1
|
Xue M, Deng Q, Deng L, Xun T, Huang T, Zhao J, Wei S, Zhao C, Chen X, Zhou Y, Liang Y, Yang X. Alterations of gut microbiota for the onset and treatment of psoriasis: A systematic review. Eur J Pharmacol 2025; 998:177521. [PMID: 40107339 DOI: 10.1016/j.ejphar.2025.177521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 03/12/2025] [Accepted: 03/14/2025] [Indexed: 03/22/2025]
Abstract
Psoriasis is a chronic, recurrent and systemic inflammatory skin disease which is mediated by immunoreaction. Its pathogenesis is multifactorial, and the exact driving factor remains unclear. Recent studies showed that gut microbiota, which maintain immune homeostasis of our bodies, is closely related with occurrence, development and prognosis of psoriasis. The intestinal microbial abundance and diversity in patients with psoriasis have changed significantly, including intestinal microbiota disorders and reduced production of short chain fatty acids (SCFAs), abnormalities in Firmicutes/Bacteroidetes (F/B), etc. Besides, the intestinal microbiota of psoriasis patients has also changed after treatment of systemic drugs, biologics and small molecule chemical drugs, suggesting that the intestinal microbiota may be a potential response-to-treatment biomarker for evaluating treatment effectiveness. Oral probiotics and prebiotics administration as well as fecal microbial transplantation were also reported to benefit well in psoriasis patients. Additionally, we also discussed the microbial changes from the skin and other organs, which regulated both the onset and treatment of psoriasis together with gut microbiota. Herein, we reviewed recent studies on the psoriasis-related microbiota in an attempt to confidently identify the "core" microbiota of psoriatic patients, understand how microbiota influence psoriasis through the gut-skin axis, and explore potential therapeutic strategies for psoriasis.
Collapse
Affiliation(s)
- Man Xue
- Department of Pharmacy, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - QuanWen Deng
- Department of Pharmacy, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Li Deng
- Department of Dermatology, Cosmetology and Venereology, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - TianRong Xun
- Department of Pharmacy, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - TingTing Huang
- Department of Clinical Laboratory Medicine, Shenzhen Hospital, Southern Medical University, China
| | - JingQian Zhao
- Department of Pharmacy, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Sui Wei
- Department of Pharmacy, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - ChenYu Zhao
- Department of Pharmacy, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Xi Chen
- Department of Pharmacy, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - YiWen Zhou
- Department of Clinical Laboratory Medicine, Shenzhen Hospital, Southern Medical University, China
| | - YanHua Liang
- Department of Dermatology, Cosmetology and Venereology, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - XiXiao Yang
- Department of Pharmacy, Shenzhen Hospital, Southern Medical University, Shenzhen, China.
| |
Collapse
|
2
|
Huang Z, Lu T, Lin J, Ding Q, Li X, Lin L. Exploring Causal Relationships Between Gut Microbiota, Inflammatory Cytokines, and Inflammatory Dermatoses: A Mendelian Randomization Study. Clin Cosmet Investig Dermatol 2025; 18:579-592. [PMID: 40099043 PMCID: PMC11912934 DOI: 10.2147/ccid.s496091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 01/16/2025] [Indexed: 03/19/2025]
Abstract
Background Some studies have established a link between gut microbiota, inflammatory proteins, and inflammatory dermatoses. However, the mediating role of inflammatory proteins in the gut-skin axis remains unclear. Methods Data on inflammatory proteins and gut microbiota were drawn from the GWAS catalog and MiBioGen consortium, with inflammatory skin disease data provided by the FinnGen consortium. Using genome-wide association studies (GWAS), we performed linkage disequilibrium score regression (LDSC) to assess genetic correlations and conducted a two-step Mendelian Randomization (MR) analysis to investigate circulating inflammatory proteins as potential mediators between gut microbiota and inflammatory dermatoses. Results MR analysis identified 38 gut microbiota and 23 inflammatory proteins associated with inflammatory skin diseases. After false discovery rate (FDR) correction, four gut microbiota taxa-Eubacterium fissicatena, Bacteroidaceae, Allisonella, and Bacteroides, remained statistically significant (OR = 1.32, 95% CI: 1.16-1.50, adjusted P = 0.007; OR = 2.25, 95% CI: 1.48-3.42, adjusted P = 0.026; OR = 1.42, 95% CI: 1.18-1.70, adjusted P = 0.014; OR = 2.25, 95% CI: 1.48-3.42, adjusted P = 0.013), with only IL-18R1 significantly associated with eczema (OR = 1.05, 95% CI: 1.03-1.08, adjusted P = 0.017). Further mediation analysis showed that IL-15RA mediated 11% of the pathway between Veillonellaceae and eczema, while FGF19 mediated 6% of the pathway between genus LachnospiraceaeUCG001 and psoriatic arthritis. Conclusion These findings provide potential targets for therapeutic interventions in inflammatory skin diseases.
Collapse
Affiliation(s)
- Zirui Huang
- Department of Dermatology, First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, People's Republic of China
| | - Tao Lu
- Department of Dermatology, First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, People's Republic of China
| | - Jiahua Lin
- Department of Dermatology, First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, People's Republic of China
| | - Qike Ding
- Department of Dermatology, First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, People's Republic of China
| | - Xiaoting Li
- Department of Dermatology, First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, People's Republic of China
| | - Lihong Lin
- Department of Dermatology, First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, People's Republic of China
| |
Collapse
|
3
|
Xu S, Yang K, Qiu J, Zhong J, Xian D. Bidirectional causal relationships between the skin microbiome and psoriasis: Insights from Mendelian randomization analysis. Medicine (Baltimore) 2025; 104:e41736. [PMID: 40068044 PMCID: PMC11903008 DOI: 10.1097/md.0000000000041736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 02/12/2025] [Accepted: 02/13/2025] [Indexed: 03/14/2025] Open
Abstract
Psoriasis is a chronic inflammatory skin disease affecting 2% of the global population. Recent research suggests the skin microbiome plays a critical role in psoriasis. Skin microbiome data were obtained from the KORA FF4 study in Germany, and psoriasis data from FinnGen genome-wide association study summary statistics. Forward and reverse 2-sample Mendelian randomization (MR) analyses were conducted to assess causal relationships. Forward MR analysis identified several microbial features as risk factors for psoriasis, including the family Neisseriaceae in sebaceous skin (OR = 1.036, 95% CI: 1.010-1.062, P = .0054), ASV011 in dry skin (OR = 1.024, 95% CI: 1.000-1.048, P = .0490), and the order Clostridiales in moist skin (OR = 1.016, 95% CI: 1.000-1.032, P = .0449). Protective features included ASV016 (OR = 0.972, 95% CI: 0.949-0.994, P = .0136) and ASV053 (OR = 0.973, 95% CI: 0.954-0.992, P = .0054) in dry skin. Reverse MR analysis confirmed psoriasis as a significant risk factor for changes in the skin microbiome, with notable associations in the dry skin region for asv002 (OR = 1.266, 95% CI: 1.061-1.510, P = .027) and genus: Haemophilus (OR = 1.364, 95% CI: 1.065-1.746, P = .013). This study reveals bidirectional causal relationships between the skin microbiome and psoriasis, highlighting specific microbial features such as Neisseriaceae and Clostridiales as potential risk factors. Further research is needed to develop treatments that modulate the skin microbiome to improve psoriasis outcomes.
Collapse
Affiliation(s)
- Shangyi Xu
- Emergency Medicine Department, Luzhou People’s Hospital, Luzhou, China
- Anatomy Laboratory, Southwest Medical University, School of Basic Medicine, Luzhou, Cichuan, China
| | - Kaiwen Yang
- Anatomy Laboratory, Southwest Medical University, School of Basic Medicine, Luzhou, Cichuan, China
| | - Jin Qiu
- Emergency Medicine Department, Luzhou People’s Hospital, Luzhou, China
- Anatomy Laboratory, Southwest Medical University, School of Basic Medicine, Luzhou, Cichuan, China
| | - Jianqiao Zhong
- Anatomy Laboratory, Southwest Medical University, School of Basic Medicine, Luzhou, Cichuan, China
| | - Dehai Xian
- Anatomy Laboratory, Southwest Medical University, School of Basic Medicine, Luzhou, Cichuan, China
| |
Collapse
|
4
|
Yu K, Cao C, An F, Xu A, Wu X. Analysis and contrast of psoriasis disease burden trends in China and globally from 1990 to 2021. Front Public Health 2025; 13:1541292. [PMID: 40115350 PMCID: PMC11922690 DOI: 10.3389/fpubh.2025.1541292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Accepted: 02/20/2025] [Indexed: 03/23/2025] Open
Abstract
Objective This study aimed to delineate the temporal tendency in the age and gender burden of psoriasis in China, spanning from 1990 to 2021, encompassing metrics such as incidence, prevalence, and disability-adjusted life years (DALYs). Furthermore, it sought to contrast these findings with the global disease burden. It also purposed to assess the impacts of age, time, and birth cohort, as well as to forecast the psoriasis burden in China for the upcoming 15 years. Methods Utilizing open-access data from the Global Burden of Disease (GBD) database spanning 1990 to 2021, this study comprehensively examined the burden of psoriasis in China and globally. In China, a detailed analysis was conducted, emphasizing dimensions such as age, gender, and temporal trends. Join-point regression models were employed to calculate the average annual percentage change (AAPC). Furthermore, age-period-cohort (APC) analyses assessed the effects of age, time, and birth cohort, while an extended autoregressive integrated moving average model (ARIMA model) was used to forecast the psoriasis burden in China from 2022 to 2036. Results Between 1990 and 2021, China experienced significant changes in its age-standardized incidence rate (ASIR), age-standardized prevalence rate (ASPR), and age-standardized DALY Rate (ASDR). Specifically, the ASIR rose from 48 per 100,000 in 1990 to 60 per 100,000 in 2021. Correspondingly, the ASPR increased from 362 per 100,000 in 1990 to 474 per 100,000 in 2021. Finally, the ASDR also showed an upward trend, climbing from 31 per 100,000 in 1990 to 41 per 100,000 in 2021. The AAPC of the ASIR, ASPR, and ASDR in China was 0.7434%, 0.8765%, and 0.8827%, respectively, significantly outpacing the global AAPC of 0.2204%, 0.2220%, and 0.2426%, respectively. The burden of psoriasis in China varied with age and gender, showing a trend of increasing and then decreasing ASIR, ASPR, and ASDR as age advanced. Women experienced lower incidence and prevalence rates of psoriasis than men. Over time, a delay in peak incidence was observed in both genders. The APC analyses revealed that psoriasis incidence initially increased and then declined with advancing age. Across all age groups, earlier birth cohorts had a relatively lower risk. Projections suggest that the incidence and prevalence of psoriasis in China will continue to rise over the next 15 years. Conclusion Psoriasis poses a substantial public health challenge in China due to the country's large and increasingly aging populace. Mitigating this burden requires a multifaceted approach, including precise epidemiological research, an enhanced understanding of its socioeconomic determinants, and the development of effective health policies.
