1
|
Du T, Wang W, Zhang R. Royal jelly and doxorubicin suppressed tumor cells in the xenograft model of lung cancer via the STAT3/FOXM1/ATG7 signaling pathways in athymic nude mice: a biochemical, immunohistochemically and molecular approach. Toxicol Res (Camb) 2025; 14:tfaf042. [PMID: 40161259 PMCID: PMC11950672 DOI: 10.1093/toxres/tfaf042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 03/14/2025] [Accepted: 03/14/2025] [Indexed: 04/02/2025] Open
Abstract
Royal Jelly (RJ), a traditional medicinal compound with tumor-suppressive properties, was investigated for its antitumor effects on non-small cell lung cancer (NSCLC) using a mouse xenograft model. Fifty athymic nude mice were divided into five groups: a control group, an untreated NSCLC group, a doxorubicin (DOX)-treated group, an RJ-treated group, and a combined RJ + DOX treatment group. RJ was administered at 200 mg/kg/day by gavage, while DOX was given intraperitoneally at 80 mg/kg on days 10, 20, and 30. Tumor size, volume, and weight were monitored, and Kaplan-Meier analysis assessed survival. Biochemical and histopathological analyses showed that RJ modulated oxidative stress markers, reduced inflammation (IL-6, TNF-α, IL-8, interferon-γ), and inhibited tumor growth. RJ downregulated STAT3/FOXM1/ATG7 signaling pathways involved in tumor cell survival, proliferation, and metastasis. Additionally, RJ promoted mitochondrial apoptosis through increased p53 expression and reduced angiogenesis by suppressing VEGF. Immunohistochemistry revealed decreased Ki-67 expression, indicating reduced tumor cell proliferation. Molecular analyses confirmed RJ's role in modulating key apoptosis and angiogenesis pathways. When combined with DOX, RJ enhanced therapeutic efficacy, suggesting a synergistic effect. These findings highlight RJ's potential as a therapeutic agent targeting STAT3 and related pathways in NSCLC treatment, offering a promising complementary approach to conventional chemotherapy.
Collapse
Affiliation(s)
- Tianying Du
- Department of Chest Tumor, Jilin Cancer Hospital, Huguang Road, Changchun Jilin 130021, China
| | - Wanjun Wang
- Department of Chest Tumor, Jilin Cancer Hospital, Huguang Road, Changchun Jilin 130021, China
| | - Rui Zhang
- Department of Chest Tumor, Jilin Cancer Hospital, Huguang Road, Changchun Jilin 130021, China
| |
Collapse
|
2
|
Topan C, Bilge S, Demirbas AE, Ağyüz G, Kara A. Royal Jelly as a Therapeutic Intervention in Medication-Related Osteonecrosis of the Jaw (MRONJ): An Animal Model Study. J Oral Pathol Med 2025; 54:232-240. [PMID: 40083273 DOI: 10.1111/jop.13627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 12/01/2024] [Accepted: 01/12/2025] [Indexed: 03/16/2025]
Abstract
BACKGROUND To evaluate the efficacy of royal jelly in managing experimentally created MRONJ model in rats. METHODS Sixty rats were randomly allocated into control, bisphosphonate (BP), royal jelly (RJ), Treatment, and Preventive groups. A defect was created in the alveolar socket following tooth extraction in the mandible as a surgical procedure in all groups. Before surgery, RJ was administered orally to the RJ group. Zoledronic acid was administered intraperitoneally to induce osteonecrosis in BP, treatment, and preventive group rats. Treatment group rats received RJ orally post-surgery, while preventive group rats received it pre-surgery. Histological and radiographic evaluations were performed post-study completion. RESULTS Micro-CT examinations demonstrated significantly improved values in RJ-received groups (RJ, treatment, and preventive) compared to BP and control groups (p < 0.001). Immunohistochemical analysis revealed higher mean IL-1β and TNF-α levels in the BP group. The highest IL-1β difference was between BP and preventive groups (p < 0.001). TNF-α expression levels in all RJ-received groups were comparatively close to those of the control group. CONCLUSION RJ enhances soft and hard tissue healing in MRONJ rat models, suggesting its potential as a therapeutic or preventive agent in osteonecrosis management.
Collapse
Affiliation(s)
- Cihan Topan
- Department of Oral and Maxillofacial Surgery, Erciyes University Faculty of Dentistry, Kayseri, Turkey
| | - Suheyb Bilge
- Department of Oral and Maxillofacial Surgery, Erciyes University Faculty of Dentistry, Kayseri, Turkey
| | - Ahmet Emin Demirbas
- Department of Oral and Maxillofacial Surgery, Erciyes University Faculty of Dentistry, Kayseri, Turkey
| | - Gürkan Ağyüz
- Department of Oral and Maxillofacial Surgery, Erciyes University Faculty of Dentistry, Kayseri, Turkey
| | - Ayça Kara
- Genom and Stem Cell Centre, Erciyes University, Kayseri, Turkey
| |
Collapse
|
3
|
Zhi DD, He XY, Yang LF, Xue YF, Liu YQ, Yue D, Feng YN, Dong K, Tian YK. Royal jelly acid alleviates diet-induced hyperlipidemia through regulation of oxidative stress and tryptophan metabolism. Eur J Pharmacol 2025; 998:177500. [PMID: 40086581 DOI: 10.1016/j.ejphar.2025.177500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Revised: 02/24/2025] [Accepted: 03/06/2025] [Indexed: 03/16/2025]
Abstract
Royal jelly acid is a unique unsaturated fatty acid isolated from royal jelly. Recently, royal jelly acid was proposed to have potential therapeutic effects on hyperlipidemia. However, its effect on hyperlipidemia and the underlying molecular mechanism remains unclear. Therefore, in this study, we analyzed the mechanism of anti-hyperlipidemia of royal jelly acid through animal experiments and plasma metabolomics in conjunction with human network pharmacology and molecular docking analyses. We found that royal jelly acid could significantly decrease the serum lipid levels, ameliorate hepatic pathological injury, and reduce the level of oxidative stress in the experimental rats. A total of 41 key metabolites and 10 hub targets played key roles in the exertion of anti-hyperlipidemic effects, including tumor necrosis factor (TNF), insulin (INS) and epidermal growth factor receptor (EGFR). A total of 24 pathways, including tryptophan, citrate cycle, and arachidonic acid metabolisms, were identified as the key pathways involved in royal jelly acid-alleviated hyperlipidemia. The present findings provide new insights into the pathogenesis, diagnosis, and treatment targets of hyperlipidemia as well as contribute to the development and utilization of royal jelly acid related products.
Collapse
Affiliation(s)
- Dan-Dan Zhi
- Yunnan Provincial Engineering and Research Center for Sustainable Utilization of Honey Bee Resources, Eastern Bee Research Institute, College of Animal Science and Technology, Yunnan Agricultural University, Kunming, 650201, China
| | - Xi-Ying He
- First Clinical Medical College, Yunnan University of Chinese Medicine, Kunming, 650500, China
| | - Lin-Fu Yang
- Yunnan Provincial Engineering and Research Center for Sustainable Utilization of Honey Bee Resources, Eastern Bee Research Institute, College of Animal Science and Technology, Yunnan Agricultural University, Kunming, 650201, China
| | - Yun-Fei Xue
- Yunnan Provincial Engineering and Research Center for Sustainable Utilization of Honey Bee Resources, Eastern Bee Research Institute, College of Animal Science and Technology, Yunnan Agricultural University, Kunming, 650201, China
| | - Yi-Qiu Liu
- Yunnan Provincial Engineering and Research Center for Sustainable Utilization of Honey Bee Resources, Eastern Bee Research Institute, College of Animal Science and Technology, Yunnan Agricultural University, Kunming, 650201, China
| | - Dan Yue
- Yunnan Provincial Engineering and Research Center for Sustainable Utilization of Honey Bee Resources, Eastern Bee Research Institute, College of Animal Science and Technology, Yunnan Agricultural University, Kunming, 650201, China
| | - Yi-Nan Feng
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, 650201, China
| | - Kun Dong
- Yunnan Provincial Engineering and Research Center for Sustainable Utilization of Honey Bee Resources, Eastern Bee Research Institute, College of Animal Science and Technology, Yunnan Agricultural University, Kunming, 650201, China.
| | - Ya-Kai Tian
- Yunnan Provincial Engineering and Research Center for Sustainable Utilization of Honey Bee Resources, Eastern Bee Research Institute, College of Animal Science and Technology, Yunnan Agricultural University, Kunming, 650201, China.
| |
Collapse
|
4
|
Hassan MI, Hassan SS, Soliman FNK, Khalil MH. Effects of In Ovo Administration of Freeze-Dried Royal Jelly on Hatchability, Blood Parameters, and Organ Weights of Day-Old Chicks. J Anim Physiol Anim Nutr (Berl) 2025; 109:259-267. [PMID: 39369274 DOI: 10.1111/jpn.14052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 09/11/2024] [Accepted: 09/19/2024] [Indexed: 10/07/2024]
Abstract
Royal jelly renowned for its robust nutritional, functional, and biological properties, is a pivotal product derived from honeybees. The purpose of this investigation was to assess the theory that in ovo injection of freeze-dried royal jelly (FDRJ) solutions at varying concentrations can influence the hatchability, blood properties and hatching characteristics of day-old chicks. A total of 480 eggs (54.81 ± 0.187 g) were allocated into four experimental groups: negative control (NC), without injection, positive control (PC), administered with regular saline, a low FDRJ dose group (9 mg/egg), and a high FDRJ dose group (18 mg/egg). The in ovo injections were administered on Day 18 of incubation, and the experiment was subsequently continued until the incubation period concluded at 21 days. Results revealed that the lower FDRJ dose (9 mg/egg) significantly improved hatchability percentages compared to other treatments. Conversely, the higher FDRJ dose (18 mg/egg) and control groups (NC and PC) resulted in significantly higher chick yield percentages than the lower FDRJ and PC groups. The NC group showed the supreme yolk sac (YS) percentage, whereas the yolk-free body mass (YFBM) percentages displayed an inverse trend. Furthermore, the in ovo FDRJ injection did not affect haematological values or the relative organ weight of day-old chicks. In conclusion, in ovo FDRJ injection demonstrated beneficial effects on hatchability and chick weight, as evidenced by the studied parameters.
Collapse
Affiliation(s)
- Mohamed I Hassan
- Livestock Research Department, Arid Lands Cultivation Research Institute, City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab, Alexandria, Egypt
| | - Saber S Hassan
- Animal and Poultry Production Department, Faculty of Agriculture, Damanhour University, Damanhour, Egypt
| | - Farid N K Soliman
- Poultry Production Department, Faculty of Agriculture, Alexandria University, Alexandria, Egypt
| | - Mohamed H Khalil
- Poultry Production Department, Faculty of Agriculture, Alexandria University, Alexandria, Egypt
| |
Collapse
|
5
|
Nezami Majd M, Sadeghi-Hashjin G, Malekinejad H, Rassouli A. Hepatoprotective effect of royal jelly on dibutyl phthalate-induced liver injury in rats. VETERINARY RESEARCH FORUM : AN INTERNATIONAL QUARTERLY JOURNAL 2025; 16:97-105. [PMID: 40099237 PMCID: PMC11910981 DOI: 10.30466/vrf.2024.2033878.4338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 08/14/2024] [Indexed: 03/19/2025]
Abstract
Phthalate esters, such as dibutyl phthalate (DBP), are extensively utilized and human and animal exposure leads to serious toxic effects, including hepatotoxicity. In the present study the protective effects of royal jelly (RJ) on DBP-induced liver damage was investigated. A total number of 40 Wistar albino rats were randomly divided into eight groups (n = 5): control (corn oil), DBP (500 mg kg-1), RJ (200 mg kg1), Quercetin (QCN; 50.00 mg kg-1), RJ (100 mg kg-1) + DBP, RJ (200 mg kg-1) + DBP, RJ (300 mg kg-1) + DBP, QCN (50.00 mg kg-1) + DBP. After 28 days of daily oral gavage treatment, animals were euthanized. The insulin resistance index, lipid profile and hepatic enzymes were measured on the collected serum samples. Moreover, oxidative and nitrosative stress biomarkers were determined in the liver. Histopathological alterations and ultimately cytochrome P450 2E1 (CYP2E1) activity was also assessed. Data obtained revealed that RJ significantly reduced the insulin resistance index and liver enzymes level in RJ-DBP groups. At the same time, RJ recovered the DBP-induced oxidative stress and restored the DBP-depleted glutathione. Moreover, RJ improved lipid profile and reduced significantly the DBP-induced hepatic CYP 2E1 activity in RJ-DBP groups. Dibutyl phthalate induced-hepatic damage such as necrosis of hepatocytes and scattered bleeding was alleviated in RJ-DBP group. Our data suggested that the administration of RJ could protect the DBP-induced hepatic functional and structural alterations. The RJ protective effects might be attributed to its antioxidant and anti-inflammatory properties and reduced CYP 2E1 activity.
Collapse
Affiliation(s)
- Mahdieh Nezami Majd
- Department of Comparative Biosciences, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Goudarz Sadeghi-Hashjin
- Department of Comparative Biosciences, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Hassan Malekinejad
- Department of Pharmacology and Toxicology, School of Pharmacy, Urmia University of Medical Sciences, Urmia, Iran
| | - Ali Rassouli
- Department of Comparative Biosciences, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| |
Collapse
|
6
|
Dai J, Guan H, Zhang L, Jiang H, Su W, Wang J, Jia X, Pang Z. Fatty Acids Derived from Royal Jelly Exert Anti-Inflammatory and Antibacterial Activities in the Treatment of Pseudomonas aeruginosa-Induced Acute Pneumonia. J Med Food 2025; 28:44-57. [PMID: 39585208 DOI: 10.1089/jmf.2024.k.0153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2024] Open
Abstract
Pseudomonas aeruginosa, an opportunistic pathogen, commonly causes hospital-acquired pneumonia. Royal jelly fatty acids (RJFAs), a mixture of various fatty acids extracted from royal jelly, exhibit antibacterial and anti-inflammatory properties in treating many infectious diseases. Nevertheless, the therapeutic mechanisms of RJFAs in treatment of acute P. aeruginosa pulmonary infection are still unclear. Herein, we initially extracted the fatty acids from royal jelly and characterized their chemical constituents using headspace gas chromatography-mass spectrometry. Furthermore, we examined the antibacterial effect of RJFAs in vitro and explored its therapeutic effect and molecular mechanisms in treating acute P. aeruginosa pulmonary infection in vivo. The in vitro antibacterial studies revealed that RJFAs significantly inhibited P. aeruginosa growth. Moreover, the in vivo studies showed that the RJFAs effectively mitigated the lung damage and inflammation induced by P. aeruginosa through impairing neutrophil infiltration, reducing the bacterial load in lung and diminishing the production of proinflammatory cytokines, including tumor necrosis factor (TNF-α), interleukin (IL-1β), IL-6, and macrophage inflammatory protein-2 (MIP-2). In addition, the mice treated with RJFAs exhibited reduced phosphorylation of extracellular signal-regulated kinase (ERK), p38, c-Jun N-terminal kinase (JNK), c-Jun, and nuclear factor-kappa B (NF-κB) p65 in the lung tissues in comparison with that of the mice without drug treatment. These findings demonstrated that RJFAs exhibited significant antibacterial and anti-inflammatory effects in treating the P. aeruginosa-induced acute pneumonia, and the anti-inflammatory effects were exerted through suppressing the mitogen-activated protein kinase/activator protein-1 (MAPK/AP-1) pathway and NF-κB activation, suggesting a promising therapeutic potential of RJFAs against acute bacterial pneumonia.
Collapse
Affiliation(s)
- Jiangqin Dai
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Haixing Guan
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Linlin Zhang
- Institute of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Hehe Jiang
- Institute of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Wen Su
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jue Wang
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xiaolei Jia
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Zheng Pang
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
7
|
Pasdar Y, Tadibi V, Sadeghi E, Najafi F, Miryan M. The Impact of Royal Jelly on Athletic Performance, Lactate Levels, Anthropometric Parameters, and Muscle Damage: A Systematic Review. Prev Nutr Food Sci 2024; 29:385-393. [PMID: 39759813 PMCID: PMC11699573 DOI: 10.3746/pnf.2024.29.4.385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/23/2024] [Accepted: 11/01/2024] [Indexed: 01/07/2025] Open
Abstract
Recently, there has been increasing interest in exploring the effects of royal jelly on athletic performance. This systematic review examined existing literature on the effects of royal jelly on athletic performance. We conducted a detailed search in the Institute for Scientific Information, PubMed/Medline, Cochrane Library, and Scopus databases. We meticulously selected nine studies from an initial pool of 97 studies up to June 2024. Our findings will provide evidence supporting the beneficial effects of royal jelly in reducing blood lactate levels and enhancing athletic performance. Additionally, royal jelly does not affect muscle damage or its associated markers. However, the influence of royal jelly on athletes' body composition measurements remains inconclusive, highlighting the need for further research.
