1
|
Peng YX, Feng B, Zhang ZJ, Li K, Wang S, Niu D. Effect of fermentation alcohol termination by ceramic membrane filtration on the aroma of sugarcane fruit wine. Food Microbiol 2025; 128:104724. [PMID: 39952765 DOI: 10.1016/j.fm.2025.104724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 01/02/2025] [Accepted: 01/02/2025] [Indexed: 02/17/2025]
Abstract
The study aimed to explore the impact of ceramic membrane filtration used to terminate the fermentation process on the aroma of low-alcohol sugarcane fruit wines as compared to traditional methods. The sugarcane fruit wine of termination fermentation by ceramic membrane filtration results in a more fruity character due to the higher content of some volatile compounds (hexanal, hexyl butanoate, butanoic acid butyl ester, hexanoic acid ethyl ester, and β-Damascenone). In comparison to traditional method (pasteurization), sugarcane fruit wine of termination fermentation by ceramic membrane filtration exhibits a greater abundance of the characteristic aroma compounds (hexanal, isobutyl isobutyrate, pentanal, and butanal) of sugarcane juice, resulting in a more pronounced sugarcane aroma. In addition, results showed that a total of 73 volatile compounds were identified in sugarcane wine, with 17 being identified as key differential compounds and 20 as key aroma-active compounds.
Collapse
Affiliation(s)
- Yin-Xiao Peng
- College of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, China; Academy of Sugarcane and Sugar Industry, Guangxi University, Nanning, 530004, China
| | - Bin Feng
- Guangxi Guangye Guitang Sugar Group Co., Ltd., Guigang, 537100, China
| | - Zi-Jie Zhang
- College of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, China; Academy of Sugarcane and Sugar Industry, Guangxi University, Nanning, 530004, China
| | - Kai Li
- College of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, China; Academy of Sugarcane and Sugar Industry, Guangxi University, Nanning, 530004, China
| | - Shuangfei Wang
- College of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, China
| | - Debao Niu
- College of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, China; Guangxi Guangye Guitang Sugar Group Co., Ltd., Guigang, 537100, China; Academy of Sugarcane and Sugar Industry, Guangxi University, Nanning, 530004, China.
| |
Collapse
|
2
|
Li W, Qin Y, Zhang B, Zhang W, Yao D, Zeng C, Ning D, Zhuang Y, Li L, Huang R. Effect of different zein/tea polyphenol/apple pectin coating on nutritional, physicochemical properties of fresh walnut kernel preservation. Food Chem 2025; 475:143230. [PMID: 39954639 DOI: 10.1016/j.foodchem.2025.143230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 01/27/2025] [Accepted: 02/04/2025] [Indexed: 02/17/2025]
Abstract
In this study, zein/apple pectin/tea polyphenol layer-by-layer assembled cling film prepared by solution casting was characterized, and the preservation effect of composite coatings, double, triple, and quadruple multilayer layer-by-layer assembly coatings on fresh walnut kernels at 4 °C was evaluated. As the number of assembly layers increased, the water vapor barrier increased, and the lower the film's UV transmittance. The assembled film's antioxidant and antibacterial activities were significantly higher than composite film. The moisture, color, and texture of the fresh walnut kernels treated with the assembled coatings were less different from 0 d fresh walnut kernels after 40 d of storage at 4 °C. The acid value, peroxide value, and total number of bacterial colonies of the fresh walnut kernels with 4-layer assembled coatings were significantly lower than those of the composite coatings. Overall, zein/apple pectin/tea polyphenol layer-by-layer assembled coating is an effective way to the fresh walnut kernel preservation.
Collapse
Affiliation(s)
- Wenwen Li
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan Province 650500, China
| | - Yu Qin
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan Province 650500, China
| | - Beibei Zhang
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan Province 650500, China
| | - Wenwen Zhang
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan Province 650500, China
| | - Dengjie Yao
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan Province 650500, China
| | - Chunyin Zeng
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan Province 650500, China
| | - Delu Ning
- Yunnan Academy of Forestry and Grassland, Kunming, Yunnan Province 650204, China
| | - Yongliang Zhuang
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan Province 650500, China
| | - Lirong Li
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan Province 650500, China.
| | - Rui Huang
- Zhongken Huashan Mu Dairy Co., LTD, Weinan, Shaanxi Province 714000, China..
| |
Collapse
|
3
|
Suleiman J, Shamsudin R, Hamzah MH, Basri MSM, Jimoh KA. Extraction optimization and characterization of durian (Durio zibethinus) rind pectin extracted by subcritical water. Food Chem 2025; 474:143123. [PMID: 39929045 DOI: 10.1016/j.foodchem.2025.143123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 01/15/2025] [Accepted: 01/26/2025] [Indexed: 02/12/2025]
Abstract
The subcritical water extraction (SWE) of pectin from durian rind was optimized using response surface methodology with Box-Behnken experimental design. The FTIR, SEM, and DSC analysis were used to examine the physicochemical, structural, thermal, and functional characteristics of the subcritical water-extracted pectin (SWEP) under optimum conditions and contrasted with the conventional acid-extracted pectin (CAEP). The optimum yield of pectin (5.43 %) was achieved under the temperature of 120 °C, time of 18.5 min, and sieve size of 100 μm. The comparative analysis reveals that the yield of SWEP was ∼2.07 % higher than the CAEP yield (3.36 %). Similarly, the equivalent weight, esterification degree, methoxy concentration, anhydrouronic acid content, water holding capacity, and oil holding capacity of SWEP were consistently higher than the CAEP. Therefore, SWE proved effective for obtaining high-quality pectin from durian rind and offers a simplified, cost-effective, and eco-friendly approach, which makes it a viable method for industrial application.
Collapse
Affiliation(s)
- Jamilu Suleiman
- Department of Process and Food Engineering, Faculty of Engineering, Universiti Putra Malaysia, UPM, Serdang 43400, Selangor, Malaysia; Department of Agricultural and Bio-Environmental Engineering, Faculty of Engineering, Federal University Dutsin-Ma, Katsina, Nigeria
| | - Rosnah Shamsudin
- Department of Process and Food Engineering, Faculty of Engineering, Universiti Putra Malaysia, UPM, Serdang 43400, Selangor, Malaysia; Laboratory of Halal Science Research, Halal Products Research Institute, Universiti Putra Malaysia, UPM, Serdang 43400, Selangor, Malaysia.
| | - Muhammad Hazwan Hamzah
- Department of Biological and Agricultural Engineering, Faculty of Engineering, Universiti Putra Malaysia, UPM, Serdang 43400, Selangor, Malaysia; SMART Farming Technology Research Centre, Department of Biological and Agricultural Engineering, Faculty of Engineering, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Mohd Salahuddin Mohd Basri
- Department of Process and Food Engineering, Faculty of Engineering, Universiti Putra Malaysia, UPM, Serdang 43400, Selangor, Malaysia; Laboratory of Halal Science Research, Halal Products Research Institute, Universiti Putra Malaysia, UPM, Serdang 43400, Selangor, Malaysia
| | - Kabiru Ayobami Jimoh
- Department of Biological and Agricultural Engineering, Faculty of Engineering, Universiti Putra Malaysia, UPM, Serdang 43400, Selangor, Malaysia
| |
Collapse
|
4
|
Zhang WY, Liao JS, Qi JR. Citrus endogenous components as prebiotics: Advances in extraction, digestion, mechanisms, and delivery. Food Res Int 2025; 208:116141. [PMID: 40263823 DOI: 10.1016/j.foodres.2025.116141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 02/13/2025] [Accepted: 03/05/2025] [Indexed: 04/24/2025]
Abstract
The large number of by-products during the processing of citrus fruits exert significant pressure on the environment. Citrus by-products contain a variety of bioactive compounds that promote gut health and maintain microbial homeostasis. Therefore, recycling and reuse of these by-products is considered an excellent way to reduce environmental pressure. The purification and characterization methods of bioactive compounds (such as pectin, dietary fiber, polyphenols, essential oils, and limonin) extracted from citrus by-products in recent years are summarised. Subsequently, we summarize the digestive behavior (digestion, absorption, metabolism, and excretion) of these components, focusing on the mechanisms of action through which they exert prebiotic activity. This highlights the interactions between citrus by-product bioactives and gut microbiota, as well as the health effects on the host gut. Additionally, we provide a brief overview of the delivery systems for the active ingredients based on pectin from citrus sources. The results show that extraction methods can significantly affect the composition and structure of citrus by-products, which in turn affects digestive properties and eventually leads to differences in prebiotic activity. Notably, gut microbiota plays a key role in the metabolism and bioactivity of citrus actives. Besides, the innovative embedding methods can markedly enhance their prebiotic potential. Therefore, a comprehensive understanding of the relationship between the extraction, structure, and prebiotic activity of citrus by-products, as well as their delivery methods, is essential to advancing the use of citrus by-products in human health.
Collapse
Affiliation(s)
- Wei-Yun Zhang
- Research and Development Center of Food Proteins, School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, PR China
| | - Jin-Song Liao
- School of Life Sciences, South China Normal University, Guangzhou 510640, PR China; Lemon (Guangzhou City) Biotechnology Co. Ltd, Guangzhou 510640, PR China
| | - Jun-Ru Qi
- Research and Development Center of Food Proteins, School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, PR China.
| |
Collapse
|
5
|
Barroso TLCT, Castro LEN, da Rosa RG, Brackmann R, Goldbeck R, Forster-Carneiro T. Obtaining value-added products from cashew apple bagasse: A sustainable alternative achieved through a hydrothermal process. Food Res Int 2025; 208:116276. [PMID: 40263860 DOI: 10.1016/j.foodres.2025.116276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 02/27/2025] [Accepted: 03/11/2025] [Indexed: 04/24/2025]
Abstract
The processing of cashew peduncles annually generates approximately 4000 tons of cashew apple bagasse, a biomass rich in value-added products. Pressurized liquid extraction (PLE) was employed to extract bioactive compounds using a Box-Behnken design, with temperature, pH, and solid-liquid ratio as the independent variables. The study evaluated pectin yield, total phenolic compounds (TPC), antioxidant activity (FRAP), sugars, and organic acids. Results were compared to a conventional agitation method (90 °C, 2 h, pH 2.0). Under optimized conditions of 120 °C, pH 2.0, and a solid-to-liquid ratio (S/F) of 15, the PLE method achieved a high pectin yield (23.37 % g g-1), surpassing the conventional method (21.40 % g g-1). Optimal sugar extraction was observed at 100 °C, pH 2.0, and S/F of 10, with a recovery of 90.41 mg per gram of cashew apple bagasse. TPC yields were higher at 120 °C, whereas antioxidant activity peaked at 100 °C. Formic acid concentrations were higher in treatments with low sugar recovery, suggesting compound degradation. Notably, the conventional method produced a higher concentration of formic acid, likely due to the extended extraction time. The kinetic study revealed the formation and recovery patterns of bioactive compounds over time. TPC and FRAP were continuously recovered throughout the studied period, while approximately 80 % of the pectin and sugar yields were achieved within the first 15 min of extraction. Morphological and structural analyses highlighted the impact of the extraction process on the cashew apple bagasse and the resulting pectins. The application of pressure-enhanced porosity in the pectin structure improved thermal stability, significantly reducing the material's hemicellulose fraction. The Ecoscale Environmental Assessment scored 89.75 for pectin extraction and 93 for TPC recovery, surpassing other extraction methods reported in the literature. These findings contribute to the valorization of agro-industrial waste and the development of high-value products from cashew apple bagasse, offering significant potential for the processing industry.
Collapse
Affiliation(s)
- Tiago Linhares Cruz Tabosa Barroso
- Faculdade de Engenharia de Alimentos (FEA), Universidade Estadual de Campinas (UNICAMP), Rua Monteiro Lobato, 80, 13083-862 Campinas, São Paulo, Brazil
| | - Luiz Eduardo Nochi Castro
- Faculdade de Engenharia de Alimentos (FEA), Universidade Estadual de Campinas (UNICAMP), Rua Monteiro Lobato, 80, 13083-862 Campinas, São Paulo, Brazil.
| | - Rafael Gabriel da Rosa
- Faculdade de Engenharia de Alimentos (FEA), Universidade Estadual de Campinas (UNICAMP), Rua Monteiro Lobato, 80, 13083-862 Campinas, São Paulo, Brazil
| | - Rodrigo Brackmann
- Department of Chemistry, Federal University of Technology - Paraná (UTFPR), Via do Conhecimento, 85503-390 Pato Branco, PR, Brazil
| | - Rosana Goldbeck
- Faculdade de Engenharia de Alimentos (FEA), Universidade Estadual de Campinas (UNICAMP), Rua Monteiro Lobato, 80, 13083-862 Campinas, São Paulo, Brazil
| | - Tânia Forster-Carneiro
- Faculdade de Engenharia de Alimentos (FEA), Universidade Estadual de Campinas (UNICAMP), Rua Monteiro Lobato, 80, 13083-862 Campinas, São Paulo, Brazil.
| |
Collapse
|
6
|
Serrafi A, Wikiera A, Cyprych K, Malik M. Spectroscopic and Microscopic Analysis of Apple Pectins. Molecules 2025; 30:1633. [PMID: 40286242 PMCID: PMC11990863 DOI: 10.3390/molecules30071633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Revised: 03/24/2025] [Accepted: 04/01/2025] [Indexed: 04/29/2025] Open
Abstract
Apple pomace pectins, extracted using various methods (water, cellulase, arabinase, and arabinase with mannanase), and commercial apple pectin were studied, analyzing their morphology and chemical structure. The microscopic analysis revealed morphological differences, with a log-normal particle size distribution observed in most samples, except for those extracted with water. Cellulase-extracted pectin exhibited the most spherical morphology, while enzymatically extracted pectins displayed uneven surfaces. The FT-IR analysis indicated structural changes, shifts in O-H bands, and the degree of methoxylation (DM) ranged from 30.25% to 58%, with all the pectins classified as high-methoxy pectins. The NMR (1H and 13C) analysis confirmed the presence of arabinans, galactans, galacturonans, and rhamnose, and the calculated DM and acetylation (DAc) values were consistent with the results obtained using conventional methods. These results provide insight into the influence of extraction methods on pectin properties, which is relevant to the pharmaceutical and food industries, and confirm the structural similarity between enzymatically extracted pectins and commercial pectin.
Collapse
Affiliation(s)
- Agata Serrafi
- Department of Immunochemistry and Chemistry, Medical University of Wroclaw, ul. M. Sklodowskiej-Curie 48/50, 50-369 Wroclaw, Poland;
| | - Agnieszka Wikiera
- Faculty of Health Sciences, Jagiellonian University Medical College, 31-008 Krakow, Poland;
| | - Konrad Cyprych
- Faculty of Chemistry, Wroclaw University of Science and Technology, Wyb. Wyspianskiego 27, 50-370 Wroclaw, Poland;
| | - Magdalena Malik
- Faculty of Chemistry, Wroclaw University of Science and Technology, Wyb. Wyspianskiego 27, 50-370 Wroclaw, Poland;
| |
Collapse
|
7
|
Rajabzadeh-Khosroshahi M, Khoshfetrat AB, Salami-Kalajahi M. A review on pectin-based nanostructures for drug and gene delivery systems. Int J Biol Macromol 2025; 304:140932. [PMID: 39947534 DOI: 10.1016/j.ijbiomac.2025.140932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 01/20/2025] [Accepted: 02/10/2025] [Indexed: 02/16/2025]
Abstract
Pectin, a widely available and cost-effective polysaccharide, has garnered considerable attention in biomedical applications, particularly as a matrix for drug and gene delivery systems. Pectin possesses prominent properties such as biocompatibility, biodegradability, and low toxicity, which are desired features for delivery systems. Various pectin-based nanostructures have been applied to encapsulate therapeutic agents, drugs, and genetic materials with the potential of protecting them until selectively transfer to the objective tissue and sustainably release in controlled conditions. Pectin-based nanostructures have been widely used in oral drug delivery systems because of pectin's stability in the gastric and small intestine biological media. Moreover, pectin-based nanostructures have a high potential usage in liver cancer treatment due to the selective targeting of galactose groups of pectin to liver cancer cells' receptors. Despite applying pectin-coated nanocomposites as non-viral vectors of gene delivery, more clinical trials are required to develop such potential carriers in gene therapy. Pectin has unique biological features such as anticancer, antimicrobial, antioxidant, antidiabetic, and anti-cholesterol properties that synergistically enhance the efficiency of the drug/gene delivery system. This review presents an exhaustive investigation of the recent research on pectin-based nanostructures applied in drug/gene delivery systems and other biomedical applications, its advantages, challenges, and future perspectives.
