1
|
Li H, Zhang Z, Liu J, Wang H. Antioxidant scaffolds for enhanced bone regeneration: recent advances and challenges. Biomed Eng Online 2025; 24:41. [PMID: 40200302 PMCID: PMC11980302 DOI: 10.1186/s12938-025-01370-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Accepted: 03/24/2025] [Indexed: 04/10/2025] Open
Abstract
Bone regeneration is integral to maintaining bone function and integrity in the body, as well as treating bone diseases, such as osteoporosis and defects. However, oxidative stress often poses a significant obstacle during bone regeneration, leading to cell damage, inflammatory responses, and subsequent impediment of normal bone tissue formation. Therefore, to maintain bone regeneration, antioxidant therapy is essential. Bone scaffolds, serving as a temporary support for bone tissue, can provide an ideal microenvironment for cell proliferation and differentiation, effectively promoting bone tissue formation. In recent years, with in-depth research on antioxidants and their mechanisms of action, the development and application of antioxidant bone scaffolds have shown tremendous potential. These antioxidant bone scaffolds not only promote osteogenic differentiation and angiogenesis, but also effectively inhibit the inflammatory response and osteoclast formation, significantly improving the efficiency of bone regeneration. Notably, with the rapid development of nanotechnology, nanozymes with multi-enzyme-like activities have been successfully constructed and encapsulated within bone scaffolds, leading to the proposal of multifunctional antioxidant strategies. Therefore, this review summarizes recent research progress, categorically introducing types of bone scaffolds and antioxidants, elucidating therapeutic strategies of antioxidant bone scaffolds, and identifying current challenges, aiming to provide valuable guidance for subsequent research.
Collapse
Affiliation(s)
- Hui Li
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China
| | - Zhenhe Zhang
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
| | - Jing Liu
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China.
| | - Huiwen Wang
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China.
| |
Collapse
|
2
|
Bahrami G, Sajadimajd S, Kazemi F, Yarmohammadi F, Miraghaee SS. An oligosaccharide isolated from Rosa canina ameliorates lipid profile and liver damage in MASLD modeled rabbits: in vivo and in silico studies. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-025-04027-9. [PMID: 40095053 DOI: 10.1007/s00210-025-04027-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2025] [Accepted: 03/06/2025] [Indexed: 03/19/2025]
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) is designated as the main hepatic evidence of metabolic syndrome. Over the past few decades, the use of herbal medications in the treatment of MASLD has been increasingly studied due to evidence of their potential therapeutic mechanisms, wide availability, and lower side effects. This study aimed to scrutinize the effect of an oligosaccharide isolated from Rosa canina on high-cholesterol diet-induced MASLD rabbits. Twenty-four New Zealand rabbits were categorized into three groups (eight rabbits in each group). The first group received only the standard diet. Others received 2% cholesterol for 120 days. Then, the rabbits were treated with 20 mg/kg of an isolated oligosaccharide daily by gavage for 60 days or 6 mg/kg of simvastatin as a standard. After 14-16 h of starvation, blood samples were collected to measure lipid profile and liver enzymes. In addition, histological sampling of the liver and thoracic aorta was done. Cholesterol and triglyceride were significantly decreased in the oligosaccharide-treated group (p < 0.05). Also, the activity of alanine aminotransferase, aspartate aminotransferase, and creatine phosphokinase decreased significantly. Lactate dehydrogenase activity was also decreased. Based on histopathological studies, the treatment with an isolated oligosaccharide prevented atherosclerotic changes and decreased liver injury. Our data suggest that an oligosaccharide isolated from Rosa canina possesses hypolipidemic and hepatoprotective activities which will be beneficial in MASLD.
Collapse
Affiliation(s)
- Gholamreza Bahrami
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Soraya Sajadimajd
- Department of Biology, Faculty of Sciences, Razi University, Kermanshah, Iran
| | - Farnoush Kazemi
- Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - Fatemeh Yarmohammadi
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Seyed Shahram Miraghaee
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
3
|
Abo-Zaid OAR, Moawed FSM, Eldin ES, Farrag MA, Ahmed ESA. Antitumor activity of gamma-irradiated Rosa canina L. against lung carcinoma in rat model: a proposed mechanism. BMC Complement Med Ther 2025; 25:86. [PMID: 40022036 PMCID: PMC11869437 DOI: 10.1186/s12906-025-04813-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 02/05/2025] [Indexed: 03/03/2025] Open
Abstract
BACKGROUND Lung cancer is one of the most prevalent malignancies globally and is the leading cause of cancer-related mortality. Although cisplatin is a widely utilized chemotherapeutic agent, its clinical efficacy is often hampered by significant toxicity and undesirable side effects. Rosa canina, a medicinal plant, has demonstrated a range of beneficial biological activities, including anti-inflammatory, anticancer, immunomodulatory, antioxidant, and genoprotective effects. METHODS This study aimed to investigate the potential of Rosa canina to enhance the anticancer efficacy of cisplatin in a dimethyl benz(a)anthracene-induced lung cancer model using female rats. The animals were administered Rosa canina, cisplatin, or a combination of both treatments. The expression levels of critical signaling molecules were evaluated, including phosphoinositide-3-kinase (PI3K), Akt, mammalian target of rapamycin (mTOR), cleaved poly (ADP-ribose) polymerase (PARP-1), myeloid differentiation factor 88 (MyD88), and tumor necrosis factor receptor-associated factor (TRAF), in addition to various autophagic markers. Furthermore, we assessed the levels of toll-like receptor 2 (TLR2), nuclear factor kappa B (NF-κB), and apoptotic markers in lung tissue, complemented by histopathological examinations. RESULTS The combined treatment of Rosa canina extract and cisplatin significantly inhibited lung cancer cell proliferation by downregulating PARP-1 and the TLR2/MyD88/TRAF6/NF-κB signaling pathway, as well as the PI3K/Akt/mTOR pathway. Moreover, this combination therapy promoted autophagy and apoptosis, evidenced by elevated levels of autophagic and apoptotic markers. CONCLUSION Overall, the findings of this study suggest that Rosa canina enhances the anticancer effects of cisplatin by inhibiting cancer cell proliferation while simultaneously inducing autophagy and apoptosis. Thus, Rosa can be used as adjuvant to cisplatin chemotherapy to overcome its limitations which may be considered a new approach during lung cancer treatment strategy.
Collapse
Affiliation(s)
- Omayma A R Abo-Zaid
- Biochemistry and Molecular Biology Department, Faculty of Vet. Med, Benha University, Benha, Egypt
| | - Fatma S M Moawed
- Health Radiation Research, National Center for Radiation Research and Technology, Egyptian Atomic Energy Authority, Cairo, Egypt
| | - Eman S Eldin
- Health Radiation Research, National Center for Radiation Research and Technology, Egyptian Atomic Energy Authority, Cairo, Egypt
| | - Mostafa A Farrag
- Radiation Biology , National Center for Radiation Research and Technology, Egyptian Atomic Energy Authority, Nasr City, Cairo, 11787, Egypt
| | - Esraa S A Ahmed
- Radiation Biology , National Center for Radiation Research and Technology, Egyptian Atomic Energy Authority, Nasr City, Cairo, 11787, Egypt.
| |
Collapse
|
4
|
Bonilla-Vidal L, Espina M, García ML, Baldomà L, Badia J, Gliszczyńska A, Souto EB, Sánchez-López E. Combination of Apigenin and Melatonin with nanostructured lipid carriers as anti-inflammatory ocular treatment. Int J Pharm 2025; 670:125160. [PMID: 39746583 DOI: 10.1016/j.ijpharm.2024.125160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 12/28/2024] [Accepted: 12/30/2024] [Indexed: 01/04/2025]
Abstract
Ocular inflammation is a complex pathology with limited treatment options. While traditional therapies have side effects, novel approaches, such as natural compounds like Apigenin (APG) and Melatonin (MEL) offer promising solutions. APG and MEL, in combination with nanostructured lipid carriers (NLC), may provide a synergistic effect in treating ocular inflammation, potentially improving patient outcomes and reducing adverse effects. NLC could provide chemical protection of these compounds, while offering a sustained release into the ocular surface. Optimized NLC exhibited suitable physicochemical parameters, physical stability, sustained release of APG and MEL, and were biocompatible in vitro with a corneal cell line, and in ovo by using hen's egg chorioallantoic membrane test. In vitro and in vivo studies confirmed the NLC' ability to attenuate inflammation by reducing interleukin-6 (IL-6), IL-8 and monocyte chemoattractant protein 1 (MCP-1) cytokine levels and by decreasing inflammation in a rabbit model. These findings suggest that the co-encapsulation of APG and MEL into NLC could represent a promising strategy for managing ocular inflammatory conditions.
Collapse
Affiliation(s)
- Lorena Bonilla-Vidal
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028, Barcelona, Spain; Institute of Nanoscience and Nanotechnology (IN(2)UB), University of Barcelona, 08028 Barcelona, Spain
| | - Marta Espina
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028, Barcelona, Spain; Institute of Nanoscience and Nanotechnology (IN(2)UB), University of Barcelona, 08028 Barcelona, Spain
| | - María Luisa García
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028, Barcelona, Spain; Institute of Nanoscience and Nanotechnology (IN(2)UB), University of Barcelona, 08028 Barcelona, Spain
| | - Laura Baldomà
- Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028, Barcelona, Spain; Institute of Biomedicine of the University of Barcelona (IBUB), Institute of Research of Sant Joan de Déu (IRSJD), 08950 Barcelona, Spain
| | - Josefa Badia
- Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028, Barcelona, Spain; Institute of Biomedicine of the University of Barcelona (IBUB), Institute of Research of Sant Joan de Déu (IRSJD), 08950 Barcelona, Spain
| | - Anna Gliszczyńska
- Department of Food Chemistry and Biocatalysis, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375 Wrocław, Poland
| | - Eliana B Souto
- UCD School of Chemical and Bioprocess Engineering, University College Dublin, Belfield D04 V1W8, Ireland
| | - Elena Sánchez-López
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028, Barcelona, Spain; Institute of Nanoscience and Nanotechnology (IN(2)UB), University of Barcelona, 08028 Barcelona, Spain.
| |
Collapse
|
5
|
Demiray H, Dibek ME, Özel O. Optimization of betulinic and ursolic acids and phenolics extraction from endemic Rosa pisiformis using Box-Behnken design in relation to cytotoxic activities. Sci Rep 2025; 15:1228. [PMID: 39774620 PMCID: PMC11707180 DOI: 10.1038/s41598-024-80174-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 11/15/2024] [Indexed: 01/11/2025] Open
Abstract
Despite its important pharmacological bioactivities, betulinic acid is still primarily obtained through extraction from heartwood and bark or synthesized synthetically, with less than 3% efficiency. Our endemic rose species, Rosa pisiformis (Christ.) D. Sosn., which is a new alternative source of betulinic acid and traditionally valued for its medicinal properties, was collected from its natural distribution in Gümüşhane province. The plant's organs, such as root, stem, leaf and fruit were air-dried and pulverized. The compounds were separately extracted using three different solvents (ethanol, dichloromethane and hexane) with an optimized Box-Behnken method. The amounts of quercetin, rutin, catechin, betulinic, ursolic and oleanolic acids in roots, stems, leaves, and fruits were determined using HPLC-DAD techniques with standard substances. Optimisation data revealed a 65% solvent ratio and five-times maceration with 75 ml of solvents. The highest amounts of catechin were found in the leaves (DCM) as 15.61 µg/ml. Stems were rich in rutin (28.96 µg/ml) and quercetin (39.90 µg/ml). Betulinic acid content was determined for the first time in stems (hexane, 11.84 µg/ml) and roots (9.32 µg/ml). Their cytotoxic activities against prostate and lung carcinoma cells were evaluated using ABTS-assay, revealing that stems exhibited the highest activity, followed by leaves and roots.
Collapse
Affiliation(s)
- Hatice Demiray
- Section of Botany, Department of Biology, Science Faculty, Ege University, Bornova, İzmir, Turkey.
| | - Mesut Emir Dibek
- Section of Botany, Department of Biology, Science Faculty, Ege University, Bornova, İzmir, Turkey
| | - Onur Özel
- Section of Botany, Department of Biology, Science Faculty, Ege University, Bornova, İzmir, Turkey
| |
Collapse
|
6
|
Prasad M, Balasubramaniam LM, Priya MDL, Varun BR, Sekar R. Exploring the potential of Rosa chinensis, Rosa cymosa, and Rosa indica in oral disease prevention: A multifaceted approach. J Oral Maxillofac Pathol 2025; 29:41-49. [PMID: 40248632 PMCID: PMC12002594 DOI: 10.4103/jomfp.jomfp_36_25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Revised: 02/19/2025] [Accepted: 02/20/2025] [Indexed: 04/19/2025] Open
Abstract
Introduction Rose species that are well-known for their therapeutic qualities include Rosa chinensis, Rosa cymosa, and Rosa indica. The study employs in vitro assays and in silico molecular docking to investigate their phytochemical composition and antioxidant properties. Methods Phytochemicals were detected in flower petals of Rosa chinensis, Rosa cymosa, and Rosa indica that had been extracted using methanol. Ascorbic acid was utilised as the standard reference for assessing antioxidant activity and its hydrogen peroxide scavenging potential. Superoxide dismutase (SOD) interactions with berberine, emodin, and limonene were assessed by molecular docking using PyRx software. Results Various beneficial substances were found in all species according to phytochemical investigation. Among the three Rosa species, R. chinensis demonstrated the highest antioxidant activity, followed by R. cymosa and R. indica. Docking studies demonstrated that berberine and emodin had substantial binding affinity with SOD. The extracts showed strong antioxidant properties, suggesting that they could be used as naturally occurring antioxidants. Conclusions Rosa chinensis, Rosa cymosa, and Rosa indica show promise as medicinal plants and have strong antioxidant properties. The results validate the development of these rose species as naturally occurring antioxidants for the treatment of ailments related with oxidative stress.