Collapse
Affiliation(s)
- Keyi Yu
- Department of Dermatology, Hangzhou Third Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, China
| | - Cheng Cao
- Department of Dermatology, Hangzhou Third Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, China
| | - Feilong An
- Department of Dermatology, Hangzhou Third Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, China
| | - Aie Xu
- Department of Dermatology, Hangzhou Third People's Hospital, Hangzhou, China
| | - Xingang Wu
- Department of Dermatology, Hangzhou Third People's Hospital, Hangzhou, China
| |
Collapse
|
5
|
Wang CY, Wang JY, Chou YY, Lin CC, Lin YT, Wu CS, Lin JS, Chu CL. The fungal protein Lingzhi-8 ameliorates psoriasis-like dermatitis in mice through gut CD103 + tolerogenic dendritic cells, retinaldehyde dehydrogenase 2, and Dectin-1. Biomed Pharmacother 2025; 184:117910. [PMID: 39954596 DOI: 10.1016/j.biopha.2025.117910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 01/26/2025] [Accepted: 02/05/2025] [Indexed: 02/17/2025] Open
Abstract
The gut CD103+ tolerogenic dendritic cells play a key role in maintaining immune balance by inducing oral tolerance, which has been implied in reducing autoimmunity. We recently reported that the oral administration of a fungal protein Lingzhi-8 (LZ-8) prevented autoimmune colitis in mice via maintaining barrier integrity. Here, we examined the functional effect of LZ-8 on gut CD103+ DCs and on autoimmune psoriasis in a mouse model. After orally administered LZ-8 to mice, the numbers of CD103+ DCs and their retinaldehyde dehydrogenase 2 (RALDH2) activities were increased in the mesenteric lymph nodes (mLNs), which were associated with increased regulatory T cell (Treg) in the spleen and LNs. This suggests that LZ-8 induces oral tolerance by enhancing the RALDH2 activity of CD103+ DCs. In addition, the imiquimod (IMQ)-induced psoriasis-like dermatitis was attenuated in mice after LZ-8 pretreatment. In the mechanistic study, we generated gut CD103+ DC-like cells from bone marrow (BM) of wild-type mouse and cultured them in the presence of retinoic acid (RA) in vitro. We found that LZ-8 directly enhanced the RALDH2 activity of these RA-primed CD103+ DCs, which was dependent on Dectin-1 and Syk signaling pathways but not TLR4. Together, our study demonstrated that LZ-8 facilitated gut tolerogenic CD103+ DC-mediated immunosuppression by enhancing RALDH2 activity, increasing Treg cell population, and signaling through Dectin-1 and Syk. Our findings provide a novel strategy for treating psoriasis and potentially other autoimmune diseases.
Collapse
Affiliation(s)
- Chen-Yu Wang
- Graduate Institute of Immunology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Jen-Yu Wang
- Graduate Institute of Immunology, National Taiwan University College of Medicine, Taipei, Taiwan; Department of Dermatology, MacKay Memorial Hospital, Taipei, Taiwan; Mackay Junior College of Medicine, Nursing, and Management, New Taipei City, Taiwan; Department of Medicine, Mackay Medical College, New Taipei City, Taiwan
| | - Yi-Yi Chou
- Graduate Institute of Immunology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Chi-Chien Lin
- Institute of Biomedical Sciences, National Chung-Hsing University, Taichung, Taiwan
| | - Yu-Tsun Lin
- Molecular Medicine Research Center, Chang Gung University, Taoyuan, Taiwan
| | - Chi-Sheng Wu
- Molecular Medicine Research Center, Chang Gung University, Taoyuan, Taiwan; Department of Otolaryngology-Head & Neck Surgery, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Jr-Shiuan Lin
- Graduate Institute of Immunology, National Taiwan University College of Medicine, Taipei, Taiwan.
| | - Ching-Liang Chu
- Graduate Institute of Immunology, National Taiwan University College of Medicine, Taipei, Taiwan.
| |
Collapse
|
6
|
Parhizkar E, Vosough P, Baneshi M, Keshavarzi A, Lohrasbi P, Taghizadeh S, Savardashtaki A. Probiotics and gut microbiota modulation: implications for skin health and disease management. Arch Microbiol 2025; 207:68. [PMID: 39988585 DOI: 10.1007/s00203-025-04267-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 01/25/2025] [Accepted: 02/04/2025] [Indexed: 02/25/2025]
Abstract
The gut microbiota, consisting of a varied population of microorganisms in the digestive tract, is essential for sustaining overall human health, encompassing skin health. This review explored the intricate relationship between gut microbiota and various skin disorders, investigating the pathways through which gut dysbiosis may have impacted the development and progression of these conditions. We focused on the impact of gut microbiota on atopic dermatitis, psoriasis, acne vulgaris, acne rosacea, and melanoma. The review highlighted the potential of probiotics as a therapeutic strategy for modulating gut microbiota composition and, consequently, improving skin health. We discussed the evidence supporting the use of probiotics in managing these skin disorders and explored the mechanisms by which probiotics delivered their positive effects. Finally, we discussed the potential role of gut microbiota in other skin diseases, emphasizing the need for further research to unravel the complex interplay between the gut and the skin. Significant gaps remain in understanding the gut-skin axis, how microbial interactions contribute to skin disorders, and how to effectively manipulate the microbiome for therapeutic purposes. This review provided extensive research on the gut-skin axis, highlighting the promising prospects of modulating gut microbiota as a therapeutic strategy for various dermatological conditions.
Collapse
Affiliation(s)
- Elahe Parhizkar
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Parisa Vosough
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Maryam Baneshi
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Parvin Lohrasbi
- Department of Reproductive Biology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Saeed Taghizadeh
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran.
- Pharmaceutical Science Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Amir Savardashtaki
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran.
- Infertility Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
7
|
Li J, Chang W, Li J, Zhao X, Li X. IL-22-mediated microRNA-124-3p/GRB2 axis regulates hyperproliferation and inflammatory response of keratinocytes in psoriasis. Arch Dermatol Res 2025; 317:227. [PMID: 39792268 DOI: 10.1007/s00403-024-03668-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 12/08/2024] [Accepted: 12/20/2024] [Indexed: 01/12/2025]
Abstract
Psoriasis is an inflammatory dermatosis that features overproliferation and inflammatory reaction of keratinocytes. A study reported that IL-22 is involved in the pathogenesis of psoriasis by mediating miR-124 to regulate the expression of fibroblast growth factor receptor 2 in keratinocytes. A microRNA may target multiple target genes. Therefore, we speculate that miR-124-3p may also target other downstream genes to affect IL -22-induced keratinocyte function. A possible target gene of miR-124-3p, growth factor receptor-bound protein 2 (GRB2), was screened by analyzing the target gene databases. GRB2 expression was elevated and miR-124-3p expression was decreased in psoriatic lesions compared to psoriatic adjacent normal skins and healthy controls. We performed the following cell experiments in the IL-22-stimulated HaCaT cell model. In keratinocytes transfected with the miR-124-3p mimics, GRB2 expression was significantly lower. We analyzed the regulation of keratinocyte proliferation by GRB2 and miR-124-3p. High levels of GRB2 promoted keratinocyte proliferation and expression of Ki67, PCNA, and K16, which were inhibited by low expression of GRB2. In addition, we found that the effect of GRB2 inhibitors on the proliferation and inflammatory response of keratinocytes was dose-dependent. Finally, we investigated the influence of GRB2 on inflammatory mediators in keratinocytes with the ELISA. After low expression of GRB2, the mRNA expression and secretion of the pro-inflammatory factor were suppressed. When both GRB2 and miR-124-3p were overexpressed, the cellular overproliferation and inflammation caused by GRB2 overexpression were significantly reversed by miR-124-3p. In summary, IL-22-mediated miR-124-3p regulates keratinocyte hyperproliferation and inflammatory response by suppressing GRB2 expression in psoriasis.
Collapse
Affiliation(s)
- Jiaqi Li
- School of Public Health, Shanxi Medical University, Taiyuan, China
- Shanxi Key Laboratory of Stem Cells for Immunological Dermatosis, State Key Breeding Laboratory of Stem Cells for Immunological Dermatosis, Institute of Dermatology, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, China
| | - Wenjuan Chang
- Shanxi Key Laboratory of Stem Cells for Immunological Dermatosis, State Key Breeding Laboratory of Stem Cells for Immunological Dermatosis, Institute of Dermatology, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, China
| | - Junqin Li
- Shanxi Key Laboratory of Stem Cells for Immunological Dermatosis, State Key Breeding Laboratory of Stem Cells for Immunological Dermatosis, Institute of Dermatology, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, China
| | - Xiya Zhao
- Shanxi Key Laboratory of Stem Cells for Immunological Dermatosis, State Key Breeding Laboratory of Stem Cells for Immunological Dermatosis, Institute of Dermatology, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, China
- Ninth Clinical College of Medicine, Shanxi Medical University, No.5, Dong San Dao Xiang, Jiefang Road, Taiyuan, China
| | - Xinhua Li
- School of Public Health, Shanxi Medical University, Taiyuan, China.
- Shanxi Key Laboratory of Stem Cells for Immunological Dermatosis, State Key Breeding Laboratory of Stem Cells for Immunological Dermatosis, Institute of Dermatology, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, China.
- Ninth Clinical College of Medicine, Shanxi Medical University, No.5, Dong San Dao Xiang, Jiefang Road, Taiyuan, China.
| |
Collapse
|
8
|
Murray PE, Coffman JA, Garcia-Godoy F. Oral Pathogens' Substantial Burden on Cancer, Cardiovascular Diseases, Alzheimer's, Diabetes, and Other Systemic Diseases: A Public Health Crisis-A Comprehensive Review. Pathogens 2024; 13:1084. [PMID: 39770344 PMCID: PMC11677847 DOI: 10.3390/pathogens13121084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Revised: 11/28/2024] [Accepted: 12/06/2024] [Indexed: 01/11/2025] Open
Abstract
This review synthesizes the findings from 252 studies to explore the relationship between the oral pathogens associated with periodontitis, dental caries, and systemic diseases. Individuals with oral diseases, such as periodontitis, are between 1.7 and 7.5 times (average 3.3 times) more likely to develop systemic diseases or suffer adverse pregnancy outcomes, underscoring the critical connection between dental and overall health. Oral conditions such as periodontitis and dental caries represent a significant health burden, affecting 26-47% of Americans. The most important oral pathogens, ranked by publication frequency, include the herpes virus, C. albicans, S. mutans, P. gingivalis, F. nucleatum, A. actinomycetemcomitans, P. intermedia, T. denticola, and T. forsythia. The systemic diseases and disorders linked to oral infections, ranked similarly, include cancer, respiratory, liver, bowel, fever, kidney, complications in pregnancy, cardiovascular bacteremia, diabetes, arthritis, autoimmune, bladder, dementia, lupus, and Alzheimer's diseases. Evidence supports the efficacy of dental and periodontal treatments in eliminating oral infections and reducing the severity of systemic diseases. The substantial burden that oral pathogens have on cancer, cardiovascular diseases, Alzheimer's, diabetes, and other systemic diseases poses a significant public health crisis.