Collapse
Affiliation(s)
- Yahya Pasdar
- School of Nutrition Sciences and Food Technology, Kermanshah University of Medical Sciences, Kermanshah 6719851552, Iran
- Research Center for Environmental Determinants of Health, Health Institute, Kermanshah University of Medical Sciences, Kermanshah 6719851351, Iran
| | - Vahid Tadibi
- Exercise Metabolism and Performance Lab (EMPL), Department of Exercise Physiology, Faculty of Sport Sciences, Razi University, Kermanshah 6714414971, Iran
| | - Ehsan Sadeghi
- School of Nutrition Sciences and Food Technology, Kermanshah University of Medical Sciences, Kermanshah 6719851552, Iran
| | - Farid Najafi
- Research Center for Environmental Determinants of Health, Health Institute, Kermanshah University of Medical Sciences, Kermanshah 6719851351, Iran
| | - Mahsa Miryan
- School of Nutrition Sciences and Food Technology, Kermanshah University of Medical Sciences, Kermanshah 6719851552, Iran
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah 6714673159, Iran
| |
Collapse
|
8
|
Othman AAA. Evaluation of gastric tolerability for long-term use of diclofenac and celecoxib in male albino rats and potential gastroprotective benefits of royal jelly: a randomized controlled trial. JOURNAL OF COMPLEMENTARY & INTEGRATIVE MEDICINE 2024:jcim-2024-0324. [PMID: 39680822 DOI: 10.1515/jcim-2024-0324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 11/19/2024] [Indexed: 12/18/2024]
Abstract
OBJECTIVES Nonsteroidal anti-inflammatory drugs (NSAIDs) are used for pain and inflammation relief. Our study aimed to explore the ulcerogenic effect of long-term diclofenac and celecoxib administration on male albino stomachs, focusing on the possible gastroprotective effect of royal jelly administration. METHODS Five equal groups of 50 male albino rats. The drug dosages were: diclofenac potassium (10 mg/kg/day), celecoxib (50 mg/kg/day), and RJ (300 mg/kg/day), for 4 weeks. Group 1 received no medication. Group 2 received oral diclofenac potassium. Group 3 received oral RJ plus diclofenac potassium. Group 4 received celecoxib orally. Group 4 received oral RJ plus celecoxib. When the experiment was over, rats were euthanized, blood samples were gathered, and stomachs were dissected out. Stomachs were examined for ulcer counts. Serum levels of MDA and SOD were determined. Gastric mucosa contents of MDA, SOD, PGE2, MPO, apoptotic (Bax), and anti-apoptotic (Bcl-2) genes were measured. Gastric tissue was also analyzed histopathologically. RESULTS Long-term administration of diclofenac and celecoxib, in such dose and duration, caused each of the aforementioned parameters to significantly deteriorate, with significant improvement with RJ co-administration. Diclofenac developed severe gastric ulcers in group 2, and RJ co-administration significantly reduced the gastric mucosa damage in group 3. Celecoxib developed no gastric ulcer in both groups 4 and 5. CONCLUSIONS Long-term use of diclofenac in male albino rats caused severe gastric ulcers with significant gastroprotective effects of RJ. Celecoxib provides preferable GI tolerability; thus, it should be prescribed for patients at increased risk of gastrointestinal bleeding requiring NSAIDs.
Collapse
Affiliation(s)
- Amira A A Othman
- Department of Internal Medicine, Faculty of Medicine, Suez University, Suez, Egypt
| |
Collapse
|
9
|
Peng ZW, Hung YT, Wu MC. Mechanistic exploration of royal jelly production in caged honey bees (Apis mellifera). Sci Rep 2024; 14:30277. [PMID: 39633060 PMCID: PMC11618386 DOI: 10.1038/s41598-024-82094-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 12/02/2024] [Indexed: 12/07/2024] Open
Abstract
This study investigates the impact of bee pollen nutrition on the royal jelly production of honey bees (Apis mellifera). Results demonstrate that pollen diet significantly impacts hypopharyngeal gland (HPG) development and the expression of genes associated with royal jelly biosynthesis. Bees fed Brassica napus pollen exhibited superior HPG development, and increased mrjp1 expression (encoding a key royal jelly protein). While the cyp450 6AS8 gene expression (encoding a key enzyme in 10-HDA biosynthesis) was increased by pollen consumption, no distinct expression patterns were observed among the different pollen types tested. An in vitro bee cage platform for royal jelly production has been established to further understand the mechanisms behind royal jelly production in bees. The experiment demonstrated a positive correlation between the number of worker bees and the total yield of royal jelly per cage. However, when the number of worker bees is low, the amount of royal jelly each individual worker bee needs to produce increases. In conclusion, these findings enhance our understanding of the role of bee pollen nutrition in royal jelly production. Furthermore, the results from this in vitro bee cage platform suggest that the number of worker bees is a critical factor in royal jelly production, and that bees may possess a controllable mechanism for regulating royal jelly secretion.
Collapse
Affiliation(s)
- Zhi-Wei Peng
- Department of Entomology, College of Agriculture and Natural Resources, National Chung Hsing University, Taichung, Taiwan
| | - Yi-Ting Hung
- Department of Entomology, College of Agriculture and Natural Resources, National Chung Hsing University, Taichung, Taiwan
| | - Ming-Cheng Wu
- Department of Entomology, College of Agriculture and Natural Resources, National Chung Hsing University, Taichung, Taiwan.
| |
Collapse
|
10
|
Alu'datt MH, Al-U'datt D, Rababah T, Gammoh S, Alrosan M, Bani-Melhem K, Al-Widyan Y, Kubow S, AbuJalban D, Al Khateeb W, Abubaker M. Recent research directions on functional royal jelly: highlights prospects in food, nutraceutical, and pharmacological industries. Crit Rev Food Sci Nutr 2024:1-14. [PMID: 39440352 DOI: 10.1080/10408398.2024.2418892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
The food and pharmaceutical industries have utilized royal jelly, an alternative medicinal food, as a natural pharmaceutical product since ancient times. Royal jelly has a unique remarkable composition containing lipids, proteins, carbohydrates, vitamins, minerals, hormones, and phenolic compounds. The rapidly expanding functional food market has coincided with the increasing consumer demand for royal jelly. Over the past two decades, royal jelly, a rich source of certain bioactive components, has been used by humans as a functional and nutritious food due to recent studies of the effect of royal jelly in underlying pathogenic processes in a variety of animal models. Scientific evidence has accumulated supporting a wide variety of health-promoting effects from the intake of royal jelly that supports cardiovascular health, immune and antioxidant function, wound healing, blood lipid, and glucose control in addition to antibacterial and antihypertensive effects. The main bioactive ingredients are Major Royal Jelly Proteins (MRJPs), essential oils, fatty acids, peptides, and phenolics, which are thought to have a significant role in the development of honeybee queens. The health-endorsing qualities of royal jelly make it a significant functional ingredient in the food, and cosmetic industry. Apisin is one of the main proteins in royal jelly that has antibacterial properties. Other bioactive ingredients of royal jelly that have multifunctional health-promoting properties include defensin-1, royalisin, apisimin, apidaecin, jelleins, royalactin and 10-hydroxy-2-decenoic acid (10HDA) in epigenetic diseases. This review highlights the important role that royal jelly plays as an agent in various fields of medicine, paying special attention to its biological features. Additionally, we discuss royal jelly's composition as a possible therapeutic for vital natural sources of bioactive substances.
Collapse
Affiliation(s)
- Muhammad H Alu'datt
- Department of Nutrition and Food Technology, Faculty of Agriculture, Jordan University of Science and Technology, Irbid, Jordan
- Department of Food Science and Nutrition, College of Life Sciences, Kuwait University, Safat, Kuwait
| | - Doa'a Al-U'datt
- Department of Physiology and Biochemistry, Faculty of Medicine, Jordan University of Science and Technology, Irbid, Jordan
| | - Taha Rababah
- Department of Nutrition and Food Technology, Faculty of Agriculture, Jordan University of Science and Technology, Irbid, Jordan
| | - Sana Gammoh
- Department of Nutrition and Food Technology, Faculty of Agriculture, Jordan University of Science and Technology, Irbid, Jordan
| | - Mohammad Alrosan
- Department of Food Science and Nutrition, Faculty of Agriculture, Jerash University, Jerash, Jordan
- QU Health, College of Health Sciences, Qatar University, Doha, Qatar
- Applied Science Research Center, Applied Science Private University, Amman, Jordan
| | - Khalid Bani-Melhem
- Water Technology Unit (WTU), Center for Advanced Materials (CAM), Qatar University, Doha, Qatar
| | - Yasmeen Al-Widyan
- Department of Nutrition and Food Technology, Faculty of Agriculture, Jordan University of Science and Technology, Irbid, Jordan
| | - Stan Kubow
- School of Dietetics and Human Nutrition, McGill University, Montreal, Quebec, Canada
| | - Dana AbuJalban
- Department of Nutrition and Food Technology, Faculty of Agriculture, Jordan University of Science and Technology, Irbid, Jordan
| | - Wesam Al Khateeb
- Department of Biological Sciences, Yarmouk University, Irbid, Jordan
| | - Mais Abubaker
- Department of Nutrition and Food Technology, Faculty of Agriculture, Jordan University of Science and Technology, Irbid, Jordan
| |
Collapse
|
11
|
Huang X, Xiu L, An Y, Gong Y, Li S, Chen X, Liu C, Lu J, Shan H, Chang J, Zhang M. Preventive Effect of Royal Jelly and 10-HDA on Skin Damage in Diabetic Mice through Regulating Keratinocyte Wnt/β-Catenin and Pyroptosis Pathway. Mol Nutr Food Res 2024; 68:e2400098. [PMID: 39246232 DOI: 10.1002/mnfr.202400098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 07/08/2024] [Indexed: 09/10/2024]
Abstract
The objective of this study is to elucidate how Royal jelly (RJ) and 10-hydroxy-2-decanoic acid (10-HDA) prevents diabetic skin dysfunction by modulating the pyroptosis pathway. Type 2 diabetes models are induced by fat diet consumption and low dose of streptozotocin (STZ) in C57BL/6J mice and treated with RJ (100 mg kg-1 day-1) and 10-HDA, the major lipid component of royal jelly (100 mg kg-1 day-1) for 28 weeks. The results show that serum concentrations of glucose and triglyceride are significantly lower in the RJ group or 10-HDA than diabetes mellitus (DM) group. Compared to the control group, pyroptosis proteins, GSDMD, ASC, Caspase-1, and IL-1β are increased in the skin of the diabetic model, accompanied by the activation of the Wnt/β-catenin signal pathway. Further evaluations by RJ exhibit superior improvement of skin damage, repress activation of the Wnt/β-catenin pathway, and attenuate keratinocyte pyroptosis, but 10-HDA cannot completely suppress the activation of Wnt/β-catenin pathway and pyroptosis, which shows a relatively weak protective effect on skin damage which shows that RJ is a better effect on skin injury after DM.
Collapse
Affiliation(s)
- Xinqi Huang
- Institute of Forensic Sciences, Suzhou Medical College, Soochow University, Suzhou, 215123, China
| | - Lu Xiu
- Department of Occupational and Environmental Health, School of Public Health, Soochow University, Suzhou, 215123, China
| | - Yumei An
- Institute of Forensic Sciences, Suzhou Medical College, Soochow University, Suzhou, 215123, China
| | - Yuan Gong
- Department of Occupational and Environmental Health, School of Public Health, Soochow University, Suzhou, 215123, China
| | - Sunao Li
- Institute of Forensic Sciences, Suzhou Medical College, Soochow University, Suzhou, 215123, China
| | - Xueshi Chen
- Institute of Forensic Sciences, Suzhou Medical College, Soochow University, Suzhou, 215123, China
| | - Chao Liu
- Institute of Forensic Sciences, Suzhou Medical College, Soochow University, Suzhou, 215123, China
| | - Jianghuiwen Lu
- Institute of Forensic Sciences, Suzhou Medical College, Soochow University, Suzhou, 215123, China
| | - Haiyan Shan
- Department of Obstetrics and Gynecology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, 215123, China
| | - Jie Chang
- Department of Occupational and Environmental Health, School of Public Health, Soochow University, Suzhou, 215123, China
| | - Mingyang Zhang
- Institute of Forensic Sciences, Suzhou Medical College, Soochow University, Suzhou, 215123, China
| |
Collapse
|
12
|
Mesri Alamdari N, Irandoost P, Roshanravan N, Najafipour F, Vafa M, Farsi F, Mobasseri M, Mir Mazhari AA, AmirAzad H, Shidfar F. Assessment of the anti-inflammatory and anti-glycemic properties of Royal Jelly and Tocotrienol-rich fraction in an experimental study: Does irisin mediate these effects? Food Sci Nutr 2024; 12:7533-7543. [PMID: 39479712 PMCID: PMC11521737 DOI: 10.1002/fsn3.4321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 06/23/2024] [Accepted: 06/25/2024] [Indexed: 11/02/2024] Open
Abstract
Irisin, a novel adipomyokine, has been proposed to be a therapeutic agent against obesity-related metabolic disease. Royal Jelly (RJ) and tocotrienol-rich fraction (TRF) are suggested to promote obesity and its related problems through potential mutual mechanistic pathways. This investigation intended to evaluate the glycemic and inflammation-promoting effects of RJ, TRF, and their combinations to evaluate their synergic effects through irisin action in obese rats induced by a high-fat diet (HFD) that underwent a calorie restriction diet (CRD). Fifty HFD-fed obese rats received the following interventions: RJ, TRF, or RJ + TRF in combination with a CRD for eight consecutive weeks. After the investigation, body weight, fasting blood sugar (FBS), irisin, insulin, C-reactive protein (CRP), interleukin-6 (IL-6), interleukin-1 beta (IL-1β), leptin, adiponectin, and insulin resistance (IR) were assessed. After 8 weeks of treatment, significant weight reduction was noticed in rats that received RJ and RJ + TRF related to the CRD rats (p < .001), although this reduction was not considerable in TRF-treated rats. RJ and RJ + TRF supplementation markedly elevated irisin concentrations in CRD rats (p < .05), but TRF did not. Glycemic indices, inflammatory indices including IL-1β and CRP levels, and leptin concentrations were significantly decreased after RJ, TRF, and their combinations were added to CRD (p < .05). According to the mediational analysis results, irisin mediated the promoting effects of RJ on glycemic hemostasis. Based on the results of this investigation, RJ and TRF are novel nutrients that have the potential to improve obesity-related disorders. This research suggests that RJ exerts its beneficial glycemic regulatory effects through irisin.
Collapse
Affiliation(s)
| | - Pardis Irandoost
- Department of Nutrition, School of Public HealthIran University of Medical SciencesTehranIran
| | - Neda Roshanravan
- Cardiovascular Research CenterTabriz University of Medical SciencesTabrizIran
| | - Farzad Najafipour
- Endocrine Research CenterTabriz University of Medical SciencesTabrizIran
| | - Mohammadreza Vafa
- Department of Nutrition, School of Public HealthIran University of Medical SciencesTehranIran
| | - Farnaz Farsi
- Minimally Invasive Surgery Research CenterIran University of Medical SciencesTehranIran
| | - Majid Mobasseri
- Endocrine Research CenterTabriz University of Medical SciencesTabrizIran
| | - Amir Ali Mir Mazhari
- Department of Laboratory Sciences, Faculty of Para MedicineTabriz University of Medical SciencesTabrizIran
| | - Halimeh AmirAzad
- Endocrine Research CenterTabriz University of Medical SciencesTabrizIran
| | - Farzad Shidfar
- Department of Nutrition, School of Public HealthIran University of Medical SciencesTehranIran
| |
Collapse
|
13
|
Felemban AH, Alshammari GM, Yagoub AEA, Saleh A, Yahya MA. Royal Jelly Exerts a Potent Anti-Obesity Effect in Rats by Activating Lipolysis and Suppressing Adipogenesis. Nutrients 2024; 16:3174. [PMID: 39339774 PMCID: PMC11435164 DOI: 10.3390/nu16183174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 09/02/2024] [Accepted: 09/18/2024] [Indexed: 09/30/2024] Open
Abstract
Background/Objective: This study examined the anti-obesity effect of royal jelly (RJ) in rats fed with a high-fat diet by targeting the major pathways involved in adipogenesis and lipolysis. In addition, it examined whether this effect is AMPK-dependent. Methods: Five groups of adult male albino rats were used (n = 6 each as 1); the control rats were fed with a normal diet (2.9 kcal), and the other groups were as follows: control + RJ (300 mg/kg), HFD (4.75 kcal), HFD + RJ (300 mg/kg), and HFD + RJ (300 mg/kg) + dorsomorphin (an AMPK inhibitor) (0.2 mg/kg). Results: RJ was administered orally to all rats. With no changes in food and energy intake, RJ significantly reduced gains in body weight, fat weight, body mass index (BMI), the Lee index, abdominal circumference (AC), and the adiposity index (AI). It also reduced fasting glucose and insulin levels, HOMA-IR, and the circulatory levels of free fatty acids (FFAs), triglycerides, cholesterol, and LDL-c in the HFD-fed rats. RJ also increased serum glycerol levels and adiponectin levels, but reduced the serum levels of leptin, IL-6, and TNF-α. Moreover, RJ reduced the secretion of IL-6 and TNF-α from isolated WAT. At the tissue level, the HFD + RJ rats exhibited a smaller adipocyte size compared to the HFD rats. At the molecular level, RJ increased the phosphorylation of AMPK, SREBP1, and ACC-1 and increased the mRNA and protein levels of HSL and ATG in the WAT of the HFD rats. In concomitance, RJ increased the mRNA levels of PGC-α1, reduced the protein levels of PPARγ, and repressed the transcriptional activities of PPARγ, SREBP1, and C/EBPαβ in the WAT of these rats. All the aforementioned effects of RJ were prevented by co-treatment with dorsomorphin. Conclusions: RJ exerts a potent anti-obesity effect in rats that is mediated by the AMPk-dependent suppression of WAT adipogenesis and the stimulation of lipolysis.
