1
|
Prince N, Peralta Marzal LN, Roussin L, Monnoye M, Philippe C, Maximin E, Ahmed S, Salenius K, Lin J, Autio R, Adolfs Y, Pasterkamp RJ, Garssen J, Naudon L, Rabot S, Kraneveld AD, Perez-Pardo P. Mouse strain-specific responses along the gut-brain axis upon fecal microbiota transplantation from children with autism. Gut Microbes 2025; 17:2447822. [PMID: 39773319 PMCID: PMC11730631 DOI: 10.1080/19490976.2024.2447822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 12/03/2024] [Accepted: 12/23/2024] [Indexed: 01/11/2025] Open
Abstract
Several factors are linked to the pathophysiology of autism spectrum disorders (ASD); however, the molecular mechanisms of the condition remain unknown. As intestinal problems and gut microbiota dysbiosis are associated with ASD development and severity, recent studies have focused on elucidating the microbiota-gut-brain axis' involvement. This study aims to explore mechanisms through which gut microbiota might influence ASD. Briefly, we depleted the microbiota of conventional male BALB/cAnNCrl (Balb/c) and C57BL/6J (BL/6) mice prior to human fecal microbiota transplantation (hFMT) with samples from children with ASD or their neurotypical siblings. We found mouse strain-specific responses to ASD hFMT. Notably, Balb/c mice exhibit decreased exploratory and social behavior, and show evidence of intestinal, systemic, and central inflammation accompanied with metabolic shifts. BL/6 mice show less changes after hFMT. Our results reveal that gut microbiota alone induce changes in ASD-like behavior, and highlight the importance of mouse strain selection when investigating multifactorial conditions like ASD.
Collapse
Affiliation(s)
- Naika Prince
- Division of Pharmacology, Faculty of Science, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Lucia N. Peralta Marzal
- Division of Pharmacology, Faculty of Science, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Léa Roussin
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Magali Monnoye
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Catherine Philippe
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Elise Maximin
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Sabbir Ahmed
- Division of Pharmacology, Faculty of Science, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Karoliina Salenius
- Faculty of Medicine and Health Technology, Tampere University and Tays Cancer Centre, Tampere, Finland
| | - Jake Lin
- Health Sciences, Faculty of Social Sciences, Tampere University, Tampere, Finland
| | - Reija Autio
- Health Sciences, Faculty of Social Sciences, Tampere University, Tampere, Finland
| | - Youri Adolfs
- Department of Translational Neuroscience, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht, Netherlands
| | - R. Jeroen Pasterkamp
- Department of Translational Neuroscience, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht, Netherlands
| | - Johan Garssen
- Division of Pharmacology, Faculty of Science, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
- Danone Nutricia Research, Utrecht, Netherlands
| | - Laurent Naudon
- Université Paris-Saclay, INRAE, AgroParisTech, CNRS, Micalis Institute, Jouy-en-Josas, France
| | - Sylvie Rabot
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Aletta D. Kraneveld
- Division of Pharmacology, Faculty of Science, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
- Department of Neuroscience, Faculty of Science, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Paula Perez-Pardo
- Division of Pharmacology, Faculty of Science, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
2
|
Huang Z, Du X, Li F, Lan Z, Guo L, Pan L. Gut microbiota and blood metabolites: unveiling their roles in hippocampal volume changes through Mendelian randomization and mediation analysis. Metab Brain Dis 2025; 40:178. [PMID: 40220127 DOI: 10.1007/s11011-025-01611-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2025] [Accepted: 04/08/2025] [Indexed: 04/14/2025]
Abstract
Changes in hippocampal volume (HV) are linked to various neuropsychiatric disorders. Observational studies suggest associations of gut microbiota (GM) and blood metabolites (BM) with changes in HV; however, their causal relationships remain unclear. We aimed to use Mendelian randomization (MR) to investigate the causal associations of GM and BM with changes in HV and to explore the potential mediating role of BM. Using two-sample MR (TSMR) analysis, we examined 412 GM traits and 1,400 BM traits with a focus on their causal relationships with age-independent/dependent longitudinal changes in HV, primarily using the inverse variance weighted method. Furthermore, we explored the mediating role of BM through a two-step MR design. We identified 44 GM traits and 175 BM traits having nominally significant causal associations with age-independent/dependent longitudinal changes in HV. In addition, the glycine-to-pyridoxal ratio (mediation proportion: 7.38%) and the phosphate-to-citrate ratio (mediation proportion: 12.55%) mediated the effect of the pathway of L-arginine degradation II on the reduction of age-independent longitudinal changes in HV. Our study reveals the causal effects of GM and BM on longitudinal changes in HV and identifies BM traits with mediating roles. These findings offer valuable insights for the prevention and treatment of the related neuropsychiatric disorders.
Collapse
Affiliation(s)
- Zijin Huang
- Department of Anesthesiology, Guangxi Medical University Cancer Hospital, Guangxi Zhuang Autonomous Region, Nanning, 530021, People's Republic of China
- Department of Anesthesiology, The Second Affiliated Hospital of Guangxi Medical University, Guangxi Zhuang Autonomous Region, Nanning, 530007, People's Republic of China
- Guangxi Key Laboratory for Basic Science and Prevention of Perioperative Organ Dysfunction, Guangxi Medical University Cancer Hospital, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
- Guangxi Engineering Research Center for Tissue & Organ Injury and Repair Medicine, Guangxi Zhuang Autonomous Region, Nanning, 530021, People's Republic of China
- Guangxi Clinical Research Center for Anesthesiology, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Xueke Du
- Department of Anesthesiology, The Second Affiliated Hospital of Guangxi Medical University, Guangxi Zhuang Autonomous Region, Nanning, 530007, People's Republic of China
- Guangxi Key Laboratory for Basic Science and Prevention of Perioperative Organ Dysfunction, Guangxi Medical University Cancer Hospital, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Fangzhou Li
- Department of Anesthesiology, Guangxi Medical University Cancer Hospital, Guangxi Zhuang Autonomous Region, Nanning, 530021, People's Republic of China
- Guangxi Key Laboratory for Basic Science and Prevention of Perioperative Organ Dysfunction, Guangxi Medical University Cancer Hospital, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
- Guangxi Engineering Research Center for Tissue & Organ Injury and Repair Medicine, Guangxi Zhuang Autonomous Region, Nanning, 530021, People's Republic of China
- Guangxi Clinical Research Center for Anesthesiology, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Zhixuan Lan
- Department of Anesthesiology, The Second Affiliated Hospital of Guangxi Medical University, Guangxi Zhuang Autonomous Region, Nanning, 530007, People's Republic of China
| | - Liang Guo
- Department of Anesthesiology, Guangxi Medical University Cancer Hospital, Guangxi Zhuang Autonomous Region, Nanning, 530021, People's Republic of China
- Guangxi Key Laboratory for Basic Science and Prevention of Perioperative Organ Dysfunction, Guangxi Medical University Cancer Hospital, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
- Guangxi Engineering Research Center for Tissue & Organ Injury and Repair Medicine, Guangxi Zhuang Autonomous Region, Nanning, 530021, People's Republic of China
- Guangxi Clinical Research Center for Anesthesiology, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Linghui Pan
- Department of Anesthesiology, Guangxi Medical University Cancer Hospital, Guangxi Zhuang Autonomous Region, Nanning, 530021, People's Republic of China.
- Guangxi Key Laboratory for Basic Science and Prevention of Perioperative Organ Dysfunction, Guangxi Medical University Cancer Hospital, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China.
- Guangxi Engineering Research Center for Tissue & Organ Injury and Repair Medicine, Guangxi Zhuang Autonomous Region, Nanning, 530021, People's Republic of China.
- Guangxi Clinical Research Center for Anesthesiology, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China.
| |
Collapse
|
3
|
Suárez-Jaramillo A, Cifuentes SG, Baldeón M, Cárdenas P. Intestinal Metabolome for Diagnosing and Prognosing Autism Spectrum Disorder in Children: A Systematic Review. Metabolites 2025; 15:213. [PMID: 40278342 PMCID: PMC12029135 DOI: 10.3390/metabo15040213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Revised: 03/10/2025] [Accepted: 03/14/2025] [Indexed: 04/26/2025] Open
Abstract
Background/Objectives: Currently, the diagnosis of autism spectrum disorder (ASD) relies on behavioral observations, frequently causing delays in early identification. Prognostic markers are essential for customizing therapy and monitoring progress. However, there are currently no recognized biomarkers for ASD. The current systematic review aims to analyze studies on the intestinal metabolome in children (both autistic and non-autistic) to identify potential metabolites for diagnostic and prognostic purposes. Methods: We searched Medline, Scopus, Embase, and Web of Science for relevant publications. Results: We identified 11 studies examining the gut metabolome that distinguished between autistic and non-autistic children. These studies also revealed connections between gut metabolites, developmental scores, and symptoms. The substances identified were associated with metabolic pathways such as amino acids, vitamins, lipids, oxidative stress, glycans, xenobiotics, and nucleotides. Conclusions: These findings suggest metabolic changes that may be linked to the causes or development of autism. Although these observations came from a few reports, only high-quality studies were included in this review. Further research is essential to confirm the identified substances as biomarkers.
Collapse
Affiliation(s)
- Andrés Suárez-Jaramillo
- Institute of Microbiology, Universidad San Francisco de Quito, Quito 170901, Ecuador; (A.S.-J.); (S.G.C.)
| | - Sara G. Cifuentes
- Institute of Microbiology, Universidad San Francisco de Quito, Quito 170901, Ecuador; (A.S.-J.); (S.G.C.)
| | - Manuel Baldeón
- Facultad de Ciencias Médicas de la Salud y de la Vida, Universidad Internacional del Ecuador, Quito 170411, Ecuador;
- Unidad de Investigación Clínica, Hospital Metropolitano de Quito, Quito 170521, Ecuador
| | - Paúl Cárdenas
- Institute of Microbiology, Universidad San Francisco de Quito, Quito 170901, Ecuador; (A.S.-J.); (S.G.C.)
| |
Collapse
|
4
|
Logan AC, Mishra P, Prescott SL. The Legalome: Microbiology, Omics and Criminal Justice. Microb Biotechnol 2025; 18:e70129. [PMID: 40072296 PMCID: PMC11898878 DOI: 10.1111/1751-7915.70129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Revised: 02/25/2025] [Accepted: 02/28/2025] [Indexed: 03/15/2025] Open
Abstract
Advances in neuromicrobiology and related omics technologies have reinforced the idea that unseen microbes play critical roles in human cognition and behaviour. Included in this research is evidence indicating that gut microbes, through direct and indirect pathways, can influence aggression, anger, irritability and antisocial behaviour. Moreover, gut microbes can manufacture chemicals that are known to compromise cognition. For example, recent court decisions in the United States and Europe acknowledge that gut microbes can produce high levels of ethanol, without consumption of alcohol by the defendants. The dismissal of driving while intoxicated charges in these cases-so-called auto-brewery syndrome-highlights the way in which microbiome knowledge will enhance the precision, objectivity and fairness of our legal systems. Here in this opinion essay, we introduce the concept of the 'legalome'-the application of microbiome and omics science to forensic psychiatry and criminal law. We argue that the rapid pace of microbial discoveries, including those that challenge ideas of free will and moral responsibility, will necessitate a reconsideration of traditional legal doctrines and justifications of retributive punishment. The implications extend beyond the courtroom, challenging us to reconsider how environmental factors-from diet to socioeconomic conditions-might shape preventative and rehabilitative efforts through their effects on the microbiome.
Collapse
Affiliation(s)
| | - Pragya Mishra
- University of Allahabad (A Central University)PrayagrajIndia
| | - Susan L. Prescott
- Nova Institute for HealthBaltimoreMarylandUSA
- University of Western AustraliaPerthWestern AustraliaAustralia
- University of MarylandBaltimoreMarylandUSA
| |
Collapse
|
5
|
Basra M, Miceli L, Mundra V, Stern-Harbutte A, Patel H, Haynes J, Parmar MS. Exploring the neurotoxic effects of microbial metabolites: A potential link between p-Cresol and autism spectrum disorders? Brain Res 2025; 1850:149427. [PMID: 39732158 DOI: 10.1016/j.brainres.2024.149427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 12/08/2024] [Accepted: 12/23/2024] [Indexed: 12/30/2024]
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder with a complex etiology, including genetic and environmental factors. A growing body of evidence (preclinical and clinical studies) implicates a potential role of gut microbiome dysregulation in ASD pathophysiology. This review focuses on the microbial metabolite p-Cresol, produced by certain gut bacteria such as Clostridium, and its potential role in ASD. The review summarizes studies investigating the gut microbiome composition in ASD patients, particularly the increased abundance of Clostridium species and associated gastrointestinal symptoms. The potential neurotoxic effects of p-Cresol are explored, including its influence on neurotransmitter metabolism (especially dopamine), neuroinflammation, and brain development. The mechanistic findings from the preclinical studies of p-Cresol's induction of ASD-like behaviors and its impact on the dopaminergic system are discussed. Literature studies indicated increased levels of p-Cresol in the urine of patients with ASD. This increasing evidence suggests that p-Cresol may serve as a crucial biomarker for understanding the relationship between gut microbiota and ASD, opening avenues for potential diagnostic and therapeutic interventions.
Collapse
Affiliation(s)
- Mahi Basra
- Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Tampa Bay Campus, Clearwater, FL, United States
| | - Lauren Miceli
- Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Tampa Bay Campus, Clearwater, FL, United States
| | - Vatsala Mundra
- University of Texas Southwestern Medical School, Dallas, TX, United States
| | - Alison Stern-Harbutte
- Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Tampa Bay Campus, Clearwater, FL, United States
| | - Hemangi Patel
- Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Tampa Bay Campus, Clearwater, FL, United States
| | | | - Mayur S Parmar
- Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Tampa Bay Campus, Clearwater, FL, United States.
| |
Collapse
|
6
|
Flynn CK, Adams JB, Krajmalnik-Brown R, Khoruts A, Sadowsky MJ, Nirmalkar K, Takyi E, Whiteley P. Review of Elevated Para-Cresol in Autism and Possible Impact on Symptoms. Int J Mol Sci 2025; 26:1513. [PMID: 40003979 PMCID: PMC11855632 DOI: 10.3390/ijms26041513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 02/04/2025] [Accepted: 02/05/2025] [Indexed: 02/27/2025] Open
Abstract
Para-cresol (p-cresol), and its primary human metabolite p-cresol sulfate (pCS), are among the most studied gut-derived metabolites relevant to autism spectrum disorder (ASD). P-cresol is produced by bacterial modification of phenylalanine or tyrosine and is one of many potentially deleterious metabolites produced by the gut microbiota. Seventeen studies have observed p-cresol and/or p-cresol sulfate as being higher in the urine of children with autism spectrum disorder (ASD) vs. controls. P-cresol has harmful effects on the body, including within the gut, brain, kidneys, liver, immune system, and mitochondria. Some of these effects may contribute to autism and comorbid symptoms. In the gut, p-cresol acts as an antibiotic, altering the gut microbiome to favor the bacteria that produce it. In the mitochondria, p-cresol disrupts ATP production and increases oxidative stress, which is also common in autism. In the brain, p-cresol impairs neuronal development. P-cresol inactivates dopamine beta-hydroxylase, which converts dopamine to noradrenaline. P-cresol sulfate impairs kidney function and is linked to chronic kidney disease (CKD), which is more common in ASD adults. P-cresol also interferes with immune function. Three animal studies have demonstrated that p-cresol causes autism-related symptoms in mice, and that mice can be recovered by the administration of fecal microbiota transplant from healthy mice. Similarly, it was found that microbiota transplant therapy treatment in children with ASD significantly reduced p-cresol sulfate levels to normal and led to significant improvements in gastrointestinal (GI) and ASD symptoms. In summary, p-cresol and pCS likely contribute to ASD core symptoms in a substantial subset of children with ASD.
