1
|
Hong J, Kang J, Zuo J, Fang Y, Liu C, Li J, Chen Z. Development of 18F-Labeled Deuterated Tropane Derivatives with High Metabolic Stability for PET Imaging of the Dopamine Transporter. Mol Imaging Biol 2025:10.1007/s11307-025-02018-z. [PMID: 40369387 DOI: 10.1007/s11307-025-02018-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 04/23/2025] [Accepted: 05/05/2025] [Indexed: 05/16/2025]
Abstract
PURPOSE Dopamine transporter (DAT) in the central nervous system is an attractive biomarker for the diagnosis and study of various neurodegenerative diseases. To develop in vivo metabolically stable positron emission tomography (PET) probes for DAT imaging with a high target/background ratio, two 18F-labeled tropane derivatives with deuteration on both the N-fluoropropyl and 2β-carbomethoxy groups of the tropane scaffold were synthesized and evaluated. METHODS Radioligands [18F]6 and [18F]10 were synthesized from anhydroecgonine and radiolabeled with 18F through a "two-step one-pot" method. Lipophilicity, in vitro binding assay and microPET imaging in rats were performed. [18F]10 showed a higher standardized uptake value ratio (SUVr) and was selected for further evaluations by in vivo metabolism and biodistribution. RESULTS The radioligands [18F]6 and [18F]10 were obtained in radiochemical purities > 98% and molar activity of about 30 GBq/μmol. [18F]6 or [18F]10 demonstrated high specificity and binding affinity to DAT in vitro, with IC50 values between 2 ~ 3 nM. MicroPET imaging in wild type Sprague-Dawley rats revealed that [18F]10 has a higher SUVr than [18F]6. Blocking experiments demonstrated the selectivity and reversibility of [18F]10 for DAT binding in microPET imaging. The diagnostic efficacy of [18F]10 for DAT-related disorders was verified in semi-PD model rats with microPET. In vivo metabolic studies in rats indicated that [18F]10 exhibited enhanced stability. Biodistribution experiments further confirmed that [18F]10 accumulated in the DAT-rich region of the striatum. CONCLUSION [18F]10 is a highly promising metabolically stable 18F-labeled PET probe for DAT imaging, with potential clinical applications in detecting and monitoring DAT-related neurological disorders.
Collapse
Affiliation(s)
- Jingjing Hong
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, Xuzhou, 221004, China
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, 12 Qianrong Road, Wuxi, 214063, China
| | - Jing Kang
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, 12 Qianrong Road, Wuxi, 214063, China
- Department of Radiopharmaceuticals, School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China
| | - Jiaojiao Zuo
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, 12 Qianrong Road, Wuxi, 214063, China
- School of Pharmaceutical Science, Inner Mongolia Medical University, Hohhot, 010110, China
| | - Yi Fang
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, 12 Qianrong Road, Wuxi, 214063, China
- Department of Radiopharmaceuticals, School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China
| | - Chunyi Liu
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, 12 Qianrong Road, Wuxi, 214063, China
| | - Jingwen Li
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, 12 Qianrong Road, Wuxi, 214063, China
- Department of Radiopharmaceuticals, School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China
| | - Zhengping Chen
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, Xuzhou, 221004, China.
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, 12 Qianrong Road, Wuxi, 214063, China.
- Department of Radiopharmaceuticals, School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China.
- School of Pharmaceutical Science, Inner Mongolia Medical University, Hohhot, 010110, China.
| |
Collapse
|
2
|
Li J, Zhang M, Yu CQ, Xue M, Hu PP. Early diagnosis of Parkinson's disease: biomarker study. Front Aging Neurosci 2025; 17:1495769. [PMID: 40416739 PMCID: PMC12098601 DOI: 10.3389/fnagi.2025.1495769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 03/28/2025] [Indexed: 05/27/2025] Open
Abstract
Parkinson's disease (PD) is a common chronic degenerative disease with age-dependent increasing prevalence in the elderly. Non-motor symptoms include sensory deficiencies, autonomic dysfunction, psychological and cognitive abnormalities; while motor symptoms are bradykinesia, myotonia, resting tremor, and postural balance difficulties. The clinical diagnosis of PD depends mainly on patients' medical history and physical examination. It is highly important to realize early detection of PD, and biomarkers are a valuable tool in this regard. The present study reviewed the findings of researches from the last few years, involving the advancements in the study of PD biomarkers in blood, cerebrospinal fluid, saliva, urine, tears, imaging, and pathology.
Collapse
Affiliation(s)
- Jing Li
- Department of Neurology, The First Hospital of Anhui University of Science and Technology (Huainan First People’s Hospital), Huainan, China
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Mei Zhang
- Department of Neurology, The First Hospital of Anhui University of Science and Technology (Huainan First People’s Hospital), Huainan, China
| | - Chuan-Qing Yu
- Department of Neurology, The First Hospital of Anhui University of Science and Technology (Huainan First People’s Hospital), Huainan, China
| | - Min Xue
- Department of Neurology, The First Hospital of Anhui University of Science and Technology (Huainan First People’s Hospital), Huainan, China
| | - Pan-Pan Hu
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| |
Collapse
|
3
|
Huang W, Jiang H, Du Y, Wang H, Sun H, Hung GU, Mok GSP. Transfer learning‑based attenuation correction in 99mTc-TRODAT-1 SPECT for Parkinson's disease using realistic simulation and clinical data. EJNMMI Phys 2025; 12:43. [PMID: 40327202 PMCID: PMC12055695 DOI: 10.1186/s40658-025-00756-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Accepted: 04/18/2025] [Indexed: 05/07/2025] Open
Abstract
PURPOSE Dopamine transporter (DAT) SPECT is an effective tool for early Parkinson's disease (PD) detection and heavily hampered by attenuation. Attenuation correction (AC) is the most important correction among other corrections. Transfer learning (TL) with fine-tuning (FT) a pre-trained model has shown potential in enhancing deep learning (DL)-based AC methods. In this study, we investigate leveraging realistic Monte Carlo (MC) simulation data to create a pre-trained model for TL-based AC (TLAC) to improve AC performance for DAT SPECT. METHODS A total number of 200 digital brain phantoms with realistic 99mTc-TRODAT-1 distribution was used to generate realistic noisy SPECT projections using MC SIMIND program and an analytical projector. One hundred real clinical 99mTc-TRODAT-1 brain SPECT data were also retrospectively analyzed. All projections were reconstructed with and without CT-based attenuation correction (CTAC/NAC). A 3D conditional generative adversarial network (cGAN) was pre-trained using 200 pairs of simulated NAC and CTAC SPECT data. Subsequently, 8, 24, and 80 pairs of clinical NAC and CTAC DAT SPECT data were employed to fine-tune the pre-trained U-Net generator of cGAN (TLAC-MC). Comparisons were made against without FT (DLAC-MC), training on purely limited clinical data (DLAC-CLI), clinical data with data augmentation (DLAC-AUG), mixed MC and clinical data (DLAC-MIX), TL using analytical simulation data (TLAC-ANA), and Chang's AC (ChangAC). All datasets used for DL-based methods were split to 7/8 for training and 1/8 for validation, and a 1-/2-/5-fold cross-validation were applied to test all 100 clinical datasets, depending on the numbers of clinical data used in the training model. RESULTS With 8 available clinical datasets, TLAC-MC achieved the best result in Normalized Mean Squared Error (NMSE) and Structural Similarity Index Measure (SSIM) (TLAC-MC; NMSE = 0.0143 ± 0.0082/SSIM = 0.9355 ± 0.0203), followed by DLAC-AUG, DLAC-MIX, TLAC-ANA, DLAC-CLI, DLAC-MC, ChangAC and NAC. Similar trends exist when increasing the number of clinical datasets. For TL-based AC methods, the fewer clinical datasets available for FT, the greater the improvement as compared to DLAC-CLI using the same number of clinical datasets for training. Joint histograms analysis and Bland-Altman plots of SBR results also demonstrate consistent findings. CONCLUSION TLAC is feasible for DAT SPECT with a pre-trained model generated purely based on simulation data. TLAC-MC demonstrates superior performance over other DL-based AC methods, particularly when limited clinical datasets are available. The closer the pre-training data is to the target domain, the better the performance of the TLAC model.
Collapse
Affiliation(s)
- Wenbo Huang
- Biomedical Imaging Laboratory (BIG), Department of Electrical and Computer Engineering, Faculty of Science and Technology, University of Macau, Taipa, Macau SAR, China
| | - Han Jiang
- PET-CT Center, Fujian Medical University Union Hospital, Fuzhou, China
| | - Yu Du
- Biomedical Imaging Laboratory (BIG), Department of Electrical and Computer Engineering, Faculty of Science and Technology, University of Macau, Taipa, Macau SAR, China
- Center for Cognitive and Brain Sciences, Institute of Collaborative Innovation, University of Macau, Taipa, Macau SAR, China
| | - Haiyan Wang
- Biomedical Imaging Laboratory (BIG), Department of Electrical and Computer Engineering, Faculty of Science and Technology, University of Macau, Taipa, Macau SAR, China
- Research Center for Medical AI, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Hao Sun
- School of Biomedical Engineering, Southern Medical University, Guangzhou, China
| | - Guang-Uei Hung
- Department of Nuclear Medicine, Chang Bing Show Chwan Memorial Hospital, Changhua County, Taiwan
| | - Greta S P Mok
- Biomedical Imaging Laboratory (BIG), Department of Electrical and Computer Engineering, Faculty of Science and Technology, University of Macau, Taipa, Macau SAR, China.
- Center for Cognitive and Brain Sciences, Institute of Collaborative Innovation, University of Macau, Taipa, Macau SAR, China.
| |
Collapse
|
4
|
Kul E, Santos M, Stork O. Nigrostriatal Degeneration Underpins Sensorimotor Dysfunction in an Inducible Mouse Model of Fragile X-Associated Tremor/Ataxia Syndrome (FXTAS). Int J Mol Sci 2025; 26:1511. [PMID: 40003975 PMCID: PMC11855849 DOI: 10.3390/ijms26041511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 02/07/2025] [Accepted: 02/10/2025] [Indexed: 02/27/2025] Open
Abstract
Fragile X-associated tremor/ataxia syndrome (FXTAS) is a late-onset neurodegenerative disorder caused by moderately expanded CGG trinucleotide repeats in the 5' untranslated region (UTR) of the FMR1 gene. Characterized by motor deficits such as action tremor and cerebellar gait ataxia, FXTAS is further distinguished by ubiquitin-positive intranuclear inclusions in neurons and glia. However, its clinical spectrum often overlaps with other neurodegenerative conditions such as Parkinson's disease (PD). Sensorimotor gating deficits, commonly associated with disorders affecting the nigrostriatal pathway such as PD, have been reported in FXTAS, but the underlying connection between these two phenotypes remains undetermined. In this study, we used the P90CGG mouse model of FXTAS, which expresses 90 CGG repeats upon doxycycline induction, to investigate sensorimotor gating deficits and their relationship to nigrostriatal degeneration. After induction, the P90CGG model exhibited late-onset impairments in prepulse inhibition (PPI), a cross-species measure of sensorimotor gating. These deficits coincided with pronounced nigrostriatal degeneration but occurred without evidence of inclusion formation in the substantia nigra. Our findings highlight nigrostriatal degeneration, which has not previously been reported in animal models of FXTAS, and suggest a potential link to sensorimotor gating dysfunction within the context of the disorder.
Collapse
Affiliation(s)
- Emre Kul
- Department of Genetics & Molecular Neurobiology, Institute of Biology, Otto-von-Guericke University Magdeburg, 39106 Magdeburg, Germany; (E.K.); (M.S.)
| | - Mónica Santos
- Department of Genetics & Molecular Neurobiology, Institute of Biology, Otto-von-Guericke University Magdeburg, 39106 Magdeburg, Germany; (E.K.); (M.S.)
| | - Oliver Stork
- Department of Genetics & Molecular Neurobiology, Institute of Biology, Otto-von-Guericke University Magdeburg, 39106 Magdeburg, Germany; (E.K.); (M.S.)
- Center for Behavioral Brain Sciences, 39106 Magdeburg, Germany
- Center for Intervention and Research on Adaptive and Maladaptive Brain Circuits Underlying Mental Health (C-I-R-C), Jena-Magdeburg-Halle, 07743 Jena, Germany
- German Center for Mental Health (DZPG), Site Jena-Magdeburg-Halle, 07745 Jena, Germany
| |
Collapse
|
5
|
Zuo R, Liu S, Li W, Xia Z, Xu L, Pang H. Dopamine transporter availability based on white matter hyperintensity during early to mid-stage Parkinson's disease and multiple system atrophy: a case control study. Neurol Sci 2025; 46:751-760. [PMID: 39476088 DOI: 10.1007/s10072-024-07856-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 10/18/2024] [Indexed: 01/28/2025]
Abstract
PURPOSE To evaluate the association of white matter hyperintensity (WMH) with dopamine transporter (DAT) availability in patients with early to mid-stage parkinson's disease (PD) and multiple system atrophy (MSA). METHODS The clinical and imaging data of 55 patients were collected, including 38 PD and 17 MSA patients and the clinical features of the two groups were compared. DAT specific binding ratio (SBR) were compared between severe and non-severe WMH groups, and between PD and MSA groups. The relationships of WMH with DAT availability and basic clinical characteristics were analyzed. RESULTS Multiple linear regression analysis showed that age was the only significant variable showing correlation WMH. Age was the only clinical variable significantly correlated with WMH in PD patients (coefficient for periventricular white matter hyperintensity: 0.430, P = 0.007; coefficient for deep white matter hyperintensity: 0.381, P = 0.018). There was no significant correlation between WMH and SBRs and age in MSA patients. The SBR of the caudate nucleus and anterior putamen was significantly lower in the severe WMH group of patients than in the non-severe WMH group (P < 0.05). The values of the caudate nucleus, anterior putamen, and anterior putamen/posterior putamen were significantly lower in PD patients with than without severe WMH (P < 0.05), and the damage to the striatal DAT in MSA patients with severe WMH was similar to the non-severe patients (P>0.05). CONCLUSION Patients with PD and a high WMH score had lower DAT availability. WMH affected the availability of DAT in patients with early to mid-stage PD compared to MSA.
Collapse
Affiliation(s)
- Rui Zuo
- Department of Nuclear Medicine, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Shuang Liu
- Department of Nuclear Medicine, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Wenbo Li
- Department of Nuclear Medicine, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Zhu Xia
- Department of Nuclear Medicine, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Lu Xu
- Department of Nuclear Medicine, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| | - Hua Pang
- Department of Nuclear Medicine, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
6
|
Pasquini J, Firbank MJ, Best L, Foster V, Stewart C, Silani V, Durcan R, Roberts G, Petrides G, Ceravolo R, Brooks DJ, Anderson KN, Pavese N. Substantia nigra and locus coeruleus microstructural abnormalities in isolated rapid eye movement sleep behaviour disorder and Parkinson's disease. Brain Commun 2025; 7:fcaf023. [PMID: 39926608 PMCID: PMC11806417 DOI: 10.1093/braincomms/fcaf023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 11/16/2024] [Accepted: 01/21/2025] [Indexed: 02/11/2025] Open
Abstract
Substantia nigra (SN) and locus coeruleus (LC) are two catecholaminergic, neuromelanin-rich nuclei that are affected in Parkinson's disease (PD) and may show neuroimaging abnormalities before the onset of motor manifestations. The simultaneous, multimodal investigation of their microstructural abnormalities may provide useful insights on the spatial diffusion and tissue characteristics of neurodegeneration, and this may in turn help develop markers for disease-modifying clinical trials. Therefore, through neuromelanin-sensitive and diffusion MRI, we aimed to investigate microstructural abnormalities in those nuclei in isolated REM sleep behaviour disorder (iRBD) and PD. Fourteen participants with polysomnography-confirmed iRBD, 18 with PD and 18 healthy controls were scanned with structural, neuromelanin-sensitive and neurite orientation dispersion and density imaging (NODDI) MRI. iRBD participants also underwent dopamine transporter imaging. SN neuromelanin and NODDI diffusion parameters and LC neuromelanin signals were extracted. Motor and global cognitive assessments were also collected. iRBD and PD participants showed significantly reduced neuromelanin contrast in the LC middle section compared with healthy controls. PD also showed significantly reduced caudal LC and posterior SN neuromelanin signal. No differences in SN NODDI parameters were detected between iRBD and healthy controls. Five iRBD participants showed reduced striatal dopamine transporter. In the combined disease groups (iRBD and PD), significant associations were shown between SN neuromelanin signal and neurite density index (r = -0.610, corr-p = 0.001) and between SN neurite density index and free water fraction (r = 0.417, corr-p = 0.042). In the same group, motor scores were negatively associated with nigral neuromelanin signal (r = -0.404, corr-p = 0.044) and free water fraction (r = 0.486, corr-p = 0.018). In conclusion, iRBD participants showed significant neuromelanin loss in the LC, with a minority showing initial nigrostriatal dopaminergic abnormalities. Across the entire iRBD-PD spectrum, the association between SN neuromelanin signal loss, diffusion parameters and motor scores has the potential to capture different yet related aspects of SN degeneration.
