1
|
Park J, Tang H, Zhang P. Deciphering the antioxidant capacity of common vitamins against specific reactive oxygen species by nuclear magnetic resonance. Food Chem 2025; 475:143184. [PMID: 39956052 DOI: 10.1016/j.foodchem.2025.143184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 01/26/2025] [Accepted: 02/01/2025] [Indexed: 02/18/2025]
Abstract
Antioxidant studies are important for understanding oxidative stress and developing preservative techniques for food and medicine. There has been increasing interest in the study of natural antioxidants, such as vitamins, due to their biocompatibility, relatively low cost, and high antioxidant capacity. Spectroscopic tools, including fluorescence and electron spin resonance, have been developed to evaluate the antioxidant capacity. However, it is difficult for these methods to measure the antioxidant capacity against specific reactive oxygen species (ROS). Based on a recently developed 19F NMR method to differentiate and quantify specific ROS, we have hypothesized that the antioxidant capacity of chemicals against specific ROS (1O2, H2O2, and OH•) can be determined. In this work, we have investigated the antioxidant capacity of some common vitamins (provitamin A, vitamin B2, vitamin C, and vitamin E) against specific ROS. This work showcases the capability and potential of our 19F NMR method for other ROS-pertinent studies.
Collapse
Affiliation(s)
- Juhyeon Park
- Department of Chemistry, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Hong Tang
- Alph Technologies LLC, Cincinnati, OH 45243, USA
| | - Peng Zhang
- Department of Chemistry, University of Cincinnati, Cincinnati, OH 45221, USA.
| |
Collapse
|
2
|
Liu L, Zhang Z, Liu F, Liu H, Ye L, Liu F, Gupta N, Wang C, Hu M. In vitro culture of the parasitic stage larvae of hematophagous parasitic nematode Haemonchus contortus. Int J Parasitol 2025; 55:263-271. [PMID: 39848307 PMCID: PMC7617482 DOI: 10.1016/j.ijpara.2025.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 12/06/2024] [Accepted: 01/14/2025] [Indexed: 01/25/2025]
Abstract
Current research on common parasitic nematodes is limited because their infective stages cannot be propagated in vitro. Here, we report a culture system for developing L4s of Haemonchus contortus, a blood-feeding nematode of ruminants. Our results demonstrated that a proportionate mixture of NCTC-109 to Luria-Bertini (1:2) media promoted the formation of early L4s and then into late L4s upon inclusion of 12.5% (v/v) defibrinated blood, albeit with a decline in survival. Adding antioxidants (0.3 mg/mL of L-glutathione or 200 nmol of vitamin C) improved survival of L4s, with approximately 90% developing to late L4s by 22 days. These L4s showed parallel morphological features (such as digestive and reproduction systems) compared with in vivo L4s at day 7 (following challenge infection), although with delayed development. Our work optimized the in vitro culture system for L4s while providing an important platform for in-depth molecular research on Haemonchus and other related parasitic nematodes.
Collapse
Affiliation(s)
- Lu Liu
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070 China.
| | - Zongshan Zhang
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070 China.
| | - Fuqiang Liu
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070 China.
| | - Hui Liu
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070 China.
| | - Lisha Ye
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070 China.
| | - Feng Liu
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070 China.
| | - Nishith Gupta
- Intracellular Parasite Education and Research Labs (iPEARL), Department of Biological Sciences, Birla Institute of Technology and Science, Pilani (BITS-Pilani), Hyderabad, India; Department of Molecular Parasitology, Faculty of Life Sciences, Humboldt University, Berlin, Germany.
| | - Chunqun Wang
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070 China.
| | - Min Hu
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070 China.
| |
Collapse
|
3
|
Lykkesfeldt J, Carr AC, Tveden-Nyborg P. The pharmacology of vitamin C. Pharmacol Rev 2025; 77:100043. [PMID: 39986139 DOI: 10.1016/j.pharmr.2025.100043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 01/14/2025] [Indexed: 02/24/2025] Open
Abstract
Ascorbic acid, the reduced form of vitamin C, is a ubiquitous small carbohydrate. Despite decades of focused research, new metabolic functions of this universal electron donor are still being discovered and add to the complexity of our view of vitamin C in human health. Although praised as an unsurpassed water-soluble antioxidant in plasma and cells, the most interesting functions of vitamin C seem to be its roles as specific electron donor in numerous biological reactions ranging from the well-known hydroxylation of proline to cofactor for the epigenetic master regulators ten-eleven translocation enzymes and Jumonji domain-containing histone-lysine demethylases. Some of these functions may have important implications for disease prevention and treatment and have spiked renewed interest in, eg, vitamin C's potential in cancer therapy. Moreover, some fundamental pharmacokinetic properties of vitamin C remain to be established including if other mechanisms than passive diffusion governs the efflux of ascorbate anions from the cell. Taken together, there still seems to be much to learn about the pharmacology of vitamin C and its role in health and disease. This review explores new avenues of vitamin C and integrates our present knowledge of its pharmacology. SIGNIFICANCE STATEMENT: Vitamin C is involved in multiple biological reactions of which most are essential to human health. Hundreds of millions of people are considered deficient in vitamin C according to accepted guidelines, but little is known about the long-term consequences. Although the complexity of vitamin C's physiology and pharmacology has been widely disregarded in clinical studies for decades, it seems clear that a deeper understanding of particularly its pharmacology holds the key to unravel and possibly exploit the potential of vitamin C in disease prevention and therapy.
Collapse
Affiliation(s)
- Jens Lykkesfeldt
- Section of Biomedicine, Department of Veterinary and Animal Science, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| | - Anitra C Carr
- Nutrition in Medicine Research Group, Department of Pathology and Biomedical Science, University of Otago, Christchurch, New Zealand
| | - Pernille Tveden-Nyborg
- Section of Biomedicine, Department of Veterinary and Animal Science, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
4
|
Grădinaru AC, Popa S. Vitamin C: From Self-Sufficiency to Dietary Dependence in the Framework of Its Biological Functions and Medical Implications. Life (Basel) 2025; 15:238. [PMID: 40003647 PMCID: PMC11856994 DOI: 10.3390/life15020238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 01/25/2025] [Accepted: 01/25/2025] [Indexed: 02/27/2025] Open
Abstract
Vitamin C is an organic compound biosynthesized in plants and most vertebrates. Since its discovery, the benefits of vitamin C use in the cure and prevention of various pathologies have been frequently reported, including its anti-oxidant, anti-inflammatory, anticoagulant, and immune modulatory properties. Vitamin C plays an important role in collagen synthesis and subsequent scurvy prevention. It is also required in vivo as a cofactor for enzymes involved in carnitine and catecholamine norepinephrine biosynthesis, peptide amidation, and tyrosine catabolism. Moreover, as an enzymatic cofactor, vitamin C is involved in processes of gene transcription and epigenetic regulation. The absence of the synthesis of L-gulono-1,4-lactone oxidase, a key enzyme in the pathway of vitamin C synthesis, is an inborn metabolism error in some fishes and several bird and mammalian species, including humans and non-human primates; it is caused by various changes in the structure of the original GULO gene, making these affected species dependent on external sources of vitamin C. The evolutionary cause of GULO gene pseudogenization remains controversial, as either dietary supplementation or neutral selection is evoked. An evolutionary improvement in the control of redox homeostasis was also considered, as potentially toxic H2O2 is generated as a byproduct in the vitamin C biosynthesis pathway. The inactivation of the GULO gene and the subsequent reliance on dietary vitamin C may have broader implications for aging and age-related diseases, as one of the most important actions of vitamin C is as an anti-oxidant. Therefore, an important aim for medical professionals regarding human and animal health should be establishing vitamin C homeostasis in species that are unable to synthesize it themselves, preventing pathologies such as cardiovascular diseases, cognitive decline, and even cancer.
Collapse
Affiliation(s)
- Andrei Cristian Grădinaru
- Faculty of Veterinary Medicine, “Ion Ionescu de la Brad” University of Life Sciences, 3 M. Sadoveanu Alley, 700490 Iasi, Romania
| | - Setalia Popa
- Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| |
Collapse
|
5
|
Kontoghiorghes GJ. New Insights into Aspirin's Anticancer Activity: The Predominant Role of Its Iron-Chelating Antioxidant Metabolites. Antioxidants (Basel) 2024; 14:29. [PMID: 39857363 PMCID: PMC11763074 DOI: 10.3390/antiox14010029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 12/06/2024] [Accepted: 12/24/2024] [Indexed: 01/27/2025] Open
Abstract
Epidemiological studies have suggested that following long-term, low-dose daily aspirin (LTLDA) administration for more than 5 years at 75-100 mg/day, 20-30% of patients (50-80 years old) had a lower risk of developing colorectal cancer (CRC) and about the same proportion in developing iron deficiency anemia (IDA). In cases of IDA, an increase in iron excretion is suspected, which is caused by aspirin chelating metabolites (ACMs): salicylic acid, salicyluric acid, 2,5-dihydroxybenzoic acid, and 2,3-dihydroxybenzoic acid. The ACMs constitute 70% of the administered aspirin dose and have much longer half-lives than aspirin in blood and tissues. The mechanisms of cancer risk reduction in LTLDA users is likely due to the ACM's targeting of iron involved in free radical damage, iron-containing toxins, iron proteins, and associated metabolic pathways such as ferroptosis. The ACMs from non-absorbed aspirin (about 30%) may also mitigate the toxicity of heme and nitroso-heme and other iron toxins from food, which are responsible for the cause of colorectal cancer. The mode of action of aspirin as a chelating antioxidant pro-drug of the ACMs, with continuous presence in LTLDA users, increases the prospect for prophylaxis in cancer and other diseases. It is suggested that the anticancer effects of aspirin depend primarily on the iron-chelating antioxidant activity of the ACMs. The role of aspirin in cancer and other diseases is incomplete without considering its rapid biotransformation and the longer half-life of the ACMs.
Collapse
Affiliation(s)
- George J Kontoghiorghes
- Postgraduate Research Institute of Science, Technology, Environment and Medicine, Limassol 3021, Cyprus
| |
Collapse
|
6
|
Sahu G, Chawre Y, Kujur AB, Miri P, Sinha A, Nagwanshi R, Karbhal I, Ghosh KK, Jena VK, Satnami ML. Nitrogen Doped Carbon Quantum Dots as Fluorescence "Turn-Off-On" Sensor for Detection of Fe 3+ Ions and Ascorbic Acid in Moringa oleifera and Citrus Lemon. J Fluoresc 2024:10.1007/s10895-024-04012-0. [PMID: 39514072 DOI: 10.1007/s10895-024-04012-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 10/15/2024] [Indexed: 11/16/2024]
Abstract
In recent year, the uses of carbon quantum dots (CQDs) have increased in many fields. Herein we report, synthesis of fluorescent nitrogen doped carbon quantum dots (N-CQDs) by simple and ecofriendly hydrothermal method. The as-synthesized N-CQDs were characterized by various techniques and the quantum yield was also calculated. Then, application of N-CQDs were performed as a sensor for detection of ferric ions (Fe3+) based on static quenching mechanism (turn-off) which occurred due to formation of non-fluorescent complex between N-CQDs and Fe3+ ions. Interestingly, fluorescence intensity of quenched N-CQDs has been significantly recovered (turn-on) by addition of ascorbic acid (AA). The recovery mechanism is based on the redox reaction between Fe3+ ions and AA. Thus, N-CQDs has been used as fluorescence "turn-off-on" sensor for detection of Fe3+ ions and AA. Further this detection system is used for detecting Fe3+ ions in Moringa oleifera and AA in citrus lemon.
Collapse
Affiliation(s)
- Girish Sahu
- School of Studies in Chemistry, Pt. Ravishankar Shukla University, Raipur, 492010, C.G, India
- Department of Chemistry, Govt. Nagarjuna P. G. College of Science, Raipur, 492010, C.G, India
| | - Yogyata Chawre
- School of Studies in Chemistry, Pt. Ravishankar Shukla University, Raipur, 492010, C.G, India
| | - Ankita Beena Kujur
- School of Studies in Chemistry, Pt. Ravishankar Shukla University, Raipur, 492010, C.G, India
| | - Pinki Miri
- Department of Chemistry, Govt. Nagarjuna P. G. College of Science, Raipur, 492010, C.G, India
| | - Akash Sinha
- School of Studies in Chemistry, Pt. Ravishankar Shukla University, Raipur, 492010, C.G, India
- Department of Chemistry, Govt. Nagarjuna P. G. College of Science, Raipur, 492010, C.G, India
| | - Rekha Nagwanshi
- Department of Chemistry, Govt. P. G. Science College, Ujjain, 456010, Madhya Pradesh, India
| | - Indrapal Karbhal
- School of Studies in Chemistry, Pt. Ravishankar Shukla University, Raipur, 492010, C.G, India
| | - Kallol K Ghosh
- School of Studies in Chemistry, Pt. Ravishankar Shukla University, Raipur, 492010, C.G, India
| | - Vinod K Jena
- Department of Chemistry, Govt. Nagarjuna P. G. College of Science, Raipur, 492010, C.G, India
| | - Manmohan L Satnami
- School of Studies in Chemistry, Pt. Ravishankar Shukla University, Raipur, 492010, C.G, India.
| |
Collapse
|
7
|
Tee CA, Roxby DN, Othman R, Denslin V, Bhat KS, Yang Z, Han J, Tucker-Kellogg L, Boyer LA. Metabolic modulation to improve MSC expansion and therapeutic potential for articular cartilage repair. Stem Cell Res Ther 2024; 15:308. [PMID: 39285485 PMCID: PMC11406821 DOI: 10.1186/s13287-024-03923-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 09/04/2024] [Indexed: 09/19/2024] Open
Abstract
BACKGROUND Articular cartilage degeneration can result from injury, age, or arthritis, causing significant joint pain and disability without surgical intervention. Currently, the only FDA cell-based therapy for articular cartilage injury is Autologous Chondrocyte Implantation (ACI); however, this procedure is costly, time-intensive, and requires multiple treatments. Mesenchymal stromal cells (MSCs) are an attractive alternative autologous therapy due to their availability and ability to robustly differentiate into chondrocytes for transplantation with good safety profiles. However, treatment outcomes are variable due to donor-to-donor variability as well as intrapopulation heterogeneity and unstandardized MSC manufacturing protocols. Process improvements that reduce cell heterogeneity while increasing donor cell numbers with improved chondrogenic potential during expansion culture are needed to realize the full potential of MSC therapy. METHODS In this study, we investigated the potential of MSC metabolic modulation during expansion to enhance their chondrogenic commitment by varying the nutrient composition, including glucose, pyruvate, glutamine, and ascorbic acid in culture media. We tested the effect of metabolic modulation in short-term (one passage) and long-term (up to seven passages). We measured metabolic state, cell size, population doubling time, and senescence and employed novel tools including micro-magnetic resonance relaxometry (µMRR) relaxation time (T2) to characterize the effects of AA on improved MSC expansion and chondrogenic potential. RESULTS Our data show that the addition of 1 mM L-ascorbic acid-2-phosphate (AA) to cultures for one passage during MSC expansion prior to initiation of differentiation improves chondrogenic differentiation. We further demonstrate that AA treatment reduced the proportion of senescent cells and cell heterogeneity also allowing for long-term expansion that led to a > 300-fold increase in yield of MSCs with enhanced chondrogenic potential compared to untreated cells. AA-treated MSCs with improved chondrogenic potential showed a robust shift in metabolic profile to OXPHOS and higher µMRR T2 values, identifying critical quality attributes that could be implemented in MSC manufacturing for articular cartilage repair. CONCLUSIONS Our results suggest an improved MSC manufacturing process that can enhance chondrogenic potential by targeting MSC metabolism and integrating process analytic tools during expansion.