Collapse
Affiliation(s)
| | - Jonathan A Coffman
- College of Pharmacy, American University of Health Sciences, Signal Hill, CA 90755, USA
| | - Franklin Garcia-Godoy
- College of Dentistry, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| |
Collapse
|
9
|
Zhang Z, Bao C, Li Z, He C, Jin W, Li C, Chen Y. Integrated omics analysis reveals the alteration of gut microbiota and fecal metabolites in Cervus elaphus kansuensis. Appl Microbiol Biotechnol 2024; 108:125. [PMID: 38229330 PMCID: PMC10789680 DOI: 10.1007/s00253-023-12841-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 10/05/2023] [Accepted: 10/17/2023] [Indexed: 01/18/2024]
Abstract
The gut microbiota is the largest and most complex microecosystem in animals. It is influenced by the host's dietary habits and living environment, and its composition and diversity play irreplaceable roles in animal nutrient metabolism, immunity, and adaptation to the environment. Although the gut microbiota of red deer has been studied, the composition and function of the gut microbiota in Gansu red deer (Cervus elaphus kansuensis), an endemic subspecies of red deer in China, has not been reported. In this study, the composition and diversity of the gut microbiome and fecal metabolomics of C. elaphus kansuensis were identified and compared for the first time by using 16S rDNA sequencing, metagenomic sequencing, and LC-MS/MS. There were significant differences in gut microbiota structure and diversity between wild and farmed C. elaphus kansuensis. The 16S rDNA sequencing results showed that the genus UCRD-005 was dominant in both captive red deer (CRD) and wild red deer (WRD). Metagenomic sequencing showed similar results to those of 16S rDNA sequencing for gut microbiota in CRD and WRD at the phylum and genus levels. 16S rDNA and metagenomics sequencing data suggested that Bacteroides and Bacillus might serve as marker genera for CRD and WRD, respectively. Fecal metabolomics results showed that 520 metabolites with significant differences were detected between CRD and WRD and most differential metabolites were involved in lipid metabolism. The results suggested that large differences in gut microbiota composition and fecal metabolites between CRD and WRD, indicating that different dietary habits and living environments over time have led to the development of stable gut microbiome characteristics for CRD and WRD to meet their respective survival and reproduction needs. KEY POINTS: • Environment and food affected the gut microbiota and fecal metabolites in red deer • Genera Bacteroides and Bacillus may play important roles in CRD and WRD, respectively • Flavonoids and ascorbic acid in fecal metabolites may influence health of red deer.
Collapse
Affiliation(s)
- Zhenxiang Zhang
- College of Eco-Environmental Engineering, Qinghai University, No. 251 Ningda Road, Xining, 810016, China
- Qinghai Provincial Key Laboratory of Adaptive Management on Alpine Grassland, Academy of Animal Science and Veterinary Medicine, Qinghai University, Xining, China
| | - Changhong Bao
- College of Eco-Environmental Engineering, Qinghai University, No. 251 Ningda Road, Xining, 810016, China
| | - Zhaonan Li
- College of Eco-Environmental Engineering, Qinghai University, No. 251 Ningda Road, Xining, 810016, China
| | - Caixia He
- College of Eco-Environmental Engineering, Qinghai University, No. 251 Ningda Road, Xining, 810016, China
| | - Wenjie Jin
- College of Eco-Environmental Engineering, Qinghai University, No. 251 Ningda Road, Xining, 810016, China
| | - Changzhong Li
- College of Eco-Environmental Engineering, Qinghai University, No. 251 Ningda Road, Xining, 810016, China.
| | - Yanxia Chen
- College of Eco-Environmental Engineering, Qinghai University, No. 251 Ningda Road, Xining, 810016, China.
| |
Collapse
|
10
|
Zhang Q, Zhao L, Li Y, Wang S, Lu G, Wang H. Advances in the mechanism of action of short-chain fatty acids in psoriasis. Int Immunopharmacol 2024; 141:112928. [PMID: 39159566 DOI: 10.1016/j.intimp.2024.112928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/22/2024] [Accepted: 08/10/2024] [Indexed: 08/21/2024]
Abstract
Psoriasis is a prevalent chronic inflammatory and immunological disorder. Its lesions are present as scaly erythema or plaques. Disruptions in the body's immune system play a significant role in developing psoriasis. Recent evidence suggests a potential role of the gut microbiome in autoimmune diseases. Short-chain fatty acids (SCFAs) are the primary metabolites created by gut microbes and play a crucial fuction in autoimmunity. SCFAs act on various cells by mediating signaling to participate in host physiological and pathological processes. These processes encompass body metabolism, maintenance of intestinal barrier function, and immune system modulation. SCFAs can regulate immune cells to enhance the body's immune function, potentially influencing the prevention and treatment of psoriasis. However, the mechanisms underlying the role of SCFAs in psoriasis remain incompletely understood. This paper examines the relationship between SCFAs and psoriasis, elucidating how SCFAs influence the immune system, inflammatory response, and gut barrier in psoriasis. According to the study, in psoriasis, SCFAs have been shown to regulate neutrophils, macrophages, and dendritic cells in the adaptive immune system, as well as T and B cells in the innate immune system. Additionally, we explore the role of SCFAs in psoriasis by maintaining intestinal barrier function, restoring intestinal ecological homeostasis, and investigating the potential therapeutic benefits of SCFAs for psoriasis.
Collapse
Affiliation(s)
- Qin Zhang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China; Tianjin Academy of Traditional Chinese Medicine Affiliated Hospital, Tianjin, China; Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Linna Zhao
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China; Tianjin Academy of Traditional Chinese Medicine Affiliated Hospital, Tianjin, China; Tianjin Key Laboratory of Translational Research of TCM Prescription and Syndrome, Tianjin, China.
| | - Yu Li
- Tianjin Academy of Traditional Chinese Medicine Affiliated Hospital, Tianjin, China; Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Siyao Wang
- Tianjin Academy of Traditional Chinese Medicine Affiliated Hospital, Tianjin, China; Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Guiling Lu
- Tianjin Academy of Traditional Chinese Medicine Affiliated Hospital, Tianjin, China
| | - Hongmei Wang
- Tianjin Academy of Traditional Chinese Medicine Affiliated Hospital, Tianjin, China.
| |
Collapse
|
11
|
Yu Y, Zhang K, Zhang D, Feng R, Chen K, Zhou X, Nie S, Xie MY. Highland Barley β-Glucan Relieves Symptoms of Colitis via PPARα-Mediated Intestinal Stem Cell Proliferation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:24359-24373. [PMID: 39084686 DOI: 10.1021/acs.jafc.3c09535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/02/2024]
Abstract
Intestinal stem cells (ISCs) are necessary to maintain intestinal renewal. Here, we found that the highland barley β-glucan (HBG) alleviated pathological symptoms and promoted the proliferation of intestinal stem cells in colitis mice. Notably, metabolomics studies showed that docosahexaenoic acid (DHA) was significantly increased by the HBG treatment. DHA is a ligand for peroxisome proliferator-activated receptor α (PPARα), which can promote ISC proliferation. Expectedly, HBG facilitated the expression of intestinal PPARα and the proliferation of ISCs in colitis mice. Further experiments verified that DHA significantly facilitated the expression of PPARα and the proliferation of ISCs in intestinal organoids. Intriguingly, the effect of DHA on ISC proliferation was reversed by the PPARα inhibitor. Together, our data indicate that HBG might accelerate PPARα-mediated ISC proliferation through DHA. This provides new insights into the effective application of polysaccharides in maintaining intestinal homeostasis.
Collapse
Affiliation(s)
- Yongkang Yu
- State Key Laboratory of Food Science and Resources, Nanchang University, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Nanchang University, 235 Nanjing East Road, Nanchang 330047, Jiangxi, China
| | - Ke Zhang
- State Key Laboratory of Food Science and Resources, Nanchang University, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Nanchang University, 235 Nanjing East Road, Nanchang 330047, Jiangxi, China
| | - Duoduo Zhang
- State Key Laboratory of Food Science and Resources, Nanchang University, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Nanchang University, 235 Nanjing East Road, Nanchang 330047, Jiangxi, China
| | - Ruting Feng
- State Key Laboratory of Food Science and Resources, Nanchang University, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Nanchang University, 235 Nanjing East Road, Nanchang 330047, Jiangxi, China
| | - Kunying Chen
- State Key Laboratory of Food Science and Resources, Nanchang University, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Nanchang University, 235 Nanjing East Road, Nanchang 330047, Jiangxi, China
| | - Xingtao Zhou
- State Key Laboratory of Food Science and Resources, Nanchang University, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Nanchang University, 235 Nanjing East Road, Nanchang 330047, Jiangxi, China
| | - Shaoping Nie
- State Key Laboratory of Food Science and Resources, Nanchang University, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Nanchang University, 235 Nanjing East Road, Nanchang 330047, Jiangxi, China
| | - Ming-Yong Xie
- State Key Laboratory of Food Science and Resources, Nanchang University, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Nanchang University, 235 Nanjing East Road, Nanchang 330047, Jiangxi, China
| |
Collapse
|
12
|
Zhu Y, Xu F, Chen H, Zheng Q. The efficacy and safety of probiotics in the adjuvant treatment of psoriasis: a systematic review and meta-analysis of randomized controlled trials. Front Med (Lausanne) 2024; 11:1448626. [PMID: 39328313 PMCID: PMC11426359 DOI: 10.3389/fmed.2024.1448626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 08/26/2024] [Indexed: 09/28/2024] Open
Abstract
Background It has been reported that the imbalance of gut microbiota is involved in the pathogenesis of psoriasis. We retrieved randomized placebo-controlled trials to evaluate the efficacy and safety of probiotic administration in the treatment of psoriasis. Methods The outcomes were changes in Psoriasis Area and Severity Index (PASI), Dermatology Life Quality Index (DLQI), and serum inflammatory indicators after treatment, and adverse events (AEs). Risk ratios (RRs) and mean differences (MDs) were calculated using random or fixed effects model. Results Seven qualified studies were identified in our study. The pooled percentage of patients with ≥75% reduction from baseline in PASI was higher in the probiotic group than that in the placebo group (33.57% vs. 23.61%; RR 1.40, 95% CI 0.98-1.98, p = 0.06). Compared with the placebo group, the PASI (MD -3.09, 95% CI -5.04 to -0.74, p = 0.01) and CRP level (MD -2.36, 95% CI -2.77 to -1.95, p < 0.0001) were significantly reduced in the probiotic group. There was no significant difference in DLQI (MD -1.45, 95% CI -6.72 to 3.82, p = 0.59) and AEs (RR 0.68, 95% CI 0.37-1.25, p = 0.22) between the two groups. Conclusion Oral administration of probiotics can improve psoriasis; however, large randomized controlled trials are needed to support this conclusion. Systematic review registration PROSPERO, identifier CRD42024506286, https://www.crd.york.ac.uk/prospero/display_record.php?ID=CRD42024506286.