Collapse
Affiliation(s)
- Maryam Rajabzadeh-Khosroshahi
- Chemical Engineering Faculty, Sahand University of Technology, Tabriz 51335-1996, Iran; Stem Cell and Tissue Engineering Research Laboratory, Sahand University of Technology, Tabriz 51335-1996, Iran
| | - Ali Baradar Khoshfetrat
- Chemical Engineering Faculty, Sahand University of Technology, Tabriz 51335-1996, Iran; Stem Cell and Tissue Engineering Research Laboratory, Sahand University of Technology, Tabriz 51335-1996, Iran.
| | - Mehdi Salami-Kalajahi
- Faculty of Polymer Engineering, Sahand University of Technology, 51335-1996 Tabriz, Iran; Institute of Polymeric Materials, Sahand University of Technology, 51335-1996 Tabriz, Iran.
| |
Collapse
|
8
|
Shao H, Liu M, Jiang H, Zhang Y. Polysaccharide-based drug delivery targeted approach for colon cancer treatment: A comprehensive review. Int J Biol Macromol 2025; 302:139177. [PMID: 39798740 DOI: 10.1016/j.ijbiomac.2024.139177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 12/10/2024] [Accepted: 12/23/2024] [Indexed: 01/15/2025]
Abstract
Colon cancer is a leading cause of cancer-related morbidity and mortality worldwide, necessitating advancements in therapeutic strategies to improve outcomes. Current treatment modalities, including surgery, chemotherapy, and radiation, are limited by systemic toxicity, low drug utilization rates, and off-target effects. Colon-targeted drug delivery systems (CDDS) offer a promising alternative by leveraging the colon's unique physiology, such as near-neutral pH and extended transit time, to achieve localized and controlled drug release. Polysaccharide-based CDDS, utilizing natural polymers like chitosan, cyclodextrin, pectin, guar gum, alginate, hyaluronic acid, dextran, chondroitin sulfate, and inulin, have emerged as innovative approaches for improving the specificity and efficacy of colon cancer treatments. These biocompatible and biodegradable polymers enable site-specific drug delivery, enhance tumor apoptosis, reduce systemic side effects, and improve patient compliance. This review evaluates recent advancements in polysaccharide-based CDDS, detailing their drug release mechanisms, therapeutic potential, and challenges in overcoming gastrointestinal transit and pH variability. Studies highlight the successful formulation of nanoparticles, microspheres, and other delivery systems, demonstrating targeted drug delivery, improved bioavailability, and enhanced cytotoxicity against colon cancer cells in-vitro and in-vivo. The review underscores the need for continued research on polysaccharide-based CDDS for colon cancer treatment, offering a path toward more effective, patient-centered oncological care.
Collapse
Affiliation(s)
- Hua Shao
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang 110000, Liaoning, China
| | - Minghua Liu
- Department of Gastroenterology, Shengjing Hospital of China Medical University, Shenyang 110000, Liaoning, China
| | - Hongfang Jiang
- Department of Geriatrics, Shengjing Hospital of China Medical University, Shenyang 110000, Liaoning, China.
| | - Ying Zhang
- Department of Gastroenterology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China.
| |
Collapse
|
9
|
Yan Z, Meng L, Zheng F, Zhang L, Xiao H, Wu W. A tough and water-resistant cellulose-based barrier film and its multiple synergistic mechanisms for fruit preservation. Int J Biol Macromol 2025:142430. [PMID: 40174817 DOI: 10.1016/j.ijbiomac.2025.142430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 03/08/2025] [Accepted: 03/21/2025] [Indexed: 04/04/2025]
Abstract
Cellulose-based packaging films represent a significant direction in sustainable materials science. However, their application is often hindered by the challenge of low water vapor barrier properties under high humidity conditions. In this work, carboxymethyl cellulose (CMC)/Mica@TiO2 (titanium dioxide) composite films with high water vapor barrier and water resistance were prepared via the green process, including acid-assisted gelation, cyclic freeze-thaw, and directional deposition. Flake Mica@TiO2 extends the water vapor transport path and improves the stability of the water vapor barrier. Furthermore, the Passive Radiative Cooling (PRC) effect of TiO2 contributes to the composite film's high reflectance (93.81 %) and emittance (96.57 %) of sunlight, which reduces the film's temperature by over 12.1 °C and effectively hinders the diffusion and transport of water vapor. The water vapor permeability coefficient (WVP) of the composite film is as low as 28.62 × 10-12·g·m/m2·Pa·s (37 °C, 65 % Relative Humidity (RH)). In addition, the composite film exhibits high wet tensile strength (28.9 MPa), excellent UV shielding rate (93.12 %), and antibacterial performance (98.5 % inhibition against Escherichia coli (E. coli)). This multifunctional V-CMC/Mica@TiO2 composite film provides an innovative, environmentally friendly, and highly efficient solution for food preservation and is expected to promote the sustainable development of the food packaging industry.
Collapse
Affiliation(s)
- Zifei Yan
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China
| | - Liucheng Meng
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China
| | - Furong Zheng
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China
| | - Lei Zhang
- Key Laboratory for Organic Electronics and Information, National Jiangsu Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, Nanjing 210023, China
| | - Huining Xiao
- Department of Chemical Engineering, University of New Brunswick, Fredericton, NB E3B 5A3, Canada
| | - Weibing Wu
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
10
|
Vesci L, Martinelli G, Liu Y, Tagliavento L, Dell’Agli M, Wu Y, Soldi S, Sagheddu V, Piazza S, Sangiovanni E, Meneguzzo F. The New Phytocomplex AL0042 Extracted from Red Orange By-Products Inhibits the Minimal Hepatic Encephalopathy in Mice Induced by Thioacetamide. Biomedicines 2025; 13:686. [PMID: 40149662 PMCID: PMC11940312 DOI: 10.3390/biomedicines13030686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Revised: 03/06/2025] [Accepted: 03/06/2025] [Indexed: 03/29/2025] Open
Abstract
Background/Objectives: Minimal hepatic encephalopathy (MHE) is a clinical condition characterized by neurological impairments, including brain inflammation, arising from the accumulation of toxic metabolites associated with liver dysfunction and leaky gut. This study investigated the pharmacological activity of a new phytocomplex extracted from red orange by-products (AL0042) using hydrodynamic cavitation and consisting of a mixture of pectin, polyphenols, and essential oils. Methods: Preliminary in vitro studies evaluated the impact on the epithelial integrity (TEER) of enterocytes challenged by a pro-inflammatory cocktail. The effect of AL0042 was then evaluated in a model of thioacetamide (TAA)-treated mice that mimics MHE. A group of 8-10-week-old male C57BL/6 mice was intraperitoneally injected with TAA to establish the MHE model. The intervention group received TAA along with AL0042 (20 mg/kg, administered orally once daily for 7 days). At the end of the treatment, the rotarod test was conducted to evaluate motor ability, along with the evaluation of blood biochemical, liver, and brain parameters. Results: In vitro, AL0042 (250 μg/mL) partially recovered the TEER values, although anti-inflammatory mechanisms played a negligible role. In vivo, compared with the control group, the test group showed significant behavioral differences, together with alterations in plasma ammonia, serum TNF-α, ALT, AST, corticosterone levels, and SOD activity. Moreover, histological data confirmed the anti-inflammatory effect at liver and brain level. Conclusions: AL0042 treatment revealed a significant therapeutic effect on the TAA-induced MHE mouse model, curbing oxidative stress and peripheral and central inflammation, thus suggesting that its pharmacological activity deserves to be further investigated in clinical studies.
Collapse
Affiliation(s)
- Loredana Vesci
- Research and Development, Alfasigma S.p.A., 00071 Pomezia, Italy;
| | - Giulia Martinelli
- Department of Pharmacological and Biomolecular Sciences “Rodolfo Paoletti”, Università degli Studi di Milano, 20133 Milano, Italy; (G.M.); (S.P.); (E.S.)
| | - Yongqiang Liu
- Department of Pharmacology, Discovery Services, BioDuro-Sundia, Shanghai 200131, China; (Y.L.); (Y.W.)
| | | | - Mario Dell’Agli
- Department of Pharmacological and Biomolecular Sciences “Rodolfo Paoletti”, Università degli Studi di Milano, 20133 Milano, Italy; (G.M.); (S.P.); (E.S.)
| | - Yunfei Wu
- Department of Pharmacology, Discovery Services, BioDuro-Sundia, Shanghai 200131, China; (Y.L.); (Y.W.)
| | - Sara Soldi
- AAT Srl–Advanced Analytical Technologies, 29017 Fiorenzuola d’Arda, Italy; (S.S.); (V.S.)
| | - Valeria Sagheddu
- AAT Srl–Advanced Analytical Technologies, 29017 Fiorenzuola d’Arda, Italy; (S.S.); (V.S.)
| | - Stefano Piazza
- Department of Pharmacological and Biomolecular Sciences “Rodolfo Paoletti”, Università degli Studi di Milano, 20133 Milano, Italy; (G.M.); (S.P.); (E.S.)
| | - Enrico Sangiovanni
- Department of Pharmacological and Biomolecular Sciences “Rodolfo Paoletti”, Università degli Studi di Milano, 20133 Milano, Italy; (G.M.); (S.P.); (E.S.)
| | - Francesco Meneguzzo
- Institute of Bioeconomy, National Research Council of Italy, 50019 Florence, Italy
| |
Collapse
|
11
|
Ren T, Fan X, Wu Q, Wu Y, Sun X, Tong H. Structural insights and therapeutic potential of plant-based pectin as novel therapeutic for type 2 diabetes mellitus: A review. Int J Biol Macromol 2025; 307:141876. [PMID: 40064270 DOI: 10.1016/j.ijbiomac.2025.141876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Revised: 03/03/2025] [Accepted: 03/07/2025] [Indexed: 03/15/2025]
Abstract
Type 2 diabetes mellitus (T2DM) is a global health challenge with limited efficacy of current treatments, necessitating alternative therapies. Plant-derived pectin, composed of galacturonic acid and structural domains such as homogalacturonan, has shown promise as an anti-diabetic agent. Pectin exerts its therapeutic effects through multiple mechanisms, including enhancing β-cell function, regulating glucose metabolism, improving insulin sensitivity, inhibiting digestive enzymes, and restoring gut microbiota balance. Its bioactivity is influenced by physicochemical properties like molecular weight, degree of methylation, and structural complexity. This review explores the anti-diabetic potential of pectin, its structure-activity relationships, and mechanisms of action, providing insights for its development as a novel therapeutic agent in T2DM management.
Collapse
Affiliation(s)
- Ting Ren
- School of Pharmaceutical Sciences, Jilin Medical University, Jilin 132013, China
| | - Xinrong Fan
- Department of Durg Preparation, Lishui Hospital of Traditional Chinese Medicine, Lishui 323000, China
| | - Qifang Wu
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Yu Wu
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Xin Sun
- School of Pharmaceutical Sciences, Jilin Medical University, Jilin 132013, China.
| | - Haibin Tong
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China; State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Beijing 100700, China.
| |
Collapse
|
12
|
Alam M, Kaur S, Dar BN, Nanda V. Classification, techno-functional properties, and applications of diverse hydrocolloids in fruits-based products: A concise review. J Food Sci 2025; 90:e70119. [PMID: 40091690 DOI: 10.1111/1750-3841.70119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 02/14/2025] [Accepted: 02/20/2025] [Indexed: 03/19/2025]
Abstract
Hydrocolloids play a crucial role in enhancing the quality of fruit-based products, aligning with global demands for healthier and more sustainable food options. This review highlights the latest advancements in the application of plant-based, algae-based, animal-based, microorganism-based, and chemically modified hydrocolloids in fruit purees, fruit leathers, fruit juices, and fruit fillings. This work highlights the importance of hydrocolloids in enhancing the textural stability, thermal properties, and nutritional retention of fruit-based products, while maintaining their desirable sensory attributes. The central aim of this review is to evaluate comprehensively the techno-functional properties of hydrocolloids, including thickening, gelling, encapsulating, thermal stabilizing, syneresis inhibiting, and colloidal stability. Additionally, the interactions between hydrocolloids and fruit ingredients, particularly sugars, are analyzed to provide insights into their bonding mechanisms and their influence on product quality. This review consolidates recent findings to provide guidance for researchers and industry professionals on utilizing hydrocolloids to improve the quality, stability, and consumer acceptability of fruit-based products, offering benefits to both manufacturers and consumers.
Collapse
Affiliation(s)
- Masud Alam
- Department of Food Engineering and Technology, Sant Longowal Institute of Engineering and Technology, Longowal, Punjab, India
| | - Sawinder Kaur
- Department of Food Science and Nutrition, Lovely Professional University, Phagwara, Punjab, India
| | - Basharat Nabi Dar
- Department of Food Technology, Islamic University of Science and Technology, Awantipora, Jammu and Kashmir, India
| | - Vikas Nanda
- Department of Food Engineering and Technology, Sant Longowal Institute of Engineering and Technology, Longowal, Punjab, India
| |
Collapse
|
13
|
Bertolo MRV, Pereira TS, dos Santos FV, Facure MHM, dos Santos F, Teodoro KBR, Mercante LA, Correa DS. Citrus wastes as sustainable materials for active and intelligent food packaging: Current advances. Compr Rev Food Sci Food Saf 2025; 24:e70144. [PMID: 40034076 PMCID: PMC11929373 DOI: 10.1111/1541-4337.70144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 01/07/2025] [Accepted: 02/03/2025] [Indexed: 03/05/2025]
Abstract
Citrus fruits are one of the most popular crops in the world, and around one quarter of them are subjected to industrial processes, aiming at the production of different food products. Citrus processing generates large amounts of waste, including peels, pulp, and seeds. These materials are rich sources of polymers (e.g., pectin, cellulose, hemicellulose, lignin), phenolic compounds, and essential oils. At the same time, the development of food packaging materials using citrus waste is a highly sought strategy for food preservation, and meets the principles of circular economy. This review surveys current advances in the development of active and intelligent food packaging produced using one or more citrus waste components (polymers, phenolics extracts, and essential oils). It highlights the contribution and effects of each of these components on the properties of the developed packaging, as well as emphasizes the current state and challenges for developing citrus-based packaging. Most of the reported investigations employed citrus pectin as a base polymer to produce packaging films through the casting technique. Likewise, most of them focused on developing active materials, and fewer studies have explored the preparation of citrus waste-based intelligent materials. All studies characterized the materials developed, but only a few actually applied them to food matrices. This review is expected to encourage novel investigations that contribute to food preservation and to reduce the environmental impacts caused by discarded citrus byproducts.
Collapse
Affiliation(s)
- Mirella R. V. Bertolo
- Nanotechnology National Laboratory for Agriculture (LNNA)Embrapa InstrumentationSao CarlosSPBrazil
| | - Tamires S. Pereira
- Nanotechnology National Laboratory for Agriculture (LNNA)Embrapa InstrumentationSao CarlosSPBrazil
- PPGQ, Department of Chemistry, Center for Exact Sciences and TechnologyFederal University of Sao Carlos (UFSCar)Sao CarlosSPBrazil
| | - Francisco V. dos Santos
- Nanotechnology National Laboratory for Agriculture (LNNA)Embrapa InstrumentationSao CarlosSPBrazil
- PGrCEM, Department of Materials Engineering, Sao Carlos School of EngineeringUniversity of Sao PauloSao CarlosSPBrazil
| | - Murilo H. M. Facure
- Nanotechnology National Laboratory for Agriculture (LNNA)Embrapa InstrumentationSao CarlosSPBrazil
| | - Fabrício dos Santos
- Nanotechnology National Laboratory for Agriculture (LNNA)Embrapa InstrumentationSao CarlosSPBrazil
| | - Kelcilene B. R. Teodoro
- Nanotechnology National Laboratory for Agriculture (LNNA)Embrapa InstrumentationSao CarlosSPBrazil
| | - Luiza A. Mercante
- Institute of ChemistryFederal University of Bahia (UFBA)SalvadorBABrazil
| | - Daniel S. Correa
- Nanotechnology National Laboratory for Agriculture (LNNA)Embrapa InstrumentationSao CarlosSPBrazil
- PPGQ, Department of Chemistry, Center for Exact Sciences and TechnologyFederal University of Sao Carlos (UFSCar)Sao CarlosSPBrazil
- PGrCEM, Department of Materials Engineering, Sao Carlos School of EngineeringUniversity of Sao PauloSao CarlosSPBrazil
| |
Collapse
|
14
|
Méndez-Albiñana P, Rodrigues-Díez R, Rodríguez-Rodríguez P, Moreno R, Muñoz-Valverde D, Casani L, Villamiel M, Blanco-Rivero J. Structure and properties of citrus pectin as influencing factors of biomarkers of metabolic syndrome in rats fed with a high-fat diet. Curr Res Food Sci 2025; 10:101014. [PMID: 40114745 PMCID: PMC11925585 DOI: 10.1016/j.crfs.2025.101014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 01/20/2025] [Accepted: 02/26/2025] [Indexed: 03/22/2025] Open
Abstract
Pectin, widely used as a food and pharmaceutical ingredient, has garnered attention in recent years due to its bioactive properties. We conducted an in vivo study to evaluate the effects of citrus pectin on biomarkers of metabolic syndrome (MtS), including lipid profile, hypertension, and adipose tissue. Supplementing a high-fat diet (60% energy from fat) with 20% pectin for 4 weeks significantly reduced body weight and fat accumulation, improved insulin resistance, and decreased circulating leptin levels, demonstrating a beneficial effect on MtS. Pectin exhibited excellent viscosity, emulsifying properties, and water-holding capacity, forming a viscous gel in the gastrointestinal tract. This gel delays gastric emptying, enhances satiety, and reduces food and calorie intake, leading to lower weight gain in rats fed pectin. Its viscosity also interferes with lipase activity, lipid hydrolysis, and absorption, while its oil-holding capacity may help prevent lipid absorption. The presence of galactose in pectin's structure showed potential for improving insulin resistance. Furthermore, both degree of esterification (DE) and pH influence pectin's functionality. At acidic pH levels, such as those found in the stomach and duodenum, high methoxyl pectin (HMP) retains fats and bile salts more effectively, contributing to better cholesterol regulation. These effects, combined with the antioxidant properties of pectin, helped reverse arterial hypertension associated with MtS. Overall, our findings highlight the potential of citrus pectin as a natural bioactive ingredient for combating obesity-related disorders, complementing pharmacological treatments and promoting health through innovative dietary approaches.
