | | |
Collapse
|
44
|
Hong SY, Lu YT, Chen SY, Hsu CF, Lu YC, Wang CY, Huang KL. Targeting pathogenic macrophages by the application of SHP-1 agonists reduces inflammation and alleviates pulmonary fibrosis. Cell Death Dis 2023; 14:352. [PMID: 37291088 PMCID: PMC10249559 DOI: 10.1038/s41419-023-05876-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 05/07/2023] [Accepted: 05/31/2023] [Indexed: 06/10/2023]
Abstract
Idiopathic pulmonary fibrosis is a progressive fibrotic disorder with no cure that is characterized by deterioration of lung function. Current FDA-approved drugs for IPF delay the decline in lung function, but neither reverse fibrosis nor significantly improve overall survival. SHP-1 deficiency results in hyperactive alveolar macrophages accumulating in the lung, which contribute to the induction of pulmonary fibrosis. Herein, we investigated whether employing a SHP-1 agonist ameliorates pulmonary fibrosis in a bleomycin-induced pulmonary fibrosis murine model. Histological examination and micro-computed tomography images showed that SHP-1 agonist treatment alleviates bleomycin-induced pulmonary fibrosis. Reduced alveolar hemorrhage, lung inflammation, and collagen deposition, as well as enhanced alveolar space, lung capacity, and improved overall survival were observed in mice administered the SHP-1 agonist. The percentage of macrophages collected from bronchoalveolar lavage fluid and circulating monocytes in bleomycin-instilled mice were also significantly reduced by SHP-1 agonist treatment, suggesting that the SHP-1 agonist may alleviate pulmonary fibrosis by targeting macrophages and reshaping the immunofibrotic niche. In human monocyte-derived macrophages, SHP-1 agonist treatment downregulated CSF1R expression and inactivated STAT3/NFκB signaling, culminating in inhibited macrophage survival and perturbed macrophage polarization. The expression of pro-fibrotic markers (e.g., MRC1, CD200R1, and FN1) by IL4/IL13-induced M2 macrophages that rely on CSF1R signaling for their fate-determination was restricted by SHP-1 agonist treatment. While M2-derived medium promoted the expression of fibroblast-to-myofibroblast transition markers (e.g., ACTA2 and COL3A1), the application of SHP-1 agonist reversed the transition in a dose-dependent manner. Our report indicates that pharmacological activation of SHP-1 ameliorates pulmonary fibrosis via suppression of CSF1R signaling in macrophages, reduction of pathogenic macrophages, and the inhibition of fibroblast-to-myofibroblast transition. Our study thus identifies SHP-1 as a druggable target for the treatment of IPF, and suggests that the SHP-1 agonist may be developed as an anti-pulmonary fibrosis medication that both suppresses inflammation and restrains fibroblast-to-myofibroblast transition.
Collapse
Affiliation(s)
- Shiao-Ya Hong
- Department of Biotechnology and Laboratory Science in Medicine, National Yang Ming Chiao Tung University, Taipei, 11221, Taiwan
- Medical Research Center, Cardinal Tien Hospital, New Taipei, 23148, Taiwan
| | - Ya-Ting Lu
- Institute of Biomedical Sciences, Academia Sinica, Taipei, 11529, Taiwan
| | - Shih-Yu Chen
- Institute of Biomedical Sciences, Academia Sinica, Taipei, 11529, Taiwan
| | - Chiung-Fang Hsu
- Department of Biotechnology and Laboratory Science in Medicine, National Yang Ming Chiao Tung University, Taipei, 11221, Taiwan
- Medical Research Center, Cardinal Tien Hospital, New Taipei, 23148, Taiwan
| | - Yi-Chun Lu
- Medical Research Center, Cardinal Tien Hospital, New Taipei, 23148, Taiwan
| | - Cheng-Yi Wang
- Department of Internal Medicine, Cardinal Tien Hospital and School of Medicine, College of Medicine, Fu Jen Catholic University, New Taipei, 23148, Taiwan.
| | - Kun-Lun Huang
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, 11490, Taiwan.