Collapse
Affiliation(s)
- Jacopo Pasquini
- Clinical Ageing Research Unit, Newcastle University, Newcastle upon Tyne NE4 5PL, UK
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa 56126, Italy
| | - Michael J Firbank
- Institute of Translational and Clinical Research, Newcastle University, Newcastle upon Tyne NE4 5PL, UK
| | - Laura Best
- Regional Neurosciences Centre, Royal Victoria Hospital, Belfast BT12 6PA, UK
| | - Victoria Foster
- Clinical Ageing Research Unit, Newcastle University, Newcastle upon Tyne NE4 5PL, UK
| | - Charlotte Stewart
- Clinical Ageing Research Unit, Newcastle University, Newcastle upon Tyne NE4 5PL, UK
| | - Vincenzo Silani
- Department of Neurology and Laboratory of Neuroscience, Istituto Auxologico Italiano IRCCS, Milan 20149, Italy
- Department of Pathophysiology and Transplantation, Dino Ferrari Center, Università degli Studi di Milano, Milan 20122, Italy
| | - Rory Durcan
- Department of Geriatric Medicine, Beaumont Hospital, Dublin D09 V2N0, Ireland
| | - Gemma Roberts
- Nuclear Medicine Department, Newcastle Upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne NE1 4LP, UK
| | - George Petrides
- Nuclear Medicine Department, Newcastle Upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne NE1 4LP, UK
| | - Roberto Ceravolo
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa 56126, Italy
- Neurodegenerative Diseases Center, Azienda Ospedaliero Universitaria Pisana, Pisa 56126, Italy
| | - David J Brooks
- Institute of Translational and Clinical Research, Newcastle University, Newcastle upon Tyne NE4 5PL, UK
- Department of Nuclear Medicine and PET Centre, Institute of Clinical Medicine Aarhus University, Aarhus 8200, Denmark
| | - Kirstie N Anderson
- Regional Sleep Service, Newcastle upon Tyne NHS Hospitals NHS Foundation Trust, Newcastle upon Tyne NE1 4PL, UK
| | - Nicola Pavese
- Clinical Ageing Research Unit, Newcastle University, Newcastle upon Tyne NE4 5PL, UK
- Department of Nuclear Medicine and PET Centre, Institute of Clinical Medicine Aarhus University, Aarhus 8200, Denmark
| |
Collapse
|
7
|
Issa CTMI, Castro RD, Albuquerque KLGD. Cannabis oil in treating Parkinson's disease: improvement of motor and non-motor symptoms: a case report. BRAZ J BIOL 2025; 84:e290305. [PMID: 39841751 DOI: 10.1590/1519-6984.290305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Accepted: 10/22/2024] [Indexed: 01/24/2025] Open
Abstract
Parkinson's disease (PD) is characterized by progressive loss of dopaminergic neurons in the substantia nigra pars compacta, which leads to a reduction in the production of dopamine. Medication with levodopa becomes less effective as the disease progresses. Despite the excellent results observed in clinical practice with the medicinal use of Cannabis in the treatment of PD, the level of scientific evidence is still limited due to the small number of studies published in this field. We present the case of a 77-year-old man diagnosed 22 years ago with PD in an advanced stage, with significant bradykinesia, tremor, and rigidity along with the inability to maintain an upright position and walk, exacerbated by a femur fracture. He also had advanced dysphagia, resulting in a gastrostomy. Although lucid, he showed no interest in conversation and tended to become depressed and isolated. He used Prolopa® with no satisfactory therapeutic response. After starting treatment with Cannabis sativa oil, he is now able to walk around the house frequently and eat pasty food regularly without choking or broncho-aspiration episodes. There has also been a significant improvement in non-motor symptoms; he is more active, cheerful, communicative, and attentive to his surroundings. Further studies are needed to elucidate these results and the mechanisms of action of cannabinoids through which they exert possible neuroprotective and neuroreparative effects. These compelling results suggest that cannabis oil may offer a valuable and effective therapeutic option for individuals with Parkinson's disease.
Collapse
Affiliation(s)
- C T M I Issa
- Universidade Federal da Paraíba, João Pessoa, PB, Brasil
| | - R D Castro
- Universidade Federal da Paraíba, João Pessoa, PB, Brasil
| | | |
Collapse
|
8
|
Morikawa F, Kobayashi R, Murayama T, Fukuya S, Tabata K, Fujishiro H, Nakayama M, Naoe J. Evaluating Electroconvulsive Therapy for Dementia With Lewy Bodies, Including the Prodromal Stage: A Retrospective Study on Safety and Efficacy. Int J Geriatr Psychiatry 2024; 39:e70020. [PMID: 39608804 DOI: 10.1002/gps.70020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 11/01/2024] [Accepted: 11/08/2024] [Indexed: 11/30/2024]
Abstract
OBJECTIVES Managing symptoms, notably psychiatric symptoms, in dementia with Lewy bodies (DLB) is complex, affecting both patients and caregivers. People with DLB often react poorly to antipsychotics, limiting treatment options. Although electroconvulsive therapy (ECT)'s potential for DLB is acknowledged, evidence is scarce owing to limited studies. This study investigated ECT's effectiveness and safety for DLB and prodromal DLB with antecedent psychiatric symptoms. METHODS This retrospective study investigated people with DLB (N = 12) and mild cognitive impairment (MCI) with LB (N = 13), a prodromal form of DLB, who underwent ECT for psychiatric symptoms and had abnormal findings confirmed using dopamine transporter single-photon emission computed tomography and 123I-metaiodobenzylguanidine myocardial scintigraphy. We reviewed these patients' medical records and determined the severity of psychotic symptoms before and 1 week after the final ECT session with the Clinical Global Impressions Severity Scale (CGI-S). Improvement in psychotic symptoms was evaluated approximately 1 week after the final ECT session using the CGI Improvement Scale (CGI-I). Additionally, we assessed cognitive function and dementia severity before and after ECT, as well as any adverse events caused by ECT. RESULTS ECT significantly improved psychiatric symptoms, as assessed using the CGI-S, with CGI-I reports in the order of 60% "very much improved," 20% "much improved," 16% "minimally improved," and 4% "no change." Parkinsonism improved (Hoehn and Yahr: 1.76 ± 1.2 before vs. 1.04 ± 0.7 after, p < 0.001) as did dementia severity (Clinical Dementia Rating, p = 0.037). Adverse events included delirium in 24% of patients and amnesia in 4% of patients. ECT did not worsen cognitive function. CONCLUSIONS ECT for DLB and MCI with LB with antecedent psychiatric symptoms appears safe and effective in managing psychiatric symptoms and Parkinsonism. Further large-scale multicenter studies are warranted to conclusively establish its effectiveness and safety.
Collapse
Affiliation(s)
- Fumiyoshi Morikawa
- Department of Psychiatry, Asahikawa Keisenkai Hospital, Asahikawa, Japan
| | - Ryota Kobayashi
- Department of Psychiatry, Yamagata University School of Medicine, Yamagata, Japan
| | - Tomonori Murayama
- Department of Psychiatry, Asahikawa Keisenkai Hospital, Asahikawa, Japan
| | - Shota Fukuya
- Department of Psychiatry, Asahikawa Keisenkai Hospital, Asahikawa, Japan
| | - Kazuki Tabata
- Department of Psychiatry, Asahikawa Keisenkai Hospital, Asahikawa, Japan
| | - Hiroshige Fujishiro
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | | | - Juichiro Naoe
- Department of Psychiatry, Asahikawa Keisenkai Hospital, Asahikawa, Japan
| |
Collapse
|
9
|
Vijiaratnam N, Girges C, Athauda D, King A, Auld G, McComish R, Chowdhury K, Skene S, Maclagan K, Chaudhuri KR, Libri V, Dickson J, Foltynie T. Exploring Analysis Approaches for Using the Dopamine Transporter Striatal Binding Ratio in Early- to Mid-Stage Parkinson's Disease Modification Trials. Mov Disord Clin Pract 2024; 11:1345-1354. [PMID: 39169806 PMCID: PMC11542297 DOI: 10.1002/mdc3.14191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 07/01/2024] [Accepted: 07/30/2024] [Indexed: 08/23/2024] Open
Abstract
BACKGROUND The dopamine transporter striatal binding ratio (DAT SBR) has been used as an outcome measure in Parkinson's disease (PD) trials of potential disease-modifying therapies; however, both patient characteristics and analysis approach potentially complicate its interpretation. OBJECTIVE The aim was to explore how well DAT SBR reflects PD motor severity across different striatal subregions and the relationship to disease duration, and side of onset. METHODS DAT SBR for the anterior and posterior putamen and caudate in both hemispheres was obtained using validated automated quantitative software on baseline scans of 132 patients recruited for the Exenatide PD2 and PD3 trials. Associations between mean and lateralized SBR subregions (posterior and anterior putamen and caudate) and summed and lateralized motor characteristics were explored using regression analysis. Analyses were repeated considering disease duration and limiting analysis to the less-affected hemisphere. RESULTS Lateralized bradykinesia was most consistently associated with the loss of DAT uptake in the contralateral anterior putamen. There was much higher variance in the posterior putamen, and in all regions in those with longer duration disease, although bradykinesia remained robustly associated with anterior putaminal DAT uptake even in longer-duration patients. Restricting analyses to the less-affected side did not usefully reduce the variance compared to the overall cohort. CONCLUSION These data suggest that DAT SBR could be a useful biomarker in disease-modifying trials, but a focus on anterior striatal subregions and incorporating disease duration into analyses may improve its utility.
Collapse
Affiliation(s)
- Nirosen Vijiaratnam
- Department of Clinical and Movement NeurosciencesInstitute of Neurology, University College LondonLondonUnited Kingdom
- Unit of Functional Neurosurgery, National Hospital for Neurology and Neurosurgery, Queen SquareLondonUnited Kingdom
| | - Christine Girges
- Department of Clinical and Movement NeurosciencesInstitute of Neurology, University College LondonLondonUnited Kingdom
- Unit of Functional Neurosurgery, National Hospital for Neurology and Neurosurgery, Queen SquareLondonUnited Kingdom
| | - Dilan Athauda
- Department of Clinical and Movement NeurosciencesInstitute of Neurology, University College LondonLondonUnited Kingdom
- The Francis Crick InstituteLondonUnited Kingdom
| | - Alexa King
- The Comprehensive Clinical Trials Unit, University College LondonLondonUnited Kingdom
| | - Grace Auld
- The Comprehensive Clinical Trials Unit, University College LondonLondonUnited Kingdom
| | - Rachel McComish
- The Comprehensive Clinical Trials Unit, University College LondonLondonUnited Kingdom
| | - Kashfia Chowdhury
- The Comprehensive Clinical Trials Unit, University College LondonLondonUnited Kingdom
| | - Simon Skene
- Surrey Clinical Trials Unit, University of SurreyGuildfordUnited Kingdom
- Department of Clinical and Experimental MedicineUniversity of SurreyGuildfordUnited Kingdom
| | - Kate Maclagan
- The Comprehensive Clinical Trials Unit, University College LondonLondonUnited Kingdom
| | - Kallol Ray Chaudhuri
- Parkinson's Foundation International Centre of Excellence, King's College LondonLondonUnited Kingdom
| | - Vincenzo Libri
- Leonard Wolfson Experimental Neurology Centre, National Hospital for Neurology and NeurosurgeryQueen Square, LondonUnited Kingdom
- Institute of NeurologyUniversity College LondonLondonUnited Kingdom
- NIHR Clinical Research Facility, University College London Hospitals NHS Foundation TrustLondonUnited Kingdom
| | - John Dickson
- Institute of Nuclear Medicine, University College London Hospitals NHS TrustLondonUnited Kingdom
| | - Thomas Foltynie
- Department of Clinical and Movement NeurosciencesInstitute of Neurology, University College LondonLondonUnited Kingdom
- Unit of Functional Neurosurgery, National Hospital for Neurology and Neurosurgery, Queen SquareLondonUnited Kingdom
| |
Collapse
|
10
|
Gurung S, Karamched S, Perocheau D, Seunarine KK, Baldwin T, Alrashidi H, Touramanidou L, Duff C, Elkhateeb N, Stepien KM, Sharma R, Morris A, Hartley T, Crowther L, Grunewald S, Cleary M, Mundy H, Chakrapani A, Batzios S, Davison J, Footitt E, Tuschl K, Lachmann R, Murphy E, Santra S, Uudelepp M, Yeo M, Finn PF, Cavedon A, Siddiqui S, Rice L, Martini PGV, Frassetto A, Heales S, Mills PB, Gissen P, Clayden JD, Clark CA, Eaton S, Kalber TL, Baruteau J. The incidence of movement disorder increases with age and contrasts with subtle and limited neuroimaging abnormalities in argininosuccinic aciduria. J Inherit Metab Dis 2024; 47:1213-1227. [PMID: 38044746 PMCID: PMC11586606 DOI: 10.1002/jimd.12691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 11/01/2023] [Accepted: 11/03/2023] [Indexed: 12/05/2023]
Abstract
Argininosuccinate lyase (ASL) is integral to the urea cycle detoxifying neurotoxic ammonia and the nitric oxide (NO) biosynthesis cycle. Inherited ASL deficiency causes argininosuccinic aciduria (ASA), a rare disease with hyperammonemia and NO deficiency. Patients present with developmental delay, epilepsy and movement disorder, associated with NO-mediated downregulation of central catecholamine biosynthesis. A neurodegenerative phenotype has been proposed in ASA. To better characterise this neurodegenerative phenotype in ASA, we conducted a retrospective study in six paediatric and adult metabolic centres in the UK in 2022. We identified 60 patients and specifically looked for neurodegeneration-related symptoms: movement disorder such as ataxia, tremor and dystonia, hypotonia/fatigue and abnormal behaviour. We analysed neuroimaging with diffusion tensor imaging (DTI) magnetic resonance imaging (MRI) in an individual with ASA with movement disorders. We assessed conventional and DTI MRI alongside single photon emission computer tomography (SPECT) with dopamine analogue radionuclide 123I-ioflupane, in Asl-deficient mice treated by hASL mRNA with normalised ureagenesis. Movement disorders in ASA appear in the second and third decades of life, becoming more prevalent with ageing and independent from the age of onset of hyperammonemia. Neuroimaging can show abnormal DTI features affecting both grey and white matter, preferentially basal ganglia. ASA mouse model with normalised ureagenesis did not recapitulate these DTI findings and showed normal 123I-ioflupane SPECT and cerebral dopamine metabolomics. Altogether these findings support the pathophysiology of a late-onset movement disorder with cell-autonomous functional central catecholamine dysregulation but without or limited neurodegeneration of dopaminergic neurons, making these symptoms amenable to targeted therapy.
Collapse
|
11
|
Hafeez M, Eoff E, Wei J, Azhar G. Missed Insights for Earlier Management of Parkinson's Disease and the Value of Dopamine Transporter (DAT) Scans. Geriatrics (Basel) 2024; 9:126. [PMID: 39451858 PMCID: PMC11507427 DOI: 10.3390/geriatrics9050126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 09/02/2024] [Accepted: 09/13/2024] [Indexed: 10/26/2024] Open
Abstract
Background/Objectives: This retrospective study focused on the role of Dopamine Transporter (DAT) scans in diagnosing Parkinson's Disease (PD) in older adults with cognitive impairment (CI). Methods: We retrospectively analyzed brain imaging of 6483 individuals aged 60 and above with CI. Among these, 297 underwent a DAT scan, with 189 testing positive and 89 starting dopamine therapy. In contrast, 173 patients exhibited PD-associated structural changes on CT or MRI without receiving DAT scans or treatment. Results: Of these patients, 50 (29%) experienced falls. This points towards a potential missed diagnosis of PD, which can respond to therapy in the early stages. Conclusions: Our results suggest that providers may overlook subtle signs of parkinsonism in patients with CI, resulting in symptoms worsening and treatment delay. Since CI is often first brought to the attention of PCPs, our findings call for an increased effort to inform PCPs of the role of DAT scans in aiding the diagnosis of dopamine deficiency states. By understanding PD-related structural changes seen on brain imaging and using a DAT scan to confirm dopamine deficiency, treatment for PD or related states might be started earlier or a timely referral made to a specialist, reducing patient disability and improving their quality of life.
Collapse
Affiliation(s)
- Mohib Hafeez
- Donald W. Reynolds Department of Geriatrics, Institute on Aging, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (E.E.); (J.W.); (G.A.)