Collapse
Affiliation(s)
- Yiran Zhu
- School of Basic Medical Sciences, North China University of Science and Technology, Tangshan, China
| | - Fan Xu
- Hebei Key Laboratory for Chronic Diseases, Tangshan Key Laboratory for Preclinical and Basic Research on Chronic Diseases, School of Basic Medical Sciences, North China University of Science and Technology, Tangshan, China
| | - Hao Chen
- Hebei Key Laboratory for Chronic Diseases, Tangshan Key Laboratory for Preclinical and Basic Research on Chronic Diseases, School of Basic Medical Sciences, North China University of Science and Technology, Tangshan, China
| | - Quanhui Zheng
- Hebei Key Laboratory for Chronic Diseases, Tangshan Key Laboratory for Preclinical and Basic Research on Chronic Diseases, School of Basic Medical Sciences, North China University of Science and Technology, Tangshan, China
| |
Collapse
|
13
|
Jauregui W, Abarca YA, Ahmadi Y, Menon VB, Zumárraga DA, Rojas Gomez MC, Basri A, Madala RS, Girgis P, Nazir Z. Shared Pathophysiology of Inflammatory Bowel Disease and Psoriasis: Unraveling the Connection. Cureus 2024; 16:e68569. [PMID: 39364475 PMCID: PMC11449469 DOI: 10.7759/cureus.68569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/02/2024] [Indexed: 10/05/2024] Open
Abstract
Psoriasis (PS) and inflammatory bowel disease (IBD) are immune-mediated chronic conditions that share pathophysiological processes, including immune system dysfunction, microbiome dysbiosis, and inflammatory pathways. These pathways result in increased turnover of epithelial cells and compromised barrier function. The assessment of the literature suggests that immunopathogenic mechanisms, such as tumor necrosis factor (TNF)-α signaling and IL-23/IL-17 axis dysregulation, are shared by PS and IBD. Clinical characteristics and diagnostic approaches overlap significantly, and advances in biomarker identification benefit both conditions. Current treatments, namely biologics that target TNF-α, IL-17, and IL-23, show promising results in decreasing inflammation and controlling symptoms. Precision medicine approaches are prioritized in prospective therapeutic procedures to tailor pharmaceuticals based on specific biomarkers, perhaps improving outcomes and minimizing side effects. This study thoroughly examines and evaluates the body of research on PS and IBD. Several papers were examined to compile data on clinical features, diagnosis, therapies, pathophysiology, epidemiology, and potential future therapeutic developments. The selection of articles was based on three methodological qualities: relevance and addition to the knowledge of IBD and PS. The retrieved data were combined to provide a coherent summary of the state of the knowledge and to spot new trends. The overview of the latest studies demonstrates that both PS and IBD share pathophysiological foundations and therapeutic approaches. With a spotlight on particular biomarkers, advances in precision medicine provide a promising path toward enhancing therapeutic effectiveness and minimizing side effects.
Collapse
Affiliation(s)
- Walter Jauregui
- General Medicine, Universidad Nacional Autónoma de Honduras, Tegucigalpa, HND
| | - Yozahandy A Abarca
- Internal Medicine, Escuela de Medicina y Ciencias de la Salud, Tecnológico de Monterrey, Mexico City, MEX
| | - Yasmin Ahmadi
- School of Medicine, Royal College of Surgeons in Ireland - Medical University of Bahrain, Muharraq, BHR
| | - Vaishnavi B Menon
- Internal Medicine, Sri Ramachandra Institute of Higher Education and Research, Chennai, IND
| | | | | | - Aleeza Basri
- Internal Medicine, Liaquat University of Medical and Health Sciences, Hyderabad, PAK
| | | | - Peter Girgis
- Internal Medicine, Ross University School of Medicine, Bridgetown, BRB
| | - Zahra Nazir
- Internal Medicine, Combined Military Hospital, Quetta, PAK
| |
Collapse
|
14
|
Li X, Chen S, Chen S, Cheng S, Lan H, Wu Y, Qiu G, Zhang L. Skin microbiome and causal relationships in three dermatological diseases: Evidence from Mendelian randomization and Bayesian weighting. Skin Res Technol 2024; 30:e70035. [PMID: 39218780 PMCID: PMC11366447 DOI: 10.1111/srt.70035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 08/17/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND Atopic dermatitis (AD), psoriasis (PSO), rosacea, and other related immune skin diseases are affected by multiple complex factors such as genetic and microbial components. This research investigates the causal relationships between specific skin microbiota and these diseases by using Mendelian randomization (MR), and Bayesian weighted Mendelian randomization (BWMR). METHODS We utilized genome-wide association study (GWAS) data to analyze the associations between various skin bacteria and three dermatological diseases. Single nucleotide polymorphisms (SNPs) served as instrumental variables (IVs) in MR methods, including inverse variance weighted (IVW), and MR Egger. BWMR was employed to validate results and address pleiotropy. RESULTS The IVW analysis identified significant associations between specific skin microbiota and dermatological diseases. ASV006_Dry, ASV076_Dry, and Haemophilus_Dry were significantly positively associated with AD, whereas Kocuria_Dry was negatively associated. In PSO, ASV005_Dry was negatively associated, whereas ASV004_Dry, Rothia_Dry, and Streptococcus_Moist showed positive associations. For rosacea, ASV023_Dry was significantly positively associated, while ASV016_Moist, Finegoldia_Dry, and Rhodobacteraceae_Moist were significantly negatively associated. These results were corroborated by BWMR analysis. CONCLUSION Bacterial species such as Finegoldia, Rothia, and Streptococcus play crucial roles in the pathogenesis of AD, PSO, and rosacea. Understanding these microbial interactions can aid in developing targeted treatments and preventive strategies, enhancing patient outcomes and quality of life.
Collapse
Affiliation(s)
- Xiaojian Li
- Clinical Medical CollegeJiangxi University of Chinese MedicineNanchangChina
| | - Shiyu Chen
- Clinical Medical CollegeJiangxi University of Chinese MedicineNanchangChina
| | - Shupeng Chen
- Clinical Medical CollegeJiangxi University of Chinese MedicineNanchangChina
| | - Shiping Cheng
- Clinical Medical CollegeJiangxi University of Chinese MedicineNanchangChina
- Dermatology DepartmentAffiliated Hospital of Jiangxi University of Chinese MedicineNanchangChina
| | - Hongrong Lan
- Clinical Medical CollegeJiangxi University of Chinese MedicineNanchangChina
| | - Yunbo Wu
- Clinical Medical CollegeJiangxi University of Chinese MedicineNanchangChina
- Dermatology DepartmentAffiliated Hospital of Jiangxi University of Chinese MedicineNanchangChina
| | - Guirong Qiu
- Clinical Medical CollegeJiangxi University of Chinese MedicineNanchangChina
- Dermatology DepartmentAffiliated Hospital of Jiangxi University of Chinese MedicineNanchangChina
| | - Lingjin Zhang
- Dermatology DepartmentShenzhen Luohu Hospital of Traditional Chinese MedicineShenzhenChina
| |
Collapse
|
15
|
Ferček I, Ozretić P, Tambić-Andrašević A, Trajanoski S, Ćesić D, Jelić M, Geber G, Žaja O, Paić J, Lugović-Mihić L, Čivljak R. Comparison of the Skin Microbiota in the Periocular Region between Patients with Inflammatory Skin Diseases and Healthy Participants: A Preliminary Study. Life (Basel) 2024; 14:1091. [PMID: 39337875 PMCID: PMC11433335 DOI: 10.3390/life14091091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/22/2024] [Accepted: 08/29/2024] [Indexed: 09/17/2024] Open
Abstract
(1) Background: Periocular or periorbital dermatitis is a common term for all inflammatory skin diseases affecting the area of skin around the eyes. The clear etiopathogenesis of periocular dermatitis is still not fully understood. Advances in molecular techniques for studying microorganisms living in and on our bodies have highlighted the microbiome as a possible contributor to disease, as well as a promising diagnostic marker and target for innovative treatments. The aim of this study was to compare the composition and diversity of the skin microbiota in the periocular region between healthy individuals and individuals affected by the specific entity of periocular dermatitis. (2) Methods: A total of 35 patients with periocular dermatitis and 39 healthy controls were enrolled in the study. After a skin swab from the periocular region was taken from all participants, DNA extraction and 16S rRNA gene amplicon sequencing using Illumina NovaSeq technology were performed. (3) Results: Staphylococcus and Corynebacterium were the most abundant bacterial genera in the microbiota of healthy skin. Analysis of alpha diversity revealed a statistically significant change (p < 0.05) in biodiversity based on the Faith's PD index between patients and healthy individuals. We did not observe changes in beta diversity. The linear discriminant analysis effect size (LEfSe) revealed that Rothia, Corynebacterium, Bartonella, and Paracoccus were enriched in patients, and Anaerococcus, Bacteroides, Porphyromonas, and Enhydrobacter were enriched in healthy controls. (4) Conclusions: According to the results obtained, we assume that the observed changes in the bacterial microbiota on the skin, particularly Gram-positive anaerobic cocci and skin commensals of the genus Corynebacterium, could be one of the factors in the pathogenesis of the investigated inflammatory diseases. The identified differences in the microbiota between healthy individuals and patients with periocular dermatitis should be further investigated.
Collapse
Affiliation(s)
- Iva Ferček
- Department of Ophthalmology, Zabok General Hospital and Croatian Veterans’ Hospital, 49210 Zabok, Croatia
| | - Petar Ozretić
- Laboratory for Hereditary Cancer, Division of Molecular Medicine, Ruđer Bošković Institute, 10000 Zagreb, Croatia;
| | - Arjana Tambić-Andrašević
- School of Dental Medicine, University of Zagreb, 10000 Zagreb, Croatia; (A.T.-A.); (G.G.); (O.Ž.); (L.L.-M.)
- Department of Clinical Microbiology, University Hospital for Infectious Diseases, 10000 Zagreb, Croatia;
| | - Slave Trajanoski
- Core Facility Computational Bioanalytics, Center for Medical Research, Medical University Graz, 8010 Graz, Austria;
| | - Diana Ćesić
- Department of Dermatology and Venereology, Medikol Clinic, 10000 Zagreb, Croatia;
| | - Marko Jelić
- Department of Clinical Microbiology, University Hospital for Infectious Diseases, 10000 Zagreb, Croatia;
| | - Goran Geber
- School of Dental Medicine, University of Zagreb, 10000 Zagreb, Croatia; (A.T.-A.); (G.G.); (O.Ž.); (L.L.-M.)
- Department of Otorhinolaryngology and Head and Neck Surgery, Sestre Milosrdnice University Hospital Centre, 10000 Zagreb, Croatia
| | - Orjena Žaja
- School of Dental Medicine, University of Zagreb, 10000 Zagreb, Croatia; (A.T.-A.); (G.G.); (O.Ž.); (L.L.-M.)
- Department of Pediatrics, Sestre Milosrdnice University Hospital Centre, 10000 Zagreb, Croatia
| | - Josipa Paić
- Department of Ophthalmology and Optometry, Šibenik General Hospital, 22000 Šibenik, Croatia;
| | - Liborija Lugović-Mihić
- School of Dental Medicine, University of Zagreb, 10000 Zagreb, Croatia; (A.T.-A.); (G.G.); (O.Ž.); (L.L.-M.)