Collapse
Affiliation(s)
- Alaa Hasanain Felemban
- Department of Food Science and Nutrition, College of Food and Agricultural Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Ghedeir M Alshammari
- Department of Food Science and Nutrition, College of Food and Agricultural Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Abu ElGasim Ahmed Yagoub
- Department of Food Science and Nutrition, College of Food and Agricultural Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Ali Saleh
- Department of Food Science and Nutrition, College of Food and Agricultural Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohammed Abdo Yahya
- Department of Food Science and Nutrition, College of Food and Agricultural Science, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
14
|
Kumar R, Thakur A, Kumar S, Hajam YA. Royal jelly a promising therapeutic intervention and functional food supplement: A systematic review. Heliyon 2024; 10:e37138. [PMID: 39296128 PMCID: PMC11408027 DOI: 10.1016/j.heliyon.2024.e37138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 08/27/2024] [Accepted: 08/28/2024] [Indexed: 09/21/2024] Open
Abstract
Royal jelly (RJ), a secretion produced by honeybees, has garnered significant interest for its potential as a therapeutic intervention and functional food supplement. This systematic review aims to synthesize current research on the health benefits, bioactive components, and mechanisms of action of RJ. Comprehensive literature searches were conducted across multiple databases, including PubMed, Scopus, and Web of Science, focusing on studies published from 2000 to 2024 (April). Findings indicate that RJ exhibits a wide range of pharmacological activities, including anti-inflammatory, antioxidant, antimicrobial, and anti-aging effects. Beneficial biological properties of RJ might be due to the presence of flavonoids proteins, peptides, fatty acids. Both preclinical and clinical studies have reported that RJ improves the immune function such as wound healing, and also decreases the severity of chronic diseases including diabetes and cardiovascular disorders. The molecular mechanisms underlying these effects involve modulation of signalling pathways such as NF-κB, MAPK, and AMPK. Despite promising results, the review identifies several gaps in the current knowledge, including the need for standardized dosing regimens and long-term safety assessments. Furthermore, variations in RJ composition due to geographic and botanical factors necessitate more rigorous quality control measures. This review underscores the potential of RJ as a multifunctional therapeutic agent and highlights the necessity for further well designed studies to fully elucidate its health benefits and optimize its use as a functional food supplement.
Collapse
Affiliation(s)
- Rajesh Kumar
- Department Biosciences, Himachal University, Shimla, Himachal Pradesh-171005, India
| | - Ankita Thakur
- Department Biosciences, Himachal University, Shimla, Himachal Pradesh-171005, India
| | - Suresh Kumar
- Department Biosciences, Himachal University, Shimla, Himachal Pradesh-171005, India
| | - Younis Ahmad Hajam
- Department of Life Sciences and Allied Health Sciences, Sant Baba Bhag Singh University, Jalandhar, Punjab -144030, India
| |
Collapse
|
15
|
Kobayashi G, Ichikawa T, Okamura T, Matsuyama T, Hamaguchi M, Okamoto H, Okumura N, Fukui M. A Study of Small Intestinal Epigenomic Changes Induced by Royal Jelly. Cells 2024; 13:1419. [PMID: 39272991 PMCID: PMC11393943 DOI: 10.3390/cells13171419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/08/2024] [Accepted: 08/19/2024] [Indexed: 09/15/2024] Open
Abstract
This study explores the impact of royal jelly (RJ) on small intestinal epigenomic changes. RJ, produced by honeybees, is known for its effects on metabolic diseases. The hypothesis is that RJ induces epigenomic modifications in small intestinal epithelial cells, affecting gene expression and contributing to metabolic health. Male db/m and db/db mice were used to examine RJ's effects through mRNA sequencing and CUT&Tag methods. This study focused on histone modifications and gene expression changes, with statistical significance set at p < 0.05. RJ administration improved insulin sensitivity and lipid metabolism without affecting body weight. GO and KEGG pathway analyses showed significant enrichment in metabolic processes, cellular components, and molecular functions. RJ altered histone modifications, increasing H3K27me3 and decreasing H3K23Ac in genes associated with the G2M checkpoint. These genes, including Smc2, Mcm3, Ccnd1, Rasal2, Mcm6, and Mad2l1, are linked to cancer progression and metabolic regulation. RJ induces beneficial epigenomic changes in small intestinal epithelial cells, improving metabolic health and reducing cancer-associated gene expression. These findings highlight RJ's potential as a therapeutic agent for metabolic disorders. Further research is needed to fully understand the mechanisms behind these effects and their implications for human health.
Collapse
Affiliation(s)
- Genki Kobayashi
- Department of Endocrinology and Metabolism, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan; (G.K.); (T.I.); (T.M.); (M.H.); (M.F.)
| | - Takahiro Ichikawa
- Department of Endocrinology and Metabolism, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan; (G.K.); (T.I.); (T.M.); (M.H.); (M.F.)
| | - Takuro Okamura
- Department of Endocrinology and Metabolism, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan; (G.K.); (T.I.); (T.M.); (M.H.); (M.F.)
| | - Tomoyuki Matsuyama
- Department of Endocrinology and Metabolism, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan; (G.K.); (T.I.); (T.M.); (M.H.); (M.F.)
| | - Masahide Hamaguchi
- Department of Endocrinology and Metabolism, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan; (G.K.); (T.I.); (T.M.); (M.H.); (M.F.)
| | - Hideto Okamoto
- Institute for Health Science, R&D Department, Yamada Bee Company, Inc., Okayama 708-0393, Japan; (H.O.); (N.O.)
| | - Nobuaki Okumura
- Institute for Health Science, R&D Department, Yamada Bee Company, Inc., Okayama 708-0393, Japan; (H.O.); (N.O.)
| | - Michiaki Fukui
- Department of Endocrinology and Metabolism, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan; (G.K.); (T.I.); (T.M.); (M.H.); (M.F.)
| |
Collapse
|
16
|
Khalifa SAM, Shetaia AA, Eid N, Abd El-Wahed AA, Abolibda TZ, El Omri A, Yu Q, Shenashen MA, Hussain H, Salem MF, Guo Z, Alanazi AM, El-Seedi HR. Green Innovation and Synthesis of Honeybee Products-Mediated Nanoparticles: Potential Approaches and Wide Applications. Bioengineering (Basel) 2024; 11:829. [PMID: 39199787 PMCID: PMC11351265 DOI: 10.3390/bioengineering11080829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/26/2024] [Accepted: 08/09/2024] [Indexed: 09/01/2024] Open
Abstract
Bee products, abundant in bioactive ingredients, have been utilized in both traditional and contemporary medicine. Their antioxidant, antimicrobial, and anti-inflammatory properties make them valuable for food, preservation, and cosmetics applications. Honeybees are a vast reservoir of potentially beneficial products such as honey, bee pollen, bee bread, beeswax, bee venom, and royal jelly. These products are rich in metabolites vital to human health, including proteins, amino acids, peptides, enzymes, sugars, vitamins, polyphenols, flavonoids, and minerals. The advancement of nanotechnology has led to a continuous search for new natural sources that can facilitate the easy, low-cost, and eco-friendly synthesis of nanomaterials. Nanoparticles (NPs) are actively synthesized using honeybee products, which serve dual purposes in preventive and interceptive treatment strategies due to their richness in essential metabolites. This review aims to highlight the potential role of bee products in this line and their applications as catalysts and food preservatives and to point out their anticancer, antibacterial, antifungal, and antioxidant underlying impacts. The research used several online databases, namely Google Scholar, Science Direct, and Sci Finder. The overall findings suggest that these bee-derived substances exhibit remarkable properties, making them promising candidates for the economical and eco-friendly production of NPs.
Collapse
Affiliation(s)
- Shaden A. M. Khalifa
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang 212013, China;
- Neurology and Psychiatry Department, Capio Saint Göran’s Hospital, Sankt Göransplan 1, 112 19 Stockholm, Sweden
| | - Aya A. Shetaia
- Department of Chemistry, Faculty of Science, Menoufia University, Shebin El-Kom 31100107, Egypt; (A.A.S.); (N.E.)
| | - Nehal Eid
- Department of Chemistry, Faculty of Science, Menoufia University, Shebin El-Kom 31100107, Egypt; (A.A.S.); (N.E.)
| | - Aida A. Abd El-Wahed
- Department of Bee Research, Plant Protection Research Institute, Agricultural Research Centre, Giza 12627, Egypt;
| | - Tariq Z. Abolibda
- Department of Chemistry, Faculty of Science, Islamic University of Madinah, Madinah 42351, Saudi Arabia; (M.A.S.); (A.M.A.)
| | - Abdelfatteh El Omri
- Surgical Research Section, Department of Surgery, Hamad Medical Corporation, Doha 3050, Qatar;
- Vice President for Medical and Health Sciences Office, QU-Health, Qatar University, Doha P.O. Box 2713, Qatar
| | - Qiang Yu
- Polysaccharides of Jiangxi Province, Nanchang University College of Food Science and Technology, 235 Nanjing East Road, Nanchang 330047, China;
| | - Mohamed A. Shenashen
- Department of Chemistry, Faculty of Science, Islamic University of Madinah, Madinah 42351, Saudi Arabia; (M.A.S.); (A.M.A.)
- National Institute for Materials Science (NIMS), 1-2-1 Sengen, Tsukuba-Shi 305-0047, Ibaraki-Ken, Japan
| | - Hidayat Hussain
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120 Halle (Saale), Germany;
| | - Mohamed F. Salem
- Department of Environmental Biotechnology, Genetic Engineering and Biotechnology Research Institute, GEBRI, University of Sadat City, Sadat City P.O. Box 79, Egypt;
| | - Zhiming Guo
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China;
| | - Abdulaziz M. Alanazi
- Department of Chemistry, Faculty of Science, Islamic University of Madinah, Madinah 42351, Saudi Arabia; (M.A.S.); (A.M.A.)
| | - Hesham R. El-Seedi
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang 212013, China;
- Department of Chemistry, Faculty of Science, Menoufia University, Shebin El-Kom 31100107, Egypt; (A.A.S.); (N.E.)
- Department of Chemistry, Faculty of Science, Islamic University of Madinah, Madinah 42351, Saudi Arabia; (M.A.S.); (A.M.A.)
| |
Collapse
|
17
|
Chen C, Ou W, Yang C, Liu H, Yang T, Mo H, Lu W, Yan J, Chen A. Queen bee acid pretreatment attenuates myocardial ischemia/reperfusion injury by enhancing autophagic flux. Heliyon 2024; 10:e33371. [PMID: 39021954 PMCID: PMC11253658 DOI: 10.1016/j.heliyon.2024.e33371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 06/19/2024] [Accepted: 06/20/2024] [Indexed: 07/20/2024] Open
Abstract
Queen bee acid (QBA), which is exclusively found in royal jelly, has anti-inflammatory, antihypercholesterolemic, and antiangiogenic effects. A recent study demonstrated that QBA enhances autophagic flux in the heart. Considering the significant role of autophagy in the development of myocardial ischemia/reperfusion (I/R) injury, we investigated the effect of pretreatment with QBA on myocardial damage. In an in vivo model, left coronary artery blockage for 30 min and reperfusion for 2 h were used to induce myocardial I/R. In an in vitro model, neonatal rat cardiomyocytes (NRCs) were exposed to 3 h of hypoxia and 3 h of reoxygenation (H/R). Our results showed that pretreatment with QBA increased the cell viability of cardiomyocytes exposed to H/R in a dose-dependent manner, and the best protective concentration of QBA was 100 μM. Next, we noted that QBA pretreatment (24h before H/R) enhanced autophagic flux and attenuated mitochondrial damage, cardiac oxidative stress and apoptosis in NRCs exposed to H/R injury, and these effects were weakened by cotreatment with the autophagy inhibitor bafilomycin A1 (Baf). In addition, similar results were observed when QBA (10 mg/kg) was injected intraperitoneally into I/R mice 30 min before ischemia. Compared to mice subjected to I/R alone, those treated with QBA had decreased myocardial infarct area and increased cardiac function, whereas, these effects were partly reversed by Baf. Notably, in NRCs exposed to H/R, tandem fluorescent mRFP-GFP-LC3 assays indicated increased autophagosome degradation due to the increase in autophagic flux upon QBA treatment, but coinjection of Baf blocked autophagic flux. In this investigation, no notable adverse effects of QBA were detected in either cellular or animal models. Our findings suggest that QBA pretreatment mitigates myocardial I/R injury by eliminating dysfunctional mitochondria and reducing reactive oxygen species via promoting autophagic flux.
Collapse
Affiliation(s)
- Changhai Chen
- Department of Cardiology, Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, People's Republic of China
- Department of Cardiology, The Affiliated Suqian First People's Hospital of Nanjing Medical University, Suqian, Jiangsu, People's Republic of China
- Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, People's Republic of China
- Guangdong Provincial Key Laboratory of Shock and Microcirculation, Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Wen Ou
- Department of Cardiology, Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, People's Republic of China
- Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, People's Republic of China
- Guangdong Provincial Key Laboratory of Shock and Microcirculation, Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Chaobo Yang
- Department of Cardiology, Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, People's Republic of China
- Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, People's Republic of China
- Guangdong Provincial Key Laboratory of Shock and Microcirculation, Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Haiqiong Liu
- Department of Health Management, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, People's Republic of China
- Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, People's Republic of China
- Guangdong Provincial Key Laboratory of Shock and Microcirculation, Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Tao Yang
- Department of Cardiology, Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, People's Republic of China
- Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, People's Republic of China
- Guangdong Provincial Key Laboratory of Shock and Microcirculation, Southern Medical University, Guangzhou, Guangdong, People's Republic of China
- Department of Cardiovascular Medicine, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, People's Republic of China
| | - Huaqiang Mo
- Department of Cardiology, Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, People's Republic of China
- Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, People's Republic of China
- Guangdong Provincial Key Laboratory of Shock and Microcirculation, Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Weizhe Lu
- Department of Cardiology, Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, People's Republic of China
- Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, People's Republic of China
- Guangdong Provincial Key Laboratory of Shock and Microcirculation, Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Jing Yan
- Department of Cardiology, Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, People's Republic of China
- Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, People's Republic of China
- Guangdong Provincial Key Laboratory of Shock and Microcirculation, Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Aihua Chen
- Department of Health Management, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, People's Republic of China
- Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, People's Republic of China
- Guangdong Provincial Key Laboratory of Shock and Microcirculation, Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| |
Collapse
|
18
|
Oršolić N, Jazvinšćak Jembrek M. Royal Jelly: Biological Action and Health Benefits. Int J Mol Sci 2024; 25:6023. [PMID: 38892209 PMCID: PMC11172503 DOI: 10.3390/ijms25116023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/25/2024] [Accepted: 05/28/2024] [Indexed: 06/21/2024] Open
Abstract
Royal jelly (RJ) is a highly nutritious natural product with great potential for use in medicine, cosmetics, and as a health-promoting food. This bee product is a mixture of important compounds, such as proteins, vitamins, lipids, minerals, hormones, neurotransmitters, flavonoids, and polyphenols, that underlie the remarkable biological and therapeutic activities of RJ. Various bioactive molecules like 10-hydroxy-2-decenoic acid (10-HDA), antibacterial protein, apisin, the major royal jelly proteins, and specific peptides such as apisimin, royalisin, royalactin, apidaecin, defensin-1, and jelleins are characteristic ingredients of RJ. RJ shows numerous physiological and pharmacological properties, including vasodilatory, hypotensive, antihypercholesterolaemic, antidiabetic, immunomodulatory, anti-inflammatory, antioxidant, anti-aging, neuroprotective, antimicrobial, estrogenic, anti-allergic, anti-osteoporotic, and anti-tumor effects. Moreover, RJ may reduce menopause symptoms and improve the health of the reproductive system, liver, and kidneys, and promote wound healing. This article provides an overview of the molecular mechanisms underlying the beneficial effects of RJ in various diseases, aging, and aging-related complications, with special emphasis on the bioactive components of RJ and their health-promoting properties. The data presented should be an incentive for future clinical studies that hopefully will advance our knowledge about the therapeutic potential of RJ and facilitate the development of novel RJ-based therapeutic opportunities for improving human health and well-being.