Collapse
Affiliation(s)
- Christina K. Flynn
- Biodesign Center for Health Through Microbiomes, Arizona State University, Tempe, AZ 85287, USA; (C.K.F.)
- School for Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, AZ 85287, USA
| | - James B. Adams
- Biodesign Center for Health Through Microbiomes, Arizona State University, Tempe, AZ 85287, USA; (C.K.F.)
- School for Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, AZ 85287, USA
| | - Rosa Krajmalnik-Brown
- Biodesign Center for Health Through Microbiomes, Arizona State University, Tempe, AZ 85287, USA; (C.K.F.)
- School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, AZ 85281, USA
| | - Alexander Khoruts
- Department of Medicine, Division of Gastroenterology, Center for Immunology and BioTechnology Institute, University of Minnesota, Minneapolis, MN 55455, USA
| | - Michael J. Sadowsky
- Department of Medicine and BioTechnology Institute, University of Minnesota, Minneapolis, MN 55455, USA
| | - Khemlal Nirmalkar
- Biodesign Center for Health Through Microbiomes, Arizona State University, Tempe, AZ 85287, USA; (C.K.F.)
| | - Evelyn Takyi
- Biodesign Center for Health Through Microbiomes, Arizona State University, Tempe, AZ 85287, USA; (C.K.F.)
| | | |
Collapse
|
7
|
Bertarini L, Imbeni F, Vilella A, Alboni S, Pellati F. Targeted Metabolomics for the Analysis of p-Cresol in Mouse Brain: Impact of Biological Sex and Strain. ACS Chem Neurosci 2025; 16:452-461. [PMID: 39829036 DOI: 10.1021/acschemneuro.4c00698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2025] Open
Abstract
p-Cresol, an environmental contaminant and endogenous metabolite derived primarily from the conversion of l-tyrosine by intestinal microflora, is gaining increasing attention, due to its potential impact on human health. Recent studies have highlighted elevated levels of p-cresol and its metabolites, including p-cresyl sulfate and p-cresyl glucuronide, in various populations, suggesting a correlation with neurodevelopmental and neurodegenerative conditions. While the role of this compound as a uremic toxin is well established, its presence and concentration within the central nervous system (CNS) remain largely unexplored. To address this gap, an high-performance liquid chromatography-electrospray ionization-tandem mass spectrometry (HPLC-ESI-MS/MS) method was optimized and validated for the first time in this work for the targeted metabolomics of p-cresol in brain tissues. This method enabled the quantification of this compound in different brain areas of adult male and female C57BL/6J mice and in the cortex of various mouse strains, including CD-1 and the idiopathic autism model BTBR T+Itpr3tf/J. Additionally, preliminary analyses of human cortex samples confirmed the presence of p-cresol, suggesting its relevance in human brain health. Moreover, metabolomic analyses have further explored the correlations between p-cresol and neurotransmitters, with a particular focus on dopaminergic and noradrenergic pathways. These findings pave the way for understanding the potential impact of p-cresol on neurochemical networks and its implications for neurodevelopmental and neurodegenerative disorders.
Collapse
Affiliation(s)
- Laura Bertarini
- Department of Life Sciences, University of Modena and Reggio Emilia, Via G. Campi 103-287, 41125 Modena, Italy
- Clinical and Experimental Medicine PhD Program, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Via G. Campi 287, 41125 Modena, Italy
| | - Federico Imbeni
- Department of Life Sciences, University of Modena and Reggio Emilia, Via G. Campi 103-287, 41125 Modena, Italy
| | - Antonietta Vilella
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Via G. Campi 287, 41125 Modena, Italy
- Center for Neuroscience and Neurotechnology, University of Modena and Reggio Emilia, 41121 Modena, Italy
| | - Silvia Alboni
- Department of Life Sciences, University of Modena and Reggio Emilia, Via G. Campi 103-287, 41125 Modena, Italy
- Center for Neuroscience and Neurotechnology, University of Modena and Reggio Emilia, 41121 Modena, Italy
| | - Federica Pellati
- Department of Life Sciences, University of Modena and Reggio Emilia, Via G. Campi 103-287, 41125 Modena, Italy
| |
Collapse
|
8
|
Persico AM, Asta L, Chehbani F, Mirabelli S, Parlatini V, Cortese S, Arango C, Vitiello B. The pediatric psychopharmacology of autism spectrum disorder: A systematic review - Part II: The future. Prog Neuropsychopharmacol Biol Psychiatry 2025; 136:111176. [PMID: 39490514 DOI: 10.1016/j.pnpbp.2024.111176] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 08/31/2024] [Accepted: 10/19/2024] [Indexed: 11/05/2024]
Abstract
Part I of this systematic review summarized the state-of-the-art of pediatric psychopharmacology for Autism Spectrum Disorder (ASD), a severe and lifelong neurodevelopmental disorder. The purpose of this Part II follow-up article is to provide a systematic overview of the experimental psychopharmacology of ASD. To this aim, we have first identified in the Clinicaltrials.gov website all the 157 pharmacological and nutraceutical compounds which have been experimentally tested in children and adolescents with ASD using the randomized placebo-controlled trial (RCT) design. After excluding 24 drugs already presented in Part I, a systematic review spanning each of the remaining 133 compounds was registered on Prospero (ID: CRD42023476555), performed on PubMed (August 8, 2024), and completed with EBSCO, PsycINFO (psychology and psychiatry literature) and the Cochrane Database of Systematic reviews, yielding a total of 115 published RCTs, including 57 trials for 23 pharmacological compounds and 48 trials for 17 nutraceuticals/supplements. Melatonin and oxytocin were not included, because recent systematic reviews have been already published for both these compounds. RCTs of drugs with the strongest foundation in preclinical research, namely arbaclofen, balovaptan and bumetanide have all failed to reach their primary end-points, although efforts to target specific patient subgroups do warrant further investigation. For the vast majority of compounds, including cannabidiol, vasopressin, and probiotics, insufficient evidence of efficacy and safety is available. However, a small subset of compounds, including N-acetylcysteine, folinic acid, l-carnitine, coenzyme Q10, sulforaphane, and metformin may already be considered, with due caution, for clinical use, because there is promising evidence of efficacy and a high safety profile. For several other compounds, such as secretin, efficacy can be confidently excluded, and/or the data discourage undertaking new RCTs. Part I and Part II summarize "drug-based" information, which will be ultimately merged to provide clinicians with a "symptom-based" consensus statement in a conclusive Part III, with the overarching aim to foster evidence-based clinical practices and to organize new strategies for future clinical trials.
Collapse
Affiliation(s)
- Antonio M Persico
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy; Child & Adolescent Neuropsychiatry Program, Modena University Hospital, Modena, Italy.
| | - Lisa Asta
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Fethia Chehbani
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Silvestro Mirabelli
- Interdepartmental Program "Autism 0-90", "G. Martino" University Hospital, Messina, Italy
| | - Valeria Parlatini
- Center for Innovation in Mental Health, School of Psychology, Faculty of Environmental and Life Sciences, University of Southampton, Southampton, UK; Clinical and Experimental Sciences (CNS and Psychiatry), Faculty of Medicine, University of Southampton, Southampton, UK; Solent NHS Trust, Southampton, UK
| | - Samuele Cortese
- Center for Innovation in Mental Health, School of Psychology, Faculty of Environmental and Life Sciences, University of Southampton, Southampton, UK; Clinical and Experimental Sciences (CNS and Psychiatry), Faculty of Medicine, University of Southampton, Southampton, UK; Solent NHS Trust, Southampton, UK; Hassenfeld Children's Hospital at NYU Langone, New York University Child Study Center, New York City, NY, USA; DiMePRe-J-Department of Precision and Regenerative Medicine-Jonic Area, University "Aldo Moro", Bari, Italy
| | - Celso Arango
- Child and Adolescent Psychiatry Department, Institute of Psychiatry and Mental Health, Hospital General Universitario Gregorio Marañón, School of Medicine Universidad Complutense, IiSGM, CIBERSAM, Madrid, Spain
| | - Benedetto Vitiello
- Department of Public Health and Pediatric Sciences, Section of Child and Adolescent Neuropsychiatry, University of Turin, Turin, Italy
| |
Collapse
|
9
|
Golbaghi N, Naeimi S, Darvishi A, Najari N, Cussotto S. Probiotics in autism spectrum disorder: Recent insights from animal models. AUTISM : THE INTERNATIONAL JOURNAL OF RESEARCH AND PRACTICE 2024; 28:2722-2737. [PMID: 38666595 DOI: 10.1177/13623613241246911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2024]
Abstract
LAY ABSTRACT Autism spectrum disorder is a neurodevelopmental disorder characterized by a wide range of behavioral alterations, including impaired social interaction and repetitive behaviors. Numerous pharmacological interventions have been developed for autism spectrum disorder, often proving ineffective and accompanied by a multitude of side effects. The gut microbiota is the reservoir of bacteria inhabiting our gastrointestinal tract. The gut microbial alterations observed in individuals with autism spectrum disorder, including elevated levels of Bacteroidetes, Firmicutes, and Proteobacteria, as well as reduced levels of Bifidobacterium, provide a basis for further investigation into the role of the gut microbiota in autism spectrum disorder. Recent preclinical studies have shown favorable outcomes with probiotic therapy, including improvements in oxidative stress, anti-inflammatory effects, regulation of neurotransmitters, and restoration of microbial balance. The aim of this review is to explore the potential of probiotics for the management and treatment of autism spectrum disorder, by investigating insights from recent studies in animals.
Collapse
Affiliation(s)
- Navid Golbaghi
- Department of Comparative Biosciences, Faculty of Veterinary Medicine, Tehran University, Tehran, Iran
| | - Saeideh Naeimi
- Department of Basic Sciences, Faculty of Veterinary Medicine, Semnan University, Semnan, Iran
| | - Afra Darvishi
- School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Niloofar Najari
- School of Pharmacy, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Sofia Cussotto
- Université Paris-Saclay, UVSQ, Centre de recherche en Epidémiologie et Santé des Populations (CESP), UMR 1018, CESP-Inserm, Team Moods, Faculté de Pharmacie, Bâtiment Henri Moissan, Orsay, France
| |
Collapse
|
10
|
Spencer KD, Bline H, Chen HJ, Verosky BG, Hilt ME, Jaggers RM, Gur TL, Mathé EA, Bailey MT. Modulation of anxiety-like behavior in galactooligosaccharide-fed mice: A potential role for bacterial tryptophan metabolites and reduced microglial reactivity. Brain Behav Immun 2024; 121:229-243. [PMID: 39067620 DOI: 10.1016/j.bbi.2024.07.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 07/02/2024] [Accepted: 07/20/2024] [Indexed: 07/30/2024] Open
Abstract
Prebiotic galactooligosaccharides (GOS) reduce anxiety-like behaviors in mice and humans. However, the biological pathways behind these behavioral changes are not well understood. To begin to study these pathways, we utilized C57BL/6 mice that were fed a standard diet with or without GOS supplementation for 3 weeks prior to testing on the open field. After behavioral testing, colonic contents and serum were collected for bacteriome (16S rRNA gene sequencing, colonic contents only) and metabolome (UPLC-MS, colonic contents and serum data) analyses. As expected, GOS significantly reduced anxiety-like behavior (i.e., increased time in the center) and decreased cytokine gene expression (Tnfa and Ccl2) in the prefrontal cortex. Notably, time in the center of the open field was significantly correlated with serum methyl-indole-3-acetic acid (methyl-IAA). This metabolite is a methylated form of indole-3-acetic acid (IAA) that is derived from bacterial metabolism of tryptophan. Sequencing analyses showed that GOS significantly increased Lachnospiraceae UCG006 and Akkermansia; these taxa are known to metabolize both GOS and tryptophan. To determine the extent to which methyl-IAA can affect anxiety-like behavior, mice were intraperitoneally injected with methyl-IAA. Mice given methyl-IAA had a reduction in anxiety-like behavior in the open field, along with lower Tnfa in the prefrontal cortex. Methyl-IAA was also found to reduce TNF-α (as well as CCL2) production by LPS-stimulated BV2 microglia. Together, these data support a novel pathway through which GOS reduces anxiety-like behaviors in mice and suggests that the bacterial metabolite methyl-IAA reduces microglial cytokine and chemokine production, which in turn reduces anxiety-like behavior.
Collapse
Affiliation(s)
- Kyle D Spencer
- Graduate Partnership Program, National Center for Advancing Translational Sciences, NIH, Rockville, MD, USA; Department of Biomedical Informatics, The Ohio State University, Columbus, OH, USA; Center for Microbial Pathogenesis, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Heather Bline
- Center for Microbial Pathogenesis, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Helen J Chen
- Medical Scientist Training Program, The Ohio State University, Columbus, OH, USA; Department of Neuroscience, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Branden G Verosky
- Medical Scientist Training Program, The Ohio State University, Columbus, OH, USA; Department of Neuroscience, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Miranda E Hilt
- Center for Microbial Pathogenesis, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA; Biomedical Sciences Graduate Program, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Robert M Jaggers
- Center for Microbial Pathogenesis, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Tamar L Gur
- Department of Neuroscience, The Ohio State University Wexner Medical Center, Columbus, OH, USA; Department of Psychiatry & Behavioral Health, The Ohio State University Wexner Medical Center, Columbus, OH, USA; Institute for Behavioral Medicine Research, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Ewy A Mathé
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, NIH, Rockville, MD, USA
| | - Michael T Bailey
- Center for Microbial Pathogenesis, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA; Institute for Behavioral Medicine Research, The Ohio State University Wexner Medical Center, Columbus, OH, USA; Oral and GI Research Affinity Group, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA; Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, USA.
| |
Collapse
|
11
|
Jana A, Nath A, Sen P, Kundu S, Alghamdi BS, Abujamel TS, Saboor M, Woon-Khiong C, Alexiou A, Papadakis M, Alam MZ, Ashraf GM. Unraveling the Endocannabinoid System: Exploring Its Therapeutic Potential in Autism Spectrum Disorder. Neuromolecular Med 2024; 26:20. [PMID: 38744725 PMCID: PMC11093854 DOI: 10.1007/s12017-024-08781-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 03/04/2024] [Indexed: 05/16/2024]
Abstract
The salient features of autism spectrum disorder (ASD) encompass persistent difficulties in social communication, as well as the presence of restricted and repetitive facets of behavior, hobbies, or pursuits, which are often accompanied with cognitive limitations. Over the past few decades, a sizable number of studies have been conducted to enhance our understanding of the pathophysiology of ASD. Preclinical rat models have proven to be extremely valuable in simulating and analyzing the roles of a wide range of established environmental and genetic factors. Recent research has also demonstrated the significant involvement of the endocannabinoid system (ECS) in the pathogenesis of several neuropsychiatric diseases, including ASD. In fact, the ECS has the potential to regulate a multitude of metabolic and cellular pathways associated with autism, including the immune system. Moreover, the ECS has emerged as a promising target for intervention with high predictive validity. Particularly noteworthy are resent preclinical studies in rodents, which describe the onset of ASD-like symptoms after various genetic or pharmacological interventions targeting the ECS, providing encouraging evidence for further exploration in this area.