- College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Elizabeth Eoff
- Donald W. Reynolds Department of Geriatrics, Institute on Aging, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (E.E.); (J.W.); (G.A.)
| | - Jeanne Wei
- Donald W. Reynolds Department of Geriatrics, Institute on Aging, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (E.E.); (J.W.); (G.A.)
| | - Gohar Azhar
- Donald W. Reynolds Department of Geriatrics, Institute on Aging, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (E.E.); (J.W.); (G.A.)
| |
Collapse
|
12
|
Tsukaguchi R, Hasebe M, Shibue K, Hamasaki A. Diabetic striatopathy: Hyperglycemic chorea/ballism successfully treated with L-dopa. J Diabetes Investig 2024; 15:1524-1527. [PMID: 39090828 PMCID: PMC11442749 DOI: 10.1111/jdi.14261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/31/2024] [Accepted: 06/11/2024] [Indexed: 08/04/2024] Open
Abstract
Diabetic striatopathy, a rare hyperglycemia complication, is characterized by chorea/ballism and striatal anomalies on neuroimaging, usually managed with glycemic control and haloperidol. However, practical strategies for haloperidol-resistant cases are scarce. We describe a 76-year-old Japanese woman with diabetic striatopathy who initially presented with polydipsia, polyuria, and lower-extremity weakness. Despite pronounced hyperglycemia (725 mg/dL), her blood glucose levels were reduced through saline infusion and intravenous insulin. Subsequently, she developed whole-body ballism concomitant with striatal hyperintensity on T1-weighted magnetic resonance imaging, which initially responded to haloperidol. Upon discontinuation of haloperidol, her symptoms relapsed and did not improve with the reintroduction of haloperidol. Dopamine transporter single photon emission computed tomography revealed diminished bilateral striatal uptake, suggesting presynaptic dopaminergic dysfunction. This finding prompted the initiation of L-dopa, which significantly improved her symptoms. This case underlines the need to consider presynaptic dopaminergic dysfunction in diabetic striatopathy patients unresponsive to standard treatments, highlighting the effectiveness of L-dopa in such scenarios.
Collapse
Affiliation(s)
- Ryo Tsukaguchi
- Department of Diabetes and Endocrinology, Medical Research Institute KITANO HOSPITAL, PIIF Tazuke-Kofukai, Osaka, Japan
| | - Masashi Hasebe
- Department of Diabetes and Endocrinology, Medical Research Institute KITANO HOSPITAL, PIIF Tazuke-Kofukai, Osaka, Japan
| | - Kimitaka Shibue
- Department of Diabetes and Endocrinology, Medical Research Institute KITANO HOSPITAL, PIIF Tazuke-Kofukai, Osaka, Japan
| | - Akihiro Hamasaki
- Department of Diabetes and Endocrinology, Medical Research Institute KITANO HOSPITAL, PIIF Tazuke-Kofukai, Osaka, Japan
| |
Collapse
|
13
|
Ali HT, Khalil SA, Caprara ALF, Rissardo JP. Pregabalin-Induced Parkinsonism: Case Report and Review of the Literature. J Pharm Pract 2024; 37:1220-1224. [PMID: 38605429 DOI: 10.1177/08971900241247119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2024]
Abstract
Pregabalin is an anti-epileptic drug approved for the treatment of neuropathic pain and focal-onset seizures. In a few cases, pregabalin was associated with parkinsonism. We present a case of a 48-year-old female who had hypertension and was on losartan 50 mg/daily. Her general practitioner prescribed pregabalin 150 mg/daily for fibromyalgia-related pain. The subject doubled the dosage without medical advice. After 5 days of the increased dosage, she started to experience difficulty and slowness in movement associated with resting tremors. Neuroimaging, electrodiagnostic studies, and laboratory exams were unremarkable. Secondary parkinsonism was suspected, so pregabalin was discontinued. The subject fully recovered within 7 days. To the authors' knowledge, only 6 cases of pregabalin-induced parkinsonism were reported in the literature. Pregabalin discontinuation was the most common management. All individuals fully recovered after pregabalin withdrawal. The mechanism of pregabalin-induced parkinsonism is not fully understood.
Collapse
|
14
|
Khosousi S, Sturchio A, Appleton E, Paslawski W, Ta M, Nalls M, Singleton AB, Iwaki H, Svenningsson P. Increased CSF DOPA Decarboxylase Correlates with Lower DaT-SPECT Binding: Analyses in Biopark and PPMI Cohorts. Mov Disord 2024; 39:1881-1885. [PMID: 38798037 PMCID: PMC11490393 DOI: 10.1002/mds.29835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 04/15/2024] [Accepted: 05/01/2024] [Indexed: 05/29/2024] Open
Abstract
BACKGROUND Recent studies identified increased cerebrospinal fluid (CSF) DOPA decarboxylase (DDC) as a promising biomarker for parkinsonian disorders, suggesting a compensation to dying dopaminergic neurons. A correlation with 123I-FP-CIT-SPECT (DaT-SPECT) imaging could shed light on this link. OBJECTIVE The objective is to assess the relationship between CSF DDC levels and DaT-SPECT binding values. METHODS A total of 51 and 72 Parkinson's disease (PD) subjects with available DaT-SPECT and CSF DDC levels were selected from the PPMI and Biopark cohorts, respectively. DDC levels were analyzed using proximity extension assay and correlated with DaT-SPECT striatal binding ratios (SBR). All analyses were corrected for age and sex. RESULTS CSF DDC levels in PD patients correlated negatively with DaT-SPECT SBR in both putamen and caudate nucleus. Additionally, SBR decreased with increased DDC levels over time in PD patients. CONCLUSION CSF DDC levels negatively correlate with DaT-SPECT SBR in levodopa-treated PD. © 2024 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Shervin Khosousi
- Laboratory of Translational Neuropharmacology, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Andrea Sturchio
- Laboratory of Translational Neuropharmacology, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- James J. and Joan A. Gardner Family Center for Parkinson’s disease and Movement Disorders, Department of Neurology, University of Cincinnati, Cincinnati, Ohio, USA
| | - Ellen Appleton
- Laboratory of Translational Neuropharmacology, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Wojciech Paslawski
- Laboratory of Translational Neuropharmacology, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Michael Ta
- Center for Alzheimer’s and Related Dementias, National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
- DataTecnica LLC, Washington, DC, USA
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| | - Michael Nalls
- Center for Alzheimer’s and Related Dementias, National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
- DataTecnica LLC, Washington, DC, USA
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| | - Andrew B. Singleton
- Center for Alzheimer’s and Related Dementias, National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| | - Hirotaka Iwaki
- Center for Alzheimer’s and Related Dementias, National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
- DataTecnica LLC, Washington, DC, USA
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| | - Per Svenningsson
- Laboratory of Translational Neuropharmacology, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
15
|
Azevedo EM, Fracaro L, Hochuli AHD, Ilkiw J, Bail EL, Lisboa MDO, Rodrigues LS, Barchiki F, Correa A, Capriglione LGA, Brofman PRS, Lima MMS. Comparative analysis of uninduced and neuronally-induced human dental pulp stromal cells in a 6-OHDA model of Parkinson's disease. Cytotherapy 2024; 26:1052-1061. [PMID: 38739074 DOI: 10.1016/j.jcyt.2024.04.068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 04/12/2024] [Accepted: 04/22/2024] [Indexed: 05/14/2024]
Abstract
BACKGROUND In recent years, dental pulp stromal cells (DPSCs) have emerged as a promising therapeutic approach for Parkinson's disease (PD), owing to their inherent neurogenic potential and the lack of neuroprotective treatments for this condition. However, uncertainties persist regarding the efficacy of these cells in an undifferentiated state versus a neuronally-induced state. This study aims to delineate the distinct therapeutic potential of uninduced and neuronally-induced DPSCs in a rodent model of PD induced by 6-Hydroxydopamine (6-OHDA). METHODS DPSCs were isolated from human teeth, characterized as mesenchymal stromal cells, and induced to neuronal differentiation. Neuronal markers were assessed before and after induction. DPSCs were transplanted into the substantia nigra pars compacta (SNpc) of rats 7 days following the 6-OHDA lesion. In vivo tracking of the cells, evaluation of locomotor behavior, dopaminergic neuron survival, and the expression of essential proteins within the dopaminergic system were conducted 7 days postgrafting. RESULTS Isolated DPSCs exhibited typical characteristics of mesenchymal stromal cells and maintained a normal karyotype. DPSCs consistently expressed neuronal markers, exhibiting elevated expression of βIII-tubulin following neuronal induction. Results from the animal model showed that both DPSC types promoted substantial recovery in dopaminergic neurons, correlating with enhanced locomotion. Additionally, neuronally-induced DPSCs prevented GFAP elevation, while altering DARPP-32 phosphorylation states. Conversely, uninduced DPSCs reduced JUN levels. Both DPSC types mitigated the elevation of glycosylated DAT. CONCLUSIONS Our results suggested that uninduced DPSCs and neuronally-induced DPSCs exhibit potential in reducing dopaminergic neuron loss and improving locomotor behavior, but their underlying mechanisms differ.
Collapse
Affiliation(s)
- Evellyn M Azevedo
- Physiology Department, Parkinson's Disease and Sleep Neurophysiology Lab, Universidade Federal do Paraná (UFPR), Curitiba, Brazil
| | - Letícia Fracaro
- Core for Cell Technology, School of Medicine and Life Sciences, Pontifícia Universidade Católica do Paraná (PUCPR), Curitiba, Brazil
| | - Agner H D Hochuli
- Core for Cell Technology, School of Medicine and Life Sciences, Pontifícia Universidade Católica do Paraná (PUCPR), Curitiba, Brazil
| | - Jéssica Ilkiw
- Physiology Department, Parkinson's Disease and Sleep Neurophysiology Lab, Universidade Federal do Paraná (UFPR), Curitiba, Brazil
| | - Ellen L Bail
- Physiology Department, Parkinson's Disease and Sleep Neurophysiology Lab, Universidade Federal do Paraná (UFPR), Curitiba, Brazil
| | - Mateus de O Lisboa
- Core for Cell Technology, School of Medicine and Life Sciences, Pontifícia Universidade Católica do Paraná (PUCPR), Curitiba, Brazil
| | - Lais S Rodrigues
- Physiology Department, Parkinson's Disease and Sleep Neurophysiology Lab, Universidade Federal do Paraná (UFPR), Curitiba, Brazil
| | - Fabiane Barchiki
- Core for Cell Technology, School of Medicine and Life Sciences, Pontifícia Universidade Católica do Paraná (PUCPR), Curitiba, Brazil
| | - Alejandro Correa
- Laboratory of Basic Biology of Stem Cells, Carlos Chagas Institute, Fiocruz-Paraná, Curitiba, Brazil
| | - Luiz G A Capriglione
- Core for Cell Technology, School of Medicine and Life Sciences, Pontifícia Universidade Católica do Paraná (PUCPR), Curitiba, Brazil
| | - Paulo R S Brofman
- Core for Cell Technology, School of Medicine and Life Sciences, Pontifícia Universidade Católica do Paraná (PUCPR), Curitiba, Brazil
| | - Marcelo M S Lima
- Physiology Department, Parkinson's Disease and Sleep Neurophysiology Lab, Universidade Federal do Paraná (UFPR), Curitiba, Brazil.
| |
Collapse
|
16
|
Tang J, Liu C, Liu C, Hu Q, Fang Y, Chen Z. Evaluation of damage discrimination in dopaminergic neurons using dopamine transporter PET tracer [ 18F]FECNT-d 4. EJNMMI Res 2024; 14:78. [PMID: 39210186 PMCID: PMC11362440 DOI: 10.1186/s13550-024-01140-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Accepted: 08/16/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND Parkinson's disease (PD) is a prevalent neurodegenerative disorder worldwide, diagnosed based on classic symptoms like motor dysfunction and cognitive impairments. With the development of various radioactive ligands, positron emission tomography (PET) imaging combined with specific radiolabelling probes has proven to be effective in aiding clinical PD diagnosis. Among these probes, 2β-Carbomethoxy-3β-(4-chlorophenyl)-8-(2-[18F]-fluoroethyl) nortropane ([18F]FECNT) has been utilized as a PET tracer to image dopamine transporter (DAT) integrity in striatal presynaptic dopaminergic terminals. However, the presence of brain-penetrant radioactive metabolites produced by [18F]FECNT may impact the accuracy of PET imaging. In previous research, we developed 2β-Carbomethoxy-3β-(4-chlorophenyl)-8-(2-[18F]-fluoroethyl-1,1,2,2-d4) nortropane ([18F]FECNT-d4), a deuterated derivative with enhanced stability in plasma and the striatum, along with a slower washout rate. In this study, we further investigated the potential of [18F]FECNT-d4 to detect dopaminergic neuron degeneration in Parkinson's disease. This involved PET imaging in unilaterally-lesioned PD model rats and in vitro autoradiography conducted on postmortem brain sections. RESULTS PET images revealed reduced specific uptake in the ipsilateral striatum of rats stereotactically injected with 6-hydroxydopamine hydrochloride (6-OHDA). Compared to the sham group, the ratio of standardized uptake value (SUV) in the ipsilateral to contralateral striatum decreased by 13%, 23%, and 63% in the mild, moderate, and severe lesioned groups, respectively. Dopaminergic denervation observed in PET imaging was further supported by behavioral assessments, immunostaining, and monoamine concentration tests. Moreover, the microPET results exhibited positive correlations with these measurements, except for the apomorphine-induced rotational behavior test, which showed a negative correlation. Additionally, [18F]FECNT-d4 uptake was approximately 40% lower in the postmortem striatal sections of a PD patient compared to a healthy subject. Furthermore, estimated human dosimetry (effective dose equivalent: 5.06 E-03 mSv/MBq), extrapolated from rat biodistribution data, remained below the current Food and Drug Administration limit for radiation exposure. CONCLUSION Our findings demonstrate that [18F]FECNT-d4 accurately estimates levels of dopaminergic neuron degeneration in the 6-OHDA-induced PD rat model and effectively distinguishes between PD patients and healthy individuals. This highly sensitive and safe PET probe holds promising potential for clinical application in the diagnosis and monitoring of Parkinson's disease.
Collapse
Affiliation(s)
- Jie Tang
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, No. 20 Qianrong Road, Binhu District, Wuxi, 214063, China
| | - Congjin Liu
- Department of Nuclear Medicine, Huashan Hospital, Fudan University, No. 12 Wulumuqi Middle Road, Jing'an District, Shanghai, 200040, China
| | - Chunyi Liu
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, No. 20 Qianrong Road, Binhu District, Wuxi, 214063, China
| | - Qianyue Hu
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, No. 20 Qianrong Road, Binhu District, Wuxi, 214063, China
| | - Yi Fang
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, No. 20 Qianrong Road, Binhu District, Wuxi, 214063, China
| | - Zhengping Chen
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, No. 20 Qianrong Road, Binhu District, Wuxi, 214063, China.
| |
Collapse
|
17
|
D'Onofrio AM, Pizzuto DA, Batir R, Perrone E, Cocciolillo F, Cavallo F, Kotzalidis GD, Simonetti A, d'Andrea G, Pettorruso M, Sani G, Di Giuda D, Camardese G. Dopaminergic dysfunction in the left putamen of patients with major depressive disorder. J Affect Disord 2024; 357:107-115. [PMID: 38636713 DOI: 10.1016/j.jad.2024.04.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 04/06/2024] [Accepted: 04/09/2024] [Indexed: 04/20/2024]
Abstract
INTRODUCTION Dopaminergic transmission impairment has been identified as one of the main neurobiological correlates of both depression and clinical symptoms commonly associated with its spectrum such as anhedonia and psychomotor retardation. OBJECTIVES We examined the relationship between dopaminergic deficit in the striatum, as measured by 123I-FP-CIT SPECT imaging, and specific psychopathological dimensions in patients with major depressive disorder. METHODS To our knowledge this is the first study with a sample of >120 subjects. After check for inclusion and exclusion criteria, 121 (67 females, 54 males) patients were chosen retrospectively from an extensive 1106 patients database of 123I-FP-CIT SPECT scans obtained at the Nuclear Medicine Unit of Fondazione Policlinico Universitario Agostino Gemelli IRCCS in Rome. These individuals had undergone striatal dopamine transporter (DAT) assessments based on the recommendation of their referring clinicians, who were either neurologists or psychiatrists. At the time of SPECT imaging, each participant underwent psychiatric and psychometric evaluations. We used the following psychometric scales: Hamilton Depression Rating Scale, Hamilton Anxiety Rating Scale, Snaith Hamilton Pleasure Scale, and Depression Retardation Rating Scale. RESULTS We found a negative correlation between levels of depression (p = 0.007), anxiety (p = 0.035), anhedonia (p = 0.028) and psychomotor retardation (p = 0.014) and DAT availability in the left putamen. We further stratified the sample and found that DAT availability in the left putamen was lower in seriously depressed patients (p = 0.027) and in patients with significant psychomotor retardation (p = 0.048). CONCLUSION To our knowledge this is the first study to have such a high number of sample. Our study reveals a pivotal role of dopaminergic dysfunction in patients with major depressive disorder. Elevated levels of depression, anxiety, anhedonia, and psychomotor retardation appear to be associated with reduced DAT availability specifically in the left putamen.