Collapse
Affiliation(s)
- Monisha Prasad
- Department of Community Medicine, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamil Nadu, India
| | - Lithesh M. Balasubramaniam
- Department of Community Medicine, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamil Nadu, India
| | - Malareni D. L. Priya
- PG Department of Biochemistry, Auxilium College (Autonomous), Vellore, Tamil Nadu, India
| | - B. R. Varun
- Department of Oral Pathology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamil Nadu, India
| | - Ramya Sekar
- Department of Oral and Maxillofacial Pathology and Oral Microbiology, Meenakshi Ammal Dental College and Hospital, Meenakshi Academy of Higher Education and Research (Deemed to be University), Chennai, Tamil Nadu, India
| |
Collapse
|
7
|
Majewska L, Dorosz K, Kijowski J. Efficacy of Rose Stem Cell-Derived Exosomes (RSCEs) in Skin Treatment: From Healing to Hyperpigmentation Management: Case Series and Review. J Cosmet Dermatol 2025; 24:e16776. [PMID: 39815650 PMCID: PMC11736088 DOI: 10.1111/jocd.16776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 11/03/2024] [Accepted: 12/26/2024] [Indexed: 01/18/2025]
Abstract
OBJECTIVE To present and analyze eight clinical cases illustrating the use of rose stem cell-derived exosomes (RSCEs) in treating various dermatological conditions and to review current literature on plant-derived exosomes in medicine and dermatology. BACKGROUND RSCEs possess low cytotoxicity, high biocompatibility, and effective cellular uptake, making them promising agents for dermatological therapies. A literature review included in the introduction and discussion covers the broader role of plant-derived exosomes, highlighting their therapeutic potential in skin treatment. METHODS A case-by-case analysis was conducted on eight patients with conditions including atopic dermatitis (AD), hyperpigmentation, scarring, wounds, melasma, and antiaging concerns. Each case provided insights into RSCEs' efficacy, with a focus on their antioxidant and anti-inflammatory properties, as well as specific learning points derived from clinical observations. RESULTS The cases demonstrated RSCEs' multifaceted therapeutic effects across different skin conditions, supporting their role in enhancing skin regeneration, wound healing, and reducing hyperpigmentation and scarring. The literature review underscored RSCEs' unique bioactivity, suggesting mechanisms for their observed effects, including anti-inflammatory and rejuvenating properties, which contributed to favorable clinical outcomes. CONCLUSION RSCEs show potential as a valuable treatment in dermatology, as evidenced by the positive results across multiple skin conditions and their alignment with existing literature on plant-derived exosomes. This case series emphasizes the need for further randomized and controlled clinical trials to confirm these preliminary findings and expand RSCEs' clinical application in dermatology.
Collapse
Affiliation(s)
| | | | - Jacek Kijowski
- Małopolska Centre of Biotechnology, Stem Cell LaboratoryJagiellonian UniversityKrakówPoland
| |
Collapse
|
8
|
Baloch FB, Zeng N, Gong H, Zhang Z, Zhang N, Baloch SB, Ali S, Li B. Rhizobacterial volatile organic compounds: Implications for agricultural ecosystems' nutrient cycling and soil health. Heliyon 2024; 10:e40522. [PMID: 39660212 PMCID: PMC11629272 DOI: 10.1016/j.heliyon.2024.e40522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 11/15/2024] [Accepted: 11/18/2024] [Indexed: 12/12/2024] Open
Abstract
Plant growth-promoting rhizobacteria (PGPR) have emerged as key players in sustainable agriculture due to their ability to enhance plant growth, nutrient uptake, and disease resistance. A significant aspect of PGPR is the emission of volatile organic compounds (VOCs), which serve as signaling molecules that influence various physiological processes in plants. This review article explores the complex interactions between rhizobacterial VOCs and soil health, focusing particularly on their role in nutrient cycling within agricultural ecosystems. By investigating the mechanism of production and release of VOCs by rhizobacteria, along with impacts on soil properties and microbial communities. We aim to highlight the potential of rhizobacterial volatile organic compounds (VOCs) for sustainable agricultural management. Additionally, we discuss the role of rhizobacterial VOCs in promoting root growth, nutrient uptake, and enhancing nutrient cycling processes. By providing insights into these mechanisms, this review offers tailored strategies for exploring the potential of rhizobacterial VOCs to optimize nutrient availability, enhance soil fertility, and address environmental challenges in agriculture. Exploring the potential of rhizobacterial VOCs presents an opportunity to establish sustainable and resilient agricultural systems that significantly enhance global food security and promote environmental stewardship.
Collapse
Affiliation(s)
- Faryal Babar Baloch
- College of Land and Environment, Shenyang Agricultural University, Shenyang, 110866, China
| | - Nan Zeng
- College of Land and Environment, Shenyang Agricultural University, Shenyang, 110866, China
| | - Haiyang Gong
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, 110866, China
| | - Zhiyong Zhang
- College of Land and Environment, Shenyang Agricultural University, Shenyang, 110866, China
| | - Ning Zhang
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, 110866, China
| | - Sadia Babar Baloch
- Faculty of Agriculture and Technology, University of South Bohemia in České Budějovice, Branišovská 1645/31a, 37005, Ceske Budejovice, Czech Republic
| | - Shahzaib Ali
- Faculty of Agriculture and Technology, University of South Bohemia in České Budějovice, Branišovská 1645/31a, 37005, Ceske Budejovice, Czech Republic
| | - Bingxue Li
- College of Land and Environment, Shenyang Agricultural University, Shenyang, 110866, China
| |
Collapse
|
9
|
Kim HR, Park JU, Lee SH, Park JY, Lee W, Choi KM, Kim SY, Park MH. Hair Growth Effect and the Mechanisms of Rosa rugosa Extract in DHT-Induced Alopecia Mice Model. Int J Mol Sci 2024; 25:11362. [PMID: 39518915 PMCID: PMC11545796 DOI: 10.3390/ijms252111362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/19/2024] [Accepted: 10/20/2024] [Indexed: 11/16/2024] Open
Abstract
Rosa rugosa is a medicinal plant known for its potential anti-inflammatory, antioxidant, anti-cancer, and antimicrobial benefits. The pharmacological effects of Rosa rugosa extract on hair loss have not yet been documented. This research sought to assess the inhibitory effects and mechanisms of action of Rosa rugosa water extract (RWE) in a mouse model of dihydrotestosterone (DHT)-induced alopecia. The study was conducted using C57BL/6 mice, which were assigned to five groups: control, DHT-treated, Rosa rugosa water extract (RWE) at doses of 25 mg/kg and 100 mg/kg body weight, and bicalutamide-treated. To induce hair loss, dihydrotestosterone (1 mg/day per body weight) was administered via intraperitoneal injections, and dorsal hair removal was timed to align with the telogen phase. Each group received oral treatments for a period of 23 days. In this study, we assessed hair growth activity, examined histological changes, and performed immunoblot analysis. We noted improvements in hair length and thickness. Additionally, the protein expression of growth factors associated with hair growth, including vascular endothelial growth factor (VEGF), epidermal growth factor (EGF), and insulin-like growth factor-1 (IGF-1), showed significant increases in the group treated with RWE. Additionally, treatment with RWE suppressed the protein expression of hair growth inhibitory factors, including dickkopf WNT signaling pathway inhibitor 1 (DKK1) and interleukin (IL)-6. Moreover, hair growth regulatory pathway related factors, including ERK, AKT, and GSK-3β, were activated. These findings indicate that RWE could serve as a promising natural therapy for preventing hair loss by enhancing the production of factors that promote hair growth while inhibiting those that suppress it.
Collapse
Affiliation(s)
- Ha-Rim Kim
- Jeonju AgroBio-Materials Institute, Wonjangdong-gil 111-27, Deokjin-gu, Jeonju-si 54810, Jeonbuk-do, Republic of Korea; (H.-R.K.); (S.-H.L.); (J.Y.P.)
| | - Jung Up Park
- Division of Practical Research, Honam National Institute of Biological Resources, 99, Gohadoan-gil, Mokpo-si 58762, Jeollanam-do, Republic of Korea; (J.U.P.); (W.L.); (K.-M.C.)
- Advanced Research Center for Island Wildlife Biomaterials, Honam National Institute of Biological Resources, 99, Gohadoan-gil, Mokpo-si 58762, Jeollanam-do, Republic of Korea
| | - Seung-Hyeon Lee
- Jeonju AgroBio-Materials Institute, Wonjangdong-gil 111-27, Deokjin-gu, Jeonju-si 54810, Jeonbuk-do, Republic of Korea; (H.-R.K.); (S.-H.L.); (J.Y.P.)
| | - Jae Young Park
- Jeonju AgroBio-Materials Institute, Wonjangdong-gil 111-27, Deokjin-gu, Jeonju-si 54810, Jeonbuk-do, Republic of Korea; (H.-R.K.); (S.-H.L.); (J.Y.P.)
| | - Wonwoo Lee
- Division of Practical Research, Honam National Institute of Biological Resources, 99, Gohadoan-gil, Mokpo-si 58762, Jeollanam-do, Republic of Korea; (J.U.P.); (W.L.); (K.-M.C.)
- Advanced Research Center for Island Wildlife Biomaterials, Honam National Institute of Biological Resources, 99, Gohadoan-gil, Mokpo-si 58762, Jeollanam-do, Republic of Korea
| | - Kyung-Min Choi
- Division of Practical Research, Honam National Institute of Biological Resources, 99, Gohadoan-gil, Mokpo-si 58762, Jeollanam-do, Republic of Korea; (J.U.P.); (W.L.); (K.-M.C.)
- Advanced Research Center for Island Wildlife Biomaterials, Honam National Institute of Biological Resources, 99, Gohadoan-gil, Mokpo-si 58762, Jeollanam-do, Republic of Korea
| | - Seon-Young Kim
- Jeonju AgroBio-Materials Institute, Wonjangdong-gil 111-27, Deokjin-gu, Jeonju-si 54810, Jeonbuk-do, Republic of Korea; (H.-R.K.); (S.-H.L.); (J.Y.P.)
| | - Mi Hee Park
- Jeonju AgroBio-Materials Institute, Wonjangdong-gil 111-27, Deokjin-gu, Jeonju-si 54810, Jeonbuk-do, Republic of Korea; (H.-R.K.); (S.-H.L.); (J.Y.P.)
| |
Collapse
|
10
|
Zhou M, Sun Y, Mao Q, Luo L, Pan H, Zhang Q, Yu C. Comparative metabolomics profiling reveals the unique bioactive compounds and astringent taste formation of rosehips. Food Chem 2024; 452:139584. [PMID: 38735110 DOI: 10.1016/j.foodchem.2024.139584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 04/27/2024] [Accepted: 05/05/2024] [Indexed: 05/14/2024]
Abstract
Rosehips are a prominent source of numerous bioactive compounds. However, despite their extensive potential, the metabolic profiles among different rosehip species have not been fully elucidated. In this study, 523 secondary metabolites from rosehips of 12 Rosa species were identified using ultra-high-performance liquid chromatography-tandem mass spectrometry. They were primarily composed of flavonoids and phenolic acids. A K-means analysis revealed the characteristic metabolites in different rosehips. For example, R. persica contained a more abundant supply of phenolic acids, while R. roxburghii harbored a richer array of terpenoids. A total of 73 key active ingredients were screened from traditional Chinese medicine databases, and they indicated that R. persica is more promising for use in functional foods or health supplements compared with the other fruits. Moreover, a differential analysis identified 47 compounds as potential contributors to the astringent taste of rosehips, including ellagic acid 4-O-glucoside and cadaverine. This study provides valuable information to develop new functional foods of rosehips and improve the quality of their fruits.
Collapse
Affiliation(s)
- Meichun Zhou
- State Key Laboratory of Efficient Production of Forest Resources, Beijing 100083, China; Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, Beijing 100083, China; National Engineering Research Center for Floriculture, Beijing 100083, China; Beijing Laboratory of Urban and Rural Ecological Environment, Beijing 100083, China; School of Landscape Architecture, Beijing Forestry University, Beijing 100083, China
| | - Yanlin Sun
- State Key Laboratory of Efficient Production of Forest Resources, Beijing 100083, China; Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, Beijing 100083, China; National Engineering Research Center for Floriculture, Beijing 100083, China; Beijing Laboratory of Urban and Rural Ecological Environment, Beijing 100083, China; School of Landscape Architecture, Beijing Forestry University, Beijing 100083, China
| | - Qingyi Mao
- State Key Laboratory of Efficient Production of Forest Resources, Beijing 100083, China; Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, Beijing 100083, China; National Engineering Research Center for Floriculture, Beijing 100083, China; Beijing Laboratory of Urban and Rural Ecological Environment, Beijing 100083, China; School of Landscape Architecture, Beijing Forestry University, Beijing 100083, China
| | - Le Luo
- State Key Laboratory of Efficient Production of Forest Resources, Beijing 100083, China; Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, Beijing 100083, China; National Engineering Research Center for Floriculture, Beijing 100083, China; Beijing Laboratory of Urban and Rural Ecological Environment, Beijing 100083, China; School of Landscape Architecture, Beijing Forestry University, Beijing 100083, China
| | - Huitang Pan
- State Key Laboratory of Efficient Production of Forest Resources, Beijing 100083, China; Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, Beijing 100083, China; National Engineering Research Center for Floriculture, Beijing 100083, China; Beijing Laboratory of Urban and Rural Ecological Environment, Beijing 100083, China; School of Landscape Architecture, Beijing Forestry University, Beijing 100083, China
| | - Qixiang Zhang
- State Key Laboratory of Efficient Production of Forest Resources, Beijing 100083, China; Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, Beijing 100083, China; National Engineering Research Center for Floriculture, Beijing 100083, China; Beijing Laboratory of Urban and Rural Ecological Environment, Beijing 100083, China; School of Landscape Architecture, Beijing Forestry University, Beijing 100083, China
| | - Chao Yu
- State Key Laboratory of Efficient Production of Forest Resources, Beijing 100083, China; Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, Beijing 100083, China; National Engineering Research Center for Floriculture, Beijing 100083, China; Beijing Laboratory of Urban and Rural Ecological Environment, Beijing 100083, China; School of Landscape Architecture, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|
11
|
Bonilla-Vidal L, Świtalska M, Espina M, Wietrzyk J, García ML, Souto EB, Gliszczyńska A, Sánchez-López E. Antitumoral melatonin-loaded nanostructured lipid carriers. Nanomedicine (Lond) 2024; 19:1879-1894. [PMID: 39092498 PMCID: PMC11457606 DOI: 10.1080/17435889.2024.2379757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Accepted: 07/10/2024] [Indexed: 08/04/2024] Open
Abstract
Aim: Cancer constitutes the second leading cause of death worldwide, with conventional therapies limited by significant side effects. Melatonin (MEL), a natural compound with antitumoral properties, suffers from instability and low solubility. To overcome these issues, MEL was encapsulated into nanostructured lipid carriers (MEL-NLC) containing rosehip oil to enhance stability and boost its antitumoral activity.Methods: MEL-NLC were optimized by a design of experiments approach and characterized for their physicochemical properties. Stability and biopharmaceutical behavior were assessed, along with interaction studies and in vitro antitumoral efficacy against various cancer cell lines.Results: Optimized MEL-NLC exhibited desirable physicochemical characteristics, including small particle size and sustained MEL release, along with long-term stability. In vitro studies demonstrated that MEL-NLC selectively induced cytotoxicity in several cancer cell lines while sparing healthy cells.Conclusion: MEL-NLC represent a promising alternative for cancer, combining enhanced stability and targeted antitumoral activity, potentially overcoming the limitations of conventional treatments.