Collapse
Affiliation(s)
- Ankit Jana
- Department of Biological Sciences, National University of Singapore, Singapore, 117558, Singapore
| | - Arnab Nath
- Department of Developmental Biology and Genetics, Indian Institute of Science, Bangalore, Karnataka, 560012, India
| | - Palash Sen
- School of Biosciences, Indian Institute of Technology, Kharagpur, West Bengal, 721302, India
| | - Swikriti Kundu
- Siksha Bhavana, Visva-Bharati University, Bolpur, West Bengal, 731235, India
| | - Badrah S Alghamdi
- Pre-Clinical Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Physiology, Neuroscience Unit, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Turki S Abujamel
- Vaccines and Immunotherapy Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Muhammad Saboor
- Department of Medical Laboratory Sciences, College of Health Sciences, and Research Institute for Medical and Health Sciences, University of Sharjah, P.O. Box 27272, Sharjah, United Arab Emirates
| | - Chan Woon-Khiong
- Department of Biological Sciences, National University of Singapore, Singapore, 117558, Singapore
| | - Athanasios Alexiou
- University Centre for Research & Development, Chandigarh University, Chandigarh-Ludhiana Highway, Mohali, Punjab, India
- Department of Research & Development, Funogen, Athens, Greece
- Department of Research & Development, AFNP Med, 1030, Vienna, Austria
- Department of Science and Engineering, Novel Global Community Educational Foundation, Hebersham, NSW, 2770, Australia
| | - Marios Papadakis
- Department of Surgery II, University Hospital Witten-Herdecke, University of Witten-Herdecke, Heusnerstrasse 40, 42283, Wuppertal, Germany.
| | - Mohammad Zubair Alam
- Pre-Clinical Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ghulam Md Ashraf
- Department of Medical Laboratory Sciences, College of Health Sciences, and Research Institute for Medical and Health Sciences, University of Sharjah, P.O. Box 27272, Sharjah, United Arab Emirates.
| |
Collapse
|
12
|
Bove M, Palmieri MA, Santoro M, Agosti LP, Gaetani S, Romano A, Dimonte S, Costantino G, Sikora V, Tucci P, Schiavone S, Morgese MG, Trabace L. Amygdalar neurotransmission alterations in the BTBR mice model of idiopathic autism. Transl Psychiatry 2024; 14:193. [PMID: 38632257 PMCID: PMC11024334 DOI: 10.1038/s41398-024-02905-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 04/02/2024] [Accepted: 04/08/2024] [Indexed: 04/19/2024] Open
Abstract
Autism Spectrum Disorders (ASD) are principally diagnosed by three core behavioural symptoms, such as stereotyped repertoire, communication impairments and social dysfunctions. This complex pathology has been linked to abnormalities of corticostriatal and limbic circuits. Despite experimental efforts in elucidating the molecular mechanisms behind these abnormalities, a clear etiopathogenic hypothesis is still lacking. To this aim, preclinical studies can be really helpful to longitudinally study behavioural alterations resembling human symptoms and to investigate the underlying neurobiological correlates. In this regard, the BTBR T+ Itpr3tf/J (BTBR) mice are an inbred mouse strain that exhibits a pattern of behaviours well resembling human ASD-like behavioural features. In this study, the BTBR mice model was used to investigate neurochemical and biomolecular alterations, regarding Nerve Growth Factor (NGF) and Brain-Derived Neurotrophic Factor (BDNF), together with GABAergic, glutamatergic, cholinergic, dopaminergic and noradrenergic neurotransmissions and their metabolites in four different brain areas, i.e. prefrontal cortex, hippocampus, amygdala and hypothalamus. In our results, BTBR strain reported decreased noradrenaline, acetylcholine and GABA levels in prefrontal cortex, while hippocampal measurements showed reduced NGF and BDNF expression levels, together with GABA levels. Concerning hypothalamus, no differences were retrieved. As regarding amygdala, we found reduced dopamine levels, accompanied by increased dopamine metabolites in BTBR mice, together with decreased acetylcholine, NGF and GABA levels and enhanced glutamate content. Taken together, our data showed that the BTBR ASD model, beyond its face validity, is a useful tool to untangle neurotransmission alterations that could be underpinned to the heterogeneous ASD-like behaviours, highlighting the crucial role played by amygdala.
Collapse
Affiliation(s)
- Maria Bove
- Department of Clinical and Experimental Medicine, University of Foggia, Via Napoli 20, 71122, Foggia, Italy
| | - Maria Adelaide Palmieri
- Department of Clinical and Experimental Medicine, University of Foggia, Via Napoli 20, 71122, Foggia, Italy
| | - Martina Santoro
- Department of Physiology and Pharmacology "V. Erspamer", Sapienza University of Rome, 00185, Rome, Italy
| | - Lisa Pia Agosti
- Department of Clinical and Experimental Medicine, University of Foggia, Via Napoli 20, 71122, Foggia, Italy
| | - Silvana Gaetani
- Department of Physiology and Pharmacology "V. Erspamer", Sapienza University of Rome, 00185, Rome, Italy
| | - Adele Romano
- Department of Physiology and Pharmacology "V. Erspamer", Sapienza University of Rome, 00185, Rome, Italy
| | - Stefania Dimonte
- Department of Clinical and Experimental Medicine, University of Foggia, Via Napoli 20, 71122, Foggia, Italy
| | - Giuseppe Costantino
- Department of Clinical and Experimental Medicine, University of Foggia, Via Napoli 20, 71122, Foggia, Italy
| | - Vladyslav Sikora
- Department of Clinical and Experimental Medicine, University of Foggia, Via Napoli 20, 71122, Foggia, Italy
- Department of Pathology, Sumy State University, 40007, Sumy, Ukraine
| | - Paolo Tucci
- Department of Clinical and Experimental Medicine, University of Foggia, Via Napoli 20, 71122, Foggia, Italy
| | - Stefania Schiavone
- Department of Clinical and Experimental Medicine, University of Foggia, Via Napoli 20, 71122, Foggia, Italy
| | - Maria Grazia Morgese
- Department of Clinical and Experimental Medicine, University of Foggia, Via Napoli 20, 71122, Foggia, Italy
| | - Luigia Trabace
- Department of Clinical and Experimental Medicine, University of Foggia, Via Napoli 20, 71122, Foggia, Italy.
| |
Collapse
|
13
|
Chakraborty N. Metabolites: a converging node of host and microbe to explain meta-organism. Front Microbiol 2024; 15:1337368. [PMID: 38505556 PMCID: PMC10949987 DOI: 10.3389/fmicb.2024.1337368] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 02/13/2024] [Indexed: 03/21/2024] Open
Abstract
Meta-organisms encompassing the host and resident microbiota play a significant role in combatting diseases and responding to stress. Hence, there is growing traction to build a knowledge base about this ecosystem, particularly to characterize the bidirectional relationship between the host and microbiota. In this context, metabolomics has emerged as the major converging node of this entire ecosystem. Systematic comprehension of this resourceful omics component can elucidate the organism-specific response trajectory and the communication grid across the ecosystem embodying meta-organisms. Translating this knowledge into designing nutraceuticals and next-generation therapy are ongoing. Its major hindrance is a significant knowledge gap about the underlying mechanisms maintaining a delicate balance within this ecosystem. To bridge this knowledge gap, a holistic picture of the available information has been presented with a primary focus on the microbiota-metabolite relationship dynamics. The central theme of this article is the gut-brain axis and the participating microbial metabolites that impact cerebral functions.
Collapse
Affiliation(s)
- Nabarun Chakraborty
- Medical Readiness Systems Biology, CMPN, WRAIR, Silver Spring, MD, United States
| |
Collapse
|
14
|
Cox LM, Tatematsu BK, Guo L, LeServe DS, Mayrink J, Oliveira MG, Donnelly D, Fonseca RC, Lemos L, Lanser TB, Rosa AC, Lopes JR, Schwerdtfeger LA, Ribeiro GFC, Lobo ELC, Moreira TG, Oliveira AG, Weiner HL, Rezende RM. Gamma-delta T cells suppress microbial metabolites that activate striatal neurons and induce repetitive/compulsive behavior in mice. Brain Behav Immun 2024; 117:242-254. [PMID: 38281671 DOI: 10.1016/j.bbi.2024.01.214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 12/01/2023] [Accepted: 01/18/2024] [Indexed: 01/30/2024] Open
Abstract
Intestinal γδ T cells play an important role in shaping the gut microbiota, which is critical not only for maintaining intestinal homeostasis but also for controlling brain function and behavior. Here, we found that mice deficient for γδ T cells (γδ-/-) developed an abnormal pattern of repetitive/compulsive (R/C) behavior, which was dependent on the gut microbiota. Colonization of WT mice with γδ-/- microbiota induced R/C behavior whereas colonization of γδ-/- mice with WT microbiota abolished the R/C behavior. Moreover, γδ-/- mice had elevated levels of the microbial metabolite 3-phenylpropanoic acid in their cecum, which is a precursor to hippurate (HIP), a metabolite we found to be elevated in the CSF. HIP reaches the striatum and activates dopamine type 1 (D1R)-expressing neurons, leading to R/C behavior. Altogether, these data suggest that intestinal γδ T cells shape the gut microbiota and their metabolites and prevent dysfunctions of the striatum associated with behavior modulation.
Collapse
Affiliation(s)
- Laura M Cox
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Bruna K Tatematsu
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Lydia Guo
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Danielle S LeServe
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Julia Mayrink
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Marilia G Oliveira
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Dustin Donnelly
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Roberta C Fonseca
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Luisa Lemos
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Toby B Lanser
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Ana C Rosa
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Juliana R Lopes
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Luke A Schwerdtfeger
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Gabriela F C Ribeiro
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Eduardo L C Lobo
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Thais G Moreira
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Andre G Oliveira
- Department of Biophysics and Physiology, Biologic Institutes of Sciences, Federal University of Minas Gerais, Brazil
| | - Howard L Weiner
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Rafael M Rezende
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
15
|
Paul KC, Zhang K, Walker DI, Sinsheimer J, Yu Y, Kusters C, Del Rosario I, Folle AD, Keener AM, Bronstein J, Jones DP, Ritz B. Untargeted serum metabolomics reveals novel metabolite associations and disruptions in amino acid and lipid metabolism in Parkinson's disease. Mol Neurodegener 2023; 18:100. [PMID: 38115046 PMCID: PMC10731845 DOI: 10.1186/s13024-023-00694-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 12/06/2023] [Indexed: 12/21/2023] Open
Abstract
BACKGROUND Untargeted high-resolution metabolomic profiling provides simultaneous measurement of thousands of metabolites. Metabolic networks based on these data can help uncover disease-related perturbations across interconnected pathways. OBJECTIVE Identify metabolic disturbances associated with Parkinson's disease (PD) in two population-based studies using untargeted metabolomics. METHODS We performed a metabolome-wide association study (MWAS) of PD using serum-based untargeted metabolomics data derived from liquid chromatography with high-resolution mass spectrometry (LC-HRMS) using two distinct population-based case-control populations. We also combined our results with a previous publication of 34 metabolites linked to PD in a large-scale, untargeted MWAS to assess external validation. RESULTS LC-HRMS detected 4,762 metabolites for analysis (HILIC: 2716 metabolites; C18: 2046 metabolites). We identified 296 features associated with PD at FDR<0.05, 134 having a log2 fold change (FC) beyond ±0.5 (228 beyond ±0.25). Of these, 104 were independently associated with PD in both discovery and replication studies at p<0.05 (170 at p<0.10), while 27 were associated with levodopa-equivalent dose among the PD patients. Intriguingly, among the externally validated features were the microbial-related metabolites, p-cresol glucuronide (FC=2.52, 95% CI=1.67, 3.81, FDR=7.8e-04) and p-cresol sulfate. P-cresol glucuronide was also associated with motor symptoms among patients. Additional externally validated metabolites associated with PD include phenylacetyl-L-glutamine, trigonelline, kynurenine, biliverdin, and pantothenic acid. Novel associations include the anti-inflammatory metabolite itaconate (FC=0.79, 95% CI=0.73, 0.86; FDR=2.17E-06) and cysteine-S-sulfate (FC=1.56, 95% CI=1.39, 1.75; FDR=3.43E-11). Seventeen pathways were enriched, including several related to amino acid and lipid metabolism. CONCLUSIONS Our results revealed PD-associated metabolites, confirming several previous observations, including for p-cresol glucuronide, and newly implicating interesting metabolites, such as itaconate. Our data also suggests metabolic disturbances in amino acid and lipid metabolism and inflammatory processes in PD.
Collapse
Affiliation(s)
- Kimberly C Paul
- Department of Neurology, UCLA David Geffen School of Medicine, Los Angeles, CA, USA.
| | - Keren Zhang
- Department of Epidemiology, UCLA Fielding School of Public Health, Los Angeles, CA, USA
| | - Douglas I Walker
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Janet Sinsheimer
- Department of Human Genetics, UCLA David Geffen School of Medicine, Los Angeles, CA, USA
- Department of Biostatistics, UCLA Fielding School of Public Health, Los Angeles, CA, USA
| | - Yu Yu
- Center for Health Policy Research, UCLA Fielding School of Public Health, Los Angeles, CA, USA
| | - Cynthia Kusters
- Department of Human Genetics, UCLA David Geffen School of Medicine, Los Angeles, CA, USA
| | - Irish Del Rosario
- Department of Epidemiology, UCLA Fielding School of Public Health, Los Angeles, CA, USA
| | - Aline Duarte Folle
- Department of Epidemiology, UCLA Fielding School of Public Health, Los Angeles, CA, USA
| | - Adrienne M Keener
- Department of Neurology, UCLA David Geffen School of Medicine, Los Angeles, CA, USA
- Parkinson's Disease Research, Education, and Clinical Center, Greater Los Angeles Veterans Affairs Medical Center, Los Angeles, CA, USA
| | - Jeff Bronstein
- Department of Neurology, UCLA David Geffen School of Medicine, Los Angeles, CA, USA
| | - Dean P Jones
- Department of Medicine, School of Medicine, Emory University, Atlanta, GA, USA
| | - Beate Ritz
- Department of Neurology, UCLA David Geffen School of Medicine, Los Angeles, CA, USA
- Department of Epidemiology, UCLA Fielding School of Public Health, Los Angeles, CA, USA
| |
Collapse
|
16
|
Aleti G, Troyer EA, Hong S. G protein-coupled receptors: A target for microbial metabolites and a mechanistic link to microbiome-immune-brain interactions. Brain Behav Immun Health 2023; 32:100671. [PMID: 37560037 PMCID: PMC10407893 DOI: 10.1016/j.bbih.2023.100671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 07/30/2023] [Indexed: 08/11/2023] Open
Abstract
Human-microorganism interactions play a key role in human health. However, the underlying molecular mechanisms remain poorly understood. Small-molecules that offer a functional readout of microbe-microbe-human relationship are of great interest for deeper understanding of the inter-kingdom crosstalk at the molecular level. Recent studies have demonstrated that small-molecules from gut microbiota act as ligands for specific human G protein-coupled receptors (GPCRs) and modulate a range of human physiological functions, offering a mechanistic insight into the microbe-human interaction. To this end, we focused on analysis of bacterial metabolites that are currently recognized to bind to GPCRs and are found to activate the known downstream signaling pathways. We further mapped the distribution of these molecules across the public mass spectrometry-based metabolomics data, to identify the presence of these molecules across body sites and their association with health status. By combining this with RNA-Seq expression and spatial localization of GPCRs from a public human protein atlas database, we inferred the most predominant GPCR-mediated microbial metabolite-human cell interactions regulating gut-immune-brain axis. Furthermore, by evaluating the intestinal absorption properties and blood-brain barrier permeability of the small-molecules we elucidated their molecular interactions with specific human cell receptors, particularly expressed on human intestinal epithelial cells, immune cells and the nervous system that are shown to hold much promise for clinical translational potential. Furthermore, we provide an overview of an open-source resource for simultaneous interrogation of bioactive molecules across the druggable human GPCRome, a useful framework for integration of microbiome and metabolite cataloging with mechanistic studies for an improved understanding of gut microbiota-immune-brain molecular interactions and their potential therapeutic use.