- Division of Pulmonary and Critical Care Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, 11490, Taiwan.
| |
Collapse
|
45
|
Saez A, Herrero-Fernandez B, Gomez-Bris R, Sánchez-Martinez H, Gonzalez-Granado JM. Pathophysiology of Inflammatory Bowel Disease: Innate Immune System. Int J Mol Sci 2023; 24:ijms24021526. [PMID: 36675038 PMCID: PMC9863490 DOI: 10.3390/ijms24021526] [Citation(s) in RCA: 191] [Impact Index Per Article: 95.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 12/30/2022] [Accepted: 01/10/2023] [Indexed: 01/15/2023] Open
Abstract
Inflammatory bowel disease (IBD), comprising Crohn's disease (CD) and ulcerative colitis (UC), is a heterogeneous state of chronic intestinal inflammation with no exact known cause. Intestinal innate immunity is enacted by neutrophils, monocytes, macrophages, and dendritic cells (DCs), and innate lymphoid cells and NK cells, characterized by their capacity to produce a rapid and nonspecific reaction as a first-line response. Innate immune cells (IIC) defend against pathogens and excessive entry of intestinal microorganisms, while preserving immune tolerance to resident intestinal microbiota. Changes to this equilibrium are linked to intestinal inflammation in the gut and IBD. IICs mediate host defense responses, inflammation, and tissue healing by producing cytokines and chemokines, activating the complement cascade and phagocytosis, or presenting antigens to activate the adaptive immune response. IICs exert important functions that promote or ameliorate the cellular and molecular mechanisms that underlie and sustain IBD. A comprehensive understanding of the mechanisms underlying these clinical manifestations will be important for developing therapies targeting the innate immune system in IBD patients. This review examines the complex roles of and interactions among IICs, and their interactions with other immune and non-immune cells in homeostasis and pathological conditions.
Collapse
Affiliation(s)
- Angela Saez
- LamImSys Lab, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), 28041 Madrid, Spain
- Facultad de Ciencias Experimentales, Universidad Francisco de Vitoria (UFV), 28223 Pozuelo de Alarcón, Spain
| | - Beatriz Herrero-Fernandez
- LamImSys Lab, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), 28041 Madrid, Spain
- Departamento de Fisiología, Facultad de Medicina, Universidad Autónoma de Madrid (UAM), 28029 Madrid, Spain
| | - Raquel Gomez-Bris
- LamImSys Lab, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), 28041 Madrid, Spain
- Departamento de Fisiología, Facultad de Medicina, Universidad Autónoma de Madrid (UAM), 28029 Madrid, Spain
| | - Hector Sánchez-Martinez
- LamImSys Lab, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), 28041 Madrid, Spain
| | - Jose M. Gonzalez-Granado
- LamImSys Lab, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), 28041 Madrid, Spain
- Department of Immunology, Ophthalmology and ENT, School of Medicine, Universidad Complutense de Madrid (UCM), 28040 Madrid, Spain
- CIBER de Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029 Madrid, Spain
- Correspondence: ; Tel.: +34-913908766
| |
Collapse
|
46
|
Zou S, Khoo BL. Subtyping based on immune cell fractions reveal heterogeneity of cardiac fibrosis in end-stage heart failure. Front Immunol 2023; 14:1053793. [PMID: 36875078 PMCID: PMC9975711 DOI: 10.3389/fimmu.2023.1053793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 02/02/2023] [Indexed: 02/17/2023] Open
Abstract
Background A central issue hindering the development of effective anti-fibrosis drugs for heart failure is the unclear interrelationship between fibrosis and the immune cells. This study aims at providing precise subtyping of heart failure based on immune cell fractions, elaborating their differences in fibrotic mechanisms, and proposing a biomarker panel for evaluating intrinsic features of patients' physiological statuses through subtype classification, thereby promoting the precision medicine for cardiac fibrosis. Methods We inferred immune cell type abundance of the ventricular samples by a computational method (CIBERSORTx) based on ventricular tissue samples from 103 patients with heart failure, and applied K-means clustering to divide patients into two subtypes based on their immune cell type abundance. We also designed a novel analytic strategy: Large-Scale Functional Score and Association Analysis (LAFSAA), to study fibrotic mechanisms in the two subtypes. Results Two subtypes of immune cell fractions: pro-inflammatory and pro-remodeling subtypes, were identified. LAFSAA identified 11 subtype-specific pro-fibrotic functional gene sets as the basis for personalised targeted treatments. Based on feature selection, a 30-gene biomarker panel (ImmunCard30) established for diagnosing patient subtypes achieved high classification performance, with the area under the receiver operator characteristic curve corresponding to 0.954 and 0.803 for the discovery and validation sets, respectively. Conclusion Patients with the two subtypes of cardiac immune cell fractions were likely having different fibrotic mechanisms. Patients' subtypes can be predicted based on the ImmunCard30 biomarker panel. We envision that our unique stratification strategy revealed in this study will unravel advance diagnostic techniques for personalised anti-fibrotic therapy.