Collapse
Affiliation(s)
- Ching Ann Tee
- Critical Analytics for Manufacturing Personalised-medicine (CAMP) Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology (SMART) Centre, 1 Create Way, Enterprise Wing, #04-13/14, Singapore, 138602, Republic of Singapore
| | - Daniel Ninio Roxby
- Critical Analytics for Manufacturing Personalised-medicine (CAMP) Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology (SMART) Centre, 1 Create Way, Enterprise Wing, #04-13/14, Singapore, 138602, Republic of Singapore
| | - Rashidah Othman
- Critical Analytics for Manufacturing Personalised-medicine (CAMP) Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology (SMART) Centre, 1 Create Way, Enterprise Wing, #04-13/14, Singapore, 138602, Republic of Singapore
| | - Vinitha Denslin
- NUS Tissue Engineering Program, Life Sciences Institute, National University of Singapore, 27 Medical Drive, DSO (Kent Ridge) Building, Level 4, Singapore, 117510, Republic of Singapore
| | - Kiesar Sideeq Bhat
- Critical Analytics for Manufacturing Personalised-medicine (CAMP) Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology (SMART) Centre, 1 Create Way, Enterprise Wing, #04-13/14, Singapore, 138602, Republic of Singapore
- Department of Bioresources, University of Kashmir, Hazratbal, Srinagar, 190006, India
| | - Zheng Yang
- Critical Analytics for Manufacturing Personalised-medicine (CAMP) Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology (SMART) Centre, 1 Create Way, Enterprise Wing, #04-13/14, Singapore, 138602, Republic of Singapore
- NUS Tissue Engineering Program, Life Sciences Institute, National University of Singapore, 27 Medical Drive, DSO (Kent Ridge) Building, Level 4, Singapore, 117510, Republic of Singapore
- Department of Orthopaedic Surgery, National University of Singapore, 1E Kent Ridge Road, NUHS Tower Block 11, Singapore, 119288, Republic of Singapore
| | - Jongyoon Han
- Critical Analytics for Manufacturing Personalised-medicine (CAMP) Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology (SMART) Centre, 1 Create Way, Enterprise Wing, #04-13/14, Singapore, 138602, Republic of Singapore
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, 50 Vassar St, Cambridge, MA, 02139, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA
| | - Lisa Tucker-Kellogg
- Critical Analytics for Manufacturing Personalised-medicine (CAMP) Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology (SMART) Centre, 1 Create Way, Enterprise Wing, #04-13/14, Singapore, 138602, Republic of Singapore.
- Cancer and Stem Cell Biology and Centre for Computational Biology, Duke-NUS Medical School, 8 College Rd, Singapore, 169857, Republic of Singapore.
| | - Laurie A Boyer
- Critical Analytics for Manufacturing Personalised-medicine (CAMP) Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology (SMART) Centre, 1 Create Way, Enterprise Wing, #04-13/14, Singapore, 138602, Republic of Singapore.
- Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA.
- Department of Biology, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA.
| |
Collapse
|
8
|
Vaishampayan P, Lee Y. Redox-active vitamin C suppresses human osteosarcoma growth by triggering intracellular ROS-iron-calcium signaling crosstalk and mitochondrial dysfunction. Redox Biol 2024; 75:103288. [PMID: 39083898 PMCID: PMC11342202 DOI: 10.1016/j.redox.2024.103288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 07/26/2024] [Indexed: 08/02/2024] Open
Abstract
Pharmacological vitamin C (VC) has gained attention for its pro-oxidant characteristics and selective ability to induce cancer cell death. However, defining its role in cancer has been challenging due to its complex redox properties. In this study, using a human osteosarcoma (OS) model, we show that the redox-active property of VC is critical for inducing non-apoptotic cancer cell death via intracellular reactive oxygen species (ROS)-iron-calcium crosstalk and mitochondrial dysfunction. In both 2D and 3D OS cell culture models, only the oxidizable form of VC demonstrated potent dose-dependent cytotoxicity, while non-oxidizable and oxidized VC derivatives had minimal effects. Live-cell imaging showed that only oxidizable VC caused a surge in cytotoxic ROS, dependent on iron rather than copper. Inhibitors of ferroptosis, a form of iron-dependent cell death, along with classical apoptosis inhibitors, were unable to completely counteract the cytotoxic effects induced by VC. Further pharmacological and genetic inhibition analyses showed that VC triggers calcium release through inositol 1,4,5-trisphosphate receptors (IP3Rs), leading to mitochondrial ROS production and eventual cell death. RNA sequencing revealed down-regulation of genes involved in the mitochondrial electron transport chain and oxidative phosphorylation upon pharmacological VC treatment. Consistently, high-dose VC reduced mitochondrial membrane potential, oxidative phosphorylation, and ATP levels, with ATP reconstitution rescuing VC-induced cytotoxicity. In vivo OS xenograft studies demonstrated reduced tumor growth with high-dose VC administration, concomitant with the altered expression of mitochondrial ATP synthase (MT-ATP). These findings emphasize VC's potential clinical utility in osteosarcoma treatment by inducing mitochondrial metabolic dysfunction through a vicious intracellular ROS-iron-calcium cycle.
Collapse
Affiliation(s)
- Prajakta Vaishampayan
- Department of Translational Medicine and Physiology, Elson S. Floyd College of Medicine, Washington State University, Spokane, WA, 99202, USA
| | - Yool Lee
- Department of Translational Medicine and Physiology, Elson S. Floyd College of Medicine, Washington State University, Spokane, WA, 99202, USA; Department of Integrative Physiology and Neuroscience, College of Veterinary Medicine, Washington State University, Pullman, WA, 99164, USA; Sleep and Performance Research Center, Washington State University, Spokane, WA, 99202, USA; Steve Gleason Institute for Neuroscience, Washington State University, Spokane, WA, 99202, USA.
| |
Collapse
|
9
|
Karimian M, Shabani M, Nikzad H. Association of Functional Genetic Variations in Uric Acid Transporters with the Risk of Idiopathic Male Infertility: A Genetic Association Study and Bioinformatic Analysis. Biochem Genet 2024:10.1007/s10528-024-10902-6. [PMID: 39141156 DOI: 10.1007/s10528-024-10902-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 08/06/2024] [Indexed: 08/15/2024]
Abstract
Uric acid plays an important role in sustaining and improving sperm morphology, viability, and motility. It is known that SLC2A9 and ABCG2 protein are the main urate transporter and genetic variations in these genes could be associated with the levels of serum uric acid. This study aimed to investigate the association between single-nucleotide polymorphisms (SNPs) SLC2A9-rs16890979, SLC2A9-rs3733591, ABCG2-rs2231142, and ABCG2-rs2231137 with male infertility. Additionally, the correlation of these SNPs with the uric acid level in seminal plasma of infertile men was examined. Subsequently, an in silico analysis was performed. In a case-control study, 193 infertile and 154 healthy controls were recruited. After semen sample collection, the uric acid level of seminal plasma was measured by a commercial kit. After genomic DNA extraction from sperm samples, SNPs genotyping was performed by PCR-RFLP method. Lastly, the effects of SNPs on the SLC2A9 and ABCG2 gene function were evaluated by bioinformatics tools. The genetic association study revealed that there are significant associations between rs16890979, rs3733591, rs2231142, and rs2231137 genetic variations and increased risk of male infertility. Also, these variations were associated with oligozoospermia and teratozoospermia, and sometimes with asthenozoospermia. Also, we found that four studied SNPs could be associated with a decreased level of uric acid of seminal plasma in teratozoospermia and asthenozoospermia. Bioinformatic analysis revealed that the mentioned polymorphisms could affect molecular aspects of SLC2A9 and ABCG2 genes. In this preliminary study, the rs16890979, rs3733591, rs2231142, and rs2231137 genetic variations could be considered as genetic risk factors for male infertility by interfering with the uric acid level of seminal plasma.
Collapse
Affiliation(s)
- Mohammad Karimian
- Department of Molecular and Cell Biology, Faculty of Basic Sciences, University of Mazandaran, Babolsar, 47416-95447, Iran.
| | - Maryam Shabani
- Anatomical Sciences Research Center, Kashan University of Medical Sciences, Qotb-e Ravandi Blvd., Kashan, 8715988141, Iran
| | - Hossein Nikzad
- Anatomical Sciences Research Center, Kashan University of Medical Sciences, Qotb-e Ravandi Blvd., Kashan, 8715988141, Iran.
| |
Collapse
|
10
|
Yousefi A, Zheng Z, Zargarbashi S, Assadipapari M, Hickman GJ, Parmenter CD, Bueno-Alejo CJ, Sanderson G, Craske D, Xu L, Perry CC, Rahmani M, Ying C. Structural Flexibility and Disassembly Kinetics of Single Ferritin Molecules Using Optical Nanotweezers. ACS NANO 2024; 18:15617-15626. [PMID: 38850556 PMCID: PMC11191739 DOI: 10.1021/acsnano.4c01221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 05/23/2024] [Accepted: 05/31/2024] [Indexed: 06/10/2024]
Abstract
Ferritin, a spherical protein shell assembled from 24 subunits, functions as an efficient iron storage and release system through its channels. Understanding how various chemicals affect the structural behavior of ferritin is crucial for unravelling the origins of iron-related diseases in living organisms including humans. In particular, the influence of chemicals on ferritin's dynamics and iron release is barely explored at the single-protein level. Here, by employing optical nanotweezers using double-nanohole (DNH) structures, we examined the effect of ascorbic acid (reducing reagent) and pH on individual ferritin's conformational dynamics. The dynamics of ferritin increased as the concentration of ascorbic acid approached saturation. At pH 2.0, ferritin exhibited significant structural fluctuations and eventually underwent a stepwise disassembly into fragments. This work demonstrated the disassembly pathway and kinetics of a single ferritin molecule in solution. We identified four critical fragments during its disassembly pathway, which are 22-mer, 12-mer, tetramer, and dimer subunits. Moreover, we present single-molecule evidence of the cooperative disassembly of ferritin. Interrogating ferritin's structural change in response to different chemicals holds importance for understanding their roles in iron metabolism, hence facilitating further development of medical treatments for its associated diseases.
Collapse
Affiliation(s)
- Arman Yousefi
- Advanced
Optics and Photonics Laboratory, Department of Engineering, School
of Science and Technology, Nottingham Trent
University, Nottingham NG118NS, United
Kingdom
| | - Ze Zheng
- Advanced
Optics and Photonics Laboratory, Department of Engineering, School
of Science and Technology, Nottingham Trent
University, Nottingham NG118NS, United
Kingdom
| | - Saaman Zargarbashi
- Advanced
Optics and Photonics Laboratory, Department of Engineering, School
of Science and Technology, Nottingham Trent
University, Nottingham NG118NS, United
Kingdom
| | - Mahya Assadipapari
- Advanced
Optics and Photonics Laboratory, Department of Engineering, School
of Science and Technology, Nottingham Trent
University, Nottingham NG118NS, United
Kingdom
| | - Graham J. Hickman
- School
of Science and Technology, Nottingham Trent
University, Nottingham NG11 8NS, United Kingdom
| | | | - Carlos J. Bueno-Alejo
- School
of Chemistry, University of Leicester, University Road, Leicester LE1 7RH, United Kingdom
| | - Gabriel Sanderson
- Advanced
Optics and Photonics Laboratory, Department of Engineering, School
of Science and Technology, Nottingham Trent
University, Nottingham NG118NS, United
Kingdom
| | - Dominic Craske
- School
of Science and Technology, Nottingham Trent
University, Nottingham NG11 8NS, United Kingdom
| | - Lei Xu
- Advanced
Optics and Photonics Laboratory, Department of Engineering, School
of Science and Technology, Nottingham Trent
University, Nottingham NG118NS, United
Kingdom
| | - Carole C. Perry
- Interdisciplinary
Biomedical Research Centre, School of Science and Technology, Nottingham Trent University, Nottingham NG11 8NS, United Kingdom
| | - Mohsen Rahmani
- Advanced
Optics and Photonics Laboratory, Department of Engineering, School
of Science and Technology, Nottingham Trent
University, Nottingham NG118NS, United
Kingdom
| | - Cuifeng Ying
- Advanced
Optics and Photonics Laboratory, Department of Engineering, School
of Science and Technology, Nottingham Trent
University, Nottingham NG118NS, United
Kingdom
| |
Collapse
|
11
|
Bayu P, Wibisono JJ. Vitamin C and E antioxidant supplementation may significantly reduce pain symptoms in endometriosis: A systematic review and meta-analysis of randomized controlled trials. PLoS One 2024; 19:e0301867. [PMID: 38820340 PMCID: PMC11142610 DOI: 10.1371/journal.pone.0301867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 03/23/2024] [Indexed: 06/02/2024] Open
Abstract
BACKGROUND The primary challenge encountered by individuals diagnosed with endometriosis is the experience of pain. Emerging research indicates that oxidative stress is implicated in the initiation of pain associated with endometriosis. Vitamins C and E are known for their antioxidative properties. The primary objective of this study is to assess the efficacy of antioxidant supplementation, consisting of these vitamins, in the management of pain associated with endometriosis. METHODS A comprehensive search was conducted on the ClinicalTrials.gov, Scopus, Europe PMC, and Medline databases up until August 23rd, 2023, utilizing a combination of relevant keywords. This review incorporates literature that examines the relationship between antioxidant supplementation and pain in endometriosis. We employed fixed-effect models to analyze the risk ratio (RR) and present the outcomes together with their corresponding 95% confidence intervals (CI). RESULTS A total of five RCTs were incorporated. The results of our meta-analysis indicated that antioxidant supplementation with vitamin C and E combination was associated with higher proportion of endometriosis patients reporting reduced chronic pelvic pain (RR 7.30; 95%CI: 3.27-16.31, p<0.00001, I2 = 0%), alleviations of dysmenorrhea (RR 1.96; 95%CI: 1.25-3.07, p = 0.003, I2 = 39%), and dyspareunia (RR 5.08; 95%CI: 2.10-12.26, p = 0.0003, I2 = 0%) than patients only receiving placebo. CONCLUSIONS This study suggests the potential ability of vitamin C and E in alleviating pain symptoms experienced by individuals with endometriosis.
Collapse
Affiliation(s)
- Patrick Bayu
- Department of Obstetrics and Gynecology, Faculty of Medicine, Pelita Harapan University, Tangerang, Banten, Indonesia
| | - Jacobus Jeno Wibisono
- Department of Obstetrics and Gynecology, Faculty of Medicine, Pelita Harapan University, Tangerang, Banten, Indonesia
| |
Collapse
|
12
|
Kozlov AV, Javadov S, Sommer N. Cellular ROS and Antioxidants: Physiological and Pathological Role. Antioxidants (Basel) 2024; 13:602. [PMID: 38790707 PMCID: PMC11117742 DOI: 10.3390/antiox13050602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 05/10/2024] [Indexed: 05/26/2024] Open
Abstract
Reactive oxygen species (ROS) are highly reactive oxygen derivatives that include free radicals such as superoxide anion radical (O2•-) and hydroxyl radical (HO•), as well as non-radical molecules hydrogen peroxide (H2O2), peroxynitrite (ONOO-), and hypochlorous acid (HOCl) [...].