- Department of Dermatology and Venereology, Sestre Milosrdnice University Hospital Centre, 10000 Zagreb, Croatia
| | - Rok Čivljak
- Department for Respiratory Infections, University Hospital for Infectious Diseases “Dr. Fran Mihaljević”, 10000 Zagreb, Croatia;
- School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| |
Collapse
|
16
|
Zou X, Zou X, Gao L, Zhao H. Gut microbiota and psoriasis: pathogenesis, targeted therapy, and future directions. Front Cell Infect Microbiol 2024; 14:1430586. [PMID: 39170985 PMCID: PMC11335719 DOI: 10.3389/fcimb.2024.1430586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 07/22/2024] [Indexed: 08/23/2024] Open
Abstract
Background Psoriasis is one of the most common autoimmune skin diseases. Increasing evidence shows that alterations in the diversity and function of microbiota can participate in the pathogenesis of psoriasis through various pathways and mechanisms. Objective To review the connection between microbial changes and psoriasis, how microbial-targeted therapy can be used to treat psoriasis, as well as the potential of prebiotics, probiotics, synbiotics, fecal microbiota transplantation, diet, and Traditional Chinese Medicine as supplementary and adjunctive therapies. Methods Literature related to the relationship between psoriasis and gut microbiota was searched in PubMed and CNKI. Results Adjunct therapies such as dietary interventions, traditional Chinese medicine, and probiotics can enhance gut microbiota abundance and diversity in patients with psoriasis. These therapies stimulate immune mediators including IL-23, IL-17, IL-22, and modulate gamma interferon (IFN-γ) along with the NF-kB pathway, thereby suppressing the release of pro-inflammatory cytokines and ameliorating systemic inflammatory conditions. Conclusion This article discusses the direction of future research and clinical treatment of psoriasis from the perspective of intestinal microbiota and the mechanism of traditional Chinese medicine, so as to provide clinicians with more comprehensive diagnosis and treatment options and bring greater hope to patients with psoriasis.
Collapse
Affiliation(s)
- Xinyan Zou
- College of Traditional Chinese Medicine, Hebei University, Baoding, Hebei, China
| | - Xinfu Zou
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Longxia Gao
- College of Traditional Chinese Medicine, Hebei University, Baoding, Hebei, China
| | - Hanqing Zhao
- College of Traditional Chinese Medicine, Hebei University, Baoding, Hebei, China
| |
Collapse
|
17
|
Qian M, Shi J, Zhang Z, Bi D, Tan C. Genetic insights into the gut microbiota and risk of psoriasis: a bidirectional mendelian randomization study. Front Microbiol 2024; 15:1434521. [PMID: 39161603 PMCID: PMC11331342 DOI: 10.3389/fmicb.2024.1434521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Accepted: 07/18/2024] [Indexed: 08/21/2024] Open
Abstract
Background Growing evidence indicates a potential association between the gut microbiome and psoriasis. Nevertheless, the precise nature of these associations and whether they constitute causal relationships remain unclear. Methods A rigorous bidirectional two-sample Mendelian randomization study was undertaken to establish a putative causal link between gut microbiota and psoriasis. We drew upon publicly available datasets containing summary statistics from GWAS to accomplish this. Utilizing various analytical techniques, including inverse variance weighting, MR-Egger, weighted median, weighted model, and MR-PRESSO, we sought to validate the putative causal association between gut microbiota and psoriasis. A reverse Mendelian randomization analysis was conducted to further investigate the relationship. Results After conducting a forward Mendelian randomization analysis, a causal relationship was established between 19 gut microbiota and psoriasis. Furthermore, the reverse MR study revealed causality between psoriasis and 13 gut microbiota. Notably, no substantial heterogeneity of instrumental variables or horizontal pleiotropy was observed. Conclusion This research suggests a potential genetic association and causal nexus between gut microorganisms and psoriasis, indicating potential implications for the clinical management and therapy of psoriasis. Additional observational studies with a larger population sample size and animal model experiments are imperative to fully elucidate this association's underlying mechanisms.
Collapse
Affiliation(s)
| | | | | | | | - Cheng Tan
- Department of Dermatology, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, China
| |
Collapse
|
18
|
Polak K, Muszyński T, Frątczak A, Meznerics F, Bánvölgyi A, Kiss N, Miziołek B, Bergler-Czop B. Study of gut microbiome alterations in plaque psoriasis patients compared to healthy individuals. Postepy Dermatol Alergol 2024; 41:378-387. [PMID: 39290901 PMCID: PMC11404103 DOI: 10.5114/ada.2024.142394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 06/15/2024] [Indexed: 09/19/2024] Open
Abstract
Introduction Many studies have shown significant alterations in the gut microbiome of patients with psoriasis compared to healthy controls. Aim The primary objective of the current research was to explore the impact of gut microbiome composition on the progression and severity of plaque psoriasis. Material and methods A total of 20 patients with moderate-to-severe psoriasis and 20 healthy individuals were recruited and provided a stool sample to assess the gut microbiome. After the samples were prepared according to the NGS library preparation workflow, they were sequenced using the Illumina platform and the report was generated that underwent statistical analysis. Results The microbiome profiles of psoriasis patients exhibited significant differences compared to healthy controls as evidenced by the statistical analysis of various bacterial genera, with the median abundance significantly lower in psoriasis patients compared to healthy controls (p = 0.033). The analysis of the Firmicutes-to-Bacteroidetes ratio, a commonly evaluated marker of dysbiosis, did not reach statistical significance (p = 0.239). However, there was a noticeable trend towards a higher median ratio in psoriasis patients compared to healthy controls. The ratio did not show significant associations with PASI or BSA but trends towards significance with DLQI (B = -12.11, p = 0.095). Conclusions Overall, the above findings underscore the importance of the gut microbiome in psoriasis and suggest that modulation of specific bacterial genera, especially that with significant differences, could be a potential strategy for therapeutic intervention. Targeting these depleted genera through microbiome-based interventions, such as probiotic supplementation or faecal microbiota transplantation, could potentially help to restore gut homeostasis and alleviate the inflammatory burden in psoriasis.
Collapse
Affiliation(s)
- Karina Polak
- Department of Dermatology, Medical University of Silesia, Katowice, Poland
- Doctoral School of the Medical University of Silesia, Katowice, Poland
| | - Tomasz Muszyński
- Brothers Hospitallers of Saint John of God Hospital, Krakow, Poland
- Doctoral School of Medical and Health Sciences, Jagiellonian University, Krakow, Poland
| | | | - Fanni Meznerics
- Department of Dermatology, Venereology and Dermatooncology, Semmelweis University, Budapest, Hungary
| | - András Bánvölgyi
- Department of Dermatology, Venereology and Dermatooncology, Semmelweis University, Budapest, Hungary
| | - Norbert Kiss
- Department of Dermatology, Venereology and Dermatooncology, Semmelweis University, Budapest, Hungary
| | - Bartosz Miziołek
- Department of Dermatology, Medical University of Silesia, Katowice, Poland
| | - Beata Bergler-Czop
- Department of Dermatology, Medical University of Silesia, Katowice, Poland
| |
Collapse
|
19
|
Zhou R, Xiao Q, Zhao L, Tang J, Han Y, Huang N, Wang Y, Cheng J, Lyu J, Xiong L, Li L. The association between weight-adjusted-waist index and psoriasis: A cross-sectional study. Prev Med 2024; 185:108026. [PMID: 38844051 DOI: 10.1016/j.ypmed.2024.108026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 05/31/2024] [Accepted: 06/01/2024] [Indexed: 06/22/2024]
Abstract
INTRODUCTION This study explored the association between psoriasis and the weight-adjusted waist index (WWI), a newly developed measure of adiposity. The research was conducted among adults in the United States. METHODS Utilizing survey data from the National Health and Nutrition Examination Survey (NHANES) spanning the years 2009 to 2014, the present study aimed to investigate the potential correlation between psoriasis and WWI within a sample of 15,920 adult participants. Employing multivariable logistic regression and nonlinear curve fitting techniques, we analyzed this plausible association. Additionally, a subgroup analysis was conducted to ascertain the consistency across diverse populations. RESULTS A significant positive association was discovered between psoriasis and WWI in the investigated sample of 15,920 adults. After conducting a comprehensive adjustment of the model, it was observed that each incremental unit of WWI was significantly associated with an 14% elevated likelihood of developing psoriasis (OR = 1.16, 95% CI 1.01-1.36). Moreover, individuals belonging to the highest quartile of WWI exhibited a 47% higher risk of psoriasis compared to those in the lowest quartile (OR = 1.44, 95% CI 1.01-2.06). This positive correlation remained consistent across various subgroups. The study also compared WWI with BMI and waist circumference, finding that WWI is a more stable metric of obesity. CONCLUSIONS Our study suggested that in US adults, there is a positive association between WWI and psoriasis. It also indicated that WWI showed potential as a valuable index of psoriasis among the general population.
Collapse
Affiliation(s)
- Runke Zhou
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu, China
| | - Qing Xiao
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu, China
| | - Lingyun Zhao
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu, China
| | - Jie Tang
- Cosmetics Safety and Efficacy Evaluation Center, West China Hospital, Sichuan University, Chengdu, China; NMPA Key Laboratory for Human Evaluation and Big Data of Cosmetics, Chengdu, China
| | - Yuanyuan Han
- Cosmetics Safety and Efficacy Evaluation Center, West China Hospital, Sichuan University, Chengdu, China
| | - Nan Huang
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu, China
| | - Yixin Wang
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu, China
| | - Ji Cheng
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu, China
| | - Jiaqi Lyu
- Cosmetics Safety and Efficacy Evaluation Center, West China Hospital, Sichuan University, Chengdu, China
| | - Lidan Xiong
- Cosmetics Safety and Efficacy Evaluation Center, West China Hospital, Sichuan University, Chengdu, China; NMPA Key Laboratory for Human Evaluation and Big Data of Cosmetics, Chengdu, China.
| | - Li Li
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu, China; Cosmetics Safety and Efficacy Evaluation Center, West China Hospital, Sichuan University, Chengdu, China; NMPA Key Laboratory for Human Evaluation and Big Data of Cosmetics, Chengdu, China.
| |
Collapse
|
20
|
Mahran A, Hosni AM, Farag NG, Elkhawaga AA, Mageed AAA. Role of Claudin- 3 as a biomarker of gut-skin axis integrity in patients with psoriasis. Arch Dermatol Res 2024; 316:476. [PMID: 39023797 DOI: 10.1007/s00403-024-03071-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 04/18/2024] [Accepted: 04/26/2024] [Indexed: 07/20/2024]
Abstract
Increased intestinal permeability and gut dysbiosis are important factors in the pathophysiology of psoriasis and its associated conditions. Claudin-3 is a protein that is found in tight junctions and may be used to assess the integrity of the gut barrier. The aim of this study was to investigate serum concentration of Claudin- 3 (CLDN3) in patients with psoriasis. Exploring its possible relations with patients' demographic, clinical and laboratory findings was another objective. Fifty psoriatic patients and thirty-five age- and sex-matched healthy volunteers served as the study's control group in this case-control, hospital-based research. The amount of serum CLDN3 was determined by means of an enzyme-linked immunosorbent test (ELISA). Concentration of serum CLDN3 was found to be significantly higher in patients with psoriasis. (p = 0.002). There was no statistically significant correlation between CLDN3 and patient's clinical & laboratory variables. We demonstrated that gut permeability is dysfunctional in patients with psoriasis as indicated by reduction of serum CLDN3. Further investigations are needed to determine whether modulation of gut barrier may represent a new therapeutic approach for psoriasis.