Collapse
Affiliation(s)
- Lorena Bonilla-Vidal
- Department of Pharmacy, Pharmaceutical Technology & Physical Chemistry, University of Barcelona, Barcelona, 08028, Spain
- Institute of Nanoscience & Nanotechnology (INUB), University of Barcelona, Barcelona, 08028, Spain
| | - Marta Świtalska
- Department of Experimental Oncology, Ludwik Hirszfeld Institute of Immunology & Experimental Therapy, Polish Academy of Sciences, Weigla 12, 53-114, Wrocław, Poland
| | - Marta Espina
- Department of Pharmacy, Pharmaceutical Technology & Physical Chemistry, University of Barcelona, Barcelona, 08028, Spain
- Institute of Nanoscience & Nanotechnology (INUB), University of Barcelona, Barcelona, 08028, Spain
| | - Joanna Wietrzyk
- Department of Experimental Oncology, Ludwik Hirszfeld Institute of Immunology & Experimental Therapy, Polish Academy of Sciences, Weigla 12, 53-114, Wrocław, Poland
| | - Maria Luisa García
- Department of Pharmacy, Pharmaceutical Technology & Physical Chemistry, University of Barcelona, Barcelona, 08028, Spain
- Institute of Nanoscience & Nanotechnology (INUB), University of Barcelona, Barcelona, 08028, Spain
| | - Eliana B Souto
- Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, Porto, 4050-313, Portugal
| | - Anna Gliszczyńska
- Department of Food Chemistry & Biocatalysis, Wrocław University of Environmental & Life Sciences, Norwida 25, 50-375, Wrocław, Poland
| | - Elena Sánchez-López
- Department of Pharmacy, Pharmaceutical Technology & Physical Chemistry, University of Barcelona, Barcelona, 08028, Spain
- Institute of Nanoscience & Nanotechnology (INUB), University of Barcelona, Barcelona, 08028, Spain
| |
Collapse
|
12
|
Jing X, Zhou G, Zhu A, Jin C, Li M, Ding K. RG-I pectin-like polysaccharide from Rosa chinensis inhibits inflammation and fibrosis associated to HMGB1/TLR4/NF-κB signaling pathway to improve non-alcoholic steatohepatitis. Carbohydr Polym 2024; 337:122139. [PMID: 38710550 DOI: 10.1016/j.carbpol.2024.122139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 03/23/2024] [Accepted: 04/06/2024] [Indexed: 05/08/2024]
Abstract
A novel RG-I pectin-like polysaccharide, YJ3A1, was purified from the flowers of Rosa chinensis and its structure and hepatoprotective effect in vivo and in vitro were investigated. The backbone of this polysaccharide is mainly composed of 1, 4-galactan, 1, 4-linked α-GalpA and 1, 2-linked α-Rhap disaccharide repeating unit attached by 1, 6-linked β-Galp or 1, 5-linked α-Araf on C-4 of the Rhap. Interestingly, oral administration of YJ3A1 significantly ameliorates NASH-associated inflammation, oxidative stress and fibrosis and does not affect the liver morphology of normal mice at a dose of 50 mg/kg. The mechanism study suggests that the biological activity may associate to inactivating of high-mobility group box 1 protein (HMGB1)/TLR4/NF-κB and Akt signaling pathways by restraining the expression and release of HMGB1, thereby impeding the effect of NASH. The current findings outline a novel leading polysaccharide for new drug candidate development against NASH.
Collapse
Affiliation(s)
- Xiaoqi Jing
- Carbohydrate-Based Drug Research Center, CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, PR China
| | - Guangqin Zhou
- Carbohydrate-Based Drug Research Center, CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, PR China; Zhongshan Institute for Drug Discovery, Zhongshan Tsuihang New District, Zhongshan 528400, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Anming Zhu
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Nanjing, Jiangsu Province 210029, PR China
| | - Can Jin
- Carbohydrate-Based Drug Research Center, CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, PR China; Zhongshan Institute for Drug Discovery, Zhongshan Tsuihang New District, Zhongshan 528400, PR China
| | - Meixia Li
- Carbohydrate-Based Drug Research Center, CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, PR China
| | - Kan Ding
- Carbohydrate-Based Drug Research Center, CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, PR China; Zhongshan Institute for Drug Discovery, Zhongshan Tsuihang New District, Zhongshan 528400, PR China; School of Chinese Materia Medica, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Nanjing, Jiangsu Province 210029, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China.
| |
Collapse
|
13
|
Negrean OR, Farcas AC, Nemes SA, Cic DE, Socaci SA. Recent advances and insights into the bioactive properties and applications of Rosa canina L. and its by-products. Heliyon 2024; 10:e30816. [PMID: 38765085 PMCID: PMC11101839 DOI: 10.1016/j.heliyon.2024.e30816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 04/19/2024] [Accepted: 05/06/2024] [Indexed: 05/21/2024] Open
Abstract
Rosa canina L., commonly known as rosehip, is of notable scientific interest for its applications in nutrition, cosmetics, and pharmaceuticals. This review article highlights its health-promoting properties, including antioxidant, anti-inflammatory, hepatoprotective, and anticarcinogenic effects, attributed to its rich content of phenolic acids, carotenoids, tocopherols, and vitamins. With growing interest in sustainable practices, rosehip by-products are increasingly valorized. For instance, cold-pressed rosehip seed oil is a valuable source of polyunsaturated fatty acids, while incorporating rosehip pomace into snacks enhances their nutritional profile, positioning them as potential functional foods and dietary supplements. This article aims to provide a comprehensive overview of advancements in utilizing rosehip and its by-products, emphasizing their role in enriching food and pharmaceutical products with nutritional and functional bioactivities.
Collapse
Affiliation(s)
- Oana-Raluca Negrean
- Department of Food Science, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 400372, Cluj-Napoca, Romania
| | - Anca Corina Farcas
- Department of Food Science, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 400372, Cluj-Napoca, Romania
- Life Science Institute, University of Agricultural Science and Veterinary Medicine of Cluj-Napoca, Cluj-Napoca, Romania
| | - Silvia Amalia Nemes
- Life Science Institute, University of Agricultural Science and Veterinary Medicine of Cluj-Napoca, Cluj-Napoca, Romania
| | - Diana-Elena Cic
- Department of Food Science, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 400372, Cluj-Napoca, Romania
| | - Sonia Ancuta Socaci
- Department of Food Science, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 400372, Cluj-Napoca, Romania
- Life Science Institute, University of Agricultural Science and Veterinary Medicine of Cluj-Napoca, Cluj-Napoca, Romania
| |
Collapse
|
14
|
Mohammad Rahimi H, Hesari Z, Mirsamadi ES, Nemati S, Mirjalali H. Anti- Toxoplasma gondii activity of rose hip oil-solid lipid nanoparticles. Food Sci Nutr 2024; 12:3725-3734. [PMID: 38726453 PMCID: PMC11077205 DOI: 10.1002/fsn3.4043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 01/23/2024] [Accepted: 02/04/2024] [Indexed: 05/12/2024] Open
Abstract
Toxoplasma gondii is a highly prevalent pathogen, reported from almost all geographical regions of the world. Current anti-T. gondii drugs are not effective enough in immunocompromised patients, encephalitis, chorioretinitis, and congenital toxoplasmosis. Therefore, the prescription of these drugs has been limited. Rose hip oil (RhO) is a natural plant compound, which shows antibacterial, anticancer, and anti-inflammatory activities. In the current study, the anti-T. gondii and cell toxicity effects of solid lipid nanoparticles (SLNs) loaded by RhO (RhO-SLNs) were evaluated. Emulsification sonicated-homogenization method was used to prepare SLNs. RhO-SLNs were characterized, and their anti-T. gondii and cell toxicity effects were evaluated using in vitro analyses. The particle size and the zeta potential of the nanoparticles were 152.09 nm and -15.3 mV nm, respectively. The entrapment efficiency percentage was 79.1%. In the present study, the inhibitory concentration (IC)50 against T. gondii was >1 μg/mL (p-value <.0001). The cell toxicity assay showed cytotoxicity concentration (CC)50 >10 mg/mL (p-value = .017). In addition, at least 75% of T. gondii-infected Vero cells remained alive at concentrations >10 mg/mL. The concentration of 1 mg/mL showed highest anti-Toxoplasma activity and lowest cell toxicity against the Vero cell. Our findings suggest that carrying natural plant compounds with SLNs could be considered an effective option for treatment strategies against T. gondii infections.
Collapse
Affiliation(s)
- Hanieh Mohammad Rahimi
- Foodborne and Waterborne Diseases Research CenterResearch Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical SciencesTehranIran
| | - Zahra Hesari
- Department of PharmaceuticsSchool of Pharmacy, Guilan University of Medical SciencesRashtIran
| | - Elnaz Sadat Mirsamadi
- Department of Microbiology, Faculty of MedicineTehran Medical Sciences, Islamic Azad UniversityTehranIran
| | - Sara Nemati
- Foodborne and Waterborne Diseases Research CenterResearch Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical SciencesTehranIran
| | - Hamed Mirjalali
- Foodborne and Waterborne Diseases Research CenterResearch Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical SciencesTehranIran
| |
Collapse
|
15
|
Zeng Y, Yu Z, Jiang C, Liu J, Yang H, Pan H. Exploring the antioxidant potential of nekemias species extracts on edible oils: In vitro assessment and lipid oxidation inhibition. Heliyon 2024; 10:e28783. [PMID: 38586321 PMCID: PMC10998235 DOI: 10.1016/j.heliyon.2024.e28783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 03/23/2024] [Accepted: 03/25/2024] [Indexed: 04/09/2024] Open
Abstract
Synthetic antioxidants have long been used to protect edible oils from oxidation. However, concerns about their potential health risks and environmental impact have led to a growing interest in natural antioxidants. In this study, we explore the antioxidant properties of extracts from four Nekemias plant species: Nekemias grossedentata (AGR), Nekemias megalophylla (AME), Nekemias chaffanjonii (ACH), and Nekemias cantoniensis (ACA) by obtaining the values for different tests. We investigate their bioactive compound content and evaluate their antioxidant capabilities on six edible oils categorized into three lipid systems based on their fatty acid compositions: oleic acid, linoleic acid, and linolenic acid. Our findings demonstrate that AGR and AME extracts, rich in bioactive compounds, exhibit strong antioxidant activities in vitro, effectively inhibiting lipid oxidation, especially in oleic acid-rich oils like camellia oil. The antioxidant effects of these extracts are comparable to synthetic antioxidants such as TBHQ and superior to natural antioxidant Tea Polyphenols (TP). While the extracts also show antioxidant potential in linoleic and linolenic acid systems, the stability of their effects in these oils is lower than in oleic acid system. These results suggest that Nekemias species extracts have the potential to serve as natural additives for extending the shelf life of edible oils, contributing to the exploration of natural antioxidants.
Collapse
Affiliation(s)
- Yuan Zeng
- School of Life Sciences, Guizhou Normal University, Guiyang, 550025, China
| | - Zhengwen Yu
- School of Life Sciences, Guizhou Normal University, Guiyang, 550025, China
| | - Chunyan Jiang
- School of Life Sciences, Guizhou Normal University, Guiyang, 550025, China
| | - Jiayu Liu
- School of Life Sciences, Guizhou Normal University, Guiyang, 550025, China
| | - Huanchun Yang
- School of Life Sciences, Guizhou Normal University, Guiyang, 550025, China
| | - Hongli Pan
- School of Life Sciences, Guizhou Normal University, Guiyang, 550025, China
| |
Collapse
|
16
|
Oargă (Porumb) DP, Cornea-Cipcigan M, Cordea MI. Unveiling the mechanisms for the development of rosehip-based dermatological products: an updated review. Front Pharmacol 2024; 15:1390419. [PMID: 38666029 PMCID: PMC11043540 DOI: 10.3389/fphar.2024.1390419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 03/28/2024] [Indexed: 04/28/2024] Open
Abstract
Rosa spp., commonly known as rosehips, are wild plants that have traditionally been employed as herbal remedies for the treatment of a wide range of disorders. Rosehip is a storehouse of vitamins, including A, B complex, C, and E. Among phytonutrients, vitamin C is found in the highest amount. As rosehips contain significant levels of vitamin C, they are perfect candidates for the development of skincare formulations that can be effectively used in the treatment of different skin disorders (i.e., scarring, anti-aging, hyperpigmentation, wrinkles, melasma, and atopic dermatitis). This research focuses on the vitamin C content of several Rosa sp. by their botanical and geographic origins, which according to research studies are in the following order: R. rugosa > R. montana > R. canina > R. dumalis, with lower levels in R. villosa and R. arvensis, respectively. Among rosehip species, R. canina is the most extensively studied species which also displays significant amounts of bioactive compounds, but also antioxidant, and antimicrobial activities (e.g., against Propionibacterium acnes, Staphylococcus aureus, S, epidermis, and S. haemolyticus). The investigation also highlights the use of rosehip extracts and oils to minimise the harmful effects of acne, which primarily affects teenagers in terms of their physical appearance (e.g., scarring, hyperpigmentation, imperfections), as well as their moral character (e.g., low self-confidence, bullying). Additionally, for higher vitamin C content from various rosehip species, the traditional (i.e., infusion, maceration, Soxhlet extraction) and contemporary extraction methods (i.e., supercritical fluid extraction, microwave-assisted, ultrasonic-assisted, and enzyme-assisted extractions) are highlighted, finally choosing the best extraction method for increased bioactive compounds, with emphasis on vitamin C content. Consequently, the current research focuses on assessing the potential of rosehip extracts as medicinal agents against various skin conditions, and the use of rosehip concentrations in skincare formulations (such as toner, serum, lotion, and sunscreen). Up-to-date studies have revealed that rosehip extracts are perfect candidates as topical application products in the form of nanoemulsions. Extensive in vivo studies have revealed that rosehip extracts also exhibit specific activities against multiple skin disorders (i.e., wound healing, collagen synthesis, atopic dermatitis, melasma, and anti-aging effects). Overall, with multiple dermatological actions and efficacies, rosehip extracts and oils are promising agents that require a thorough investigation of their functioning processes to enable their safe use in the skincare industry.