Collapse
Affiliation(s)
- Andrey V. Kozlov
- Ludwig Boltzmann Institute for Traumatology, The Research Center in Cooperation with AUVA, 1200 Vienna, Austria
| | - Sabzali Javadov
- Department of Physiology, School of Medicine, University of Puerto Rico, San Juan, PR 00936-5067, USA
| | - Natascha Sommer
- Excellence Cluster Cardio-Pulmonary Institute, Universities of Giessen and Marburg Lung Center, Member of the German Center for Lung Research, Justus-Liebig-University, 35392 Giessen, Germany
| |
Collapse
|
13
|
Feng Z, Wang Y, Fu Z, Liao J, Liu H, Zhou M. Exploring the Causal Effects of Mineral Metabolism Disorders on Telomere and Mitochondrial DNA: A Bidirectional Two-Sample Mendelian Randomization Analysis. Nutrients 2024; 16:1417. [PMID: 38794655 PMCID: PMC11123946 DOI: 10.3390/nu16101417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/06/2024] [Accepted: 05/07/2024] [Indexed: 05/26/2024] Open
Abstract
The aim of this study was to assess the causal relationships between mineral metabolism disorders, representative of trace elements, and key aging biomarkers: telomere length (TL) and mitochondrial DNA copy number (mtDNA-CN). Utilizing bidirectional Mendelian randomization (MR) analysis in combination with the two-stage least squares (2SLS) method, we explored the causal relationships between mineral metabolism disorders and these aging indicators. Sensitivity analysis can be used to determine the reliability and robustness of the research results. The results confirmed that a positive causal relationship was observed between mineral metabolism disorders and TL (p < 0.05), while the causal relationship with mtDNA-CN was not significant (p > 0.05). Focusing on subgroup analyses of specific minerals, our findings indicated a distinct positive causal relationship between iron metabolism disorders and both TL and mtDNA-CN (p < 0.05). In contrast, disorders in magnesium and phosphorus metabolism did not exhibit significant causal effects on either aging biomarker (p > 0.05). Moreover, reverse MR analysis did not reveal any significant causal effects of TL and mtDNA-CN on mineral metabolism disorders (p > 0.05). The combination of 2SLS with MR analysis further reinforced the positive causal relationship between iron levels and both TL and mtDNA-CN (p < 0.05). Notably, the sensitivity analysis did not indicate significant pleiotropy or heterogeneity within these causal relationships (p > 0.05). These findings highlight the pivotal role of iron metabolism in cellular aging, particularly in regulating TL and sustaining mtDNA-CN, offering new insights into how mineral metabolism disorders influence aging biomarkers. Our research underscores the importance of trace element balance, especially regarding iron intake, in combating the aging process. This provides a potential strategy for slowing aging through the adjustment of trace element intake, laying the groundwork for future research into the relationship between trace elements and healthy aging.
Collapse
Affiliation(s)
| | | | | | | | | | - Meijuan Zhou
- Department of Radiation Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, China or (Z.F.); (Y.W.); (Z.F.); (J.L.); (H.L.)
| |
Collapse
|
14
|
Zeidan RS, Martenson M, Tamargo JA, McLaren C, Ezzati A, Lin Y, Yang JJ, Yoon HS, McElroy T, Collins JF, Leeuwenburgh C, Mankowski RT, Anton S. Iron homeostasis in older adults: balancing nutritional requirements and health risks. J Nutr Health Aging 2024; 28:100212. [PMID: 38489995 DOI: 10.1016/j.jnha.2024.100212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 03/05/2024] [Accepted: 03/06/2024] [Indexed: 03/17/2024]
Abstract
Iron plays a crucial role in many physiological processes, including oxygen transport, bioenergetics, and immune function. Iron is assimilated from food and also recycled from senescent red blood cells. Iron exists in two dietary forms: heme (animal based) and non-heme (mostly plant based). The body uses iron for metabolic purposes, and stores the excess mainly in splenic and hepatic macrophages. Physiologically, iron excretion in humans is inefficient and not highly regulated, so regulation of intestinal absorption maintains iron homeostasis. Iron losses occur at a steady rate via turnover of the intestinal epithelium, blood loss, and exfoliation of dead skin cells, but overall iron homeostasis is tightly controlled at cellular and systemic levels. Aging can have a profound impact on iron homeostasis and induce a dyshomeostasis where iron deficiency or overload (sometimes both simultaneously) can occur, potentially leading to several disorders and pathologies. To maintain physiologically balanced iron levels, reduce risk of disease, and promote healthy aging, it is advisable for older adults to follow recommended daily intake guidelines and periodically assess iron levels. Clinicians can evaluate body iron status using different techniques but selecting an assessment method primarily depends on the condition being examined. This review provides a comprehensive overview of the forms, sources, and metabolism of dietary iron, associated disorders of iron dyshomeostasis, assessment of iron levels in older adults, and nutritional guidelines and strategies to maintain iron balance in older adults.
Collapse
Affiliation(s)
- Rola S Zeidan
- Department of Physiology and Aging, College of Medicine, University of Florida, Gainesville, FL, USA; Department of Health Outcomes and Biomedical Informatics, College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Matthew Martenson
- Department of Physiology and Aging, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Javier A Tamargo
- Department of Physiology and Aging, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Christian McLaren
- Department of Clinical and Health Psychology, College of Health and Health Professions, University of Florida, Gainesville, Florida, USA
| | - Armin Ezzati
- Department of Physiology and Aging, College of Medicine, University of Florida, Gainesville, FL, USA; Department of Food, Nutrition, Dietetics and Health, Kansas State University, Manhattan, KS, USA
| | - Yi Lin
- Department of Physiology and Aging, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Jae Jeong Yang
- UF Health Cancer Center, Gainesville, FL, USA; Department of Surgery, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Hyung-Suk Yoon
- UF Health Cancer Center, Gainesville, FL, USA; Department of Surgery, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Taylor McElroy
- Department of Physiology and Aging, College of Medicine, University of Florida, Gainesville, FL, USA; Department of Health Outcomes and Biomedical Informatics, College of Medicine, University of Florida, Gainesville, Florida, USA
| | - James F Collins
- Department of Food Science & Human Nutrition, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, USA
| | - Christiaan Leeuwenburgh
- Department of Physiology and Aging, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Robert T Mankowski
- Department of Physiology and Aging, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Stephen Anton
- Department of Physiology and Aging, College of Medicine, University of Florida, Gainesville, FL, USA; Department of Clinical and Health Psychology, College of Health and Health Professions, University of Florida, Gainesville, Florida, USA.
| |
Collapse
|
15
|
Munjal R, Kyarikwal R, Sarkar S, Nag P, Vennapusa SR, Mukhopadhyay S. A Siderophore Mimicking Gelation Component for Capturing and Self-Separation of Fe(III) from an Aqueous Solution of Mixture of Metal Ions. Inorg Chem 2024; 63:7089-7103. [PMID: 38573755 DOI: 10.1021/acs.inorgchem.4c01177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2024]
Abstract
The carbohydrazide-based gelation component N2,N4,N6-(1,3,5-triazine-2,4,6-triyl)tris(benzene-1,3,5-tricarbohydrazide) (CBTC) was synthesized and characterized using various spectroscopic tools. CBTC and trimesic acid (TMA) get self-assembled to form metallogel with Fe3+, specifically through various noncovalent interactions in a DMSO and H2O mixture. The self-assembly shows remarkable specificity toward Fe(III) among different transition metal salts. It is pertinent to point out that the binding specificity for Fe3+ can also be found in nature in the form of siderophores, as they are mainly involved in scavenging iron selectively from the surroundings. DFT studies have been used to investigate the possible interaction between the different components of the iron metallogel. To determine the selectivity of CBTC for iron, CBTC, along with trimesic acid, is used to interact with other metal ions, including Fe(III) ions, in a single system. The gelation components CBTC and TMA selectively bind with iron(III), which leads to the formation of metallogel and gets separated as a discrete layer, leaving the other metal ions in the solution. Therefore, CBTC and TMA together show iron-scavenging properties. This selective scavenging property is explored through FE-SEM, XPS, PXRD, IR, and ICP-AES analysis. The FE-SEM analysis shows a flower-petal-like morphology for the Fe(III) metallogel. The resemblance in the CBTC-TMA-Fe metallogel and metallogel obtained from the mixture of different metal salts is established through FE-SEM images and XPS analysis. The release of iron from the metallogel is achieved with the help of ascorbic acid, which converts Fe3+ to Fe2+. In biological systems, iron also gets released similarly from siderophores. This is the first report where the synthesized gelation component CBTC molecule is capable of scavenging out iron in the form of metallogel and self-separating from the aqueous mixture in the presence of various other metal ions.
Collapse
Affiliation(s)
- Ritika Munjal
- Department of Chemistry, School of Basic Sciences, Indian Institute of Technology Indore, Khandwa road, Simrol, Indore 453552, India
| | - Reena Kyarikwal
- Department of Chemistry, School of Basic Sciences, Indian Institute of Technology Indore, Khandwa road, Simrol, Indore 453552, India
| | - Sayantan Sarkar
- Department of Chemistry, School of Basic Sciences, Indian Institute of Technology Indore, Khandwa road, Simrol, Indore 453552, India
| | - Probal Nag
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Thiruvananthapuram 695551, India
| | - Sivaranjana Reddy Vennapusa
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Thiruvananthapuram 695551, India
| | - Suman Mukhopadhyay
- Department of Chemistry, School of Basic Sciences, Indian Institute of Technology Indore, Khandwa road, Simrol, Indore 453552, India
| |
Collapse
|
16
|
Li J, Koonyosying P, Korsieporn W, Paradee N, Hutachok N, Xu H, Ma Y, Chuljerm H, Srichairatanakool S. Deferiprone-resveratrol hybrid attenuates iron accumulation, oxidative stress, and antioxidant defenses in iron-loaded human Huh7 hepatic cells. Front Mol Biosci 2024; 11:1364261. [PMID: 38572444 PMCID: PMC10987756 DOI: 10.3389/fmolb.2024.1364261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 03/07/2024] [Indexed: 04/05/2024] Open
Abstract
Chronic liver diseases are complications of thalassemia with iron overload. Iron chelators are required to remove excessive iron, and antioxidants are supplemented to diminish harmful reactive oxygen species (ROS), purposing to ameliorate oxidative liver damage and dysfunctions. The deferiprone-resveratrol hybrid (DFP-RVT) is a synthetic iron chelator possessing anti-β-amyloid peptide aggregation, anti-malarial activity, and hepatoprotection in plasmodium-infected mice. The study focuses on investigating the antioxidant, cytotoxicity, iron-chelating, anti-lipid peroxidation, and antioxidant defense properties of DFP-RVT in iron-loaded human hepatocellular carcinoma (Huh7) cells. In the findings, DFP-RVT dose dependently bound Fe(II) and Fe(III) and exerted stronger ABTS•- and DPPH•-scavenging (IC50 = 8.0 and 164 μM, respectively) and anti-RBC hemolytic activities (IC50 = 640 μM) than DFP but weaker than RVT (p < 0.01). DFP-RVT was neither toxic to Huh7 cells nor PBMCs. In addition, DFP-RVT diminished the level of redox-active iron (p < 0.01) and decreased the non-heme iron content (p < 0.01) in iron-loaded Huh7 cells effectively when compared without treatment in the order of DFP-RVT > RVT ∼ DFP treatments (50 µM each). Moreover, the compound decreased levels of hepatic ROS in a dose-dependent manner and the level of malondialdehyde, which was stronger than DFP but weaker than RVT. Furthermore, DFP-RVT restored the decrease in the GSH content and GPX and SOD activities (p < 0.01) in iron-loaded Huh7 cells in the dose-dependent manner, consistently in the order of RVT > DFP-RVT > DFP. Thus, the DFP-RVT hybrid possesses potent iron chelation, antioxidation, anti-lipid peroxidation, and antioxidant defense against oxidative liver damage under iron overload.
Collapse
Affiliation(s)
- Jin Li
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Department of Biochemistry, Faculty of Basic Medicine, Youjiang Medical University for Nationalities, Baise, China
| | - Pimpisid Koonyosying
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Woranontee Korsieporn
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Narisara Paradee
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Nuntouchaporn Hutachok
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Honghong Xu
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Department of Biochemistry, Faculty of Basic Medicine, Youjiang Medical University for Nationalities, Baise, China
| | - Yongmin Ma
- School of Pharmaceutical and Chemical Engineering, Taizhou University, Taizhou, China
| | - Hataichanok Chuljerm
- School of Health Sciences Research, Research Institute for Health Sciences, Chiang Mai University, Chiang Mai, Thailand
| | | |
Collapse
|
17
|
Shin H, Lee J, Kim J, Lee G, Yun J. Effects of Nesting Material Provision and High-Dose Vitamin C Supplementation during the Peripartum Period on Prepartum Nest-Building Behavior, Farrowing Process, Oxidative Stress Status, Cortisol Levels, and Preovulatory Follicle Development in Hyperprolific Sows. Antioxidants (Basel) 2024; 13:210. [PMID: 38397808 PMCID: PMC10886068 DOI: 10.3390/antiox13020210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 02/03/2024] [Accepted: 02/05/2024] [Indexed: 02/25/2024] Open
Abstract
Hyperprolific sows often experience increased oxidative stress during late gestation and lactation periods, which can adversely affect the farrowing process and overall lactation performance. This study examines the influence of providing a coconut coir mat (CCM; 1 × 1 m) as nesting material, supplementing high-dose vit-C (HVC; 20% vit-C, 10 g/kg feed) as an antioxidant, or both on maternal behavior, the farrowing process, oxidative status, cortisol levels, and preovulatory follicle developments in sows with large litters. In total, 35 sows (Landrace × Yorkshire; litter size 15.43 ± 0.27) were allocated to the following four treatment groups: control (n = 9, basal diet), vit-C (n = 8, basal diet + HVC), mat (n = 10, basal diet + CCM), and mat + vit-C (n = 8, basal diet + HVC + CCM). A post-hoc analysis showed that compared with sows that were not provided CCM, mat and mat + vit-C groups demonstrated increased durations of nest-building behavior during the period from 24 h to 12 h before parturition (p < 0.05 for both), reduced farrowing durations, and decreased intervals from birth to first udder contact (p < 0.01 for both). The mat group exhibited lower advanced oxidation protein product (AOPP) levels during late gestation and lactation periods than the control group (p < 0.05). Sows with HVC supplementation showed longer farrowing durations than those without HVC supplementation (p < 0.0001). The vit-C group had higher salivary cortisol levels on day 1 after farrowing than the other treatment groups (p < 0.05). Furthermore, the follicle diameters on day 3 after weaning in the vit-C group tended to be smaller than those in the control group (p = 0.077). HVC supplementation prolonged farrowing and increased the physiological stress on postpartum, and no advantageous effects on maternal behavior and developmental progression of preovulatory follicles were observed. Hence, alternative solutions beyond nutritional approaches are required to address increased oxidative stress in hyperprolific sows and secure their welfare and reproductive performance. The present results substantiated the positive impact of providing CCM as nesting material for sows with large litters on nest-building behavior and the farrowing process, which could mitigate the deleterious consequences induced by peripartum physiological and oxidative stress.