Collapse
Affiliation(s)
- Pablo Méndez-Albiñana
- Department of Physiology, School of Medicine, Universidad Autónoma de Madrid, Spain
- Group of Chemistry and Functionality of Carbohydrates and Derivatives, Food Science Research Institute (CIAL) (CSIC-UAM), Spain
| | - Raquel Rodrigues-Díez
- Department of Physiology, School of Medicine, Universidad Complutense de Madrid, Spain
- Research Institute University Hospital La Paz (IdIPaz), Madrid, Spain
- Center for Biomedical Research Network (CIBER) in Cardiovascular Diseases, Madrid, Spain
| | - Pilar Rodríguez-Rodríguez
- Department of Physiology, School of Medicine, Universidad Autónoma de Madrid, Spain
- Research Institute University Hospital La Paz (IdIPaz), Madrid, Spain
| | | | | | - Laura Casani
- Research Institute of Santa Creu I Sant Pau Hospital, Barcelona, Spain
| | - Mar Villamiel
- Group of Chemistry and Functionality of Carbohydrates and Derivatives, Food Science Research Institute (CIAL) (CSIC-UAM), Spain
| | - Javier Blanco-Rivero
- Department of Physiology, School of Medicine, Universidad Autónoma de Madrid, Spain
- Research Institute University Hospital La Paz (IdIPaz), Madrid, Spain
- Center for Biomedical Research Network (CIBER) in Cardiovascular Diseases, Madrid, Spain
| |
Collapse
|
15
|
Zannini D, Monteforte M, Gargiulo L, Marino T, Gomez d’Ayala G, Santagata G, Dal Poggetto G. Citrus Wastes as Source of Pectin and Bioactive Compounds Extracted via One-Pot Microwave Process: An In Situ Path to Modulated Property Control. Polymers (Basel) 2025; 17:659. [PMID: 40076159 PMCID: PMC11902335 DOI: 10.3390/polym17050659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 02/26/2025] [Accepted: 02/27/2025] [Indexed: 03/14/2025] Open
Abstract
In this paper, citrus pomace was used as a source of pectin and polyphenols extracted in one pot solution by microwave-assisted extraction (MAE) and conventional extraction (CE) methods. MAE parameters were optimized to maximize yield and adjust in situ final physicochemical properties of extracted pectins, such as the methylation degree (DM), significantly influencing pectin functionality and application. Citric acid (CA) and acetic acid (Hac) were employed as solvents to mitigate pectin degradation. Extracted pectins were structurally (GPC and FTIR-ATR), morphologically (SEM), and thermally (TGA) characterized. From the reaction batch, the bioactive compounds (AOs) were separated and recovered, and their yield and antioxidant activities were evaluated with a DPPH assay. Moreover, by strategically selecting pH and solvents, this research enabled precise control over the final properties of pectin. The various characterization techniques employed show that the extraction conditions significantly influence the physicochemical and morphological properties of the material. Molecular weight (Mw) values range from 218 kDa to 567 kDa, surface morphology varies from compact/aggregated structures to three-dimensional network-like formations, and the DM spans from 34% (low DM) to 83% (high DM). This highlights a novel approach for predicting and tailoring in situ characteristics of extracted pectin to meet specific application requirements.
Collapse
Affiliation(s)
- Domenico Zannini
- Institute of Chemical Sciences and Technologies “G. Natta” (SCITEC), National Council of Research, Via De Marini 6, 16149 Genova, Italy;
| | - Martina Monteforte
- Institute for Polymers, Composites and Biomaterials (IPCB), National Council of Research, Via C. Flegrei 34, 80078 Pozzuoli, Italy; (M.M.); (L.G.); (T.M.); (G.G.d.); (G.D.P.)
| | - Luca Gargiulo
- Institute for Polymers, Composites and Biomaterials (IPCB), National Council of Research, Via C. Flegrei 34, 80078 Pozzuoli, Italy; (M.M.); (L.G.); (T.M.); (G.G.d.); (G.D.P.)
| | - Tiziana Marino
- Institute for Polymers, Composites and Biomaterials (IPCB), National Council of Research, Via C. Flegrei 34, 80078 Pozzuoli, Italy; (M.M.); (L.G.); (T.M.); (G.G.d.); (G.D.P.)
| | - Giovanna Gomez d’Ayala
- Institute for Polymers, Composites and Biomaterials (IPCB), National Council of Research, Via C. Flegrei 34, 80078 Pozzuoli, Italy; (M.M.); (L.G.); (T.M.); (G.G.d.); (G.D.P.)
| | - Gabriella Santagata
- Institute for Polymers, Composites and Biomaterials (IPCB), National Council of Research, Via C. Flegrei 34, 80078 Pozzuoli, Italy; (M.M.); (L.G.); (T.M.); (G.G.d.); (G.D.P.)
| | - Giovanni Dal Poggetto
- Institute for Polymers, Composites and Biomaterials (IPCB), National Council of Research, Via C. Flegrei 34, 80078 Pozzuoli, Italy; (M.M.); (L.G.); (T.M.); (G.G.d.); (G.D.P.)
| |
Collapse
|
16
|
Sembiring E, Frida E, Sitorus Z, Sembiring T. Fabrication and Characterization of Pectin-Chitosan Edible Coatings with a Cosmos caudatus Leaf Extract for Tomato Preservation. ACS OMEGA 2025; 10:7204-7210. [PMID: 40028081 PMCID: PMC11865960 DOI: 10.1021/acsomega.4c10344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 01/07/2025] [Accepted: 01/31/2025] [Indexed: 03/05/2025]
Abstract
An edible coating based on pectin-chitosan and Cosmos caudatus leaf extract has been created. Cosmos caudatus leaf extract, which contains several bioactive compounds, aims to produce an edible coating with antibacterial properties. C. caudatus extract was incorporated at concentrations of 1, 2, and 3 g into a mixture of 1.5 g of pectin and 1 g of chitosan. The edible coating was applied to the tomatoes using the dipping method. The coated tomatoes were analyzed for 21 days at room temperature to determine the weight loss value. The edible coating was characterized, including FTIR analysis, X-ray diffraction, surface morphology, thermal stability, viscosity, and antibacterial activity. The research results reveal that C. caudatus extract contains anthocyanins with antibacterial properties, has an amorphous crystalline structure, and has a textured surface with partial aggregation. Thermal stability analysis using differential scanning calorimetry (DSC) shows a decrease in thermogravimetric (TG) values with increasing extract concentration. The optimal weight loss (6.18%) was found in the pectin-chitosan composition containing 3 g of C. caudatus extract. At this concentration, the inhibition zones against Escherichia coli and Staphylococcus aureus were 16.4 and 15.6 mm, respectively. These findings indicate that the C. caudatus leaf extract, particularly at 3 g, enhances the antibacterial properties of the edible pectin-chitosan coating, demonstrating its potential to extend the shelf life of tomatoes safely.
Collapse
Affiliation(s)
- Emita Sembiring
- Post Graduate Program (Physics),
Faculty of Mathematics and Natural Sciences, Universitas Sumatera Utara, Jln Bioteknologi no 1, Medan 20222, Indonesia
| | - Erna Frida
- Post Graduate Program (Physics),
Faculty of Mathematics and Natural Sciences, Universitas Sumatera Utara, Jln Bioteknologi no 1, Medan 20222, Indonesia
| | - Zuriah Sitorus
- Post Graduate Program (Physics),
Faculty of Mathematics and Natural Sciences, Universitas Sumatera Utara, Jln Bioteknologi no 1, Medan 20222, Indonesia
| | - Timbangen Sembiring
- Post Graduate Program (Physics),
Faculty of Mathematics and Natural Sciences, Universitas Sumatera Utara, Jln Bioteknologi no 1, Medan 20222, Indonesia
| |
Collapse
|
17
|
Alves KA, Araújo RHCR, Silva AS, Almeida ES, Oliveira ÁMF, Rocha NS, Araújo MC, Gusmão TAS, Lima JF, Delgado JMPQ, Pereira JF, Santos RS, Lima AGB. Biodegradable Film Is Enriched with Pomegranate Seed Oil and Microalgae for Preservation of Cajarana ( Spondias dulcis). Polymers (Basel) 2025; 17:367. [PMID: 39940572 PMCID: PMC11820404 DOI: 10.3390/polym17030367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 01/23/2025] [Accepted: 01/27/2025] [Indexed: 02/16/2025] Open
Abstract
This study aimed to develop and characterize biodegradable films made from pectin, pomegranate seed oil, and different microalgae (Spirulina platensis, Chlorella sp., and Scenedesmus obliquus) and to evaluate their applicability as packaging by verifying their effect on the conservation and postharvest quality of cajarana (Spondias dulcis). The films proposed in this study were assessed for their physical, optical, and mechanical attributes, as well as the physicochemical characteristics of the fruits coated with the films after 14 days of storage at 10 ± 1 °C and relative humidity of 60 ± 5%. Incorporating microalgae improved the homogeneity and mechanical properties, decreasing breaking stress, elastic modulus, and maximum tensile strength, contributing to a lower solubility and improving the barrier properties of the films compared to the control (T1). The film formulated with 6% citric pectin, 40% glycerin, 0.5 mL·L-1 pomegranate seed oil (PSO), and 0.05% Scenedesmus obliquus showed better performance in solubility, water vapor permeability (WVP), and mechanical properties, maintaining gloss and transparency, approaching the performance of the commercial PVC film. The film was formulated with 6% pectin + 40% glycerin + 0.5 mL·L-1 PSO + 0.05% Chlorella sp. maintained the postharvest quality of cajarana fruits, allowing the conservation of the physicochemical quality of the fruits after 14 days of storage at 10 ± 1 °C and 60 ± 5% RH.
Collapse
Affiliation(s)
- Kalinny A. Alves
- Academic Unit of Agricultural Sciences, Federal University of Campina Grande, Pombal 58840-000, Paraíba, Brazil; (K.A.A.); (E.S.A.)
| | - Railene H. C. R. Araújo
- Department of Food Engineering, Federal University of Campina Grande, Campina Grande 58429-900, Paraíba, Brazil; (R.H.C.R.A.); (A.S.S.); (N.S.R.); (M.C.A.); (T.A.S.G.)
| | - Adriano S. Silva
- Department of Food Engineering, Federal University of Campina Grande, Campina Grande 58429-900, Paraíba, Brazil; (R.H.C.R.A.); (A.S.S.); (N.S.R.); (M.C.A.); (T.A.S.G.)
| | - Evanilson S. Almeida
- Academic Unit of Agricultural Sciences, Federal University of Campina Grande, Pombal 58840-000, Paraíba, Brazil; (K.A.A.); (E.S.A.)
| | - Ágda M. F. Oliveira
- Postgraduate Program in Plant Science, Rural Federal University of the Semiarid, Mossoró 59625-900, Rio Grande do Norte, Brazil;
| | - Nayara S. Rocha
- Department of Food Engineering, Federal University of Campina Grande, Campina Grande 58429-900, Paraíba, Brazil; (R.H.C.R.A.); (A.S.S.); (N.S.R.); (M.C.A.); (T.A.S.G.)
| | - Max C. Araújo
- Department of Food Engineering, Federal University of Campina Grande, Campina Grande 58429-900, Paraíba, Brazil; (R.H.C.R.A.); (A.S.S.); (N.S.R.); (M.C.A.); (T.A.S.G.)
| | - Thaisa A. S. Gusmão
- Department of Food Engineering, Federal University of Campina Grande, Campina Grande 58429-900, Paraíba, Brazil; (R.H.C.R.A.); (A.S.S.); (N.S.R.); (M.C.A.); (T.A.S.G.)
| | - José F. Lima
- Center for Natural and Human Sciences, Federal University of ABC, Santo André 09210-580, São Paulo, Brazil;
| | - João M. P. Q. Delgado
- Institute of R&D in Structures and Construction (CONSTRUCT-LFC), Department of Civil Engineering, Faculty of Engineering, University of Porto, 4200-465 Porto, Portugal
| | - Joseane F. Pereira
- Department of Mechanical Engineering, Federal University of Campina Grande, Campina Grande 58429-900, Paraíba, Brazil; (J.F.P.); (R.S.S.); (A.G.B.L.)
| | - Romário S. Santos
- Department of Mechanical Engineering, Federal University of Campina Grande, Campina Grande 58429-900, Paraíba, Brazil; (J.F.P.); (R.S.S.); (A.G.B.L.)
| | - Antonio G. B. Lima
- Department of Mechanical Engineering, Federal University of Campina Grande, Campina Grande 58429-900, Paraíba, Brazil; (J.F.P.); (R.S.S.); (A.G.B.L.)
| |
Collapse
|
18
|
Ke F, Yang M, Ji W, Liu D. Functional pH-sensitive film based on pectin and whey protein for grape preservation and shrimp freshness monitoring. Food Chem 2025; 463:141092. [PMID: 39255696 DOI: 10.1016/j.foodchem.2024.141092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 08/29/2024] [Accepted: 08/30/2024] [Indexed: 09/12/2024]
Abstract
A pH-sensitive film was prepared from pectin (P) and whey protein (W), incorporating anthocyanin-rich purple sweet potato extract (PPE) as the pH indicator. The effect of PPE content on the structure and properties of the films and the pH indicating function were determined and evaluated for shrimp freshness and grape preservation. The solubility (60.23 ± 7.36 %) and water vapor permeability (0.15 ± 0.04 × 10-11 g·cm/(cm2·s·Pa)) of the pectin/whey protein/PPE (PW-PPE) film with 500 mg/100 mL PPE were the lowest of the films tested and much lower than PW films without PPE. PW-PPE films were non-cytotoxic and had excellent biodegradability in soil. Grapes coated with PW-PPE film had reduced weight loss from water evaporation, and decay during storage was inhibited. The total color change (ΔE) of the PW-PPE films had a strong linear correlation with the pH of shrimps during storage. PW-PPE films have application potential to monitor the real-time freshness of meat and extend the shelf life of fruit.
Collapse
Affiliation(s)
- Fahui Ke
- College of Science, Gansu Agricultural University, Lanzhou 730070, China
| | - Min Yang
- College of Science, Gansu Agricultural University, Lanzhou 730070, China.
| | - Wei Ji
- College of Science, Gansu Agricultural University, Lanzhou 730070, China
| | - Duanwu Liu
- College of Science, Gansu Agricultural University, Lanzhou 730070, China
| |
Collapse
|
19
|
Dang G, Li J, Yin C, Wang W, Zhang K, Zhong R, Chen L, Zhang H, Schroyen M. Deciphering Pectin: A Comprehensive Overview of Its Origins, Processing, and Promising Utility. ACS OMEGA 2025; 10:1-15. [PMID: 39829568 PMCID: PMC11740133 DOI: 10.1021/acsomega.4c01843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 10/31/2024] [Accepted: 11/06/2024] [Indexed: 01/22/2025]
Abstract
Pectin is an acidic heteropolysaccharide, a natural high molecular weight compound primarily found in higher plants. It consists of four major structural domains: homogalacturonan (HG), rhamnogalacturonan II (RG-II), rhamnogalacturonan I (RG-I), and xylogalacturonan (XGA). Various methods are currently employed for pectin extraction, including acid extraction, microbial fermentation, microwave-assisted extraction, and ion extraction, each with unique advantages and disadvantages. Pectin is sourced from fruits and vegetables, such as citrus fruits, apples, beets, and carrots. In terms of regulating human health, pectin enhances antioxidant activity, promotes beneficial microorganisms, and stimulates the production of short-chain fatty acids (SCFAs) through microbial metabolism. Additionally, pectin interacts directly with the mucosa, inhibits Toll-like receptor 2 (TLR2) signaling, and modifies the glycosylation of intestinal mucosal proteins. In disease models, pectin shows preventive and therapeutic effects in inflammatory bowel disease, type 2 diabetes, obesity, cardiovascular disease, and cancer. This review covers recent research, summarizing the sources and extraction methods of pectin, and emphasizes its role as a modulator of human health.