Collapse
Affiliation(s)
- Nada Oršolić
- Division of Animal Physiology, Faculty of Science, University of Zagreb, Rooseveltov trg 6, HR-10000 Zagreb, Croatia
| | - Maja Jazvinšćak Jembrek
- Division of Molecular Medicine, Laboratory for Protein Dynamics, Ruđer Bošković Institute, Bijenička cesta 54, HR-10000 Zagreb, Croatia;
- School of Medicine, Catholic University of Croatia, Ilica 242, HR-10000 Zagreb, Croatia
| |
Collapse
|
19
|
Bava R, Castagna F, Lupia C, Poerio G, Liguori G, Lombardi R, Naturale MD, Bulotta RM, Biondi V, Passantino A, Britti D, Statti G, Palma E. Hive Products: Composition, Pharmacological Properties, and Therapeutic Applications. Pharmaceuticals (Basel) 2024; 17:646. [PMID: 38794216 PMCID: PMC11124102 DOI: 10.3390/ph17050646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/03/2024] [Accepted: 05/10/2024] [Indexed: 05/26/2024] Open
Abstract
Beekeeping provides products with nutraceutical and pharmaceutical characteristics. These products are characterized by abundance of bioactive compounds. For different reasons, honey, royal jelly, propolis, venom, and pollen are beneficial to humans and animals and could be used as therapeutics. The pharmacological action of these products is related to many of their constituents. The main bioactive components of honey include oligosaccharides, methylglyoxal, royal jelly proteins (MRJPs), and phenolics compounds. Royal jelly contains jelleins, royalisin peptides, MRJPs, and derivatives of hydroxy-decenoic acid, particularly 10-hydroxy-2-decenoic acid (10-HDA), which possess antibacterial, anti-inflammatory, immunomodulatory, neuromodulatory, metabolic syndrome-preventing, and anti-aging properties. Propolis has a plethora of activities that are referable to compounds such as caffeic acid phenethyl ester. Peptides found in bee venom include phospholipase A2, apamin, and melittin. In addition to being vitamin-rich, bee pollen also includes unsaturated fatty acids, sterols, and phenolics compounds that express antiatherosclerotic, antidiabetic, and anti-inflammatory properties. Therefore, the constituents of hive products are particular and different. All of these constituents have been investigated for their properties in numerous research studies. This review aims to provide a thorough screening of the bioactive chemicals found in honeybee products and their beneficial biological effects. The manuscript may provide impetus to the branch of unconventional medicine that goes by the name of apitherapy.
Collapse
Affiliation(s)
- Roberto Bava
- Department of Health Sciences, University of Catanzaro Magna Græcia, 88100 Catanzaro, Italy; (R.B.); (C.L.); (R.M.B.); (D.B.); (E.P.)
| | - Fabio Castagna
- Department of Health Sciences, University of Catanzaro Magna Græcia, 88100 Catanzaro, Italy; (R.B.); (C.L.); (R.M.B.); (D.B.); (E.P.)
- Mediterranean Ethnobotanical Conservatory, Sersale (CZ), 88054 Catanzaro, Italy
| | - Carmine Lupia
- Department of Health Sciences, University of Catanzaro Magna Græcia, 88100 Catanzaro, Italy; (R.B.); (C.L.); (R.M.B.); (D.B.); (E.P.)
- Mediterranean Ethnobotanical Conservatory, Sersale (CZ), 88054 Catanzaro, Italy
| | - Giusi Poerio
- ATS Val Padana, Via dei Toscani, 46100 Mantova, Italy;
| | | | - Renato Lombardi
- IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo (FG), 71013 Foggia, Italy;
| | - Maria Diana Naturale
- Ministry of Health, Directorate General for Health Programming, 00144 Rome, Italy;
| | - Rosa Maria Bulotta
- Department of Health Sciences, University of Catanzaro Magna Græcia, 88100 Catanzaro, Italy; (R.B.); (C.L.); (R.M.B.); (D.B.); (E.P.)
| | - Vito Biondi
- Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy; (V.B.); (A.P.)
| | - Annamaria Passantino
- Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy; (V.B.); (A.P.)
| | - Domenico Britti
- Department of Health Sciences, University of Catanzaro Magna Græcia, 88100 Catanzaro, Italy; (R.B.); (C.L.); (R.M.B.); (D.B.); (E.P.)
| | - Giancarlo Statti
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, 87036 Cosenza, Italy;
| | - Ernesto Palma
- Department of Health Sciences, University of Catanzaro Magna Græcia, 88100 Catanzaro, Italy; (R.B.); (C.L.); (R.M.B.); (D.B.); (E.P.)
- Center for Pharmacological Research, Food Safety, High Tech and Health (IRC-FSH), University of Catanzaro Magna Græcia, 88100 Catanzaro, Italy
| |
Collapse
|
20
|
Wen D, Xie J, Yuan Y, Shen L, Yang Y, Chen W. The endogenous antioxidant ability of royal jelly in Drosophila is independent of Keap1/Nrf2 by activating oxidoreductase activity. INSECT SCIENCE 2024; 31:503-523. [PMID: 37632209 DOI: 10.1111/1744-7917.13252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 06/07/2023] [Accepted: 06/14/2023] [Indexed: 08/27/2023]
Abstract
Royal jelly (RJ) is a biologically active substance secreted by the hypopharyngeal and mandibular glands of worker honeybees. It is widely claimed that RJ reduces oxidative stress. However, the antioxidant activity of RJ has mostly been determined by in vitro chemical detection methods or by external administration drugs that cause oxidative stress. Whether RJ can clear the endogenous production of reactive oxygen species (ROS) in cells remains largely unknown. Here, we systematically investigated the antioxidant properties of RJ using several endogenous oxidative stress models of Drosophila. We found that RJ enhanced sleep quality of aging Drosophila, which is decreased due to an increase of oxidative damage with age. RJ supplementation improved survival and suppressed ROS levels in gut cells of flies upon exposure to hydrogen peroxide or to the neurotoxic agent paraquat. Moreover, RJ supplementation moderated levels of ROS in endogenous gut cells and extended lifespan after exposure of flies to heat stress. Sleep deprivation leads to accumulation of ROS in the gut cells, and RJ attenuated the consequences of oxidative stress caused by sleep loss and prolonged lifespan. Mechanistically, RJ prevented cell oxidative damage caused by heat stress or sleep deprivation, with the antioxidant activity in vivo independent of Keap1/Nrf2 signaling. RJ supplementation activated oxidoreductase activity in the guts of flies, suggesting its ability to inhibit endogenous oxidative stress and maintain health, possibly in humans.
Collapse
Affiliation(s)
- Dongjing Wen
- Institute of Life Sciences, College of Biological Science and Engineering, Fuzhou University, Fuzhou, China
| | - Jiayu Xie
- School of Medicine, Chongqing University, Chongqing, China
| | - Yao Yuan
- Institute of Life Sciences, College of Biological Science and Engineering, Fuzhou University, Fuzhou, China
| | - Lirong Shen
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| | - Yufeng Yang
- Institute of Life Sciences, College of Biological Science and Engineering, Fuzhou University, Fuzhou, China
| | - Wenfeng Chen
- Institute of Life Sciences, College of Biological Science and Engineering, Fuzhou University, Fuzhou, China
| |
Collapse
|
21
|
Ito T, Rojasawasthien T, Takeuchi SY, Okamoto H, Okumura N, Shirakawa T, Matsubara T, Kawamoto T, Kokabu S. Royal Jelly Enhances the Ability of Myoblast C2C12 Cells to Differentiate into Multilineage Cells. Molecules 2024; 29:1449. [PMID: 38611729 PMCID: PMC11013243 DOI: 10.3390/molecules29071449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 03/18/2024] [Accepted: 03/19/2024] [Indexed: 04/14/2024] Open
Abstract
Royal jelly (RJ) is recognized as beneficial to mammalian health. Multilineage differentiation potential is an important property of mesenchymal stem cells (MSCs). C2C12 cells have an innate ability to differentiate into myogenic cells. Like MSCs, C2C12 cells can also differentiate into osteoblast- and adipocyte-lineage cells. We recently reported that RJ enhances the myogenic differentiation of C2C12 cells. However, the effect of RJ on osteoblast or adipocyte differentiation is still unknown. Here in this study, we have examined the effect of RJ on the osteoblast and adipocyte differentiation of C2C12 cells. Protease-treated RJ was used to reduce the adverse effects caused by RJ supplementation. To induce osteoblast or adipocyte differentiation, cells were treated with bone morphogenetic proteins (BMP) or peroxisome proliferator-activated receptor γ (PPARγ) agonist, respectively. RNA-seq was used to analyze the effect of RJ on gene expression. We found that RJ stimulates osteoblast and adipocyte differentiation. RJ regulated 279 genes. RJ treatment upregulated glutathione-related genes. Glutathione, the most abundant antioxidative factor in cells, has been shown to promote osteoblast differentiation in MSC and MSC-like cells. Therefore, RJ may promote osteogenesis, at least in part, through the antioxidant effects of glutathione. RJ enhances the differentiation ability of C2C12 cells into multiple lineages, including myoblasts, osteoblasts, and adipocytes.
Collapse
Affiliation(s)
- Takumi Ito
- Division of Molecular Signaling and Biochemistry, Kyushu Dental University, Fukuoka 803-8580, Japan; (T.I.); (T.R.); (S.Y.T.); (T.M.)
- Division of Orofacial Functions and Orthodontics, Kyushu Dental University, Fukuoka 803-8580, Japan; (T.S.); (T.K.)
| | - Thira Rojasawasthien
- Division of Molecular Signaling and Biochemistry, Kyushu Dental University, Fukuoka 803-8580, Japan; (T.I.); (T.R.); (S.Y.T.); (T.M.)
| | - Sachiko Yamashita Takeuchi
- Division of Molecular Signaling and Biochemistry, Kyushu Dental University, Fukuoka 803-8580, Japan; (T.I.); (T.R.); (S.Y.T.); (T.M.)
| | - Hideto Okamoto
- Institute for Bee Products and Health Science, Yamada Bee Company, Inc., Okayama 708-0393, Japan; (H.O.); (N.O.)
| | - Nobuaki Okumura
- Institute for Bee Products and Health Science, Yamada Bee Company, Inc., Okayama 708-0393, Japan; (H.O.); (N.O.)
| | - Tomohiko Shirakawa
- Division of Orofacial Functions and Orthodontics, Kyushu Dental University, Fukuoka 803-8580, Japan; (T.S.); (T.K.)
| | - Takuma Matsubara
- Division of Molecular Signaling and Biochemistry, Kyushu Dental University, Fukuoka 803-8580, Japan; (T.I.); (T.R.); (S.Y.T.); (T.M.)
| | - Tatsuo Kawamoto
- Division of Orofacial Functions and Orthodontics, Kyushu Dental University, Fukuoka 803-8580, Japan; (T.S.); (T.K.)
| | - Shoichiro Kokabu
- Division of Molecular Signaling and Biochemistry, Kyushu Dental University, Fukuoka 803-8580, Japan; (T.I.); (T.R.); (S.Y.T.); (T.M.)
| |
Collapse
|
22
|
Eleiwa NZH, Khalifa HAMI, Nazim HA. Cardioprotective role of royal jelly in the prevention of celecoxib-mediated cardiotoxicity in adult male albino rats. J Cardiothorac Surg 2024; 19:135. [PMID: 38500210 PMCID: PMC10949770 DOI: 10.1186/s13019-024-02593-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 02/13/2024] [Indexed: 03/20/2024] Open
Abstract
BACKGROUND Celecoxib, a cyclooxygenase-2 selective inhibitor non-steroidal anti-inflammatory drugs, is used for the management of short- and long-term pain as well as in other inflammatory conditions. Unfortunately, its chronic use is highly associated with serious abnormal cardiovascular events. The current study was designed to explore the effect of long-term administration of celecoxib on the cardiac tissues of male albino rats. The study also examined the alleged cardioprotective effect of royal jelly. METHODS Thirty, male albino rats were randomly divided into 3 equal groups; 10 each: (1) rats served as the control group and received no drug; (2) rats received celecoxib (50 mg/kg/day, orally), for 30 consecutive days; (3) rats received celecoxib (50 mg/kg/day, orally) plus royal jelly (300 mg/kg/day, orally) for 30 consecutive days. Sera were collected to assay cardiac enzymes and oxidant/antioxidant status. Rats were euthanatized and cardiac tissues were dissected for quantitative estimation of apoptotic genes (Bax) and anti-apoptotic gene (Bcl-2). RESULTS Long-term celecoxib administration caused cardiotoxicity in male albino rats as manifested by significant elevation of serum levels of creatine phosphokinase (CPK), creatine kinase-MB (CK-MB), and lactate dehydrogenase (LDH), with ameliorative effects of royal jelly against celecoxib-induced cardiotoxicity as manifested by significantly decrease in serum CPK, CK-MB, and LDH levels. It also showed a significant decrease in the oxidative stress indicator malondialdehyde (MDA) levels and the bax gene. Additionally, it demonstrated significant increases in the bcl-2 gene and superoxide dismutase (SOD) levels, which contribute to its therapeutic effects against celecoxib-induced cardiotoxicity. CONCLUSION Long-term celecoxib administration caused cardiotoxicity in male albino rats with protective effect of royal jelly being given together. It could be concluded that royal jelly may prove a useful adjunct in patients being prescribed celecoxib. TRIAL REGISTRATION Not applicable.
Collapse
Affiliation(s)
- Naglaa Z H Eleiwa
- Department of Pharmacology, Faculty of Vet. Med, Zagazig University, Zagazig, 43511, Egypt
| | - Hesham A M I Khalifa
- Department of Pharmacology, Faculty of Vet. Med, Zagazig University, Zagazig, 43511, Egypt
| | - Heba A Nazim
- Department of Pharmacology, Faculty of Vet. Med, Zagazig University, Zagazig, 43511, Egypt.
| |
Collapse
|
23
|
Simsek Ozek N. Exploring the in vitro potential of royal jelly against glioblastoma and neuroblastoma: impact on cell proliferation, apoptosis, cell cycle, and the biomolecular content. Analyst 2024; 149:1872-1884. [PMID: 38349213 DOI: 10.1039/d3an01840g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Neuroblastoma and glioblastoma are the most commonly seen nervous system tumors, and their treatment is challenging. Relatively safe and easy acquisition of nutraceutical natural products make them suitable candidates for anticancer research. Royal jelly (RJ), a superfood, has many biological and pharmacological activities. This study was conducted to, for the first time, elucidate its anticancer efficiency, even in high doses, on neuroblastoma and glioblastoma cell lines through cell viability, apoptosis, cell cycle and biomolecular content evaluation. We performed experiments with RJ concentrations in the range of 1.25-10 mg mL-1 for 48 h. Cell viability assays revealed a notable cytotoxic effect of RJ in a concentration-dependent manner. Treatment with a high dose of RJ significantly increased the apoptotic cell population of both cell lines. Furthermore, we observed G0-G1 phase arrest in neuroblastoma cells but G2-M arrest in glioblastoma cells. All these cellular changes are closely associated with the alterations of the macromolecular makeup of the cells, such as decreased saturated lipid, protein, DNA and RNA amounts, protein conformational changes, decreased protein phosphorylation and increased protein carbonylation. These cellular changes are associated with RJ triggered-ROS formation. The clear segregation between the control and the RJ-treated groups proved these changes, obtained from the unsupervised and supervised chemometric analysis. RJ has good anticancer activity against nervous system cancers and could be safely used with current treatment strategies.
Collapse
Affiliation(s)
- Nihal Simsek Ozek
- East Anatolia High Technology Application and Research Center (DAYTAM), Atatürk University, 25240 Erzurum, Turkey.
- Department of Biology, Faculty of Science, Atatürk University, Erzurum 25240, Turkey.
| |
Collapse
|
24
|
Khalifa HAMI, Eleiwa NZH, Nazim HA. Royal Jelly, A Super Food, Protects Against Celecoxib-Induced Renal Toxicity in Adult Male Albino Rats. Can J Kidney Health Dis 2024; 11:20543581241235526. [PMID: 38476622 PMCID: PMC10929035 DOI: 10.1177/20543581241235526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 01/18/2024] [Indexed: 03/14/2024] Open
Abstract
Background Celecoxib is a COX-2 nonsteroidal anti-inflammatory drug (NSAID). It is widely used for the treatment of osteoarthritis, rheumatoid arthritis, and ankylosing spondylitis. Objective This study aimed to explore the effect of long-term administration of celecoxib on kidney of male albino rats, and to study the potential effect of treatment discontinuation on such tissues. The study also examined the alleged ameliorative effect of royal jelly (RJ). Methods Fifty, male albino rats were divided into 5 equal groups; 10 each. Group 1: rats received no drug (control group). Group 2: rats received celecoxib (50 mg/kg/day, orally for 30 successive days). Group 3: rats received celecoxib (50 mg/kg/day, orally) and royal jelly (300 mg/kg/day, orally) for 30 successive days. Group 4: rats received celecoxib for 30 successive days, then rats were left untreated for another 30 days. Group 5: rats received celecoxib and RJ for 30 successive days, then rats were left untreated for another 30 days. Results Long-term celecoxib administration caused significant elevation in kidney function tests, with ameliorative effects of RJ against celecoxib-induced renal toxicity. Conclusion Long-term celecoxib administration caused renal toxicity in male albino rats, with ameliorative effects of RJ.