Collapse
Affiliation(s)
- Antonio Maria D'Onofrio
- Department of Neuroscience, Section of Psychiatry, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy.
| | - Daniele Antonio Pizzuto
- Nuclear Medicine Institute, University Department of Radiological and Hematological Sciences, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Rana Batir
- Department of Neuroscience, Section of Psychiatry, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
| | - Elisabetta Perrone
- Nuclear Medicine Institute, University Department of Radiological and Hematological Sciences, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Fabrizio Cocciolillo
- Nuclear Medicine Institute, University Department of Radiological and Hematological Sciences, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Federica Cavallo
- Nuclear Medicine Institute, University Department of Radiological and Hematological Sciences, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Georgios Demetrios Kotzalidis
- Department of Neuroscience, Section of Psychiatry, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
| | - Alessio Simonetti
- Department of Neuroscience, Section of Psychiatry, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy; Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, TX 77030, USA
| | - Giacomo d'Andrea
- Department of Neuroscience, Imaging and Clinical Sciences, "G. d'Annunzio" University of Chieti-Pescara, 66100 Chieti, Italy
| | - Mauro Pettorruso
- Department of Neuroscience, Imaging and Clinical Sciences, "G. d'Annunzio" University of Chieti-Pescara, 66100 Chieti, Italy
| | - Gabriele Sani
- Department of Neuroscience, Section of Psychiatry, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy; Department of Neurosciences, Section of Psychiatry, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Daniela Di Giuda
- Nuclear Medicine Institute, University Department of Radiological and Hematological Sciences, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; Medicine Unit, Diagnostic Imaging, Radiotherapy and Hematology Department, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
| | - Giovanni Camardese
- Department of Neuroscience, Section of Psychiatry, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy; Department of Neurosciences, Section of Psychiatry, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| |
Collapse
|
18
|
Jiang H, Du Y, Lu Z, Wang B, Zhao Y, Wang R, Zhang H, Mok GSP. Radiomics incorporating deep features for predicting Parkinson's disease in 123I-Ioflupane SPECT. EJNMMI Phys 2024; 11:60. [PMID: 38985382 PMCID: PMC11236833 DOI: 10.1186/s40658-024-00651-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 05/24/2024] [Indexed: 07/11/2024] Open
Abstract
PURPOSE 123I-Ioflupane SPECT is an effective tool for the diagnosis and progression assessment of Parkinson's disease (PD). Radiomics and deep learning (DL) can be used to track and analyze the underlying image texture and features to predict the Hoehn-Yahr stages (HYS) of PD. In this study, we aim to predict HYS at year 0 and year 4 after the first diagnosis with combined imaging, radiomics and DL-based features using 123I-Ioflupane SPECT images at year 0. METHODS In this study, 161 subjects from the Parkinson's Progressive Marker Initiative database underwent baseline 3T MRI and 123I-Ioflupane SPECT, with HYS assessment at years 0 and 4 after first diagnosis. Conventional imaging features (IF) and radiomic features (RaF) for striatum uptakes were extracted from SPECT images using MRI- and SPECT-based (SPECT-V and SPECT-T) segmentations respectively. A 2D DenseNet was used to predict HYS of PD, and simultaneously generate deep features (DF). The random forest algorithm was applied to develop models based on DF, RaF, IF and combined features to predict HYS (stage 0, 1 and 2) at year 0 and (stage 0, 1 and ≥ 2) at year 4, respectively. Model predictive accuracy and receiver operating characteristic (ROC) analysis were assessed for various prediction models. RESULTS For the diagnostic accuracy at year 0, DL (0.696) outperformed most models, except DF + IF in SPECT-V (0.704), significantly superior based on paired t-test. For year 4, accuracy of DF + RaF model in MRI-based method is the highest (0.835), significantly better than DF + IF, IF + RaF, RaF and IF models. And DL (0.820) surpassed models in both SPECT-based methods. The area under the ROC curve (AUC) highlighted DF + RaF model (0.854) in MRI-based method at year 0 and DF + RaF model (0.869) in SPECT-T method at year 4, outperforming DL models, respectively. And then, there was no significant differences between SPECT-based and MRI-based segmentation methods except for the imaging feature models. CONCLUSION The combination of radiomic and deep features enhances the prediction accuracy of PD HYS compared to only radiomics or DL. This suggests the potential for further advancements in predictive model performance for PD HYS at year 0 and year 4 after first diagnosis using 123I-Ioflupane SPECT images at year 0, thereby facilitating early diagnosis and treatment for PD patients. No significant difference was observed in radiomics results obtained between MRI- and SPECT-based striatum segmentations for radiomic and deep features.
Collapse
Affiliation(s)
- Han Jiang
- Biomedical Imaging Laboratory (BIG), Department of Electrical and Computer Engineering, Faculty of Science and Technology, University of Macau, Avenida da Universidade, Macau, Macau SAR, China
- PET-CT Center, Fujian Medical University Union Hospital, Fuzhou, China
| | - Yu Du
- Biomedical Imaging Laboratory (BIG), Department of Electrical and Computer Engineering, Faculty of Science and Technology, University of Macau, Avenida da Universidade, Macau, Macau SAR, China
- Center for Cognitive and Brain Sciences, Institute of Collaborative Innovation, University of Macau, Taipa, Macau SAR, China
| | - Zhonglin Lu
- Biomedical Imaging Laboratory (BIG), Department of Electrical and Computer Engineering, Faculty of Science and Technology, University of Macau, Avenida da Universidade, Macau, Macau SAR, China
- Center for Cognitive and Brain Sciences, Institute of Collaborative Innovation, University of Macau, Taipa, Macau SAR, China
| | - Bingjie Wang
- Biomedical Imaging Laboratory (BIG), Department of Electrical and Computer Engineering, Faculty of Science and Technology, University of Macau, Avenida da Universidade, Macau, Macau SAR, China
- Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Yonghua Zhao
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau SAR, China
| | - Ruibing Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau SAR, China
| | - Hong Zhang
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang, University School of Medicine, 88 Jiefang Road, Zhejiang, 310009, Zhejiang, China.
- Institute of Nuclear Medicine and Molecular, Imaging of Zhejiang University, Hangzhou, China.
- Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, China.
- College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, China.
- Key Laboratory for Biomedical Engineering of Ministry of Education, Zhejiang University, Hangzhou, China.
| | - Greta S P Mok
- Biomedical Imaging Laboratory (BIG), Department of Electrical and Computer Engineering, Faculty of Science and Technology, University of Macau, Avenida da Universidade, Macau, Macau SAR, China.
- Center for Cognitive and Brain Sciences, Institute of Collaborative Innovation, University of Macau, Taipa, Macau SAR, China.
| |
Collapse
|
19
|
Kobayashi R, Iwata-Endo K, Fujishiro H. Clinical presentations and diagnostic application of proposed biomarkers in psychiatric-onset prodromal dementia with Lewy bodies. Psychogeriatrics 2024; 24:1004-1022. [PMID: 38837629 DOI: 10.1111/psyg.13147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 05/19/2024] [Accepted: 05/21/2024] [Indexed: 06/07/2024]
Abstract
Research criteria for the diagnosis of prodromal dementia with Lewy bodies (DLB) include three clinical subtypes: mild cognitive impairment with Lewy bodies (MCI-LB), delirium-onset prodromal DLB, and psychiatric-onset prodromal DLB. Late-onset psychiatric manifestations are at a higher risk of developing dementia, but its relation to prodromal DLB remains unclear. In addition to the risk of severe antipsychotic hypersensitivity reactions, accurate discrimination from non-DLB cases is important due to the potential differences in management and prognosis. This article aims to review a rapidly evolving psychiatric topic and outline clinical pictures of psychiatric-onset prodromal DLB, including the proposed biomarker findings of MCI-LB: polysomnography-confirmed rapid eye movement sleep behaviour disorder, cardiac [123I]metaiodobenzylguanidine scintigraphy, and striatal dopamine transporter imaging. We first reviewed clinical pictures of patients with autopsy-confirmed DLB. Regarding clinical reports, we focused on the patients who predominantly presented with psychiatric manifestations and subsequently developed DLB. Thereafter, we reviewed clinical studies regarding the diagnostic applications of the proposed biomarkers to patients with late-onset psychiatric disorders. Clinical presentations were mainly late-onset depression and psychosis; however, other clinical manifestations were also reported. Psychotropic medications before a DLB diagnosis may cause extrapyramidal signs, and potentially influences the proposed biomarker findings. These risks complicate clinical manifestation interpretation during the management of psychiatric symptoms. Longitudinal follow-up studies with standardised evaluations until conversion to DLB are needed to investigate the temporal trajectories of core features and proposed biomarker findings. In patients with late-onset psychiatric disorders, identification of patients with psychiatric-onset prodromal DLB provides the opportunity to better understanding the distinct prognostic subgroup that is at great risk of incident dementia. Advances in the establishment of direct biomarkers for the detection of pathological α-synuclein may encourage reorganising the phenotypic variability of prodromal DLB.
Collapse
Affiliation(s)
- Ryota Kobayashi
- Department of Psychiatry, Yamagata University School of Medicine, Yamagata, Japan
| | - Kuniyuki Iwata-Endo
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hiroshige Fujishiro
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
20
|
Kataoka H, Kinugawa K, Sugata M, Morita S, Miyasaka T, Sugie K. Reduction in presynaptic dopamine transporter may be associated with future problematic delusion. Clin Neurol Neurosurg 2024; 242:108321. [PMID: 38749355 DOI: 10.1016/j.clineuro.2024.108321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 04/12/2024] [Accepted: 05/05/2024] [Indexed: 06/16/2024]
Abstract
OBJECTIVES Psychosis, especially in delusions, greatly impairs the quality of life of patients with Parkinson's disease (PD) and their caregivers. Few objective risk indicators of the association between psychosis and clinical features has been reported. It is unclear whether the reduction in DAT binding represents the underlying mechanism of delusion or its association. There are no long-term data on the objective prognostic value of DAT binding for delusions. We investigated whether DAT binding at baseline can be a prognostic risk factor for future development of PD delusions. MATERIALS AND METHODS We reviewed the detailed clinical chart of patients with PD without a history of psychosis who underwent [123I]FP-CIT SPECT during the disease. The endpoint was defined as when the delusions occurred during the 5 years after the examination of [123I]FP-CIT SPECT. Specific binding ratio (SBR) values were calculated. RESULTS Sixty-one patients with PD were included in the analysis, and 11 patients had delusions within 5 years of [123I] FP-CIT SPECT. The average (p = 0.004), minimum (p = 0.004), maximum (p = 0.001), right-sided (p = 0.002), and left-sided (p = 0.003) SBRs in the striatum were significantly smaller in patients with delusions than in patients without delusions. Each difference of each SBR was significantly smaller than those without delusions after adjusting after controlling for age, gender, disease severity, timing of [123I]FP-CIT SPECT, anti-parkinsonian medications, hospitalization, administering more or newly anti-parkinsonian drugs, and receiving DBS or LCIG. CONCLUSIONS PD delusions is still problematic, and lowering DAT binding may be helpful for predicting future delusions, regardless of the timing of [123I]FP-CIT SPECT.
Collapse
Affiliation(s)
- Hiroshi Kataoka
- Department of Neurology, Nara Medical University, Nara, Japan.
| | - Kaoru Kinugawa
- Department of Neurology, Nara Medical University, Nara, Japan
| | - Mayu Sugata
- Department of Neurology, Nara Medical University, Nara, Japan
| | - Shusaku Morita
- Central Division of Radiology, Nara Medical University Hospital, Nara, Japan
| | | | - Kazuma Sugie
- Department of Neurology, Nara Medical University, Nara, Japan
| |
Collapse
|
21
|
Huang J, Sullivan KJ, Vijayakumar V. Differences in [ 123I]Ioflupane Striatal Binding Between African American and White Patients. J Nucl Med Technol 2024; 52:137-143. [PMID: 38839126 DOI: 10.2967/jnmt.123.265806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 12/11/2023] [Indexed: 06/07/2024] Open
Abstract
Ethnic differences exist among patients with Parkinson disease (PD). PD is more common in the White than the African American population. This study aimed to explore whether differences exist in [123I]ioflupane binding, which reflects dopamine transporter binding, between African American and White individuals. Methods: Medical charts were reviewed for patients who underwent [123I]ioflupane SPECT imaging as part of routine practice in a single academic medical center. All images were visually graded as showing normal or abnormal presynaptic dopaminergic function (normal or abnormal scan status). Quantitative [123I]ioflupane uptake as measured by the specific binding ratios in the right and left striata and their subregions (caudate nucleus and anterior and posterior putamen) and by bilateral putamen-to-caudate ratios were compared between African American and White patients using multiple linear regression adjusted for age, sex, and abnormal scan status. Additional models included an ethnicity-by-abnormal-scan-status interaction term to determine whether abnormal scan status was modulated by ethnicity effect. Results: The percentage of patients with abnormal scan status was comparable between African American and White patients. Compared with White patients (n = 173), African American patients (n = 82) had statistically significantly higher uptake as measured by specific binding ratios in the right and left striata and some of their subregions (right and left caudate nuclei and right posterior putamen). Ethnicity-by-abnormal-scan-status interactions were not statistically supported for any models. Conclusion: We observed differences in [123I]ioflupane binding between African American and White patients independent of presynaptic dopaminergic dysfunction status. Future studies are needed to examine whether and how ethnicity affects dopamine transporter binding activities and its clinical relevance.
Collapse
Affiliation(s)
- Juebin Huang
- Department of Neurology, University of Mississippi Medical Center, Jackson, Mississippi;
| | - Kevin J Sullivan
- Department of Medicine, University of Mississippi Medical Center, Jackson, Mississippi; and
| | - Vani Vijayakumar
- Department of Radiology, University of Mississippi Medical Center, Jackson, Mississippi
| |
Collapse
|
22
|
Niu J, Zhong Y, Jin C, Cen P, Wang J, Cui C, Xue L, Cui X, Tian M, Zhang H. Positron Emission Tomography Imaging of Synaptic Dysfunction in Parkinson's Disease. Neurosci Bull 2024; 40:743-758. [PMID: 38483697 PMCID: PMC11178751 DOI: 10.1007/s12264-024-01188-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 12/09/2023] [Indexed: 06/15/2024] Open
Abstract
Parkinson's disease (PD) is one of the most common neurodegenerative diseases with a complex pathogenesis. Aggregations formed by abnormal deposition of alpha-synuclein (αSyn) lead to synapse dysfunction of the dopamine and non-dopamine systems. The loss of dopaminergic neurons and concomitant alterations in non-dopaminergic function in PD constitute its primary pathological manifestation. Positron emission tomography (PET), as a representative molecular imaging technique, enables the non-invasive visualization, characterization, and quantification of biological processes at cellular and molecular levels. Imaging synaptic function with PET would provide insights into the mechanisms underlying PD and facilitate the optimization of clinical management. In this review, we focus on the synaptic dysfunction associated with the αSyn pathology of PD, summarize various related targets and radiopharmaceuticals, and discuss applications and perspectives of PET imaging of synaptic dysfunction in PD.
Collapse
Affiliation(s)
- Jiaqi Niu
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, China
- Institute of Nuclear Medicine and Molecular Imaging, Zhejiang University, Hangzhou, 310009, China
- Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, 310009, China
| | - Yan Zhong
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, China
- Institute of Nuclear Medicine and Molecular Imaging, Zhejiang University, Hangzhou, 310009, China
- Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, 310009, China
| | - Chentao Jin
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, China
- Institute of Nuclear Medicine and Molecular Imaging, Zhejiang University, Hangzhou, 310009, China
- Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, 310009, China
| | - Peili Cen
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, China
- Institute of Nuclear Medicine and Molecular Imaging, Zhejiang University, Hangzhou, 310009, China
- Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, 310009, China
| | - Jing Wang
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, China
- Institute of Nuclear Medicine and Molecular Imaging, Zhejiang University, Hangzhou, 310009, China
- Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, 310009, China
| | - Chunyi Cui
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, China
- Institute of Nuclear Medicine and Molecular Imaging, Zhejiang University, Hangzhou, 310009, China
- Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, 310009, China
| | - Le Xue
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, China
- Institute of Nuclear Medicine and Molecular Imaging, Zhejiang University, Hangzhou, 310009, China
- Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, 310009, China
| | - Xingyue Cui
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, China
- Institute of Nuclear Medicine and Molecular Imaging, Zhejiang University, Hangzhou, 310009, China
- Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, 310009, China
| | - Mei Tian
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, China.
- Institute of Nuclear Medicine and Molecular Imaging, Zhejiang University, Hangzhou, 310009, China.
- Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, 310009, China.
- Huashan Hospital and Human Phenome Institute, Fudan University, Shanghai, 200040, China.
| | - Hong Zhang
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, China.
- Institute of Nuclear Medicine and Molecular Imaging, Zhejiang University, Hangzhou, 310009, China.
- Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, 310009, China.
- College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, 310014, China.