Collapse
Affiliation(s)
- Guoqi Dang
- State
Key Laboratory of Animal Nutrition, Institute
of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Precision
Livestock and Nutrition Unit, Gembloux Agro-Bio Tech, TERRA Teaching
and Research Centre, Liège University, Passage des Déportés
2, Gembloux 4000, Belgium
| | - Jiaheng Li
- State
Key Laboratory of Animal Nutrition, Institute
of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Chang Yin
- State
Key Laboratory of Animal Nutrition, Institute
of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Wenxing Wang
- State
Key Laboratory of Animal Nutrition, Institute
of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Kaiyi Zhang
- Precision
Livestock and Nutrition Unit, Gembloux Agro-Bio Tech, TERRA Teaching
and Research Centre, Liège University, Passage des Déportés
2, Gembloux 4000, Belgium
| | - Ruqing Zhong
- State
Key Laboratory of Animal Nutrition, Institute
of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Liang Chen
- State
Key Laboratory of Animal Nutrition, Institute
of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Hongfu Zhang
- State
Key Laboratory of Animal Nutrition, Institute
of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Martine Schroyen
- Precision
Livestock and Nutrition Unit, Gembloux Agro-Bio Tech, TERRA Teaching
and Research Centre, Liège University, Passage des Déportés
2, Gembloux 4000, Belgium
| |
Collapse
|
20
|
Wang C, Zhang X, Li Q, Hou Y, Sun M, Sun J, Lou Z, Han X, Li Y. A review of carbohydrate polymer-synthesized nanoparticles in cancer immunotherapy: Past, present and future perspectives. Int J Biol Macromol 2025; 286:138195. [PMID: 39645110 DOI: 10.1016/j.ijbiomac.2024.138195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 11/19/2024] [Accepted: 11/28/2024] [Indexed: 12/09/2024]
Abstract
Cancer continues to be a leading factor in mortality and tackling it has been made difficult by the development of immune escape. Furthermore, alternative treatments like surgery, chemotherapy, and radiation have been unsuccessful in eradicating cancer. Despite being effective, they have not succeeded in providing a full cancer treatment and exhibit several negative effects. The field of immunotherapy has been improved by utilizing cancer vaccines, immune checkpoint inhibitors (ICIs), and adoptive cell transfer to enhance immune responses to tumors. Nevertheless, cancer cells need to adapt and become immune to immune reactions, leading to the need for innovative treatment methods. Carbohydrate polymers and their nanoparticles have been beneficial in improving cancer immunotherapy by being customizable to specifically target the immune system. These nanoparticles can change the tumor microenvironment and accelerate immunotherapy by affecting immune cells such as T cells and dendritic cells. Incorporating both chemotherapy and phototherapy into nanoparticles can improve immunotherapy. Furthermore, besides controlling immune reactions, carbohydrate polymer nanoparticles can also be used for theranostic purposes, where they are used to image tumor cells and activate the immune system to eradicate cancer.
Collapse
Affiliation(s)
- Chunyan Wang
- Department of Ultrasonic Diagnosis, The First Hospital of China Medical University, Shenyang, China
| | - Xueyao Zhang
- Department of Cardiology, First Hospital of China Medical University, Shenyang, China
| | - Qiaobei Li
- Department of Ultrasonic Diagnosis, The First Hospital of China Medical University, Shenyang, China
| | - Yuxin Hou
- Department of Ultrasonic Diagnosis, The Benxi Hospital of China Medical University, Benxi, China
| | - Minglu Sun
- Department of Ultrasonic Diagnosis, The Cancer Hospital of China Medical University, Shenyang, China
| | - Jun Sun
- Department of Intervention, the Fourth Hospital of China Medical University, Shenyang, China
| | - Zhe Lou
- Department of Cardiovascular Ultrasonic Diagnosis, The First Hospital of China Medical University, Shenyang, China.
| | - Xu Han
- Department of Traditional Chinese medicine, The First Hospital of China Medical University, Shenyang, China.
| | - Yinyan Li
- Department of Ultrasonic Diagnosis, The First Hospital of China Medical University, Shenyang, China.
| |
Collapse
|
21
|
Dutta G, Chinnaiyan SK, Palaniyandi T, Sugumaran A, Narayanasamy D. Biogenic synthesized CuO nanoparticles and 5-fluorouracil loaded anticancer gel for HeLa cervical cancer cells. DISCOVER NANO 2024; 19:217. [PMID: 39729148 DOI: 10.1186/s11671-024-04166-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Accepted: 12/04/2024] [Indexed: 12/28/2024]
Abstract
Cervical cancer remains a significant health challenge in developing countries are high due to low HPV vaccination rates, delayed diagnosis, and restricted healthcare access. Metal nanomaterials, such as copper oxide (CuO) nanoparticles (NPs), have shown significant promise in cancer therapy due to their ability to induce apoptosis. 5-Fluorouracil (5-Fu) enhances the cytotoxic effect against cervical cancer, working synergistically with CuO NPs to maximize the therapeutic impact while potentially reducing the 5-Fu's systemic side effects. This study explores the synergistic therapeutic potential of green-synthesized CuO NPs combined with 5-Fu in a gel formulation for targeted anticancer activity against HeLa cervical cancer cells. CuO NPs were synthesized using Trichosanthes dioica dried seeds extract and incorporated into a pectin-xanthan gum-based gel. The green-synthesized CuO NPs exhibited a zeta potential of -23.7 mV, a particle size of approximately 26 nm, and spherical morphology. Characterization studies, including FTIR, viscosity, spreadability, pH, and stability assessments, confirmed the gel's suitability for vaginal delivery. In-vitro drug release showed xanthan gum extended the release up to 8 h. The MTT assay revealed PXFCu6 gel's IC50 at 11.82 ± 0.22 μg/mL, significantly more cytotoxic to HeLa cells, being 3.62 times potent than CuO NPs (IC50: 42.8 ± 0.24 μg/mL) and 1.63 times potent than 5-Fu alone (IC50: 19.3 ± 0.49 μg/mL). The antibacterial assay showed no inhibition for the plain gel, but T. dioica-mediated CuO NPs exhibited inhibition of 22.35 ± 4.9 mm. PXFCu6 gel had the more potent inhibition at 52.05 ± 1.37 mm against Escherichia coli growth. The PXFCu6 gel showed better stability at 4 °C, maintaining viscosity, pH, and drug release, unlike 25 °C where a mild degradation occurred. This research highlights the potential of the CuO NPs-5-Fu gel as a novel, effective therapeutic strategy for cervical cancer treatment.
Collapse
Affiliation(s)
- Gouranga Dutta
- Department of Pharmaceutics, SRM College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, 603203, India
| | - Santhosh Kumar Chinnaiyan
- Department of Pharmaceutics, Rajiv Gandhi Institute of Pharmaceutical Sciences and Research (RPISAR), Trikaripur, Kasargod, Kerala, 671310, India
| | | | - Abimanyu Sugumaran
- Department of Pharmaceutical Sciences, Assam University, Silchar, Assam, 788011, India.
| | - Damodharan Narayanasamy
- Department of Pharmaceutics, SRM College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, 603203, India.
| |
Collapse
|
22
|
Akgöl J, Kutlay Ö, Keskin Aktan A, Fırat F. Assessment of Modified Citrus Pectin's Effects on Dementia in the Scopolamine-Induced Alzheimer's Model in Adult Male Wistar Rats. Curr Issues Mol Biol 2024; 46:13922-13936. [PMID: 39727960 PMCID: PMC11727308 DOI: 10.3390/cimb46120832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 12/03/2024] [Accepted: 12/07/2024] [Indexed: 12/28/2024] Open
Abstract
Modified citrus pectin (MCP) modulates galectin-3, a key player in neuroinflammation linked to Alzheimer's disease. By inhibiting galectin-3, MCP reduces the brain's inflammatory response and may alleviate cognitive decline. This study examines MCP's impact on neuroinflammation, cognitive function, and its role in galectin-3 inhibition in a dementia model. Male Wistar rats were assigned to four groups: control (n = 6), scopolamine (SCP) (n = 7), SCP + MCP (n = 7), and MCP only (n = 7). MCP was administered orally at 100 mg/kg/day via drinking water for six weeks. SCP was injected intraperitoneally at 1 mg/kg for seven days to induce an Alzheimer's-type dementia model. The researchers assessed cognitive performance through the Morris Water Maze (MWM) test. After behavioral tests, blood and brain tissues, including the hippocampus, were collected and stored at -80 °C for analysis. Immunohistochemistry was used to evaluate superoxide dismutase (SOD) activity, malondialdehyde (MDA) levels, brain-derived neurotrophic factor (BDNF), and inflammatory markers (IL-1β, IL-6, TNF-α, and galectin-3). The data were analyzed with SPSS 22. SCP treatment increased lipid peroxidation (MDA) and elevated inflammatory markers (TNF-α, IL-6, and galectin-3), while reducing BDNF and impairing spatial memory. Co-administering MCP with SCP significantly reduced TNF-α, IL-6, and galectin-3 levels; increased BDNF; and improved memory performance. Although MCP did not lower MDA levels, it boosted SOD activity, suggesting antioxidant effects. Modified citrus pectin (MCP) alleviated cognitive impairments and reduced neuroinflammation in Alzheimer's-type dementia by inhibiting galectin-3. MCP also exhibited antioxidant potential, underscoring its therapeutic promise for neurodegenerative diseases.
Collapse
Affiliation(s)
- Jale Akgöl
- Department of Medical Pharmacology, Faculty of Medicine, Afyonkarahisar Health Sciences University, 03030 Afyonkarahisar, Turkey
| | - Özden Kutlay
- Department of Physiology, Faculty of Medicine, Afyonkarahisar Health Sciences University, 03030 Afyonkarahisar, Turkey; (Ö.K.); (A.K.A.)
| | - Arzu Keskin Aktan
- Department of Physiology, Faculty of Medicine, Afyonkarahisar Health Sciences University, 03030 Afyonkarahisar, Turkey; (Ö.K.); (A.K.A.)
| | - Fatma Fırat
- Department of Histology and Embryology, Faculty of Medicine, Afyonkarahisar Health Sciences University, 03030 Afyonkarahisar, Turkey;
| |
Collapse
|
23
|
Cherian E, Ts K, Kn S, Ks A, Poothicote NG. Investigation into pectin extraction and technological implementations in the food industry. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:9102-9110. [PMID: 38850093 DOI: 10.1002/jsfa.13638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 05/14/2024] [Accepted: 05/23/2024] [Indexed: 06/09/2024]
Abstract
Pectin, a complex polysaccharide found abundantly in the cell walls of fruits and vegetables, plays a pivotal role in various food applications owing to its unique gelling, thickening and stabilizing properties. As consumer preferences lean towards natural and sustainable ingredients, the demand for pectin as a food additive has surged. This burgeoning interest has prompted a comprehensive exploration into both the extraction methods of pectin from its natural sources and its diverse technological applications in the food industry. The extraction process involves breaking down the plant cell wall to release the pectin. Traditional methods such as hot acid extraction have been widely used, but advances in technology have spurred the development of novel techniques like enzyme-assisted extraction and microwave-assisted extraction. These methods aim not only to enhance the yield and purity of extracted pectin but also to minimize environmental impact and energy consumption. Pectin's versatility has positioned it as a valuable ingredient in the food industry. Its ability to form gels under specific conditions makes it a key component in the production of jams, jellies and fruit preserves. Additionally, pectin acts as a stabilizer in dairy products, prevents syneresis in baked goods and improves the texture of confectionery items. The application of pectin goes beyond its role as a gelling agent; it is also employed in the encapsulation of bioactive compounds, enhancing the functional properties of various food products. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Elsa Cherian
- Department of Food Technology, Saintgits College of Engineering, Kottayam, India
| | - Khadeeja Ts
- Department of Food Technology, Saintgits College of Engineering, Kottayam, India
| | - Saheersha Kn
- Department of Food Technology, Saintgits College of Engineering, Kottayam, India
| | - Ashitha Ks
- Department of Food Technology, Saintgits College of Engineering, Kottayam, India
| | - Nisha G Poothicote
- Department of Food Technology, Saintgits College of Engineering, Kottayam, India
| |
Collapse
|
24
|
Han J, Shen Y, Cao R, Wang W, Duan J, Duan J, Bao C. Active herbal ingredients and drug delivery design for tumor therapy: a review. Chin J Nat Med 2024; 22:1134-1162. [PMID: 39725513 DOI: 10.1016/s1875-5364(24)60741-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Indexed: 12/28/2024]
Abstract
Active herbal ingredients are gaining recognition for their potent anti-tumor efficacy, attributable to various mechanisms including tumor cell inhibition, immune system activation, and tumor angiogenesis inhibition. Recent studies have revealed that numerous anti-tumor herbal ingredients, such as ginsenosides, ursolic acid, oleanolic acid, and Angelica sinensis polysaccharides, can be utilized to develop smart drug carriers like liposomes, micelles, and nanoparticles. These carriers can deliver active herbal ingredients and co-deliver anti-tumor drugs to enhance drug accumulation at tumor sites, thereby improving anti-tumor efficacy. This study provides a comprehensive analysis of the mechanisms by which these active herbal ingredients-derived carriers enhance therapeutic outcomes. Additionally, it highlights the structural properties of these active herbal ingredients, demonstrating how their unique features can be strategically employed to design smart drug carriers with improved anti-tumor efficacy. The insights presented aim to serve as a reference and guide future innovations in the design and application of smart drug carriers for cancer therapy that leverage active herbal ingredients.
Collapse
Affiliation(s)
- Jing Han
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Province Key Laboratory of High Technology Research, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yanxi Shen
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Ruiying Cao
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Weiren Wang
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Province Key Laboratory of High Technology Research, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Jinao Duan
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Province Key Laboratory of High Technology Research, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Jialun Duan
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Province Key Laboratory of High Technology Research, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Chunjie Bao
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Province Key Laboratory of High Technology Research, Nanjing University of Chinese Medicine, Nanjing 210023, China; School of Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| |
Collapse
|
25
|
Chowdhury MAH, Sarkar F, Reem CSA, Rahman SM, Mahamud AGMSU, Rahman MA, Md Ashrafudoulla. Enzyme applications in baking: From dough development to shelf-life extension. Int J Biol Macromol 2024; 282:137020. [PMID: 39489247 DOI: 10.1016/j.ijbiomac.2024.137020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 10/10/2024] [Accepted: 10/27/2024] [Indexed: 11/05/2024]
Abstract
Enzymes play a vital role in baking, providing significant benefits from dough development to extending shelf life, which enhances product quality and consistency. Acting as biological catalysts, enzymes such as proteases and amylases break down proteins and starches, modifying dough rheology and improving fermentation. Lipases and oxidases further refine dough texture through emulsification and oxidation, while lipases also produce fatty acid derivatives during fermentation, contributing to the flavor and aroma of baked goods. Xylanases and cellulases optimize dough handling by altering fiber structure, and amylases help maintain moisture and texture, extending the shelf life of baked products. Ensuring regulatory compliance is essential when incorporating enzymes into baking processes, as bakers must address enzyme stability and determine appropriate dosages for reliable outcomes. Ongoing research is exploring innovative enzyme applications, including customized enzyme blends that target specific product qualities, offering new possibilities for product differentiation and innovation. In summary, enzyme-driven advancements present bakers with opportunities to improve product quality, shelf life, and consistency, while meeting industry regulations. This review emphasizes the critical impact enzymes have on dough properties and finished product characteristics, highlighting their role in driving future innovations within the baking industry.
Collapse
Affiliation(s)
- Md Anamul Hasan Chowdhury
- Department of Food Safety and Regulatory Science, Chung-Ang University, Anseong, -si, Gyeonggi-Do 17546, Republic of Korea
| | - Feroj Sarkar
- Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh
| | - Chowdhury Sanat Anjum Reem
- Department of Food Safety and Regulatory Science, Chung-Ang University, Anseong, -si, Gyeonggi-Do 17546, Republic of Korea
| | - Sk Mustafizur Rahman
- Department of Nutrition and Food Engineering, Daffodil International University, Birulia 1216, Bangladesh
| | - A G M Sofi Uddin Mahamud
- Department of Food Safety and Regulatory Science, Chung-Ang University, Anseong, -si, Gyeonggi-Do 17546, Republic of Korea
| | - Md Ashikur Rahman
- Department of Food Safety and Regulatory Science, Chung-Ang University, Anseong, -si, Gyeonggi-Do 17546, Republic of Korea
| | | |
Collapse
|
26
|
Shah YA, Bhatia S, Chinnam S, Al‐Harrasi A, Tarahi M, Khan TS, Alam T, Koca E, Aydemir LY, Philip AK, Afzaal M, Khan MR, Pratap‐Singh A. Myrrh Oleo-Gum Resin as a Functional Additive in Pectin and κ-Carrageenan Composite Films for Food Packaging. Food Sci Nutr 2024; 12:10284-10295. [PMID: 39723063 PMCID: PMC11666965 DOI: 10.1002/fsn3.4524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 08/03/2024] [Accepted: 09/23/2024] [Indexed: 12/28/2024] Open
Abstract
Myrrh oleo-gum-resin (MOGR) is a natural substance that has a rich history of medicinal use due to its anti-inflammatory, antimicrobial, and antioxidant properties. The present study reports on the fabrication and assessment of pectin and K-carrageenan composite films infused with varying proportions (0.3%, 0.5%, and 0.7%) of MOGR. Morphological analysis of the film samples was conducted using Scanning Electron Microscopy (SEM) and Atomic Force Microscopy (AFM). The results indicated that the introduction of MOGR led to a notable increase in surface roughness. The SEM micrographs of the films showed that the MOGR addition had an important effect on the microstructure of the film. The surface hydrophobicity of the MOGR-loaded films increased, as confirmed by the rise in the contact angle. Moreover, there was an increase in the thickness (0.062 ± 0.004-0.095 ± 0.006 mm) and opacity (1.24 ± 0.07-9.41 ± 0.24) of the films with the addition of MOGR; however, tensile strength (7.30 ± 0.50-4.92 ± 0.34 MPa), elongation at break (32.41% ± 1.0%-29.70% ± 0.24%), and barrier properties decreased. Additionally, a rise in MOGR concentration corresponded to a rise in overall color difference ΔE (0.77 ± 0.03-5.09 ± 0.49) of the films. Notably, the incorporation of MOGR led to an increase in the antioxidant activity of the composite films, indicating potential applications in functional packaging materials.