Collapse
Affiliation(s)
- Hesham A M I Khalifa
- Department of Pharmacology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Naglaa Z H Eleiwa
- Department of Pharmacology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Heba A Nazim
- Department of Pharmacology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
- Pharmacy Inspection, Egyptian Ministry of Health and Populations, Egyptian Drug Authority, Zagazig, Egypt
| |
Collapse
|
25
|
El-Seedi HR, Salama S, El-Wahed AAA, Guo Z, Di Minno A, Daglia M, Li C, Guan X, Buccato DG, Khalifa SAM, Wang K. Exploring the Therapeutic Potential of Royal Jelly in Metabolic Disorders and Gastrointestinal Diseases. Nutrients 2024; 16:393. [PMID: 38337678 PMCID: PMC10856930 DOI: 10.3390/nu16030393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/07/2024] [Accepted: 01/23/2024] [Indexed: 02/12/2024] Open
Abstract
Metabolic disorders, encompassing diabetes mellitus, cardiovascular diseases, gastrointestinal disorders, etc., pose a substantial global health threat, with rising morbidity and mortality rates. Addressing these disorders is crucial, as conventional drugs often come with high costs and adverse effects. This review explores the potential of royal jelly (RJ), a natural bee product rich in bioactive components, as an alternative strategy for managing metabolic diseases. RJ exhibits diverse therapeutic properties, including antimicrobial, estrogen-like, anti-inflammatory, hypotensive, anticancer, and antioxidant effects. This review's focus is on investigating how RJ and its components impact conditions like diabetes mellitus, cardiovascular disease, and gastrointestinal illnesses. Evidence suggests that RJ serves as a complementary treatment for various health issues, notably demonstrating cholesterol- and glucose-lowering effects in diabetic rats. Specific RJ-derived metabolites, such as 10-hydroxy-2-decenoic acid (10-HDA), also known as the "Queen bee acid," show promise in reducing insulin resistance and hyperglycemia. Recent research highlights RJ's role in modulating immune responses, enhancing anti-inflammatory cytokines, and suppressing key inflammatory mediators. Despite these promising findings, further research is needed to comprehensively understand the mechanisms underlying RJ's therapeutic effects.
Collapse
Affiliation(s)
- Hesham R. El-Seedi
- Pharmacognosy Group, Department of Pharmaceutical Biosciences, Uppsala University, Biomedical Centre, P.O. Box 591, SE-751 24 Uppsala, Sweden
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China;
- International Joint Research Laboratory of Intelligent Agriculture and Agri-Products Processing, Jiangsu University, Zhenjiang 210024, China
| | - Suzy Salama
- Indigenous Knowledge and Heritage Center, Ghibaish College of Science and Technology, Ghibaish 51111, Sudan;
| | - Aida A. Abd El-Wahed
- Department of Bee Research, Plant Protection Research Institute, Agricultural Research Centre, Giza 12627, Egypt;
| | - Zhiming Guo
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China;
| | - Alessandro Di Minno
- Department of Pharmacy, University of Napoli Federico II, Via D. Montesano 49, 80131 Naples, Italy; (A.D.M.); (M.D.); (D.G.B.)
- CEINGE-Biotecnologie Avanzate, Via Gaetano Salvatore 486, 80145 Naples, Italy
| | - Maria Daglia
- Department of Pharmacy, University of Napoli Federico II, Via D. Montesano 49, 80131 Naples, Italy; (A.D.M.); (M.D.); (D.G.B.)
- CEINGE-Biotecnologie Avanzate, Via Gaetano Salvatore 486, 80145 Naples, Italy
| | - Chuan Li
- School of Food Science and Engineering, Hainan University, Haikou 570228, China;
| | - Xiao Guan
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China;
- National Grain Industry (Urban Grain and Oil Security) Technology Innovation Center, Shanghai 200093, China
| | - Daniele Giuseppe Buccato
- Department of Pharmacy, University of Napoli Federico II, Via D. Montesano 49, 80131 Naples, Italy; (A.D.M.); (M.D.); (D.G.B.)
| | - Shaden A. M. Khalifa
- Psychiatry and Neurology Department, Capio Saint Göran’s Hospital, Sankt Göransplan 1, 112 19 Stockholm, Sweden
| | - Kai Wang
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China
| |
Collapse
|
26
|
Maicelo-Quintana JL, Reyna-Gonzales K, Balcázar-Zumaeta CR, Auquiñivin-Silva EA, Castro-Alayo EM, Medina-Mendoza M, Cayo-Colca IS, Maldonado-Ramirez I, Silva-Zuta MZ. Potential application of bee products in food industry: An exploratory review. Heliyon 2024; 10:e24056. [PMID: 38268589 PMCID: PMC10806293 DOI: 10.1016/j.heliyon.2024.e24056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 12/08/2023] [Accepted: 01/03/2024] [Indexed: 01/26/2024] Open
Abstract
Over the past eight years, bee products such as wax, honey, propolis, and pollen have generated intense curiosity about their potential food uses; to explore these possibilities, this review examines the nutritional benefits and notable characteristics of each product related to the food industry. While all offer distinct advantages, there are challenges to overcome, including the risk of honey contamination. Indeed, honey has excellent potential as a healthier alternative to sugar, while propolis's remarkable antibacterial and antioxidant properties can be enhanced through microencapsulation. Pollen is a versatile food with multiple applications in various products. In addition, the addition of beeswax to oleogels and its use as a coating demonstrate significant improvements in the quality and preservation of environmentally sustainable foods over time. This study demonstrates that bee products and apitherapy are essential for sustainable future food and innovative medical treatments.
Collapse
Affiliation(s)
- Jorge L. Maicelo-Quintana
- Facultad de Ingeniería Zootecnista, Agronegocios y Biotecnología, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Calle Higos Urco 342-350-356, Chachapoyas, Amazonas, Peru
| | - Katherine Reyna-Gonzales
- Instituto de Investigación, Innovación y Desarrollo para el Sector Agrario y Agroindustrial (IIDAA), Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Chachapoyas 01001, Peru
| | - César R. Balcázar-Zumaeta
- Instituto de Investigación, Innovación y Desarrollo para el Sector Agrario y Agroindustrial (IIDAA), Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Chachapoyas 01001, Peru
| | - Erick A. Auquiñivin-Silva
- Instituto de Investigación, Innovación y Desarrollo para el Sector Agrario y Agroindustrial (IIDAA), Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Chachapoyas 01001, Peru
| | - Efrain M. Castro-Alayo
- Instituto de Investigación, Innovación y Desarrollo para el Sector Agrario y Agroindustrial (IIDAA), Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Chachapoyas 01001, Peru
| | - Marleni Medina-Mendoza
- Instituto de Investigación, Innovación y Desarrollo para el Sector Agrario y Agroindustrial (IIDAA), Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Chachapoyas 01001, Peru
| | - Ilse S. Cayo-Colca
- Facultad de Ingeniería Zootecnista, Agronegocios y Biotecnología, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Calle Higos Urco 342-350-356, Chachapoyas, Amazonas, Peru
| | - Italo Maldonado-Ramirez
- Facultad de Ingeniería de Sistemas y Mecánica, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Calle Higos Urco 342-350-356, Chachapoyas, Amazonas, Peru
| | - Miguelina Z. Silva-Zuta
- Instituto de Investigación, Innovación y Desarrollo para el Sector Agrario y Agroindustrial (IIDAA), Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Chachapoyas 01001, Peru
| |
Collapse
|
27
|
El Helew EA, Hamed WS, Moustafa AM, Sakkara ZA. Structural changes in testes of Streptozotocin induced diabetic rats and possible protective effect of royal jelly: light and electron microscopic study. Ultrastruct Pathol 2024; 48:1-15. [PMID: 37927047 DOI: 10.1080/01913123.2023.2277170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 10/26/2023] [Indexed: 11/07/2023]
Abstract
Diabetes mellitus (DM) is one of the most common metabolic diseases causing damage in many organs in the body including the testes. Royal Jelly (RJ) is one of the honey bee products that has antioxidant, anti-inflammatory and antidiabetic properties. This study was performed to evaluate the changes in the microscopic structure of the testes in Streptozotocin (STZ)-induced diabetic rats, and the possible protective role of RJ. 60 adult male albino rats were divided into three groups. Group I Control group, Group II STZ group, and Group III STZ+RJ group. Group II received a single dose of STZ (50 mg/kg) by intraperitoneal injection. Group III received a single dose of STZ as in the second group then received RJ orally by intragastric tube in dose of (100 mg/kg/day) for 4 weeks after confirmation of diabetes. Light and electron microscopic studies were performed. Group II revealed marked structural changes affecting seminiferous tubules with sever reduction in germinal epithelium and loss of mature spermatozoa in their lumina. The interstitial tissue revealed degenerated Leydig cells and congested blood vessels. Mallory trichrome stained section of group II revealed marked increase in the amount of collagen fibers. Group III revealed highly preserved testicular architecture almost near to that appeared in the control group except few tubules that were damaged. In conclusion, RJ protected the testicular structure from the damaging effect of diabetic oxidative stress through its antioxidant effect thus preserving male fertility.
Collapse
Affiliation(s)
- Eman A El Helew
- Department of Medical Histology and Cell Biology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Wafaa S Hamed
- Department of Medical Histology and Cell Biology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Amal M Moustafa
- Department of Medical Histology and Cell Biology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Zeinab A Sakkara
- Department of Medical Histology and Cell Biology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| |
Collapse
|
28
|
Yazdanparast S, Bashash D, Nikkhah Bahrami A, Ghorbani M, Izadirad M, Bakhtiyaridovvombaygi M, Hasanpour SZ, Gharehbaghian A. Royal jelly induces ROS-mediated apoptosis in acute lymphoblastic leukemia (ALL)-derived Nalm-6 cells: Shedding light on novel therapeutic approaches for ALL. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2024; 27:801-812. [PMID: 38800032 PMCID: PMC11127081 DOI: 10.22038/ijbms.2024.76261.16498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 01/13/2024] [Indexed: 05/29/2024]
Abstract
Objectives Until recently, a conventional chemotherapy regimen for Acute lymphoblastic leukemia (ALL) is considered an efficient therapeutic method in children. However, suboptimal long-term survival rates in adults, disease relapse, and drug-induced toxicities require novel therapeutic agents for ALL treatments. Today, natural products with pharmacological benefits play a significant role in treating different cancers. Among the most valued natural products, honey bees' royal jelly (RJ) is one of the most appreciated which has revealed anti-tumor activity against different human cancers. This study aimed to evaluate anti-leukemic properties and the molecular mechanisms of RJ cytotoxicity on ALL-derived Nalm-6 cells. Materials and Methods The metabolic activity was measured by MTT assay. Apoptosis, cell distribution in the cell cycle, and intracellular reactive oxygen species (ROS) level were investigated using flow cytometry analysis. Moreover, quantitative real-time PCR (qRT-PCR) was performed to scrutinize the expression of various regulatory genes. Results RJ significantly decreased the viability of Nalm-6 cells but had no cytotoxic effect on normal cells. In addition, RJ induced ROS-mediated apoptosis by up-regulating pro-apoptotic genes while decreasing anti-apoptotic gene expression. The results outlined that ROS-dependent up-regulation of FOXO4 and Sirt1 inhibits the cells' transition to the S phase of the cell cycle through p21 up-regulation. The qRT-PCR analysis of autophagy-related gene expression also demonstrated that RJ induced BECN1 mediated autophagy in Naml-6 cells. Conclusion Taken together, this study showed that RJ can be utilized as a potent natural substance to induce ALL cells' programmed cell death. However, further studies are required to examine this compound's pharmaceutical application.
Collapse
Affiliation(s)
- Somayeh Yazdanparast
- Laboratory Hematology and Blood Bank Department, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Davood Bashash
- Laboratory Hematology and Blood Bank Department, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amirsalar Nikkhah Bahrami
- Laboratory Hematology and Blood Bank Department, School of Allied Medical Sciences, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Ghorbani
- Laboratory Hematology and Transfusion Medicine, Department of Pathology, Faculty of Medicine, Gonabad University of Medical Sciences, Gonabad, Iran
- Laboratory Hematology and Transfusion Medicine, Department of Medical Laboratory Sciences, Faculty of Allied Medicine, Gonabad University of Medical Sciences, Gonabad, Iran
| | - Mehrdad Izadirad
- Laboratory Hematology and Blood Bank Department, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehdi Bakhtiyaridovvombaygi
- Laboratory Hematology and Blood Bank Department, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyede Zahra Hasanpour
- Laboratory Hematology and Blood Bank Department, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ahmad Gharehbaghian
- Laboratory Hematology and Blood Bank Department, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Pediatric Congenital Hematologic Disorders Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
29
|
Ibrahim DS, Shahen EMS. Effect of royal jelly on acrylamide-induced neurotoxicity in rats. J Chem Neuroanat 2023; 134:102358. [PMID: 37925036 DOI: 10.1016/j.jchemneu.2023.102358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/27/2023] [Accepted: 10/27/2023] [Indexed: 11/06/2023]
Abstract
Royal Jelly (RJ) is a natural product made by nurse bees known for its multiple therapeutic properties. The research aims to discover the ability of RJ to improve the hematological alterations and neurotoxicity caused by acrylamide (AA). The study rats were separated equally into four groups (6 in each group), the control group, the AA (38.27 mg/kg bw) group, the RJ (150 mg/kg bw) + AA group, and the RJ (300 mg/kg bw) + AA group. Blood and brain samples were collected after 10 days to evaluate haematological and biochemical parameters and to examine histopathological and immunohistochemistry. The administration of AA increased the level of malondialdehyde (MDA), decreases levels of haematological parameters, superoxide dismutase (SOD), reduced glutathione (GSH), brain-derived neurotrophic factor (BDNF), neurotransmitters (serotonin, dopamine, and acetylcholine), and cleaved caspase-3, as well as increase the damage to the brain tissues. Meanwhile, RJ improved levels of haematological parameters, oxidative stress parameters (MDA, SOD, and GSH), BDNF, neurotransmitters, cleaved caspase-3, and brain tissue damage induced by AA. The study demonstrated the protective impact of RJ against the haematological alterations and neurotoxicity caused by AA.
Collapse
Affiliation(s)
- Doaa S Ibrahim
- Department of Zoology, Faculty of Science, Benha University, Benha, Egypt.
| | - Eman M S Shahen
- Department of Zoology, Faculty of Science, Benha University, Benha, Egypt
| |
Collapse
|
30
|
Abd El-Aziz A, Abo Ghanima M, Mota-Rojas D, Sherasiya A, Ciani F, El-Sabrout K. Bee Products for Poultry and Rabbits: Current Challenges and Perspectives. Animals (Basel) 2023; 13:3517. [PMID: 38003135 PMCID: PMC10668745 DOI: 10.3390/ani13223517] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 11/06/2023] [Accepted: 11/13/2023] [Indexed: 11/26/2023] Open
Abstract
Poultry and rabbit production are important and rapidly growing agricultural subsectors, particularly in several developing countries. To ensure the sustainability of poultry and rabbit production, realistic poultry and rabbit farming practices must be improved. Apitherapy is a traditional alternative medicine that involves the prevention and treatment of some diseases with several bee products including propolis, royal jelly, pollen, and venom. More feeding investigations on the numerous benefits of bee products for poultry and rabbits are crucial to be addressed. Poultry and rabbit production has recently experienced numerous challenges, including climate change, disease spread, and antibiotic misuse. Improving animal welfare, health, and production is a top priority for all livestock farms, as is supplying consumers with safe and healthy products. Therefore, this review aims to collect and investigate recent relevant literature on the use of bee products, as feed additives, drinking water supplements, and injections, for poultry and rabbits to improve animal health and production. From the current findings, bee products can improve the growth and immunological performance of small-livestock animals, such as poultry and rabbits, by activating digestive enzymes, maintaining microbial balance, and promoting vitamin synthesis. Therefore, bee products could be a promising natural alternative to growth promoters, reproductive stimulants, and immunological enhancers in poultry and rabbit farms to provide safe and healthy products for humans.