Collapse
Affiliation(s)
- Gajender Aleti
- Department of Food and Animal Sciences, Tennessee State University, Nashville, TN, 37209, USA
- Department of Psychiatry, University of California San Diego, La Jolla, CA, 92093, USA
| | - Emily A. Troyer
- Department of Psychiatry, University of California San Diego, La Jolla, CA, 92093, USA
| | - Suzi Hong
- Department of Psychiatry, University of California San Diego, La Jolla, CA, 92093, USA
- Herbert Wertheim School of Public Health and Human Longevity Science, University of California San Diego, La Jolla, CA, 92093, USA
| |
Collapse
|
17
|
Zhou Y, Bi Z, Hamilton MJ, Zhang L, Su R, Sadowsky MJ, Roy S, Khoruts A, Chen C. p-Cresol Sulfate Is a Sensitive Urinary Marker of Fecal Microbiota Transplantation and Antibiotics Treatments in Human Patients and Mouse Models. Int J Mol Sci 2023; 24:14621. [PMID: 37834066 PMCID: PMC10572327 DOI: 10.3390/ijms241914621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 09/05/2023] [Accepted: 09/25/2023] [Indexed: 10/15/2023] Open
Abstract
Fecal microbiota transplantation (FMT) has emerged as a highly effective therapy for recurrent Clostridioides difficile infection (rCDI) and also a potential therapy for other diseases associated with dysbiotic gut microbiota. Monitoring metabolic changes in biofluids and excreta is a noninvasive approach to identify the biomarkers of microbial recolonization and to understand the metabolic influences of FMT on the host. In this study, the pre-FMT and post FMT urine samples from 11 rCDI patients were compared through metabolomic analyses for FMT-induced metabolic changes. The results showed that p-cresol sulfate in urine, a microbial metabolite of tyrosine, was rapidly elevated by FMT and much more responsive than other microbial metabolites of aromatic amino acids (AAAs). Because patients were treated with vancomycin prior to FMT, the influence of vancomycin on the microbial metabolism of AAAs was examined in a mouse feeding trial, in which the decreases in p-cresol sulfate, phenylacetylglycine, and indoxyl sulfate in urine were accompanied with significant increases in their AAA precursors in feces. The inhibitory effects of antibiotics and the recovering effects of FMT on the microbial metabolism of AAAs were further validated in a mouse model of FMT. Overall, urinary p-cresol sulfate may function as a sensitive and convenient therapeutic indicator on the effectiveness of antibiotics and FMT for the desired manipulation of gut microbiota in human patients.
Collapse
Affiliation(s)
- Yuyin Zhou
- Department of Food Science and Nutrition, University of Minnesota, St. Paul, MN 55108, USA; (Y.Z.); (Z.B.); (R.S.)
| | - Zheting Bi
- Department of Food Science and Nutrition, University of Minnesota, St. Paul, MN 55108, USA; (Y.Z.); (Z.B.); (R.S.)
| | - Matthew J. Hamilton
- BioTechnology Institute, University of Minnesota, St. Paul, MN 55108, USA; (M.J.H.); (M.J.S.)
| | - Li Zhang
- Department of Surgery, University of Miami, Miami, FL 33136, USA; (L.Z.); (S.R.)
| | - Rui Su
- Department of Food Science and Nutrition, University of Minnesota, St. Paul, MN 55108, USA; (Y.Z.); (Z.B.); (R.S.)
| | - Michael J. Sadowsky
- BioTechnology Institute, University of Minnesota, St. Paul, MN 55108, USA; (M.J.H.); (M.J.S.)
| | - Sabita Roy
- Department of Surgery, University of Miami, Miami, FL 33136, USA; (L.Z.); (S.R.)
| | - Alexander Khoruts
- Division of Gastroenterology, Department of Medicine, Center for Immunology, University of Minnesota, Minneapolis, MN 55455, USA;
| | - Chi Chen
- Department of Food Science and Nutrition, University of Minnesota, St. Paul, MN 55108, USA; (Y.Z.); (Z.B.); (R.S.)
| |
Collapse
|
18
|
Pavăl D. The dopamine hypothesis of autism spectrum disorder: A comprehensive analysis of the evidence. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2023; 173:1-42. [PMID: 37993174 DOI: 10.1016/bs.irn.2023.08.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2023]
Abstract
Despite intensive research into the etiopathogenesis of autism spectrum disorder (ASD), limited progress has been achieved so far. Among the plethora of models seeking to clarify how ASD arises, a coherent dopaminergic model was lacking until recently. In 2017, we provided a theoretical framework that we designated "the dopamine hypothesis of ASD". In the meantime, numerous studies yielded empirical evidence for this model. 4 years later, we provided a second version encompassing a refined and reconceptualized framework that accounted for these novel findings. In this chapter, we will review the evidence backing the previous versions of our model and add the most recent developments to the picture. Along these lines, we intend to lay out a comprehensive analysis of the supporting evidence for the dopamine hypothesis of ASD.
Collapse
Affiliation(s)
- Denis Pavăl
- The Romanian Association for Autoimmune Encephalitis, Cluj-Napoca, Romania; Department of Psychiatry, "Iuliu Hațieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania.
| |
Collapse
|
19
|
Macpherson AJ, Pachnis V, Prinz M. Boundaries and integration between microbiota, the nervous system, and immunity. Immunity 2023; 56:1712-1726. [PMID: 37557080 DOI: 10.1016/j.immuni.2023.07.011] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 07/17/2023] [Accepted: 07/17/2023] [Indexed: 08/11/2023]
Abstract
The enteric nervous system is largely autonomous, and the central nervous system is compartmentalized behind the blood-brain barrier. Yet the intestinal microbiota shapes gut function, local and systemic immune responses, and central nervous system functions including cognition and mood. In this review, we address how the gut microbiota can profoundly influence neural and immune networks. Although many of the interactions between these three systems originate in the intestinal mucosa, intestinal function and immunity are modulated by neural pathways that connect the gut and brain. Furthermore, a subset of microbe-derived penetrant molecules enters the brain and regulates central nervous system function. Understanding how these seemingly isolated entities communicate has the potential to open up new avenues for therapies and interventions.
Collapse
Affiliation(s)
- Andrew J Macpherson
- Department of Visceral Surgery and Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland.
| | - Vassilis Pachnis
- Nervous System Development and Homeostasis Laboratory, The Francis Crick Institute, London, UK
| | - Marco Prinz
- Institute of Neuropathology, University of Freiburg, Faculty of Medicine, Freiburg, Germany; Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
| |
Collapse
|
20
|
Saha S, Chatterjee M, Dutta N, Sinha S, Mukhopadhyay K. Analysis of neurotransmitters validates the importance of the dopaminergic system in autism spectrum disorder. World J Pediatr 2023; 19:770-781. [PMID: 36847977 DOI: 10.1007/s12519-023-00702-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 02/03/2023] [Indexed: 03/01/2023]
Abstract
BACKGROUND The reasons behind the cardinal symptoms of communication deficits and repetitive, stereotyped behaviors that characterize autism spectrum disorder (ASD) remain unknown. The dopamine (DA) system, which regulates motor activity, goal-directed behaviors, and reward function, is believed to play a crucial role in ASD, although the exact mechanism is still unclear. Investigations have shown an association of the dopamine receptor D4 (DRD4) with various neurobehavioral disorders. METHODS We analyzed the association between ASD and four DRD4 genetic polymorphisms, 5' flanking 120-bp duplication (rs4646984), rs1800955 in the promoter, exon 1 12 bp duplication (rs4646983), and exon 3 48 bp repeats. We also examined plasma DA and its metabolite levels, DRD4 mRNA expression, and correlations of the studied polymorphisms with these parameters by case-control comparative analyses. The expression of DA transporter (DAT), which is important in regulating the circulating DA level, was also evaluated. RESULTS A significantly higher occurrence of rs1800955 "T/TT" was observed in the probands. ASD traits were affected by rs1800955 "T" and the higher repeat alleles of the exon 3 48 bp repeats, rs4646983 and rs4646984. ASD probands exhibited lower DA and norepinephrine levels together with higher homovanillic acid levels than the control subjects. DAT and DRD4 mRNA expression were down-regulated in the probands, especially in the presence of DAT rs3836790 "6R" and rs27072 "CC" and DRD4 rs4646984 higher repeat allele and rs1800955 "T". CONCLUSION This pioneering investigation revealed a positive correlation between genetic variants, hypodopaminergic state, and impairment in socio-emotional and communication reciprocity in Indian subjects with ASD, warranting further in-depth analysis.
Collapse
Affiliation(s)
- Sharmistha Saha
- Manovikas Biomedical Research and Diagnostic Centre, Manovikas Kendra, 482 Madudah, Plot I-24, Sector-J, E.M. Bypass, Kolkata, West Bengal, 700107, India
| | - Mahasweta Chatterjee
- Manovikas Biomedical Research and Diagnostic Centre, Manovikas Kendra, 482 Madudah, Plot I-24, Sector-J, E.M. Bypass, Kolkata, West Bengal, 700107, India
| | - Nilanjana Dutta
- Manovikas Biomedical Research and Diagnostic Centre, Manovikas Kendra, 482 Madudah, Plot I-24, Sector-J, E.M. Bypass, Kolkata, West Bengal, 700107, India
| | - Swagata Sinha
- Manovikas Biomedical Research and Diagnostic Centre, Manovikas Kendra, 482 Madudah, Plot I-24, Sector-J, E.M. Bypass, Kolkata, West Bengal, 700107, India
| | - Kanchan Mukhopadhyay
- Manovikas Biomedical Research and Diagnostic Centre, Manovikas Kendra, 482 Madudah, Plot I-24, Sector-J, E.M. Bypass, Kolkata, West Bengal, 700107, India.
| |
Collapse
|
21
|
Datta N, Johnson C, Kao D, Gurnani P, Alexander C, Polytarchou C, Monaghan TM. MicroRNA-based therapeutics for inflammatory disorders of the microbiota-gut-brain axis. Pharmacol Res 2023; 194:106870. [PMID: 37499702 DOI: 10.1016/j.phrs.2023.106870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 07/22/2023] [Accepted: 07/24/2023] [Indexed: 07/29/2023]
Abstract
An emerging but less explored shared pathophysiology across microbiota-gut-brain axis disorders is aberrant miRNA expression, which may represent novel therapeutic targets. miRNAs are small, endogenous non-coding RNAs that are important transcriptional repressors of gene expression. Most importantly, they regulate the integrity of the intestinal epithelial and blood-brain barriers and serve as an important communication channel between the gut microbiome and the host. A well-defined understanding of the mode of action, therapeutic strategies and delivery mechanisms of miRNAs is pivotal in translating the clinical applications of miRNA-based therapeutics. Accumulating evidence links disorders of the microbiota-gut-brain axis with a compromised gut-blood-brain-barrier, causing gut contents such as immune cells and microbiota to enter the bloodstream leading to low-grade systemic inflammation. This has the potential to affect all organs, including the brain, causing central inflammation and the development of neurodegenerative and neuropsychiatric diseases. In this review, we have examined in detail miRNA biogenesis, strategies for therapeutic application, delivery mechanisms, as well as their pathophysiology and clinical applications in inflammatory gut-brain disorders. The research data in this review was drawn from the following databases: PubMed, Google Scholar, and Clinicaltrials.gov. With increasing evidence of the pathophysiological importance for miRNAs in microbiota-gut-brain axis disorders, therapeutic targeting of cross-regulated miRNAs in these disorders displays potentially transformative and translational potential. Further preclinical research and human clinical trials are required to further advance this area of research.
Collapse
Affiliation(s)
- Neha Datta
- School of Medicine, University of Nottingham, Nottingham, UK
| | - Charlotte Johnson
- NIHR Nottingham Biomedical Research Centre, University of Nottingham, Nottingham, UK; Nottingham Digestive Diseases Centre, School of Medicine, University of Nottingham, Nottingham, UK
| | - Dina Kao
- Division of Gastroenterology, Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Pratik Gurnani
- Division of Molecular Therapeutics & Formulation, School of Pharmacy, University of Nottingham, Nottingham, UK
| | - Cameron Alexander
- Division of Molecular Therapeutics & Formulation, School of Pharmacy, University of Nottingham, Nottingham, UK
| | - Christos Polytarchou
- Department of Biosciences, John van Geest Cancer Research Centre, School of Science & Technology, Nottingham Trent University, Nottingham, UK.
| | - Tanya M Monaghan
- NIHR Nottingham Biomedical Research Centre, University of Nottingham, Nottingham, UK; Nottingham Digestive Diseases Centre, School of Medicine, University of Nottingham, Nottingham, UK.
| |
Collapse
|
22
|
Shaw C, Hess M, Weimer BC. Microbial-Derived Tryptophan Metabolites and Their Role in Neurological Disease: Anthranilic Acid and Anthranilic Acid Derivatives. Microorganisms 2023; 11:1825. [PMID: 37512997 PMCID: PMC10384668 DOI: 10.3390/microorganisms11071825] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/13/2023] [Accepted: 07/14/2023] [Indexed: 07/30/2023] Open
Abstract
The gut microbiome provides the host access to otherwise indigestible nutrients, which are often further metabolized by the microbiome into bioactive components. The gut microbiome can also shift the balance of host-produced compounds, which may alter host health. One precursor to bioactive metabolites is the essential aromatic amino acid tryptophan. Tryptophan is mostly shunted into the kynurenine pathway but is also the primary metabolite for serotonin production and the bacterial indole pathway. Balance between tryptophan-derived bioactive metabolites is crucial for neurological homeostasis and metabolic imbalance can trigger or exacerbate neurological diseases. Alzheimer's, depression, and schizophrenia have been linked to diverging levels of tryptophan-derived anthranilic, kynurenic, and quinolinic acid. Anthranilic acid from collective microbiome metabolism plays a complex but important role in systemic host health. Although anthranilic acid and its metabolic products are of great importance for host-microbe interaction in neurological health, literature examining the mechanistic relationships between microbial production, host regulation, and neurological diseases is scarce and at times conflicting. This narrative review provides an overview of the current understanding of anthranilic acid's role in neurological health and disease, with particular focus on the contribution of the gut microbiome, the gut-brain axis, and the involvement of the three major tryptophan pathways.
Collapse
Affiliation(s)
- Claire Shaw
- Department of Population Health and Reproduction, 100K Pathogen Genome Project, University of California Davis, Davis, CA 95616, USA
- Department of Animal Science, College of Agricultural and Environmental Sciences, University of California Davis, Davis, CA 95616, USA
| | - Matthias Hess
- Department of Animal Science, College of Agricultural and Environmental Sciences, University of California Davis, Davis, CA 95616, USA
| | - Bart C Weimer
- Department of Population Health and Reproduction, 100K Pathogen Genome Project, University of California Davis, Davis, CA 95616, USA
| |
Collapse
|
23
|
Dukes HE, Tinker KA, Ottesen EA. Disentangling hindgut metabolism in the American cockroach through single-cell genomics and metatranscriptomics. Front Microbiol 2023; 14:1156809. [PMID: 37323917 PMCID: PMC10266427 DOI: 10.3389/fmicb.2023.1156809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 05/08/2023] [Indexed: 06/17/2023] Open
Abstract
Omnivorous cockroaches host a complex hindgut microbiota comprised of insect-specific lineages related to those found in mammalian omnivores. Many of these organisms have few cultured representatives, thereby limiting our ability to infer the functional capabilities of these microbes. Here we present a unique reference set of 96 high-quality single cell-amplified genomes (SAGs) from bacterial and archaeal cockroach gut symbionts. We additionally generated cockroach hindgut metagenomic and metatranscriptomic sequence libraries and mapped them to our SAGs. By combining these datasets, we are able to perform an in-depth phylogenetic and functional analysis to evaluate the abundance and activities of the taxa in vivo. Recovered lineages include key genera within Bacteroidota, including polysaccharide-degrading taxa from the genera Bacteroides, Dysgonomonas, and Parabacteroides, as well as a group of unclassified insect-associated Bacteroidales. We also recovered a phylogenetically diverse set of Firmicutes exhibiting a wide range of metabolic capabilities, including-but not limited to-polysaccharide and polypeptide degradation. Other functional groups exhibiting high relative activity in the metatranscriptomic dataset include multiple putative sulfate reducers belonging to families in the Desulfobacterota phylum and two groups of methanogenic archaea. Together, this work provides a valuable reference set with new insights into the functional specializations of insect gut symbionts and frames future studies of cockroach hindgut metabolism.