Collapse
Affiliation(s)
| | - Mihaiela Cornea-Cipcigan
- Laboratory of Cell Analysis and Plant Breeding, Department of Horticulture, Faculty of Horticulture and Business in Rural Development, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Cluj-Napoca, Romania
| | - Mirela Irina Cordea
- Laboratory of Cell Analysis and Plant Breeding, Department of Horticulture, Faculty of Horticulture and Business in Rural Development, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Cluj-Napoca, Romania
| |
Collapse
|
17
|
Zhou M, Sun Y, Luo L, Pan H, Zhang Q, Yu C. Comparative metabolomic analysis reveals nutritional properties and pigmentation mechanism of tea-scented rosehips. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:3392-3404. [PMID: 38105397 DOI: 10.1002/jsfa.13224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 11/01/2023] [Accepted: 12/18/2023] [Indexed: 12/19/2023]
Abstract
BACKGROUND The fruits of the genus Rosa, commonly known as rosehips, have attracted significant attention owing to their rich content of various bioactive compounds. However, their utility is generally secondary to the ornamental appeal of their flowers. This study aimed to explore the quality differences among tea-scented rosehips found in Yunnan, China, including those of Rosa odorata var. odorata (RO), Rosa odorata var. gigantea (RG), and Rosa yangii (RY). Morphological characteristics, chemical composition, and antioxidant activity of their fruits were evaluated. RESULTS The study revealed significant variability in composition and biological activities based on fruit color. RO exhibited the highest levels of polyphenols, flavonoids, anthocyanins, carotenoids, and vitamin C, with the strongest antioxidant activity (10.99 μmol Trolox·g-1 ), followed by RG (7.91 μmol Trolox·g-1 ) and RY (6.52 μmol Trolox·g-1 ). This supports RO's potential as a functional food source. Untargeted metabolomics identified and quantified 502 metabolites, with flavonoids (171) and phenolic acids (147) as the main metabolites. The differential metabolites among the fruits are primarily enriched for flavonoid biosynthesis and phenylpropanoid biosynthesis pathways. Insights into color formation supported the role of anthocyanins, flavones, and flavonols in fruit color variation. CONCLUSION Tea-scented rosehips offer vibrant colors and high nutritional value with potent biological activities. Rosa odorata var. odorata stands out as a functional food source owing to its rich bioactive compounds. These findings lay the groundwork for utilizing rosehips in functional foods, health supplements, and food additives, emphasizing the practical and beneficial applications of Rosa spp. independent of their ornamental value. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Meichun Zhou
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment and School of Landscape Architecture, Beijing Forestry University, Beijing, China
| | - Yanlin Sun
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment and School of Landscape Architecture, Beijing Forestry University, Beijing, China
| | - Le Luo
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment and School of Landscape Architecture, Beijing Forestry University, Beijing, China
| | - Huitang Pan
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment and School of Landscape Architecture, Beijing Forestry University, Beijing, China
| | - Qixiang Zhang
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment and School of Landscape Architecture, Beijing Forestry University, Beijing, China
| | - Chao Yu
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment and School of Landscape Architecture, Beijing Forestry University, Beijing, China
| |
Collapse
|
18
|
Saini A, Kaur R, Kumar S, Saini RK, Kashyap B, Kumar V. New horizon of rosehip seed oil: Extraction, characterization for its potential applications as a functional ingredient. Food Chem 2024; 437:137568. [PMID: 37918157 DOI: 10.1016/j.foodchem.2023.137568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 09/19/2023] [Accepted: 09/21/2023] [Indexed: 11/04/2023]
Abstract
In recent years, rosehip is gaining more attention due to its high nutritional and medicinal value. Rosehip seeds usually discarded as waste, contain oil with high bioactive potential. These nutritional properties recommend the use of rosehip seed oil (RSO) to develop innovative food, pharma, and cosmetic products. In this review, different conventional and novel technologies for the extraction of RSO in terms of optimized conditions for better extraction of oil are discussed. In the lateral section of the manuscript, the detailed composition and biological activities of RSO are reviewed. Finally, a glimpse of the recent applications in the food, pharmaceutical, and cosmetic industry are provided. This review could provide a comprehensive understanding of the value of RSO and promote its nutrition research and commercial product development.
Collapse
Affiliation(s)
- Aadisha Saini
- Department of Food Science and Technology, Punjab Agricultural University, Ludhiana, Punjab, 141004, India
| | - Ramandeep Kaur
- Department of Food Science and Technology, Punjab Agricultural University, Ludhiana, Punjab, 141004, India.
| | - Satish Kumar
- Department of Food Science and Technology, Dr. YS Parmar University of Horticulture and Forestry, Nauni, Solan - 173 230 (HP), India
| | - Ramesh Kumar Saini
- Department of Crop Science, Konkuk University, Seoul 143-701, Republic of Korea
| | - Bharati Kashyap
- Department of Floriculture and Landscaping, Dr. YS Parmar University of Horticulture and Forestry, Nauni, Solan - 173 230 (HP), India
| | - Vikas Kumar
- Department of Food Science and Technology, Punjab Agricultural University, Ludhiana, Punjab, 141004, India.
| |
Collapse
|
19
|
Didar Z. Characterization of white chocolate enriched with co-encapsulated Lactobacillus acidophilus ( La-5) and rose hip shell fruit extract: Characterization, probiotic viability during storage, and in vitro gastrointestinal digestion. Food Sci Nutr 2024; 12:890-906. [PMID: 38370043 PMCID: PMC10867508 DOI: 10.1002/fsn3.3805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 10/10/2023] [Accepted: 10/18/2023] [Indexed: 02/20/2024] Open
Abstract
This research focused on the production of a new kind of probiotic chocolate containing co-encapsulated Lactobacillus acidophilus (La-5) bacteria and rose hip shell fruit extract. Several properties of chocolate samples, including rheological, textural, thermal properties, particle size distribution, color indices, total phenolic and anthocyanin magnitude, antioxidant potential, and Raman spectroscopy were performed. The prepared white chocolates were assessed for the survival of the probiotic cell and the stability of anthocyanins and phenolic components in different storage times (until 90 days) and different storage temperatures (at 4 and 25°C). Observations imply that both temperature and duration of storage had an impact on the extent of survival of probiotics as well as stability of total phenolic content (TPC) and anthocyanin content (p < .05). During in vitro gastrointestinal circumstances, the extent of survival of L. acidophilus, in two chocolate matrixes, was assessed. At the end of gastric and intestinal condition, the log of viable cells was 7 and 6, respectively. The magnitude of the bioaccessibility of anthocyanin and phenolic components was 81% and 78%, respectively. Sensory evaluation affirmed that there was no remarkable variation between samples in terms of overall acceptance.
Collapse
Affiliation(s)
- Zohreh Didar
- Department of Food Science and Technology, Neyshabur BranchIslamic Azad UniversityNeyshaburIran
| |
Collapse
|
20
|
Wang H. Beneficial medicinal effects and material applications of rose. Heliyon 2024; 10:e23530. [PMID: 38169957 PMCID: PMC10758878 DOI: 10.1016/j.heliyon.2023.e23530] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 12/04/2023] [Accepted: 12/05/2023] [Indexed: 01/05/2024] Open
Abstract
Rose is a beautiful and fragrant plant with a variety of medicinal and substance uses. Various parts of rose such as fruits, flowers, leaves, and bark can be used in various product development, including cosmetics, food, pharmaceuticals, and engineering. The medical benefits of roses include the treatment of inflammation, diabetes, dysmenorrhea, depression, stress, seizures, and aging. Rose water is precious beauty water for skin care and has antibacterial effects on various microbiota. The surface of a rose petal exhibits a hierarchical structure comprising microscale papillae, with each papilla further featuring intricate nanofolds. With this structural feature, rose petals have high water contact angles together with antagonistic wetting properties. The hierarchical structures of rose petals were shown to have anti-reflection and light-harvesting abilities, which have the potential to be materials for various electronic products. Rose petals are an excellent biomimetic/bioinspired material that can be applied to the popular material graphene. This paper reviews the medical function and material application of roses. During the COVID-19 pandemic, medical materials or food shortages have become a global issue. Natural biomaterials could be a good alternative. Roses, with so many benefits, definitely deserve more exploration and promotion.
Collapse
Affiliation(s)
- Hsiuying Wang
- Institute of Statistics, National Yang Ming Chiao Tung University, Hsinchu, 300093, Taiwan
| |
Collapse
|
21
|
Nagatomo A, Kohno M, Kawakami H, Manse Y, Morikawa T. Inhibitory effect of trans-tiliroside on very low-density lipoprotein secretion in HepG2 cells and mouse liver. J Nat Med 2024; 78:180-190. [PMID: 37973705 PMCID: PMC10764534 DOI: 10.1007/s11418-023-01756-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 10/16/2023] [Indexed: 11/19/2023]
Abstract
An acylated flavonol glycoside, trans-tiliroside (1), is found in certain parts of different herbs, including the seeds of Rosa canina (Rosaceae). Previous studies on compound 1 have focused on triglyceride (TG) metabolism, including its anti-obesity and intracellular TG reduction effects. In the present study, the effects of compound 1 on cholesterol (CHO) metabolism were investigated using human hepatocellular carcinoma-derived HepG2 cells and mice. Compound 1 decreased CHO secretion in HepG2 cells, which was enhanced by mevalonate in a concentration-dependent manner and decreased the secretion of apoprotein B (apoB)-100, a marker of very low-density lipoprotein (VLDL). Compound 1 also inhibited the activity of microsomal triglyceride transfer proteins, which mediate VLDL formation from cholesterol and triglycerides in the liver. In vivo, compound 1 inhibited the accumulation of Triton WR-1339-induced TG in the blood of fasted mice and maintained low levels of apoB-100. These results suggest that compound 1 inhibits the secretion of CHO as VLDL from the liver and has the potential for use for the prevention of dyslipidemia.
Collapse
Affiliation(s)
- Akifumi Nagatomo
- Pharmaceutical Research and Technology Institute, Kindai University, 3-4-1 Kowakae, Higashi-osaka, Osaka, 577-8502, Japan.
- Morishita Jintan Co., Ltd., 11-1 Tsudayamate 2-Chome, Hirakata, Osaka, 573-0128, Japan.
| | - Mamiko Kohno
- Morishita Jintan Co., Ltd., 11-1 Tsudayamate 2-Chome, Hirakata, Osaka, 573-0128, Japan
| | - Hirosato Kawakami
- Morishita Jintan Co., Ltd., 11-1 Tsudayamate 2-Chome, Hirakata, Osaka, 573-0128, Japan
| | - Yoshiaki Manse
- Pharmaceutical Research and Technology Institute, Kindai University, 3-4-1 Kowakae, Higashi-osaka, Osaka, 577-8502, Japan
| | - Toshio Morikawa
- Pharmaceutical Research and Technology Institute, Kindai University, 3-4-1 Kowakae, Higashi-osaka, Osaka, 577-8502, Japan.
- Antiaging Center, Kindai University, 3-4-1 Kowakae, Higashi-osaka, Osaka, 577-8502, Japan.
| |
Collapse
|
22
|
Belkhelladi M, Bougrine A. Rosehip extract and wound healing: A review. J Cosmet Dermatol 2024; 23:62-67. [PMID: 37605366 DOI: 10.1111/jocd.15971] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 07/25/2023] [Accepted: 08/13/2023] [Indexed: 08/23/2023]
Abstract
BACKGROUND Each year, over 100 million patients are afflicted with new scars from medical procedures worldwide. Natural compounds have shown promise in the treatment of scars and skin disorders. Rosehip oil (RO), produced from the pressed fruit of the rosehip (Rosa canina L.) plant, is used in the pharmaceutical, cosmetic, and food industries. The use of this plant in the treatment of scars has yet to be reviewed. AIMS This review aims to analyze the current findings on the use of RO in the treatment of postsurgical scars. METHODS This literature search considered published journal articles (clinical trials or literature reviews). Studies were identified by searching electronic databases (PubMed and MEDLINE) and reference lists of respective articles. Additional articles were identified through Google Scholar. Only articles available in English were included in this review. RESULTS There is a scarcity of high-quality studies assessing the therapeutic potential of RO. From the two human clinical trials using RO, there is some evidence to suggest its potential as an active ingredient in topical formulations for the treatment of wounds. Topical treatments containing RO extract may reduce the size and erythema of postsurgical scars through the polarization of macrophages and the inhibition of inflammatory cytokines. CONCLUSIONS Some evidence suggests that RO may improve postsurgical scars. At present, there is insufficient evidence to recommend the use of RO for the treatment of wounds. Further investigation is required to establish its therapeutic effects on human skin and its potential use as an ingredient in topical formulations.
Collapse
|
23
|
Truong VL, Jeong WS. Hair Growth-Promoting Effects of Rosehip ( Rosa canina L.) Seed Oil in C57BL/6 Mice. Prev Nutr Food Sci 2023; 28:411-417. [PMID: 38188083 PMCID: PMC10764223 DOI: 10.3746/pnf.2023.28.4.411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 09/20/2023] [Accepted: 10/02/2023] [Indexed: 01/09/2024] Open
Abstract
Rosehip (Rosa canina L.) seeds, a by-product of the food processing industry, contain various bioactive compounds that have potential cosmetic and pharmacological applications. Rosehip seed oil (RHSO) has been shown to exert therapeutic effects in skin disorders, but its role in promoting hair growth remains unknown. In this study, we aimed to elucidate the hair growth-promoting activity of RHSO and the related mechanisms of action. The depleted dorsal skin of telogenic C57BL/6 mice was topically treated with RHSO for 21 days, and the extent of hair regrowth was assessed. The results indicated that RHSO stimulated hair growth by inducing the early transition of hair follicles from telogen to anagen phase. Histological analysis revealed significant increases in hair follicle density, hair bulb size, and skin thickness. RHSO treatment also upregulated the expression of hair growth-associated genes, including β-catenin, phospho-glycogen synthase kinase-3 beta, Sonic hedgehog, smoothened, cyclin D1, cyclin E, and insulin like growth factor 1. These findings suggest that RHSO stimulates hair growth and may show promise as a preventive and/or therapeutic agent for hair loss.
Collapse
Affiliation(s)
- Van-Long Truong
- Food and Bio-Industry Research Institute, School of Food Science & Biotechnology, College of Agriculture and Life Sciences, Kyungpook National University, Daegu 41566, Korea
| | - Woo-Sik Jeong
- Food and Bio-Industry Research Institute, School of Food Science & Biotechnology, College of Agriculture and Life Sciences, Kyungpook National University, Daegu 41566, Korea
| |
Collapse
|
24
|
Milala J, Kosmala M, Sójka M, Kołodziejczyk K, Klewicki R, Król M, Karlińska E, Rój E. Rosa rugosa Low Caloric Fiber Protein Preparations Rich in Antioxidant Flavanols and Ellagitannins. Molecules 2023; 28:8021. [PMID: 38138511 PMCID: PMC10745736 DOI: 10.3390/molecules28248021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/06/2023] [Accepted: 12/07/2023] [Indexed: 12/24/2023] Open
Abstract
Defatted seed residues after the extraction of rose oil have their potential not fully described in the existing literature. The aim of this study was to determine and characterize the components important for the human body that are found in Rosa rugosa defatted seeds, including dietary fibers, proteins, selected minerals, polyphenols and antioxidant activity. Rosa rugosa seeds defatted with CO2 in supercritical conditions are a rich source of dietary fibers (approx. 65%) and proteins (15%); their macronutrients include the following: Ca (175.9), Mg (83.9), K (199.2) and Na (3.5 mg/100 g). They also contain polyphenols, including flavanols (0.9%) and total ellagic acid (0.5%), and they exhibit antioxidant activity (143.8 µM TAEC/g). Tellimagrandin I and II and rugosin A were found in the extracts, and ellagitannins with a yet-indeterminate structure were also present. The seeds also contained ellagitannin derivatives-galloyl-HHDP-glucose and bis-HHDP-glucose-at the same time, and they are characterized by a low-fat content-0.4%. The energy value of defatted rose seeds is about half the energy value of popular seeds used in the food industry. The findings of the present study suggest that defatted rosehip seeds, the by-product of rosehip processing, could be an important source of bioactive components like dietary fibers, flavanols, ellagitannins and mineral compounds. Therefore, defatted rose seeds are very promising and require further research, because they can potentially be used as a natural source of chemopreventive agents.