Collapse
Affiliation(s)
- Yasir Abbas Shah
- Natural and Medical Sciences Research CenterUniversity of NizwaNizwaOman
| | - Saurabh Bhatia
- Natural and Medical Sciences Research CenterUniversity of NizwaNizwaOman
- School of Health SciencesSchool of Health Science, University of Petroleum and Energy StudiesDehradunIndia
| | - Sampath Chinnam
- Department of ChemistryM.S. Ramaiah Institute of TechnologyBengaluruKarnatakaIndia
| | - Ahmed Al‐Harrasi
- Natural and Medical Sciences Research CenterUniversity of NizwaNizwaOman
| | - Mohammad Tarahi
- Department of Food Science and TechnologySchool of Agriculture, Shiraz UniversityShirazIran
| | - Talha Shireen Khan
- Natural and Medical Sciences Research CenterUniversity of NizwaNizwaOman
| | - Tanveer Alam
- Nanotechnology Research and Application CenterSabanci University Nanotechnology Research and Application Center, Sabanci University, Orta MahalleIstanbulTurkey
| | - Esra Koca
- Department of Food Engineering, Faculty of EngineeringAdana Alparslan Turkes Science and Technology UniversityAdanaTurkey
| | - Levent Yurdaer Aydemir
- Department of Food Engineering, Faculty of EngineeringAdana Alparslan Turkes Science and Technology UniversityAdanaTurkey
| | - Anil K. Philip
- School of PharmacySchool of Pharmacy, University of NizwaNizwaOman
| | - Muhammad Afzaal
- Food Safety and Biotechnology Lab, Department of Food ScienceGovernment College University FaisalabadFaisalabadPakistan
| | - Mahbubur Rahman Khan
- Department of Food Processing and PreservationHajee Mohammad Danesh Science and Technology UniversityDinajpurBangladesh
| | - Anubhav Pratap‐Singh
- BC Food and Beverage Innovation Centre, Faculty of Land and Food SystemsThe University of British ColumbiaVancouverBritish ColumbiaCanada
| |
Collapse
|
27
|
Nishiyama-Hortense YP, Olivati C, Shimizu-Marin VD, Gonçales AC, Soares Janzantti N, Da Silva R, Lago-Vanzela ES, Gómez-Alonso S. Structured Fruit Cube Snack of BRS Vitoria Grape with Gala Apple: Phenolic Composition and Sensory Attributes. Molecules 2024; 29:5205. [PMID: 39519846 PMCID: PMC11547337 DOI: 10.3390/molecules29215205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 10/19/2024] [Accepted: 10/25/2024] [Indexed: 11/16/2024] Open
Abstract
This study developed a structured fruit cube (FC) snack using only natural ingredients, specifically red grape and apple, without hydrocolloids and sucrose. After development, physicochemical characterization and analysis of phenolic compounds (PCs), including anthocyanins, flavonols, and hydroxycinnamic acid derivatives, using HPLC-DAD-ESI-MS/MS, were conducted. Sensory quality was also assessed through an acceptance and sensory profile analysis using the rate-all-that-apply methodology. The results showed that the FC had physicochemical characteristics similar to other structured fruits that use hydrocolloids. Additionally, they presented a complex composition of PCs, predominantly including anthocyanins derived from malvidin (tri-substituted methoxylated anthocyanins), notably cumarylated ones. Flavonols compounds comprised the 3-glucoside series of myricetin, quercetin, laricitrin, kaempferol, isorhamnetin, and syringetin; the 3-galactoside series of myricetin and quercetin; and the 3-glucuronic acid series of myricetin and quercitin, along with rutin. The presence of caftaric acid, coutaric acid, fertaric acid, and p-coumaroyl-glucose was also detected, alongside caffeic acid-O-glucoside 1, caffeic acid-O-glucoside 2, chlorogenic acid, 4-O-p-coumaroylquinic acid, and dicaffeoylquinic acid. In conclusion, the selection of natural ingredients was technologically suitable for obtaining an FC. Despite using conventional drying at 60 °C, the product showed notable concentrations of PCs and also achieved great sensory acceptance.
Collapse
Affiliation(s)
- Yara Paula Nishiyama-Hortense
- Institute of Biosciences, Humanities and Exact Sciences (Ibilce), Campus São José do Rio Preto, São Paulo State University (UNESP), Rua Cristóvão Colombo n° 2265, São José do Rio Preto 15054-000, Brazil; (C.O.); (V.D.S.-M.); (A.C.G.); (N.S.J.); (R.D.S.); (E.S.L.-V.)
- Faculty of Chemical Sciences and Technologies, University of Castilla-La Mancha (UCLM), Avenue Camilo José Cela s/n, 13071 Ciudad Real, Spain;
| | - Carolina Olivati
- Institute of Biosciences, Humanities and Exact Sciences (Ibilce), Campus São José do Rio Preto, São Paulo State University (UNESP), Rua Cristóvão Colombo n° 2265, São José do Rio Preto 15054-000, Brazil; (C.O.); (V.D.S.-M.); (A.C.G.); (N.S.J.); (R.D.S.); (E.S.L.-V.)
- Faculty of Chemical Sciences and Technologies, University of Castilla-La Mancha (UCLM), Avenue Camilo José Cela s/n, 13071 Ciudad Real, Spain;
| | - Victoria Diniz Shimizu-Marin
- Institute of Biosciences, Humanities and Exact Sciences (Ibilce), Campus São José do Rio Preto, São Paulo State University (UNESP), Rua Cristóvão Colombo n° 2265, São José do Rio Preto 15054-000, Brazil; (C.O.); (V.D.S.-M.); (A.C.G.); (N.S.J.); (R.D.S.); (E.S.L.-V.)
| | - Ana Carolina Gonçales
- Institute of Biosciences, Humanities and Exact Sciences (Ibilce), Campus São José do Rio Preto, São Paulo State University (UNESP), Rua Cristóvão Colombo n° 2265, São José do Rio Preto 15054-000, Brazil; (C.O.); (V.D.S.-M.); (A.C.G.); (N.S.J.); (R.D.S.); (E.S.L.-V.)
| | - Natália Soares Janzantti
- Institute of Biosciences, Humanities and Exact Sciences (Ibilce), Campus São José do Rio Preto, São Paulo State University (UNESP), Rua Cristóvão Colombo n° 2265, São José do Rio Preto 15054-000, Brazil; (C.O.); (V.D.S.-M.); (A.C.G.); (N.S.J.); (R.D.S.); (E.S.L.-V.)
| | - Roberto Da Silva
- Institute of Biosciences, Humanities and Exact Sciences (Ibilce), Campus São José do Rio Preto, São Paulo State University (UNESP), Rua Cristóvão Colombo n° 2265, São José do Rio Preto 15054-000, Brazil; (C.O.); (V.D.S.-M.); (A.C.G.); (N.S.J.); (R.D.S.); (E.S.L.-V.)
| | - Ellen Silva Lago-Vanzela
- Institute of Biosciences, Humanities and Exact Sciences (Ibilce), Campus São José do Rio Preto, São Paulo State University (UNESP), Rua Cristóvão Colombo n° 2265, São José do Rio Preto 15054-000, Brazil; (C.O.); (V.D.S.-M.); (A.C.G.); (N.S.J.); (R.D.S.); (E.S.L.-V.)
| | - Sergio Gómez-Alonso
- Faculty of Chemical Sciences and Technologies, University of Castilla-La Mancha (UCLM), Avenue Camilo José Cela s/n, 13071 Ciudad Real, Spain;
- Regional Institute for Applied Scientific Research (IRICA), University of Castilla-La Mancha (UCLM), Avenue Camilo José Cela s/n, 13071 Ciudad Real, Spain
| |
Collapse
|
28
|
Pang Y, Peng Z, Ding K. An in-depth review: Unraveling the extraction, structure, bio-functionalities, target molecules, and applications of pectic polysaccharides. Carbohydr Polym 2024; 343:122457. [PMID: 39174094 DOI: 10.1016/j.carbpol.2024.122457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 06/29/2024] [Accepted: 07/01/2024] [Indexed: 08/24/2024]
Abstract
Pectic polysaccharides have long been a challenging subject of research in the field of macromolecular science, given their complex structures and wide range of biological effects. However, the extensive exploration of pectic polysaccharides has been limited due to the intricacy of their structures. In this comprehensive review, we aim to provide a thorough summary of the existing knowledge on pectic polysaccharides, with a particular focus on aspects such as classification, extraction methodologies, structural analysis, elucidation of biological activities, and exploration of target molecules and signaling pathways. By conducting a comprehensive analysis of existing literature and research achievements, we strive to establish a comprehensive and systematic framework that can serve as a reference and guide for further investigations into pectic polysaccharides. Furthermore, this review delves into the applications of pectic polysaccharides beyond their fundamental attributes and characteristics, exploring their potential in fields such as materials, food, and pharmaceuticals. We pay special attention to the promising opportunities for pectic polysaccharides in the pharmaceutical domain and provide an overview of related drug development research. The aim of this review is to facilitate a holistic understanding of pectic polysaccharides by incorporating multifaceted research, providing valuable insights for further in-depth investigations into this significant polymer.
Collapse
Affiliation(s)
- Yunrui Pang
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Science, SSIP Healthcare and Medicine Demonstration Zone, Zhongshan Tsuihang New District, Zhongshan 528400, PR China; Carbohydrate Drug Research Center, CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, PR China; University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, PR China
| | - Zhigang Peng
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Science, SSIP Healthcare and Medicine Demonstration Zone, Zhongshan Tsuihang New District, Zhongshan 528400, PR China; Carbohydrate Drug Research Center, CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, PR China; China School of Life Science and Technology, China Pharmaceutical University, Nanjing 211198, PR China
| | - Kan Ding
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Science, SSIP Healthcare and Medicine Demonstration Zone, Zhongshan Tsuihang New District, Zhongshan 528400, PR China; Carbohydrate Drug Research Center, CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, PR China; University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, PR China.
| |
Collapse
|
29
|
Shen J, Huang W, You Y, Zhan J. Controlling strategies of methanol generation in fermented fruit wine: Pathways, advances, and applications. Compr Rev Food Sci Food Saf 2024; 23:e70048. [PMID: 39495577 DOI: 10.1111/1541-4337.70048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 09/24/2024] [Accepted: 10/02/2024] [Indexed: 11/06/2024]
Abstract
Methanol is widely existed in fermented fruit wines (FFWs), and the concentration is excessive at times due to inappropriate fermentation conditions. Methanol is neurotoxic, and its metabolites of formaldehyde and formic acid can cause organic lesions and central respiratory system disorders. FFWs with unspecified methanol limits are often produced with reference to grape wine standards (250/400 mg/L). To clarify the causes of methanol production in FFWs and minimize the methanol content, this study summarizes the current process methods commonly applied for methanol reduction in FFWs and proposes novel potential controlling strategies from the perspective of raw materials (pectin, pectinase, and yeast), which are mainly the low esterification modification and removal of pectin, passivation of the pectinase activity, and the gene editing of yeast to target the secretion of pectinases and modulation of the glycine metabolic pathway. The modified raw materials combined with optimized fermentation processes will hopefully be able to improve the current situation of high methanol content in FFWs. Methanol detection technologies have been outlined and combined with machine learning that will potentially guide the production of low-methanol FFWs and the setting of methanol limits for specific FFW.
Collapse
Affiliation(s)
- Ju Shen
- College of Food Science and Nutritional Engineering, Beijing Key Laboratory of Viticulture and Enology, China Agricultural University, Beijing, China
| | - Weidong Huang
- College of Food Science and Nutritional Engineering, Beijing Key Laboratory of Viticulture and Enology, China Agricultural University, Beijing, China
| | - Yilin You
- College of Food Science and Nutritional Engineering, Beijing Key Laboratory of Viticulture and Enology, China Agricultural University, Beijing, China
| | - Jicheng Zhan
- College of Food Science and Nutritional Engineering, Beijing Key Laboratory of Viticulture and Enology, China Agricultural University, Beijing, China
| |
Collapse
|
30
|
Ansari P, Khan JT, Chowdhury S, Reberio AD, Kumar S, Seidel V, Abdel-Wahab YHA, Flatt PR. Plant-Based Diets and Phytochemicals in the Management of Diabetes Mellitus and Prevention of Its Complications: A Review. Nutrients 2024; 16:3709. [PMID: 39519546 PMCID: PMC11547802 DOI: 10.3390/nu16213709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 09/27/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024] Open
Abstract
Diabetes mellitus (DM) is currently regarded as a global public health crisis for which lifelong treatment with conventional drugs presents limitations in terms of side effects, accessibility, and cost. Type 2 diabetes (T2DM), usually associated with obesity, is characterized by elevated blood glucose levels, hyperlipidemia, chronic inflammation, impaired β-cell function, and insulin resistance. If left untreated or when poorly controlled, DM increases the risk of vascular complications such as hypertension, nephropathy, neuropathy, and retinopathy, which can be severely debilitating or life-threatening. Plant-based foods represent a promising natural approach for the management of T2DM due to the vast array of phytochemicals they contain. Numerous epidemiological studies have highlighted the importance of a diet rich in plant-based foods (vegetables, fruits, spices, and condiments) in the prevention and management of DM. Unlike conventional medications, such natural products are widely accessible, affordable, and generally free from adverse effects. Integrating plant-derived foods into the daily diet not only helps control the hyperglycemia observed in DM but also supports weight management in obese individuals and has broad health benefits. In this review, we provide an overview of the pathogenesis and current therapeutic management of DM, with a particular focus on the promising potential of plant-based foods.
Collapse
Affiliation(s)
- Prawej Ansari
- Comprehensive Diabetes Center, Heersink School of Medicine, University of Alabama, Birmingham (UAB), Birmingham, AL 35233, USA
- School of Pharmacy and Public Health, Department of Pharmacy, Independent University, Bangladesh (IUB), Dhaka 1229, Bangladesh
- Centre for Diabetes Research, School of Biomedical Sciences, Ulster University, Coleraine BT52 1SA, UK; (Y.H.A.A.-W.); (P.R.F.)
| | - Joyeeta T. Khan
- School of Pharmacy and Public Health, Department of Pharmacy, Independent University, Bangladesh (IUB), Dhaka 1229, Bangladesh
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences (UAMS), Little Rock, AR 72205, USA
| | - Suraiya Chowdhury
- School of Pharmacy and Public Health, Department of Pharmacy, Independent University, Bangladesh (IUB), Dhaka 1229, Bangladesh
| | - Alexa D. Reberio
- School of Pharmacy and Public Health, Department of Pharmacy, Independent University, Bangladesh (IUB), Dhaka 1229, Bangladesh
| | - Sandeep Kumar
- Comprehensive Diabetes Center, Heersink School of Medicine, University of Alabama, Birmingham (UAB), Birmingham, AL 35233, USA
| | - Veronique Seidel
- Natural Products Research Laboratory, Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, UK;
| | - Yasser H. A. Abdel-Wahab
- Centre for Diabetes Research, School of Biomedical Sciences, Ulster University, Coleraine BT52 1SA, UK; (Y.H.A.A.-W.); (P.R.F.)
| | - Peter R. Flatt
- Centre for Diabetes Research, School of Biomedical Sciences, Ulster University, Coleraine BT52 1SA, UK; (Y.H.A.A.-W.); (P.R.F.)
| |
Collapse
|
31
|
Son SA, Kim Y, Kim E, Lee KH, Kang WS, Kim JS, Hwang K, Kim S. Physicochemical Properties of Low-Molecular-Weight Homogalacturonan Pectin from Enzyme-Hydrolyzed Red Okra. Foods 2024; 13:3353. [PMID: 39517137 PMCID: PMC11545615 DOI: 10.3390/foods13213353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 10/10/2024] [Accepted: 10/18/2024] [Indexed: 11/16/2024] Open
Abstract
In this study, we focused on reducing the molecular weight of purified red okra pectin using various hydrolytic enzymes and evaluating its physicochemical properties or characterization. The enzyme treatments targeted both the main pectin chain and the side-chain sugars, resulting in a reduction in the molecular weight by approximately 10% (from 647 kDa) to 60% (down to 252 kDa). Both the purified red okra pectin and enzyme-treated pectins exhibited a homogalacturonan (HG)-type backbone. Fourier transform infrared (FT-IR) spectroscopy revealed a decrease in the absorbance peak for the pectin backbone (1200-1000 cm-1) in the low-molecular-weight (LMW) pectin. The most significant decrease was observed at 3300 cm-1 in pectin treated with both RGH+RGAE enzymes, indicating reduced sugar bonds. These results demonstrate the physicochemical changes in LMW red okra pectin following enzyme treatment and confirm its potential applications due to its unique characteristics.