Collapse
Affiliation(s)
- Helen E. Dukes
- Department of Microbiology, University of Georgia, Athens, GA, United States
| | - Kara A. Tinker
- National Energy Technology Laboratory (NETL), Pittsburgh, PA, United States
| | | |
Collapse
|
24
|
Zhang Y, Chen R, Zhang D, Qi S, Liu Y. Metabolite interactions between host and microbiota during health and disease: Which feeds the other? Biomed Pharmacother 2023; 160:114295. [PMID: 36709600 DOI: 10.1016/j.biopha.2023.114295] [Citation(s) in RCA: 58] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/20/2023] [Accepted: 01/20/2023] [Indexed: 01/30/2023] Open
Abstract
Metabolites produced by the host and microbiota play a crucial role in how human bodies develop and remain healthy. Most of these metabolites are produced by microbiota and hosts in the digestive tract. Metabolites in the gut have important roles in energy metabolism, cellular communication, and host immunity, among other physiological activities. Although numerous host metabolites, such as free fatty acids, amino acids, and vitamins, are found in the intestine, metabolites generated by gut microbiota are equally vital for intestinal homeostasis. Furthermore, microbiota in the gut is the sole source of some metabolites, including short-chain fatty acids (SCFAs). Metabolites produced by microbiota, such as neurotransmitters and hormones, may modulate and significantly affect host metabolism. The gut microbiota is becoming recognized as a second endocrine system. A variety of chronic inflammatory disorders have been linked to aberrant host-microbiota interplays, but the precise mechanisms underpinning these disturbances and how they might lead to diseases remain to be fully elucidated. Microbiome-modulated metabolites are promising targets for new drug discovery due to their endocrine function in various complex disorders. In humans, metabolotherapy for the prevention or treatment of various disorders will be possible if we better understand the metabolic preferences of bacteria and the host in specific tissues and organs. Better disease treatments may be possible with the help of novel complementary therapies that target host or bacterial metabolism. The metabolites, their physiological consequences, and functional mechanisms of the host-microbiota interplays will be highlighted, summarized, and discussed in this overview.
Collapse
Affiliation(s)
- Yan Zhang
- Department of Anethesiology, China-Japan Union Hospital of Jilin University, Changchun 130033, People's Republic of China.
| | - Rui Chen
- Department of Pediatrics, China-Japan Union Hospital of Jilin University, Changchun 130033, People's Republic of China.
| | - DuoDuo Zhang
- Department of Thoracic Surgery, The First Hospital of Jilin University, Changchun, Jilin Province 130021, People's Republic of China.
| | - Shuang Qi
- Department of Anethesiology, China-Japan Union Hospital of Jilin University, Changchun 130033, People's Republic of China.
| | - Yan Liu
- Department of Hand and Foot Surgery, China-Japan Union Hospital of Jilin University, Changchun 130033, People's Republic of China.
| |
Collapse
|
25
|
The interaction between intestinal bacterial metabolites and phosphatase and tensin homolog in autism spectrum disorder. Mol Cell Neurosci 2023; 124:103805. [PMID: 36592799 DOI: 10.1016/j.mcn.2022.103805] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 11/17/2022] [Accepted: 12/24/2022] [Indexed: 01/01/2023] Open
Abstract
Intestinal bacteria-associated para-cresyl sulfate (pCS) and 4-ethylphenyl sulfate (4EPS) are elevated in autism spectrum disorder (ASD). Both metabolites can induce ASD-like behaviors in mice, but the molecular mechanisms are not known. Phosphatase and tensin homolog (PTEN) is a susceptibility gene for ASD. The present study investigated the relation between pCS and 4EPS and PTEN in ASD in a valproic acid (VPA)-induced murine ASD model and an in vitro LPS-activated microglial model. The VPA-induced intestinal inflammation and compromised permeability in the distal ileum was not associated with changes of PTEN expression and phosphorylation. In contrast, VPA reduced PTEN expression in the hippocampus of mice. In vitro results show that pCS and 4EPS reduced PTEN expression and derailed innate immune response of BV2 microglial cells. The PTEN inhibitor VO-OHpic did not affect innate immune response of microglial cells. In conclusion, PTEN does not play a role in intestinal inflammation and compromised permeability in VPA-induced murine model for ASD. Although pCS and 4EPS reduced PTEN expression in microglial cells, PTEN is not involved in the pCS and 4EPS-induced derailed innate immune response of microglial cells. Further studies are needed to investigate the possible involvement of reduced PTEN expression in the ASD brain regarding synapse function and neuronal connectivity.
Collapse
|
26
|
Swer NM, Venkidesh BS, Murali TS, Mumbrekar KD. Gut microbiota-derived metabolites and their importance in neurological disorders. Mol Biol Rep 2023; 50:1663-1675. [PMID: 36399245 PMCID: PMC9889412 DOI: 10.1007/s11033-022-08038-0] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Accepted: 10/18/2022] [Indexed: 11/19/2022]
Abstract
Microbial-derived metabolites are the intermediate or end products of bacterial digestion. They are one of the most important molecules for the gut to connect with the brain. Depending on the levels of specific metabolites produced in the host, it can exert beneficial or detrimental effects on the brain and have been linked to several neurodegenerative and neuropsychiatric disorders. However, the underlying mechanisms remain largely unexplored. Insight into these mechanisms could reveal new pathways or targets, resulting in novel treatment approaches targeting neurodegenerative diseases. We have reviewed selected metabolites, including short-chain fatty acids, aromatic amino acids, trimethylamine-N-oxide, urolithin A, anthocyanins, equols, imidazole, and propionate to highlight their mechanism of action, underlying role in maintaining intestinal homeostasis and regulating neuro-immunoendocrine function. Further discussed on how altered metabolite levels can influence the gut-brain axis could lead to new prevention strategies or novel treatment approaches to neural disorders.
Collapse
Affiliation(s)
- Nicole Mary Swer
- Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104, India
| | - B S Venkidesh
- Department of Radiation Biology & Toxicology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104, India
| | - Thokur Sreepathy Murali
- Department of Biotechnology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104, India
| | - Kamalesh Dattaram Mumbrekar
- Department of Radiation Biology & Toxicology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104, India.
| |
Collapse
|
27
|
Chhabra S, Nardi L, Leukel P, Sommer CJ, Schmeisser MJ. Striatal increase of dopamine receptor 2 density in idiopathic and syndromic mouse models of autism spectrum disorder. Front Psychiatry 2023; 14:1110525. [PMID: 36970280 PMCID: PMC10030619 DOI: 10.3389/fpsyt.2023.1110525] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 02/09/2023] [Indexed: 03/29/2023] Open
Abstract
Autism spectrum disorder (ASD) comprises a wide range of neurodevelopmental phenotypes united by impaired social interaction and repetitive behavior. Environmental and genetic factors are associated with the pathogenesis of ASD, while other cases are classified as idiopathic. The dopaminergic system has a profound impact in the modulation of motor and reward-motivated behaviors, and defects in dopaminergic circuits are implicated in ASD. In our study, we compare three well-established mouse models of ASD, one idiopathic, the BTBR strain, and two syndromic, Fmr1 and Shank3 mutants. In these models, and in humans with ASD, alterations in dopaminergic metabolism and neurotransmission were highlighted. Still, accurate knowledge about the distribution of dopamine receptor densities in the basal ganglia is lacking. Using receptor autoradiography, we describe the neuroanatomical distribution of D1 and D2 receptors in dorsal and ventral striatum at late infancy and adulthood in the above-mentioned models. We show that D1 receptor binding density is different among the models irrespective of the region. A significant convergence in increased D2 receptor binding density in the ventral striatum at adulthood becomes apparent in BTBR and Shank3 lines, and a similar trend was observed in the Fmr1 line. Altogether, our results confirm the involvement of the dopaminergic system, showing defined alterations in dopamine receptor binding density in three well-established ASD lines, which may provide a plausible explanation to some of the prevalent traits of ASD. Moreover, our study provides a neuroanatomical framework to explain the utilization of D2-acting drugs such as Risperidone and Aripiprazole in ASD.
Collapse
Affiliation(s)
- Stuti Chhabra
- Institute of Anatomy, University Medical Center of the Johannes-Gutenberg University, Mainz, Germany
- Focus Program Translational Neurosciences, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Leonardo Nardi
- Institute of Anatomy, University Medical Center of the Johannes-Gutenberg University, Mainz, Germany
| | - Petra Leukel
- Institute of Neuropathology, University Medical Center of the Johannes-Gutenberg University, Mainz, Germany
| | - Clemens J. Sommer
- Focus Program Translational Neurosciences, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
- Institute of Neuropathology, University Medical Center of the Johannes-Gutenberg University, Mainz, Germany
| | - Michael J. Schmeisser
- Institute of Anatomy, University Medical Center of the Johannes-Gutenberg University, Mainz, Germany
- Focus Program Translational Neurosciences, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
- *Correspondence: Michael J. Schmeisser,
| |
Collapse
|
28
|
Gut microbiota alterations promote traumatic stress susceptibility associated with p-cresol-induced dopaminergic dysfunctions. Brain Behav Immun 2023; 107:385-396. [PMID: 36400332 DOI: 10.1016/j.bbi.2022.11.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 10/06/2022] [Accepted: 11/11/2022] [Indexed: 11/17/2022] Open
Abstract
Mounting evidence suggests a link between gut microbiota abnormalities and post-traumatic stress disorder (PTSD). However, whether and how the gut microbiota influences PTSD susceptibility is poorly understood. Here using the arousal-based individual screening model, we provide evidence for pre-trauma and post-trauma gut microbiota alterations in susceptible mice exhibiting persistent PTSD-related phenotypes. A more in-depth analysis revealed an increased abundance of bacteria affecting brain processes including myelination, and brain systems like the dopaminergic neurotransmission. Because dopaminergic dysfunctions play a key role in the pathophysiological mechanisms subserving PTSD, we assessed whether these alterations in gut microbiota composition could be associated with abnormal levels of metabolites inducing dopaminergic dysfunctions. We found high levels of the l-tyrosine-derived metabolite p-cresol exclusively in the prefrontal cortex of susceptible mice. We further uncovered abnormal levels of dopamine and DOPAC, together with a detrimental increase of dopamine D3 receptor expression, exclusively in the prefrontal cortex of susceptible mice. Conversely, we observed either resilience mechanisms aimed at counteracting these p-cresol-induced dopaminergic dysfunctions or myelination-related resilience mechanisms only in the prefrontal cortex of resilient mice. These findings reveal that gut microbiota abnormalities foster trauma susceptibility and thus it may represent a promising target for therapeutic interventions.
Collapse
|
29
|
The Autism Spectrum Disorder-Associated Bacterial Metabolite p-Cresol Derails the Neuroimmune Response of Microglial Cells Partially via Reduction of ADAM17 and ADAM10. Int J Mol Sci 2022; 23:ijms231911013. [PMID: 36232346 PMCID: PMC9570133 DOI: 10.3390/ijms231911013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 09/12/2022] [Accepted: 09/14/2022] [Indexed: 11/16/2022] Open
Abstract
The bacterial metabolite 4-methylphenol (para-cresol or p-cresol) and its derivative p-cresyl sulfate (pCS) are elevated in the urine and feces of children with autism spectrum disorder (ASD). It has been shown that p-cresol administration induces social behavior deficits and repetitive behavior in mice. However, the mechanisms of p-cresol, specifically its metabolite pCS that can reach the brain, in ASD remain to be investigated. The pCS has been shown to inhibit LPS-stimulated inflammatory response. A Disintegrin And Metalloprotease 10 (ADAM10) and A Disintegrin And Metalloprotease 17 (ADAM17) are thought to regulate microglial immune response by cleaving membrane-bound proteins. In the present study, a neuroinflammation model of LPS-activated BV2 microglia has been used to unveil the potential molecular mechanism of pCS in ASD pathogenesis. In microglial cells pCS treatment decreases the expression or maturation of ADAM10 and ADAM17. In addition, pCS treatment attenuates TNF-α and IL-6 releases as well as phagocytosis activity of microglia. In in vitro ADAM10/17 inhibition experiments, either ADAM10 or ADAM17 inhibition reduces constitutive and LPS-activated release of TNF-α, TNFR-1 and IL-6R by microglial cells, while it increases constitutive and LPS-activated microglial phagocytotic activity. The in vivo results further confirm the involvement of ADAM10 and ADAM17 in ASD pathogenesis. In in utero VPA-exposed male mice, elevated concentration in serum of p-cresol-associated metabolites pCS and p-cresyl glucuronide (pCG) is associated with a VPA-induced increased ADAM10 maturation, and a decreased ADAM17 maturation that is related with attenuated levels of soluble TNF-α and TGF-β1 in the mice brain. Overall, the present study demonstrates a partial role of ADAM10 and ADAM17 in the derailed innate immune response of microglial cells associated with pCS-induced ASD pathogenesis.
Collapse
|
30
|
Oshiro S, Silvério F, Pinho G. Determination of p-cresol levels in smoked meat products using QuEChERS method and gas chromatography-mass spectrometry. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2022; 57:796-803. [PMID: 36048472 DOI: 10.1080/03601234.2022.2116897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
p-Cresol is known as an environmental chemical contaminant that has toxic effects on humans. However, the presence of p-cresol in smoked foods has been seen as a flavor constituent. The present study had as objective to optimize and validate the QuEChERS method for the determination of p-cresol in beef hamburger, which was chosen as a representative matrix for six smoked meat products. The analysis was performed by gas chromatography coupled with mass spectrometry (GC-MS). The method showed limit of quantification (LOQ) of 40 µg kg-1, linearity between 40 and 200 µg kg-1, recovery higher than 70% and relative standard deviation lower than 14%. The proposed method was applied to six different smoked foods and the p-cresol concentration ranged from 148 to 872 µg kg-1 and only the turkey breast pate showed a concentration lower than the LOQ. The descending order of p-cresol level in smoked samples was: sausage > shredded tuna > salami > turkey breast > hamburger > turkey breast pate. In three analyzed samples, the results showed that the p-cresol migrates from the surface to the food inner. Finally, the proposed method was simple and efficient to quantify high levels of this contaminant in smoked foods and it could be a useful tool for the monitoring food safety and quality.
Collapse
Affiliation(s)
- Susane Oshiro
- Institute of Agricultural Sciences, Universidade Federal de Minas Gerais, Montes Claros, Brazil
| | - Flaviano Silvério
- Institute of Agricultural Sciences, Universidade Federal de Minas Gerais, Montes Claros, Brazil
| | - Gevany Pinho
- Institute of Agricultural Sciences, Universidade Federal de Minas Gerais, Montes Claros, Brazil
| |
Collapse
|
31
|
Abstract
The gut microbiome is a contributory factor in ageing-related health loss and in several non-communicable diseases in all age groups. Some age-linked and disease-linked compositional and functional changes overlap, while others are distinct. In this Review, we explore targeted studies of the gut microbiome of older individuals and general cohort studies across geographically distinct populations. We also address the promise of the targeted restoration of microorganisms associated with healthier ageing.