Collapse
Affiliation(s)
| | | | | | | | - Jinhyeon Yun
- Department of Animal Science, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 61186, Republic of Korea; (H.S.); (J.L.); (J.K.); (G.L.)
| |
Collapse
|
18
|
Wu P, Li B, Liu Y, Bian Z, Xiong J, Wang Y, Zhu B. Multiple Physiological and Biochemical Functions of Ascorbic Acid in Plant Growth, Development, and Abiotic Stress Response. Int J Mol Sci 2024; 25:1832. [PMID: 38339111 PMCID: PMC10855474 DOI: 10.3390/ijms25031832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/08/2024] [Accepted: 01/09/2024] [Indexed: 02/12/2024] Open
Abstract
Ascorbic acid (AsA) is an important nutrient for human health and disease cures, and it is also a crucial indicator for the quality of fruit and vegetables. As a reductant, AsA plays a pivotal role in maintaining the intracellular redox balance throughout all the stages of plant growth and development, fruit ripening, and abiotic stress responses. In recent years, the de novo synthesis and regulation at the transcriptional level and post-transcriptional level of AsA in plants have been studied relatively thoroughly. However, a comprehensive and systematic summary about AsA-involved biochemical pathways, as well as AsA's physiological functions in plants, is still lacking. In this review, we summarize and discuss the multiple physiological and biochemical functions of AsA in plants, including its involvement as a cofactor, substrate, antioxidant, and pro-oxidant. This review will help to facilitate a better understanding of the multiple functions of AsA in plant cells, as well as provide information on how to utilize AsA more efficiently by using modern molecular biology methods.
Collapse
Affiliation(s)
- Peiwen Wu
- College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China; (P.W.); (B.L.); (Y.L.); (Z.B.); (J.X.)
| | - Bowen Li
- College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China; (P.W.); (B.L.); (Y.L.); (Z.B.); (J.X.)
| | - Ye Liu
- College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China; (P.W.); (B.L.); (Y.L.); (Z.B.); (J.X.)
| | - Zheng Bian
- College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China; (P.W.); (B.L.); (Y.L.); (Z.B.); (J.X.)
| | - Jiaxin Xiong
- College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China; (P.W.); (B.L.); (Y.L.); (Z.B.); (J.X.)
| | - Yunxiang Wang
- Institute of Agri-Food Processing and Nutrition, Beijing Academy of Agricultural and Forestry Sciences, Beijing 100097, China
| | - Benzhong Zhu
- College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China; (P.W.); (B.L.); (Y.L.); (Z.B.); (J.X.)
| |
Collapse
|
19
|
Arrey Agbor DB, Karumanchi A, Adivi S, Mohammed MA, Ur Rehman W, Chaudhari SS, Soe TM, Ali N. Compare the Efficacy and Safety of Deferoxamine, Deferasirox, and Deferiprone in Patients With Sickle Cell Disease or Transfusion-Dependent Anemia: A Network Meta-Analysis of Randomized Control Trials. Cureus 2024; 16:e53644. [PMID: 38455804 PMCID: PMC10919752 DOI: 10.7759/cureus.53644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/05/2024] [Indexed: 03/09/2024] Open
Abstract
This network meta-analysis was conducted with the aim of comparing the efficacy and safety of deferiprone (DFP), deferasirox (DFX), and deferoxamine (DFO) in individuals with sickle cell disease (SCD) or transfusion-dependent anemia. This systematic review and meta-analysis adhered to the "Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA)" guidelines. The search was conducted on electronic databases, including PubMed, CINAHIL, and EMBASE, from the inception of databases to January 10, 2024. Outcomes assessed in this study included a change in liver iron concentration (LIC) and a change in ferritin from baseline. For safety analysis, adverse events were compared among three treatment groups. A total of five studies were included in this meta-analysis. The pooled analysis showed that the change in LIC and serum ferritin from baseline was not significantly different in patients with SCD or other anemias. In terms of adverse events, deferiprone was the safest among all. In conclusion, deferiprone demonstrated noninferiority to deferoxamine and deferasirox in measures of iron load, presenting a viable treatment option. Safety outcomes revealed deferasirox carried a higher risk of adverse events compared to deferiprone, supporting its favorable safety profile.
Collapse
Affiliation(s)
| | | | - Santoshini Adivi
- Medicine, Non-Resident Indian (NRI) Medical College and Hospital, Guntur, IND
| | | | - Wajeeh Ur Rehman
- General Physician, Saidu Medical College, Khyber Medical University, Swat, PAK
| | - Sandipkumar S Chaudhari
- Cardiothoracic Surgery, University of Alabama at Birmingham, Birmingham, USA
- Family Medicine, University of North Dakota School of Medicine and Health Sciences, Fargo, USA
| | - Thin M Soe
- Medicine, University of Medicine (1), Yangon, Yangon, MMR
| | - Neelum Ali
- Internal Medicine, University of Health Sciences, Lahore, PAK
| |
Collapse
|
20
|
Sullivan KE, Swanhall A, Livingston S. Interpretation of Serum Analytes for Nutritional Evaluation. Vet Clin North Am Exot Anim Pract 2024; 27:135-154. [PMID: 37735025 DOI: 10.1016/j.cvex.2023.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/23/2023]
Abstract
Serum micronutrient analysis can provide insight into diet and clinical assessment, despite the complicated interplay between micronutrients and species idiosyncrasies. Approach serum nutrient analytes with skepticism, before jumping to alter diets or offering supplementation. Utilize across species but know that some exotics have exceptions to typical ranges, such as calcium in rabbits or iron in reptiles. Make sure you trust that referenced ranges reflect normal and healthy for that species. Micronutrients are integral to every bodily process, so measurement of serum analytes can tell a story that aids in the clinical picture, when one can recognize what stands out.
Collapse
Affiliation(s)
- Kathleen E Sullivan
- Disney's Animals, Science and Environment, 1180 North Savannah Circle, Lake Buena Vista, FL 32830, USA.
| | - Alyxandra Swanhall
- Disney's Animals, Science and Environment, 1180 North Savannah Circle, Lake Buena Vista, FL 32830, USA
| | - Shannon Livingston
- Disney's Animals, Science and Environment, 1180 North Savannah Circle, Lake Buena Vista, FL 32830, USA
| |
Collapse
|
21
|
Zhang C, Zhai T, Zhu J, Wei D, Ren S, Yang Y, Gao F, Zhao L. Research Progress of Antioxidants in Oxidative Stress Therapy after Spinal Cord Injury. Neurochem Res 2023; 48:3473-3484. [PMID: 37526867 DOI: 10.1007/s11064-023-03993-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 07/08/2023] [Accepted: 07/09/2023] [Indexed: 08/02/2023]
Abstract
Spinal cord injury (SCI) is a serious problem in the central nervous system resulting in high disability and mortality with complex pathophysiological mechanisms. Oxidative stress is one of the main secondary reactions of SCI, and its main pathophysiological marker is the production of excess reactive oxygen species. The overproduction of reactive oxygen species and insufficient antioxidant capacity lead to the occurrence of oxidative stress and neuroinflammation, and the dysregulation of oxidative stress and neuroinflammation leads to further aggravation of damage. Oxidative stress can initiate a variety of inflammatory and apoptotic pathways, and targeted antioxidant therapy can greatly reduce oxidative stress and reduce neuroinflammation, which has a certain positive effect on rehabilitation and prognosis in SCI. This article reviewed the research on different types of antioxidants and related treatments in SCI, focusing on the mechanisms of oxidative stress.
Collapse
Affiliation(s)
- Can Zhang
- Medical School of Yan'an University, No. 580 Shengdi Road, Baota District, Yan'an, 716000, Shaanxi, China
| | - Tianyu Zhai
- Medical School of Yan'an University, No. 580 Shengdi Road, Baota District, Yan'an, 716000, Shaanxi, China
| | - Jinghui Zhu
- Medical School of Yan'an University, No. 580 Shengdi Road, Baota District, Yan'an, 716000, Shaanxi, China
| | - Dongmin Wei
- Medical School of Yan'an University, No. 580 Shengdi Road, Baota District, Yan'an, 716000, Shaanxi, China
| | - Shuting Ren
- Medical School of Yan'an University, No. 580 Shengdi Road, Baota District, Yan'an, 716000, Shaanxi, China
| | - Yanling Yang
- Medical School of Yan'an University, No. 580 Shengdi Road, Baota District, Yan'an, 716000, Shaanxi, China
| | - Feng Gao
- Medical School of Yan'an University, No. 580 Shengdi Road, Baota District, Yan'an, 716000, Shaanxi, China
| | - Lin Zhao
- Medical School of Yan'an University, No. 580 Shengdi Road, Baota District, Yan'an, 716000, Shaanxi, China.
| |
Collapse
|
22
|
Granier C, Toesca J, Mialon C, Ritter M, Freitas N, Boson B, Pécheur EI, Cosset FL, Denolly S. Low-density hepatitis C virus infectious particles are protected from oxidation by secreted cellular proteins. mBio 2023; 14:e0154923. [PMID: 37671888 PMCID: PMC10653866 DOI: 10.1128/mbio.01549-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Accepted: 07/04/2023] [Indexed: 09/07/2023] Open
Abstract
IMPORTANCE Assessments of viral stability on surfaces or in body fluids under different environmental conditions and/or temperatures are often performed, as they are key to understanding the routes and parameters of viral transmission and to providing clues on the epidemiology of infections. However, for most viruses, the mechanisms of inactivation vs stability of viral particles remain poorly defined. Although they are structurally diverse, with different compositions, sizes, and shapes, enveloped viruses are generally less stable than non-enveloped viruses, pointing out the role of envelopes themselves in virus lability. In this report, we investigated the properties of hepatitis C virus (HCV) particles with regards to their stability. We found that, compared to alternative enveloped viruses such as Dengue virus (DENV), severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), hepatitis delta virus (HDV), and Crimean-Congo hemorrhagic fever virus (CCHFV) that infect the liver, HCV particles are intrinsically labile. We determined the mechanisms that drastically alter their specific infectivity through oxidation of their lipids, and we highlighted that they are protected from lipid oxidation by secreted cellular proteins, which can protect their membrane fusion capacity and overall infectivity.
Collapse
Affiliation(s)
- Christelle Granier
- CIRI – Centre International de Recherche en Infectiologie, Univ. Lyon, Université Claude Bernard Lyon 1, Inserm, U1111, CNRS, UMR5308 ENS de Lyon, Lyon, France
| | - Johan Toesca
- CIRI – Centre International de Recherche en Infectiologie, Univ. Lyon, Université Claude Bernard Lyon 1, Inserm, U1111, CNRS, UMR5308 ENS de Lyon, Lyon, France
| | - Chloé Mialon
- CIRI – Centre International de Recherche en Infectiologie, Univ. Lyon, Université Claude Bernard Lyon 1, Inserm, U1111, CNRS, UMR5308 ENS de Lyon, Lyon, France
| | - Maureen Ritter
- CIRI – Centre International de Recherche en Infectiologie, Univ. Lyon, Université Claude Bernard Lyon 1, Inserm, U1111, CNRS, UMR5308 ENS de Lyon, Lyon, France
| | - Natalia Freitas
- CIRI – Centre International de Recherche en Infectiologie, Univ. Lyon, Université Claude Bernard Lyon 1, Inserm, U1111, CNRS, UMR5308 ENS de Lyon, Lyon, France
| | - Bertrand Boson
- CIRI – Centre International de Recherche en Infectiologie, Univ. Lyon, Université Claude Bernard Lyon 1, Inserm, U1111, CNRS, UMR5308 ENS de Lyon, Lyon, France
| | - Eve-Isabelle Pécheur
- Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, CNRS 5286, Inserm U1052, Université Claude Bernard Lyon 1, Lyon, France
| | - François-Loïc Cosset
- CIRI – Centre International de Recherche en Infectiologie, Univ. Lyon, Université Claude Bernard Lyon 1, Inserm, U1111, CNRS, UMR5308 ENS de Lyon, Lyon, France
| | - Solène Denolly
- CIRI – Centre International de Recherche en Infectiologie, Univ. Lyon, Université Claude Bernard Lyon 1, Inserm, U1111, CNRS, UMR5308 ENS de Lyon, Lyon, France
- Department of Infectious Diseases, Molecular Virology, Heidelberg University, Heidelberg, Germany
| |
Collapse
|
23
|
Xie Q, Liu H, Wen S, Wang X, Bing W, Ji W, Zhao B, Ozaki Y, Song W. SERS Tracking Oxidative Stress on a Metalloporphyrin Framework by Vitamin C. Anal Chem 2023; 95:15333-15341. [PMID: 37793058 DOI: 10.1021/acs.analchem.3c02935] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/06/2023]
Abstract
Accurate control of charge transfer is crucial to investigate the catalytic reaction mechanism of the biological oxidation process that biomedicine participates in. Herein, we have established an assembly model of metalloporphyrin framework (MPF) nanosheets as the active centers of biological enzymes. The introduction of Vitamin C (VC) into the MPF system can precisely modulate its content of charges. The surface-enhanced Raman scattering activity and peroxidase-like catalytic performance are enhanced simultaneously for the first time by manipulating the optimal molar ratio of an MPF to VC and the reaction sequence with target model molecules. We have confirmed that the formation of the intermediate of Fe(2+)-OOH species is specifically enhanced after VC modulation, which indicates that VC can regulate the oxidative stress of the active center of biological enzymes. This discovery not only accurately resolves the mechanism of VC-selective anticancer therapy but also has important significance for the precise treatment of VC synergistic targeting medicines.
Collapse
Affiliation(s)
- Qinhui Xie
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
- School of Chemistry and Life Science, Changchun University of Technology, Changchun 130012, P. R. China
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, P. R. China
| | - Hao Liu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Sisi Wen
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Xiaojun Wang
- School of Construction Machinery, Shandong Jiaotong University, Changqing University Science Park, Jinan 250357, P. R. China
| | - Wei Bing
- School of Chemistry and Life Science, Changchun University of Technology, Changchun 130012, P. R. China
- Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun 130022, P. R. China
| | - Wei Ji
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, P. R. China
| | - Bing Zhao
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Yukihiro Ozaki
- School of Biological and Environmatal Sciences, Kwansei Gakuin University, 1-Gakuen-Uegahara, Sanda, Hyogo 669-1330, Japan
| | - Wei Song
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| |
Collapse
|
24
|
Kola A, Vigni G, Baratto MC, Valensin D. A Combined NMR and UV-Vis Approach to Evaluate Radical Scavenging Activity of Rosmarinic Acid and Other Polyphenols. Molecules 2023; 28:6629. [PMID: 37764405 PMCID: PMC10536562 DOI: 10.3390/molecules28186629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 09/08/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
Oxidative stress results from an imbalance between reactive oxygen species (ROS) production and the body's ability to neutralize them. ROS are reactive molecules generated during cellular metabolism and play a crucial role in normal physiological processes. However, excessive ROS production can lead to oxidative damage, contributing to various diseases and aging. This study is focused on rosmarinic acid (RA), a hydroxycinnamic acid (HCA) derivative well known for its antioxidant activity. In addition, RA has also demonstrated prooxidant behavior under specific conditions involving high concentrations of transition metal ions such as iron and copper, high pH, and the presence of oxygen. In this study, we aim to clarify the underlying mechanisms and factors governing the antioxidant and prooxidant activities of RA, and to compare them with other HCA derivatives. UV-Vis, NMR, and EPR techniques were used to explore copper(II)'s binding ability of RA, caffeic acid, and p-coumaric acid. At the same time, UV-Vis and NMR methods were exploited to evaluate the polyphenols' free radical scavenging abilities towards ROS generated by the ascorbic acid-copper(II) system. All the data indicate that RA is the most effective polyphenol both in copper binding abilities and ROS protection.