Collapse
Affiliation(s)
- Seon ah Son
- Central R&D Center, B&Tech Co., Ltd., Naju 58205, Republic of Korea; (S.a.S.); (Y.K.); (E.K.); (K.H.L.); (W.S.K.); (J.S.K.)
| | - Youngbae Kim
- Central R&D Center, B&Tech Co., Ltd., Naju 58205, Republic of Korea; (S.a.S.); (Y.K.); (E.K.); (K.H.L.); (W.S.K.); (J.S.K.)
| | - Eun Kim
- Central R&D Center, B&Tech Co., Ltd., Naju 58205, Republic of Korea; (S.a.S.); (Y.K.); (E.K.); (K.H.L.); (W.S.K.); (J.S.K.)
| | - Ki Hoon Lee
- Central R&D Center, B&Tech Co., Ltd., Naju 58205, Republic of Korea; (S.a.S.); (Y.K.); (E.K.); (K.H.L.); (W.S.K.); (J.S.K.)
| | - Wan Seok Kang
- Central R&D Center, B&Tech Co., Ltd., Naju 58205, Republic of Korea; (S.a.S.); (Y.K.); (E.K.); (K.H.L.); (W.S.K.); (J.S.K.)
| | - Jin Seok Kim
- Central R&D Center, B&Tech Co., Ltd., Naju 58205, Republic of Korea; (S.a.S.); (Y.K.); (E.K.); (K.H.L.); (W.S.K.); (J.S.K.)
| | - Kwontack Hwang
- Department of Food Science and Nutrition, Nambu University, Gwangju 62271, Republic of Korea;
| | - Sunoh Kim
- Central R&D Center, B&Tech Co., Ltd., Naju 58205, Republic of Korea; (S.a.S.); (Y.K.); (E.K.); (K.H.L.); (W.S.K.); (J.S.K.)
| |
Collapse
|
32
|
Wang X, Zhao C, Wang J, Lu X, Bao Y, Zhang D, Zheng J. Structure characterization and gelling properties of RG-I-enriched pectins extracted from citrus peels using four different methods. Carbohydr Polym 2024; 342:122410. [PMID: 39048202 DOI: 10.1016/j.carbpol.2024.122410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/13/2024] [Accepted: 06/14/2024] [Indexed: 07/27/2024]
Abstract
To facilitate the application of rhamnogalacturonan-I (RG-I)-enriched pectins (RGPs) as novel, healthy, and gelling food additives, this study compared the structural characteristics and gelling properties of RGPs extracted from citrus peel via four methods (alkali: AK, high-temperature/pressure: TP, citric acid: CA, and enzyme-assisted: EA extractions). AK and CA yielded pectins with the highest RG-I proportions (54.8 % and 51.9 %, respectively) by disrupting the homogalacturonan region; TP and EA increased the RG-I proportions by ~10 %. Among the four methods, AK induced the lowest degree of esterification (DE) (6.7 %) and longer side chains that form strong entanglement, contributing to its highest gel hardness. The relatively low DE (18.5 %) of CA RGP facilitated stable gel formation. Notably, its highly branched RG-I region afforded more intramolecular hydrophobic interactions, making a more highly cross-linked gel network of better gel resilience. In contrast, TP induced the highest DE (57 %) and curved molecular chains; it inhibited Ca2+ binding, entanglement, and intramolecular hydrophobic interactions, and thus no gel formed. EA RGP was associated with the lowest molecular size, rendering it more difficult for Ca2+ to form links, which resulted no gel. These findings offer insights into the relationship among the extraction methods, molecular structures, and gelling properties of RGPs.
Collapse
Affiliation(s)
- Xueping Wang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Human and Animal Physiology, Wageningen University & Research, 6708 WD Wageningen, the Netherlands
| | - Chengying Zhao
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Jirong Wang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xingmiao Lu
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yuming Bao
- Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Deli Zhang
- Human and Animal Physiology, Wageningen University & Research, 6708 WD Wageningen, the Netherlands
| | - Jinkai Zheng
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China; College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China.
| |
Collapse
|
33
|
Yi L, Cheng L, Yang Q, Shi K, Han F, Luo W, Duan S. Source, Extraction, Properties, and Multifunctional Applications of Pectin: A Short Review. Polymers (Basel) 2024; 16:2883. [PMID: 39458710 PMCID: PMC11511015 DOI: 10.3390/polym16202883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 10/10/2024] [Accepted: 10/11/2024] [Indexed: 10/28/2024] Open
Abstract
Pectin, a heteropolysaccharide derived from plant cell walls, is essential in the food, pharmaceutical, and environmental industries. Currently, citrus and apple peels are the primary sources for commercial pectin production. The yield and quality of pectin extracted from various plant sources significantly differ based on the extraction methods employed, which include physical, chemical, and biological processes. The complex structures of pectin, composed of polygalacturonic acid and rhamnogalacturonan, influence its physicochemical properties and, consequently, its functionality. As a common polysaccharide, pectin finds applications across multiple sectors. In the food industry, it acts as a gelling agent and a packaging material; in pharmaceuticals, it is utilized for drug delivery and wound healing. Environmentally, pectin contributes to wastewater treatment by adsorbing pollutants. Current research focuses on alternative sources, sustainable extraction methods, and multifunctional applications of pectin. Ongoing studies aim to enhance extraction technologies and broaden the applications of pectin, thereby supporting sustainable development goals.
Collapse
Affiliation(s)
- Le Yi
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Science, No. 348 Xianjia Road, Changsha 410205, China
| | - Lifeng Cheng
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Science, No. 348 Xianjia Road, Changsha 410205, China
| | - Qi Yang
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Science, No. 348 Xianjia Road, Changsha 410205, China
| | - Ke Shi
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Science, No. 348 Xianjia Road, Changsha 410205, China
| | - Fengbo Han
- Luntai County Star Bo Clothing Co., Ltd., Bazhou 841600, China
| | - Wei Luo
- Key Laboratory of Carbohyrate Chemistry and Biotechnology, Jiangnan University, Ministry of Education, No. 1800 Lihu Road, Wuxi 214122, China
| | - Shengwen Duan
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Science, No. 348 Xianjia Road, Changsha 410205, China
| |
Collapse
|
34
|
Stoica M, Bichescu CI, Crețu CM, Dragomir M, Ivan AS, Podaru GM, Stoica D, Stuparu-Crețu M. Review of Bio-Based Biodegradable Polymers: Smart Solutions for Sustainable Food Packaging. Foods 2024; 13:3027. [PMID: 39410063 PMCID: PMC11475208 DOI: 10.3390/foods13193027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 09/07/2024] [Accepted: 09/23/2024] [Indexed: 10/20/2024] Open
Abstract
Conventional passive packaging plays a crucial role in food manufacturing by protecting foods from various external influences. Most packaging materials are polymer-based plastics derived from fossil carbon sources, which are favored for their versatility, aesthetic appeal, and cost-effectiveness. However, the extensive use of these materials poses significant environmental challenges due to their fossil-based origins and persistence in the environment. Global plastic consumption for packaging is expected to nearly triple by 2060, exacerbating the ecological crisis. Moreover, globalization has increased access to a diverse range of foods from around the world, heightening the importance of packaging in providing healthier and safer foods with extended shelf life. In response to these challenges, there is a growing shift to eco-friendly active packaging that not only protects but also preserves the authentic qualities of food, surpassing the roles of conventional passive packaging. This article provides a comprehensive review on the viability, benefits, and challenges of implementing bio-based biodegradable polymers in active food packaging, with the dual goals of environmental sustainability and extending food shelf life.
Collapse
Affiliation(s)
- Maricica Stoica
- Cross-Border Faculty, “Dunarea de Jos” University of Galati, 111 Domneasca Street, 800201 Galati, Romania; (M.S.); (A.S.I.); (G.M.P.)
| | - Cezar Ionuț Bichescu
- Cross-Border Faculty, “Dunarea de Jos” University of Galati, 111 Domneasca Street, 800201 Galati, Romania; (M.S.); (A.S.I.); (G.M.P.)
| | - Carmen-Mihaela Crețu
- Faculty of Economic Sciences and Business Administration, “Danubius” University, 3 Galați, 800654 Galati, Romania;
| | - Maricela Dragomir
- Faculty of Physical Education and Sports, “Dunarea de Jos” University of Galati, 63-65 Gării Street, 800003 Galati, Romania;
| | - Angela Stela Ivan
- Cross-Border Faculty, “Dunarea de Jos” University of Galati, 111 Domneasca Street, 800201 Galati, Romania; (M.S.); (A.S.I.); (G.M.P.)
| | - Geanina Marcela Podaru
- Cross-Border Faculty, “Dunarea de Jos” University of Galati, 111 Domneasca Street, 800201 Galati, Romania; (M.S.); (A.S.I.); (G.M.P.)
| | - Dimitrie Stoica
- Faculty of Economics and Business Administration, “Dunarea de Jos” University of Galati, 59-61 Balcescu Street, 800001 Galati, Romania
| | - Mariana Stuparu-Crețu
- Faculty of Medicine and Pharmacy, “Dunarea de Jos” University of Galati, 35 Alexandru Ioan Cuza Street, 800010 Galati, Romania;
| |
Collapse
|
35
|
Lin M, Sun G, Hu X, Chen F, Zhu Y. Role of galacturonic acid in acrylamide formation: Insights from structural analysis. Food Chem 2024; 452:139282. [PMID: 38723562 DOI: 10.1016/j.foodchem.2024.139282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 03/12/2024] [Accepted: 04/06/2024] [Indexed: 06/01/2024]
Abstract
Acrylamide (AA) is a neoformed compound in heated foods, mainly produced between asparagine (Asn) and glucose (Glc) during the Maillard reaction. Galacturonic acid (GalA), the major component of pectin, exhibits high activity in AA formation. This study investigated the pathway for AA formation between GalA and Asn. Three possible pathways were proposed: 1) The carbonyl group of GalA directly interacts with Asn to produce AA; 2) GalA undergoes an oxidative cleavage reaction to release α-dicarbonyl compounds, which subsequently leads to AA production; 3) 5-formyl-2-furancarboxylic acid, the thermal degradation product of GalA, reacts with Asn to generate AA. Structural analysis revealed that the COOH group in GalA accelerated intramolecular protonation and electron transfer processes, thereby increasing the formation of AA precursors such as decarboxylated Schiff base and α-dicarbonyl compounds, promoting AA formation. This study provides a theoretical basis and new insights into the formation and control of AA.
Collapse
Affiliation(s)
- Mengyi Lin
- College of Food Science and Nutritional Engineering, National Engineering Research Centre for Fruits and Vegetables Processing, Key Laboratory of Storage and Processing of Fruits and Vegetables, Ministry of Agriculture, Engineering Research Centre for Fruits and Vegetables Processing, Ministry of Education, China Agricultural University, Beijing 100083, China
| | - Guoyu Sun
- College of Food Science and Nutritional Engineering, National Engineering Research Centre for Fruits and Vegetables Processing, Key Laboratory of Storage and Processing of Fruits and Vegetables, Ministry of Agriculture, Engineering Research Centre for Fruits and Vegetables Processing, Ministry of Education, China Agricultural University, Beijing 100083, China
| | - Xiaosong Hu
- College of Food Science and Nutritional Engineering, National Engineering Research Centre for Fruits and Vegetables Processing, Key Laboratory of Storage and Processing of Fruits and Vegetables, Ministry of Agriculture, Engineering Research Centre for Fruits and Vegetables Processing, Ministry of Education, China Agricultural University, Beijing 100083, China
| | - Fang Chen
- College of Food Science and Nutritional Engineering, National Engineering Research Centre for Fruits and Vegetables Processing, Key Laboratory of Storage and Processing of Fruits and Vegetables, Ministry of Agriculture, Engineering Research Centre for Fruits and Vegetables Processing, Ministry of Education, China Agricultural University, Beijing 100083, China.
| | - Yuchen Zhu
- College of Food Science and Nutritional Engineering, National Engineering Research Centre for Fruits and Vegetables Processing, Key Laboratory of Storage and Processing of Fruits and Vegetables, Ministry of Agriculture, Engineering Research Centre for Fruits and Vegetables Processing, Ministry of Education, China Agricultural University, Beijing 100083, China.
| |
Collapse
|
36
|
Guruchandran S, Rajendra Prasath BB, Sudhakar S, Mani E. Development of Hematite Nano Ellipsoids/Pectin Composite Films for Green Packaging Applications. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:18418-18429. [PMID: 39163477 DOI: 10.1021/acs.langmuir.4c01095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/22/2024]
Abstract
Synthetic packaging materials are known to cause serious environmental and human health problems. Among the eco-friendly biopolymers from nonfood sources that are suitable for packaging applications, pectin is a promising candidate. However, native pectin films (NPF) exhibit poor mechanical strength, high hydrophilicity, and poor gas diffusion barrier properties. These shortcomings offset the advantages of pectin as a potential packaging material. To address these limitations, in this study, hematite nano ellipsoids (HNEs) were incorporated as fillers to reinforce native pectin films. This reinforcement resulted in substantial improvements in the mechanical properties, hydrophobicity, thermal stability, barrier properties, and optical attributes of pectin films. Compared to NPF, the pectin-hematite composite film exhibited a 35% increase in tensile strength, a 30° increase in contact angle, a 6-fold increase in the oxygen diffusion barrier properties, and a 20% increase in the water vapor barrier properties. This study presents a sustainable, biocompatible, and biodegradable packaging solution by capitalizing on eco-friendly biopolymer and nanoparticle engineering.
Collapse
Affiliation(s)
- Srisowmeya Guruchandran
- Polymer Engineering and Colloid Science Lab, Department of Chemical Engineering, Indian Institute of Technology Madras, Chennai 600036, India
| | | | - Swathi Sudhakar
- Department of Applied Mechanics and Biomedical Engineering, Indian Institute of Technology, Madras, Chennai 600036, India
| | - Ethayaraja Mani
- Polymer Engineering and Colloid Science Lab, Department of Chemical Engineering, Indian Institute of Technology Madras, Chennai 600036, India
| |
Collapse
|
37
|
Huang J, Wu Z, Quan W, Ye X, Dai X, Luo J, Han X, Li X, Zheng W. Anti-α-1,4-D-polygalacturonic acid antibodies as a new biomarker for juvenile idiopathic arthritis. Clin Rheumatol 2024; 43:2919-2926. [PMID: 38997543 PMCID: PMC11330397 DOI: 10.1007/s10067-024-07061-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 06/30/2024] [Accepted: 07/04/2024] [Indexed: 07/14/2024]
Abstract
OBJECTIVE Diagnosing juvenile idiopathic arthritis (JIA) is challenging. Our study aimed to investigate the clinical significance of anti-α-1,4-D-polygalacturonic acid (PGA) antibodies in JIA, focusing on their role in diagnosis and assessing disease activity. METHODS In this prospective case-control study, we examined variations in serum levels of PGA-IgA and PGA-IgG among children with different types of JIA and healthy controls. Serum PGA-IgA and PGA-IgG levels were assessed concurrently in children with active and inactive JIA. RESULTS This study included 126 patients diagnosed with JIA, 13 neonates, and 76 healthy children. Serum PGA-IgA and PGA-IgG levels were assessed, which revealed significant differences in PGA-IgA levels between various JIA subtypes and controls. An analysis of PGA-IgA levels in various JIA states revealed a statistically significant difference. Receiver operating characteristic (ROC) analysis demonstrated the robust predictive capability of PGA-IgA, with an AUC of 0.879 (p < 0.001), along with a specificity of 0.842 and sensitivity of 0.848. CONCLUSION Increased levels of anti-PGA antibodies, particularly PGA-IgA, were significantly associated with JIA. PGA-IgA may serve as a sensitive biomarker for disease activity in JIA and could potentially aid in the diagnosis of JIA. Key Points • This study found a significant correlation between blood levels of PGA-IgA and juvenile idiopathic arthritis (JIA), which may provide valuable diagnostic insights. • PGA-IgA shows potential as a sensitive biomarker for the assessment of disease activity in JIA patients, helping to determine disease activity.