Collapse
Affiliation(s)
- Joanna Milala
- Institute of Food Technology and Analysis, Lodz University of Technology, B. Stefanowskiego 2/22, 90-537 Łódź, Poland; (M.S.); (R.K.); (M.K.); (E.K.)
| | - Monika Kosmala
- Institute of Food Technology and Analysis, Lodz University of Technology, B. Stefanowskiego 2/22, 90-537 Łódź, Poland; (M.S.); (R.K.); (M.K.); (E.K.)
| | - Michał Sójka
- Institute of Food Technology and Analysis, Lodz University of Technology, B. Stefanowskiego 2/22, 90-537 Łódź, Poland; (M.S.); (R.K.); (M.K.); (E.K.)
| | - Krzysztof Kołodziejczyk
- Department of Sugar Industry and Food Safety Management, Lodz University of Technology, Wólczańska 171/173, 90-530 Łódź, Poland;
| | - Robert Klewicki
- Institute of Food Technology and Analysis, Lodz University of Technology, B. Stefanowskiego 2/22, 90-537 Łódź, Poland; (M.S.); (R.K.); (M.K.); (E.K.)
| | - Magdalena Król
- Institute of Food Technology and Analysis, Lodz University of Technology, B. Stefanowskiego 2/22, 90-537 Łódź, Poland; (M.S.); (R.K.); (M.K.); (E.K.)
| | - Elżbieta Karlińska
- Institute of Food Technology and Analysis, Lodz University of Technology, B. Stefanowskiego 2/22, 90-537 Łódź, Poland; (M.S.); (R.K.); (M.K.); (E.K.)
| | - Edward Rój
- Łukasiewicz Research Network—New Chemical Syntheses Institute, Tysiąclecia Państwa Polskiego 13a, 24-110 Puławy, Poland;
| |
Collapse
|
25
|
Bonilla-Vidal L, Świtalska M, Espina M, Wietrzyk J, García ML, Souto EB, Gliszczyńska A, Sánchez López E. Dually Active Apigenin-Loaded Nanostructured Lipid Carriers for Cancer Treatment. Int J Nanomedicine 2023; 18:6979-6997. [PMID: 38026534 PMCID: PMC10680483 DOI: 10.2147/ijn.s429565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Accepted: 10/24/2023] [Indexed: 12/01/2023] Open
Abstract
Purpose Cancer is one of the major causes of death worldwide affecting more than 19 million people. Traditional cancer therapies have many adverse effects and often result in unsatisfactory outcomes. Natural flavones, such as apigenin (APG), have demonstrated excellent antitumoral properties. However, they have a low aqueous solubility. To overcome this drawback, APG can be encapsulated in nanostructured lipid carriers (NLC). Therefore, we developed dual NLC encapsulating APG (APG-NLC) with a lipid matrix containing rosehip oil, which is known for its anti-inflammatory and antioxidant properties. Methods Optimisation, physicochemical characterisation, biopharmaceutical behaviour, and therapeutic efficacy of this novel nanostructured system were assessed. Results APG-NLC were optimized obtaining an average particle size below 200 nm, a surface charge of -20 mV, and an encapsulation efficiency over 99%. The APG-NLC released APG in a sustained manner, and the results showed that the formulation was stable for more than 10 months. In vitro studies showed that APG-NLC possess significant antiangiogenic activity in ovo and selective antiproliferative activity in several cancer cell lines without exhibiting toxicity in healthy cells. Conclusion APG-NLC containing rosehip oil were optimised. They exhibit suitable physicochemical parameters, storage stability for more than 10 months, and prolonged APG release. Moreover, APG-NLC were internalised inside tumour cells, showing the capacity to cause cytotoxicity in cancer cells without damaging healthy cells.
Collapse
Affiliation(s)
- Lorena Bonilla-Vidal
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, University of Barcelona, Barcelona, Spain
- Institute of Nanoscience and Nanotechnology (INUB), University of Barcelona, Barcelona, Spain
| | - Marta Świtalska
- Department of Experimental Oncology, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | - Marta Espina
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, University of Barcelona, Barcelona, Spain
- Institute of Nanoscience and Nanotechnology (INUB), University of Barcelona, Barcelona, Spain
| | - Joanna Wietrzyk
- Department of Experimental Oncology, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | - Maria Luisa García
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, University of Barcelona, Barcelona, Spain
- Institute of Nanoscience and Nanotechnology (INUB), University of Barcelona, Barcelona, Spain
| | - Eliana B Souto
- Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Anna Gliszczyńska
- Department of Food Chemistry and Biocatalysis, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | - Elena Sánchez López
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, University of Barcelona, Barcelona, Spain
- Institute of Nanoscience and Nanotechnology (INUB), University of Barcelona, Barcelona, Spain
- Unit of Synthesis and Biomedical Applications of Peptides, IQAC-CSIC, Barcelona, Spain
| |
Collapse
|
26
|
Upadhyay P, Kalra D, Nilakhe AS, Aggrawal V, Gupta S. Polyherbal formulation PL02 alleviates pain, inflammation, and subchondral bone deterioration in an osteoarthritis rodent model. Front Nutr 2023; 10:1217051. [PMID: 38045809 PMCID: PMC10693428 DOI: 10.3389/fnut.2023.1217051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 10/23/2023] [Indexed: 12/05/2023] Open
Abstract
Introduction Osteoarthritis (OA) is a debilitating disease with significant personal and socioeconomic burdens worldwide. Methods To address this, we developed a multitargeted formulation called PL02, which includes standardized extracts of Rosa canina L, Hippophae rhamnoides, and collagen peptide. We tested the pharmacological efficacy of PL02 in a rodent model of OA induced by Monosodium iodoacetate (MIA). Results Our results demonstrate that oral administration of PL02 has antioxidant effects by down-regulating NOS, reduces pain-related behavior, and mitigates inflammation by inhibiting IL-1b and TNF-α production, as well as downregulating CGRP1 and COX-II. PL02 also exhibits anti-catabolic and chondroprotective activity by significantly downregulating MMP13 and upregulating BCL2. Additionally, PL02 demonstrates chondrogenic activity by significantly upregulating SOX-9 (a master regulator of chondrogenesis), Coll-I, and aggrecan, which are major components of articular cartilage. Furthermore, PL02 prevents microarchitectural deterioration of subchondral bone. Conclusion Overall, PL02 is an orally active, multi-targeted therapy that not only alleviates pain and inflammation but also effectively halts cartilage and subchondral bone deterioration. It represents a safe and promising candidate for the treatment and management of OA.
Collapse
Affiliation(s)
- Prabhat Upadhyay
- Molecular Science Lab, National Institute of Immunology (NII), New Delhi, India
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Diya Kalra
- Molecular Science Lab, National Institute of Immunology (NII), New Delhi, India
| | | | - Vijay Aggrawal
- M/s Purobien Lifesciences Ltd, Baddi, Himachal Pradesh, India
| | - Sarika Gupta
- Molecular Science Lab, National Institute of Immunology (NII), New Delhi, India
| |
Collapse
|
27
|
Kunc N, Hudina M, Osterc G, Bavcon J, Ravnjak B, Mikulič-Petkovšek M. Phenolic Compounds of Rose Hips of Some Rosa Species and Their Hybrids Native Grown in the South-West of Slovenia during a Two-Year Period (2020-2021). Foods 2023; 12:foods12101952. [PMID: 37238770 DOI: 10.3390/foods12101952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/27/2023] [Accepted: 05/09/2023] [Indexed: 05/28/2023] Open
Abstract
The genus Rosa is very extensive and variable, so it remains very unpredictable and uninvestigated. This also holds true for values of secondary metabolites in rose hips, which are important for several purposes (human diet, protection of plants against pests, etc.). The aim of our study was to determine the content of phenolic compounds in the hips of R. × R. glauca, R. corymbifera, R. gallica and R. subcanina, which grow wild in nature in southwestern Slovenia. We examined the content of phenolic compounds in different parts of rose hips, in the flesh with skin and in the seeds, depending on the individual species, over a period of two years, 2020 and 2021. We also considered the influence of environmental conditions on the content of the mentioned compounds. In both years, the content of phenolic compounds was higher in the flesh with skin than in the seeds. Considering the total content of phenolic compounds in the flesh with skin, R. gallica stands out (15,767.21 mg/kg FW), but the hips of this species accumulated the lowest number of different phenolic compounds. The lowest content of total phenolic compounds (TPC) was found in R. corymbifera, in the year 2021 (3501.38 mg/kg FW). The content of TPC (in both observed years) in the seeds varied between 1263.08 mg/kg FW (R. subcanina) and 3247.89 mg/kg FW (R. × R. glauca). Among the anthocyanins, cyanidin-3-glucoside was determined, which was predominant in R. gallica (28.78 mg/kg FW), and at least was determined in R. subcanina (1.13 mg/kg FW). When comparing the two years of the period (2020-2021), we found that 2021 was more favorable for the formation of phenolic compounds in the seeds, but 2020 in the flesh with skin.
Collapse
Affiliation(s)
- Nina Kunc
- Department of Agronomy, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000 Ljubljana, Slovenia
| | - Metka Hudina
- Department of Agronomy, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000 Ljubljana, Slovenia
| | - Gregor Osterc
- Department of Agronomy, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000 Ljubljana, Slovenia
| | - Jože Bavcon
- University Botanic Garden, Biotechnical Faculty, University of Ljubljana, Ižanska cesta 15, 1000 Ljubljana, Slovenia
| | - Blanka Ravnjak
- University Botanic Garden, Biotechnical Faculty, University of Ljubljana, Ižanska cesta 15, 1000 Ljubljana, Slovenia
| | - Maja Mikulič-Petkovšek
- Department of Agronomy, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000 Ljubljana, Slovenia
| |
Collapse
|
28
|
Sallustio V, Farruggia G, di Cagno MP, Tzanova MM, Marto J, Ribeiro H, Goncalves LM, Mandrone M, Chiocchio I, Cerchiara T, Abruzzo A, Bigucci F, Luppi B. Design and Characterization of an Ethosomal Gel Encapsulating Rosehip Extract. Gels 2023; 9:gels9050362. [PMID: 37232954 DOI: 10.3390/gels9050362] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/22/2023] [Accepted: 04/24/2023] [Indexed: 05/27/2023] Open
Abstract
Rising environmental awareness drives green consumers to purchase sustainable cosmetics based on natural bioactive compounds. The aim of this study was to deliver Rosa canina L. extract as a botanical ingredient in an anti-aging gel using an eco-friendly approach. Rosehip extract was first characterized in terms of its antioxidant activity through a DPPH assay and ROS reduction test and then encapsulated in ethosomal vesicles with different percentages of ethanol. All formulations were characterized in terms of size, polydispersity, zeta potential, and entrapment efficiency. Release and skin penetration/permeation data were obtained through in vitro studies, and cell viability was assessed using an MTT assay on WS1 fibroblasts. Finally, ethosomes were incorporated in hyaluronic gels (1% or 2% w/v) to facilitate skin application, and rheological properties were studied. Rosehip extract (1 mg/mL) revealed a high antioxidant activity and was successfully encapsulated in ethosomes containing 30% ethanol, having small sizes (225.4 ± 7.0 nm), low polydispersity (0.26 ± 0.02), and good entrapment efficiency (93.41 ± 5.30%). This formulation incorporated in a hyaluronic gel 1% w/v showed an optimal pH for skin application (5.6 ± 0.2), good spreadability, and stability over 60 days at 4 °C. Considering sustainable ingredients and eco-friendly manufacturing technology, the ethosomal gel of rosehip extract could be an innovative and green anti-aging skincare product.
Collapse
Affiliation(s)
- Valentina Sallustio
- Drug Delivery Research Laboratory, Department of Pharmacy and Biotechnology, Alma Mater Studiorum, University of Bologna, Via San Donato 19/2, 40127 Bologna, Italy
| | - Giovanna Farruggia
- Pharmaceutical Biochemistry Laboratory, Department of Pharmacy and Biotechnology, Alma Mater Studiorum, University of Bologna, Via San Donato 19/2, 40127 Bologna, Italy
| | - Massimiliano Pio di Cagno
- Department of Pharmacy, Faculty of Mathematics and Natural Sciences, University of Oslo, Sem Saelands vei 3, 0371 Oslo, Norway
| | - Martina M Tzanova
- Department of Pharmacy, Faculty of Mathematics and Natural Sciences, University of Oslo, Sem Saelands vei 3, 0371 Oslo, Norway
| | - Joana Marto
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Avenida Professor Gama Pinto, 1649-038 Lisboa, Portugal
| | - Helena Ribeiro
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Avenida Professor Gama Pinto, 1649-038 Lisboa, Portugal
| | - Lidia Maria Goncalves
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Avenida Professor Gama Pinto, 1649-038 Lisboa, Portugal
| | - Manuela Mandrone
- Pharmaceutical Botany Laboratory, Department of Pharmacy and Biotechnology, Alma Mater Studiorum, University of Bologna, Via Irnerio 42, 40127 Bologna, Italy
| | - Ilaria Chiocchio
- Pharmaceutical Botany Laboratory, Department of Pharmacy and Biotechnology, Alma Mater Studiorum, University of Bologna, Via Irnerio 42, 40127 Bologna, Italy
| | - Teresa Cerchiara
- Drug Delivery Research Laboratory, Department of Pharmacy and Biotechnology, Alma Mater Studiorum, University of Bologna, Via San Donato 19/2, 40127 Bologna, Italy
| | - Angela Abruzzo
- Drug Delivery Research Laboratory, Department of Pharmacy and Biotechnology, Alma Mater Studiorum, University of Bologna, Via San Donato 19/2, 40127 Bologna, Italy
| | - Federica Bigucci
- Drug Delivery Research Laboratory, Department of Pharmacy and Biotechnology, Alma Mater Studiorum, University of Bologna, Via San Donato 19/2, 40127 Bologna, Italy
| | - Barbara Luppi
- Drug Delivery Research Laboratory, Department of Pharmacy and Biotechnology, Alma Mater Studiorum, University of Bologna, Via San Donato 19/2, 40127 Bologna, Italy
| |
Collapse
|
29
|
Soltan OIA, Gazwi HSS, Ragab AE, Aljohani ASM, El-Ashmawy IM, Batiha GES, Hafiz AA, Abdel-Hameed SM. Assessment of Bioactive Phytochemicals and Utilization of Rosa canina Fruit Extract as a Novel Natural Antioxidant for Mayonnaise. Molecules 2023; 28:molecules28083350. [PMID: 37110582 PMCID: PMC10146642 DOI: 10.3390/molecules28083350] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 03/25/2023] [Accepted: 03/29/2023] [Indexed: 04/29/2023] Open
Abstract
The oxidation of food emulsions causes rancidity, which reduces their shelf life. To prevent rancidity, synthetic antioxidants are widely used in the food industry. However, due to their potential health risks, researchers are exploring natural alternatives. This study aimed to investigate whether Rosa canina fruit extract (RCFE) could be used as a natural antioxidant to extend the shelf life of mayonnaise. Mayonnaise containing varying concentrations of RCFE [0.125% (T1), 0.25% (T2), 0.50% (T3), 0.75% (T4)] was compared to a mayonnaise control sample (C1) and a mayonnaise sample containing 0.02% BHT (C2) for 60 days of storage at 4 °C. RCFE was found to have high levels of total phenols content (52.06 ± 1.14 mg GAE g-1), total flavonoids content (26.31 ± 1.03 mg QE g-1), and free radical scavenging activity. The GC-MS analysis of RCFE revealed 39 different peaks, whereas the HPLC analysis showed the presence of 13 polyphenolic compounds in RCFE. The pH values of T2, T3, and T4 mayonnaise samples substantially declined as storage progressed; however, the reduction was less than that of C1 and C2. After 60 days, mayonnaise samples T2, T3, and T4 had greatly reduced peroxide and free fatty acid levels compared to C1 and C2. The mayonnaise enriched with RCFE (T3 and T4) had the most potent antioxidative ability and the lowest value of lipid hydroperoxides (peroxide value, POV) and the lowest value of thiobarbituric-acid-reactive substances (TBARS). The sensory evaluation revealed that the T3 sample exhibited the highest overall acceptability. In conclusion, this study recommends that RCFE could be used as a natural preservative to enhance the shelf life of functional foods.