Collapse
Affiliation(s)
| | | | | | - Daniela Valensin
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy; (A.K.); (G.V.); (M.C.B.)
| |
Collapse
|
25
|
Otanwa OO, Ndidi US, Ibrahim AB, Balogun EO, Anigo KM. Prooxidant effects of high dose ascorbic acid administration on biochemical, haematological and histological changes in Cavia porcellus (Guinea pigs): a Guinea pig experimental model. Pan Afr Med J 2023; 46:18. [PMID: 38035158 PMCID: PMC10683174 DOI: 10.11604/pamj.2023.46.18.36098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 08/01/2023] [Indexed: 12/02/2023] Open
Abstract
Introduction Ascorbic acid (AA) is a water-soluble vitamin that is well known for its antioxidant and immune-boosting properties. Owing to the wide-range application of AA in the treatment of numerous ailments and its sweet taste, it is usually abused i.e. overused. However, the effect of the abuse has rarely received attention. Therefore, this study was designed to assess the effect of oral administration of high-dose ascorbic acid on biochemical and haematological parameters as well as the effects on the kidney, liver and lungs. Methods adult guinea pigs were divided into four (4) groups where group 1 served as the untreated control group and groups 2-4 were dosed with 29 mg, 662 mg and 1258 mg of ascorbic acid per day, respectively for 28 days. Results the result revealed that administration of high dose ascorbic acid significantly (P<0.05) increased serum creatinine from 50.0 ± 7.09 (NC) to AA29- 73.8 ± 4.5, AA-662-89.7 ± 3.3 and AA1258- 79.9 ± 5.7mmol/L and urea levels in the treatment group AA-1258 -18.3 ± 0.5 µmol/L compared to the normal group (NC-2.15 ± 0.6 µmol/L). Disturbance in electrolyte balance was observed with a significant (P<0.05) increase in Na+ from NC- 131.3 ± 3.5 mmol/L to 135.7 ± 3.6 mmol/L in the AA-1258 treatment group, Cl- ( NC- 67.1 ± 1.6 mmol/L increased to AA29- 92.1 ± 0.83, AA662- 95.3 ± 1.3 and AA-1258- 95.6 ± 0.4 mmol/L), and Ca2+ (NC- 2.66 ± 0.03 to AA1258- 3.36 ± 0.03 mmol/L) and a significant (P<0.05) decrease in serum K+ in the AA29-5.0 ± 0.2, AA662-5.2 ± 0.3 and AA1258-5.6 ± 0.3 mmol/L treatment groups compared to the normal group 6.6 ± 0.3 mmol/L. There was also a significant (P<0.05) increase in the differential blood count in the animals with a significant (P<0.05) increase in red blood count ( NC-5.11 ± 0.13 ×106/µL to AA1258- 5.75 ± 0.11×106/µL ), haematocrit count (NC 39.90 ± 0.52% to AA-29-42.08 ± 0.24 and AA1258-46.13 ± 0.86%), white blood count (NC 10.15 ± 1.01 ×103/µL to AA1258- 15.18 ± 1.65×103/µL ), total lymphocytes (NC 3.5 ± 0.51×103/µL to AA29-5.28 ±0.43×103/µL), monocytes (NC 0.45 ± 0.07×103/µL to AA1258 0.80 ± 0.07×103/µL), eosinophils (NC 0.23 ± 0.03×103/µL to AA12580.40 ± 0.03×103/µL), basophils (NC0.68 ± 0.10×103/µL to AA12581.20 ± 0.10×103/µL) and neutrophil count (NC 4.73 ± 0.68×103/µL to AA1258 8.36 ± 0.71×103/µL). The histopathological indices indicate cellular necrosis in the AA662 and AA1258 treatment groups of the kidney and liver respectively compared to the normal control which has normal cells. Conclusion high dose of ascorbic acid can therefore be suggested to cause damage to the cells by causing cellular necrosis as observed in the histopathology results and has effect on the blood cells as observed in the increase compared to the normal control, and the consequences are possibly triggered through inflammatory responses.
Collapse
Affiliation(s)
- Oladunni Omolabake Otanwa
- Department of Biochemistry, Faculty of Life Sciences, Ahmadu Bello University, Zaria, Kaduna State, Nigeria
- Department of Biochemistry, Faculty of Science, University of Uyo, Uyo, Akwa Ibom State, Nigeria
| | - Uche Samuel Ndidi
- Department of Biochemistry, Faculty of Life Sciences, Ahmadu Bello University, Zaria, Kaduna State, Nigeria
| | - Abdulrazak Baba Ibrahim
- Department of Biochemistry, Faculty of Life Sciences, Ahmadu Bello University, Zaria, Kaduna State, Nigeria
| | - Emmanuel Oluwadare Balogun
- Department of Biochemistry, Faculty of Life Sciences, Ahmadu Bello University, Zaria, Kaduna State, Nigeria
| | - Kola Matthew Anigo
- Department of Biochemistry, Faculty of Life Sciences, Ahmadu Bello University, Zaria, Kaduna State, Nigeria
| |
Collapse
|
26
|
Vijay K, Shibasini M, Sivasakthivelan P, Kavitha T. Microbial siderophores as molecular shuttles for metal cations: sources, sinks and application perspectives. Arch Microbiol 2023; 205:322. [PMID: 37644212 DOI: 10.1007/s00203-023-03644-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 07/25/2023] [Accepted: 07/28/2023] [Indexed: 08/31/2023]
Abstract
Iron is one of the highly abundant elements on the earth's crust, an essential micronutrient for a majority of life forms, and exists in two frequent oxidation states such as ferrous (Fe2+) and ferric (Fe3+). These two oxidation states are interconvertible by redox reactions and form complexes with a wide range of siderophores. At neutral pH in soil, Fe2+ is highly soluble upto 100 mM but have less biological value, whereas Fe3+ is less soluble upto 10-9 M. This reduced bioavailability of Fe3+ induces competition among microorganisms. As many microorganisms need at least 10-6 M of Fe3+ form of iron for their growth, siderophores from these microbes readily withdraw Fe3+ iron from a variety of habitats for their survival. In this review, we bring into light the several recent investigations related to diverse chemistry of microbial siderophores, mechanisms of siderophore uptake, biosynthetic gene clusters in microbial genomes, various sources of heavy metal cations in soil, siderophore-binding protein receptors and commercialisation perspectives of siderophores. Besides, this review unearths the recent advancements in the characterisation of novel siderophores and its heavy metal complexes alongside the interaction kinetics with receptors.
Collapse
Affiliation(s)
- Karuppiah Vijay
- Department of Microbiology, Science Campus, Alagappa University, Karaikudi, Tamil Nadu, 630 003, India
| | - Murugan Shibasini
- Department of Microbiology, Science Campus, Alagappa University, Karaikudi, Tamil Nadu, 630 003, India
| | - Panneerselvam Sivasakthivelan
- Department of Agricultural Microbiology, Faculty of Agriculture, Annamalai University, Annamalai Nagar, Chidambaram, Tamil Nadu, 608 002, India
| | - Thangavel Kavitha
- Department of Microbiology, Science Campus, Alagappa University, Karaikudi, Tamil Nadu, 630 003, India.
| |
Collapse
|
27
|
Kontoghiorghes GJ. Iron Load Toxicity in Medicine: From Molecular and Cellular Aspects to Clinical Implications. Int J Mol Sci 2023; 24:12928. [PMID: 37629109 PMCID: PMC10454416 DOI: 10.3390/ijms241612928] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/12/2023] [Accepted: 08/15/2023] [Indexed: 08/27/2023] Open
Abstract
Iron is essential for all organisms and cells. Diseases of iron imbalance affect billions of patients, including those with iron overload and other forms of iron toxicity. Excess iron load is an adverse prognostic factor for all diseases and can cause serious organ damage and fatalities following chronic red blood cell transfusions in patients of many conditions, including hemoglobinopathies, myelodyspasia, and hematopoietic stem cell transplantation. Similar toxicity of excess body iron load but at a slower rate of disease progression is found in idiopathic haemochromatosis patients. Excess iron deposition in different regions of the brain with suspected toxicity has been identified by MRI T2* and similar methods in many neurodegenerative diseases, including Alzheimer's disease and Parkinson's disease. Based on its role as the major biological catalyst of free radical reactions and the Fenton reaction, iron has also been implicated in all diseases associated with free radical pathology and tissue damage. Furthermore, the recent discovery of ferroptosis, which is a cell death program based on free radical generation by iron and cell membrane lipid oxidation, sparked thousands of investigations and the association of iron with cardiac, kidney, liver, and many other diseases, including cancer and infections. The toxicity implications of iron in a labile, non-protein bound form and its complexes with dietary molecules such as vitamin C and drugs such as doxorubicin and other xenobiotic molecules in relation to carcinogenesis and other forms of toxicity are also discussed. In each case and form of iron toxicity, the mechanistic insights, diagnostic criteria, and molecular interactions are essential for the design of new and effective therapeutic interventions and of future targeted therapeutic strategies. In particular, this approach has been successful for the treatment of most iron loading conditions and especially for the transition of thalassemia from a fatal to a chronic disease due to new therapeutic protocols resulting in the complete elimination of iron overload and of iron toxicity.
Collapse
Affiliation(s)
- George J Kontoghiorghes
- Postgraduate Research Institute of Science, Technology, Environment and Medicine, 3, Ammochostou Street, Limassol 3021, Cyprus
| |
Collapse
|
28
|
Li W, Zhou H, Zhang X, Li Z, Zou Z, Shen Y, Wang G. Oxidation-Resistant Silicon Nanosystem for Intelligent Controlled Ferrous Foliar Delivery to Crops. ACS NANO 2023; 17:15199-15215. [PMID: 37486141 DOI: 10.1021/acsnano.3c05120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
Since ferrous (Fe(II)) is the main form of plant absorption, traditional ferrous foliar fertilizers (TFFF) are widely used in modern agriculture. However, TFFF suffer from the shortcomings of weak antioxidant capacity (AC), low foliar adhesion efficiency (FAE), poor fertilizer utilization efficiency (FUE), and noncontrollable slow-release behavior. To overcome these limitations, an oxidation-resistant silicon nanosystem for intelligent controlled ferrous foliar delivery to crops was first developed by using environmentally friendly micro/nano structured hollow silicon as carrier, and combining with vitamin C (in situ antioxidant) to synthesize an oxidation-resistant ferrous foliar fertilizer (ORFFF) for ameliorating Fe-deficiency in crops and increasing crop yield. Compared with TFFF, the ORFFF has excellent ferrous AC (only 11.5% of Fe(II) was oxidized in ORFFF within 72 h), ultrahigh FAE (∼84% of adhesion percentage (%) after two-times simulated rain rinsing), nutrient slow-release ability (720 h gradually release 100.6 mg·g-1), pH-controlled release ability (pH 3-8), and verified high biological safety (100% survival rate for zebrafish and earthworm). The pot experiments showed that ORFFF can correct the Fe-deficiency symptoms of tomato seedlings promptly compared with TFFF, and the FUE of ORFFF is 4.2 times that of TFFF. The specific pH responsiveness of ORFFF can control the slow-release rate of Fe(II) to satisfy the needs of Fe in varying crops and different growing periods of crops. This work provides a feasible way to achieve green and safe Fe supplementation for crops, reduce Fe fertilizer waste, avoid soil pollution caused by Fe fertilizer abuse, and promote the sustainable development of modern nanoagriculture.
Collapse
Affiliation(s)
- Wenchao Li
- Key Laboratory of Materials Physics, Centre for Environmental and Energy Nanomaterials, Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, P. R. China
- Science Island Branch of Graduate School, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Hongjian Zhou
- Key Laboratory of Materials Physics, Centre for Environmental and Energy Nanomaterials, Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, P. R. China
- Science Island Branch of Graduate School, University of Science and Technology of China, Hefei 230026, P. R. China
- Lu'an Branch, Anhui Institute of Innovation for Industrial Technology, Lu'an 237100, P. R. China
| | - Xinyuan Zhang
- Key Laboratory of Materials Physics, Centre for Environmental and Energy Nanomaterials, Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, P. R. China
- Science Island Branch of Graduate School, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Zeyang Li
- Key Laboratory of Materials Physics, Centre for Environmental and Energy Nanomaterials, Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, P. R. China
- Science Island Branch of Graduate School, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Zidan Zou
- Key Laboratory of Materials Physics, Centre for Environmental and Energy Nanomaterials, Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, P. R. China
- Science Island Branch of Graduate School, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Yue Shen
- Key Laboratory of Materials Physics, Centre for Environmental and Energy Nanomaterials, Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, P. R. China
- Science Island Branch of Graduate School, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Guozhong Wang
- Key Laboratory of Materials Physics, Centre for Environmental and Energy Nanomaterials, Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, P. R. China
- Science Island Branch of Graduate School, University of Science and Technology of China, Hefei 230026, P. R. China
- Lu'an Branch, Anhui Institute of Innovation for Industrial Technology, Lu'an 237100, P. R. China
| |
Collapse
|
29
|
Bejarano E, Weinberg J, Clark M, Taylor A, Rowan S, Whitcomb EA. Redox Regulation in Age-Related Cataracts: Roles for Glutathione, Vitamin C, and the NRF2 Signaling Pathway. Nutrients 2023; 15:3375. [PMID: 37571310 PMCID: PMC10421530 DOI: 10.3390/nu15153375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/19/2023] [Accepted: 07/26/2023] [Indexed: 08/13/2023] Open
Abstract
Age is the biggest risk factor for cataracts, and aberrant oxidative modifications are correlated with age-related cataracts, suggesting that proper redox regulation is important for lens clarity. The lens has very high levels of antioxidants, including ascorbate and glutathione that aid in keeping the lens clear, at least in young animals and humans. We summarize current functional and genetic data supporting the hypothesis that impaired regulation of oxidative stress leads to redox dysregulation and cataract. We will focus on the essential endogenous antioxidant glutathione and the exogenous antioxidant vitamin C/ascorbate. Additionally, gene expression in response to oxidative stress is regulated in part by the transcription factor NRF2 (nuclear factor erythroid 2-related factor 2 [NFE2L2]), thus we will summarize our data regarding cataracts in Nrf2-/- mice. In this work, we discuss the function and integration of these capacities with the objective of maintaining lens clarity.
Collapse
Affiliation(s)
- Eloy Bejarano
- JM-USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA 02111, USA; (E.B.); (J.W.); (M.C.); (A.T.); (S.R.)
- School of Health Sciences and Veterinary, Universidad CEU Cardenal Herrera, CEU Universities, 46113 Valencia, Spain
| | - Jasper Weinberg
- JM-USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA 02111, USA; (E.B.); (J.W.); (M.C.); (A.T.); (S.R.)
| | - Madison Clark
- JM-USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA 02111, USA; (E.B.); (J.W.); (M.C.); (A.T.); (S.R.)
| | - Allen Taylor
- JM-USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA 02111, USA; (E.B.); (J.W.); (M.C.); (A.T.); (S.R.)
- Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA 02111, USA
- Department of Ophthalmology, School of Medicine, Tufts University, Boston, MA 02111, USA
- Department of Developmental, Chemical and Molecular Biology, Tufts University, Boston, MA 02111, USA
| | - Sheldon Rowan
- JM-USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA 02111, USA; (E.B.); (J.W.); (M.C.); (A.T.); (S.R.)
- Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA 02111, USA
- Department of Ophthalmology, School of Medicine, Tufts University, Boston, MA 02111, USA
| | - Elizabeth A. Whitcomb
- JM-USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA 02111, USA; (E.B.); (J.W.); (M.C.); (A.T.); (S.R.)
| |
Collapse
|
30
|
Kontoghiorghes GJ. The Vital Role Played by Deferiprone in the Transition of Thalassaemia from a Fatal to a Chronic Disease and Challenges in Its Repurposing for Use in Non-Iron-Loaded Diseases. Pharmaceuticals (Basel) 2023; 16:1016. [PMID: 37513928 PMCID: PMC10384919 DOI: 10.3390/ph16071016] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/13/2023] [Accepted: 07/15/2023] [Indexed: 07/30/2023] Open
Abstract
The iron chelating orphan drug deferiprone (L1), discovered over 40 years ago, has been used daily by patients across the world at high doses (75-100 mg/kg) for more than 30 years with no serious toxicity. The level of safety and the simple, inexpensive synthesis are some of the many unique properties of L1, which played a major role in the contribution of the drug in the transition of thalassaemia from a fatal to a chronic disease. Other unique and valuable clinical properties of L1 in relation to pharmacology and metabolism include: oral effectiveness, which improved compliance compared to the prototype therapy with subcutaneous deferoxamine; highly effective iron removal from all iron-loaded organs, particularly the heart, which is the major target organ of iron toxicity and the cause of mortality in thalassaemic patients; an ability to achieve negative iron balance, completely remove all excess iron, and maintain normal iron stores in thalassaemic patients; rapid absorption from the stomach and rapid clearance from the body, allowing a greater frequency of repeated administration and overall increased efficacy of iron excretion, which is dependent on the dose used and also the concentration achieved at the site of drug action; and its ability to cross the blood-brain barrier and treat malignant, neurological, and microbial diseases affecting the brain. Some differential pharmacological activity by L1 among patients has been generally shown in relation to the absorption, distribution, metabolism, elimination, and toxicity (ADMET) of the drug. Unique properties exhibited by L1 in comparison to other drugs include specific protein interactions and antioxidant effects, such as iron removal from transferrin and lactoferrin; inhibition of iron and copper catalytic production of free radicals, ferroptosis, and cuproptosis; and inhibition of iron-containing proteins associated with different pathological conditions. The unique properties of L1 have attracted the interest of many investigators for drug repurposing and use in many pathological conditions, including cancer, neurodegenerative conditions, microbial conditions, renal conditions, free radical pathology, metal intoxication in relation to Fe, Cu, Al, Zn, Ga, In, U, and Pu, and other diseases. Similarly, the properties of L1 increase the prospects of its wider use in optimizing therapeutic efforts in many other fields of medicine, including synergies with other drugs.
Collapse
Affiliation(s)
- George J Kontoghiorghes
- Postgraduate Research Institute of Science, Technology, Environment and Medicine, Limassol 3021, Cyprus
| |
Collapse
|
31
|
Jena AB, Samal RR, Bhol NK, Duttaroy AK. Cellular Red-Ox system in health and disease: The latest update. Biomed Pharmacother 2023; 162:114606. [PMID: 36989716 DOI: 10.1016/j.biopha.2023.114606] [Citation(s) in RCA: 134] [Impact Index Per Article: 67.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/13/2023] [Accepted: 03/23/2023] [Indexed: 03/29/2023] Open
Abstract
Cells are continually exposed to reactive oxygen species (ROS) generated during cellular metabolism. Apoptosis, necrosis, and autophagy are biological processes involving a feedback cycle that causes ROS molecules to induce oxidative stress. To adapt to ROS exposure, living cells develop various defense mechanisms to neutralize and use ROS as a signaling molecule. The cellular redox networks combine signaling pathways that regulate cell metabolism, energy, cell survival, and cell death. Superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPX) are essential antioxidant enzymes that are required for scavenging ROS in various cell compartments and response to stressful situations. Among the non-enzymatic defenses, vitamin C, glutathione (GSH), polyphenols, carotenoids, vitamin E, etc., are also essential. This review article describes how ROS are produced as byproducts of oxidation/reduction (redox) processes and how the antioxidants defense system is directly or indirectly engaged in scavenging ROS. In addition, we used computational methods to determine the comparative profile of binding energies of several antioxidants with antioxidant enzymes. The computational analysis demonstrates that antioxidants with a high affinity for antioxidant enzymes regulate their structures.
Collapse
Affiliation(s)
- Atala Bihari Jena
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Rashmi Rekha Samal
- CSIR-Institute of Minerals & Materials Technology, Bhubaneswar 751 013, India
| | - Nitish Kumar Bhol
- Post Graduate Department of Biotechnology, Utkal University, Bhubaneswar 751004, Odisha, India
| | - Asim K Duttaroy
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, 0317 Oslo, Norway.
| |
Collapse
|
32
|
Vignaud J, Loiseau C, Hérault J, Mayer C, Côme M, Martin I, Ulmann L. Microalgae Produce Antioxidant Molecules with Potential Preventive Effects on Mitochondrial Functions and Skeletal Muscular Oxidative Stress. Antioxidants (Basel) 2023; 12:antiox12051050. [PMID: 37237915 DOI: 10.3390/antiox12051050] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/25/2023] [Accepted: 05/03/2023] [Indexed: 05/28/2023] Open
Abstract
In recent years, microalgae have become a source of molecules for a healthy life. Their composition of carbohydrates, peptides, lipids, vitamins and carotenoids makes them a promising new source of antioxidant molecules. Skeletal muscle is a tissue that requires constant remodeling via protein turnover, and its regular functioning consumes energy in the form of adenosine triphosphate (ATP), which is produced by mitochondria. Under conditions of traumatic exercise or muscular diseases, a high production of reactive oxygen species (ROS) at the origin of oxidative stress (OS) will lead to inflammation and muscle atrophy, with life-long consequences. In this review, we describe the potential antioxidant effects of microalgae and their biomolecules on mitochondrial functions and skeletal muscular oxidative stress during exercises or in musculoskeletal diseases, as in sarcopenia, chronic obstructive pulmonary disease (COPD) and Duchenne muscular dystrophy (DMD), through the increase in and regulation of antioxidant pathways and protein synthesis.
Collapse
Affiliation(s)
- Jordi Vignaud
- BiOSSE (Biology of Organisms, Stress, Health, Environment), Institut Universitaire de Technologie, Département Génie Biologique, Le Mans Université, F-53020 Laval, France
| | - Céline Loiseau
- BiOSSE (Biology of Organisms, Stress, Health, Environment), Institut Universitaire de Technologie, Département Génie Biologique, Le Mans Université, F-53020 Laval, France
| | - Josiane Hérault
- BiOSSE (Biology of Organisms, Stress, Health, Environment), Institut Universitaire de Technologie, Département Génie Biologique, Le Mans Université, F-53020 Laval, France
| | - Claire Mayer
- BiOSSE (Biology of Organisms, Stress, Health, Environment), Institut Universitaire de Technologie, Département Génie Biologique, Le Mans Université, F-53020 Laval, France
| | - Martine Côme
- BiOSSE (Biology of Organisms, Stress, Health, Environment), Institut Universitaire de Technologie, Département Génie Biologique, Le Mans Université, F-53020 Laval, France
| | - Isabelle Martin
- BiOSSE (Biology of Organisms, Stress, Health, Environment), Institut Universitaire de Technologie, Département Génie Biologique, Le Mans Université, F-53020 Laval, France
| | - Lionel Ulmann
- BiOSSE (Biology of Organisms, Stress, Health, Environment), Institut Universitaire de Technologie, Département Génie Biologique, Le Mans Université, F-53020 Laval, France
| |
Collapse
|
33
|
Ghendov-Mosanu A, Popovici V, Constantinescu Pop CG, Deseatnicova O, Siminiuc R, Subotin I, Druta R, Pintea A, Socaciu C, Sturza R. Stabilization of Sunflower Oil with Biologically Active Compounds from Berries. Molecules 2023; 28:molecules28083596. [PMID: 37110830 PMCID: PMC10143843 DOI: 10.3390/molecules28083596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 04/12/2023] [Accepted: 04/17/2023] [Indexed: 04/29/2023] Open
Abstract
Sunflower oil (Helianthus annuus) contains a rich concentration of polyunsaturated fatty acids, which are susceptible to rapid oxidative processes. The aim of this study was to evaluate the stabilizing effect of lipophilic extracts from two types of berries, sea buckthorn and rose hips, on sunflower oil. This research included the analysis of sunflower oil oxidation products and mechanisms, including the determination of chemical changes occurring in the lipid oxidation process via LC-MS/MS using electrospray ionization in negative and positive mode. Pentanal, hexanal, heptanal, octanal, and nonanal were identified as key compounds formed during oxidation. The individual profiles of the carotenoids from sea buckthorn berries were determined using RP-HPLC. The influence of the carotenoid extraction parameters ascertained from the berries on the oxidative stability of sunflower oil was analyzed. The dynamics of the accumulation of the primary and secondary products of lipid oxidation and the variation of the carotenoid pigment content in the lipophilic extracts of sea buckthorn and rose hips during storage demonstrated good stability at 4 °C in the absence of light for 12 months. The experimental results were applied to mathematical modeling using fuzzy sets and mutual information analysis, which allowed for the prediction of the oxidation of sunflower oil.
Collapse
Affiliation(s)
- Aliona Ghendov-Mosanu
- Faculty of Food Technology, Technical University of Moldova, MD-2045 Chisinau, Moldova
| | - Violina Popovici
- Faculty of Food Technology, Technical University of Moldova, MD-2045 Chisinau, Moldova
| | | | - Olga Deseatnicova
- Faculty of Food Technology, Technical University of Moldova, MD-2045 Chisinau, Moldova
| | - Rodica Siminiuc
- Faculty of Food Technology, Technical University of Moldova, MD-2045 Chisinau, Moldova
| | - Iurie Subotin
- Faculty of Food Technology, Technical University of Moldova, MD-2045 Chisinau, Moldova
| | - Raisa Druta
- Faculty of Food Technology, Technical University of Moldova, MD-2045 Chisinau, Moldova
| | - Adela Pintea
- Faculty of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine, 400374 Cluj-Napoca, Romania
| | - Carmen Socaciu
- Faculty of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine, 400374 Cluj-Napoca, Romania
| | - Rodica Sturza
- Faculty of Food Technology, Technical University of Moldova, MD-2045 Chisinau, Moldova
| |
Collapse
|
34
|
Feng J, Schroën K, Guyot S, Gacel A, Fogliano V, Berton-Carabin CC. Physical and Oxidative Stabilization of Oil-In-Water Emulsions by Roasted Coffee Fractions: Interface- and Continuous Phase-Related Effects. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:4717-4728. [PMID: 36892016 PMCID: PMC10037332 DOI: 10.1021/acs.jafc.2c07365] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 02/19/2023] [Accepted: 02/28/2023] [Indexed: 06/18/2023]
Abstract
Emulsions fortified with polyunsaturated fatty acids are highly relevant from a nutritional perspective; however, such products are prone to lipid oxidation. In the current work, this is mitigated by the use of natural antioxidants occurring in coffee. Coffee fractions with different molecular weights were extracted from roasted coffee beans. These components were positioned either at the interface or in the continuous phase of emulsions where they contributed to emulsion stability via different pathways. Coffee brew as a whole, and its high-molecular-weight fraction (HMWF), was able to form emulsions with good physical stability and excellent oxidative stability. When added post-homogenization to the continuous phase of dairy protein-stabilized emulsions, all coffee fractions were able to slow down lipid oxidation considerably without altering the physical stability of emulsions, though HMWF was more effective in retarding lipid oxidation than whole coffee brew or low-molecular-weight fraction. This is caused by various effects, such as the antioxidant properties of coffee extracts, the partitioning of components in the emulsions, and the nature of the phenolic compounds. Our research shows that coffee extracts can be used effectively as multifunctional stabilizers in dispersed systems leading to emulsion products with high chemical and physical stability.
Collapse
Affiliation(s)
- Jilu Feng
- Food
Quality and Design Group, Wageningen University
and Research, 6708WG Wageningen, Netherlands
- Food
Process and Engineering Group, Wageningen
University and Research, 6708WG Wageningen, Netherlands
| | - Karin Schroën
- Food
Process and Engineering Group, Wageningen
University and Research, 6708WG Wageningen, Netherlands
| | | | | | - Vincenzo Fogliano
- Food
Quality and Design Group, Wageningen University
and Research, 6708WG Wageningen, Netherlands
| | - Claire C. Berton-Carabin
- Food
Process and Engineering Group, Wageningen
University and Research, 6708WG Wageningen, Netherlands
- INRAE,
UR BIA, F-44316 Nantes, France
| |
Collapse
|
35
|
Kontoghiorghes GJ. Deferiprone and Iron-Maltol: Forty Years since Their Discovery and Insights into Their Drug Design, Development, Clinical Use and Future Prospects. Int J Mol Sci 2023; 24:ijms24054970. [PMID: 36902402 PMCID: PMC10002863 DOI: 10.3390/ijms24054970] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 02/24/2023] [Accepted: 03/02/2023] [Indexed: 03/08/2023] Open
Abstract
The historical insights and background of the discovery, development and clinical use of deferiprone (L1) and the maltol-iron complex, which were discovered over 40 years ago, highlight the difficulties, complexities and efforts in general orphan drug development programs originating from academic centers. Deferiprone is widely used for the removal of excess iron in the treatment of iron overload diseases, but also in many other diseases associated with iron toxicity, as well as the modulation of iron metabolism pathways. The maltol-iron complex is a recently approved drug used for increasing iron intake in the treatment of iron deficiency anemia, a condition affecting one-third to one-quarter of the world's population. Detailed insights into different aspects of drug development associated with L1 and the maltol-iron complex are revealed, including theoretical concepts of invention; drug discovery; new chemical synthesis; in vitro, in vivo and clinical screening; toxicology; pharmacology; and the optimization of dose protocols. The prospects of the application of these two drugs in many other diseases are discussed under the light of competing drugs from other academic and commercial centers and also different regulatory authorities. The underlying scientific and other strategies, as well as the many limitations in the present global scene of pharmaceuticals, are also highlighted, with an emphasis on the priorities for orphan drug and emergency medicine development, including the roles of the academic scientific community, pharmaceutical companies and patient organizations.