Collapse
Affiliation(s)
- Jiqian Huang
- Department of Pediatric Rheumatology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Zhejiang Province, Wenzhou, 325027, China
- Rheumatology and Immunology Department, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Zhijing Wu
- Department of Physics, University of Cambridge, Cambridge, UK
| | - Wei Quan
- Department of Nephrology and Immunology, Children's Hospital of Soochow University, Suzhou, Jiangsu Province, 215003, China
| | - Xiaohua Ye
- Department of Pediatric Rheumatology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Zhejiang Province, Wenzhou, 325027, China
| | - Xiaolong Dai
- Department of Pediatric Rheumatology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Zhejiang Province, Wenzhou, 325027, China
| | - Jiangtao Luo
- Department of Pediatric Rheumatology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Zhejiang Province, Wenzhou, 325027, China
| | - Xiao Han
- Department of Pediatric Rheumatology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Zhejiang Province, Wenzhou, 325027, China
| | - Xiaozhong Li
- Department of Nephrology and Immunology, Children's Hospital of Soochow University, Suzhou, Jiangsu Province, 215003, China.
| | - Wenjie Zheng
- Department of Pediatric Rheumatology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Zhejiang Province, Wenzhou, 325027, China.
| |
Collapse
|
38
|
Anoraga SB, Shamsudin R, Hamzah MH, Sharif S, Saputro AD. Cocoa by-products: A comprehensive review on potential uses, waste management, and emerging green technologies for cocoa pod husk utilization. Heliyon 2024; 10:e35537. [PMID: 39220910 PMCID: PMC11365323 DOI: 10.1016/j.heliyon.2024.e35537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 07/03/2024] [Accepted: 07/30/2024] [Indexed: 09/04/2024] Open
Abstract
Cocoa is considered to be one of the most significant agricultural commodities globally, alongside Palm Oil and Rubber. Cocoa is the primary ingredient in the manufacturing of chocolate, a globally popular food product. Approximately 30 % of cocoa, specifically cocoa nibs, are used as the primary constituent in chocolate production., while the other portion is either discarded in landfills as compost or repurposed as animal feed. Cocoa by-products consist of cocoa pod husk (CPH), cocoa shell, and pulp, of which about 70 % of the fruit is composed of CPH. CPH is a renewable resource rich in dietary fiber, lignin, and bioactive antioxidants like polyphenols that are being underutilized. CPH has the potential to be used as a source of pectin, dietary fibre, antibacterial properties, encapsulation material, xylitol as a sugar substitute, a fragrance compound, and in skin care applications. Several methods can be used to manage CPH waste using green technology and then transformed into valuable commodities, including pectin sources. Innovations in extraction procedures for the production of functional compounds can be utilized to increase yields and enhance existing uses. This review focuses on the physicochemical of CPH, its potential use, waste management, and green technology of cocoa by-products, particularly CPH pectin, in order to provide information for its development.
Collapse
Affiliation(s)
- Satria Bhirawa Anoraga
- Department of Process and Food Engineering, Faculty of Engineering, Universiti Putra Malaysia, Serdang, 43400, Selangor, Malaysia
- Department of Bioresources Technology and Veterinary, Vocational College, Universitas Gadjah Mada, Yogyakarta, 55281, Indonesia
| | - Rosnah Shamsudin
- Department of Process and Food Engineering, Faculty of Engineering, Universiti Putra Malaysia, Serdang, 43400, Selangor, Malaysia
- Institute of Plantations Studies, Universiti Putra Malaysia, Serdang, 43400, Selangor, Malaysia
| | - Muhammad Hazwan Hamzah
- SMART Farming Technology Research Centre, Department of Biological and Agricultural Engineering, Faculty of Engineering, Universiti Putra Malaysia, Serdang, 43400, Selangor, Malaysia
| | - Suzannah Sharif
- Cocoa Innovation and Technology Centre, Malaysian Cocoa Board, Lot 12621, Nilai Industrial Area, Nilai, 71800, Negeri Sembilan, Malaysia
| | - Arifin Dwi Saputro
- Department of Agricultural and Biosystems Engineering, Faculty of Agricultural Technology, Universitas Gadjah Mada, Yogyakarta, 55281, Indonesia
| |
Collapse
|
39
|
Li T, Ji W, Dong H, Wu Y, Guo L, Chen L, Wang X. A Comprehensive Review on the Isolation, Bioactivities, and Structure-Activity Relationship of Hawthorn Pectin and Its Derived Oligosaccharides. Foods 2024; 13:2750. [PMID: 39272515 PMCID: PMC11394867 DOI: 10.3390/foods13172750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 08/27/2024] [Accepted: 08/27/2024] [Indexed: 09/15/2024] Open
Abstract
Hawthorn (Crataegus pinnatifida Bunge) has been highlighted as an excellent source of a variety of bioactive polymers, which has attracted increasing research interest. Pectin, as a kind of soluble dietary fiber in hawthorn, is mainly extracted by hot water extraction and ultrasonic or enzymatic hydrolysis and is then extensively used in food, pharmaceutical, and nutraceutical industries. Numerous studies have shown that hawthorn pectin and its derived oligosaccharides exhibit a wide range of biological activities, such as antioxidant activity, hypolipidemic and cholesterol-reducing effects, antimicrobial activity, and intestinal function modulatory activity. As discovered, the bioactivities of hawthorn pectin and its derived oligosaccharides were mainly contributed by structural features and chemical compositions and were highly associated with the extraction methods. Additionally, hawthorn pectin is a potential resource for the development of emulsifiers and gelling agents, food packaging films, novel foods, and traditional medicines. This review provides a comprehensive summary of current research for readers on the extraction techniques, functional characteristics, structure-activity relationship, and applications in order to provide ideas and references for the investigation and utilization of hawthorn pectin and its derived oligosaccharides. Further research and development efforts are imperative to fully explore and harness the potential of hawthorn pectin-derived oligosaccharides in the food and medicine fields.
Collapse
Affiliation(s)
- Tao Li
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
- Key Laboratory for Natural Active Pharmaceutical Constituents Research in Universities of Shandong Province, School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| | - Wenhua Ji
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
- Key Laboratory for Natural Active Pharmaceutical Constituents Research in Universities of Shandong Province, School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| | - Hongjing Dong
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
- Key Laboratory for Natural Active Pharmaceutical Constituents Research in Universities of Shandong Province, School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| | - Yingqun Wu
- Guizhou Ecological Food Creation Engineering Technology Center, Guizhou Medical University, Guizhou 550025, China
| | - Lanping Guo
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| | - Lei Chen
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
| | - Xiao Wang
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
- Key Laboratory for Natural Active Pharmaceutical Constituents Research in Universities of Shandong Province, School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| |
Collapse
|
40
|
Rodulfo RS, Castillo-Israel KAT, Gaban PJV, Ilano MCR, Benedicto JB, Badua MAA, Rivadeneira JP. Downstream Processing of Crude Ultrasound-Extracted Pectin From Saba Banana ( Musa acuminata x balbisiana (BBB Group) "Saba") Peel. INTERNATIONAL JOURNAL OF FOOD SCIENCE 2024; 2024:9892858. [PMID: 39296523 PMCID: PMC11410439 DOI: 10.1155/2024/9892858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 07/11/2024] [Accepted: 07/26/2024] [Indexed: 09/21/2024]
Abstract
Ultrasound-assisted extraction of pectin from Saba banana (Musa acuminata x balbisiana (BBB Group) "Saba") peels produced crude pectin that requires further purification. Two downstream processes (alcohol washing (AW) and acid demethylation (AD)) were compared. AW involved gelatinous precipitate washing with 85% alcohol and pressing to squeeze out liquids, while AD involved a sequential AW of the dried pectin with 60% acidified alcohol, and 60% and 95% alcohol solutions. Results showed that both methods produced low methoxyl pectins with similar color, yield, and moisture content, with no significant (p > 0.05) differences observed. AD, however, produced pectin with better quality in terms of ash content and anhydrouronic acid (AUA) content relative to the control. Fourier transform infrared spectra revealed that the samples contain -OH, C-H, COO-, COO, and C-O groups, but only AD has COO-R due to structural modification. Overall, AD has the potential to improve the quality of crude ultrasound-extracted pectin from Saba banana peels. Yet, pre-extraction processing methods are necessary to meet FAO color standards for pectin.
Collapse
Affiliation(s)
- Rachel S Rodulfo
- Institute of Food Science and Technology College of Agriculture and Food Science University of the Philippines Los Baños, Los Baños, Laguna 4031, Philippines
| | - Katherine Ann T Castillo-Israel
- Institute of Food Science and Technology College of Agriculture and Food Science University of the Philippines Los Baños, Los Baños, Laguna 4031, Philippines
| | - Prince Joseph V Gaban
- Institute of Food Science and Technology College of Agriculture and Food Science University of the Philippines Los Baños, Los Baños, Laguna 4031, Philippines
| | - Ma Cristina R Ilano
- Institute of Food Science and Technology College of Agriculture and Food Science University of the Philippines Los Baños, Los Baños, Laguna 4031, Philippines
| | - Joshua B Benedicto
- Institute of Food Science and Technology College of Agriculture and Food Science University of the Philippines Los Baños, Los Baños, Laguna 4031, Philippines
| | - Mark Anthony A Badua
- National Institute of Molecular Biology and Biotechnology (BIOTECH) University of the Philippines Los Baños, Los Baños, Laguna 4031, Philippines
| | - Joel P Rivadeneira
- Institute of Food Science and Technology College of Agriculture and Food Science University of the Philippines Los Baños, Los Baños, Laguna 4031, Philippines
| |
Collapse
|
41
|
Pu X, Yu S, Cui Y, Tong Z, Wang C, Wang L, Han J, Zhu H, Wang S. Stability of electrostatically stabilized emulsions and its encapsulation of astaxanthin against environmental stresses: Effect of sodium caseinate-sugar beet pectin addition order. Curr Res Food Sci 2024; 9:100821. [PMID: 39253722 PMCID: PMC11381615 DOI: 10.1016/j.crfs.2024.100821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/23/2024] [Accepted: 08/13/2024] [Indexed: 09/11/2024] Open
Abstract
Two addition orders, i.e., the layer-by-layer (L) and mixed biopolymer (M) orders, were used to generate sodium caseinate - sugar beet pectin electrostatically stabilized o/w emulsions with 0.5% oil and varying sodium caseinate: sugar beet pectin ratios (3:1-1:3) at pH 4.5. Emulsion stability against environmental stresses (i.e., pH, salt addition, thermal treatment, storage and in vitro simulated gastrointestinal digestion) and its astaxanthin encapsulation against degradation during storage and in vitro digestion were evaluated. Results indicated that a total biopolymer concentration of 0.5% was optimal, with the preferred sodium caseinate-sugar beet pectin ratios for L and M emulsions being 1:1 and 1:3, respectively. L emulsions generally exhibited smaller droplet diameters than M emulsions across all ratios, except at 1:3. Lowering the pH to 1.5 substantially reduced the net negative charge of all emulsions, with only L emulsions precipitating at pH 3. M emulsions showed greater tolerance to salt addition, remaining stable up to 500 mM sodium and calcium concentrations, whereas L emulsions destabilized at levels exceeding 50 mM and 30 mM, respectively. All emulsions were stable when heated at 37 °C or 90 °C for 30 min. Astaxanthin degradation rates increased with prolonged storage, reaching 61.66% and 54.08% by day 7 for L and M emulsions, respectively. Encapsulation efficiency of astaxanthin in freshly prepared M emulsions (86.85%) was significantly higher compared to L emulsions (72.82%). M emulsions had 30% and 25% higher encapsulation efficiency of astaxanthin than L emulsions after in vitro digestion for 120 min and 240 min respectively. This study offers suggestions for interface design and process optimization to improve the performance of protein-polysaccharide emulsion systems, such as in beverages and dairy products, as well as their delivery effect of bioactives.
Collapse
Affiliation(s)
- Xiaolu Pu
- College of Food Science and Biology, Hebei University of Science and Technology, Shijiazhuang, Hebei 050018 China
| | - Shuaipeng Yu
- College of Food Science and Biology, Hebei University of Science and Technology, Shijiazhuang, Hebei 050018 China
| | - Yue Cui
- College of Food Science and Biology, Hebei University of Science and Technology, Shijiazhuang, Hebei 050018 China
| | - Ziqian Tong
- College of Food Science and Biology, Hebei University of Science and Technology, Shijiazhuang, Hebei 050018 China
| | - Changyan Wang
- College of Food Science and Biology, Hebei University of Science and Technology, Shijiazhuang, Hebei 050018 China
| | - Lin Wang
- College of Food Science and Biology, Hebei University of Science and Technology, Shijiazhuang, Hebei 050018 China
- Junlebao Dairy Group, Shijiazhuang, Hebei 050221 China
| | - Junhua Han
- College of Food Science and Biology, Hebei University of Science and Technology, Shijiazhuang, Hebei 050018 China
| | - Hong Zhu
- College of Food Science and Biology, Hebei University of Science and Technology, Shijiazhuang, Hebei 050018 China
| | - Shijie Wang
- College of Food Science and Biology, Hebei University of Science and Technology, Shijiazhuang, Hebei 050018 China
- Junlebao Dairy Group, Shijiazhuang, Hebei 050221 China
| |
Collapse
|
42
|
Wu X, Xin Y, Zhang H, Quan L, Ao Q. Biopolymer-Based Nanomedicine for Cancer Therapy: Opportunities and Challenges. Int J Nanomedicine 2024; 19:7415-7471. [PMID: 39071502 PMCID: PMC11278852 DOI: 10.2147/ijn.s460047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 05/18/2024] [Indexed: 07/30/2024] Open
Abstract
Cancer, as the foremost challenge among human diseases, has plagued medical professionals for many years. While there have been numerous treatment approaches in clinical practice, they often cause additional harm to patients. The emergence of nanotechnology has brought new directions for cancer treatment, which can deliver anticancer drugs specifically to tumor areas. This article first introduces the application scenarios of nanotherapies and treatment strategies of nanomedicine. Then, the noteworthy characteristics exhibited by biopolymer materials were described, which make biopolymers stand out in polymeric nanomedicine delivery. Next, we focus on summarizing the state-of-art studies of five categories of proteins (Albumin, Gelatin, Silk fibroin, Zein, Ferritin), nine varieties of polysaccharides (Chitosan, Starch, Hyaluronic acid, Dextran, cellulose, Fucoidan, Carrageenan, Lignin, Pectin) and liposomes in the field of anticancer drug delivery. Finally, we also provide a summary of the advantages and limitations of these biopolymers, discuss the prevailing impediments to their application, and discuss in detail the prospective research directions. This review not only helps readers understand the current development status of nano anticancer drug delivery systems based on biopolymers, but also is helpful for readers to understand the properties of various biopolymers and find suitable solutions in this field through comparative reading.
Collapse
Affiliation(s)
- Xixi Wu
- NMPA Key Laboratory for Quality Research and Control of Tissue Regenerative Biomaterial, & Institute of Regulatory Science for Medical Device, & National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, People’s Republic of China
| | - Yuan Xin
- NMPA Key Laboratory for Quality Research and Control of Tissue Regenerative Biomaterial, & Institute of Regulatory Science for Medical Device, & National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, People’s Republic of China
| | - Hengtong Zhang
- NMPA Key Laboratory for Quality Research and Control of Tissue Regenerative Biomaterial, & Institute of Regulatory Science for Medical Device, & National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, People’s Republic of China
| | - Liang Quan
- NMPA Key Laboratory for Quality Research and Control of Tissue Regenerative Biomaterial, & Institute of Regulatory Science for Medical Device, & National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, People’s Republic of China
| | - Qiang Ao
- NMPA Key Laboratory for Quality Research and Control of Tissue Regenerative Biomaterial, & Institute of Regulatory Science for Medical Device, & National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, People’s Republic of China
| |
Collapse
|
43
|
Costa W, Félix Farias AF, Silva-Filho EC, Osajima JA, Medina-Carrasco S, Del Mar Orta M, Fonseca MG. Polysaccharide Hydroxyapatite (Nano)composites and Their Biomedical Applications: An Overview of Recent Years. ACS OMEGA 2024; 9:30035-30070. [PMID: 39035931 PMCID: PMC11256335 DOI: 10.1021/acsomega.4c02170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
Abstract
Hydroxyapatite can combine with polysaccharide originating biomaterials with special applications in the biomedical field. In this review, the synthesis of (nano)composites is discussed, focusing on natural polysaccharides such as alginate, chitosan, and pectin. In this way, advances in recent years in the development of preparing materials are revised and discussed. Therefore, an overview of the recent synthesis and applications of polyssacharides@hydroxyapatites is presented. Several studies based on chitosan@hydroxyapatite combined with other inorganic matrices are highlighted, while pectin@hydroxyapatite is present in a smaller number of reports. Biomedical applications as drug carriers, adsorbents, and bone implants are discussed, combining their dependence with the nature of interactions on the molecular scale and the type of polysaccharides used, which is a relevant aspect to be explored.
Collapse
Affiliation(s)
- Wanderson
Barros Costa
- Fuel and
Materials Laboratory − NPE-LACOM, UFPB, 58051-085, João Pessoa, Paraiba, Brazil
| | - Ana F. Félix Farias
- Fuel and
Materials Laboratory − NPE-LACOM, UFPB, 58051-085, João Pessoa, Paraiba, Brazil
| | | | - Josy A. Osajima
- Interdisciplinary
Laboratory for Advanced Materials − LIMAV, UFPI, 64049-550, Teresina, Piaui, Brazil
| | - Santiago Medina-Carrasco
- SGI Laboratorio
de Rayos X - Centro de Investigación, Tecnología e Innovación de la Universidad de Sevilla
(CITIUS), 41012, Sevilla, Spain
| | - Maria Del Mar Orta
- Departamento
de Química Analítica, Facultad de Farmacia, Universidad de Sevilla, C/Profesor García, González 2, 41012 Sevilla, Spain
| | - Maria G. Fonseca
- Fuel and
Materials Laboratory − NPE-LACOM, UFPB, 58051-085, João Pessoa, Paraiba, Brazil
| |
Collapse
|
44
|
Han C, Zhao X, Yang L, Yao M, Zhang J, He Q, Liu J, Liu L. Extraction and Structural Analysis of Sweet Potato Pectin and Characterization of Its Gel. Polymers (Basel) 2024; 16:1977. [PMID: 39065294 PMCID: PMC11281063 DOI: 10.3390/polym16141977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/07/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024] Open
Abstract
Pectin is widely used in the food and pharmaceutical industries. However, data on sweet potato pectin extraction and structural property analyses are lacking. Here, for the high-value utilization of agricultural processing waste, sweet potato residue, a byproduct of sweet potato starch processing, was used as raw material. Ammonium oxalate, trisodium citrate, disodium hydrogen phosphate, hydrochloric acid and citric acid were used as extractants for the pectin constituents, among which ammonium oxalate had a high extraction rate of sweet potato pectin, low ash content and high molecular weight. Structural and gelation analyses were conducted on ammonium oxalate-extracted purified sweet potato pectin (AMOP). Analyses showed that AMOP is a rhamnogalacturonan-I-type pectin, with a molecular weight of 192.5 kg/mol. Chemical titration and infrared spectroscopy analysis confirmed that AMOP is a low-ester pectin, and scanning electron and atomic force microscopy demonstrated its linear molecular structure. Gelation studies have revealed that Ca2+ is the key factor for gel formation, and that sucrose significantly enhanced gel hardness. The highest AMOP gel hardness was observed at pH 4, with a Ca2+ concentration of 30 mg/g, pectin concentration of 2%, and sucrose concentration of 40%, reaching 128.87 g. These results provide a foundation for sweet potato pectin production and applications.