Collapse
Affiliation(s)
- Ayman Mahran
- Department of Dermatology, Venereology and Andrology, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Amal Mohammed Hosni
- Department of Clinical Pathology, Faculty of Medicine, Assiut University, Assiut, Egypt.
| | - Nesma G Farag
- Department of Medical Biochemistry, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Amal A Elkhawaga
- Department of Medical Microbiology and immunology, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Ahmed A Abdel Mageed
- Department of Dermatology, Venereology and Andrology, Faculty of Medicine, Assiut University, Assiut, Egypt
| |
Collapse
|
21
|
Brichacek AL, Florkowski M, Abiona E, Frank KM. Ultra-Processed Foods: A Narrative Review of the Impact on the Human Gut Microbiome and Variations in Classification Methods. Nutrients 2024; 16:1738. [PMID: 38892671 PMCID: PMC11174918 DOI: 10.3390/nu16111738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 05/28/2024] [Accepted: 05/29/2024] [Indexed: 06/21/2024] Open
Abstract
Ultra-processed foods (UPFs) are foods that are industrially processed and are often pre-packaged, convenient, energy-dense, and nutrient-poor. UPFs are widespread in the current Western diet and their proposed contribution to non-communicable diseases such as obesity and cardiovascular disease is supported by numerous studies. UPFs are hypothesized to affect the body in multiple ways, including by inducing changes in the gut microbiome. This review summarizes the available research on the effect of UPFs on the gut microbiome. We also review current usage of the NOVA food classification system in randomized controlled trials and observational studies and how its implementation effects UPF research. Despite some differences in methodology between studies, results often associate UPF consumption with a number of negative health consequences. There are attempts to standardize a UPF classification system; however, reaching and implementing a consensus is difficult. Future studies focusing on the mechanisms by which UPFs effect the body, including through the microbiome and metabolome, will be essential to refine our understanding of the effects of UPFs on human health.
Collapse
Affiliation(s)
| | | | | | - Karen M. Frank
- Department of Laboratory Medicine, National Institutes of Health Clinical Center, Building 10, 10 Center Drive MSC 1508, Bethesda, MD 20892, USA; (A.L.B.); (M.F.); (E.A.)
| |
Collapse
|
22
|
Chen Y, Peng C, Zhu L, Wang J, Cao Q, Chen X, Li J. Atopic Dermatitis and Psoriasis: Similarities and Differences in Metabolism and Microbiome. Clin Rev Allergy Immunol 2024; 66:294-315. [PMID: 38954264 DOI: 10.1007/s12016-024-08995-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/08/2024] [Indexed: 07/04/2024]
Abstract
Atopic dermatitis and psoriasis are common chronic inflammatory diseases of high incidence that share some clinical features, including symptoms of pruritus and pain, scaly lesions, and histologically, acanthosis and hyperkeratosis. Meanwhile, they are both commonly comorbid with metabolic disorders such as obesity and diabetes, indicating that both diseases may exist with significant metabolic disturbances. Metabolomics reveals that both atopic dermatitis and psoriasis have abnormalities in a variety of metabolites, including lipids, amino acids, and glucose. Meanwhile, recent studies have highlighted the importance of the microbiome and its metabolites in the pathogenesis of atopic dermatitis and psoriasis. Metabolic alterations and microbiome dysbiosis can also affect the immune, inflammatory, and epidermal barrier, thereby influencing the development of atopic dermatitis and psoriasis. Focusing on the metabolic and microbiome levels, this review is devoted to elaborating the similarities and differences between atopic dermatitis and psoriasis, thus providing insights into the intricate relationship between both conditions.
Collapse
Affiliation(s)
- Yihui Chen
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, 410008, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
- Furong Laboratory, Changsha, 410008, China
| | - Cong Peng
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, 410008, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
- Furong Laboratory, Changsha, 410008, China
| | - Lei Zhu
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, 410008, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
- Furong Laboratory, Changsha, 410008, China
| | - Jiayi Wang
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, 410008, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
- Furong Laboratory, Changsha, 410008, China
| | - Qiaozhi Cao
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, 410008, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
- Furong Laboratory, Changsha, 410008, China
| | - Xiang Chen
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, 410008, China.
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, 410008, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China.
- Furong Laboratory, Changsha, 410008, China.
| | - Jie Li
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, 410008, China.
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, 410008, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China.
- Furong Laboratory, Changsha, 410008, China.
| |
Collapse
|
23
|
Noor AAM, Nor AKCM, Redzwan NM. The immunological understanding on germinal center B cells in psoriasis. J Cell Physiol 2024; 239:e31266. [PMID: 38578060 DOI: 10.1002/jcp.31266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 02/16/2024] [Accepted: 03/20/2024] [Indexed: 04/06/2024]
Abstract
The development of psoriasis is mainly driven by the dysregulation of T cells within the skin, marking a primary involvement of these cells in the pathogenesis. Although B cells are integral components of the immune system, their role in the initiation and progression of psoriasis is not as pivotal as that of T cells. The paradox of B cell suggests that, while it is crucial for adaptive immunity, B cells may contribute to the exacerbation of psoriasis. Numerous ideas proposed that there are potential relationships between psoriasis and B cells especially within germinal centers (GCs). Recent research projected that B cells might be triggered by autoantigens which then induced molecular mimicry to alter B cells activity within GC and generate autoantibodies and pro-inflammatory cytokines, form ectopic GC, and dysregulate the proliferation of keratinocytes. Hence, in this review, we gathered potential evidence indicating the participation of B cells in psoriasis within the context of GC, aiming to enhance our comprehension and advance treatment strategies for psoriasis thus inviting many new researchers to investigate this issue.
Collapse
Affiliation(s)
- Aina Akmal Mohd Noor
- Department of Immunology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia
| | - Abdah Karimah Che Md Nor
- Central Research Laboratory, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia
| | - Norhanani Mohd Redzwan
- Department of Immunology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia
| |
Collapse
|
24
|
Lee JH, Shin JH, Kim JY, Ju HJ, Kim GM. Exploring the Role of Gut Microbiota in Patients with Alopecia Areata. Int J Mol Sci 2024; 25:4256. [PMID: 38673841 PMCID: PMC11050148 DOI: 10.3390/ijms25084256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/05/2024] [Accepted: 04/09/2024] [Indexed: 04/28/2024] Open
Abstract
Imbalances in gut microbiota reportedly contribute to the development of autoimmune diseases, but the association between the etiopathogenesis of alopecia areata (AA) and gut microbial dysbiosis remains unclear. This cross-sectional study was conducted to identify and compare the composition of the gut microbiome in patients affected by AA and those in a healthy control (HC) group, and to investigate possible bacterial biomarkers for the disease. Fecal samples were collected from 19 AA patients and 20 HCs to analyze the relationship with fecal bacteria. The three major genera constituting the gut microbiome of AA patients were Bacteroides, Blautia, and Faecalibacterium. The alpha diversity of the AA group was not statistically significant different from that of the HC group. However, bacterial community composition in the AA group was significantly different from that of HC group according to Jensen-Shannon dissimilarities. In patients with AA, we found an enriched presence of the genera Blautia and Eubacterium_g5 compared to the HC group (p < 0.05), whereas Bacteroides were less prevalent (p < 0.05). The gut microbiota of AA patients was distinct from those of the HC group. Our findings suggest a possible involvement of gut microbiota in in the as-yet-undefined pathogenesis of AA.
Collapse
Affiliation(s)
- Ji Hae Lee
- Department of Dermatology, St. Vincent’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 16247, Republic of Korea; (J.H.S.); (J.Y.K.); (H.J.J.); (G.M.K.)
| | | | | | | | | |
Collapse
|
25
|
Hernandez-Nicols BF, Robledo-Pulido JJ, Alvarado-Navarro A. Etiopathogenesis of Psoriasis: Integration of Proposed Theories. Immunol Invest 2024; 53:348-415. [PMID: 38240030 DOI: 10.1080/08820139.2024.2302823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
Psoriasis is a chronic inflammatory disease characterized by squamous and erythematous plaques on the skin and the involvement of the immune system. Global prevalence for psoriasis has been reported around 1-3% with a higher incidence in adults and similar proportions between men and women. The risk factors associated with psoriasis are both extrinsic and intrinsic, out of which a polygenic predisposition is a highlight out of the latter. Psoriasis etiology is not yet fully described, but several hypothesis have been proposed: 1) the autoimmunity hypothesis is based on the over-expression of antimicrobial peptides such as LL-37, the proteins ADAMTSL5, K17, and hsp27, or lipids synthesized by the PLA2G4D enzyme, all of which may serve as autoantigens to promote the differentiation of autoreactive lymphocytes T and unleash a chronic inflammatory response; 2) dysbiosis of skin microbiota hypothesis in psoriasis has gained relevance due to the observations of a loss of diversity and the participation of pathogenic bacteria such as Streptococcus spp. or Staphylococcus spp. the fungi Malassezia spp. or Candida spp. and the virus HPV, HCV, or HIV in psoriatic plaques; 3) the oxidative stress hypothesis, the most recent one, describes that the cell injury and the release of proinflammatory mediators and antimicrobial peptides that leads to activate of the Th1/Th17 axis observed in psoriasis is caused by a higher release of reactive oxygen species and the imbalance between oxidant and antioxidant mechanisms. This review aims to describe the mechanisms involved in the three hypotheses on the etiopathogeneses of psoriasis.