Collapse
Affiliation(s)
- Ayman Abd El-Aziz
- Department of Animal Husbandry and Animal Wealth Development, Faculty of Veterinary Medicine, Damanhour University, Damanhour 22511, Egypt; (A.A.E.-A.)
| | - Mahmoud Abo Ghanima
- Department of Animal Husbandry and Animal Wealth Development, Faculty of Veterinary Medicine, Damanhour University, Damanhour 22511, Egypt; (A.A.E.-A.)
| | - Daniel Mota-Rojas
- Neurophysiology of Pain, Behavior and Assessment of Welfare in Domestic Animals, DPAA, Xochimilco Campus, Universidad Autónoma Metropolitana (UAM), Mexico City 04960, Mexico
| | | | - Francesca Ciani
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, 80138 Naples, Italy;
| | - Karim El-Sabrout
- Poultry Production Department, Faculty of Agriculture, Alexandria University, Alexandria 21545, Egypt
| |
Collapse
|
31
|
Luo Y, Guo Y, Zhao W, Khalifa SAM, El-Seedi HR, Su X, Wu L. Total Lipid Extracts of Honeybee Drone Larvae Are Modulated by Extraction Temperature and Display Consistent Anti-Inflammatory Potential. Foods 2023; 12:4058. [PMID: 38002118 PMCID: PMC10670194 DOI: 10.3390/foods12224058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/30/2023] [Accepted: 10/09/2023] [Indexed: 11/26/2023] Open
Abstract
Honeybee drone larvae are male bees that develop from unfertilized eggs and play a role in colony reproduction. The nutritional value of honeybee drone larvae is due to their high protein, lipid, and other nutrient contents, making them a profitable food source for humans in some cultures. Drone larvae lipids (DLLs) contribute to drone development; however, few studies have explored their substantial compositions and bioactive functions. In this study, we carried out DLL lipidomics analysis using UPLC-Q-Exactive-Orbitrap-MS prior to in vitro anti-inflammatory activity analysis. The results highlighted the importance of the extraction temperature on the DLL composition. A total of 21 lipids were found in the DLL extract, mostly categorized into five groups: nine phospholipids, three sphingolipids, two neutral lipids, one plant glycoglycerolipid, four lipid acyl, and others. Drying extraction at -20 °C produced more sphingolipids, phospholipids, and unsaturated fatty acids. Of 37 fatty acids, 18 were displayed at -20 °C degrees, as shown by GC-MS quantitative analysis. Myristic (246.99 ± 13.19 μg/g), palmitic (1707.87 ± 60.53 μg/g), stearic (852.32 ± 24.17 μg/g), and oleic (2463.03 ± 149.61 μg/g) acids were the predominant fatty acids. Furthermore, we examined the significant in vitro anti-inflammatory effects of DLL (-20 °C) using lipopolysaccharide (LPS)-challenged RAW264.7 cells. Nitric oxide (NO) and reactive oxygen (ROS) production and mRNA expression of IL-6, IL-10, COX-2, and iNOS were significantly decreased, demonstrating the anti-inflammatory function of DLL. Overall, this study provided insight into the lipid composition of DLL, revealed the influence of temperature, and explored the functionality of DLL (-20 °C), allowing for further application of DLLs as functional foods.
Collapse
Affiliation(s)
- Yiming Luo
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China; (Y.L.); (Y.G.); (W.Z.)
| | - Yuyang Guo
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China; (Y.L.); (Y.G.); (W.Z.)
- School of Life Science, Liaocheng University, Liaocheng 252059, China
| | - Wen Zhao
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China; (Y.L.); (Y.G.); (W.Z.)
| | - Shaden A. M. Khalifa
- Psychiatry and Psychology Department, Capio Saint Göran’s Hospital, Sankt Göransplan 1, 11219 Stockholm, Sweden;
| | - Hesham R. El-Seedi
- Department of Chemistry, Faculty of Science, Islamic University of Madinah, Madinah 42351, Saudi Arabia
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang 212013, China
| | - Xiaoling Su
- Jinhua Academy of Agricultural Sciences, Jinhua 321000, China
| | - Liming Wu
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China; (Y.L.); (Y.G.); (W.Z.)
| |
Collapse
|
32
|
Liu Z, Yin X, Li H, Qiao D, Chen L. Effects of different floral periods and environmental factors on royal jelly identification by stable isotopes and machine learning analyses during non-migratory beekeeping. Food Res Int 2023; 173:113360. [PMID: 37803701 DOI: 10.1016/j.foodres.2023.113360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 07/30/2023] [Accepted: 08/03/2023] [Indexed: 10/08/2023]
Abstract
It is crucial to monitor the authenticity of royal jelly (RJ) because the qualities of RJs produced by different floral periods vary substantially. In the context of non-migratory beekeeping, this study aims to identify rape RJ (RRJ), chaste RJ (CRJ), and sesame RJ (SRJ) based on δ13C, δ15N, δ2H, and δ18O combined with machine learning and to evaluate environmental effect factors. The results showed that δ13C (-27.62‰ ± 0.24‰), δ15N (2.88‰ ± 0.85‰), and δ18O (28.02‰ ± 1.30‰) of RRJ were significantly different from other RJs. The δ13C, δ2H, and δ18O in CRJ and SRJ were strongly correlated with temperature and precipitation, suggesting that these isotopes are influenced by environmental elements such as sunlight and rainfall. In addition, the artificial neural network (ANN) model was superior to the random forest (RF) model in terms of accuracy, sensitivity, and specificity. This study revealed that combining stable isotopes with ANN models and the unique correlation between stable isotopes and environmental factors could provide promising ideas for monitoring the authenticity of RJ.
Collapse
Affiliation(s)
- Zhaolong Liu
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China; Key Laboratory of Risk Assessment for Quality and Safety of Bee Products, Ministry of Agriculture and Rural Affairs, Beijing 100093, China
| | - Xin Yin
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China; Key Laboratory of Risk Assessment for Quality and Safety of Bee Products, Ministry of Agriculture and Rural Affairs, Beijing 100093, China; Fujian Agriculture and Forestry University, Fuzhou City 350002, China
| | - Hongxia Li
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China; Key Laboratory of Risk Assessment for Quality and Safety of Bee Products, Ministry of Agriculture and Rural Affairs, Beijing 100093, China
| | - Dong Qiao
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China; Key Laboratory of Risk Assessment for Quality and Safety of Bee Products, Ministry of Agriculture and Rural Affairs, Beijing 100093, China; Fujian Agriculture and Forestry University, Fuzhou City 350002, China
| | - Lanzhen Chen
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China; Key Laboratory of Risk Assessment for Quality and Safety of Bee Products, Ministry of Agriculture and Rural Affairs, Beijing 100093, China.
| |
Collapse
|
33
|
Parlak G, Aslan A, Turk G, Kuloglu T, Balgetir MK, Gok O, Beyaz S, Parlak AE, Cinkara SD. Activation of Nrf-2 Transcription Factor and Caspase Pathway with Royal Jelly Reduces Fluoride Induced Testicular Damage and Infertility in Rats. Reprod Sci 2023; 30:3103-3122. [PMID: 37171774 DOI: 10.1007/s43032-023-01265-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 05/07/2023] [Indexed: 05/13/2023]
Abstract
This study was carried out to investigate the protective properties of royal jelly on the testicular tissue of rats with testicular damage by giving fluoride. Sperm motility, epididymal sperm density and abnormal sperm ratios were examined and visualized with a light microscope. Expression levels of Caspase-3, Bcl-2, Nrf-2, NF-κB, COX-2, TNF-α and IL1-α proteins in testis tissue were determined by western blot technique. As a result of the study, MDA level, expression level of Bcl-2, NFҡB, COX-2, TNF-α and IL1-α proteins, abnormal sperm rates were found higher in Fluoride-50 and Fluoride100 groups compared to other groups. In addition GSH, Catalase enzyme levels, expression levels of Caspase-3 and Nrf-2 proteins were found to be higher in Fluoride + Royal Jelly groups compared to Fluoride-50 and Fluoride-100 groups. In addition, lower degeneration of testicular tissue was found in the histological evaluation in the Fluoride + Royal Jelly groups compared to the other groups. When the data are evaluated royal jelly provides effective protection against testicular damage. From this point of view, we hope that similar results will be obtained when royal jelly is tested on humans.
Collapse
Affiliation(s)
- Gozde Parlak
- Faculty of Science, Department of Biology-Molecular Biology and Genetics, Firat University, Elazig, Türkiye
| | - Abdullah Aslan
- Faculty of Science, Department of Biology-Molecular Biology and Genetics, Firat University, Elazig, Türkiye.
| | - Gaffari Turk
- Faculty of Veterinary Medicine, Department of Reproduction and Artificial Insemination, Firat University, Elazig, Türkiye
| | - Tuncay Kuloglu
- School of Medicine Department of Histology, Firat University, Elazig, Türkiye
| | | | - Ozlem Gok
- Faculty of Science, Department of Biology-Molecular Biology and Genetics, Firat University, Elazig, Türkiye
| | - Seda Beyaz
- Faculty of Science, Department of Biology-Molecular Biology and Genetics, Firat University, Elazig, Türkiye
| | - Akif Evren Parlak
- Department of Environmental Protection Technologies, Keban Vocational School, Firat University, Elazig, Türkiye
| | - Serap Dayan Cinkara
- Faculty of Veterinary Medicine, Department of Reproduction and Artificial Insemination, Firat University, Elazig, Türkiye
| |
Collapse
|
34
|
Baptista BG, Lima LS, Ribeiro M, Britto IK, Alvarenga L, Kemp JA, Cardozo LFMF, Berretta AA, Mafra D. Royal jelly: a predictive, preventive and personalised strategy for novel treatment options in non-communicable diseases. EPMA J 2023; 14:381-404. [PMID: 37605655 PMCID: PMC10439876 DOI: 10.1007/s13167-023-00330-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 06/26/2023] [Indexed: 08/23/2023]
Abstract
Royal jelly (RJ) is a bee product produced by young adult worker bees, composed of water, proteins, carbohydrates and lipids, rich in bioactive components with therapeutic properties, such as free fatty acids, mainly 10-hydroxy-trans-2-decenoic acid (10-H2DA) and 10-hydroxydecanoic acid (10-HDA), and major royal jelly proteins (MRJPs), as well as flavonoids, most flavones and flavonols, hormones, vitamins and minerals. In vitro, non-clinical and clinical studies have confirmed its vital role as an antioxidant and anti-inflammatory. This narrative review discusses the possible effects of royal jelly on preventing common complications of non-communicable diseases (NCDs), such as inflammation, oxidative stress and intestinal dysbiosis, from the viewpoint of predictive, preventive and personalised medicine (PPPM/3PM). It is concluded that RJ, predictively, can be used as a non-pharmacological therapy to prevent and mitigate complications related to NCDs, and the treatment must be personalised.
Collapse
Affiliation(s)
- Beatriz G. Baptista
- Graduate Program in Medical Sciences, Fluminense Federal University (UFF), Niterói, RJ Brazil
| | - Ligia S. Lima
- Graduate Program in Biological Sciences – Physiology, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ Brazil
| | - Marcia Ribeiro
- Graduate Program in Biological Sciences – Physiology, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ Brazil
| | - Isadora K. Britto
- Graduate Program in Biological Sciences – Physiology, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ Brazil
| | - Livia Alvarenga
- Graduate Program in Biological Sciences – Physiology, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ Brazil
- Graduate Program in Nutrition Sciences, Fluminense Federal University (UFF), Niterói, RJ Brazil
| | - Julie A. Kemp
- Graduate Program in Nutrition Sciences, Fluminense Federal University (UFF), Niterói, RJ Brazil
| | - Ludmila FMF Cardozo
- Graduate Program in Nutrition Sciences, Fluminense Federal University (UFF), Niterói, RJ Brazil
| | - Andresa A. Berretta
- Research, Development, and Innovation Department, Apis Flora Indl. Coml. Ltda, Ribeirão Preto, SP Brazil
| | - Denise Mafra
- Graduate Program in Medical Sciences, Fluminense Federal University (UFF), Niterói, RJ Brazil
- Graduate Program in Biological Sciences – Physiology, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ Brazil
- Graduate Program in Nutrition Sciences, Fluminense Federal University (UFF), Niterói, RJ Brazil
- Unidade de Pesquisa Clínica, UPC, Rua Marquês de Paraná, 303/4 Andar, Niterói, RJ 24033-900 Brazil
| |
Collapse
|
35
|
Li S, Tao L, Peng S, Yu X, Ma X, Hu F. Structural and antioxidative properties of royal jelly protein by partial enzymatic hydrolysis. FOOD SCIENCE AND HUMAN WELLNESS 2023. [DOI: 10.1016/j.fshw.2023.02.046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
36
|
Čeksterytė V, Bliznikas S, Jaškūnė K. The Composition of Fatty Acids in Bee Pollen, Royal Jelly, Buckthorn Oil and Their Mixtures with Pollen Preserved for Storage. Foods 2023; 12:3164. [PMID: 37685097 PMCID: PMC10487168 DOI: 10.3390/foods12173164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 08/10/2023] [Accepted: 08/18/2023] [Indexed: 09/10/2023] Open
Abstract
Honey produced by A. mellifera contains minor components present in the nectar collected from plants. Various studies of honey components and all other bee products can be informative in assessing their quality. The aim of the present study was to determine the content and composition of fatty acids (FAs) in sea buckthorn oil (SBO), royal jelly (RJ) and bee pollen (BP) and the changes in FAs content in these products during storage. The diversity of FAs and the effect of storage time on FAs content was also evaluated for the prepared-for-preservation mixtures, which included the following samples: pollen mixed with honey at a ratio of 1:2 (w/w); sample BPH, a well; BPH + 1% (w/w) SBO; and BPH + 1% (w/w) SBO + 2% (w/w) RJ. Fresh bee-collected pollen and RJ were stored at -20 °C, whereas the conserved samples were stored at +4 °C in hermetically sealed jars. The data revealed that RJ demonstrated the highest diversity of fatty acids compared to BP and BP prepared for storage with honey along with SBO and RJ. Palmitic and stearic acids were found in the highest amounts out of the eight saturated fatty acids identified in the studied SBO and RJ. The amount of these fatty acids in RJ compared to SBO was 1.27 and 6.14 times higher, respectively. In total, twenty-two unsaturated fatty acids (USFA) were identified in RJ and fourteen were found in SBO. The SBO used in this study was found to be high in linoleic acid, resulting in an increased n-6 fatty acids ratio in the prepared samples. Essential fatty acids eicosapentaenoic (EPA) and docosahexaenoic (DHA) were found in RJ, as well as in BP and BP mixed with honey. These FAs were not identified in the samples prepared with SBO even in the sample supplemented with RJ. The highest decrease in docosadienoic fatty acid was found in the BPH sample compared to BP, while arachidonic acid mostly decreased in BPH + 1% SBO compared to the BPH + 1% (w/w) SBO + 2% (w/w) RJ samples stored at +4 °C. Bee-collected pollen had the greatest influence on the number of FAs in its mixture with honey.
Collapse
Affiliation(s)
- Violeta Čeksterytė
- Institute of Agriculture, Lithuanian Research Centre for Agriculture and Forestry, Instituto al. 1, 58344 Kėdainiai, Lithuania;
| | - Saulius Bliznikas
- Institute of Animal Science, Lithuanian University of Health Sciences, R. Zebenkos 12, 82317 Baisogala, Lithuania;
| | - Kristina Jaškūnė
- Institute of Agriculture, Lithuanian Research Centre for Agriculture and Forestry, Instituto al. 1, 58344 Kėdainiai, Lithuania;
| |
Collapse
|
37
|
Chen D, Guo C, Lu W, Zhang C, Xiao C. Rapid quantification of royal jelly quality by mid-infrared spectroscopy coupled with backpropagation neural network. Food Chem 2023; 418:135996. [PMID: 37001352 DOI: 10.1016/j.foodchem.2023.135996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 03/07/2023] [Accepted: 03/18/2023] [Indexed: 03/30/2023]
Abstract
Royal jelly is rich in nutrients but its quality is greatly affected by storage conditions. To determine the quality of royal jelly accurately and quickly, a qualitative discrimination model was established based on the fusion of conventional parameters and mid-infrared spectrum, using support vector machine. The prediction models for three representative quality parameters were developed by the backpropagation neural network with various algorithms. The results demonstrated that the recognition rate of the multi-source information fusion model was increased to 100% when compared with that of the spectral data preprocessed by Savitzky-golay smoothing (95.83%). The mean square errors of the constructed model for moisture, water-soluble protein, and total sugar were 0.0032, 0.0058, and 0.0069, respectively. The constructed model had an ensured accuracy for the calibration set, with the correlation coefficient of prediction maintained at 0.9353, 0.9533, and 0.9563, which could meet the requirement of non-destructive rapid detection of royal jelly quality.