Collapse
Affiliation(s)
- Tarini Shankar Ghosh
- APC Microbiome Ireland, University College Cork, National University of Ireland, Cork, Ireland
- School of Microbiology, University College Cork, National University of Ireland, Cork, Ireland
| | - Fergus Shanahan
- APC Microbiome Ireland, University College Cork, National University of Ireland, Cork, Ireland
- Department of Medicine, University College Cork, National University of Ireland, Cork, Ireland
| | - Paul W O'Toole
- APC Microbiome Ireland, University College Cork, National University of Ireland, Cork, Ireland.
- School of Microbiology, University College Cork, National University of Ireland, Cork, Ireland.
| |
Collapse
|
32
|
Timperio AM, Gevi F, Cucinotta F, Ricciardello A, Turriziani L, Scattoni ML, Persico AM. Urinary Untargeted Metabolic Profile Differentiates Children with Autism from Their Unaffected Siblings. Metabolites 2022; 12:metabo12090797. [PMID: 36144201 PMCID: PMC9503174 DOI: 10.3390/metabo12090797] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 08/16/2022] [Accepted: 08/22/2022] [Indexed: 11/16/2022] Open
Abstract
Autism Spectrum Disorder (ASD) encompasses a clinical spectrum of neurodevelopmental conditions that display significant heterogeneity in etiology, symptomatology, and severity. We previously compared 30 young children with idiopathic ASD and 30 unrelated typically-developing controls, detecting an imbalance in several compounds belonging mainly to the metabolism of purines, tryptophan and other amino acids, as well as compounds derived from the intestinal flora, and reduced levels of vitamins B6, B12 and folic acid. The present study describes significant urinary metabolomic differences within 14 pairs, including one child with idiopathic ASD and his/her typically-developing sibling, tightly matched by sex and age to minimize confounding factors, allowing a more reliable identification of the metabolic fingerprint related to ASD. By using a highly sensitive, accurate and unbiased approach, suitable for ensuring broad metabolite detection coverage on human urine, and by applying multivariate statistical analysis, we largely replicate our previous results, demonstrating a significant perturbation of the purine and tryptophan pathways, and further highlight abnormalities in the “phenylalanine, tyrosine and tryptophan” pathway, essentially involving increased phenylalanine and decreased tyrosine levels, as well as enhanced concentrations of bacterial degradation products, including phenylpyruvic acid, phenylacetic acid and 4-ethylphenyl-sulfate. The outcome of these within-family contrasts consolidates and extends our previous results obtained from unrelated individuals, adding further evidence that these metabolic imbalances may be linked to ASD rather than to environmental differences between cases and controls. It further underscores the excess of some gut microbiota-derived compounds in ASD, which could have diagnostic value in a network model differentiating the metabolome of autistic and unaffected siblings. Finally, it points toward the existence of a “metabolic autism spectrum” distributed as an endophenotype, with unaffected siblings possibly displaying a metabolic profile intermediate between their autistic siblings and unrelated typically-developing controls.
Collapse
Affiliation(s)
- Anna Maria Timperio
- Department of Ecological and Biological Sciences, University of Tuscia, 01100 Viterbo, Italy
- Correspondence: (A.M.T.); (A.M.P.)
| | - Federica Gevi
- Department of Ecological and Biological Sciences, University of Tuscia, 01100 Viterbo, Italy
| | - Francesca Cucinotta
- Interdepartmental Program “Autism 0-90”, “G. Martino” University Hospital, 98124 Messina, Italy
- IRCCS Centro Neurolesi “Bonino-Pulejo”, 98124 Messina, Italy
| | - Arianna Ricciardello
- Interdepartmental Program “Autism 0-90”, “G. Martino” University Hospital, 98124 Messina, Italy
- Villa Miralago, 21050 Cuasso al Monte, Italy
| | - Laura Turriziani
- Interdepartmental Program “Autism 0-90”, “G. Martino” University Hospital, 98124 Messina, Italy
| | - Maria Luisa Scattoni
- Research Coordination and Support Service, Istituto Superiore di Sanità, 00161 Rome, Italy
| | - Antonio M. Persico
- Child & Adolescent Neuropsychiatry Program, Modena University Hospital & Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41121 Modena, Italy
- Correspondence: (A.M.T.); (A.M.P.)
| |
Collapse
|
33
|
Ribeiro HC, Sen P, Dickens A, Santa Cruz EC, Orešič M, Sussulini A. Metabolomic and proteomic profiling in bipolar disorder patients revealed potential molecular signatures related to hemostasis. Metabolomics 2022; 18:65. [PMID: 35922643 DOI: 10.1007/s11306-022-01924-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 07/19/2022] [Indexed: 11/30/2022]
Abstract
INTRODUCTION Bipolar disorder (BD) is a mood disorder characterized by the occurrence of depressive episodes alternating with episodes of elevated mood (known as mania). There is also an increased risk of other medical comorbidities. OBJECTIVES This work uses a systems biology approach to compare BD treated patients with healthy controls (HCs), integrating proteomics and metabolomics data using partial correlation analysis in order to observe the interactions between altered proteins and metabolites, as well as proposing a potential metabolic signature panel for the disease. METHODS Data integration between proteomics and metabolomics was performed using GC-MS data and label-free proteomics from the same individuals (N = 13; 5 BD, 8 HC) using generalized canonical correlation analysis and partial correlation analysis, and then building a correlation network between metabolites and proteins. Ridge-logistic regression models were developed to stratify between BD and HC groups using an extended metabolomics dataset (N = 28; 14 BD, 14 HC), applying a recursive feature elimination for the optimal selection of the metabolites. RESULTS Network analysis demonstrated links between proteins and metabolites, pointing to possible alterations in hemostasis of BD patients. Ridge-logistic regression model indicated a molecular signature comprising 9 metabolites, with an area under the receiver operating characteristic curve (AUROC) of 0.833 (95% CI 0.817-0.914). CONCLUSION From our results, we conclude that several metabolic processes are related to BD, which can be considered as a multi-system disorder. We also demonstrate the feasibility of partial correlation analysis for integration of proteomics and metabolomics data in a case-control study setting.
Collapse
Affiliation(s)
- Henrique Caracho Ribeiro
- Laboratory of Bioanalytics and Integrated Omics (LaBIOmics), Institute of Chemistry, University of Campinas, PO Box 6154, Campinas, SP, 13083-970, Brazil
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, 20520, Turku, Finland
| | - Partho Sen
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, 20520, Turku, Finland
- School of Medical Sciences, Örebro University, 702 81, Örebro, Sweden
| | - Alex Dickens
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, 20520, Turku, Finland
- Department of Chemistry, University of Turku, 20520, Turku, Finland
| | - Elisa Castañeda Santa Cruz
- Laboratory of Bioanalytics and Integrated Omics (LaBIOmics), Institute of Chemistry, University of Campinas, PO Box 6154, Campinas, SP, 13083-970, Brazil
| | - Matej Orešič
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, 20520, Turku, Finland
- School of Medical Sciences, Örebro University, 702 81, Örebro, Sweden
| | - Alessandra Sussulini
- Laboratory of Bioanalytics and Integrated Omics (LaBIOmics), Institute of Chemistry, University of Campinas, PO Box 6154, Campinas, SP, 13083-970, Brazil.
- Instituto Nacional de Ciência e Tecnologia de Bioanalítica (INCTBio), Institute of Chemistry, University of Campinas (UNICAMP), Campinas, SP, 13083-970, Brazil.
| |
Collapse
|
34
|
Ahmed H, Leyrolle Q, Koistinen V, Kärkkäinen O, Layé S, Delzenne N, Hanhineva K. Microbiota-derived metabolites as drivers of gut-brain communication. Gut Microbes 2022; 14:2102878. [PMID: 35903003 PMCID: PMC9341364 DOI: 10.1080/19490976.2022.2102878] [Citation(s) in RCA: 171] [Impact Index Per Article: 57.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Alterations in the gut microbiota composition have been associated with a range of neurodevelopmental, neurodegenerative, and neuropsychiatric disorders. The gut microbes transform and metabolize dietary- and host-derived molecules generating a diverse group of metabolites with local and systemic effects. The bi-directional communication between brain and the microbes residing in the gut, the so-called gut-brain axis, consists of a network of immunological, neuronal, and endocrine signaling pathways. Although the full variety of mechanisms of the gut-brain crosstalk is yet to be established, the existing data demonstrates that a single metabolite or its derivatives are likely among the key inductors within the gut-brain axis communication. However, more research is needed to understand the molecular mechanisms underlying how gut microbiota associated metabolites alter brain functions, and to examine if different interventional approaches targeting the gut microbiota could be used in prevention and treatment of neurological disorders, as reviewed herein.Abbreviations:4-EPS 4-ethylphenylsulfate; 5-AVA(B) 5-aminovaleric acid (betaine); Aβ Amyloid beta protein; AhR Aryl hydrocarbon receptor; ASD Autism spectrum disorder; BBB Blood-brain barrier; BDNF Brain-derived neurotrophic factor; CNS Central nervous system; GABA ɣ-aminobutyric acid; GF Germ-free; MIA Maternal immune activation; SCFA Short-chain fatty acid; 3M-4-TMAB 3-methyl-4-(trimethylammonio)butanoate; 4-TMAP 4-(trimethylammonio)pentanoate; TMA(O) Trimethylamine(-N-oxide); TUDCA Tauroursodeoxycholic acid; ZO Zonula occludens proteins.
Collapse
Affiliation(s)
- Hany Ahmed
- Food Sciences Unit, Department of Life Technologies, University of Turku, Turku, Finland,CONTACT Hany Ahmed Food Chemistry and Food Development Unit, Department of Life Technologies, University of Turku, Turku, Finland
| | - Quentin Leyrolle
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, UCLouvain, Brussels, Belgium
| | - Ville Koistinen
- Food Sciences Unit, Department of Life Technologies, University of Turku, Turku, Finland,School of Medicine, Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland
| | - Olli Kärkkäinen
- School of Pharmacy, University of Eastern Finland, Kuopio, Finland
| | - Sophie Layé
- Laboratoire NutriNeuro, UMR INRAE 1286, Bordeaux INP, Université de Bordeaux, Bordeaux, France
| | - Nathalie Delzenne
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, UCLouvain, Brussels, Belgium
| | - Kati Hanhineva
- Food Sciences Unit, Department of Life Technologies, University of Turku, Turku, Finland,School of Medicine, Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland,Department of Biology and Biological Engineering, Division of Food and Nutrition Science, Chalmers University of Technology, Gothenburg, Sweden
| |
Collapse
|
35
|
Reconsidering the in vivo functions of Clostridial Stickland amino acid fermentations. Anaerobe 2022; 76:102600. [PMID: 35709938 PMCID: PMC9831356 DOI: 10.1016/j.anaerobe.2022.102600] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 06/03/2022] [Indexed: 01/13/2023]
Abstract
Stickland amino acid fermentations occur primarily among species of Clostridia. An ancient form of metabolism, Stickland fermentations use amino acids as electron acceptors in the absence of stronger oxidizing agents and provide metabolic capabilities to support growth when other fermentable substrates, such as carbohydrates, are lacking. The reactions were originally described as paired fermentations of amino acid electron donors, such as the branched-chain amino acids, with recipients that include proline and glycine. We present a redox-focused view of Stickland metabolism following electron flow through metabolically diverse oxidative reactions and the defined-substrate reductase systems, including for proline and glycine, and the role of dual redox pathways for substrates such as leucine and ornithine. Genetic studies and Environment and Gene Regulatory Interaction Network (EGRIN) models for the pathogen Clostridioides difficile have improved our understanding of the regulation and metabolic recruitment of these systems, and their functions in modulating inter-species interactions within host-pathogen-commensal systems and uses in industrial and environmental applications.
Collapse
|
36
|
Abstract
Mounting evidence indicates that microglia, which are the resident immune cells of the brain, play critical roles in a diverse array of neurodevelopmental processes required for proper brain maturation and function. This evidence has ultimately led to growing speculation that microglial dysfunction may play a role in neurodevelopmental disorder (NDD) pathoetiology. In this review, we first provide an overview of how microglia mechanistically contribute to the sculpting of the developing brain and neuronal circuits. To provide an example of how disruption of microglial biology impacts NDD development, we also highlight emerging evidence that has linked microglial dysregulation to autism spectrum disorder pathogenesis. In recent years, there has been increasing interest in how the gut microbiome shapes microglial biology. In the last section of this review, we put a spotlight on this burgeoning area of microglial research and discuss how microbiota-dependent modulation of microglial biology is currently thought to influence NDD progression.
Collapse
Affiliation(s)
- John R Lukens
- Department of Neuroscience, University of Virginia School of Medicine, Charlottesville, Virginia, USA;
- Center for Brain Immunology and Glia, University of Virginia, Charlottesville, Virginia, USA
| | - Ukpong B Eyo
- Department of Neuroscience, University of Virginia School of Medicine, Charlottesville, Virginia, USA;
- Center for Brain Immunology and Glia, University of Virginia, Charlottesville, Virginia, USA
| |
Collapse
|
37
|
Microbial-derived metabolites as a risk factor of age-related cognitive decline and dementia. Mol Neurodegener 2022; 17:43. [PMID: 35715821 PMCID: PMC9204954 DOI: 10.1186/s13024-022-00548-6] [Citation(s) in RCA: 105] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 05/30/2022] [Indexed: 02/06/2023] Open
Abstract
A consequence of our progressively ageing global population is the increasing prevalence of worldwide age-related cognitive decline and dementia. In the absence of effective therapeutic interventions, identifying risk factors associated with cognitive decline becomes increasingly vital. Novel perspectives suggest that a dynamic bidirectional communication system between the gut, its microbiome, and the central nervous system, commonly referred to as the microbiota-gut-brain axis, may be a contributing factor for cognitive health and disease. However, the exact mechanisms remain undefined. Microbial-derived metabolites produced in the gut can cross the intestinal epithelial barrier, enter systemic circulation and trigger physiological responses both directly and indirectly affecting the central nervous system and its functions. Dysregulation of this system (i.e., dysbiosis) can modulate cytotoxic metabolite production, promote neuroinflammation and negatively impact cognition. In this review, we explore critical connections between microbial-derived metabolites (secondary bile acids, trimethylamine-N-oxide (TMAO), tryptophan derivatives and others) and their influence upon cognitive function and neurodegenerative disorders, with a particular interest in their less-explored role as risk factors of cognitive decline.
Collapse
|
38
|
Opioid Use, Gut Dysbiosis, Inflammation, and the Nervous System. J Neuroimmune Pharmacol 2022; 17:76-93. [PMID: 34993905 DOI: 10.1007/s11481-021-10046-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 12/17/2021] [Indexed: 12/29/2022]
Abstract
Opioid use disorder (OUD) is defined as the chronic use or misuse of prescribed or illicitly obtained opioids and is characterized by clinically significant impairment. The etiology of OUD is multifactorial as it is influenced by genetics, environmental factors, stress response and behavior. Given the profound role of the gut microbiome in health and disease states, in recent years there has been a growing interest to explore interactions between the gut microbiome and the central nervous system as a causal link and potential therapeutic source for OUD. This review describes the role of the gut microbiome and opioid-induced immunopathological disturbances at the gut epithelial surface, which collectively contribute to OUD and perpetuate the vicious cycle of addiction and relapse.