Collapse
Affiliation(s)
- Osama I A Soltan
- Department of Food Science, Faculty of Agriculture, Minia University, El-Minia 61519, Egypt
| | - Hanaa S S Gazwi
- Department of Agricultural Chemistry, Faculty of Agriculture, Minia University, El-Minia 61519, Egypt
| | - Amany E Ragab
- Department of Pharmacognosy, Faculty of Pharmacy, Tanta University, Tanta 1527, Egypt
| | - Abdullah S M Aljohani
- Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, Qassim University, Buraydah 52571, Saudi Arabia
| | - Ibrahim M El-Ashmawy
- Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, Qassim University, Buraydah 52571, Saudi Arabia
- Pharmacology Department, Faculty of Veterinary Medicine, Alexandria University, Alexandria 21521, Egypt
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour 22511, Egypt
| | - Amin A Hafiz
- Department of Clinical Nutrition, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makka Al-Mukarama 21961, Saudi Arabia
| | - Sanaa M Abdel-Hameed
- Department of Food Science, Faculty of Agriculture, Minia University, El-Minia 61519, Egypt
| |
Collapse
|
30
|
Medveckienė B, Levickienė D, Vaitkevičienė N, Vaštakaitė-Kairienė V, Kulaitienė J. Changes in Pomological and Physical Parameters in Rosehips during Ripening. PLANTS (BASEL, SWITZERLAND) 2023; 12:1314. [PMID: 36987001 PMCID: PMC10054635 DOI: 10.3390/plants12061314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/03/2023] [Accepted: 03/07/2023] [Indexed: 06/19/2023]
Abstract
Rosehips of various Rosa spp. are well known for having human health-promoting compounds like mineral nutrients, vitamins, fatty acids, and phenolic compounds. However, little is known about rosehip characteristics which describe the fruit quality and may indicate appropriate harvest times. Our study evaluated the pomological (width, length, and weight of fruits, flesh weight, and seed weight), texture, and CIE colour parameters (L*, a*, and b*), chroma (C), and hue angle (h°) of rosehip fruits of Rosa canina, Rosa rugosa, and genotypes of Rosa rugosa 'Rubra' and 'Alba', harvested at five ripening stages (I-V). The main results revealed that genotype and ripening stage significantly affected parameters. The significantly longest (R. canina) and widest fruits (R. Rugosa) were measured at ripening stage V. Genotypes of R. rugosa 'Rubra' and 'Alba' had significantly higher fruit and flesh weights at ripening stage V. Rosehips of all investigated genotypes expressed darkness (lower L*) during ripening, and had the highest hue angle h° values at ripening stage I while the lowest was at stage V. The significantly lowest skin elasticity of rosehips was found at stage V. However, R. canina was distinguished by the highest fruit skin elasticity and strength. As our results show, the desired pomological, colour, and texture features of various species and cultivars rosehips can be optimised according to the harvest time.
Collapse
|
31
|
Pharmacological Aspects of Schiff Base Metal Complexes: A Critical Review. INORG CHEM COMMUN 2023. [DOI: 10.1016/j.inoche.2023.110449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
32
|
Abdullah, Khan MA, Adhikari A. Radical Scavenging, Anti-Inflammatory, and Hepatoprotective Activities of Pentacyclic Triterpene isolated from Rosa webbiana. Curr Drug Targets 2023; 24:1282-1291. [PMID: 37957908 DOI: 10.2174/0113894501261030231101184216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 06/26/2023] [Accepted: 10/19/2023] [Indexed: 11/15/2023]
Abstract
INTRODUCTION Rosa webbiana (RW) Wall Ex. Royle is used in traditional medicine in Pakistan for the treatment of several diseases including jaundice. To date, only neuroprotective potential of the plant has been evaluated. OBJECTIVE The current study was designed to isolate bioactive compound(s) and investigate its possible radical scavenging, anti-inflammatory and hepatoprotective activities. METHODS Column chromatography was done to isolate compounds from the chloroform fraction of RW. The compound was characterized by mass spectrometry, 1H-NMR, and 2D-NMR spectroscopy. Radical scavenging activity was assessed by 2,2-diphenyl-1-picrylhydrazyl (DPPH) and hydrogen peroxide (H2O2) assays, while anti-inflammatory potential was evaluated via xylene-induced ear edema and carrageenan-induced paw edema models. For hepatoprotection, CCl4-induced model in mice was used. RESULTS A triterpene compound (3α, 21β-dihydroxy-olean-12-ene) was isolated from RW fruits (ARW1). The compound exhibited DPPH and H2O2 scavenging activities 61 ± 1.31% and 66 ± 0.48% respectively at 500 μg/ml. ARW1 (at 50 mg/kg) exhibited 62.9 ± 0.15% inhibition of xylene-induced ear edema and 66.6 ± 0.17% carrageenan-induced paw edema in mice. In CCl4-induced hepatotoxic mice, ARW1 significantly countered elevation in alanine transaminase (ALT), alkaline phosphatase (ALP), total bilirubin (T.B), and reduction in total protein (T.P) levels. Liver histomorphological study supported the serum biochemical profile for hepatoprotection. Moreover, ARW1 significantly attenuated the toxic changes in body and liver weight induced by CCl4. CONCLUSION The compound ARW1 exhibited anti-radical, anti-inflammatory and hepatoprotective effects. The anti-inflammatory and hepatoprotective activities may be attributed to anti-oxidant potential of the compound.
Collapse
Affiliation(s)
- Abdullah
- Department of Pharmacy, University of Malakand, Khyber Pakhtunkhwa, Pakistan
| | - Mir Azam Khan
- Department of Pharmacy, University of Malakand, Khyber Pakhtunkhwa, Pakistan
| | - Achyut Adhikari
- Central Department of Chemistry Tribhuvan University Kirtipur, Kathmandu, Nepal
| |
Collapse
|
33
|
Liposomal Bilayer as a Carrier of Rosa canina L. Seed Oil: Physicochemical Characterization, Stability, and Biological Potential. Molecules 2022; 28:molecules28010276. [PMID: 36615469 PMCID: PMC9821806 DOI: 10.3390/molecules28010276] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/22/2022] [Accepted: 12/24/2022] [Indexed: 01/01/2023] Open
Abstract
Rosa canina L. seeds are rich in bioactive components that can add value to the various formulations. The focus of the study was the development of liposomes for R. canina oil to protect its sensitive compounds and prolong their shelf-life. Oil-loaded liposomes were characterized via the determination of the particle size, polydispersity index (PDI), zeta potential, conductivity, mobility, density, surface tension, viscosity, and stability. Raman and FT-IR spectroscopy were employed to investigate the chemical composition of the non-treated and UV-treated samples, and the presence of different interactions. Antioxidant and antimicrobial activities were examined as well. The liposome size was 970.4 ± 37.4 nm, the PDI 0.438 ± 0.038, the zeta potential -32.9 ± 0.8 mV, the conductivity 0.068 ± 0.002 mS/cm, the mobility -2.58 ± 0.06 µmcm/Vs, the density 0.974 ± 0.004 g/cm3, the surface tension 17.2 ± 1.4 mN/m, and the viscosity 13.5 ± 0.2 mPa•s. The Raman and FT-IR spectra showed the presence of lipids, fatty acids, polyphenols, and carotenoids. It was approved that the oil compounds were distributed inside the phospholipid bilayer and were combined with the membrane interface of the bilayer. The UV irradiation did not cause any chemical changes. However, neither the pure oil nor the oil-loaded liposomes showed any antimicrobial potential, while the antioxidant capacity of the oil-loaded liposomes was significantly low. The sizes of the liposomes did not change significantly during 60 days of storage. Due to the proven stability of the oil-loaded liposomes, as well as the liposome's ability to protect the sensitive oil compounds, their potential application in the pharmaceutical and cosmetic formulations could be investigated with a focus on the skin regeneration effects.
Collapse
|
34
|
Hegde AS, Gupta S, Sharma S, Srivatsan V, Kumari P. Edible rose flowers: A doorway to gastronomic and nutraceutical research. Food Res Int 2022; 162:111977. [DOI: 10.1016/j.foodres.2022.111977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 07/29/2022] [Accepted: 09/21/2022] [Indexed: 11/04/2022]
|
35
|
Žarković LD, Mileski KS, Matejić JS, Gašić UM, Rajčević NF, Marin PD, Džamić AM. Phytochemical characterisation, in vitro antioxidant and antidiabetic activity of Rosa arvensis Huds. extracts. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.102125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
36
|
Boscaro V, Rivoira M, Sgorbini B, Bordano V, Dadone F, Gallicchio M, Pons A, Benetti E, Rosa AC. Evidence-Based Anti-Diabetic Properties of Plant from the Occitan Valleys of the Piedmont Alps. Pharmaceutics 2022; 14:2371. [PMID: 36365189 PMCID: PMC9693256 DOI: 10.3390/pharmaceutics14112371] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 10/20/2022] [Accepted: 10/28/2022] [Indexed: 10/29/2023] Open
Abstract
Data on urban and rural diabetes prevalence ratios show a significantly lower presence of diabetes in rural areas. Several bioactive compounds of plant origin are known to exert anti-diabetic properties. Interestingly, most of them naturally occur in different plants present in mountainous areas and are linked to traditions of herbal use. This review will aim to evaluate the last 10 years of evidence-based data on the potential anti-diabetic properties of 9 plants used in the Piedmont Alps (North-Western Italy) and identified through an ethnobotanical approach, based on the Occitan language minority of the Cuneo province (Sambucus nigra L., Achillea millefolium L., Cornus mas L., Vaccinium myrtillus L., Fragaria vesca L., Rosa canina L., Rubus idaeus L., Rubus fruticosus/ulmifolius L., Urtica dioica L.), where there is a long history of herbal remedies. The mechanism underlying the anti-hyperglycemic effects and the clinical evidence available are discussed. Overall, this review points to the possible use of these plants as preventive or add-on therapy in treating diabetes. However, studies of a single variety grown in the geographical area, with strict standardization and titration of all the active ingredients, are warranted before applying the WHO strategy 2014-2023.
Collapse
Affiliation(s)
- Valentina Boscaro
- Dipartimento di Scienza e Tecnologia del Farmaco, University of Turin, Via Pietro Giuria 9, 10125 Turin, Italy
| | - Matteo Rivoira
- Dipartimento di Studi Umanistici, University of Turin, Via Sant’Ottavio 20, 10124 Turin, Italy
- Atlante Linguistico Italiano (ALI), Via Sant’Ottavio 20, 10124 Turin, Italy
| | - Barbara Sgorbini
- Dipartimento di Scienza e Tecnologia del Farmaco, University of Turin, Via Pietro Giuria 9, 10125 Turin, Italy
| | - Valentina Bordano
- Dipartimento di Scienza e Tecnologia del Farmaco, University of Turin, Via Pietro Giuria 9, 10125 Turin, Italy
| | - Francesca Dadone
- Dipartimento di Scienza e Tecnologia del Farmaco, University of Turin, Via Pietro Giuria 9, 10125 Turin, Italy
| | - Margherita Gallicchio
- Dipartimento di Scienza e Tecnologia del Farmaco, University of Turin, Via Pietro Giuria 9, 10125 Turin, Italy
| | - Aline Pons
- Dipartimento di Studi Umanistici, University of Turin, Via Sant’Ottavio 20, 10124 Turin, Italy
| | - Elisa Benetti
- Dipartimento di Scienza e Tecnologia del Farmaco, University of Turin, Via Pietro Giuria 9, 10125 Turin, Italy
| | - Arianna Carolina Rosa
- Dipartimento di Scienza e Tecnologia del Farmaco, University of Turin, Via Pietro Giuria 9, 10125 Turin, Italy
| |
Collapse
|
37
|
Kasapoğlu KN, Demircan E, Gültekin-Özgüven M, Kruger J, Frank J, Arslaner A, Özçelik B. Recovery of Polyphenols Using Pressurized Hot Water Extraction (PHWE) from Black Rosehip Followed by Encapsulation for Increased Bioaccessibility and Antioxidant Activity. Molecules 2022; 27:molecules27206807. [PMID: 36296399 PMCID: PMC9610414 DOI: 10.3390/molecules27206807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 10/07/2022] [Accepted: 10/08/2022] [Indexed: 11/16/2022] Open
Abstract
In this work, pressurized hot water extraction (PHWE) of hydrophilic polyphenols from black rosehip fruit was maximized using response surface methodology for simultaneous optimization in terms of extraction yield, total antioxidant capacity, total (poly)phenols, catechin, total monomeric anthocyanins, and cyanidin-3-O-glucoside. Extraction parameters, including temperature (X1: 40–80 °C) and the solvent-to-solid ratio (X2: 10–40 mL/g), were investigated as independent variables. Experimentally obtained values were fitted to a second-order polynomial model, and optimal conditions were determined using multiple regression analysis and analysis of variance. The black rosehip extract (BRE) obtained at optimized PHWE conditions was further encapsulated in biopolymer-coated liposomes and spray dried to enhance its processing and digestive stability. After reconstitution, the fabricated particles had an average size of 247–380 nm and a zeta-potential of 15–45 mV. Moreover, encapsulation provided remarkable protection of the phenolics under in vitro gastrointestinal digestion conditions, resulting in up to a 5.6-fold more phenolics in the bioaccessible fraction, which also had 2.9–8.6-fold higher antioxidant activity compared to the nonencapsulated BRE. In conclusion, PHWE in combination with a biopolymer coating is a potent method for the production of stable and safe edible natural extracts for the delivery of (poly)phenolic compounds in food and dietary supplements.