Collapse
Affiliation(s)
- Brenda Fernanda Hernandez-Nicols
- Centro de Investigación en Inmunología y Dermatología, Departamento de Fisiología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Mexico
| | - Juan José Robledo-Pulido
- Centro de Investigación en Inmunología y Dermatología, Departamento de Fisiología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Mexico
| | - Anabell Alvarado-Navarro
- Centro de Investigación en Inmunología y Dermatología, Departamento de Fisiología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Mexico
| |
Collapse
|
26
|
Wang Y, Yao T, Lin Y, Ge H, Huang B, Gao Y, Wu J. Association between gut microbiota and pan-dermatological diseases: a bidirectional Mendelian randomization research. Front Cell Infect Microbiol 2024; 14:1327083. [PMID: 38562964 PMCID: PMC10982508 DOI: 10.3389/fcimb.2024.1327083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 03/05/2024] [Indexed: 04/04/2024] Open
Abstract
Background Gut microbiota has been associated with dermatological problems in earlier observational studies. However, it is unclear whether gut microbiota has a causal function in dermatological diseases. Methods Thirteen dermatological diseases were the subject of bidirectional Mendelian randomization (MR) research aimed at identifying potential causal links between gut microbiota and these diseases. Summary statistics for the Genome-Wide Association Study (GWAS) of gut microbiota and dermatological diseases were obtained from public datasets. With the goal of evaluating the causal estimates, five acknowledged MR approaches were utilized along with multiple testing corrections, with inverse variance weighted (IVW) regression serving as the main methodology. Regarding the taxa that were causally linked with dermatological diseases in the forward MR analysis, reverse MR was performed. A series of sensitivity analyses were conducted to test the robustness of the causal estimates. Results The combined results of the five MR methods and sensitivity analysis showed 94 suggestive and five significant causal relationships. In particular, the genus Eubacterium_fissicatena_group increased the risk of developing psoriasis vulgaris (odds ratio [OR] = 1.32, pFDR = 4.36 × 10-3), family Bacteroidaceae (OR = 2.25, pFDR = 4.39 × 10-3), genus Allisonella (OR = 1.42, pFDR = 1.29 × 10-2), and genus Bacteroides (OR = 2.25, pFDR = 1.29 × 10-2) increased the risk of developing acne; and the genus Intestinibacter increased the risk of urticaria (OR = 1.30, pFDR = 9.13 × 10-3). A reverse MR study revealed insufficient evidence for a significant causal relationship. In addition, there was no discernible horizontal pleiotropy or heterogeneity. Conclusion This study provides novel insights into the causality of gut microbiota in dermatological diseases and therapeutic or preventive paradigms for cutaneous conditions.
Collapse
Affiliation(s)
- Yingwei Wang
- Department of Dermatology, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Tao Yao
- Department of Cardiology, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yunlu Lin
- Department of Cardiology, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Hongping Ge
- Department of Dermatology, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Bixin Huang
- Department of Dermatology, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yu Gao
- Department of Dermatology, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jianming Wu
- Department of Dermatology, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
27
|
Liu S, He M, Jiang J, Duan X, Chai B, Zhang J, Tao Q, Chen H. Triggers for the onset and recurrence of psoriasis: a review and update. Cell Commun Signal 2024; 22:108. [PMID: 38347543 PMCID: PMC10860266 DOI: 10.1186/s12964-023-01381-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 11/02/2023] [Indexed: 02/15/2024] Open
Abstract
Psoriasis is an immune-mediated inflammatory skin disease, involving a complex interplay between genetic and environmental factors. Previous studies have demonstrated that genetic factors play a major role in the pathogenesis of psoriasis. However, non-genetic factors are also necessary to trigger the onset and recurrence of psoriasis in genetically predisposed individuals, which include infections, microbiota dysbiosis of the skin and gut, dysregulated lipid metabolism, dysregulated sex hormones, and mental illness. Psoriasis can also be induced by other environmental triggers, such as skin trauma, unhealthy lifestyles, and medications. Understanding how these triggers play a role in the onset and recurrence of psoriasis provides insights into psoriasis pathogenesis, as well as better clinical administration. In this review, we summarize the triggers for the onset and recurrence of psoriasis and update the current evidence on the underlying mechanism of how these factors elicit the disease. Video Abstract.
Collapse
Grants
- No.82173423, No.81974475, No.82103731 the National Natural Science Foundation of China
- No.82173423, No.81974475, No.82103731 the National Natural Science Foundation of China
- No.82173423, No.81974475, No.82103731 the National Natural Science Foundation of China
- Basic Research Project, No. JCYJ20190809103805589 Shenzhen Natural Science Foundation
- Basic Research Project, No. JCYJ20190809103805589 Shenzhen Natural Science Foundation
- Basic Research Project, No. JCYJ20190809103805589 Shenzhen Natural Science Foundation
- Key Project, No.2019003 Shenzhen Nanshan District Science and Technology Project
- Key Project, No.2019003 Shenzhen Nanshan District Science and Technology Project
- Key Project, No.2019003 Shenzhen Nanshan District Science and Technology Project
Collapse
Affiliation(s)
- Suwen Liu
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Mengwen He
- Department of Dermatology, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, 518052, China
| | - Jian Jiang
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xiaoru Duan
- Department of Rheumatology and Immunology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Bao Chai
- Department of Dermatology, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, 518052, China
- Department of Dermatology, The 6th Affiliated Hospital of Shenzhen University Medical School, Shenzhen, 518052, China
| | - Jingyu Zhang
- Department of Dermatology, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, 518052, China
- Department of Dermatology, The 6th Affiliated Hospital of Shenzhen University Medical School, Shenzhen, 518052, China
| | - Qingxiao Tao
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Hongxiang Chen
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Department of Dermatology, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, 518052, China.
| |
Collapse
|
28
|
Reali E, Caliceti C, Lorenzini A, Rizzo P. The Use of Microbial Modifying Therapies to Prevent Psoriasis Exacerbation and Associated Cardiovascular Comorbidity. Inflammation 2024; 47:13-29. [PMID: 37953417 PMCID: PMC10799147 DOI: 10.1007/s10753-023-01915-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 10/02/2023] [Accepted: 10/03/2023] [Indexed: 11/14/2023]
Abstract
Psoriasis has emerged as a systemic disease characterized by skin and joint manifestations as well as systemic inflammation and cardiovascular comorbidities. Many progresses have been made in the comprehension of the immunological mechanisms involved in the exacerbation of psoriatic plaques, and initial studies have investigated the mechanisms that lead to extracutaneous disease manifestations, including endothelial disfunction and cardiovascular disease. In the past decade, the involvement of gut dysbiosis in the development of pathologies with inflammatory and autoimmune basis has clearly emerged. More recently, a major role for the skin microbiota in establishing the immunological tolerance in early life and as a source of antigens leading to cross-reactive responses towards self-antigens in adult life has also been evidenced. Gut microbiota can indeed be involved in shaping the immune and inflammatory response at systemic level and in fueling inflammation in the cutaneous and vascular compartments. Here, we summarized the microbiota-mediated mechanisms that, in the skin and gut, may promote and modulate local or systemic inflammation involved in psoriatic disease and endothelial dysfunction. We also analyze the emerging strategies for correcting dysbiosis or modulating skin and gut microbiota composition to integrate systemically existing pharmacological therapies for psoriatic disease. The possibility of merging systemic treatment and tailored microbial modifying therapies could increase the efficacy of the current treatments and potentially lower the effect on patient's life quality.
Collapse
Affiliation(s)
- Eva Reali
- Department of Translational Medicine, University of Ferrara, Ferrara, Italy.
| | - Cristiana Caliceti
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Antonello Lorenzini
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
- Istituto Nazionale Biosistemi e Biostrutture (INBB), Rome, Italy
| | - Paola Rizzo
- Department of Translational Medicine, University of Ferrara, Ferrara, Italy.
- Laboratory for Technologies of Advanced Therapies (LTTA) Centre, University of Ferrara, Ferrara, Italy.
- Maria Cecilia Hospital, GVM Care & Research, Cotignola, Ravenna, Italy.
| |
Collapse
|
29
|
Siu PLK, Choy CT, Chan HHY, Leung RKK, Chan UK, Zhou J, Wong CH, Lee YW, Chan HW, Lo CJY, Tsui JCC, Loo SKF, Tsui SKW. A Novel Multi-Strain E3 Probiotic Formula Improved the Gastrointestinal Symptoms and Quality of Life in Chinese Psoriasis Patients. Microorganisms 2024; 12:208. [PMID: 38276193 PMCID: PMC10820679 DOI: 10.3390/microorganisms12010208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/12/2024] [Accepted: 01/17/2024] [Indexed: 01/27/2024] Open
Abstract
Psoriasis is a chronic immune-mediated inflammatory disease affecting the skin and other systems. Gastrointestinal disease was found to be correlated with psoriasis in previous studies and it can significantly affect the quality of life of psoriasis patients. Despite the importance of the gut microbiome in gut and skin health having already been demonstrated in many research studies, the potential effect of probiotics on GI comorbidities in psoriasis patients is unclear. To investigate the effects of probiotics on functional GI comorbidities including irritable bowel syndrome, functional constipation, and functional diarrhea in psoriasis patients, we conducted a targeted 16S rRNA sequencing and comprehensive bioinformatic analysis among southern Chinese patients to compare the gut microbiome profiles of 45 psoriasis patients over an 8-week course of novel oral probiotics. All the participants were stratified into responders and non-responders according to their improvement in GI comorbidities, which were based on their Bristol Stool Form Scale (BSFS) scores after intervention. The Dermatological Life Quality Index (DLQI) score revealed a significant improvement in quality of life within the responder group (DLQI: mean 10.4 at week 0 vs. mean 15.9 at week 8, p = 0.0366). The proportion of psoriasis patients without GI comorbidity manifestation at week 8 was significantly higher than that at week 0 (week 0: Normal 53.33%, Constipation/Diarrhea 46.67%; week 8: Normal 75.56%, Constipation/Diarrhea 24.44%, p = 0.0467). In addition, a significant difference in the gut microbiome composition between the responders and non-responders was observed according to alpha and beta diversities. Differential abundance analysis revealed that the psoriasis patients exhibited (1) an elevated relative abundance of Lactobacillus acidophilus, Parabacteroides distasonis, and Ruminococcus bromii and (2) a reduced relative abundance of Oscillibacter, Bacteroides vulgatus, Escherichia sp., and Biophila wadsworthia after the 8-week intervention. The responders also exhibited a higher relative abundance of Fusicatenibacter saccharivorans when compared to the non-responders. In summary, our study discovers the potential clinical improvement effects of the novel probiotic formula in improving GI comorbidities and quality of life in psoriasis patients. We also revealed the different gut microbiome composition as well as the gut microbial signatures in the patients who responded to probiotics. These findings could provide insight into the use of probiotics in the management of psoriasis symptoms.
Collapse
Affiliation(s)
- Pui Ling Kella Siu
- Microbiome Research Centre, BioMed Laboratory Company Limited, Hong Kong, China; (P.L.K.S.)
| | - Chi Tung Choy
- Microbiome Research Centre, BioMed Laboratory Company Limited, Hong Kong, China; (P.L.K.S.)
| | - Helen Hoi Yin Chan
- Microbiome Research Centre, BioMed Laboratory Company Limited, Hong Kong, China; (P.L.K.S.)
| | - Ross Ka Kit Leung
- Microbiome Research Centre, BioMed Laboratory Company Limited, Hong Kong, China; (P.L.K.S.)
| | - Un Kei Chan
- Microbiome Research Centre, BioMed Laboratory Company Limited, Hong Kong, China; (P.L.K.S.)
| | - Junwei Zhou
- Microbiome Research Centre, BioMed Laboratory Company Limited, Hong Kong, China; (P.L.K.S.)
| | - Chi Ho Wong
- Microbiome Research Centre, BioMed Laboratory Company Limited, Hong Kong, China; (P.L.K.S.)
| | - Yuk Wai Lee
- Microbiome Research Centre, BioMed Laboratory Company Limited, Hong Kong, China; (P.L.K.S.)
| | - Ho Wang Chan
- Microbiome Research Centre, BioMed Laboratory Company Limited, Hong Kong, China; (P.L.K.S.)
| | - Claudia Jun Yi Lo
- Microbiome Research Centre, BioMed Laboratory Company Limited, Hong Kong, China; (P.L.K.S.)
| | - Joseph Chi Ching Tsui
- Microbiome Research Centre, BioMed Laboratory Company Limited, Hong Kong, China; (P.L.K.S.)
| | - Steven King Fan Loo
- Microbiome Research Centre, BioMed Laboratory Company Limited, Hong Kong, China; (P.L.K.S.)