Collapse
Affiliation(s)
- Shangjie Zou
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, Hong Kong SAR, China.,Hong Kong Center for Cerebro-Cardiovascular Health Engineering (COCHE), Hong Kong, Hong Kong SAR, China
| | - Bee Luan Khoo
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, Hong Kong SAR, China.,Hong Kong Center for Cerebro-Cardiovascular Health Engineering (COCHE), Hong Kong, Hong Kong SAR, China.,Department of Precision Diagnostic and Therapeutic Technology, City University of Hong Kong-Shenzhen Futian Research Institute, Shenzhen, China
| |
Collapse
|
47
|
Ly TD, Wolny M, Lindenkamp C, Birschmann I, Hendig D, Knabbe C, Faust-Hinse I. The Human Myofibroblast Marker Xylosyltransferase-I: A New Indicator for Macrophage Polarization. Biomedicines 2022; 10:2869. [PMID: 36359389 PMCID: PMC9687871 DOI: 10.3390/biomedicines10112869] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/29/2022] [Accepted: 11/05/2022] [Indexed: 09/04/2023] Open
Abstract
Chronic inflammation and excessive synthesis of extracellular matrix components, such as proteoglycans (PG), by fibroblast- or macrophage-derived myofibroblasts are the hallmarks of fibrotic diseases, including systemic sclerosis (SSc). Human xylosyltransferase-I (XT-I), which is encoded by the gene XYLT1, is the key enzyme that is involved in PG biosynthesis. Increased cellular XYLT1 expression and serum XT-I activity were measured in SSc. Nothing is known so far about the regulation of XT-I in immune cells, and their contribution to the increase in measurable serum XT-I activity. We utilized an in vitro model, with primary human CD14+CD16+ monocyte-derived macrophages (MΦ), in order to investigate the role of macrophage polarization on XT-I regulation. The MΦ generated were polarized towards two macrophage phenotypes that were associated with SSc, which were classified as classical pro-inflammatory (M1-like), and alternative pro-fibrotic (M2-like) MΦ. The fully characterized M1- and M2-like MΦ cultures showed differential XT-I gene and protein expressions. The fibrotic M2-like MΦ cultures exhibited higher XT-I secretion, as well as increased expression of myofibroblast marker α-smooth muscle actin, indicating the onset of macrophage-to-myofibroblast transition (MMT). Thus, we identified XT-I as a novel macrophage polarization marker for in vitro generated M1- and M2-like MΦ subtypes, and broadened the view of XT-I as a myofibroblast marker in the process of MMT.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Isabel Faust-Hinse
- Institut für Laboratoriums- und Transfusionsmedizin, Herz- und Diabeteszentrum NRW, Universitätsklinik der Ruhr-Universität Bochum, Georgstraße 11, 32545 Bad Oeynhausen, Germany
| |
Collapse
|
48
|
Heloterä H, Kaarniranta K. A Linkage between Angiogenesis and Inflammation in Neovascular Age-Related Macular Degeneration. Cells 2022; 11:cells11213453. [PMID: 36359849 PMCID: PMC9654543 DOI: 10.3390/cells11213453] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/25/2022] [Accepted: 10/29/2022] [Indexed: 11/06/2022] Open
Abstract
Age-related macular degeneration (AMD) is the leading cause of visual impairment in the aging population with a limited understanding of its pathogenesis and the number of patients are all the time increasing. AMD is classified into two main forms: dry and neovascular AMD (nAMD). Dry AMD is the most prevalent form (80–90%) of AMD cases. Neovascular AMD (10–20% of AMD cases) is treated with monthly or more sparsely given intravitreal anti-vascular endothelial growth factor inhibitors, but unfortunately, not all patients respond to the current treatments. A clinical hallmark of nAMD is choroidal neovascularization. The progression of AMD is initially characterized by atrophic alterations in the retinal pigment epithelium, as well as the formation of lysosomal lipofuscin and extracellular drusen deposits. Cellular damage caused by chronic oxidative stress, protein aggregation and inflammatory processes may lead to advanced geographic atrophy and/or choroidal neovascularization and fibrosis. Currently, it is not fully known why different AMD phenotypes develop. In this review, we connect angiogenesis and inflammatory regulators in the development of nAMD and discuss therapy challenges and hopes.