Collapse
|
39
|
Abstract
Gastrointestinal illnesses and dysbiosis are among the most common comorbidities reported in patients with neurodevelopmental disorders. The manuscript reports that C. difficile infection (CDI), predisposed by antibiotic-induced gut dysbiosis, causes significant alterations in dopamine metabolism in major dopaminergic brain regions in mice (P < 0.05). In addition, C. difficile infected mice exhibited significantly reduced dopamine beta-hydroxylase (DBH) activity compared to controls (P < 0.01). Moreover, a significantly increased serum concentration of p-cresol, a DBH inhibiting gut metabolite produced by C. difficile, was also observed in C. difficile infected mice (P < 0.05). Therefore, this study suggests a potential mechanistic link between CDI and alterations in the brain dopaminergic axis. Such alterations may plausibly influence the precipitation and aggravation of dopamine dysmetabolism-associated neurologic diseases in infected patients. IMPORTANCE The gut-brain axis is thought to play a significant role in the development and manifestation of neurologic diseases. This study reports significant alterations in the brain dopamine metabolism in mice infected with C. difficile, an important pathogen that overgrows in the gut after prolonged antibiotic therapy. Such alterations in specific brain regions may have an effect on the precipitation or manifestation of neurodevelopmental disorders in humans.
Collapse
|
40
|
Guzmán Salas S, Weber A, Malci A, Lin X, Herrera-Molina R, Cerpa W, Dorador C, Signorelli J, Zamorano P. The metabolite p-cresol impairs dendritic development, synaptogenesis and synapse function in hippocampal neurons: Implications for autism spectrum disorder. J Neurochem 2022; 161:335-349. [PMID: 35257373 DOI: 10.1111/jnc.15604] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 02/21/2022] [Accepted: 03/01/2022] [Indexed: 11/29/2022]
Abstract
Autism spectrum disorder (ASD) is a heterogenous neurodevelopment disorder resulting from different etiological factors, both genetic and/or environmental. These factors can lead to abnormal neuronal development on dendrite and synaptic function at the central nervous system. Recent studies have shown that a subset of ASD patients display increased circulation levels of the tyrosine metabolite, p-cresol, related to chronic intestinal disorders due to dysbiosis of the intestinal microbiota. In particular, abnormal presence of intestinal Clostridium sp. has been linked to high levels of p-cresol in ASD children younger than 8 years. However, the role of p-cresol during development of the central nervous system is unknown. Here, we evaluated in vitro the effect of p-cresol on neurite outgrowth in N2a and PC12 cell lines and dendritic morphology, synaptic density, neuronal activity, and calcium responses in primary rat hippocampal neurons. p-cresol inhibits neural differentiation and neurites outgrowth in N2a and PC12 neuronal cell lines. In hippocampal neuronal cultures, Sholl´s analysis shows a decrease in the dendritic arborization of neurons treated with p-cresol. Synaptic density analyzed with the synaptic markers Piccolo and Shank2 is diminished in hippocampal neurons treated with p-cresol. Electrically-evoked intracellular calcium rise was drastically, but reversely, blocked by p-cresol, whereas that spontaneous neuronal activity was severely affected by early addition of the metabolite. These findings show that p-cresol alters dendrite development, synaptogenesis and synapse function of neurons in culture, therefore, neuronal alterations occurring in ASD children may be related to this metabolite and dysbiosis of the intestinal microbiota.
Collapse
Affiliation(s)
- Sheyla Guzmán Salas
- Departamento Biomédico, Universidad de Antofagasta, Antofagasta, Chile.,Centre for Biotechnology and Bioengineering CeBiB, Antofagasta
| | - André Weber
- Leibniz Institute for Neurobiology, Magdeburg, Germany
| | - Ayse Malci
- Leibniz Institute for Neurobiology, Magdeburg, Germany
| | - Xiao Lin
- Leibniz Institute for Neurobiology, Magdeburg, Germany
| | - Rodrigo Herrera-Molina
- Leibniz Institute for Neurobiology, Magdeburg, Germany.,Centro Integrativo de Biología y Química Aplicada, Universidad Bernardo O'Higgins, Santiago, Chile.,Center for Behavioral Brain Sciences and Medical Faculty, Otto von Guericke University, Magdeburg, Germany
| | - Waldo Cerpa
- Laboratorio de Función y Patología Neuronal; Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, 8331150, Santiago, Chile.,Centro de Excelencia en Biomedicina de Magallanes (CEBIMA); Universidad de Magallanes, Punta Arenas, Chile.,Centro de Envejecimiento y Regeneración (CARE); Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Cristina Dorador
- Centre for Biotechnology and Bioengineering CeBiB, Antofagasta.,Instituto Antofagasta, Universidad de Antofagasta, Antofagasta, Chile
| | | | - Pedro Zamorano
- Departamento Biomédico, Universidad de Antofagasta, Antofagasta, Chile.,Instituto Antofagasta, Universidad de Antofagasta, Antofagasta, Chile
| |
Collapse
|
41
|
Stuivenberg GA, Burton JP, Bron PA, Reid G. Why Are Bifidobacteria Important for Infants? Microorganisms 2022; 10:278. [PMID: 35208736 PMCID: PMC8880231 DOI: 10.3390/microorganisms10020278] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/14/2022] [Accepted: 01/20/2022] [Indexed: 02/04/2023] Open
Abstract
The presence of Bifidobacterium species in the maternal vaginal and fecal microbiota is arguably an evolutionary trait that allows these organisms to be primary colonizers of the newborn intestinal tract. Their ability to utilize human milk oligosaccharides fosters their establishment as core health-promoting organisms throughout life. A reduction in their abundance in infants has been shown to increase the prevalence of obesity, diabetes, metabolic disorder, and all-cause mortality later in life. Probiotic strains have been developed as supplements for premature babies and to counter some of these ailments as well as to confer a range of health benefits. The ability to modulate the immune response and produce short-chain fatty acids, particularly acetate and butyrate, that strengthen the gut barrier and regulate the gut microbiome, makes Bifidobacterium a core component of a healthy infant through adulthood.
Collapse
Affiliation(s)
- Gerrit A. Stuivenberg
- Centre for Human Microbiome and Probiotic Research, Lawson Health Research Institute, London, ON N6A4V2, Canada; (G.A.S.); (J.P.B.)
- Departments of Microbiology and Immunology and Surgery, Western University, London, ON N6A 3K7, Canada
| | - Jeremy P. Burton
- Centre for Human Microbiome and Probiotic Research, Lawson Health Research Institute, London, ON N6A4V2, Canada; (G.A.S.); (J.P.B.)
- Departments of Microbiology and Immunology and Surgery, Western University, London, ON N6A 3K7, Canada
| | | | - Gregor Reid
- Centre for Human Microbiome and Probiotic Research, Lawson Health Research Institute, London, ON N6A4V2, Canada; (G.A.S.); (J.P.B.)
- Departments of Microbiology and Immunology and Surgery, Western University, London, ON N6A 3K7, Canada
- Seed Health Inc., Venice, CA 90291, USA;
| |
Collapse
|
42
|
Turriziani L, Ricciardello A, Cucinotta F, Bellomo F, Turturo G, Boncoddo M, Mirabelli S, Scattoni ML, Rossi M, Persico AM. Gut mobilization improves behavioral symptoms and modulates urinary p-cresol in chronically constipated autistic children: A prospective study. Autism Res 2022; 15:56-69. [PMID: 34813183 PMCID: PMC9299106 DOI: 10.1002/aur.2639] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 10/23/2021] [Accepted: 10/30/2021] [Indexed: 12/28/2022]
Abstract
Chronic constipation is common among children with ASD and is associated with more severe hyperactivity, anxiety, irritability, and repetitive behaviors. Young autistic children with chronic constipation display higher urinary, and foecal concentrations of p-cresol, an aromatic compound produced by gut bacteria, known to negatively affect brain function. Acute p-cresol administration to BTBR mice enhances anxiety, hyperactivity and stereotypic behaviors, while blunting social interaction. This study was undertaken to prospectively assess the behavioral effects of gut mobilization in young autistic children with chronic constipation, and to verify their possible correlation with urinary p-cresol. To this aim, 21 chronically constipated autistic children 2-8 years old were evaluated before (T0), 1 month (T1), and 6 months (T2) after intestinal mobilization, recording Bristol stool scale scores, urinary p-cresol concentrations, and behavioral scores for social interaction deficits, stereotypic behaviors, anxiety, and hyperactivity. Gut mobilization yielded a progressive and highly significant decrease in all behavioral symptoms over the 6-month study period. Urinary p-cresol levels displayed variable trends not significantly correlated with changes in behavioral parameters, mainly increasing at T1 and decreasing at T2. These results support gut mobilization as a simple strategy to ameliorate ASD symptoms, as well as comorbid anxiety and hyperactivity, in chronically constipated children. Variation in p-cresol absorption seemingly provides limited contributions, if any, to these behavioral changes. Further research will be needed to address the relative role of reduced abdominal discomfort following mobilization, as compared to specific modifications in microbiome composition and in gut bacteria-derived neuroactive compounds.
Collapse
Affiliation(s)
- Laura Turriziani
- Interdepartmental Program "Autism 0‐90""G. Martino" University Hospital of MessinaMessinaItaly
| | - Arianna Ricciardello
- Interdepartmental Program "Autism 0‐90""G. Martino" University Hospital of MessinaMessinaItaly
| | - Francesca Cucinotta
- Interdepartmental Program "Autism 0‐90""G. Martino" University Hospital of MessinaMessinaItaly
- IRCCS Centro Neurolesi "Bonino‐Pulejo"MessinaItaly
| | - Fabiana Bellomo
- Interdepartmental Program "Autism 0‐90""G. Martino" University Hospital of MessinaMessinaItaly
| | - Giada Turturo
- Interdepartmental Program "Autism 0‐90""G. Martino" University Hospital of MessinaMessinaItaly
| | - Maria Boncoddo
- Interdepartmental Program "Autism 0‐90""G. Martino" University Hospital of MessinaMessinaItaly
| | - Silvestro Mirabelli
- Interdepartmental Program "Autism 0‐90""G. Martino" University Hospital of MessinaMessinaItaly
| | - Maria Luisa Scattoni
- Research Coordination and Support Service, Istituto Superiore di SanitàRomeItaly
| | - Maddalena Rossi
- Department of Life Sciences & BIOGEST‐SITEIAUniversity of Modena and Reggio EmiliaModenaItaly
| | - Antonio M. Persico
- Child & Adolescent Neuropsychiatry Program, Modena University Hospital, & Department of Biomedical, Metabolic and Neural SciencesUniversity of Modena and Reggio EmiliaModenaItaly
| |
Collapse
|
43
|
Gold A, Zhu J. Not just a gut feeling: a deep exploration of functional bacterial metabolites that can modulate host health. Gut Microbes 2022; 14:2125734. [PMID: 36127825 PMCID: PMC9519022 DOI: 10.1080/19490976.2022.2125734] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 09/09/2022] [Indexed: 02/04/2023] Open
Abstract
Bacteria have been known to reside in the human gut for roughly two centuries, but their modulatory effects on host health status are still not fully characterized. The gut microbiota is known to interact with dietary components and nutrients, producing functional metabolites that may alter host metabolic processes. The majority of thoroughly researched and understood gut microbial metabolites fall into two categories: short-chain fatty acids (SCFAs) and bacterial derivatives of dietary tryptophan. Despite the heavy emphasis on these metabolites, other metabolites stemming from microbial origin have significant impacts on host health and disease states. In this narrative review, we summarize eight recent studies elucidating novel bacterial metabolites, detailing the process by which these metabolites are identified, their actions within specific categories of human health, and how diet may impact production of these metabolites. With similar future mechanistic research, a more complete picture of bacterial impact on host metabolism may be constructed.
Collapse
Affiliation(s)
- Andrew Gold
- Human Nutrition Program & James Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Jiangjiang Zhu
- Human Nutrition Program & James Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
44
|
Chen HJ, Liu YW. The Impacts of Probiotics on Microbiota in Patients With Autism Spectrum Disorder. COMPREHENSIVE GUT MICROBIOTA 2022:296-319. [DOI: 10.1016/b978-0-12-819265-8.00101-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
45
|
Zheng Y, Bek MK, Prince NZ, Peralta Marzal LN, Garssen J, Perez Pardo P, Kraneveld AD. The Role of Bacterial-Derived Aromatic Amino Acids Metabolites Relevant in Autism Spectrum Disorders: A Comprehensive Review. Front Neurosci 2021; 15:738220. [PMID: 34744609 PMCID: PMC8568365 DOI: 10.3389/fnins.2021.738220] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 09/30/2021] [Indexed: 12/27/2022] Open
Abstract
In recent years, the idea of the gut microbiota being involved in the pathogenesis of autism spectrum disorders (ASD) has attracted attention through numerous studies. Many of these studies report microbial dysregulation in the gut and feces of autistic patients and in ASD animal models. The host microbiota plays a large role in metabolism of ingested foods, and through the production of a range of metabolites it may be involved in neurodevelopmental disorders such as ASD. Two specific microbiota-derived host metabolites, p-cresol sulfate and 4-ethylphenyl sulfate, have been associated with ASD in both patients and animal models. These metabolites originate from bacterially produced p-cresol and 4-ethylphenol, respectively. p-Cresol and 4-ethylphenol are produced through aromatic amino acid fermentation by a range of commensal bacteria, most notably bacteria from the Clostridioides genus, which are among the dysregulated bacteria frequently detected in ASD patients. Once produced, these metabolites are suggested to enter the bloodstream, pass the blood–brain-barrier and affect microglial cells in the central nervous system, possibly affecting processes like neuroinflammation and microglial phagocytosis. This review describes the current knowledge of microbial dysbiosis in ASD and elaborates on the relevance and synthesis pathways of two specific ASD-associated metabolites that may form a link between the microbiota and the brain in autism. While the two discussed metabolites are promising candidates for biomarkers and (nutritional) intervention targets, more research into the role of these metabolites in ASD is required to causally connect these metabolites to ASD pathophysiology.
Collapse
Affiliation(s)
- Yuanpeng Zheng
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, Netherlands
| | - Marie K Bek
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, Netherlands
| | - Naika Z Prince
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, Netherlands
| | - Lucia N Peralta Marzal
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, Netherlands
| | - Johan Garssen
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, Netherlands.,Global Centre of Excellence Immunology, Danone Nutricia Research, Utrecht, Netherlands
| | - Paula Perez Pardo
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, Netherlands
| | - Aletta D Kraneveld
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
46
|
Peralta-Marzal LN, Prince N, Bajic D, Roussin L, Naudon L, Rabot S, Garssen J, Kraneveld AD, Perez-Pardo P. The Impact of Gut Microbiota-Derived Metabolites in Autism Spectrum Disorders. Int J Mol Sci 2021; 22:10052. [PMID: 34576216 PMCID: PMC8470471 DOI: 10.3390/ijms221810052] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 09/13/2021] [Accepted: 09/14/2021] [Indexed: 12/12/2022] Open
Abstract
Autism Spectrum Disorder (ASD) is a set of neurodevelopmental disorders characterised by behavioural impairment and deficiencies in social interaction and communication. A recent study estimated that 1 in 89 children have developed some form of ASD in European countries. Moreover, there is no specific treatment and since ASD is not a single clinical entity, the identification of molecular biomarkers for diagnosis remains challenging. Besides behavioural deficiencies, individuals with ASD often develop comorbid medical conditions including intestinal problems, which may reflect aberrations in the bidirectional communication between the brain and the gut. The impact of faecal microbial composition in brain development and behavioural functions has been repeatedly linked to ASD, as well as changes in the metabolic profile of individuals affected by ASD. Since metabolism is one of the major drivers of microbiome-host interactions, this review aims to report emerging literature showing shifts in gut microbiota metabolic function in ASD. Additionally, we discuss how these changes may be involved in and/or perpetuate ASD pathology. These valuable insights can help us to better comprehend ASD pathogenesis and may provide relevant biomarkers for improving diagnosis and identifying new therapeutic targets.