- Key Laboratory for Biomedical Engineering of Ministry of Education, Zhejiang University, Hangzhou, 310014, China.
| |
Collapse
|
23
|
Maru K, Singh A, Jangir R, Jangir KK. Amyloid detection in neurodegenerative diseases using MOFs. J Mater Chem B 2024; 12:4553-4573. [PMID: 38646795 DOI: 10.1039/d4tb00373j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
Neurodegenerative diseases (amyloid diseases such as Alzheimer's and Parkinson's), stemming from protein misfolding and aggregation, encompass a spectrum of disorders with severe systemic implications. Timely detection is pivotal in managing these diseases owing to their significant impact on organ function and high mortality rates. The diverse array of amyloid disorders, spanning localized and systemic manifestations, underscores the complexity of these conditions and highlights the need for advanced detection methods. Traditional approaches have focused on identifying biomarkers using imaging techniques (PET and MRI) or invasive procedures. However, recent efforts have focused on the use of metal-organic frameworks (MOFs), a versatile class of materials known for their unique properties, in revolutionizing amyloid disease detection. The high porosity, customizable structures, and biocompatibility of MOFs enable their integration with biomolecules, laying the groundwork for highly sensitive and specific biosensors. These sensors have been employed using electrochemical and photophysical techniques that target amyloid species under neurodegenerative conditions. The adaptability of MOFs allows for the precise detection and quantification of amyloid proteins, offering potential advancements in early diagnosis and disease management. This review article delves into how MOFs contribute to detecting amyloid diseases by categorizing their uses based on different sensing methods, such as electrochemical (EC), electrochemiluminescence (ECL), fluorescence, Förster resonance energy transfer (FRET), up-conversion luminescence resonance energy transfer (ULRET), and photoelectrochemical (PEC) sensing. The drawbacks of MOF biosensors and the challenges encountered in the field are also briefly explored from our perspective.
Collapse
Affiliation(s)
- Ketan Maru
- Sardar Vallabhbhai National Institute of Technology, Ichchanath, Surat-395 007, Gujarat, India.
| | - Amarendra Singh
- Sardar Vallabhbhai National Institute of Technology, Ichchanath, Surat-395 007, Gujarat, India.
| | - Ritambhara Jangir
- Sardar Vallabhbhai National Institute of Technology, Ichchanath, Surat-395 007, Gujarat, India.
| | | |
Collapse
|
24
|
Ferrat M, Moein MM, Cananau C, Tegnebratt T, Saliba P, Norman F, Steiger C, Bratteby K, Samén E, Dahl K, Tran TA. GMP production of [ 18F]FE-PE2I on a TRACERLab FX2 N synthesis module, a radiotracer for in vivo PET imaging of the dopamine transport. EJNMMI Radiopharm Chem 2024; 9:35. [PMID: 38696063 PMCID: PMC11065837 DOI: 10.1186/s41181-024-00269-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 04/25/2024] [Indexed: 05/05/2024] Open
Abstract
BACKGROUND Parkinson's disease is a neurodegenerative disorder that is characterized by a degeneration of the dopaminergic system. Dopamine transporter (DAT) positron emission tomography (PET) imaging has emerged as a powerful and non-invasive method to quantify dopaminergic function in the living brain. The PET radioligand, [18F]FE-PE2I, a cocaine chemical derivative, has shown promising properties for in vivo PET imaging of DAT, including high affinity and selectivity for DAT, excellent brain permeability, and favorable metabolism. The aim of the current study was to scale up the production of [18F]FE-PE2I to fulfil the increasing clinical demand for this tracer. RESULTS Thus, a fully automated and GMP-compliant production procedure has been developed using a commercially available radiosynthesis module GE TRACERLab FX2 N. [18F]FE-PE2I was produced with a radiochemical yield of 39 ± 8% (n = 4, relative [18F]F- delivered to the module). The synthesis time was 70 min, and the molar activity was 925.3 ± 763 GBq/µmol (250 ± 20 Ci/µmol). The produced [18F]FE-PE2I was stable over 6 h at room temperature. CONCLUSION The protocol reliably provides a sterile and pyrogen-free GMP-compliant product.
Collapse
Affiliation(s)
- Mélodie Ferrat
- Department of Radiopharmacy, Karolinska University Hospital, 171 76, Stockholm, Sweden.
- Department of Oncology and Pathology, Karolinska Institutet, 171 76, Stockholm, Sweden.
| | - Mohammad M Moein
- Department of Radiopharmacy, Karolinska University Hospital, 171 76, Stockholm, Sweden
- Department of Oncology and Pathology, Karolinska Institutet, 171 76, Stockholm, Sweden
| | - Carmen Cananau
- Department of Medical Radiation Physics and Nuclear Medicine, Karolinska University Hospital, 171 76, Stockholm, Sweden
| | - Tetyana Tegnebratt
- Department of Radiopharmacy, Karolinska University Hospital, 171 76, Stockholm, Sweden
| | - Paul Saliba
- Department of Radiopharmacy, Karolinska University Hospital, 171 76, Stockholm, Sweden
| | - Fredrik Norman
- Department of Radiopharmacy, Karolinska University Hospital, 171 76, Stockholm, Sweden
| | - Carsten Steiger
- Department of Radiopharmacy, Karolinska University Hospital, 171 76, Stockholm, Sweden
| | - Klas Bratteby
- Department of Radiopharmacy, Karolinska University Hospital, 171 76, Stockholm, Sweden
- Department of Oncology and Pathology, Karolinska Institutet, 171 76, Stockholm, Sweden
| | - Erik Samén
- Department of Radiopharmacy, Karolinska University Hospital, 171 76, Stockholm, Sweden
- Department of Oncology and Pathology, Karolinska Institutet, 171 76, Stockholm, Sweden
| | - Kenneth Dahl
- Department of Radiopharmacy, Karolinska University Hospital, 171 76, Stockholm, Sweden
- Department of Oncology and Pathology, Karolinska Institutet, 171 76, Stockholm, Sweden
| | - Thuy A Tran
- Department of Radiopharmacy, Karolinska University Hospital, 171 76, Stockholm, Sweden
- Department of Oncology and Pathology, Karolinska Institutet, 171 76, Stockholm, Sweden
| |
Collapse
|
25
|
Liu J, Kang J, Qi M, Tang J, Fang Y, Liu C, Hong J, Zuo J, Chen Z. Synthesis and initial evaluation of radioiodine-labelled deuterated tropane derivatives targeting dopamine transporter. Bioorg Med Chem Lett 2024; 102:129678. [PMID: 38408514 DOI: 10.1016/j.bmcl.2024.129678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 02/21/2024] [Accepted: 02/23/2024] [Indexed: 02/28/2024]
Abstract
The dopamine transporter (DAT) is closely related to a variety of neurological disorders including Parkinson's disease (PD) and other neurodegenerative diseases. In vivo imaging of DAT with radio-labelled tracers has become a powerful technique in related disorders. The radioiodine-labelled tropane derivative [123I]FP-CIT ([123I]1a) is widely used in clinical single photon emission computed tomography (SPECT) imaging as a DAT imaging agent. To develop more metabolically stable DAT radioligands for accurate imaging, this work compared two novel deuterated tropane derivatives ([131I]1c-d) with non-deuterated tropane derivatives ([131I]1a-b). [131I]1a-d were obtained in high radiochemical purity (RCP) above 99 % with molar activities of 7.0-10.0 GBq/μmol. The [131I]1a and [131I]1c exhibited relatively higher affinity to DAT (Ki: 2.0-3.12 nM) than [131I]1b and [131I]1d. Biodistribution results showed that [131I]1c consistently exhibited a higher ratio of the target to non-target (striatum/cerebellum) than [131I]1a. Furthermore, metabolism studies indicated that the in vivo metabolic stability of [131I]1c was superior to that of [131I]1a. Ex vivo autoradiography showed that [131I]1c selectively localized on DAT-rich striatal regions and the specific signal could be blocked by DAT inhibitor. These results indicated that [131I]1c might be a potential probe for DAT SPECT imaging in the brain.
Collapse
Affiliation(s)
- Jie Liu
- Department of Radiopharmaceuticals, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China; NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, China
| | - Jing Kang
- Department of Radiopharmaceuticals, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China; NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, China
| | - Meihui Qi
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, China; School of Pharmaceutical Science, Inner Mongolia Medical University, Hohhot 010110, China
| | - Jie Tang
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, China
| | - Yi Fang
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, China
| | - Chunyi Liu
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, China
| | - Jingjing Hong
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, China; Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, Xuzhou 221004, China
| | - Jiaojiao Zuo
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, China; School of Pharmaceutical Science, Inner Mongolia Medical University, Hohhot 010110, China
| | - Zhengping Chen
- Department of Radiopharmaceuticals, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China; NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, China; School of Pharmaceutical Science, Inner Mongolia Medical University, Hohhot 010110, China; Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, Xuzhou 221004, China.
| |
Collapse
|
26
|
Tang Z, Hirano S, Koizumi Y, Izumi M, Kitayama Y, Yamagishi K, Tamura M, Ishikawa A, Kashiwado K, Iimori T, Mukai H, Yokota H, Horikoshi T, Uno T, Kuwabara S. Diagnostic Sensitivity and Symptomatic Relevance of Dopamine Transporter Imaging and Myocardial Sympathetic Scintigraphy in Patients with Dementia with Lewy Bodies. J Alzheimers Dis 2024; 100:127-137. [PMID: 38848178 PMCID: PMC11307094 DOI: 10.3233/jad-231395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/25/2024] [Indexed: 06/09/2024]
Abstract
Background Dementia with Lewy bodies (DLB) presents with various symptoms, posing challenges for early diagnosis challenging. Dopamine transporter (123I-FP-CIT) single-photon emission tomography (SPECT) and 123I-meta-iodobenzylguanidine (123I-MIBG) imaging are crucial diagnostic biomarkers. Hypothesis about body- and brain-first subtypes of DLB indicate that some DLB may show normal 123I-FP-CIT or 123I-MIBG results; but the characteristic expression of these two subtypes remains unclear. Objective This study aimed to evaluate the diagnostic sensitivity of 123I-FP-CIT and 123I-MIBG imaging alone, combined in patients with DLB and explore symptoms associated with the abnormal imaging results. Methods Demographic data, clinical status, and imaging results were retrospectively collected from patients diagnosed with possible DLB. Both images were quantified using semi-automated software, and the sensitivity of each imaging modality and their combination was calculated. Demographic data, cognition, and motor and non-motor symptoms were compared among the subgroups based on the imaging results. Symptoms related to each imaging abnormality were examined using binomial logistic regression analyses. Results Among 114 patients with DLB, 80 underwent 123I-FP-CIT SPECT (sensitivity: 80.3%), 83 underwent 123I-MIBG imaging (68.2%), and 66 both (sensitivity of either abnormal result: 93.9%). Visual hallucinations differed among the four subgroups based on imaging results. Additionally, nocturia and orthostatic hypotension differed between abnormal and normal 123I-MIBG images. Conclusions Overall, 123I-FP-CIT SPECT was slightly higher sensitivity than 123I-MIBG imaging, with combined imaging increasing diagnostic sensitivity. Normal results of a single imaging test may not refute DLB. Autonomic symptoms may lead to abnormal 123I-MIBG scintigraphy findings indicating body-first subtype of patients with DLB.
Collapse
Affiliation(s)
- Zhihui Tang
- Department of Neurology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Shigeki Hirano
- Department of Neurology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Yume Koizumi
- Department of Neurology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Michiko Izumi
- Department of Neurology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Yoshihisa Kitayama
- Department of Neurology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Kosuke Yamagishi
- Department of Neurology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Mitsuyoshi Tamura
- Department of Neurology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Ai Ishikawa
- Department of Neurology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Kouichi Kashiwado
- Department of Neurology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Takashi Iimori
- Department of Radiology, Chiba University Hospital, Chiba, Japan
| | - Hiroki Mukai
- Department of Diagnostic Radiology and Radiation Oncology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Hajime Yokota
- Department of Diagnostic Radiology and Radiation Oncology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Takuro Horikoshi
- Department of Diagnostic Radiology and Radiation Oncology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Takashi Uno
- Department of Diagnostic Radiology and Radiation Oncology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Satoshi Kuwabara
- Department of Neurology, Graduate School of Medicine, Chiba University, Chiba, Japan
| |
Collapse
|
27
|
Subramaniyan S, Kuriakose BB, Mushfiq S, Prabhu NM, Muthusamy K. Gene Signals and SNPs Associated with Parkinson's Disease: A Nutrigenomics and Computational Prospective Insights. Neuroscience 2023; 533:77-95. [PMID: 37858629 DOI: 10.1016/j.neuroscience.2023.10.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 05/05/2023] [Accepted: 10/11/2023] [Indexed: 10/21/2023]
Abstract
Parkinson's disease is the most prevalent chronic neurodegenerative disease. Neurological conditions for PD were influenced by a variety of epigenetic factors and SNPs in some of the coexisting genes that were expressed. This article focused on nutrigenomics of PD and the prospective highlighting of how these genes are regulated in terms of nutritive factors and the genetic basis of PD risk, onset, and progression. Multigenetic associations of the following genetic alterations in the genes of SNCA, LRRK2, UCHL1, PARK2,PINK1, DJ-1, and ATP13A2 have been reported with the familial and de novo genetic origins of PD. Over the past two decades, significant attempts have been made to understand the biological mechanisms that are potential causes for this disease, as well as to identify therapeutic substances for the prevention and management of PD. Nutrigenomics has sparked considerable interest due to its nutritional, safe, and therapeutic effects on a variety of chronic diseases. In this study, we summarise some of the nutritive supplements that have an impact on PD.
Collapse
Affiliation(s)
- Swetha Subramaniyan
- Department of Bioinformatics, Alagappa University, Karaikudi, Tamil Nadu, India
| | - Beena Briget Kuriakose
- Department of Basic Medical Sciences, College of Applied Medical Sciences, King Khalid University, Khamis Mushayt, Saudi Arabia
| | - Sakeena Mushfiq
- Department of Public Health, College of Applied Medical Sciences, King Khalid University, Khamis Mushayt, Saudi Arabia
| | | | | |
Collapse
|
28
|
Wu Y, Xu XJ, Sun X, Zhai H, Wang T, Cao XB, Xu Y. Integrated PET/MRI With 11C-CFT and 18F-FDG for levodopa response difference in Parkinson's disease. Behav Brain Res 2023; 454:114609. [PMID: 37532003 DOI: 10.1016/j.bbr.2023.114609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 07/05/2023] [Accepted: 07/31/2023] [Indexed: 08/04/2023]
Abstract
AIM Parkinson's disease is one of the most common neurodegenerative diseases. Excellent levodopa responsiveness has been proposed as a characteristic supporting feature in substantiating the PD diagnosis. However, a small portion of clinically established PD patients shows poor levodopa response. This study aims to investigate brain function alterations of PD patients with poor levodopa responsiveness by PET/MRI. METHOD A total of 46 PD patients were recruited. They all completed 11C-CFT PET/MRI scans and the acute levodopa challenge test. Among these 46 PD patients, 42 participants further underwent 18F-FDG PET/MRI scans. Clinical variables regarding demographic data, disease features and cognition scales were also collected. Based on the improvement rate of UPDRS-III, PD patients were divided into non-responders (improvement rate < 33 %) and responders (improvement rate ≥ 33 %). Statistical parametric zapping was performed to analyze molecular imaging. Dopaminergic uptake and metabolism of 70 brain regions were converted to quantitative values and expressed as standard uptake value (SUV). SUV was further normalized by the cerebellum. The resulting SUV ratios and clinical variables were then compared by SPSS. RESULTS The difference between levodopa non-responders (n = 17) and responders (n = 29) in the UPDRS III baseline was statistically significant and the former had a lower UPDRS III baseline (19 (10, 32), p<0.05). In contrast, no statistical difference between these two groups was found in age, gender, disease duration, cognition, motor subtype and Hoehn-Yahr stage. Dopaminergic uptake differences between levodopa non-responders (n = 17) and responders (n = 29) were shown in the left inferior frontal cortex (1.00 ± 0.09 vs 1.07 ± 0.08, p < 0.05 and FDR < 0.2), the right posterior cingulum (1.10 ± 0.10 vs 1.20 ± 0.13, p < 0.05 and FDR < 0.2) and the right insula (1.21 ± 0.12 vs 1.30 ± 0.10, p < 0.05 and FDR < 0.2). The metabolic alterations between levodopa non-responders (n = 16) and responders (n = 26) were shown in the right supplementary motor area (1.30 (1.18, 1.39) vs 1.41 (1.31, 1.53), p < 0.05 and FDR < 0.2), right precuneus (1.37 ± 0.10 vs 1.47 ± 0.18, p < 0.05 and FDR < 0.2), right parietal cortex (1.14 ± 0.15 vs 1.27 ± 0.21, p < 0.05 and FDR < 0.2), right supramarginal gyrus (1.16 (1.12, 1.26) vs 1.25 (1.14, 1.46), p < 0.05 and FDR < 0.2), right postcentral gyrus (1.15 (1.08, 1.32) vs 1.24 (1.17, 1.39), p < 0.05 and FDR < 0.2), medulla (0.75 ± 0.07 vs 0.80 ± 0.07, p < 0.05 and FDR < 0.2), right rolandic operculum (1.25 (1.18, 1.32) vs 1.33 (1.25, 1.50), p < 0.05 and FDR < 0.2), right olfactory (0.95 (0.91, 1.01) vs 1.01 (0.95, 1.15), p < 0.05 and FDR < 0.2), the right insula (1.15 (1.06, 1.22) vs 1.21 (1.12, 1.35), p < 0.05 and FDR < 0.2) and the left cerebellum crus (0.96 (0.91, 1.01) vs 0.92 (0.86, 0.96), p < 0.05 and FDR < 0.2). CONCLUSIONS PD patients with poor response to levodopa showed less severe impairment of baseline motor symptoms, more severe dopaminergic deficits in the left inferior frontal, right posterior cingulate cortex and the right insula, and lower metabolism in the right supplementary motor area, right precuneus, right parietal cortex, right supramarginal gyrus, right postcentral gyrus, medulla, right rolandic operculum, right olfactory, the right insula and higher metabolism in the left cerebellum crus.