Collapse
Affiliation(s)
- Hanna Heloterä
- Department of Ophthalmology, Institute of Clinical Medicine, University of Eastern Finland, 70211 Kuopio, Finland
- Correspondence:
| | - Kai Kaarniranta
- Department of Ophthalmology, Institute of Clinical Medicine, University of Eastern Finland, 70211 Kuopio, Finland
- Department of Ophthalmology, Kuopio University Hospital, 70210 Kuopio, Finland
| |
Collapse
|
49
|
Yao H, Tang G. Macrophages in intestinal fibrosis and regression. Cell Immunol 2022; 381:104614. [PMID: 36182587 DOI: 10.1016/j.cellimm.2022.104614] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 09/14/2022] [Accepted: 09/20/2022] [Indexed: 11/03/2022]
Abstract
Intestinal macrophages are heterogenous cell populations with different developmental ontogeny and tissue anatomy. The concerted actions of intestinal macrophage subsets are critical to maintaining tissue homeostasis. However, the dysregulation of macrophages following tissue injury or chronic inflammation could also lead to intestinal fibrosis, with few treatment options in the clinic. In this review, we will characterize the features of intestinal macrophages in light of the latest advances in lineage tracing and single-cell sequencing technology. The roles of macrophages in distinct stages of intestinal fibrosis would be also elaborated. Finally, based on the reciprocal interaction between macrophages and intestinal fibrosis, we will propose the potential macrophage targeting anti-intestinal fibrosis therapies.
Collapse
Affiliation(s)
- Hui Yao
- Department of Oral Medicine, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China; College of Stomatology, Shanghai Jiao Tong University, Shanghai 200011, China; National Center for Stomatology, Shanghai 200011, China; National Clinical Research Center for Oral Diseases, Shanghai 200011, China; Shanghai Key Laboratory of Stomatology, Shanghai 200011, China
| | - Guoyao Tang
- Department of Oral Medicine, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China; College of Stomatology, Shanghai Jiao Tong University, Shanghai 200011, China; National Center for Stomatology, Shanghai 200011, China; National Clinical Research Center for Oral Diseases, Shanghai 200011, China; Shanghai Key Laboratory of Stomatology, Shanghai 200011, China.
| |
Collapse
|
50
|
Yu S, Wang J, Zheng H, Wang R, Johnson N, Li T, Li P, Lin J, Li Y, Yan J, Zhang Y, Zhu Z, Ding X. Pathogenesis from Inflammation to Cancer in NASH-Derived HCC. J Hepatocell Carcinoma 2022; 9:855-867. [PMID: 36051860 PMCID: PMC9426868 DOI: 10.2147/jhc.s377768] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 08/17/2022] [Indexed: 11/30/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common type of primary liver cancer and one of the deadliest cancers worldwide. As opposed to the majority of patients with HCC, approximately 20–30% of cases of non-alcoholic steatohepatitis (NASH)-derived HCC develop malignant tumours in the absence of liver cirrhosis. NASH is characterized by metabolic dysregulation, chronic inflammation and cell death in the liver, which provide a favorable setting for the transformation of inflammation into cancer. This review aims to describe the pathogenesis and the underlying mechanism of the transition from inflammation to cancer in NASH.
Collapse
Affiliation(s)
- Simiao Yu
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, People's Republic of China
| | - Jingxiao Wang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 100029, People's Republic of China
| | - Haocheng Zheng
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, People's Republic of China
| | - Ruilin Wang
- Department of Hepatology of Traditional Chinese Medicine, The Fifth Medical Center of PLA General Hospital, Beijing, 100039, People's Republic of China
| | - Nadia Johnson
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, People's Republic of China
| | - Tao Li
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, People's Republic of China
| | - Ping Li
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, People's Republic of China
| | - Jie Lin
- National Institute of Traditional Chinese Medicine Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, 100029, People's Republic of China
| | - Yuan Li
- National Institute of Traditional Chinese Medicine Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, 100029, People's Republic of China
| | - Jin Yan
- Department of Hepatobiliary Surgery, The Fifth Medical Center of PLA General Hospital, Beijing, 100039, People's Republic of China
| | - Ying Zhang
- Department of Hepatobiliary Surgery, The Fifth Medical Center of PLA General Hospital, Beijing, 100039, People's Republic of China
| | - Zhenyu Zhu
- Department of Hepatobiliary Surgery, The Fifth Medical Center of PLA General Hospital, Beijing, 100039, People's Republic of China
| | - Xia Ding
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, People's Republic of China.,Centre of Research for Traditional Chinese Medicine Digestive, Beijing University of Chinese Medicine, Beijing, 100029, People's Republic of China
| |
Collapse
|