Collapse
Affiliation(s)
- Lucía N. Peralta-Marzal
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, 3584 CG Utrecht, The Netherlands; (N.P.); (J.G.); (A.D.K.)
| | - Naika Prince
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, 3584 CG Utrecht, The Netherlands; (N.P.); (J.G.); (A.D.K.)
| | - Djordje Bajic
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT 06511, USA;
- Microbial Sciences Institute, Yale University, West Haven, CT 06516, USA
| | - Léa Roussin
- Micalis Institute, INRAE, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France; (L.R.); (S.R.)
| | - Laurent Naudon
- CNRS, Micalis Institute, INRAE, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France;
| | - Sylvie Rabot
- Micalis Institute, INRAE, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France; (L.R.); (S.R.)
| | - Johan Garssen
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, 3584 CG Utrecht, The Netherlands; (N.P.); (J.G.); (A.D.K.)
- Danone Nutricia Research, 3584 CT Utrecht, The Netherlands
| | - Aletta D. Kraneveld
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, 3584 CG Utrecht, The Netherlands; (N.P.); (J.G.); (A.D.K.)
| | - Paula Perez-Pardo
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, 3584 CG Utrecht, The Netherlands; (N.P.); (J.G.); (A.D.K.)
| |
Collapse
|
47
|
Blachier F, Andriamihaja M. Effects of the L-tyrosine-derived bacterial metabolite p-cresol on colonic and peripheral cells. Amino Acids 2021; 54:325-338. [PMID: 34468872 DOI: 10.1007/s00726-021-03064-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 08/06/2021] [Indexed: 11/28/2022]
Abstract
Specific families of bacteria present within the intestinal luminal content produce p-cresol from L-tyrosine. Although the hosts do not synthesize p-cresol, they can metabolize this compound within their colonic mucosa and liver leading to the production of co-metabolites including p-cresyl sulfate (p-CS) and p-cresyl glucuronide (p-CG). p-Cresol and its co-metabolites are recovered in the circulation mainly conjugated to albumin, but also in their free forms that are excreted in the urine. An increased dietary protein intake raises the amount of p-cresol recovered in the feces and urine, while fecal excretion of p-cresol is diminished by a diet containing undigestible polysaccharides. p-Cresol in excess is genotoxic for colonocytes. In addition, in these cells, this bacterial metabolite decreases mitochondrial oxygen consumption, while increasing the anion superoxide production. In chronic kidney disease (CKD), marked accumulation of p-cresol and p-CS in plasma is measured, and in renal tubular cells, p-cresol and p-CS increase oxidative stress, affect mitochondrial function, and lead to cell death, strongly suggesting that these 2 compounds act as uremic toxins that aggravate CKD progression. p-Cresol and p-CS are also suspected to play a role in the CKD-associated adverse cardiovascular events, since they affect endothelial cell proliferation and migration, decrease the capacity of endothelial wound repair, and increase the senescence of endothelial cells. Finally, the fact that concentration of p-cresol is transiently increased in young autistic children biological fluids, and that intraperitoneal injection of p-cresol in animal models induces some behavioral characteristics observed in the autism spectrum disorders (ASD), raise the view that p-cresol may possibly represent one of the components involved in ASD etiology. Further pre-clinical and clinical studies are obviously needed to determine if the lowering of p-cresol and/or p-CS circulating concentrations, by dietary and/or pharmacological means, would allow, by itself or in combination with other interventions, to improve CKD progression and associated cardiovascular outcomes, as well as some neurological outcomes in children with an early diagnosis of autism.
Collapse
Affiliation(s)
- F Blachier
- Université Paris-Saclay, AgroParisTech, INRAE, UMR PNCA, Paris, France.
| | - M Andriamihaja
- Université Paris-Saclay, AgroParisTech, INRAE, UMR PNCA, Paris, France
| |
Collapse
|
48
|
Bermudez-Martin P, Becker JAJ, Caramello N, Fernandez SP, Costa-Campos R, Canaguier J, Barbosa S, Martinez-Gili L, Myridakis A, Dumas ME, Bruneau A, Cherbuy C, Langella P, Callebert J, Launay JM, Chabry J, Barik J, Le Merrer J, Glaichenhaus N, Davidovic L. The microbial metabolite p-Cresol induces autistic-like behaviors in mice by remodeling the gut microbiota. MICROBIOME 2021; 9:157. [PMID: 34238386 PMCID: PMC8268286 DOI: 10.1186/s40168-021-01103-z] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 05/27/2021] [Indexed: 05/06/2023]
Abstract
BACKGROUND Autism spectrum disorders (ASD) are associated with dysregulation of the microbiota-gut-brain axis, changes in microbiota composition as well as in the fecal, serum, and urine levels of microbial metabolites. Yet a causal relationship between dysregulation of the microbiota-gut-brain axis and ASD remains to be demonstrated. Here, we hypothesized that the microbial metabolite p-Cresol, which is more abundant in ASD patients compared to neurotypical individuals, could induce ASD-like behavior in mice. RESULTS Mice exposed to p-Cresol for 4 weeks in drinking water presented social behavior deficits, stereotypies, and perseverative behaviors, but no changes in anxiety, locomotion, or cognition. Abnormal social behavior induced by p-Cresol was associated with decreased activity of central dopamine neurons involved in the social reward circuit. Further, p-Cresol induced changes in microbiota composition and social behavior deficits could be transferred from p-Cresol-treated mice to control mice by fecal microbiota transplantation (FMT). We also showed that mice transplanted with the microbiota of p-Cresol-treated mice exhibited increased fecal p-Cresol excretion, compared to mice transplanted with the microbiota of control mice. In addition, we identified possible p-Cresol bacterial producers. Lastly, the microbiota of control mice rescued social interactions, dopamine neurons excitability, and fecal p-Cresol levels when transplanted to p-Cresol-treated mice. CONCLUSIONS The microbial metabolite p-Cresol induces selectively ASD core behavioral symptoms in mice. Social behavior deficits induced by p-Cresol are dependant on changes in microbiota composition. Our study paves the way for therapeutic interventions targeting the microbiota and p-Cresol production to treat patients with ASD. Video abstract.
Collapse
Affiliation(s)
- Patricia Bermudez-Martin
- Institut de Pharmacologie Moléculaire et Cellulaire, Centre National de la Recherche Scientifique, Université Côte d'Azur, 660 route des Lucioles, 06560, Valbonne, France
| | - Jérôme A J Becker
- Physiologie de la Reproduction et des Comportements, UMR0075 INRAE, UMR7247 CNRS, IFCE, Inserm, Université François Rabelais, 37380, Nouzilly, France
- UMR 1253, iBrain, Université de Tours, Inserm, CNRS, Tours, 37200, France
| | - Nicolas Caramello
- Institut de Pharmacologie Moléculaire et Cellulaire, Centre National de la Recherche Scientifique, Université Côte d'Azur, 660 route des Lucioles, 06560, Valbonne, France
- Current address: Structural Biology, Radiation Facility, European Synchrotron, Grenoble, France
| | - Sebastian P Fernandez
- Institut de Pharmacologie Moléculaire et Cellulaire, Centre National de la Recherche Scientifique, Université Côte d'Azur, 660 route des Lucioles, 06560, Valbonne, France
| | - Renan Costa-Campos
- Institut de Pharmacologie Moléculaire et Cellulaire, Centre National de la Recherche Scientifique, Université Côte d'Azur, 660 route des Lucioles, 06560, Valbonne, France
| | - Juliette Canaguier
- Institut de Pharmacologie Moléculaire et Cellulaire, Centre National de la Recherche Scientifique, Université Côte d'Azur, 660 route des Lucioles, 06560, Valbonne, France
| | - Susana Barbosa
- Institut de Pharmacologie Moléculaire et Cellulaire, Centre National de la Recherche Scientifique, Université Côte d'Azur, 660 route des Lucioles, 06560, Valbonne, France
| | - Laura Martinez-Gili
- Division of Systems Medicine, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, SW7 2AZ, UK
| | - Antonis Myridakis
- Division of Systems Medicine, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, SW7 2AZ, UK
| | - Marc-Emmanuel Dumas
- Division of Systems Medicine, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, SW7 2AZ, UK
- Genomic and Environmental Medicine, National Heart & Lung Institute, Faculty of Medicine, Imperial College London, London, SW3 6KY, UK
- European Genomic Institute for Diabetes, CNRS UMR 8199, INSERM UMR 1283, Institut Pasteur de Lille, Lille University Hospital, University of Lille, 59045, Lille, France
- McGill University and Genome Quebec Innovation Centre, 740 Doctor Penfield Avenue, Montréal, QC, H3A 0G1, Canada
| | - Aurélia Bruneau
- AgroParisTech, INRAE, Institut Micalis, Université Paris-Saclay, Jouy-en-Josas, France
| | - Claire Cherbuy
- AgroParisTech, INRAE, Institut Micalis, Université Paris-Saclay, Jouy-en-Josas, France
| | - Philippe Langella
- AgroParisTech, INRAE, Institut Micalis, Université Paris-Saclay, Jouy-en-Josas, France
| | - Jacques Callebert
- UMR-S 942, INSERM, Department of Biochemistry, Lariboisière Hospital, Paris, France
- Centre for Biological Resources, BB-0033-00064, Lariboisière Hospital, Paris, France
| | - Jean-Marie Launay
- UMR-S 942, INSERM, Department of Biochemistry, Lariboisière Hospital, Paris, France
- Centre for Biological Resources, BB-0033-00064, Lariboisière Hospital, Paris, France
| | - Joëlle Chabry
- Institut de Pharmacologie Moléculaire et Cellulaire, Centre National de la Recherche Scientifique, Université Côte d'Azur, 660 route des Lucioles, 06560, Valbonne, France
| | - Jacques Barik
- Institut de Pharmacologie Moléculaire et Cellulaire, Centre National de la Recherche Scientifique, Université Côte d'Azur, 660 route des Lucioles, 06560, Valbonne, France
| | - Julie Le Merrer
- Physiologie de la Reproduction et des Comportements, UMR0075 INRAE, UMR7247 CNRS, IFCE, Inserm, Université François Rabelais, 37380, Nouzilly, France
- UMR 1253, iBrain, Université de Tours, Inserm, CNRS, Tours, 37200, France
| | - Nicolas Glaichenhaus
- Institut de Pharmacologie Moléculaire et Cellulaire, Centre National de la Recherche Scientifique, Université Côte d'Azur, 660 route des Lucioles, 06560, Valbonne, France
- Fondation FondaMental, Créteil, France
| | - Laetitia Davidovic
- Institut de Pharmacologie Moléculaire et Cellulaire, Centre National de la Recherche Scientifique, Université Côte d'Azur, 660 route des Lucioles, 06560, Valbonne, France.
- Fondation FondaMental, Créteil, France.
| |
Collapse
|
49
|
Pavăl D, Micluția IV. The Dopamine Hypothesis of Autism Spectrum Disorder Revisited: Current Status and Future Prospects. Dev Neurosci 2021; 43:73-83. [PMID: 34010842 DOI: 10.1159/000515751] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Accepted: 03/09/2021] [Indexed: 11/19/2022] Open
Abstract
Autism spectrum disorder (ASD) comprises a group of neurodevelopmental disorders characterized by social deficits and stereotyped behaviors. Despite intensive research, its etiopathogenesis remains largely unclear. Although studies consistently reported dopaminergic anomalies, a coherent dopaminergic model of ASD was lacking until recently. In 2017, we provided a theoretical framework for a "dopamine hypothesis of ASD" which proposed that autistic behavior arises from a dysfunctional midbrain dopaminergic system. Namely, we hypothesized that malfunction of 2 critical circuits originating in the midbrain, that is, the mesocorticolimbic and nigrostriatal pathways, generates the core behavioral features of ASD. Moreover, we provided key predictions of our model along with testing means. Since then, a notable number of studies referenced our work and numerous others provided support for our model. To account for these developments, we review all these recent data and discuss their implications. Furthermore, in the light of these new insights, we further refine and reconceptualize our model, debating on the possibility that various etiologies of ASD converge upon a dysfunctional midbrain dopaminergic system. In addition, we discuss future prospects, providing new means of testing our hypothesis, as well as its limitations. Along these lines, we aimed to provide a model which, if confirmed, could provide a better understanding of the etiopathogenesis of ASD along with new therapeutic strategies.
Collapse
Affiliation(s)
- Denis Pavăl
- Psychiatry Clinic, Emergency County Hospital, Cluj-Napoca, Romania
| | - Ioana Valentina Micluția
- Department of Psychiatry, "Iuliu Hațieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| |
Collapse
|
50
|
Indika NLR, Deutz NEP, Engelen MPKJ, Peiris H, Wijetunge S, Perera R. Sulfur amino acid metabolism and related metabotypes of autism spectrum disorder: A review of biochemical evidence for a hypothesis. Biochimie 2021; 184:143-157. [PMID: 33675854 DOI: 10.1016/j.biochi.2021.02.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 02/25/2021] [Accepted: 02/26/2021] [Indexed: 02/07/2023]
Abstract
There are multiple lines of evidence for an impaired sulfur amino acid (SAA) metabolism in autism spectrum disorder (ASD). For instance, the concentrations of methionine, cysteine and S-adenosylmethionine (SAM) in body fluids of individuals with ASD is significantly lower while the concentration of S-adenosylhomocysteine (SAH) is significantly higher as compared to healthy individuals. Reduced methionine and SAM may reflect impaired remethylation pathway whereas increased SAH may reflect reduced S-adenosylhomocysteine hydrolase activity in the catabolic direction. Reduced SAM/SAH ratio reflects an impaired methylation capacity. We hypothesize multiple mechanisms to explain how the interplay of oxidative stress, neuroinflammation, mercury exposure, maternal use of valproate, altered gut microbiome and certain genetic variants may lead to these SAA metabotypes. Furthermore, we also propose a number of mechanisms to explain the metabolic consequences of abnormal SAA metabotypes. For instance in the brain, reduced SAM/SAH ratio will result in melatonin deficiency and hypomethylation of a number of biomolecules such as DNA, RNA and histones. In addition to previously proposed mechanisms, we propose that impaired activity of "radical SAM" enzymes will result in reduced endogenous lipoic acid synthesis, reduced molybdenum cofactor synthesis and impaired porphyrin metabolism leading to mitochondrial dysfunction, porphyrinuria and impaired sulfation capacity. Furthermore depletion of SAM may also lead to the disturbed mTOR signaling pathway in a subgroup of ASD. The proposed "SAM-depletion hypothesis" is an inclusive model to explain the relationship between heterogeneous risk factors and metabotypes observed in a subset of children with ASD.
Collapse
Affiliation(s)
- Neluwa-Liyanage R Indika
- Department of Biochemistry, Faculty of Medical Sciences, University of Sri Jayewardenepura, Nugegoda, Sri Lanka.
| | - Nicolaas E P Deutz
- Center for Translational Research in Aging & Longevity, Department of Health & Kinesiology, Texas A&M University, College Station, TX, USA
| | - Marielle P K J Engelen
- Center for Translational Research in Aging & Longevity, Department of Health & Kinesiology, Texas A&M University, College Station, TX, USA
| | - Hemantha Peiris
- Department of Biochemistry, Faculty of Medical Sciences, University of Sri Jayewardenepura, Nugegoda, Sri Lanka
| | - Swarna Wijetunge
- Child and Adolescent Mental Health Service, Lady Ridgeway Hospital for Children, Colombo 8, Sri Lanka
| | - Rasika Perera
- Department of Biochemistry, Faculty of Medical Sciences, University of Sri Jayewardenepura, Nugegoda, Sri Lanka
| |
Collapse
|