Collapse
|
38
|
Choudhary P, Tushir S, Bala M, Sharma S, Sangha MK, Rani H, Yewle NR, Kumar P, Singla D, Chandran D, Kumar M, Mekhemar M. Exploring the Potential of Bee-Derived Antioxidants for Maintaining Oral Hygiene and Dental Health: A Comprehensive Review. Antioxidants (Basel) 2023; 12:1452. [PMID: 37507990 PMCID: PMC10375990 DOI: 10.3390/antiox12071452] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 07/12/2023] [Accepted: 07/14/2023] [Indexed: 07/30/2023] Open
Abstract
Honey bee products comprise various compounds, including honey, propolis, royal jelly, bee pollen, bee wax and bee venom, which have long been recognized for their pharmacological and health-promoting benefits. Scientists have discovered that periodontal disorders stem from dental biofilm, an inflammatory response to bacterial overgrowth produced by dysbiosis in the oral microbiome. The bee products have been investigated for their role in prevention of oral diseases, which are attributed to a myriad of biologically active compounds including flavonoids (pinocembrin, catechin, caffeic acid phenethyl ester (CAPE) and galangin), phenolic acids (hydroxybenzoic acid, hydroxycinnamic acid, p-coumaric, ellagic, caffeic and ferulic acids) and terpenoids. This review aims to update the current understanding of role of selected bee products, namely, honey, propolis and royal jelly, in preventing oral diseases as well as their potential biological activities and mechanism of action in relation to oral health have been discussed. Furthermore, the safety of incorporation of bee products is also critically discussed. To summarize, bee products could potentially serve as a therapy option for people suffering from a variety of oral disorders.
Collapse
Affiliation(s)
- Poonam Choudhary
- Department of Agricultural Structures and Environment Control, ICAR-Central Institute of Post-Harvest Engineering and Technology, Ludhiana 141004, India
| | - Surya Tushir
- Department of Agricultural Structures and Environment Control, ICAR-Central Institute of Post-Harvest Engineering and Technology, Ludhiana 141004, India
| | - Manju Bala
- Department of Food Grain and Oilseed Processing, ICAR-Central Institute of Post-Harvest Engineering and Technology, Ludhiana 141004, India
| | - Sanjula Sharma
- Oilseeds Section, Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana 141004, India
| | - Manjeet Kaur Sangha
- Department of Biochemistry, College of Basic Sciences and Humanities, Punjab Agricultural University, Ludhiana 141004, India
| | - Heena Rani
- Department of Biochemistry, Punjab Agricultural University, Ludhiana 141004, India
| | | | - Parminder Kumar
- Department of Soil Science, Punjab Agricultural University, Ludhiana 141004, India
| | - Diksha Singla
- Department of Biochemistry, Punjab Agricultural University, Ludhiana 141004, India
| | - Deepak Chandran
- Department of Animal Husbandry, Government of Kerala, Palakkad 679335, India
| | - Manoj Kumar
- Chemical and Biochemical Processing Division, ICAR-Central Institute for Research on Cotton Technology, Mumbai 400019, India
| | - Mohamed Mekhemar
- Clinic for Conservative Dentistry and Periodontology, School of Dental Medicine, Christian-Albrecht's University, 24105 Kiel, Germany
| |
Collapse
|
39
|
Bagameri L, Botezan S, Bobis O, Bonta V, Dezmirean DS. Molecular Insights into Royal Jelly Anti-Inflammatory Properties and Related Diseases. Life (Basel) 2023; 13:1573. [PMID: 37511948 PMCID: PMC10381546 DOI: 10.3390/life13071573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/03/2023] [Accepted: 07/13/2023] [Indexed: 07/30/2023] Open
Abstract
Royal jelly (RJ), a highly nutritious natural product, has gained recognition for its remarkable health-promoting properties, leading to its widespread use in the pharmaceutical, food, and cosmetic industries. Extensive investigations have revealed that RJ possesses a broad spectrum of therapeutic effects, including anti-inflammatory, antioxidant, antitumor, anti-aging, and antibacterial activities. Distinctive among bee products, RJ exhibits a significantly higher water and relatively lower sugar content. It is characterized by its substantial protein content, making it a valuable source of this essential macronutrient. Moreover, RJ contains a diverse array of bioactive substances, such as lipids, phenolic compounds, flavonoids, organic acids, minerals, vitamins, enzymes, and hormones. This review aims to provide an overview of current research on the bioactive components present in RJ and their associated health-promoting qualities. According to existing literature, these bioactive substances hold great potential as alternative approaches to enhancing human health. Notably, this review emphasizes the anti-inflammatory properties of RJ, particularly in relation to inflammatory diseases, such as multiple sclerosis (MS), rheumatoid arthritis (RA), and inflammatory bowel diseases (IBD). Furthermore, we delve into the antitumor and antioxidant activities of RJ, aiming to deepen our understanding of its biological functions. By shedding light on the multifaceted benefits of RJ, this review seeks to encourage its utilization and inspire further investigation in this field.
Collapse
Affiliation(s)
- Lilla Bagameri
- Department of Apiculture and Sericulture, Faculty of Animal Sciences and Biotechnologies, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 400372 Cluj-Napoca, Romania
| | - Sara Botezan
- Department of Apiculture and Sericulture, Faculty of Animal Sciences and Biotechnologies, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 400372 Cluj-Napoca, Romania
| | - Otilia Bobis
- Department of Apiculture and Sericulture, Faculty of Animal Sciences and Biotechnologies, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 400372 Cluj-Napoca, Romania
| | - Victorita Bonta
- Department of Apiculture and Sericulture, Faculty of Animal Sciences and Biotechnologies, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 400372 Cluj-Napoca, Romania
| | - Daniel Severus Dezmirean
- Department of Apiculture and Sericulture, Faculty of Animal Sciences and Biotechnologies, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 400372 Cluj-Napoca, Romania
| |
Collapse
|
40
|
Sanyal A, Ghosh A, Roy C, Mazumder I, Marrazzo P. Revolutionizing the Use of Honeybee Products in Healthcare: A Focused Review on Using Bee Pollen as a Potential Adjunct Material for Biomaterial Functionalization. J Funct Biomater 2023; 14:352. [PMID: 37504847 PMCID: PMC10381877 DOI: 10.3390/jfb14070352] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/23/2023] [Accepted: 07/02/2023] [Indexed: 07/29/2023] Open
Abstract
The field of biomedical engineering highly demands technological improvements to allow the successful engraftment of biomaterials requested for healing damaged host tissues, tissue regeneration, and drug delivery. Polymeric materials, particularly natural polymers, are one of the primary suitable materials employed and functionalized to enhance their biocompatibility and thus confer advantageous features after graft implantation. Incorporating bioactive substances from nature is a good technique for expanding or increasing the functionality of biomaterial scaffolds, which may additionally encourage tissue healing. Our ecosystem provides natural resources, like honeybee products, comprising a rich blend of phytochemicals with interesting bioactive properties, which, when functionally coupled with biomedical biomaterials, result in the biomaterial exhibiting anti-inflammatory, antimicrobial, and antioxidant effects. Bee pollen is a sustainable product recently discovered as a new functionalizing agent for biomaterials. This review aims to articulate the general idea of using honeybee products for biomaterial engineering, mainly focusing on describing recent literature on experimental studies on biomaterials functionalized with bee pollen. We have also described the underlying mechanism of the bioactive attributes of bee pollen and shared our perspective on how future biomedical research will benefit from the fabrication of such functionalized biomaterials.
Collapse
Affiliation(s)
- Arka Sanyal
- School of Biotechnology, KIIT Deemed University, Bhubaneswar 751024, India
| | - Anushikha Ghosh
- School of Biotechnology, KIIT Deemed University, Bhubaneswar 751024, India
| | - Chandrashish Roy
- School of Biotechnology, KIIT Deemed University, Bhubaneswar 751024, India
| | - Ishanee Mazumder
- School of Biotechnology, KIIT Deemed University, Bhubaneswar 751024, India
| | - Pasquale Marrazzo
- Department of Medical and Surgical Sciences, University of Bologna, 40126 Bologna, Italy
| |
Collapse
|
41
|
Kobayashi G, Okamura T, Majima S, Senmaru T, Okada H, Ushigome E, Nakanishi N, Nishimoto Y, Yamada T, Okamoto H, Okumura N, Sasano R, Hamaguchi M, Fukui M. Effects of Royal Jelly on Gut Dysbiosis and NAFLD in db/ db Mice. Nutrients 2023; 15:nu15112580. [PMID: 37299544 DOI: 10.3390/nu15112580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 05/27/2023] [Accepted: 05/29/2023] [Indexed: 06/12/2023] Open
Abstract
Royal jelly (RJ) is a naturally occurring substance synthesized by honeybees and has various health benefits. Herein, we focused on the medium-chain fatty acids (MCFAs) unique to RJ and evaluated their therapeutic efficacy in treating non-alcoholic fatty liver disease (NAFLD). We examined db/m mice that were exclusively fed a normal diet, db/db mice exclusively fed a normal diet, and db/db mice fed varying RJ quantities (0.2, 1, and 5%). RJ improved NAFLD activity scores and decreased gene expression related to fatty acid metabolism, fibrosis, and inflammation in the liver. RJ regulated innate immunity-related inflammatory responses in the small intestine and decreased the expression of genes associated with inflammation and nutrient absorption transporters. RJ increased the number of operational taxonomic units, the abundance of Bacteroides, and seven taxa, including bacteria that produce short-chain fatty acids. RJ increased the concentrations of RJ-related MCFAs (10-hidroxy-2-decenoic acid, 10-hydroxydecanoic acid, 2-decenedioic acid, and sebacic acid) in the serum and liver. These RJ-related MCFAs decreased saturated fatty acid deposition in HepG2 cells and decreased the gene expression associated with fibrosis and fatty acid metabolism. RJ and RJ-related MCFAs improved dysbiosis and regulated the expression of inflammation-, fibrosis-, and nutrient absorption transporter-related genes, thereby preventing NAFLD.
Collapse
Affiliation(s)
- Genki Kobayashi
- Department of Endocrinology and Metabolism, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Takuro Okamura
- Department of Endocrinology and Metabolism, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Saori Majima
- Department of Endocrinology and Metabolism, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Takafumi Senmaru
- Department of Endocrinology and Metabolism, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Hiroshi Okada
- Department of Endocrinology and Metabolism, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Emi Ushigome
- Department of Endocrinology and Metabolism, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Naoko Nakanishi
- Department of Endocrinology and Metabolism, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | | | - Takuji Yamada
- Metabologenomics Inc., Tsuruoka 997-0052, Japan
- Department of Life Science and Technology, Tokyo Institute of Technology, Tokyo 152-8550, Japan
| | - Hideto Okamoto
- Institute for Health Science, R&D Department, Yamada Bee Company, Inc., Okayama 708-0393, Japan
| | - Nobuaki Okumura
- Institute for Health Science, R&D Department, Yamada Bee Company, Inc., Okayama 708-0393, Japan
| | | | - Masahide Hamaguchi
- Department of Endocrinology and Metabolism, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Michiaki Fukui
- Department of Endocrinology and Metabolism, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| |
Collapse
|
42
|
Kacemi R, Campos MG. Translational Research on Bee Pollen as a Source of Nutrients: A Scoping Review from Bench to Real World. Nutrients 2023; 15:2413. [PMID: 37242296 PMCID: PMC10221365 DOI: 10.3390/nu15102413] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/11/2023] [Accepted: 05/15/2023] [Indexed: 05/28/2023] Open
Abstract
The emphasis on healthy nutrition is gaining a forefront place in current biomedical sciences. Nutritional deficiencies and imbalances have been widely demonstrated to be involved in the genesis and development of many world-scale public health burdens, such as metabolic and cardiovascular diseases. In recent years, bee pollen is emerging as a scientifically validated candidate, which can help diminish conditions through nutritional interventions. This matrix is being extensively studied, and has proven to be a very rich and well-balanced nutrient pool. In this work, we reviewed the available evidence on the interest in bee pollen as a nutrient source. We mainly focused on bee pollen richness in nutrients and its possible roles in the main pathophysiological processes that are directly linked to nutritional imbalances. This scoping review analyzed scientific works published in the last four years, focusing on the clearest inferences and perspectives to translate cumulated experimental and preclinical evidence into clinically relevant insights. The promising uses of bee pollen for malnutrition, digestive health, metabolic disorders, and other bioactivities which could be helpful to readjust homeostasis (as it is also true in the case of anti-inflammatory or anti-oxidant needs), as well as the benefits on cardiovascular diseases, were identified. The current knowledge gaps were identified, along with the practical challenges that hinder the establishment and fructification of these uses. A complete data collection made with a major range of botanical species allows more robust clinical information.
Collapse
Affiliation(s)
- Rachid Kacemi
- Observatory of Drug-Herb Interactions, Laboratory of Pharmacognosy, Faculty of Pharmacy, University of Coimbra, Heath Sciences Campus, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal;
| | - Maria G. Campos
- Observatory of Drug-Herb Interactions, Laboratory of Pharmacognosy, Faculty of Pharmacy, University of Coimbra, Heath Sciences Campus, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal;
- Coimbra Chemistry Centre (CQC, FCT Unit 313), Faculty of Science and Technology, University of Coimbra, Rua Larga, 3004-516 Coimbra, Portugal
| |
Collapse
|
43
|
Prinz J, Maffulli N, Fuest M, Walter P, Hildebrand F, Migliorini F. Honey-Related Treatment Strategies in Dry Eye Disease. Pharmaceuticals (Basel) 2023; 16:ph16050762. [PMID: 37242545 DOI: 10.3390/ph16050762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 05/11/2023] [Accepted: 05/12/2023] [Indexed: 05/28/2023] Open
Abstract
This systematic review and meta-analysis investigated whether honey-related treatment strategies improve the signs and symptoms of patients with dry eye disease (DED). In March 2023, the following databases were accessed for clinical trials investigating the efficacy of honey-related treatment strategies in DED: PubMed, Web of Science, Google Scholar, and EMBASE. The following data were extracted at baseline and at the last follow-up: Ocular Surface Disease Index, tear breakup time, Schirmer I test, and corneal staining. Data from 323 patients were retrieved (53.3% female, mean age 40.6 ± 18.1 years). The mean follow-up was 7.0 ± 4.2 weeks. All the endpoints of interest significantly improved from baseline to the last follow-up: tear breakup time (p = 0.01), Ocular Surface Disease Index (p < 0.0001), Schirmer I test (p = 0.0001), and corneal staining (p < 0.0001). No difference was found in tear breakup time (p = 0.3), Ocular Surface Disease Index (p = 0.4), Schirmer I test (p = 0.3), and corneal staining (p = 0.3) between the honey-related treatment strategies and the control groups. According to our main results, honey-related treatment strategies are effective and feasible to improve symptoms and signs of DED.
Collapse
Affiliation(s)
- Julia Prinz
- RWTH University Hospital of Aachen, 52074 Aachen, Germany
| | - Nicola Maffulli
- Department of Medicine, Surgery and Dentistry, University of Salerno, 84081 Salerno, Italy
- Barts and The London School of Medicine and Dentistry, Mile End Hospital, Queen Mary University of London, 275 Bancroft Road, London E1 4DG, UK
- School of Pharmacy and Bioengineering, Keele University Faculty of Medicine, Thornburrow Drive, Stoke on Trent ST4 7QB, UK
| | - Matthias Fuest
- RWTH University Hospital of Aachen, 52074 Aachen, Germany
| | - Peter Walter
- RWTH University Hospital of Aachen, 52074 Aachen, Germany
| | | | - Filippo Migliorini
- RWTH University Hospital of Aachen, 52074 Aachen, Germany
- Department of Orthopaedics and Trauma Surgery, Academic Hospital of Bolzano (SABES-ASDAA), 39100 Bolzano, Italy
| |
Collapse
|
44
|
Tan D, Zhu W, Liu L, Pan Y, Xu Y, Huang Q, Li L, Rao L. In situ formed scaffold with royal jelly-derived extracellular vesicles for wound healing. Theranostics 2023; 13:2811-2824. [PMID: 37284440 PMCID: PMC10240823 DOI: 10.7150/thno.84665] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 04/25/2023] [Indexed: 06/08/2023] Open
Abstract
Background: Safe and effective wound healing can be a major clinical challenge. Inflammation and vascular impairment are two main causes of inadequate wound healing. Methods: Here, we developed a versatile hydrogel wound dressing, comprising a straightforward physical mixture of royal jelly-derived extracellular vesicles (RJ-EVs) and methacrylic anhydride modified sericin (SerMA), to accelerate wound healing by inhibiting inflammation and promoting vascular reparation. Results: The RJ-EVs showed satisfactory anti-inflammatory and antioxidant effects, and significantly promoted L929 cell proliferation and migration in vitro. Meanwhile, the photocrosslinked SerMA hydrogel with its porous interior structure and high fluidity made it a good candidate for wound dressing. The RJ-EVs can be gradually released from the SerMA hydrogel at the wound site, ensuring the restorative effect of RJ-EVs. In a full-thickness skin defect model, the SerMA/RJ-EVs hydrogel dressing accelerated wound healing with a healing rate of 96.8% by improving cell proliferation and angiogenesis. The RNA sequencing results further revealed that the SerMA/RJ-EVs hydrogel dressing was involved in inflammatory damage repair-related pathways including recombinational repair, epidermis development, and Wnt signaling. Conclusion: This SerMA/RJ-EVs hydrogel dressing offers a simple, safe and robust strategy for modulating inflammation and vascular impairment for accelerated wound healing.