Collapse
Affiliation(s)
- George J Kontoghiorghes
- Postgraduate Research Institute of Science, Technology, Environment and Medicine, Limassol 3021, Cyprus
| |
Collapse
|
36
|
Wu S, Wu G, Wu H. Importance of rational use of vitamin C in G6PD deficiency patients. INT J VITAM NUTR RES 2023; 93:1-3. [PMID: 35045756 DOI: 10.1024/0300-9831/a000747] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
- Shuxie Wu
- Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, China
| | - Gao Wu
- Department of Pharmacy, First Affiliated Hospital of Naval Military Medical University, Shanghai, China
| | - Hanbin Wu
- Clinical Pharmacy, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
37
|
Evaluation of the antioxidant effect of a phytocomplex addition in clean label pork salami enriched in n-3 PUFA. Food Chem 2023; 399:133963. [DOI: 10.1016/j.foodchem.2022.133963] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 07/21/2022] [Accepted: 08/14/2022] [Indexed: 11/20/2022]
|
38
|
Cano A, Alcalde C, Belanger-Quintana A, Cañedo-Villarroya E, Ceberio L, Chumillas-Calzada S, Correcher P, Couce ML, García-Arenas D, Gómez I, Hernández T, Izquierdo-García E, Chicano DM, Morales M, Pedrón-Giner C, Jáuregui EP, Peña-Quintana L, Sánchez-Pintos P, Serrano-Nieto J, Suarez MU, Miñana IV, de Las Heras J. Vitamin C and folate status in hereditary fructose intolerance. Eur J Clin Nutr 2022; 76:1733-1739. [PMID: 35854131 PMCID: PMC9708598 DOI: 10.1038/s41430-022-01178-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 06/17/2022] [Accepted: 06/23/2022] [Indexed: 11/08/2022]
Abstract
BACKGROUND Hereditary fructose intolerance (HFI) is a rare inborn error of fructose metabolism caused by the deficiency of aldolase B. Since treatment consists of a fructose-, sucrose- and sorbitol-restrictive diet for life, patients are at risk of presenting vitamin deficiencies. Although there is no published data on the status of these vitamins in HFI patients, supplementation with vitamin C and folic acid is common. Therefore, the aim of this study was to assess vitamin C and folate status and supplementation practices in a nationwide cohort of HFI patients. METHODS Vitamin C and folic acid dietary intake, supplementation and circulating levels were assessed in 32 HFI patients and 32 age- and sex-matched healthy controls. RESULTS Most of the HFI participants presented vitamin C (96.7%) and folate (90%) dietary intake below the recommended population reference intake. Up to 69% received vitamin C and 50% folic acid supplementation. Among HFI patients, 15.6% presented vitamin C and 3.1% folate deficiency. The amount of vitamin C supplementation and plasma levels correlated positively (R = 0.443; p = 0.011). Interestingly, a higher percentage of non-supplemented HFI patients were vitamin C deficient when compared to supplemented HFI patients (30% vs. 9.1%; p = 0.01) and to healthy controls (30% vs. 3.1%; p < 0.001). CONCLUSIONS Our results provide evidence for the first time supporting vitamin C supplementation in HFI. There is great heterogeneity in vitamin supplementation practices and, despite follow-up at specialised centres, vitamin C deficiency is common. Further research is warranted to establish optimal doses of vitamin C and the need for folic acid supplementation in HFI.
Collapse
Affiliation(s)
- Ainara Cano
- Biocruces Bizkaia Health Research Institute, 48093, Barakaldo, Spain
- Food Research, AZTI, Basque Research and Technology Alliance (BRTA), Parque Tecnológico de Bizkaia, Astondo Bidea, Edificio 609, 48160, Derio, Spain
| | - Carlos Alcalde
- Paediatrics Unit, Río Hortega University Hospital, 47012, Valladolid, Spain
| | - Amaya Belanger-Quintana
- Metabolic Diseases Unit, Department of Paediatrics, Ramón y Cajal Hospital, 28034, Madrid, Spain
| | - Elvira Cañedo-Villarroya
- Department of Metabolism Diseases and Nutrition, Niño Jesús University Children´s Hospital, 28009, Madrid, Spain
| | - Leticia Ceberio
- Biocruces Bizkaia Health Research Institute, 48093, Barakaldo, Spain
- Internal Medicine Service, Cruces University Hospital, 48903, Barakaldo, Spain
| | | | - Patricia Correcher
- Nutrition and Metabolic diseases Unit, La Fe University Hospital, 46026, Valencia, Spain
| | - María Luz Couce
- Unit of Diagnosis and Treatment of Congenital Metabolic Diseases, Department of Pediatrics, IDIS-Health Research Institute of Santiago de Compostela. CIBERER. MetabERN. Santiago de Compostela University Clinical Hospital, 15704, Santiago de Compostela, Spain
| | - Dolores García-Arenas
- Department of Paediatric Gastroenterology, Hepatology and Nutrition, Sant Joan de Déu Hospital, 08950, Barcelona, Spain
| | - Igor Gómez
- Araba University Hospital, 01009, Vitoria-Gasteiz, Spain
| | - Tomás Hernández
- Paediatric Service, Albacete University Hospital, 02006, Castilla-La Mancha, Spain
| | | | - Dámaris Martínez Chicano
- Department of Paediatric Gastroenterology, Hepatology and Nutrition, Sant Joan de Déu Hospital, 08950, Barcelona, Spain
| | - Montserrat Morales
- 12 de Octubre University Hospital, CIBERER, MetabERN, 28041, Madrid, Spain
| | - Consuelo Pedrón-Giner
- Department of Metabolism Diseases and Nutrition, Niño Jesús University Children´s Hospital, 28009, Madrid, Spain
| | | | - Luis Peña-Quintana
- Paediatric Gastroenterology, Hepatology and Nutrition Unit, Mother and Child Insular University Hospital complex, Asociación Canaria para la Investigación Pediátrica (ACIP), CIBEROBN. University Institute for Research in Biomedical and Health Sciences, University of Las Palmas de Gran Canaria, 35016, Las Palmas de Gran Canaria, Spain
| | - Paula Sánchez-Pintos
- Unit of Diagnosis and Treatment of Congenital Metabolic Diseases, Department of Pediatrics, IDIS-Health Research Institute of Santiago de Compostela. CIBERER. MetabERN. Santiago de Compostela University Clinical Hospital, 15704, Santiago de Compostela, Spain
| | | | - María Unceta Suarez
- Biochemistry Laboratory, Metabolism Area, Cruces University Hospital, 48903, Barakaldo, Spain
| | - Isidro Vitoria Miñana
- Nutrition and Metabolic diseases Unit, La Fe University Hospital, 46026, Valencia, Spain
| | - Javier de Las Heras
- Biocruces Bizkaia Health Research Institute, 48093, Barakaldo, Spain.
- Division of Paediatric Metabolism, CIBERER, MetabERN, Cruces University Hospital, 48093, Barakaldo, Spain.
- Department of Paediatrics, University of the Basque Country (UPV/EHU), 48940, Leioa, Spain.
| |
Collapse
|
39
|
Elizondo-Villarreal N, Verástegui-Domínguez L, Rodríguez-Batista R, Gándara-Martínez E, Alcorta-García A, Martínez-Delgado D, Rodríguez-Castellanos EA, Vázquez-Rodríguez F, Gómez-Rodríguez C. Green Synthesis of Magnetic Nanoparticles of Iron Oxide Using Aqueous Extracts of Lemon Peel Waste and Its Application in Anti-Corrosive Coatings. MATERIALS (BASEL, SWITZERLAND) 2022; 15:ma15238328. [PMID: 36499817 PMCID: PMC9735538 DOI: 10.3390/ma15238328] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/25/2022] [Accepted: 11/10/2022] [Indexed: 05/12/2023]
Abstract
Lately, the development of green chemistry methods with high efficiency for metal nanoparticle synthesis has become a primary focus among researchers. The main goal is to find an eco-friendly technique for the production of nanoparticles. Ferro- and ferrimagnetic materials such as magnetite (Fe3O4) exhibit superparamagnetic behavior at a nanometric scale. Magnetic nanoparticles have been gaining increasing interest in nanoscience and nanotechnology. This interest is attributed to their physicochemical properties, particle size, and low toxicity. The present work aims to synthesize magnetite nanoparticles in a single step using extracts of green lemon Citrus Aurantifolia residues. The results produced nanoparticles of smaller size using a method that is friendlier to health and the environment, is more profitable, and can be applied in anticorrosive coatings. The green synthesis was carried out by a co-precipitation method under variable temperature conditions. The X-ray Diffraction (XRD) and Transmission Electron Microscopy (TEM) characterization showed that magnetite nanoparticles were successfully obtained with a very narrow particle size distribution between 3 and 10 nm. A composite was produced with the nanoparticles and graphene to be used as a surface coating on steel. In addition, the coating's anticorrosive behavior was evaluated through electrochemical techniques. The surface coating obtained showed good anticorrosive properties and resistance to abrasion.
Collapse
Affiliation(s)
- Nora Elizondo-Villarreal
- Universidad Autónoma de Nuevo León, Campus Cd. Universitaria, Ave. Universidad S/N, San Nicolás de los Garza 66455, Mexico
- Correspondence: (N.E.-V.); (L.V.-D.)
| | - Luz Verástegui-Domínguez
- Universidad Autónoma de Nuevo León, Campus Cd. Universitaria, Ave. Universidad S/N, San Nicolás de los Garza 66455, Mexico
- Correspondence: (N.E.-V.); (L.V.-D.)
| | - Raúl Rodríguez-Batista
- Universidad Autónoma de Nuevo León, Campus Cd. Universitaria, Ave. Universidad S/N, San Nicolás de los Garza 66455, Mexico
| | - Eleazar Gándara-Martínez
- Universidad Autónoma de Nuevo León, Campus Cd. Universitaria, Ave. Universidad S/N, San Nicolás de los Garza 66455, Mexico
| | - Aracelia Alcorta-García
- Universidad Autónoma de Nuevo León, Campus Cd. Universitaria, Ave. Universidad S/N, San Nicolás de los Garza 66455, Mexico
| | - Dora Martínez-Delgado
- Universidad Autónoma de Nuevo León, Campus Cd. Universitaria, Ave. Universidad S/N, San Nicolás de los Garza 66455, Mexico
| | | | - Francisco Vázquez-Rodríguez
- Universidad Autónoma de Nuevo León, Campus Cd. Universitaria, Ave. Universidad S/N, San Nicolás de los Garza 66455, Mexico
| | - Cristian Gómez-Rodríguez
- Faculty of Engineering, University of Veracruz (Coatzacoalcos), Av. Universidad km 7.5 Col. Santa Isabel, Coatzacoalcos 96535, Mexico
| |
Collapse
|
40
|
New Iron Metabolic Pathways and Chelation Targeting Strategies Affecting the Treatment of All Types and Stages of Cancer. Int J Mol Sci 2022; 23:ijms232213990. [PMID: 36430469 PMCID: PMC9696688 DOI: 10.3390/ijms232213990] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/02/2022] [Accepted: 11/09/2022] [Indexed: 11/16/2022] Open
Abstract
There is new and increasing evidence from in vitro, in vivo and clinical studies implicating the pivotal role of iron and associated metabolic pathways in the initiation, progression and development of cancer and in cancer metastasis. New metabolic and toxicity mechanisms and pathways, as well as genomic, transcription and other factors, have been linked to cancer and many are related to iron. Accordingly, a number of new targets for iron chelators have been identified and characterized in new anticancer strategies, in addition to the classical restriction of/reduction in iron supply, the inhibition of transferrin iron delivery, the inhibition of ribonucleotide reductase in DNA synthesis and high antioxidant potential. The new targets include the removal of excess iron from iron-laden macrophages, which affects anticancer activity; the modulation of ferroptosis; ferritin iron removal and the control of hyperferritinemia; the inhibition of hypoxia related to the role of hypoxia-inducible factor (HIF); modulation of the function of new molecular species such as STEAP4 metalloreductase and the metastasis suppressor N-MYC downstream-regulated gene-1 (NDRG1); modulation of the metabolic pathways of oxidative stress damage affecting mitochondrial function, etc. Many of these new, but also previously known associated iron metabolic pathways appear to affect all stages of cancer, as well as metastasis and drug resistance. Iron-chelating drugs and especially deferiprone (L1), has been shown in many recent studies to fulfill the role of multi-target anticancer drug linked to the above and also other iron targets, and has been proposed for phase II trials in cancer patients. In contrast, lipophilic chelators and their iron complexes are proposed for the induction of ferroptosis in some refractory or recurring tumors in drug resistance and metastasis where effective treatments are absent. There is a need to readdress cancer therapy and include therapeutic strategies targeting multifactorial processes, including the application of multi-targeting drugs involving iron chelators and iron-chelator complexes. New therapeutic protocols including drug combinations with L1 and other chelating drugs could increase anticancer activity, decrease drug resistance and metastasis, improve treatments, reduce toxicity and increase overall survival in cancer patients.
Collapse
|
41
|
Nephroprotective effects of Piper nigrum extracts against monosodium glutamate-induced renal toxicity in rats. SCIENTIFIC AFRICAN 2022. [DOI: 10.1016/j.sciaf.2022.e01453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
42
|
Bopitiya D, Guo S, Hearn MTW, Zhang J, Bennett LE. Formulations of selected Energy beverages promote pro-oxidant effects of ascorbic acid and long-term stability of hydrogen peroxide. Food Chem 2022; 388:133037. [PMID: 35486988 DOI: 10.1016/j.foodchem.2022.133037] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 04/05/2022] [Accepted: 04/19/2022] [Indexed: 11/27/2022]
Abstract
Recently, autoxidation mediated by ascorbic acid (AA) and other ingredients, has been implicated in generation of hydrogen peroxide (H2O2) in so-called Energy beverages. Here, we report the use of cyclic voltammetry and the FOX assay to monitor at short and long incubation times, respectively, the production and stability of H2O2 generated by AA and redox-active ingredients. Levels of H2O2 in Energy drinks (36.5 ± 4.0 µM at 4 °C and 64.2 ± 7.6 µM at 20 °C) were found to be stable or increased (p < 0.05) upon vessel opening. A predictive model for the production of H2O2 as a function of AA concentration, temperature and incubation time, and depending on ingredients present, indicated that H2O2 peaked at 91-726 µM after 1 day and declined to ∼ 42-60 µM (4 °C) or zero after ∼10 days. The research supports that levels of H2O2 in beverages containing anti-oxidant mixtures and dissolved oxygen should be monitored and formulations modified to avoid AA autoxidation.
Collapse
Affiliation(s)
- Dilini Bopitiya
- School of Chemistry, Monash University, Clayton, Victoria 3800, Australia
| | - Sixuan Guo
- School of Chemistry, Monash University, Clayton, Victoria 3800, Australia
| | - Milton T W Hearn
- School of Chemistry, Monash University, Clayton, Victoria 3800, Australia
| | - Jie Zhang
- School of Chemistry, Monash University, Clayton, Victoria 3800, Australia
| | - Louise E Bennett
- School of Chemistry, Monash University, Clayton, Victoria 3800, Australia.
| |
Collapse
|
43
|
Barreiro S, Silva B, Long S, Pinto M, Remião F, Sousa E, Silva R. Fiscalin Derivatives as Potential Neuroprotective Agents. Pharmaceutics 2022; 14:pharmaceutics14071456. [PMID: 35890350 PMCID: PMC9320635 DOI: 10.3390/pharmaceutics14071456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/17/2022] [Accepted: 07/07/2022] [Indexed: 11/17/2022] Open
Abstract
Neurodegenerative diseases (ND) share common molecular/cellular mechanisms that contribute to their progression and pathogenesis. In this sense, we are here proposing new neuroprotection strategies by using marine-derived compounds as fiscalins. This work aims to evaluate the protective effects of fiscalin derivatives towards 1-methyl-4-phenylpyridinium (MPP+)- and iron (III)-induced cytotoxicity in differentiated SH-SY5Y cells, an in vitro disease model to study ND; and on P-glycoprotein (P-gp) transport activity, an efflux pump of drugs and neurotoxins. SH-SY5Y cells were simultaneously exposed to MPP+ or iron (III), and noncytotoxic concentrations of 18 fiscalin derivatives (0–25 μM), being the cytotoxic effect of both MPP+ and iron (III) evaluated 24 and 48 h after exposure. Fiscalins 1a and 1b showed a significant protective effect against MPP+-induced cytotoxicity and fiscalins 1b, 2b, 4 and 5 showed a protective effect against iron (III)-induced cytotoxicity. Fiscalins 4 and 5 caused a significant P-gp inhibition, while fiscalins 1c, 2a, 2b, 6 and 11 caused a modest increase in P-gp transport activity, thus suggesting a promising source of new P-gp inhibitors and activators, respectively. The obtained results highlight fiscalins with promising neuroprotective effects and with relevance for the synthesis of new derivatives for the treatment/prevention of ND.