Collapse
Affiliation(s)
- Kadriye Nur Kasapoğlu
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, 34469 Istanbul, Turkey
| | - Evren Demircan
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, 34469 Istanbul, Turkey
| | - Mine Gültekin-Özgüven
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, 34469 Istanbul, Turkey
| | - Johanita Kruger
- Institute of Nutritional Sciences, University of Hohenheim, Garbenstraße 28, 70599 Stuttgart, Germany
| | - Jan Frank
- Institute of Nutritional Sciences, University of Hohenheim, Garbenstraße 28, 70599 Stuttgart, Germany
| | - Ayla Arslaner
- Department of Food Engineering, Faculty of Engineering, Bayburt University, 69000 Bayburt, Turkey
| | - Beraat Özçelik
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, 34469 Istanbul, Turkey
| |
Collapse
|
38
|
Vlaicu PA, Untea AE, Turcu RP, Panaite TD, Saracila M. Rosehip ( Rosa canina L.) Meal as a Natural Antioxidant on Lipid and Protein Quality and Shelf-Life of Polyunsaturated Fatty Acids Enriched Eggs. Antioxidants (Basel) 2022; 11:1948. [PMID: 36290672 PMCID: PMC9598169 DOI: 10.3390/antiox11101948] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/26/2022] [Accepted: 09/26/2022] [Indexed: 11/24/2022] Open
Abstract
Eggs are a common food of animal origin, inexpensive, and rich in bioactive substances with high biological value. Eggs enriched in polyunsaturated fatty acids (PUFA) are extremely desired by the progressive consumer. However, during storage, eggs undergo some physiochemical changes, which decrease their value. In this regard, the effect of dietary rosehip meal and flaxseed meal on hens’ egg quality characteristics, amino acids, fatty acids, health-related indices, antioxidant capacity, total polyphenols content, and shelf life was examined. For this study 120 Tetra SL laying hens, 29 weeks of age, were fed, for 4 weeks, three diets that included control (basal diet—RF0), basal diet + 1.5% rosehip and 7% flaxseed meal (RF1), and basal diet + 3% rosehip and 7% flaxseed meal (RF2). Productive performance of hens were recorded. The content of essential amino acids (EAA), antioxidant amino acids (AAA), and sulfur amino acids (SAA) was higher in RF1 and RF2, compared with RF0. Eggs belonging to the RF1 and RF2 groups had significantly (p < 0.05) higher content of n-3 PUFAs, especially linolenic and docosahexaenoic acids. Total antioxidant capacity and polyphenol content increased in both rosehip supplemented groups, but especially in RF2. Moreover, eggs from RF1 and RF2 groups maintained significantly higher egg quality parameters after storage for 14 and 28 days in the refrigerator (5 °C) and ambient temperature (21 °C), compared with those from the RF0 group. In the Haugh unit, yolk and albumen pH presented better values in RF1 and RF2 eggs compared to the RF0 eggs.
Collapse
Affiliation(s)
- Petru Alexandru Vlaicu
- Feed and Food Quality Department, National Research-Development Institute for Animal Biology and Nutrition, 077015 Balotesti, Romania
| | - Arabela Elena Untea
- Feed and Food Quality Department, National Research-Development Institute for Animal Biology and Nutrition, 077015 Balotesti, Romania
| | | | | | | |
Collapse
|
39
|
Zimmerman T, Ibrahim SA. Quercetin Is a Novel Inhibitor of the Choline Kinase of Streptococcus pneumoniae. Antibiotics (Basel) 2022; 11:antibiotics11091272. [PMID: 36140052 PMCID: PMC9495829 DOI: 10.3390/antibiotics11091272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/09/2022] [Accepted: 09/14/2022] [Indexed: 12/05/2022] Open
Abstract
The effectiveness of current antimicrobial methods for addressing for food-borne Gram-positive pathogens has dropped with the emergence of resistant strains. Consequently, new methods for addressing Gram-positive strains have to be developed continuously. This includes establishing novel targets for antimicrobial discovery efforts. Eukaryotic choline kinases have been highly developed as drug targets for the treatment of cancer, rheumatoid arthritis, malaria and many other conditions and diseases. Recently, choline kinase (ChoK) has been proposed as a drug target for Gram-positive species generally. The aim of this work was to discover novel, natural sources of inhibitors for bacterial ChoK from tea extracts. We report the first natural bacterial ChoK inhibitor with antimicrobial activity against Streptococcus pneumoniae: quercetin.
Collapse
|
40
|
Thakur M, Vasudeva N, Sharma S, Datusalia AK. Plants and their Bioactive Compounds as a Possible Treatment for Traumatic Brain Injury-Induced Multi-Organ Dysfunction Syndrome. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2022; 22:CNSNDDT-EPUB-126021. [PMID: 36045522 DOI: 10.2174/1871527321666220830164432] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 05/23/2022] [Accepted: 06/01/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND & OBJECTIVE Traumatic brain injury is an outcome of the physical or mechanical impact of external forces on the brain. Thus, the silent epidemic has complex pathophysiology affecting the brain along with extracranial or systemic complications in more than one organ system, including the heart, lungs, liver, kidney, gastrointestinal and endocrine system. which is referred to as Multi-Organ Dysfunction Syndrome. It is driven by three interconnected mechanisms such as systemic hyperinflammation, paroxysmal sympathetic hyperactivity, and immunosuppression-induced sepsis. These multifaceted pathologies accelerate the risk of mortality in clinical settings by interfering with the functions of distant organs through hypertension, cardiac arrhythmias, acute lung injury, neurogenic pulmonary edema, reduced gastrointestinal motility, Cushing ulcers, acute liver failure, acute kidney injury, coagulopathy, endocrine dysfunction, and many other impairments. The pharmaceutical treatment approach for this is highly specific in its mode of action and linked to a variety of side effects, including hallucinations, seizures, anaphylaxis, teeth, bone staining, etc. Therefore, alternative natural medicine treatments are widely accepted due to their broad complementary or synergistic effects on the physiological system with minor side effects. CONCLUSION This review is a compilation of the possible mechanisms behind the occurrence of multiorgan dysfunction and reported medicinal plants with organoprotective activity that have not been yet explored against traumatic brain injury and thereby, highlighting the marked possibilities of their effectiveness in the management of multiorgan dysfunction. As a result, we attempted to respond to the hypothesis against the usage of medicinal plants to treat neurodegenerative diseases.
Collapse
Affiliation(s)
- Manisha Thakur
- Department of Pharmaceutical Sciences, Guru Jambheshwar University of Science & Technology, Hisar, Haryana, India
| | - Neeru Vasudeva
- Department of Pharmaceutical Sciences, Guru Jambheshwar University of Science & Technology, Hisar, Haryana, India
| | - Sunil Sharma
- Department of Pharmaceutical Sciences, Guru Jambheshwar University of Science & Technology, Hisar, Haryana, India
| | - Ashok Kumar Datusalia
- Department of Pharmacology and Toxicology/Regulatory Toxicology, National Institute of Pharmaceutical Education and Research, Raebareli, Uttar Pradesh, India
| |
Collapse
|
41
|
Wang J, Hu J, Wang M, Yuan H, Xing Y, Zhou X, Ding M, Chen W, Qu B, Zhu L. CISD2 Promotes Proliferation of Colorectal Cancer Cells by Inhibiting Autophagy in a Wnt/β-Catenin-Signaling-Dependent Pathway. Biochem Genet 2022; 61:615-627. [PMID: 36008699 DOI: 10.1007/s10528-022-10267-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 08/05/2022] [Indexed: 11/25/2022]
Abstract
The aim of this study is to investigate the role of CDGSH iron-sulfur domain 2 (CISD2) in colorectal cancer (CRC). The purpose of this study was to investigate the role of CDGSH iron-sulfur domain 2 (CISD2) in colorectal cancer (CRC) progression. The expression of CISD2 in CRC cell lines was measured by western blotting. Functional assays including MTT assays and colony formation assays were performed to explore the role of CISD2 in regulating tumor growth. Flow cytometry analysis was used to examine the percentage of apoptotic CRC cells. Expression of apoptosis-related gene, autophagy-related markers, and the protein included in Wnt/β-Catenin signaling was also determined by western blotting. The in vivo role of CISD2 was also examined in a xenograft model. CISD2 expression was significantly increased in CRC cells. CISD2 promoted the CRC cell proliferation and inhibited the apoptosis and autophagy of CRC cells. Moreover, knockdown of CISD2 inhibited the activation of Wnt/β-Catenin-signaling pathway. Knockdown of CISD2 inhibited the tumor growth in nude mice. CISD2 promoted colorectal cancer development by inhibiting CRC cell apoptosis and autophagy depending on activating Wnt/β-Catenin-signaling pathway.
Collapse
Affiliation(s)
- Jie Wang
- Department of Oncology, Gaochun People's Hospital, No. 53, Maoshan Road, Nanjing, 211300, Jiangsu, China
| | - Jun Hu
- Department of Oncology, Gaochun People's Hospital, No. 53, Maoshan Road, Nanjing, 211300, Jiangsu, China
| | - Mingyun Wang
- Department of Oncology, Gaochun People's Hospital, No. 53, Maoshan Road, Nanjing, 211300, Jiangsu, China.
| | - Huaqin Yuan
- Department of Oncology, Gaochun People's Hospital, No. 53, Maoshan Road, Nanjing, 211300, Jiangsu, China
| | - Yajun Xing
- Department of Oncology, Gaochun People's Hospital, No. 53, Maoshan Road, Nanjing, 211300, Jiangsu, China
| | - Xiaohua Zhou
- Department of Gastrointestinal Surgery, Gaochun People's Hospital, Nanjing, 211300, Jiangsu, China
| | - Meiqing Ding
- Department of Oncology, Gaochun People's Hospital, No. 53, Maoshan Road, Nanjing, 211300, Jiangsu, China
| | - Wenqiang Chen
- Department of Oncology, Gaochun People's Hospital, No. 53, Maoshan Road, Nanjing, 211300, Jiangsu, China
| | - Baoqi Qu
- Department of Oncology, Gaochun People's Hospital, No. 53, Maoshan Road, Nanjing, 211300, Jiangsu, China
| | - Liangxue Zhu
- Department of Oncology, Gaochun People's Hospital, No. 53, Maoshan Road, Nanjing, 211300, Jiangsu, China
| |
Collapse
|
42
|
Feng Y, Gao S, Zhu T, Sun G, Zhang P, Huang Y, Qu S, Du X, Mou D. Hawthorn fruit acid consumption attenuates hyperlipidemia-associated oxidative damage in rats. Front Nutr 2022; 9:936229. [PMID: 35990322 PMCID: PMC9384962 DOI: 10.3389/fnut.2022.936229] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 07/07/2022] [Indexed: 11/17/2022] Open
Abstract
Context Hyperlipidemia is a highly prevalent risk factor for atherosclerosis and stroke. The currently available medications used to treat Hyperlipidemia cannot improve its oxidative stress damage. Consumption of hawthorn can regulate blood sugar and blood lipids, and its rich fruit acid is a natural antioxidant that can improve oxidative stress damage. Objective The present research aimed to investigate the protective effect of hawthorn fruit acid (HFA) on hyperlipidemia and to determine its potential molecular mechanism. Materials and methods Sprague-Dawley rats were fed a high-fat diet (HFD) to induce hyperlipidemia and treated orally with hawthorn fruit acids (HFA). Serum and liver levels of total cholesterol (TC), triglycerides (TG), high-density lipoprotein cholesterol (HDL-C), superoxide dismutase (SOD), hydrogen peroxide (CAT), and malondialdehyde (MDA) were measured. Human hepatocellular carcinoma cell lines (HepG2) cells were treated with 0.1 mM oleic acid and HFA (0.125, 0.25 mg/mL), and intracellular TC, TG, HDL-C, SOD, CAT and MDA were measured. Changes in LDLR, HMGCR, Nrf2, HO-1, NQO1 protein and gene expression were analyzed by Western blot and qPCR. Results This study found that HFA treatment effectively reduced the level of triglyceride, cholesterol, and glucose, and attenuated hepatic steatosis in rats. Additionally, oxidative stress damage of rats was effectively reduced by treatment with HFA. Western blot and qPCR analysis indicated that HFA treatment inhibited fat accumulation in HepG2 cells by upregulating LDLR and downregulating HMGCR gene expression. HFA inhibits oleic acid (OA)-induced oxidative damage to HepG2 by activating the Nrf2/HO-1 signaling pathway. Conclusion HFA administration can provide health benefits by counteracting the effects of hyperlipidemia caused by an HFD in the body, and the underlying mechanism of this event is closely related to the activation of the Nrf2/HO-1 signaling pathway.
Collapse
Affiliation(s)
- Yicheng Feng
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China.,College of Food and Biology, Hebei University of Science and Technology, Shijiazhuang, China.,Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Shan Gao
- College of Food and Biology, Hebei University of Science and Technology, Shijiazhuang, China
| | - Ting Zhu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Guibo Sun
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Peisen Zhang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Yichun Huang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Shuang Qu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Xiaomeng Du
- Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, China
| | - Dehua Mou
- College of Food and Biology, Hebei University of Science and Technology, Shijiazhuang, China
| |
Collapse
|
43
|
Bioactive Compounds in Rosehip ( Rosa canina) Powder with Encapsulating Agents. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27154737. [PMID: 35897912 PMCID: PMC9331951 DOI: 10.3390/molecules27154737] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 07/20/2022] [Accepted: 07/21/2022] [Indexed: 11/25/2022]
Abstract
Rosa canina pseudo-fruits contain interesting bioactive compounds. This work aims to evaluate the use of different biopolymers as encapsulating agents on the content of organic acids, minerals, fibers, phenols, carotenoids, and the antioxidant activity of the powdered product. Fruits were ground and freeze-dried with or without biopolymers (maltodextrin, resistant maltodextrin, cyclodextrin, and pea protein). Rosehip formulated purees with encapsulating agents are an interesting food ingredient rich in fiber and minerals that could be used in the food industry in order to obtain different functional foods. Results obtained in this study show that all formulated samples are a good source of potassium, calcium, magnesium, and manganese. Both rosehip without biopolymers and rosehip with pea protein formulations are also a good source of Zn. Formulation with pea protein can be claimed as a good source of Fe. All formulations are food ingredients with a very high content of ascorbic acid. Comparing the encapsulating agents, depending on the studied bioactive compound samples behaved differently. In conclusion, it can be indicated that pea protein is recommended as an encapsulating agent since the rosehip with pea protein sample has the highest content of fiber, minerals, organic acids, and carotenoids among the encapsulating agents studied.
Collapse
|
44
|
Majdan M, Bobrowska-Korczak B. Active Compounds in Fruits and Inflammation in the Body. Nutrients 2022; 14:2496. [PMID: 35745226 PMCID: PMC9229651 DOI: 10.3390/nu14122496] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/13/2022] [Accepted: 06/14/2022] [Indexed: 12/10/2022] Open
Abstract
Inflammation plays an important role in the pathogenesis of many diseases, including cardiovascular diseases, atherosclerosis, diabetes, asthma, and cancer. An appropriate diet and the active compounds contained in it can affect various stages of the inflammatory process and significantly affect the course of inflammatory diseases. Recent reports indicate that polyphenolic acids, vitamins, minerals, and other components of fruits may exhibit activity stimulating an anti-inflammatory response, which may be of importance in maintaining health and reducing the risk of disease. The article presents the latest data on the chemical composition of fruits and the health benefits arising from their anti-inflammatory and antioxidant effects. The chemical composition of fruits determines their anti-inflammatory and antioxidant properties, but the mechanisms of action are not fully understood.