Collapse
Affiliation(s)
- Dehong Tan
- The Research and Application Center of Precision Medicine, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou 450014, China
- Institute of Biomedical Health Technology and Engineering, Shenzhen Bay Laboratory, Shenzhen 518132, China
- Department of Pharmaceutics, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Wenxiang Zhu
- Institute of Biomedical Health Technology and Engineering, Shenzhen Bay Laboratory, Shenzhen 518132, China
- College of Materials Science and Engineering, Hunan University, Changsha 410082, China
| | - Lujie Liu
- Institute of Biomedical Health Technology and Engineering, Shenzhen Bay Laboratory, Shenzhen 518132, China
| | - Yuanwei Pan
- Institute of Biomedical Health Technology and Engineering, Shenzhen Bay Laboratory, Shenzhen 518132, China
| | - Yangtao Xu
- Institute of Biomedical Health Technology and Engineering, Shenzhen Bay Laboratory, Shenzhen 518132, China
- Cancer Center and Department of Oncology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Qinqin Huang
- The Research and Application Center of Precision Medicine, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou 450014, China
| | - Lingling Li
- Department of Pharmaceutics, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Lang Rao
- The Research and Application Center of Precision Medicine, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou 450014, China
- Institute of Biomedical Health Technology and Engineering, Shenzhen Bay Laboratory, Shenzhen 518132, China
| |
Collapse
|
45
|
Onisei T, Tihăuan BM, Dolete G, Axinie Bucos M, Răscol M, Isvoranu G. In Vivo Acute Toxicity and Immunomodulation Assessment of a Novel Nutraceutical in Mice. Pharmaceutics 2023; 15:pharmaceutics15041292. [PMID: 37111777 PMCID: PMC10144505 DOI: 10.3390/pharmaceutics15041292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/21/2023] [Accepted: 04/14/2023] [Indexed: 04/29/2023] Open
Abstract
Achieving and maintaining a well-balanced immune system has righteously become an insightful task for the general population and an even more fundamental goal for those affected by immune-related diseases. Since our immune functions are indispensable in defending the body against pathogens, diseases and other external attacks, while playing a vital role in maintaining health and modulating the immune response, we require an on-point grasp of their shortcoming as a foundation for the development of functional foods and novel nutraceuticals. Seeing that immunoceuticals are considered effective in improving immune functions and reducing the incidence of immunological disorders, the main focus of this study was to assess the immunomodulatory properties and possible acute toxicity of a novel nutraceutical with active substances of natural origin on C57BL/6 mice for 21 days. We evaluated the potential hazards (microbial contamination and heavy metals) of the novel nutraceutical and addressed the acute toxicity according to OECD guidelines of a 2000 mg/kg dose on mice for 21 days. The immunomodulatory effect was assessed at three concentrations (50 mg/kg, 100 mg/kg and 200 mg/kg) by determining body and organ indexes through a leukocyte analysis; flow cytometry immunophenotyping of lymphocytes populations and their subpopulations (T lymphocytes (LyCD3+), cytotoxic suppressor T lymphocytes (CD3+CD8+), helper T lymphocytes (CD3+CD4+), B lymphocytes (CD3-CD19+) and NK cells (CD3-NK1.1.+); and the expression of the CD69 activation marker. The results obtained for the novel nutraceutical referred to as ImunoBoost indicated no acute toxicity, an increased number of lymphocytes and the stimulation of lymphocyte activation and proliferation, demonstrating its immunomodulatory effect. The safe human consumption dose was established at 30 mg/day.
Collapse
Affiliation(s)
- Tatiana Onisei
- The National Institute for Research and Development in Food Bioresources, Dinu Vintilă Street, No.6, 021102 Bucharest, Romania
| | - Bianca-Maria Tihăuan
- The National Institute for Research and Development in Food Bioresources, Dinu Vintilă Street, No.6, 021102 Bucharest, Romania
- Research Institute of the University of Bucharest-ICUB, 91-95 Spl. Independentei, 50567 Bucharest, Romania
- Research & Development for Advanced Biotechnologies and Medical Devices, SC Sanimed International Impex SRL, 087040 Călugăreni, Romania
| | - Georgiana Dolete
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 011061 Bucharest, Romania
- National Research Center for Food Safety, University Politehnica of Bucharest, 060042 Bucharest, Romania
| | - Mădălina Axinie Bucos
- Research & Development for Advanced Biotechnologies and Medical Devices, SC Sanimed International Impex SRL, 087040 Călugăreni, Romania
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 011061 Bucharest, Romania
| | - Manuela Răscol
- The National Institute for Research and Development in Food Bioresources, Dinu Vintilă Street, No.6, 021102 Bucharest, Romania
| | - Gheorghița Isvoranu
- National Institute of Pathology Victor Babeş-Bucharest, 99-101 Spl. Independenței, 050096 Bucharest, Romania
| |
Collapse
|
46
|
Khadrawy SM, Mohamed DS, Hassan RM, Abdelgawad MA, Ghoneim MM, Alshehri S, Shaban NS. Royal Jelly and Chlorella vulgaris Mitigate Gibberellic Acid-Induced Cytogenotoxicity and Hepatotoxicity in Rats via Modulation of the PPARα/AP-1 Signaling Pathway and Suppression of Oxidative Stress and Inflammation. Foods 2023; 12:foods12061223. [PMID: 36981150 PMCID: PMC10048508 DOI: 10.3390/foods12061223] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/21/2023] [Accepted: 03/01/2023] [Indexed: 03/14/2023] Open
Abstract
Gibberellic acid (GA3) is a well-known plant growth regulator used in several countries, but its widespread use has negative effects on both animal and human health. The current study assesses the protective effect of royal jelly (RJ) and Chlorella vulgaris (CV) on the genotoxicity and hepatic injury induced by GA3 in rats. Daily oral administration of 55 mg/kg GA3 to rats for 6 constitutive weeks induced biochemical and histopathological changes in the liver via oxidative stress and inflammation. Co-administration of 300 mg/kg RJ or 500 mg/kg CV with GA3 considerably ameliorated the serum levels of AST (aspartate aminotransferase), ALT (alanine aminotransferase), ALP (alkaline phosphatase), γGT (gamma-glutamyl transferase), total bilirubin, and albumin. Lowered malondialdehyde, tumor necrosis factor α (TNF-α), and nuclear factor κB (NF-κB) levels along with elevated SOD (superoxide dismutase), CAT (catalase), and GPx (glutathione peroxidase) enzyme activities indicated the antioxidant and anti-inflammatory properties of both RJ and CV. Also, they improved the histological structure and reduced cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS) expressions along with up-regulating peroxisome proliferator activated receptor α (PPARα) and down-regulating activator protein 1 (AP-1) gene expression. Additionally, chromosomal abnormalities and mitotic index were nearly normalized after treatment with RJ and CV. In conclusion, RJ and CV can protect against GA3-induced genotoxicity and liver toxicity by diminishing oxidative stress and inflammation, and modulating the PPARα/AP-1 signaling pathway.
Collapse
Affiliation(s)
- Sally M. Khadrawy
- Zoology Department, Faculty of Science, Beni-Suef University, Beni-Suef 62511, Egypt
- Correspondence: (S.M.K.); (M.A.A.)
| | - Doaa Sh. Mohamed
- Department of Biochemistry and Chemistry of Nutrition, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef 62511, Egypt
| | - Randa M. Hassan
- Cytology and Histology Department, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef 62511, Egypt
| | - Mohamed A. Abdelgawad
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Sakaka 72341, Saudi Arabia
- Correspondence: (S.M.K.); (M.A.A.)
| | - Mohammed M. Ghoneim
- Department of Pharmacy Practice, College of Pharmacy, AlMaarefa University, Ad Diriyah 13713, Saudi Arabia
- Pharmacognosy and Medicinal Plants Department, Faculty of Pharmacy, Al-Azhar University, Cairo 11884, Egypt
| | - Sultan Alshehri
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Nema S. Shaban
- Department of Pharmacology, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef 62511, Egypt
| |
Collapse
|
47
|
Raoufi S, Salavati Z, Komaki A, Shahidi S, Zarei M. Royal jelly improves learning and memory deficits in an amyloid β-induced model of Alzheimer's disease in male rats: Involvement of oxidative stress. Metab Brain Dis 2023; 38:1239-1248. [PMID: 36809522 DOI: 10.1007/s11011-023-01168-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 01/13/2023] [Indexed: 02/23/2023]
Abstract
Alzheimer's disease (AD) as the commonest type of dementia is associated with the cognitive function failure. Oxidative stress performs an essential role in the progression of AD. Royal jelly (RJ) is a natural product of bees with antioxidant and anti-inflammatory properties. The present research aimed to investigate the possible protective effect of RJ on learning and memory in a rat model of Aβ-induced AD. Forty male adult Wistar rats were equally distributed into five groups: control, sham-operated, Aβ (receiving intracerebroventricular (ICV) injection of amyloid beta (Aβ1-40)), Aβ + RJ 50 mg/kg, and Aβ + RJ 100 mg/kg. RJ was administered daily post-surgery by oral gavage for four weeks. Behavioral learning and memory were examined using the novel object recognition (NOR) and passive avoidance learning (PAL) tests. Also, oxidative stress markers, such as malondialdehyde (MDA), total oxidant status (TOS) and total antioxidant capacity (TAC), were assessed in the hippocampus. Aβ reduced step-through latency (STLr) and increased time spent in the dark compartment (TDC) in the PAL task and also decreased discrimination index in the NOR test. Administration of RJ ameliorated the Aβ-related memory impairment in both NOR and PAL tasks. Aβ decreased TAC and increased MDA and TOS levels in the hippocampus, whereas RJ administration reversed these Aβ-induced alterations. Our results indicated that RJ has the potential to ameliorate learning and memory impairment in the Aβ model of AD via attenuating oxidative stress.
Collapse
Affiliation(s)
- Safoura Raoufi
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
- Department of Physiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Zahra Salavati
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran.
- Department of Physiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran.
| | - Alireza Komaki
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
- Department of Physiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Siamak Shahidi
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
- Department of Physiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mohammad Zarei
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
- Department of Physiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
48
|
Karimi E, Khorvash F, Arab A, Sepidarkish M, Saadatnia M, Amani R. The effects of royal jelly supplementation on oxidative stress, inflammatory mediators, mental health, cognitive function, quality of life, and clinical outcomes of patients with ischemic stroke: study protocol for a randomized controlled trial. BMC Nutr 2023; 9:32. [PMID: 36797768 PMCID: PMC9933264 DOI: 10.1186/s40795-023-00690-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Accepted: 02/08/2023] [Indexed: 02/18/2023] Open
Abstract
BACKGROUND Stroke is a debilitating disease that affects over 15 million people worldwide each year, resulting in the death of one-third of those people and severe disability in two-thirds of survivors. Previous studies reported various health benefits of Royal jelly in the context of its anti-inflammatory properties. We will aim to investigate the effects of royal jelly supplementation on oxidative stress, inflammatory mediators, mental health, cognitive function, quality of life, and clinical outcomes of patients with ischemic stroke. METHODS The present study will be a triple-blind randomized placebo trial. Patients who meet our eligibility criteria will be assigned to the intervention or the control groups to receive allocated intervention for 12 weeks. Individuals of the intervention group will consume 1000 mg of Royal jelly dragee daily after breakfast. Subjects of the control group will receive a placebo dragee identical to the Royal jelly dragee. The severity of the stroke, cognitive function, mental health, quality of life, clinical outcomes, and biochemical measures will be assessed at baseline and post-intervention. DISCUSSION The current study is designed to investigate the effectiveness and safety of royal jelly supplementation in a randomized, parallel, two-arms, single-center, triple-blind, placebo-controlled manner. This study will provide evidence as a phase III clinical trial. TRIAL REGISTRATION IRCT20180818040827N4, registered on 16 October 2021. https://www.irct.ir/trial/59275.
Collapse
Affiliation(s)
- Elham Karimi
- grid.411036.10000 0001 1498 685XDepartment of Clinical Nutrition, School of Nutrition and Food Sciences, Isfahan University of Medical Sciences, Isfahan, Iran ,grid.411705.60000 0001 0166 0922Research Development Center, Arash Women’s Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Fariborz Khorvash
- grid.411036.10000 0001 1498 685XIsfahan Neurosciences Research Center, Alzahra Hospital, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Arman Arab
- grid.411036.10000 0001 1498 685XDepartment of Community Nutrition, School of Nutrition and Food Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mahdi Sepidarkish
- grid.411495.c0000 0004 0421 4102Social Determinants of Health Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Mohammad Saadatnia
- grid.411036.10000 0001 1498 685XIsfahan Neurosciences Research Center, Alzahra Hospital, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Reza Amani
- Department of Clinical Nutrition, School of Nutrition and Food Sciences, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
49
|
Wang W, Li X, Li D, Pan F, Fang X, Peng W, Tian W. Effects of Major Royal Jelly Proteins on the Immune Response and Gut Microbiota Composition in Cyclophosphamide-Treated Mice. Nutrients 2023; 15:nu15040974. [PMID: 36839331 PMCID: PMC9967945 DOI: 10.3390/nu15040974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 02/04/2023] [Accepted: 02/07/2023] [Indexed: 02/18/2023] Open
Abstract
Increasing evidence suggests that royal jelly (RJ) has exceptional biological properties, and that major royal jelly proteins (MRJPs) are the key active factors in RJ. The objective of this study was to compare the difference in the protein content between RJ and MRJPs using non-labeled, quantitative proteomics technology, and to investigate the adjustment features and mechanisms of MRJPs on murine immune functions and the composition of intestinal flora in cyclophosphamide-treated mice. Results showed that, during the process of extracting MRJPs, the ratio of the protein types in the main protein and other proteins decreased significantly, except for MRJP1 and MRJP7, which demonstrated that an enriching effect of MRJP1 and MRJP7 was present during the extraction process. Cyclophosphamide-induced mice were orally administered MRJPs. Results showed that the middle-dose group, which received 0.25 g/(kg·bw) of royal jelly main protein, demonstrated a clear impact on the development of the spleen and liver, the quantity of peripheral blood leukocytes, immunoglobulin content, immune factor level, and the proliferation ability of spleen lymphocytes. A 16S rRNA high-throughput sequencing technology analysis showed that MRJPs could improve the component and richness of intestinal flora and raise the immunity of mice. The above-mentioned results indicated that the application of MRJPs is very likely to have an advantage effect on murine immune functions.
Collapse
|
50
|
Botezan S, Baci GM, Bagameri L, Pașca C, Dezmirean DS. Current Status of the Bioactive Properties of Royal Jelly: A Comprehensive Review with a Focus on Its Anticancer, Anti-Inflammatory, and Antioxidant Effects. Molecules 2023; 28:1510. [PMID: 36771175 PMCID: PMC9921556 DOI: 10.3390/molecules28031510] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/25/2023] [Accepted: 01/31/2023] [Indexed: 02/09/2023] Open
Abstract
Royal jelly (RJ) has been one of the most widely used natural products in alternative medicine for centuries. Being produced by both hypopharyngeal and mandibular glands, RJ exhibits an extraordinary complexity in terms of its composition, including proteins, lipids, carbohydrates, polyphenols, vitamins, and hormones. Due to its heterogeneous structure, RJ displays various functional roles for honeybees, including being involved in nutrition, learning, memory, and social behavior. Furthermore, a wide range of studies reported its therapeutic properties, including anticancer, anti-inflammatory, and antioxidant activities, to name a few. In this direction, there is a wide range of health-related problems for which the medical area specialists and researchers are continuously trying to find a cure, such as cancer, atherosclerosis, or infertility. For the mentioned diseases and more, it has been proven that RJ is a key player in finding a valuable treatment. In this review, the great impact of RJ as an alternative medicine agent is highlighted, with a focus on its anticancer, anti-inflammatory, and antioxidant activities. Moreover, we link it to its apitherapeutic potential by discussing its composition. Herein, we discuss a wide range of novel studies and present the latest research work.
Collapse
Affiliation(s)
| | - Gabriela-Maria Baci
- Faculty of Animal Science and Biotechnology, University of Animal Sciences and Veterinary Medicine Cluj-Napoca, 400372 Cluj-Napoca, Romania
| | | | - Claudia Pașca
- Faculty of Animal Science and Biotechnology, University of Animal Sciences and Veterinary Medicine Cluj-Napoca, 400372 Cluj-Napoca, Romania
| | | |
Collapse
|