Collapse
Affiliation(s)
- Yi Wu
- Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiao-Jun Xu
- Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xun Sun
- Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Heng Zhai
- Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tao Wang
- Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Xue-Bing Cao
- Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Yan Xu
- Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
29
|
Conti Mazza MM, Centner A, Werner DF, Bishop C. Striatal serotonin transporter gain-of-function in L-DOPA-treated, hemi-parkinsonian rats. Brain Res 2023; 1811:148381. [PMID: 37127174 PMCID: PMC10562932 DOI: 10.1016/j.brainres.2023.148381] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/24/2023] [Accepted: 04/26/2023] [Indexed: 05/03/2023]
Abstract
L-DOPA is the standard treatment for Parkinson's disease (PD), but chronic treatment typically leads to L-DOPA-induced dyskinesia (LID). LID involves a complex interaction between the remaining dopamine (DA) system and the semi-homologous serotonin (5-HT) system. Since serotonin transporters (SERT) have some affinity for DA uptake, they may serve as a functional compensatory mechanism when DA transporters (DAT) are scant. DAT and SERT's functional contributions in the dyskinetic brain have not been well delineated. The current investigation sought to determine how DA depletion and L-DOPA treatment affect DAT and SERT transcriptional processes, translational processes, and functional DA uptake in the 6-hydroxydopamine-lesioned hemi-parkinsonian rat. Rats were counterbalanced for motor impairment into equally lesioned treatment groups then given daily L-DOPA (0 or 6 mg/kg) for 2 weeks. At the end of treatment, the substantia nigra was processed for tyrosine hydroxylase (TH) and DAT gene expression and dorsal raphe was processed for SERT gene expression. The striatum was processed for synaptosomal DAT and SERT protein expression and ex vivo DA uptake. Nigrostriatal DA loss severely reduced DAT mRNA and protein expression in the striatum with minimal changes in SERT. L-DOPA treatment, while not significantly affecting DAT or SERT alone, did increase striatal SERT:DAT protein ratios. Using ex vivo microdialysis, L-DOPA treatment increased DA uptake via SERT when DAT was depleted. Overall, these results suggest that DA loss and L-DOPA treatment uniquely alter DAT and SERT, revealing implications for monoamine transporters as potential biomarkers and therapeutic targets in the hemi-parkinsonian model and dyskinetic PD patients.
Collapse
Affiliation(s)
- Melissa M Conti Mazza
- Behavioral Neuroscience Program, Department of Psychology, Binghamton University, 4400 Vestal Parkway East, Binghamton, NY 13902-6000, USA
| | - Ashley Centner
- Behavioral Neuroscience Program, Department of Psychology, Binghamton University, 4400 Vestal Parkway East, Binghamton, NY 13902-6000, USA
| | - David F Werner
- Behavioral Neuroscience Program, Department of Psychology, Binghamton University, 4400 Vestal Parkway East, Binghamton, NY 13902-6000, USA
| | - Christopher Bishop
- Behavioral Neuroscience Program, Department of Psychology, Binghamton University, 4400 Vestal Parkway East, Binghamton, NY 13902-6000, USA.
| |
Collapse
|
30
|
Caridade-Silva R, Araújo B, Martins-Macedo J, Teixeira FG. N-Acetylcysteine Treatment May Compensate Motor Impairments through Dopaminergic Transmission Modulation in a Striatal 6-Hydroxydopamine Parkinson's Disease Rat Model. Antioxidants (Basel) 2023; 12:1257. [PMID: 37371987 DOI: 10.3390/antiox12061257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 05/29/2023] [Accepted: 06/07/2023] [Indexed: 06/29/2023] Open
Abstract
Preventing degeneration and the loss of dopaminergic neurons (DAn) in the brain while mitigating motor symptoms remains a challenge in Parkinson's Disease (PD) treatment development. In light of this, developing or repositioning potential disease-modifying approaches is imperative to achieve meaningful translational gains in PD research. Under this concept, N-acetylcysteine (NAC) has revealed promising perspectives in preserving the dopaminergic system capability and modulating PD mechanisms. Although NAC has been shown to act as an antioxidant and (neuro)protector of the brain, it has yet to be acknowledged how this repurposed drug can improve motor symptomatology and provide disease-modifying properties in PD. Therefore, in the present work, we assessed the impact of NAC on motor and histological deficits in a striatal 6-hydroxydopamine (6-OHDA) rat model of PD. The results revealed that NAC enhanced DAn viability, as we found that it could restore dopamine transporter (DAT) levels compared to the untreated 6-OHDA group. Such findings were positively correlated with a significant amelioration in the motor outcomes of the 6-OHDA-treated animals, demonstrating that NAC may, somehow, be a modulator of PD degenerative mechanisms. Overall, we postulated a proof-of-concept milestone concerning the therapeutic application of NAC. Nevertheless, it is extremely important to understand the complexity of this drug and how its therapeutical properties interact with the cellular and molecular PD mechanisms.
Collapse
Affiliation(s)
- Rita Caridade-Silva
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, 4710-057/4805-017 Braga/Guimarães, Portugal
- I3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
- Center for Translational Health and Medical Biotechnology Research, School of Health, Polytechnic University of Porto, 4200-465 Porto, Portugal
| | - Bruna Araújo
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, 4710-057/4805-017 Braga/Guimarães, Portugal
- I3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
- Center for Translational Health and Medical Biotechnology Research, School of Health, Polytechnic University of Porto, 4200-465 Porto, Portugal
| | - Joana Martins-Macedo
- I3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
- Center for Translational Health and Medical Biotechnology Research, School of Health, Polytechnic University of Porto, 4200-465 Porto, Portugal
| | - Fábio G Teixeira
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, 4710-057/4805-017 Braga/Guimarães, Portugal
- I3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
- Center for Translational Health and Medical Biotechnology Research, School of Health, Polytechnic University of Porto, 4200-465 Porto, Portugal
| |
Collapse
|
31
|
Trinh I, Muralidhar A, Yang J, Phielipp N. Quantified Striatal Dopaminergic Denervation as Predictor for Motor Outcomes in Parkinson's Disease. Mov Disord Clin Pract 2023; 10:896-902. [PMID: 37332639 PMCID: PMC10272916 DOI: 10.1002/mdc3.13726] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 02/15/2023] [Accepted: 03/05/2023] [Indexed: 06/20/2023] Open
Abstract
Background A hallmark of Parkinson's disease (PD) is progressive loss of dopamine terminals in the basal ganglia, with clinical symptoms including motor and non-motor manifestations such as bradykinesia, rigidity, and cognitive impairment. Dopamine transporter single-photon emission computed tomography (DaT-SPECT) can be used to assess dopaminergic denervation by detecting loss of striatal dopamine transporters (DaT). Objective We examined DaT binding scores' (DaTbs) association with motor outcomes in PD and explored its usefulness as a predictor of disease progression. Faster dopaminergic denervation in the basal ganglia was hypothesized to have stronger correlation and predictive value for poor motor outcomes. Methods Data was analyzed from the Parkinson's Progression Markers Initiative. DaTbs in the putamen and caudate nucleus were correlated with Movement Disorders Society Unified Parkinson's Disease Rating Scale (MDS-UPDRS) scores for walking and balance difficulties, gait difficulties, and presence of dyskinesias. A predictive model using baseline speed of drop in DaT binding score was performed for each motor outcome. Results All motor outcomes had mild, significantly negative correlation with DaTbs in the putamen and caudate nucleus, with similar degree of correlation per region. Speed of drop was predictive of only substantial gait difficulties when evaluated in the putamen but not the caudate. Conclusions These findings suggest that analyzing speed of drop in DaTbs, which occurs early in the motor phase of the disease, may be helpful for predicting clinical outcomes in PD. Longer observation of this cohort may provide further data to investigate DaTbs as a prognostic marker in PD.
Collapse
Affiliation(s)
- Ilene Trinh
- Department of NeurologySchool of Medicine, University of California IrvineIrvineCaliforniaUSA
| | - Angeni Muralidhar
- Department of NeurologySchool of Medicine, University of California IrvineIrvineCaliforniaUSA
| | - Justin Yang
- Department of NeurologySchool of Medicine, University of California IrvineIrvineCaliforniaUSA
| | - Nicolás Phielipp
- Department of NeurologySchool of Medicine, University of California IrvineIrvineCaliforniaUSA
| |
Collapse
|
32
|
Ouchi S, Ishii K, Kosaki K, Suzuki H, Yamada M, Takenouchi T, Tamaoka A. Parkinsonism in spinocerebellar ataxia with axonal neuropathy caused by adult-onset COA7 variants: a case report. BMC Neurol 2023; 23:211. [PMID: 37264311 DOI: 10.1186/s12883-023-03202-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 04/05/2023] [Indexed: 06/03/2023] Open
Abstract
BACKGROUND Individuals with variants of cytochrome c oxidase assembly factor 7 (COA7), a mitochondrial functional-related gene, exhibit symptoms of spinocerebellar ataxia with axonal neuropathy before the age of 20. However, COA7 variants with parkinsonism or adult-onset type cases have not been described. CASE PRESENTATION We report the case of a patient who developed cerebellar symptoms and slowly progressive sensory and motor neuropathy in the extremities, similar to Charcot-Marie-Tooth disease, at age 30, followed by parkinsonism at age 58. Exome analysis revealed COA7 missense mutation in homozygotes (NM_023077.2:c.17A > G, NP_075565.2: p.Asp6Gly). Dopamine transporter single-photon emission computed tomography using a 123I-Ioflupane revealed clear hypo-accumulation in the bilateral striatum. However, 123I-metaiodobenzylguanidine myocardial scintigraphy showed normal sympathetic nerve function. Levodopa administration improved parkinsonism in this patient. CONCLUSIONS COA7 gene variants may have caused parkinsonism in this case because mitochondrial function-related genes, such as parkin and PINK1, are known causative genes in some familial Parkinson's diseases.
Collapse
Affiliation(s)
- Shogo Ouchi
- Department of Neurology, Division of Clinical Medicine, Faculty of Medicine, University of Tsukuba, Ten'nudai 1-1-1, Tsukuba, Ibaraki, 305-8575, Japan
| | - Kazuhiro Ishii
- Department of Neurology, Division of Clinical Medicine, Faculty of Medicine, University of Tsukuba, Ten'nudai 1-1-1, Tsukuba, Ibaraki, 305-8575, Japan.
| | - Kenjiro Kosaki
- Center for Medical Genetics, Keio University, 35 Shinanomachi Shinju-Ku, Tokyo, 160-8582, Japan
| | - Hisato Suzuki
- Center for Medical Genetics, Keio University, 35 Shinanomachi Shinju-Ku, Tokyo, 160-8582, Japan
| | - Mamiko Yamada
- Center for Medical Genetics, Keio University, 35 Shinanomachi Shinju-Ku, Tokyo, 160-8582, Japan
| | - Toshiki Takenouchi
- Center for Medical Genetics, Keio University, 35 Shinanomachi Shinju-Ku, Tokyo, 160-8582, Japan
| | - Akira Tamaoka
- Department of Neurology, Division of Clinical Medicine, Faculty of Medicine, University of Tsukuba, Ten'nudai 1-1-1, Tsukuba, Ibaraki, 305-8575, Japan
| |
Collapse
|
33
|
Zhang M, Wang Y, Wang J, Li X, Li B. Safety, biodistribution and radiation dosimetry of [ 123I]ioflupane in healthy Chinese volunteers. EJNMMI Res 2023; 13:30. [PMID: 37029298 PMCID: PMC10082142 DOI: 10.1186/s13550-023-00978-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 03/29/2023] [Indexed: 04/09/2023] Open
Abstract
BACKGROUND [123I]ioflupane is a radiopharmaceutical used to visualise the dopaminergic neuron terminals in the striata, to aid in the differential diagnosis among Parkinsonian syndromes (e.g., Parkinson's disease). However, nearly all of the subjects in the initial development studies of [123I]ioflupane were Caucasian. METHODS 8 Chinese healthy volunteers (HVs) received a single 111 MBq ± 10% dose of [123I]ioflupane and had simultaneous whole-body (head to mid-thigh) anterior and posterior planar scintigraphy scans at 10 min and 1, 2, 4, 5, 24, and 48 h. To estimate biodistribution, dosimetry was evaluated for the Cristy-Eckerman female and hermaphrodite male phantoms. Single-photon emission computed tomography (SPECT) images of the brain were acquired at 3 and 6 h after injection. Blood samples and all voided urine were collected for 48 h for pharmacokinetic analysis. The results were then compared with those of a similar European study. RESULTS There were strong similarities in uptake and biodistribution between the Chinese and European studies. Excretion was primarily renal, and the values were similar for the first 5 h but diverged after that, possibly because of differences in subjects' height and weight. Tracer uptake in regions of interest in the brain was stable over the imaging window of 3 to 6 h. The difference in mean effective dose for Chinese HVs vs European HVs (0.028 ± 0.00448 vs 0.023 ± 0.00152 mSv/MBq) was not clinically significant. The [123I]ioflupane was well tolerated. CONCLUSION This study demonstrated that a single 111 MBq ± 10% dose of [123I]ioflupane injection was safe and well tolerated, and the SPECT imaging window of 3 to 6 h after injection of [123I]ioflupane was appropriate in Chinese subjects. Trial registration number ClinicalTrials.gov: NCT04564092.
Collapse
Affiliation(s)
- Min Zhang
- Department of Nuclear Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, China
| | - Yue Wang
- Department of Nuclear Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, China
| | - Jin Wang
- Department of Nuclear Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, China
| | - Xiang Li
- Department of Nuclear Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, China
| | - Biao Li
- Department of Nuclear Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, China.
| |
Collapse
|
34
|
Correlations between cerebrospinal fluid homovanillic acid and dopamine transporter SPECT in degenerative parkinsonian syndromes. J Neural Transm (Vienna) 2023; 130:513-520. [PMID: 36871130 PMCID: PMC10050014 DOI: 10.1007/s00702-023-02611-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 02/21/2023] [Indexed: 03/06/2023]
Abstract
Both cerebrospinal fluid (CSF) homovanillic acid (HVA) and striatal dopamine transporter (DAT) binding on single-photon emission computed tomography (SPECT) reflect nigrostriatal dopaminergic function, but studies on the relationship between the two have been limited. It is also unknown whether the reported variance in striatal DAT binding among diseases reflects the pathophysiology or characteristics of the subjects. We included 70 patients with Parkinson's disease (PD), 12 with progressive supranuclear palsy (PSP), 12 with multiple system atrophy, six with corticobasal syndrome, and nine with Alzheimer's disease as disease control, who underwent both CSF analysis and 123I-N-ω-fluoropropyl-2β-carbomethoxy-3β-(4-iodophenyl)nortropane (123I-ioflupane) SPECT. We evaluated the correlation between CSF HVA concentration and the specific binding ratio (SBR) of striatal DAT binding. We also compared the SBR for each diagnosis, controlling for CSF HVA concentration. The correlations between the two were significant in patients with PD (r = 0.34, p = 0.004) and PSP (r = 0.77, p = 0.004). The mean SBR value was the lowest in patients with PSP and was significantly lower in patients with PSP than in those with PD (p = 0.037) after adjusting for CSF HVA concentration. Our study demonstrates that striatal DAT binding correlates with CSF HVA concentration in both PD and PSP, and striatal DAT reduction would be more advanced in PSP than in PD at an equivalent dopamine level. Striatal DAT binding may correlate with dopamine levels in the brain. The pathophysiology of each diagnosis may explain this difference.