Collapse
Affiliation(s)
- Chunmeng Han
- Shandong Food Ferment Industry Research & Design Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250013, China; (C.H.); (X.Z.); (L.Y.); (M.Y.); (J.Z.); (Q.H.); (J.L.)
- School of Food Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Xiangying Zhao
- Shandong Food Ferment Industry Research & Design Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250013, China; (C.H.); (X.Z.); (L.Y.); (M.Y.); (J.Z.); (Q.H.); (J.L.)
- School of Food Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Liping Yang
- Shandong Food Ferment Industry Research & Design Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250013, China; (C.H.); (X.Z.); (L.Y.); (M.Y.); (J.Z.); (Q.H.); (J.L.)
- School of Food Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Mingjing Yao
- Shandong Food Ferment Industry Research & Design Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250013, China; (C.H.); (X.Z.); (L.Y.); (M.Y.); (J.Z.); (Q.H.); (J.L.)
- School of Food Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Jiaxiang Zhang
- Shandong Food Ferment Industry Research & Design Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250013, China; (C.H.); (X.Z.); (L.Y.); (M.Y.); (J.Z.); (Q.H.); (J.L.)
- School of Food Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Qiangzhi He
- Shandong Food Ferment Industry Research & Design Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250013, China; (C.H.); (X.Z.); (L.Y.); (M.Y.); (J.Z.); (Q.H.); (J.L.)
- School of Food Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Jianjun Liu
- Shandong Food Ferment Industry Research & Design Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250013, China; (C.H.); (X.Z.); (L.Y.); (M.Y.); (J.Z.); (Q.H.); (J.L.)
- School of Food Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Liping Liu
- Shandong Food Ferment Industry Research & Design Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250013, China; (C.H.); (X.Z.); (L.Y.); (M.Y.); (J.Z.); (Q.H.); (J.L.)
- School of Food Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| |
Collapse
|
45
|
Liu H, Lin J, Hu Y, Lei H, Zhang Q, Tao X, Zhang D, Niu H. Deep eutectic solvent (DES)-assisted extraction of pectin from Ficus carica Linn. peel: optimization, partial structure characterization, functional and antioxidant activities. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:5149-5162. [PMID: 38297410 DOI: 10.1002/jsfa.13346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 01/02/2024] [Accepted: 01/26/2024] [Indexed: 02/02/2024]
Abstract
BACKGROUND The pectin from Ficus carica Linn. (fig) peels is a valuable and recyclable constituent that may bring huge economic benefits. To maximize the utilization of this resource, deep eutectic solvent (DES)-assisted extraction was applied to extract pectin from fig peels, and the extraction process was optimized with response surface methodology. RESULTS When DES (choline chloride/oxalic acid = 1:1) content was 168.1 g kg-1, extraction temperature was 79.8 °C, liquid-solid ratio was 23.3 mL g-1, and extraction time was 120 min, the maximum yield of 239.6 g kg-1 was obtained, which was almost twice the extraction of hot water. DES-extracted fig peel pectin (D-FP) exhibited better nature than hot water-extracted fig peel pectin (W-FP) in terms of uronic acid content, particle size distribution, and solubility, but lower molecular weight and esterification degree. D-FP and W-FP had similar infrared spectra and thermodynamic peaks but differed in monosaccharide compositions. D-FP also showed good antioxidant capacities and exhibited better functional activities than W-FP. CONCLUSION These results indicated that D-FP was of promising quality being utilized in food or medical industries and the optimal DES-assisted extraction method might be applied as a sustainable process for the effective extraction of bioactive pectin from fig peels with the excellence of low equipment requirements and simple operation. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Hongzhi Liu
- School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Jihui Lin
- School of Nursing, Southwest Medical University, Luzhou, China
| | - Yaowu Hu
- School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Hui Lei
- School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Qian Zhang
- School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Xiaoyu Tao
- School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Dan Zhang
- School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Hong Niu
- School of Pharmacy, Southwest Medical University, Luzhou, China
| |
Collapse
|
46
|
Akpo E, Colin C, Perrin A, Cambedouzou J, Cornu D. Encapsulation of Active Substances in Natural Polymer Coatings. MATERIALS (BASEL, SWITZERLAND) 2024; 17:2774. [PMID: 38894037 PMCID: PMC11173946 DOI: 10.3390/ma17112774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 05/30/2024] [Accepted: 06/04/2024] [Indexed: 06/21/2024]
Abstract
Already used in the food, pharmaceutical, cosmetic, and agrochemical industries, encapsulation is a strategy used to protect active ingredients from external degradation factors and to control their release kinetics. Various encapsulation techniques have been studied, both to optimise the level of protection with respect to the nature of the aggressor and to favour a release mechanism between diffusion of the active compounds and degradation of the barrier material. Biopolymers are of particular interest as wall materials because of their biocompatibility, biodegradability, and non-toxicity. By forming a stable hydrogel around the drug, they provide a 'smart' barrier whose behaviour can change in response to environmental conditions. After a comprehensive description of the concept of encapsulation and the main technologies used to achieve encapsulation, including micro- and nano-gels, the mechanisms of controlled release of active compounds are presented. A panorama of natural polymers as wall materials is then presented, highlighting the main results associated with each polymer and attempting to identify the most cost-effective and suitable methods in terms of the encapsulated drug.
Collapse
Affiliation(s)
| | | | | | - Julien Cambedouzou
- IEM, Université de Montpellier, CNRS, ENSCM, F-34095 Montpellier, France
| | - David Cornu
- IEM, Université de Montpellier, CNRS, ENSCM, F-34095 Montpellier, France
| |
Collapse
|
47
|
Soomro MA, Khan S, Majid A, Bhatti S, Perveen S, Phull AR. Pectin as a biofunctional food: comprehensive overview of its therapeutic effects and antidiabetic-associated mechanisms. DISCOVER APPLIED SCIENCES 2024; 6:298. [DOI: 10.1007/s42452-024-05968-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 05/15/2024] [Indexed: 07/06/2024]
Abstract
AbstractPectin is a complex polysaccharide found in a variety of fruits and vegetables. It has been shown to have potential antidiabetic activity along with other biological activities, including cholesterol-lowering properties, antioxidant activity, anti-inflammatory and immune-modulatory effects, augmented healing of diabetic foot ulcers and other health benefits. There are several pectin-associated antidiabetic mechanisms, such as the regulation of glucose metabolism, reduction of oxidative stress, increased insulin sensitivity, appetite suppression and modulation of the gut microbiome. Studies have shown that pectin supplementation has antidiabetic effects in different animal models and in vitro. In human studies, pectin has been found to have a positive effect on blood glucose control, particularly in individuals with type 2 diabetes. Pectin also shows synergistic effects by enhancing the potency and efficacy of antidiabetic drugs when taken together. In conclusion, pectin has the potential to be an effective antidiabetic agent. However, further research is needed to fully understand its detailed molecular mechanisms in various animal models, functional food formulations and safety profiles for the treatment and management of diabetes and associated complications in humans. The current study was carried out to provide the critical approach towards therapeutical potential, anti-diabetic potential and underlying molecular mechanisms on the basis of existing knowledge.
Collapse
|
48
|
Pillai ARS, Eapen AS, Zhang W, Roy S. Polysaccharide-Based Edible Biopolymer-Based Coatings for Fruit Preservation: A Review. Foods 2024; 13:1529. [PMID: 38790829 PMCID: PMC11121366 DOI: 10.3390/foods13101529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/04/2024] [Accepted: 05/09/2024] [Indexed: 05/26/2024] Open
Abstract
Over the last decades, a significant rise in fruit consumption has been noticed as they contain numerous nutritional components, which has led to the rise in fruit production globally. However, fruits are highly liable to spoilage in nature and remain vulnerable to losses during the storage and preservation stages. Therefore, it is crucial to enhance the storage life and safeness of fruits for the consumers. To keep up the grade and prolong storage duration, various techniques are employed in the food sector. Among these, biopolymer coatings have gained widespread acceptance due to their improved characteristics and ideal substitution for synthetic polymer coatings. As there is concern regarding the safety of the consumers and sustainability, edible coatings have become a selective substitution for nurturing fruit quality and preventing decay. The application of polysaccharide-based edible coatings offers a versatile solution to prevent the passage of moisture, gases, and pathogens, which are considered major threats to fruit deterioration. Different polysaccharide substances such as chitin, pectin, carrageenan, cellulose, starch, etc., are extensively used for preparing edible coatings for a wide array of fruits. The implementation of coatings provides better preservation of the fruits such as mango, strawberry, pineapple, apple, etc. Furthermore, the inclusion of functional ingredients, including polyphenols, natural antioxidants, antimicrobials, and bio-nanomaterials, into the edible coating solution matrix adds to the nutritional, functional, and sensory attributes of the fruits. The blending of essential oil and active agents in polysaccharide-based coatings prevents the growth of food-borne pathogens and enhances the storage life of the pineapple, also improving the preservation of strawberries and mangoes. This paper aims to provide collective data regarding the utilization of polysaccharide-based edible coatings concerning their characteristics and advancements for fruit preservation.
Collapse
Affiliation(s)
- Athira R. S. Pillai
- Department of Food Technology and Nutrition, School of Agriculture, Lovely Professional University, Phagwara 144411, Punjab, India; (A.R.S.P.); (A.S.E.)
| | - Ansu Sara Eapen
- Department of Food Technology and Nutrition, School of Agriculture, Lovely Professional University, Phagwara 144411, Punjab, India; (A.R.S.P.); (A.S.E.)
| | - Wanli Zhang
- School of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Swarup Roy
- Department of Food Technology and Nutrition, School of Agriculture, Lovely Professional University, Phagwara 144411, Punjab, India; (A.R.S.P.); (A.S.E.)
| |
Collapse
|
49
|
Su Z, Liu Y, Kang L, Chang X, Tan X, Shen D, Wang X, Wang HH, Li G. Physicochemical and antioxidant properties of pectin fractions extracted from lemon (Citrus Eureka) peels. Int J Biol Macromol 2024; 268:132014. [PMID: 38697443 DOI: 10.1016/j.ijbiomac.2024.132014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 04/25/2024] [Accepted: 04/29/2024] [Indexed: 05/05/2024]
Abstract
Pectin, a natural polysaccharide, holds versatile applications in food and pharmaceuticals. However, there is a need for further exploration into extracting novel functional fractions and characterizing them thoroughly. In this study, a sequential extraction approach was used to obtain three distinct lemon pectin (LP) fractions from lemon peels (Citrus Eureka): LP extracted with sodium acetate (LP-SA), LP extracted with ethylenediaminetetraacetic acid (LP-EDTA), and LP extracted with sodium carbonate and sodium borohydride (LP-SS). Comprehensive analysis revealed low methyl-esterification in all fractions. LP-SA and LP-SS displayed characteristics of rhamnogalacturonan-I type pectin, while LP-EDTA mainly consisted of homogalacturonan pectin. Notably, LP-SA formed self-aggregated particles with rough surfaces, LP-EDTA showed interlocking linear structures with smooth planes, and LP-SS exhibited branch chain structures with smooth surfaces. Bioactivity analysis indicated that LP-SA had significant apparent viscosity and ABTS radical scavenging activity, while both LP-EDTA and LP-SS showed excellent thermal stability according to thermogravimetric analysis (TGA). Furthermore, LP-SS exhibited remarkable gel-forming ability and significant hydroxyl free radicals scavenging activity. In conclusion, this study presents a novel method for extracting various lemon pectin fractions with unique structural and bioactive properties, contributing insights for advanced applications in the food and pharmaceutical sectors.
Collapse
Affiliation(s)
- Zhipeng Su
- Longping Branch, College of Biology, Hunan University, Changsha 410125, China; Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Hunan Provincial Key Laboratory for Fruits and Vegetables Storage Processing and Quality Safety, Changsha 410125, China
| | - Yuchen Liu
- Longping Branch, College of Biology, Hunan University, Changsha 410125, China; Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Hunan Provincial Key Laboratory for Fruits and Vegetables Storage Processing and Quality Safety, Changsha 410125, China
| | - Lingtao Kang
- Longping Branch, College of Biology, Hunan University, Changsha 410125, China; Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Hunan Provincial Key Laboratory for Fruits and Vegetables Storage Processing and Quality Safety, Changsha 410125, China
| | - Xia Chang
- Longping Branch, College of Biology, Hunan University, Changsha 410125, China; Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Hunan Provincial Key Laboratory for Fruits and Vegetables Storage Processing and Quality Safety, Changsha 410125, China
| | - Xinjia Tan
- Longping Branch, College of Biology, Hunan University, Changsha 410125, China; Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Hunan Provincial Key Laboratory for Fruits and Vegetables Storage Processing and Quality Safety, Changsha 410125, China
| | - Dan Shen
- Longping Branch, College of Biology, Hunan University, Changsha 410125, China; Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Hunan Provincial Key Laboratory for Fruits and Vegetables Storage Processing and Quality Safety, Changsha 410125, China
| | - Xue Wang
- Longping Branch, College of Biology, Hunan University, Changsha 410125, China; Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Hunan Provincial Key Laboratory for Fruits and Vegetables Storage Processing and Quality Safety, Changsha 410125, China
| | - Hong-Hui Wang
- College of Biology, Hunan University, Changsha 410082, China.
| | - Gaoyang Li
- Longping Branch, College of Biology, Hunan University, Changsha 410125, China; Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Hunan Provincial Key Laboratory for Fruits and Vegetables Storage Processing and Quality Safety, Changsha 410125, China.
| |
Collapse
|
50
|
Du H, Olawuyi IF, Said NS, Lee WY. Comparative Analysis of Physicochemical and Functional Properties of Pectin from Extracted Dragon Fruit Waste by Different Techniques. Polymers (Basel) 2024; 16:1097. [PMID: 38675016 PMCID: PMC11054079 DOI: 10.3390/polym16081097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 04/11/2024] [Accepted: 04/12/2024] [Indexed: 04/28/2024] Open
Abstract
Dragon fruit peel, often discarded, is a valuable source of commercial pectin. This study investigates different extraction methods, including cold-water (CW), hot-water (HW), ultrasound (US), and novel enzyme extraction (xylanase: EZX), to extract pectins from dragon fruit peel and compare their characteristics. The pectin yield ranged from 10.93% to 20.22%, with significant variations in physicochemical properties across methods (p < 0.05). FTIR analysis revealed that extraction methods did not alter the primary structural configuration of the pectins. However, molecular weights (Mws) varied significantly, from 0.84 to 1.21 × 103 kDa, and the degree of esterification varied from 46.82% to 51.79% (p < 0.05). Monosaccharide analysis identified both homogalacturonan (HG) and rhamnogalacturonan-I (RG-I) pectic configurations in all pectins, predominantly comprising galacturonic acid (77.21-83.12 %mol) and rhamnose (8.11-9.51 %mol), alongside minor side-chain sugars. These properties significantly influenced pectin functionalities. In the aqueous state, a higher Mw impacted viscosity and emulsification performance, while a lower Mw enhanced antioxidant activities and promoted the prebiotic function of pectin (Lactis brevies growth). This study highlights the impact of extraction methods on dragon fruit peel pectin functionalities and their structure-function relationship, providing valuable insights into predicting dragon fruit peel's potential as a food-grade ingredient in various products.
Collapse
Affiliation(s)
- Huimin Du
- School of Food Science and Technology, Kyungpook National University, Daegu 41566, Republic of Korea; (H.D.); (I.F.O.); (N.S.S.)
| | - Ibukunoluwa Fola Olawuyi
- School of Food Science and Technology, Kyungpook National University, Daegu 41566, Republic of Korea; (H.D.); (I.F.O.); (N.S.S.)
- Research Institute of Tailored Food Technology, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Nurul Saadah Said
- School of Food Science and Technology, Kyungpook National University, Daegu 41566, Republic of Korea; (H.D.); (I.F.O.); (N.S.S.)
| | - Won-Young Lee
- School of Food Science and Technology, Kyungpook National University, Daegu 41566, Republic of Korea; (H.D.); (I.F.O.); (N.S.S.)
- Research Institute of Tailored Food Technology, Kyungpook National University, Daegu 41566, Republic of Korea
| |
Collapse
|