Collapse
Affiliation(s)
| | - Barbara Bobrowska-Korczak
- Department of Bromatology, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1, 02-097 Warsaw, Poland;
| |
Collapse
|
45
|
Alves MM, Batista C, Mil-Homens D, Grenho L, Fernandes MH, Santos CF. Enhanced antibacterial activity of Rosehip extract-functionalized Mg(OH) 2 nanoparticles: An in vitro and in vivo study. Colloids Surf B Biointerfaces 2022; 217:112643. [PMID: 35759895 DOI: 10.1016/j.colsurfb.2022.112643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 06/07/2022] [Accepted: 06/13/2022] [Indexed: 10/18/2022]
Abstract
The development of nanoparticles as antimicrobial agents against pathogenic bacteria has emerged as one of the leading global healthcare challenges. In this study, Mg(OH)2 NPs with controlled morphology and nanometric size, using two distinct counterions, chloride or nitrate, have been synthesized using Rosehip (RH) extract that has privileges beyond conventional chemical and physical methods. Various physicochemical techniques were used to characterize the RH-functionalized Mg-based NPs. They exhibited a spherical shape with a diameter of ~10 nm, low crystallinity compared to non-functionalized NPs, high polyphenol content, and negative zeta potential in three different media (H2O, TSB, and cell medium). The resulting RH-functionalized Mg-based NPs also exhibited an increased antibacterial activity against Gram-positive (S. Epidermis and S. aureus) and Gram-negative (E. Coli) bacteria compared to those prepared in pure water (0 % RH), an effect that was well evident with low NPs contents (250 μg/mL). A preliminary attempt to elucidate their mechanism of action revealed that RH-functionalized Mg-based NPs could disrupt cellular structures (bacterial cell wall and cytoplasmic membrane) and damage the bacterial cell, as confirmed by TEM imaging. Noteworthy is that Mg-based NPs exhibited higher toxicity to bacteria than to eukaryotic cells. More significantly, was their enhanced in vivo efficacy in a Galleria mellonella invertebrate animal model, when infected with S. aureus bacteria. Overall, our findings indicate that well-engineered Rosehip magnesium-based nanoparticles can be used as a green non-cytotoxic polyphenolic source in different antibacterial applications for the biomedical industry.
Collapse
Affiliation(s)
- Marta M Alves
- Centro Química Estrutural, Institute of Molecular Sciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, Lisboa 1049-001, Portugal
| | - Catarina Batista
- EST Setúbal, CDP2T, Instituto Politécnico de Setúbal, Campus IPS, Setúbal 2910, Portugal
| | - Dalila Mil-Homens
- iBB - Institute for Bioengineering and Biosciences and i4HB, Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, Lisboa 1049-001, Portugal
| | - Liliana Grenho
- Faculdade de Medicina Dentária, Laboratory for Bone Metabolism and Regeneration, Universidade do Porto, Porto 4200-393, Portugal; LAQV/REQUIMTE, U. Porto, Porto 4160-007, Portugal
| | - Maria H Fernandes
- Faculdade de Medicina Dentária, Laboratory for Bone Metabolism and Regeneration, Universidade do Porto, Porto 4200-393, Portugal; LAQV/REQUIMTE, U. Porto, Porto 4160-007, Portugal.
| | - Catarina F Santos
- Centro Química Estrutural, Institute of Molecular Sciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, Lisboa 1049-001, Portugal; EST Setúbal, CDP2T, Instituto Politécnico de Setúbal, Campus IPS, Setúbal 2910, Portugal.
| |
Collapse
|
46
|
Application of solvent pH under pressurized conditions using accelerated solvent extraction and green solvents to extract phytonutrients from wild berries. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2021.101471] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
47
|
Effect of Harvesting in Different Ripening Stages on the Content of the Mineral Elements of Rosehip (Rosa spp.) Fruit Flesh. HORTICULTURAE 2022. [DOI: 10.3390/horticulturae8060467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Studies on the mineral content of different rosehip species/cultivars during the ripening period are very limited. Therefore, the objective of this research was to evaluate the content and composition of the mineral elements of two species and two rosehip cultivars growing on an organic farm. The rosehip fruits were harvested at different ripening stages, five time per season. Mineral composition (K, Ca, Mg, P, Fe, Na, Ti, Cu, B, Mn, Al, Zn, Cr, Co, Ni, As, Mo, Cd and Pb) was analyzed by means inductively coupled plasma mass spectrometry (ICP–MS). The results showed that the ripening stage and species/cultivars had an effect on the contents of the mineral elements. Significantly, the highest content of mineral elements was determined at ripening stage I (Ca, Mg, Ti, Mn, Al and Cr) and IV (K, P, Fe, Cu and B). Species of the Rosa canina accumulated the highest content of mineral elements. Correlation analysis showed that the hue angle had a positive and very strong relationship with six mineral elements: K (r = 0.909), Ca (r = 0.962), Mg (r = 0.965), P (r = 0.945), Fe (r = 0.929) and Ti (r = 0.944).
Collapse
|
48
|
Sallustio V, Chiocchio I, Mandrone M, Cirrincione M, Protti M, Farruggia G, Abruzzo A, Luppi B, Bigucci F, Mercolini L, Poli F, Cerchiara T. Extraction, Encapsulation into Lipid Vesicular Systems, and Biological Activity of Rosa canina L. Bioactive Compounds for Dermocosmetic Use. Molecules 2022; 27:molecules27093025. [PMID: 35566374 PMCID: PMC9104920 DOI: 10.3390/molecules27093025] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/01/2022] [Accepted: 05/06/2022] [Indexed: 11/28/2022] Open
Abstract
Valorization of wild plants to obtain botanical ingredients could be a strategy for sustainable production of cosmetics. This study aimed to select the rosehip extract containing the greatest amounts of bioactive compounds and to encapsulate it in vesicular systems capable of protecting their own antioxidant activity. Chemical analysis of Rosa canina L. extracts was performed by LC-DAD-MS/MS and 1H-NMR and vitamins, phenolic compounds, sugars, and organic acids were detected as the main compounds of the extracts. Liposomes, prepared by the film hydration method, together with hyalurosomes and ethosomes, obtained by the ethanol injection method, were characterized in terms of vesicle size, polydispersity index, entrapment efficiency, zeta potential, in vitro release and biocompatibility on WS1 fibroblasts. Among all types of vesicular systems, ethosomes proved to be the most promising nanocarriers showing nanometric size (196 ± 1 nm), narrow polydispersity (0.20 ± 0.02), good entrapment efficiency (92.30 ± 0.02%), and negative zeta potential (−37.36 ± 0.55 mV). Moreover, ethosomes showed good stability over time, a slow release of polyphenols compared with free extract, and they were not cytotoxic. In conclusion, ethosomes could be innovative carriers for the encapsulation of rosehip extract.
Collapse
Affiliation(s)
- Valentina Sallustio
- Drug Delivery Research Lab., Department of Pharmacy and Biotechnology, Alma Mater Studiorum, University of Bologna, Via San Donato 19/2, 40127 Bologna, Italy; (V.S.); (A.A.); (B.L.); (F.B.)
| | - Ilaria Chiocchio
- Pharmaceutical Botany Lab., Department of Pharmacy and Biotechnology, Alma Mater Studiorum, University of Bologna, Via Irnerio 42, 40127 Bologna, Italy; (I.C.); (M.M.); (F.P.)
| | - Manuela Mandrone
- Pharmaceutical Botany Lab., Department of Pharmacy and Biotechnology, Alma Mater Studiorum, University of Bologna, Via Irnerio 42, 40127 Bologna, Italy; (I.C.); (M.M.); (F.P.)
| | - Marco Cirrincione
- Pharmaco-Toxicological Analysis (PTA Lab.), Department of Pharmacy and Biotechnology, Alma Mater Studiorum, University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy; (M.C.); (M.P.); (L.M.)
| | - Michele Protti
- Pharmaco-Toxicological Analysis (PTA Lab.), Department of Pharmacy and Biotechnology, Alma Mater Studiorum, University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy; (M.C.); (M.P.); (L.M.)
| | - Giovanna Farruggia
- Pharmaceutical Biochemistry Lab., Department of Pharmacy and Biotechnology, Alma Mater Studiorum, University of Bologna, Via San Donato 19/2, 40127 Bologna, Italy;
| | - Angela Abruzzo
- Drug Delivery Research Lab., Department of Pharmacy and Biotechnology, Alma Mater Studiorum, University of Bologna, Via San Donato 19/2, 40127 Bologna, Italy; (V.S.); (A.A.); (B.L.); (F.B.)
| | - Barbara Luppi
- Drug Delivery Research Lab., Department of Pharmacy and Biotechnology, Alma Mater Studiorum, University of Bologna, Via San Donato 19/2, 40127 Bologna, Italy; (V.S.); (A.A.); (B.L.); (F.B.)
| | - Federica Bigucci
- Drug Delivery Research Lab., Department of Pharmacy and Biotechnology, Alma Mater Studiorum, University of Bologna, Via San Donato 19/2, 40127 Bologna, Italy; (V.S.); (A.A.); (B.L.); (F.B.)
| | - Laura Mercolini
- Pharmaco-Toxicological Analysis (PTA Lab.), Department of Pharmacy and Biotechnology, Alma Mater Studiorum, University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy; (M.C.); (M.P.); (L.M.)
| | - Ferruccio Poli
- Pharmaceutical Botany Lab., Department of Pharmacy and Biotechnology, Alma Mater Studiorum, University of Bologna, Via Irnerio 42, 40127 Bologna, Italy; (I.C.); (M.M.); (F.P.)
| | - Teresa Cerchiara
- Drug Delivery Research Lab., Department of Pharmacy and Biotechnology, Alma Mater Studiorum, University of Bologna, Via San Donato 19/2, 40127 Bologna, Italy; (V.S.); (A.A.); (B.L.); (F.B.)
- Correspondence: ; Tel.: +39-0512095615
| |
Collapse
|
49
|
Li M, Zhang H, Yang Y, Wang H, Xue Z, Fan Y, Sun P, Zhang H, Zhang X, Jin W. Rosa1, a Transposable Element-Like Insertion, Produces Red Petal Coloration in Rose Through Altering RcMYB114 Transcription. FRONTIERS IN PLANT SCIENCE 2022; 13:857684. [PMID: 35574133 PMCID: PMC9100400 DOI: 10.3389/fpls.2022.857684] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 04/11/2022] [Indexed: 06/15/2023]
Abstract
Rose (Rosa sp.) flowers have a rich diversity of colors resulting from the differential accumulation of anthocyanins, flavonols, and carotenoids. However, the genetic and molecular determinants of the red-petal trait in roses remains poorly understood. Here we report that a transposable element-like insertion (Rosa1) into RcMYB114, a R2R3-MYB transcription factor's promoter region causes its transcription, resulting in red petals. In red-petal varieties, RcMYB114 is expressed specifically in flower organs, but is absent from non-red varieties. Sequencing, yeast two-hybrid, transient transformation, and promoter activity assays of RcMYB114 independently confirmed the role of Rosa1 in altering RcMYB114's transcription and downstream effects on flower color. Genetic and molecular evidence confirmed that the Rosa1 transposable element-like insertion, which is a previously unknown DNA transposable element, is different from those in other plants and is a reliable molecular marker to screen red-petal roses.
Collapse
Affiliation(s)
- Maofu Li
- Institute of Forestry and Pomology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture and Rural Affairs, Beijing, China
- Beijing Engineering Research Center of Functional Floriculture, Beijing, China
| | - Hui Zhang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- Institute of Botany, University of Chinese Academy of Sciences, Beijing, China
| | - Yuan Yang
- Institute of Forestry and Pomology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture and Rural Affairs, Beijing, China
- Beijing Engineering Research Center for Deciduous Fruit Trees, Beijing, China
| | - Hua Wang
- Institute of Forestry and Pomology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture and Rural Affairs, Beijing, China
- Beijing Engineering Research Center of Functional Floriculture, Beijing, China
| | - Zhen Xue
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- Institute of Botany, University of Chinese Academy of Sciences, Beijing, China
| | - Youwei Fan
- Institute of Forestry and Pomology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture and Rural Affairs, Beijing, China
- Beijing Engineering Research Center of Functional Floriculture, Beijing, China
| | - Pei Sun
- Institute of Forestry and Pomology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture and Rural Affairs, Beijing, China
- Beijing Engineering Research Center of Functional Floriculture, Beijing, China
| | - Hong Zhang
- Institute of Forestry and Pomology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture and Rural Affairs, Beijing, China
- Beijing Engineering Research Center of Functional Floriculture, Beijing, China
| | - Xinzhu Zhang
- Institute of Forestry and Pomology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture and Rural Affairs, Beijing, China
- Beijing Engineering Research Center of Functional Floriculture, Beijing, China
| | - Wanmei Jin
- Institute of Forestry and Pomology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture and Rural Affairs, Beijing, China
- Beijing Engineering Research Center of Functional Floriculture, Beijing, China
| |
Collapse
|
50
|
Wang Y, Zhao Y, Liu X, Li J, Zhang J, Liu D. Chemical constituents and pharmacological activities of medicinal plants from Rosa genus. CHINESE HERBAL MEDICINES 2022; 14:187-209. [PMID: 36117670 PMCID: PMC9476647 DOI: 10.1016/j.chmed.2022.01.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 01/06/2022] [Accepted: 01/17/2022] [Indexed: 02/07/2023] Open
Abstract
The genus Rosa (Rosaceae family) includes about 200 species spread in the world, and this genus shows unique advantages in medicine and food. To date, several scholars concentrated on compounds belonging to flavonoids, triterpenes, tannins, polysaccharide, phenolic acids, fatty acids, organic acids, carotenoids, and vitamins. Pharmacological effects such as antineoplastic and anti-cancer properties, anti-inflammatory, antioxidant, liver protection, regulate blood sugar, antimicrobial activity, antiviral activity, as well as nervous system protection and cardiovascular protection were wildly reported. This article reviews the chemical constituents, pharmacological effects, applications and safety evaluations of Rosa plants, which provides a reference for the comprehensive utilization of medicine and food resources and gives a scientific basis for the development of medicinal plants of the genus Rosa.
Collapse
Affiliation(s)
- Yansheng Wang
- Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- Tianjin Modern Innovation Chinese Medicine Technology Co., Ltd., Tianjin 300380, China
| | - Yanmin Zhao
- Logistics College of Chinese People’s Armed Police Forces, Tianjin 300309, China
| | - Xinnan Liu
- Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Jingyang Li
- Logistics College of Chinese People’s Armed Police Forces, Tianjin 300309, China
| | - Jingze Zhang
- Tianjin Modern Innovation Chinese Medicine Technology Co., Ltd., Tianjin 300380, China
- Corresponding authors.
| | - Dailin Liu
- Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- Tianjin Modern Innovation Chinese Medicine Technology Co., Ltd., Tianjin 300380, China
- Corresponding authors.
| |
Collapse
|