Collapse
|
35
|
Rodriguez W, Fedorova M, Chand P. Levodopa-Responsive Parkinsonian Syndrome Secondary to a Compressive Craniopharyngioma: A Case Report. Cureus 2023; 15:e35621. [PMID: 37007394 PMCID: PMC10065367 DOI: 10.7759/cureus.35621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/27/2023] [Indexed: 03/05/2023] Open
Abstract
Parkinsonism is a rare manifestation of brain tumors that has most commonly been reported in association with gliomas and meningiomas. In this paper, we describe a unique case of secondary Parkinsonism that was precipitated by a craniopharyngioma. A 42-year-old female presented with resting tremors, rigidity, and bradykinesia. Her past medical history was significant for a craniopharyngioma resection four months prior. The postoperative course was complicated by severe delirium, panhypopituitarism, and diabetes insipidus. Notably, she was taking haloperidol and aripiprazole daily for four months to manage her delirium and psychotic episodes. Her preoperative brain MRI showed a compressive effect of the craniopharyngioma on the midbrain and nigrostriatum. Drug-induced Parkinsonism was initially suspected given extended treatment with antipsychotics. Haloperidol and aripiprazole were stopped, and benztropine was started with no improvement. Consequently, the patient was treated with carbidopa/levodopa with symptomatic improvement. A dopamine transporter (DaT) scan was done after starting carbidopa/levodopa and showed asymmetric decreased uptake in dopamine transporter in the striatum. Only one other case of Parkinsonism following craniopharyngioma resection was found in the literature review. Unlike our example, the symptoms resolved following surgical intervention and did not require a long-term treatment with carbidopa/levodopa. The purpose of our case report is to highlight brain tumors as a potential cause of secondary Parkinsonism in younger patients for an early surgical intervention can be curative.
Collapse
|
36
|
The Role of the Dopamine System in Post-Stroke Mood Disorders in Newborn Rats. Int J Mol Sci 2023; 24:ijms24043229. [PMID: 36834637 PMCID: PMC9958627 DOI: 10.3390/ijms24043229] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/01/2023] [Accepted: 02/06/2023] [Indexed: 02/10/2023] Open
Abstract
Post-stroke mood disorders (PSMD) affect disease prognosis in adults. Adult rodent models underlie the importance of the dopamine (DA) system in PSMD pathophysiology. There are no studies on PSMD after neonatal stroke. We induced neonatal stroke in 7-day-old (P7) rats by temporal left middle cerebral artery occlusion (MCAO). Performance in the tail suspension test (TST) at P14 and the forced swimming test (FST) and open field test (OFT) at P37 were studied to assess PSMD. DA neuron density in the ventral tegmental area, brain DA concentration and DA transporter (DAT) expression as well as D2 receptor (D2R) expression and G-protein functional coupling were also studied. MCAO animals revealed depressive-like symptoms at P14 associated with decreased DA concentration and reduced DA neuron population and DAT expression. At P37, MCAO rats showed hyperactive behavior associated with increased DA concentration, normalization of DA neuron density and decreased DAT expression. MCAO did not modify D2R expression but reduced D2R functionality at P37. MCAO-induced depressive-like symptoms were reversed by the DA reuptake inhibitor GBR-12909. In conclusion, MCAO in newborn rats induced depressive-like symptoms and hyperactive behavior in the medium and long term, respectively, that were associated with alterations in the DA system.
Collapse
|
37
|
Searching for Biomarkers in the Blood of Patients at Risk of Developing Parkinson's Disease at the Prodromal Stage. Int J Mol Sci 2023; 24:ijms24031842. [PMID: 36768161 PMCID: PMC9915927 DOI: 10.3390/ijms24031842] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 01/02/2023] [Accepted: 01/09/2023] [Indexed: 01/19/2023] Open
Abstract
Parkinson's disease (PD) is diagnosed many years after its onset, under a significant degradation of the nigrostriatal dopaminergic system, responsible for the regulation of motor function. This explains the low effectiveness of the treatment of patients. Therefore, one of the highest priorities in neurology is the development of the early (preclinical) diagnosis of PD. The aim of this study was to search for changes in the blood of patients at risk of developing PD, which are considered potential diagnostic biomarkers. Out of 1835 patients, 26 patients were included in the risk group and 20 patients in the control group. The primary criteria for inclusion in a risk group were the impairment of sleep behavior disorder and sense of smell, and the secondary criteria were neurological and mental disorders. In patients at risk and in controls, the composition of plasma and the expression of genes of interest in lymphocytes were assessed by 27 indicators. The main changes that we found in plasma include a decrease in the concentrations of l-3,4-dihydroxyphenylalanine (L-DOPA) and urates, as well as the expressions of some types of microRNA, and an increase in the total oxidative status. In turn, in the lymphocytes of patients at risk, an increase in the expression of the DA D3 receptor gene and the lymphocyte activation gene 3 (LAG3), as well as a decrease in the expression of the Protein deglycase DJ-1 gene (PARK7), were observed. The blood changes we found in patients at risk are considered candidates for diagnostic biomarkers at the prodromal stage of PD.
Collapse
|
38
|
Volnova A, Kurzina N, Belskaya A, Gromova A, Pelevin A, Ptukha M, Fesenko Z, Ignashchenkova A, Gainetdinov RR. Noradrenergic Modulation of Learned and Innate Behaviors in Dopamine Transporter Knockout Rats by Guanfacine. Biomedicines 2023; 11:222. [PMID: 36672730 PMCID: PMC9856099 DOI: 10.3390/biomedicines11010222] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/11/2023] [Accepted: 01/13/2023] [Indexed: 01/18/2023] Open
Abstract
Investigation of the precise mechanisms of attention deficit and hyperactivity disorder (ADHD) and other dopamine-associated conditions is crucial for the development of new treatment approaches. In this study, we assessed the effects of repeated and acute administration of α2A-adrenoceptor agonist guanfacine on innate and learned forms of behavior of dopamine transporter knockout (DAT-KO) rats to evaluate the possible noradrenergic modulation of behavioral deficits. DAT-KO and wild type rats were trained in the Hebb-Williams maze to perform spatial working memory tasks. Innate behavior was evaluated via pre pulse inhibition (PPI). Brain activity of the prefrontal cortex and the striatum was assessed. Repeated administration of GF improved the spatial working memory task fulfillment and PPI in DAT-KO rats, and led to specific changes in the power spectra and coherence of brain activity. Our data indicate that both repeated and acute treatment with a non-stimulant noradrenergic drug lead to improvements in the behavior of DAT-KO rats. This study further supports the role of the intricate balance of norepinephrine and dopamine in the regulation of attention. The observed compensatory effect of guanfacine on the behavior of hyperdopaminergic rats may be used in the development of combined treatments to support the dopamine-norepinephrine balance.
Collapse
Affiliation(s)
- Anna Volnova
- Institute of Translational Biomedicine, Saint Petersburg State University, Saint Petersburg 199034, Russia
- Biological Faculty, Saint Petersburg State University, Saint Petersburg 199034, Russia
| | - Natalia Kurzina
- Institute of Translational Biomedicine, Saint Petersburg State University, Saint Petersburg 199034, Russia
| | - Anastasia Belskaya
- Institute of Translational Biomedicine, Saint Petersburg State University, Saint Petersburg 199034, Russia
| | - Arina Gromova
- Biological Faculty, Saint Petersburg State University, Saint Petersburg 199034, Russia
| | - Arseniy Pelevin
- Institute of Translational Biomedicine, Saint Petersburg State University, Saint Petersburg 199034, Russia
- Biological Faculty, Saint Petersburg State University, Saint Petersburg 199034, Russia
| | - Maria Ptukha
- Institute of Translational Biomedicine, Saint Petersburg State University, Saint Petersburg 199034, Russia
| | - Zoia Fesenko
- Institute of Translational Biomedicine, Saint Petersburg State University, Saint Petersburg 199034, Russia
| | | | - Raul R. Gainetdinov
- Institute of Translational Biomedicine, Saint Petersburg State University, Saint Petersburg 199034, Russia
- Saint Petersburg University Hospital, Saint Petersburg 199034, Russia
| |
Collapse
|
39
|
Hoenig MC, Dzialas V, Drzezga A, van Eimeren T. The Concept of Motor Reserve in Parkinson's Disease: New Wine in Old Bottles? Mov Disord 2023; 38:16-20. [PMID: 36345092 DOI: 10.1002/mds.29266] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 09/14/2022] [Accepted: 10/03/2022] [Indexed: 11/11/2022] Open
Affiliation(s)
- Merle C Hoenig
- Institute for Neuroscience and Medicine II, Molecular Organization of the Brain, Research Center Juelich, Julich, Germany.,Department of Nuclear Medicine, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Verena Dzialas
- Department of Nuclear Medicine, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany.,Faculty of Mathematics and Natural Sciences, University of Cologne, Cologne, Germany
| | - Alexander Drzezga
- Institute for Neuroscience and Medicine II, Molecular Organization of the Brain, Research Center Juelich, Julich, Germany.,Department of Nuclear Medicine, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany.,German Center for Neurodegenerative Diseases (DZNE), Bonn/Cologne, Germany
| | - Thilo van Eimeren
- Department of Nuclear Medicine, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany.,Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| |
Collapse
|
40
|
D’Elia A, Schiavi S, Manduca A, Rava A, Buzzelli V, Ascone F, Orsini T, Putti S, Soluri A, Galli F, Soluri A, Mattei M, Cicconi R, Massari R, Trezza V. FMR1 deletion in rats induces hyperactivity with no changes in striatal dopamine transporter availability. Sci Rep 2022; 12:22535. [PMID: 36581671 PMCID: PMC9800572 DOI: 10.1038/s41598-022-26986-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 12/22/2022] [Indexed: 12/30/2022] Open
Abstract
Autism Spectrum Disorder (ASD) is a pervasive neurodevelopmental disorder emerging in early life characterized by impairments in social interaction, poor verbal and non-verbal communication, and repetitive patterns of behaviors. Among the best-known genetic risk factors for ASD, there are mutations causing the loss of the Fragile X Messenger Ribonucleoprotein 1 (FMRP) leading to Fragile X syndrome (FXS), a common form of inherited intellectual disability and the leading monogenic cause of ASD. Being a pivotal regulator of motor activity, motivation, attention, and reward processing, dopaminergic neurotransmission has a key role in several neuropsychiatric disorders, including ASD. Fmr1 Δexon 8 rats have been validated as a genetic model of ASD based on FMR1 deletion, and they are also a rat model of FXS. Here, we performed behavioral, biochemical and in vivo SPECT neuroimaging experiments to investigate whether Fmr1 Δexon 8 rats display ASD-like repetitive behaviors associated with changes in striatal dopamine transporter (DAT) availability assessed through in vivo SPECT neuroimaging. At the behavioral level, Fmr1 Δexon 8 rats displayed hyperactivity in the open field test in the absence of repetitive behaviors in the hole board test. However, these behavioral alterations were not associated with changes in striatal DAT availability as assessed by non-invasive in vivo SPECT and Western blot analyses.
Collapse
Affiliation(s)
- Annunziata D’Elia
- grid.5326.20000 0001 1940 4177Institute of Biochemistry and Cell Biology (IBBC), National Research Council of Italy (CNR), c/o International Campus “A. Buzzati-Traverso”, Via E. Ramarini, 32, 00015 Monterotondo Scalo (Rome), Italy ,grid.8509.40000000121622106Department of Science, Section of Biomedical Sciences and Technologies, Roma Tre University, Viale G. Marconi 446, 00146 Rome, Italy
| | - Sara Schiavi
- grid.8509.40000000121622106Department of Science, Section of Biomedical Sciences and Technologies, Roma Tre University, Viale G. Marconi 446, 00146 Rome, Italy
| | - Antonia Manduca
- grid.8509.40000000121622106Department of Science, Section of Biomedical Sciences and Technologies, Roma Tre University, Viale G. Marconi 446, 00146 Rome, Italy ,grid.417778.a0000 0001 0692 3437Neuroendocrinology, Metabolism and Neuropharmacology Unit, IRCSS Fondazione Santa Lucia, Rome, Italy
| | - Alessandro Rava
- grid.8509.40000000121622106Department of Science, Section of Biomedical Sciences and Technologies, Roma Tre University, Viale G. Marconi 446, 00146 Rome, Italy
| | - Valeria Buzzelli
- grid.8509.40000000121622106Department of Science, Section of Biomedical Sciences and Technologies, Roma Tre University, Viale G. Marconi 446, 00146 Rome, Italy
| | - Fabrizio Ascone
- grid.8509.40000000121622106Department of Science, Section of Biomedical Sciences and Technologies, Roma Tre University, Viale G. Marconi 446, 00146 Rome, Italy
| | - Tiziana Orsini
- grid.5326.20000 0001 1940 4177Institute of Biochemistry and Cell Biology (IBBC), National Research Council of Italy (CNR), c/o International Campus “A. Buzzati-Traverso”, Via E. Ramarini, 32, 00015 Monterotondo Scalo (Rome), Italy
| | - Sabrina Putti
- grid.5326.20000 0001 1940 4177Institute of Biochemistry and Cell Biology (IBBC), National Research Council of Italy (CNR), c/o International Campus “A. Buzzati-Traverso”, Via E. Ramarini, 32, 00015 Monterotondo Scalo (Rome), Italy
| | - Andrea Soluri
- grid.5326.20000 0001 1940 4177Institute of Biochemistry and Cell Biology (IBBC), National Research Council of Italy (CNR), c/o International Campus “A. Buzzati-Traverso”, Via E. Ramarini, 32, 00015 Monterotondo Scalo (Rome), Italy ,grid.9657.d0000 0004 1757 5329Unit of Molecular Neurosciences, University Campus Bio-Medico, Rome, Rome, Italy
| | - Filippo Galli
- grid.7841.aNuclear Medicine Unit, Department of Medical-Surgical Sciences and of Translational Medicine, Faculty of Medicine and Psychology, “Sapienza” University of Rome, Rome, Italy
| | - Alessandro Soluri
- grid.5326.20000 0001 1940 4177Institute of Biochemistry and Cell Biology (IBBC), National Research Council of Italy (CNR), c/o International Campus “A. Buzzati-Traverso”, Via E. Ramarini, 32, 00015 Monterotondo Scalo (Rome), Italy
| | - Maurizio Mattei
- grid.6530.00000 0001 2300 0941Department of Biology and Centro di Servizi Interdipartimentale-Stazione per la Tecnologia Animale, “Tor Vergata” University, Rome, Italy
| | - Rosella Cicconi
- grid.6530.00000 0001 2300 0941Department of Biology and Centro di Servizi Interdipartimentale-Stazione per la Tecnologia Animale, “Tor Vergata” University, Rome, Italy
| | - Roberto Massari
- grid.5326.20000 0001 1940 4177Institute of Biochemistry and Cell Biology (IBBC), National Research Council of Italy (CNR), c/o International Campus “A. Buzzati-Traverso”, Via E. Ramarini, 32, 00015 Monterotondo Scalo (Rome), Italy
| | - Viviana Trezza
- grid.8509.40000000121622106Department of Science, Section of Biomedical Sciences and Technologies, Roma Tre University, Viale G. Marconi 446, 00146 Rome, Italy
| |
Collapse
|
41
|
Mangosteen Pericarp Extract Supplementation Boosts Antioxidant Status via Rebuilding Gut Microbiota to Attenuate Motor Deficit in 6-OHDA-Induced Parkinson's Disease. Antioxidants (Basel) 2022; 11:antiox11122396. [PMID: 36552604 PMCID: PMC9774421 DOI: 10.3390/antiox11122396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/25/2022] [Accepted: 11/29/2022] [Indexed: 12/11/2022] Open
Abstract
Oxidative stress and gut dysbiosis have been known to precede Parkinson's disease (PD). An antioxidant-rich product, mangosteen pericarp (MP), has the ability to counterbalance excessive free radicals and the imbalanced gut microbiota composition, suggesting the MP's capacity to delay PD progression. In this study, we explored the effects of two doses of MP extract in a unilateral 6-hydroxydopamine (6-OHDA)-induced PD rat model. We revealed that the 8-week supplementation of a low dose (LMP) and a high dose of the MP extract (HMP) improved motor function, as observed in decreased contralateral rotation, improved time spent on rod, and higher dopamine binding transporter (DAT) in the substantia nigra pars compacta (SNc). The MP extract, especially the HMP, also increased antioxidant-related gene expressions, restored muscle mitochondrial function, and remodeled fecal microbiota composition, which were followed by reduced reactive oxygen species levels in brain and inflammation in plasma. Importantly, bacterial genera Sutterella, Rothia, and Aggregatibacter, which were negatively correlated with antioxidant gene expressions, decreased in the HMP group. It is imperative to note that in addition to directly acting as an antioxidant to reduce excessive free radicals, MP extract might also increase antioxidant state by rebuilding gut microbiota, thereby enhanced anti-inflammatory capacity and restored mitochondrial function to attenuate motor deficit in 6-OHDA-induced PD-like condition. All in all, MP extract is a potential candidate for auxiliary therapy for PD.