Collapse
Affiliation(s)
- Sandra Barreiro
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (B.S.); (F.R.)
- UCIBIO—Applied Molecular Biosciences Unit, Requimte, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- Correspondence: (S.B.); (R.S.)
| | - Bárbara Silva
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (B.S.); (F.R.)
- UCIBIO—Applied Molecular Biosciences Unit, Requimte, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Solida Long
- Department of Bioengineering, Royal University of Phnom Penh, Russian Confederation Blvd., Phnom Penh 12156, Cambodia;
- CIIMAR—Centro Interdisciplinar de Investigação Marinha e Ambiental, Terminal de Cruzeiros do Porto de Leixões, 4450-208 Matosinhos, Portugal; (M.P.); (E.S.)
| | - Madalena Pinto
- CIIMAR—Centro Interdisciplinar de Investigação Marinha e Ambiental, Terminal de Cruzeiros do Porto de Leixões, 4450-208 Matosinhos, Portugal; (M.P.); (E.S.)
- Laboratory of Organic and Pharmaceutical Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Fernando Remião
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (B.S.); (F.R.)
- UCIBIO—Applied Molecular Biosciences Unit, Requimte, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Emília Sousa
- CIIMAR—Centro Interdisciplinar de Investigação Marinha e Ambiental, Terminal de Cruzeiros do Porto de Leixões, 4450-208 Matosinhos, Portugal; (M.P.); (E.S.)
- Laboratory of Organic and Pharmaceutical Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Renata Silva
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (B.S.); (F.R.)
- UCIBIO—Applied Molecular Biosciences Unit, Requimte, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- Correspondence: (S.B.); (R.S.)
| |
Collapse
|
44
|
Liu J, Zhang C, Zhao S, Wang Z, Zhang X, Zhu K, Liu Z, Dai Y, Jia H. Coexistence of MnO2 impedes the degradation of BPA in iron oxide/ascorbic acid systems: Disclosing the molecular mechanism. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
45
|
Exogenous iron impairs the anti-cancer effect of ascorbic acid both in vitro and in vivo. J Adv Res 2022; 46:149-158. [PMID: 35777727 PMCID: PMC10105075 DOI: 10.1016/j.jare.2022.06.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 06/18/2022] [Accepted: 06/20/2022] [Indexed: 12/11/2022] Open
Abstract
INTRODUCTION The anti-cancer effect of high concentrations of ascorbic acid (AA) has been well established while its underlying mechanisms remain unclear. The association between iron and AA has attracted great attention but was still controversial due to the complicated roles of iron in tumors. OBJECTIVES Our study aims to explore the anti-cancer mechanisms of AA and the interaction between AA and iron in cancer. METHODS The MTT and ATP assays were used to evaluate the cytotoxicity of AA. Reactive oxygen species (ROS) generation, calcium (Ca2+), and lipid peroxidation were monitored with flow cytometry. Mitochondrial dysfunction was assessed by mitochondrial membrane potential (MMP) detection with JC-1 or tetramethylrhodamine methyl ester (TMRM) staining. Mitochondrial swelling was monitored with MitoTracker Green probe. FeSO4 (Fe2+), FeCl3 (Fe3+), Ferric ammonium citrate (Fe3+), hemin chloride (Fe3+) were used as an iron donor to investigate the effects of iron on AA's anti-tumor activity. The in vivo effects of AA and iron were analyzed in xenograft zebrafish and allograft mouse models. RESULTS High concentrations of AA exhibited cytotoxicity in a panel of cancer cells. AA triggered ROS-dependent non-apoptotic cell death. AA-induced cell death was essentially mediated by the accumulated intracellular Ca2+, which was partly originated from endoplasmic reticulum (ER). Surprisingly, exogenous iron could significantly reverse AA-induced ROS generation, Ca2+ overloaded, and cell death. Especially, the iron supplements significantly impaired the in vivo anti-tumor activity of AA. CONCLUSIONS Our study elucidated the protective roles of iron in ROS/Ca2+ mediated necrosis triggered by AA both in vitro and in vivo, which might shed novel insight into the anti-cancer mechanisms and provide clinical application strategies for AA in cancer treatment.
Collapse
|
46
|
Synergistic and Antagonistic Effects of Aerosol Components on Its Oxidative Potential as Predictor of Particle Toxicity. TOXICS 2022; 10:toxics10040196. [PMID: 35448457 PMCID: PMC9032230 DOI: 10.3390/toxics10040196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/06/2022] [Accepted: 04/15/2022] [Indexed: 12/02/2022]
Abstract
Quantifying the component-specific contribution to the oxidative potential (OP) of ambient particle matter (PM) is the key information to properly representing its acute health hazards. In this study, we investigated the interactions between the major contributors to OP, i.e., transition metals and quinones, to highlight the relative effects of these species to the total OP. Several synergistic and antagonistic interactions were found that significantly change the redox properties of their binary mixtures, increasing or decreasing the values computed by a simple additive model. Such results from the standard solutions were confirmed by extending the study to atmospheric PM2.5 samples collected in winter in the Lombardia region, a hot spot for air pollution in northern Italy. This work highlights that a solid estimation of oxidative properties of ambient PM requires an interaction-based approach accounting for the interaction effects between metals and quinones.
Collapse
|
47
|
CTAB Reverse Micelles as Catalysts for the Oxidation of Ascorbic Acid by K3[Fe(CN)6]. BULLETIN OF CHEMICAL REACTION ENGINEERING & CATALYSIS 2022. [DOI: 10.9767/bcrec.17.1.12732.157-162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The oxidation of ascorbic acid by K3[Fe(CN)6] was studied in reverse micellar systems composed of CTAB (Cetyltrimethylammonium bromide), and it was found the observed first order (k1(aq) = 5.2×10−5 s−1, k1(rev) = 61.4×10−4 s−1) rate constant in reverse micellar medium is around forty times higher compared to aqueous medium under identical conditions. The rate enhancement (k2(aq) = 0.9×10−5 mole−1.dm3.sec−1, k2(rev) = 1.75×10−3 mole−1.dm3.sec−1) is attributed to the large concentration effect and lower dielectric constant in the reverse micelles. The rate of the reaction increases with increase in W = {[H2O]/[surfactant]} which is explained in terms of ionic strength of the water pool. The effect of surfactant concentration on rate was explained on the basis of Berezin pseudo phase model. Copyright © 2021 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0).
Collapse
|
48
|
Włodarczyk M, Nowicka G, Ciebiera M, Ali M, Yang Q, Al-Hendy A. Epigenetic Regulation in Uterine Fibroids-The Role of Ten-Eleven Translocation Enzymes and Their Potential Therapeutic Application. Int J Mol Sci 2022; 23:2720. [PMID: 35269864 PMCID: PMC8910916 DOI: 10.3390/ijms23052720] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 02/23/2022] [Accepted: 02/25/2022] [Indexed: 02/01/2023] Open
Abstract
Uterine fibroids (UFs) are monoclonal, benign tumors that contain abnormal smooth muscle cells and the accumulation of extracellular matrix (ECM). Although benign, UFs are a major source of gynecologic and reproductive dysfunction, ranging from menorrhagia and pelvic pain to infertility, recurrent miscarriage, and preterm labor. Many risk factors are involved in the pathogenesis of UFs via genetic and epigenetic mechanisms. The latter involving DNA methylation and demethylation reactions provide specific DNA methylation patterns that regulate gene expression. Active DNA demethylation reactions mediated by ten-eleven translocation proteins (TETs) and elevated levels of 5-hydroxymethylcytosine have been suggested to be involved in UF formation. This review paper summarizes the main findings regarding the function of TET enzymes and their activity dysregulation that may trigger the development of UFs. Understanding the role that epigenetics plays in the pathogenesis of UFs may possibly lead to a new type of pharmacological fertility-sparing treatment method.
Collapse
Affiliation(s)
- Marta Włodarczyk
- Department of Biochemistry and Pharmacogenomics, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1B, 02-097 Warsaw, Poland;
- Centre for Preclinical Research, Medical University of Warsaw, Banacha 1B, 02-097 Warsaw, Poland
| | - Grażyna Nowicka
- Department of Biochemistry and Pharmacogenomics, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1B, 02-097 Warsaw, Poland;
- Centre for Preclinical Research, Medical University of Warsaw, Banacha 1B, 02-097 Warsaw, Poland
| | - Michał Ciebiera
- The Center of Postgraduate Medical Education, Second Department of Obstetrics and Gynecology, 01-809 Warsaw, Poland;
| | - Mohamed Ali
- Clinical Pharmacy Department, Faculty of Pharmacy, Ain Shams University, Cairo 11566, Egypt;
- Department of Obstetrics and Gynecology, University of Chicago, Chicago, IL 60637, USA; (Q.Y.); (A.A.-H.)
| | - Qiwei Yang
- Department of Obstetrics and Gynecology, University of Chicago, Chicago, IL 60637, USA; (Q.Y.); (A.A.-H.)
| | - Ayman Al-Hendy
- Department of Obstetrics and Gynecology, University of Chicago, Chicago, IL 60637, USA; (Q.Y.); (A.A.-H.)
| |
Collapse
|
49
|
Katin KP, Kochaev AI, Kaya S, El-Hajjaji F, Maslov MM. Ab Initio Insight into the Interaction of Metal-Decorated Fluorinated Carbon Fullerenes with Anti-COVID Drugs. Int J Mol Sci 2022; 23:ijms23042345. [PMID: 35216462 PMCID: PMC8879019 DOI: 10.3390/ijms23042345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 02/14/2022] [Accepted: 02/17/2022] [Indexed: 02/01/2023] Open
Abstract
We theoretically investigated the adsorption of two common anti-COVID drugs, favipiravir and chloroquine, on fluorinated C60 fullerene, decorated with metal ions Cr3+, Fe2+, Fe3+, Ni2+. We focused on the effect of fluoridation on the interaction of fullerene with metal ions and drugs in an aqueous solution. We considered three model systems, C60, C60F2 and C60F48, and represented pristine, low-fluorinated and high-fluorinated fullerenes, respectively. Adsorption energies, deformation of fullerene and drug molecules, frontier molecular orbitals and vibrational spectra were investigated in detail. We found that different drugs and different ions interacted differently with fluorinated fullerenes. Cr3+ and Fe2+ ions lead to the defluorination of low-fluorinated fullerenes. Favipiravir also leads to their defluorination with the formation of HF molecules. Therefore, fluorinated fullerenes are not suitable for the delivery of favipiravir and similar drugs molecules. In contrast, we found that fluorine enhances the adsorption of Ni2+ and Fe3+ ions on fullerene and their activity to chloroquine. Ni2+-decorated fluorinated fullerenes were found to be stable and suitable carriers for the loading of chloroquine. Clear shifts of infrared, ultraviolet and visible spectra can provide control over the loading of chloroquine on Ni2+-doped fluorinated fullerenes.
Collapse
Affiliation(s)
- Konstantin P. Katin
- Laboratory of Computational Design of Nanostructures, Nanodevices, and Nanotechnologies, Research Institute for the Development of Scientific and Educational Potential of Youth, Aviatorov Str. 14/55, 119620 Moscow, Russia; (A.I.K.); (M.M.M.)
- Institute of Nanotechnologies in Electronics, Spintronics and Photonics, National Research Nuclear University “MEPhI”, Kashirskoe Shosse 31, 115409 Moscow, Russia
- Correspondence:
| | - Alexey I. Kochaev
- Laboratory of Computational Design of Nanostructures, Nanodevices, and Nanotechnologies, Research Institute for the Development of Scientific and Educational Potential of Youth, Aviatorov Str. 14/55, 119620 Moscow, Russia; (A.I.K.); (M.M.M.)
- Research and Education Center “Silicon and Carbon Nanotechnologies”, Ulyanovsk State University, 42 Leo Tolstoy Str., 432017 Ulyanovsk, Russia
| | - Savas Kaya
- Department of Chemistry, Faculty of Science, Cumhuriyet University, Sivas 58140, Turkey;
| | - Fadoua El-Hajjaji
- Engineering Laboratory of Organometallic, Molecular Materials, and Environment, Faculty of Sciences, University Sidi Mohamed Ben Abdellah, Fez 1796, Morocco;
| | - Mikhail M. Maslov
- Laboratory of Computational Design of Nanostructures, Nanodevices, and Nanotechnologies, Research Institute for the Development of Scientific and Educational Potential of Youth, Aviatorov Str. 14/55, 119620 Moscow, Russia; (A.I.K.); (M.M.M.)
- Institute of Nanotechnologies in Electronics, Spintronics and Photonics, National Research Nuclear University “MEPhI”, Kashirskoe Shosse 31, 115409 Moscow, Russia
| |
Collapse
|
50
|
Selyutina OY, Kononova PA, Koshman VE, Fedenok LG, Polyakov NE. The Interplay of Ascorbic Acid with Quinones-Chelators—Influence on Lipid Peroxidation: Insight into Anticancer Activity. Antioxidants (Basel) 2022; 11:antiox11020376. [PMID: 35204258 PMCID: PMC8869476 DOI: 10.3390/antiox11020376] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/24/2022] [Accepted: 02/11/2022] [Indexed: 12/11/2022] Open
Abstract
Ascorbic acid is a multifaceted compound that can perform both antioxidant and pro-oxidant activities in the redox reactions induced by transition metal ions, so its role in nature and especially in the human body is still the subject of debate. In the present study, we have examined the influence of ascorbic acid on lipid peroxidation in a model system that mimics the cell membrane, namely micelles of linoleic acid (LA), induced by chelate complexes of iron and copper ions with quinone-chelator 2-phenyl-4-(butylamino)-naphtholquinoline-7,12-dione (Q1). This quinone effectively generates reactive oxygen species and semiquinone radicals inside cancer cells via a cycling redox reaction. Here it was demonstrated that in the absence of quinone-chelator ascorbic acid significantly accelerates the lipid peroxidation induced by both Fe(II) and Cu(II) ions. It has been shown also that Q1 chelate complexes with Fe(II) and Cu(II) ions are redox active in the LA micelles oxidation. No effect of ascorbate was detected on the reactivity of chelate complex with Fe(II) ions. On the other hand, ascorbate performs pro-oxidant activity in Q1-Cu(II) complex induced reaction. We can conclude that ascorbate-driven redox cycling of Q1 may promote its anti-tumor activity.
Collapse
|