Collapse
|
42
|
Zhang C, Chen S, Li X, Xu Q, Lin Y, Lin F, Yuan M, Zi Y, Cai J. Progress in Parkinson's disease animal models of genetic defects: Characteristics and application. Biomed Pharmacother 2022; 155:113768. [DOI: 10.1016/j.biopha.2022.113768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 09/15/2022] [Accepted: 09/26/2022] [Indexed: 11/25/2022] Open
|
43
|
Kobayashi R, Kawakatsu S, Morioka D, Suzuki A. Diversity of dopamine transporter images in frontotemporal lobar degeneration-motor neuron disease. Psychogeriatrics 2022; 22:771. [PMID: 35665572 DOI: 10.1111/psyg.12860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 05/19/2022] [Indexed: 11/30/2022]
Affiliation(s)
- Ryota Kobayashi
- Department of Psychiatry, Yamagata University School of Medicine, Yamagata, Japan
| | - Shinobu Kawakatsu
- Department of Neuropsychiatry, Aizu Medical Center, Fukushima Medical University, Aizuwakamatsu, Japan
| | - Daichi Morioka
- Department of Psychiatry, Yamagata University School of Medicine, Yamagata, Japan
| | - Akihito Suzuki
- Department of Psychiatry, Yamagata University School of Medicine, Yamagata, Japan
| |
Collapse
|
44
|
Macklin EA, Coffey CS, Brumm MC, Seibyl JP. Statistical Considerations in the Design of Clinical Trials Targeting Prodromal Parkinson Disease. Neurology 2022; 99:68-75. [PMID: 35970588 DOI: 10.1212/wnl.0000000000200897] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 05/13/2022] [Indexed: 11/15/2022] Open
Abstract
Clinical trials testing interventions for prodromal Parkinson disease (PD) hold particular promise for preserving neuronal function and thereby slowing or even forestalling progression to overt PD. Selection of the appropriate target population and outcome measures presents challenges unique to prodromal PD. We propose 3 clinical trial designs, spanning phase 2a, phase 2b, and phase 3 development, that might serve as templates for prodromal PD trials. The proposed phase 2a trial is of a 3-arm design of short duration and focuses on proof of concept with respect to target engagement and change in a motor outcome in a subset of prodromal participants who already manifest asymptomatic but measurable motor dysfunction as an exploratory aim. The proposed phase 2b trial suggests progression of dopamine transporter imaging specific binding ratio as a primary outcome evaluated annually over 2 years with phenoconversion to PD as a key secondary outcome. The proposed phase 3 trial is a large, simple design of a nutraceutical or behavioral intervention with remote administration and phenoconversion as the primary outcome. We then consider what additional data are needed in the short term to better design prodromal PD trials and examine what longer-term goals would accelerate discovery of safe and effective therapies for individuals at risk of PD. Clear and potentially context-specific definitions of phenoconversion and validation of intermediate endpoints are needed in the short term. The use of adaptive trial designs, master protocols, and research registries would help accelerate therapy development in the long term.
Collapse
Affiliation(s)
- Eric A Macklin
- From the Biostatistics Center (E.A.M.), Massachusetts General Hospital and Harvard Medical School, Boston; Department of Biostatistics (C.S.C., M.C.B.), College of Public Health, University of Iowa, Iowa City; and Institute for Neurodegenerative Disorders (J.P.S.), New Haven, CT.
| | - Christopher S Coffey
- From the Biostatistics Center (E.A.M.), Massachusetts General Hospital and Harvard Medical School, Boston; Department of Biostatistics (C.S.C., M.C.B.), College of Public Health, University of Iowa, Iowa City; and Institute for Neurodegenerative Disorders (J.P.S.), New Haven, CT
| | - Michael C Brumm
- From the Biostatistics Center (E.A.M.), Massachusetts General Hospital and Harvard Medical School, Boston; Department of Biostatistics (C.S.C., M.C.B.), College of Public Health, University of Iowa, Iowa City; and Institute for Neurodegenerative Disorders (J.P.S.), New Haven, CT
| | - John Peter Seibyl
- From the Biostatistics Center (E.A.M.), Massachusetts General Hospital and Harvard Medical School, Boston; Department of Biostatistics (C.S.C., M.C.B.), College of Public Health, University of Iowa, Iowa City; and Institute for Neurodegenerative Disorders (J.P.S.), New Haven, CT
| |
Collapse
|
45
|
Kanani M, Gurunathan N. Misdiagnosis of dementia with Lewy bodies due to venlafaxine. PROGRESS IN NEUROLOGY AND PSYCHIATRY 2022. [DOI: 10.1002/pnp.742] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
| | - Nhishanth Gurunathan
- Dr Gurunathan is a Consultant in Old Age Psychiatry at Tees, Esk and Wear Valleys NHS Foundation Trust
| |
Collapse
|
46
|
Otani RTV, Yamamoto JYS, Nunes DM, Haddad MS, Parmera JB. Magnetic resonance and dopamine transporter imaging for the diagnosis of Parkinson´s disease: a narrative review. ARQUIVOS DE NEURO-PSIQUIATRIA 2022; 80:116-125. [PMID: 35976320 PMCID: PMC9491424 DOI: 10.1590/0004-282x-anp-2022-s130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 04/29/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND the diagnosis of Parkinson's disease (PD) can be challenging, especially in the early stages, albeit its updated and validated clinical criteria. Recent developments on neuroimaging in PD, altogether with its consolidated role of excluding secondary and other neurodegenerative causes of parkinsonism, provide more confidence in the diagnosis across the different stages of the disease. This review highlights current knowledge and major recent advances in magnetic resonance and dopamine transporter imaging in aiding PD diagnosis. OBJECTIVE This study aims to review current knowledge about the role of magnetic resonance imaging and neuroimaging of the dopamine transporter in diagnosing Parkinson's disease. METHODS We performed a non-systematic literature review through the PubMed database, using the keywords "Parkinson", "magnetic resonance imaging", "diffusion tensor", "diffusion-weighted", "neuromelanin", "nigrosome-1", "single-photon emission computed tomography", "dopamine transporter imaging". The search was restricted to articles written in English, published between January 2010 and February 2022. RESULTS The diagnosis of Parkinson's disease remains a clinical diagnosis. However, new neuroimaging biomarkers hold promise for increased diagnostic accuracy, especially in earlier stages of the disease. CONCLUSION Future validation of new imaging biomarkers bring the expectation of an increased neuroimaging role in the diagnosis of PD in the following years.
Collapse
Affiliation(s)
- Rafael Tomio Vicentini Otani
- Universidade de São Paulo, Faculdade de Medicina, Hospital das Clínicas, Departamento de Neurologia, São Paulo SP, Brazil
| | - Joyce Yuri Silvestre Yamamoto
- Universidade de São Paulo, Faculdade de Medicina, Hospital das Clínicas, Departamento de Neurologia, São Paulo SP, Brazil
| | - Douglas Mendes Nunes
- Universidade de São Paulo, Faculdade de Medicina, Hospital das Clínicas, Departmento de Radiologia e Oncologia, Instituto de Radiologia, São Paulo SP, Brazil
| | - Mônica Santoro Haddad
- Universidade de São Paulo, Faculdade de Medicina, Hospital das Clínicas, Departamento de Neurologia, São Paulo SP, Brazil
| | - Jacy Bezerra Parmera
- Universidade de São Paulo, Faculdade de Medicina, Hospital das Clínicas, Departamento de Neurologia, São Paulo SP, Brazil
| |
Collapse
|
47
|
Wang C, Zhou C, Guo T, Huang P, Xu X, Zhang M. Association between cigarette smoking and Parkinson’s disease: a neuroimaging study. Ther Adv Neurol Disord 2022; 15:17562864221092566. [PMID: 35464739 PMCID: PMC9019319 DOI: 10.1177/17562864221092566] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 03/20/2022] [Indexed: 11/16/2022] Open
Abstract
Background: Mounting evidence has revealed an inverse association between cigarette smoking and the risk of Parkinson’s disease (PD). Meanwhile, cigarette smoking has been found to be associated with cognitive impairment in PD patients. However, the neural mechanisms of the association between cigarette smoking and PD are not fully understood. Objective: The aim of this study is to explore the neural mechanisms of the association between cigarette smoking and PD. Methods: A total of 129 PD patients and 69 controls were recruited from the Parkinson’s Progression Markers Initiative (PPMI) cohort, including 39 PD patients with regular smoking history (PD-S), 90 PD patients without regular smoking history (PD-NS), 26 healthy controls with regular smoking history (HC-S), and 43 healthy controls without regular smoking history (HC-NS). Striatal dopamine transporter (DAT) binding and gray matter (GM) volume of the whole brain were compared among the four groups. Results: PD patients showed significantly reduced striatal DAT binding compared with healthy controls, and HC-S showed significantly reduced striatal DAT binding compared with HC-NS. Moreover, smoking and PD showed a significant interaction effect in the left medial prefrontal cortex (mPFC). PD-S showed reduced GM volume in the left mPFC compared with PD-NS. Conclusion: The degeneration of dopaminergic neurons in PD results in a substantial reduction of the DAT and dopamine levels. Nicotine may act as a stimulant to inhibit the action of striatal DAT, increasing dopamine levels in the synaptic gap. The inverse alteration of dopamine levels between PD and nicotine addiction may be the reason for the inverse association between smoking and the risk of PD. In addition, the mPFC atrophy in PD-S may be associated with cognitive impairment.
Collapse
Affiliation(s)
- Chao Wang
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, No.88 Jiefang Road, Hangzhou 310009, China
| | - Cheng Zhou
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Tao Guo
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Peiyu Huang
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaojun Xu
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Minming Zhang
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
48
|
Droby A, Artzi M, Lerman H, Hutchison RM, Bashat DB, Omer N, Gurevich T, Orr-Urtreger A, Cohen B, Cedarbaum JM, Sapir EE, Giladi N, Mirelman A, Thaler A. Aberrant dopamine transporter and functional connectivity patterns in LRRK2 and GBA mutation carriers. NPJ Parkinsons Dis 2022; 8:20. [PMID: 35241697 PMCID: PMC8894349 DOI: 10.1038/s41531-022-00285-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 02/01/2022] [Indexed: 12/28/2022] Open
Abstract
Non-manifesting carriers (NMCs) of Parkinson’s disease (PD)-related mutations such as LRRK2 and GBA are at an increased risk for developing PD. Dopamine transporter (DaT)-spectral positron emission computed tomography is widely used for capturing functional nigrostriatal dopaminergic activity. However, it does not reflect other ongoing neuronal processes; especially in the prodromal stages of the disease. Resting-state fMRI (rs-fMRI) has been proposed as a mode for assessing functional alterations associated with PD, but its relation to dopaminergic deficiency remains unclear. We aimed to study the association between presynaptic striatal dopamine uptake and functional connectivity (FC) patterns among healthy first-degree relatives of PD patients with mutations in LRRK2 and GBA genes. N = 85 healthy first-degree subjects were enrolled and genotyped. All participants underwent DaT and rs-fMRI scans, as well as a comprehensive clinical assessment battery. Between-group differences in FC within striatal regions were investigated and compared with striatal binding ratios (SBR). N = 26 GBA-NMCs, N = 25 LRRK2-NMCs, and N = 34 age-matched nonmanifesting noncarriers (NM-NCs) were included in each study group based on genetic status. While genetically-defined groups were similar across clinical measures, LRRK2-NMCs demonstrated lower SBR in the right putamen compared with NM-NCs, and higher right putamen FC compared to GBA-NMCs. In this group, higher striatal FC was associated with increased risk for PD. The observed differential SBR and FC patterns among LRRK2-NMCs and GBA-NMCs indicate that DaTscan and FC assessments might offer a more sensitive prediction of the risk for PD in the pre-clinical stages of the disease.
Collapse
Affiliation(s)
- Amgad Droby
- Movement Disorders Unit, Neurological Institute, Tel Aviv Medical Center, Tel Aviv, Israel. .,Laboratory for Early Markers of Neurodegeneration, Neurological Institute, Tel Aviv Medical Center, Tel Aviv, Israel. .,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel. .,Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel.
| | - Moran Artzi
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel.,Sagol Brain Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Hedva Lerman
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,Department of Nuclear Medicine, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | | | - Dafna Ben Bashat
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel.,Sagol Brain Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Nurit Omer
- Movement Disorders Unit, Neurological Institute, Tel Aviv Medical Center, Tel Aviv, Israel.,Laboratory for Early Markers of Neurodegeneration, Neurological Institute, Tel Aviv Medical Center, Tel Aviv, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Tanya Gurevich
- Movement Disorders Unit, Neurological Institute, Tel Aviv Medical Center, Tel Aviv, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Avi Orr-Urtreger
- Movement Disorders Unit, Neurological Institute, Tel Aviv Medical Center, Tel Aviv, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Batsheva Cohen
- Movement Disorders Unit, Neurological Institute, Tel Aviv Medical Center, Tel Aviv, Israel.,Laboratory for Early Markers of Neurodegeneration, Neurological Institute, Tel Aviv Medical Center, Tel Aviv, Israel
| | | | - Einat Even Sapir
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,Department of Nuclear Medicine, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Nir Giladi
- Movement Disorders Unit, Neurological Institute, Tel Aviv Medical Center, Tel Aviv, Israel.,Laboratory for Early Markers of Neurodegeneration, Neurological Institute, Tel Aviv Medical Center, Tel Aviv, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Anat Mirelman
- Movement Disorders Unit, Neurological Institute, Tel Aviv Medical Center, Tel Aviv, Israel.,Laboratory for Early Markers of Neurodegeneration, Neurological Institute, Tel Aviv Medical Center, Tel Aviv, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Avner Thaler
- Movement Disorders Unit, Neurological Institute, Tel Aviv Medical Center, Tel Aviv, Israel.,Laboratory for Early Markers of Neurodegeneration, Neurological Institute, Tel Aviv Medical Center, Tel Aviv, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
49
|
Dong S, Sun M, He C, Cheng H. Brain-gut-microbiota axis in Parkinson's disease: a historical review and future perspective. Brain Res Bull 2022; 183:84-93. [PMID: 35245613 DOI: 10.1016/j.brainresbull.2022.02.015] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 02/15/2022] [Accepted: 02/22/2022] [Indexed: 01/03/2023]
Affiliation(s)
- Siyu Dong
- Department of Neurology, First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Mei Sun
- Department of Neurology, First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Chuan He
- Department of Rehabilitation Medicine, the Affiliated Jiangsu Shengze Hospital of Nanjing Medical University, Suzhou, 215228, China.
| | - Hong Cheng
- Department of Neurology, First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China.
| |
Collapse
|
50
|
Kobayashi R, Kawakatsu S, Ohba M, Morioka D, Kanoto M, Otani K. Dopamine Transporter Imaging for Frontotemporal Lobar Degeneration With Motor Neuron Disease. Front Neurosci 2022; 16:755211. [PMID: 35281498 PMCID: PMC8914109 DOI: 10.3389/fnins.2022.755211] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Accepted: 02/07/2022] [Indexed: 01/27/2023] Open
Abstract
Introduction Frontotemporal lobar degeneration (FTLD) is a clinical syndrome with pathological heterogeneity, including Pick's disease and trans-activating response region (TAR) DNA-binding protein with a molecular mass of 43 kDa (TDP-43) proteinopathy (FTLD-TDP). A previous study reported abnormal findings on dopamine transporter (DAT) imaging in 30% of patients with frontotemporal dementia (FTD) in FTLD. However, the previous study did not consider the pathological heterogeneity of FTD regarding the pathomechanism leading to abnormal DAT findings. Recently, abnormal DAT findings were reported in two patients with FTLD with motor neuron disease (MND), of which FTLD-TDP type B was the most common pathological presentation. This study investigated the DAT findings of patients with a final diagnosis of FTLD-MND to determine the frequency of occurrence of DAT abnormalities in FTLD-MND. Methods Twenty patients with FTLD who underwent DAT single photon emission computed tomography (DAT-SPECT) were screened, and six patients with a final diagnosis of FTLD-MND were ultimately included. The patients' DAT-SPECT findings were analyzed visually and quantitatively. Neuronal loss and astrogliosis in brain regions (substantia nigra, caudate, and putamen) that could possibly affect DAT findings were evaluated in the three pathologically confirmed cases. Result All six patients with FTLD-MND showed abnormal visual DAT-SPECT findings. In addition, in a quantitative assessment, the specific binding ratio in the striatum calculated by the Southampton method was below the lower limit of the 95% prediction interval of the healthy controls by age in all the present cases. Interestingly, three of the six patients showed abnormal findings on DAT-SPECT more than half a year before the onset of MND. Neuronal loss and astrogliosis in brain regions that may affect DAT findings were observed in three pathologically confirmed cases. Conclusion Dopamine transporter single photon emission computed tomography revealed abnormal findings in patients with FTLD-MND, which may manifest even before the onset of MND symptoms. We believe that the possibility of future development of MND should be considered if DAT-SPECT shows abnormal findings in FTLD.
Collapse
Affiliation(s)
- Ryota Kobayashi
- Department of Psychiatry, Yamagata University School of Medicine, Yamagata, Japan
| | - Shinobu Kawakatsu
- Department of Neuropsychiatry, Aizu Medical Center, Fukushima Medical University, Aizuwakamatsu, Japan
| | - Makoto Ohba
- Department of Radiology, Yamagata University Hospital, Yamagata, Japan
| | - Daichi Morioka
- Department of Psychiatry, Yamagata University School of Medicine, Yamagata, Japan
| | - Masafumi Kanoto
- Department of Diagnostic Radiology, Yamagata University School of Medicine, Yamagata, Japan
| | - Koichi Otani
- Department of Psychiatry, Yamagata University School of Medicine, Yamagata, Japan
| |
Collapse
|