- Hong Kong Institute of Integrative Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
- Dermatology Centre, CUHK Medical Centre, The Chinese University of Hong Kong, Hong Kong, China
| | - Stephen Kwok Wing Tsui
- Microbiome Research Centre, BioMed Laboratory Company Limited, Hong Kong, China; (P.L.K.S.)
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
- Centre for Microbial Genomics and Proteomics, The Chinese University of Hong Kong, Hong Kong, China
- Hong Kong Bioinformatics Centre, The Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
30
|
Yang Y, Zheng X, Lv H, Tang B, Bi Y, Luo Q, Yao D, Chen H, Lu C. A bibliometrics study on the status quo and hot topics of pathogenesis of psoriasis based on Web of Science. Skin Res Technol 2024; 30:e13538. [PMID: 38174774 PMCID: PMC10765367 DOI: 10.1111/srt.13538] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 11/06/2023] [Indexed: 01/05/2024]
Abstract
BACKGROUND Psoriasis is an immune-mediated chronic inflammatory skin disease. Great progress has been made in the pathogenesis of psoriasis in recent years, but there is no bibliometric study on the pathogenesis of psoriasis. The purpose of this study was to use bibliometrics method to analyze the research overview and hot spots of pathogenesis of psoriasis in recent 10 years, so as to further understand the development trend and frontier of this field. METHODS The core literatures on the pathogenesis of psoriasis were searched in the Web of Science database, and analyzed by VOSviewer, CiteSpace, and Bibliometrix in terms of the annual publication volume, country, institution, author, journal, keywords, and so on. RESULTS A total of 3570 literatures were included. China and the United States were the main research countries in this field, and Rockefeller University was the main research institution. Krueger JG, the author, had the highest number of publications and the greatest influence, and Boehncke (2015) was the most cited local literature. J INVEST DERMATOL takes the top spot in terms of the number of Dermatol articles and citation frequency. The main research hotspots in the pathogenesis of psoriasis are as follows: (1) The interaction between innate and adaptive immunity and the related inflammatory loop dominated by Th17 cells and IL-23/IL-17 axis are still the key mechanisms of psoriasis; (2) molecular genetic studies represented by Long Non-Coding RNA (LncRNA); (3) integrated research of multi-omics techniques represented by gut microbiota; and (4) Exploring the comorbidity mechanism of psoriasis represented by Metabolic Syndrome (MetS). CONCLUSION This study is a summary of the current research status and hot trend of the pathogenesis of psoriasis, which will provide some reference for the scholars studying the pathogenesis of psoriasis.
Collapse
Affiliation(s)
- Yujie Yang
- The Second Clinical College of Guangzhou University of Chinese MedicineGuangzhouChina
| | - Xuwei Zheng
- The Second Clinical College of Guangzhou University of Chinese MedicineGuangzhouChina
| | - Haiying Lv
- The Second Clinical College of Guangzhou University of Chinese MedicineGuangzhouChina
| | - Bin Tang
- The Second Clinical College of Guangzhou University of Chinese MedicineGuangzhouChina
- State Key Laboratory of Dampness Syndrome of Chinese MedicineThe Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine)GuangzhouChina
- Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine SyndromeGuangzhouChina
- Guangdong Provincial Clinical Medicine Research Center for Chinese Medicine DermatologyGuangzhouChina
- Guangdong‐Hong Kong‐Macau Joint Lab on Chinese Medicine and Immune Disease ResearchGuangzhou University of Chinese MedicineGuangzhouChina
| | - Yang Bi
- The Second Clinical College of Guangzhou University of Chinese MedicineGuangzhouChina
| | - Qianqian Luo
- The Second Clinical College of Guangzhou University of Chinese MedicineGuangzhouChina
| | - Danni Yao
- The Second Clinical College of Guangzhou University of Chinese MedicineGuangzhouChina
- State Key Laboratory of Dampness Syndrome of Chinese MedicineThe Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine)GuangzhouChina
- Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine SyndromeGuangzhouChina
- Guangdong Provincial Clinical Medicine Research Center for Chinese Medicine DermatologyGuangzhouChina
- Guangdong‐Hong Kong‐Macau Joint Lab on Chinese Medicine and Immune Disease ResearchGuangzhou University of Chinese MedicineGuangzhouChina
| | - Haiming Chen
- The Second Clinical College of Guangzhou University of Chinese MedicineGuangzhouChina
- State Key Laboratory of Dampness Syndrome of Chinese MedicineThe Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine)GuangzhouChina
- Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine SyndromeGuangzhouChina
- Guangdong Provincial Clinical Medicine Research Center for Chinese Medicine DermatologyGuangzhouChina
- Guangdong‐Hong Kong‐Macau Joint Lab on Chinese Medicine and Immune Disease ResearchGuangzhou University of Chinese MedicineGuangzhouChina
| | - Chuanjian Lu
- The Second Clinical College of Guangzhou University of Chinese MedicineGuangzhouChina
- State Key Laboratory of Dampness Syndrome of Chinese MedicineThe Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine)GuangzhouChina
- Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine SyndromeGuangzhouChina
- Guangdong Provincial Clinical Medicine Research Center for Chinese Medicine DermatologyGuangzhouChina
- Guangdong‐Hong Kong‐Macau Joint Lab on Chinese Medicine and Immune Disease ResearchGuangzhou University of Chinese MedicineGuangzhouChina
| |
Collapse
|
31
|
Sermsaksasithorn P, Asawanonda P, Phutrakool P, Ondee T, Chariyavilaskul P, Payungporn S, Pongpirul K, Hirankarn N. Efficacy and Safety of Cannabis Transdermal Patch for Alleviating Psoriasis Symptoms: Protocol for a Randomized Controlled Trial (CanPatch). Med Cannabis Cannabinoids 2024; 7:99-110. [PMID: 39015605 PMCID: PMC11249749 DOI: 10.1159/000539492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 05/21/2024] [Indexed: 07/18/2024] Open
Abstract
Introduction Current topical treatments for psoriasis offer limited efficacy and are associated with long-term adverse effects in a subset of patients, highlighting the need for new therapeutic options. Cannabidiol (CBD), a non-psychoactive cannabinoid derived from Cannabis sativa L., has shown potential in reversing psoriasis pathology through its action on skin receptors in preclinical studies. Given the promising properties of CBD, transdermal patches containing this compound represent a novel approach to psoriasis treatment. However, comprehensive data on their efficacy and safety remain scarce. Methods We outline a randomized, double-blind, placebo-controlled trial to assess the efficacy and safety of CBD transdermal patches with minimal tetrahydrocannabinol (THC) in 60 patients with mild to moderate plaque-type psoriasis at a university hospital in Thailand (n = 60). This study aims to evaluate the changes in the local psoriasis severity index (LPSI), itch score via a visual analog scale, and occurrence of adverse events on day 0, 30, 60, and 90 of the study. Additionally, we will examine the alteration in the skin, gut, and oral microbiome in a subset of participants to explore potential correlations with treatment outcomes. The primary outcome will focus on the difference in LPSI scores at the end of the study period, employing an intention-to-treat analysis. Multivariate logistic regression will be used to identify baseline clinical and microbiological predictors of treatment response. Conclusion This study aims to investigate the efficacy and safety of CBD transdermal patches in alleviating the symptoms of psoriasis. The results of this study may highlight a novel topical treatment option that reduces suffering in patients with psoriasis. We also designed to provide a holistic evaluation by considering both clinical outcomes and the underlying biological mechanisms, including the interaction with the human microbiome. Through this trial, we aim to contribute valuable insights into personalized psoriasis management strategies.
Collapse
Affiliation(s)
- Pim Sermsaksasithorn
- Center of Excellence in Preventive and Integrative Medicine and Department of Preventive and Social Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Pravit Asawanonda
- Division of Dermatology, Department of Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Phanupong Phutrakool
- Chula Data Management Center, Research Affairs, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Thunnicha Ondee
- Center of Excellence in Preventive and Integrative Medicine and Department of Preventive and Social Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Pajaree Chariyavilaskul
- Department of Pharmacology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Sunchai Payungporn
- Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Krit Pongpirul
- Center of Excellence in Preventive and Integrative Medicine and Department of Preventive and Social Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
- Department of Infection Biology and Microbiomes, Faculty of Health and Life Sciences, University of Liverpool, Liverpool, UK
- Clinical Research Center, Bumrungrad International Hospital, Bangkok, Thailand
| | - Nattiya Hirankarn
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
32
|
Man AM, Orăsan MS, Hoteiuc OA, Olănescu-Vaida-Voevod MC, Mocan T. Inflammation and Psoriasis: A Comprehensive Review. Int J Mol Sci 2023; 24:16095. [PMID: 38003284 PMCID: PMC10671208 DOI: 10.3390/ijms242216095] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/01/2023] [Accepted: 11/06/2023] [Indexed: 11/26/2023] Open
Abstract
Psoriasis is an immune-mediated disease with a strong genetic component that brings many challenges to sick individuals, such as chronic illness, and which has multiple associated comorbidities like cardiovascular disease, metabolic syndrome, inflammatory bowel disease, and psychological disorders. Understanding the interplay between the innate and adaptative immune system has led to the discovery of specific cytokine circuits (Tumor Necrosis Factor-alpha (TNF-α), IL-23, IL-17), which has allowed scientists to discover new biomarkers that can be used as predictors of treatment response and pave the way for personalized treatments. In this review, we describe the footprint psoriasis leaves on the skin and beyond, key pathophysiological mechanisms, current available therapeutic options, and drawbacks faced by existing therapies, and we anticipate potential future perspectives that may improve the quality of life of affected individuals.
Collapse
Affiliation(s)
- Alessandra-Mădălina Man
- Physiology Department, Faculty of Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400126 Cluj-Napoca, Romania; (A.-M.M.); (O.-A.H.); (M.-C.O.-V.-V.)
| | - Meda Sandra Orăsan
- Physiopathology Department, Faculty of Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400126 Cluj-Napoca, Romania;
| | - Oana-Alina Hoteiuc
- Physiology Department, Faculty of Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400126 Cluj-Napoca, Romania; (A.-M.M.); (O.-A.H.); (M.-C.O.-V.-V.)
| | - Maria-Cristina Olănescu-Vaida-Voevod
- Physiology Department, Faculty of Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400126 Cluj-Napoca, Romania; (A.-M.M.); (O.-A.H.); (M.-C.O.-V.-V.)
| | - Teodora Mocan
- Physiology Department, Faculty of Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400126 Cluj-Napoca, Romania; (A.-M.M.); (O.-A.H.); (M.-C.O.-V.-V.)
- Nanomedicine Department, Regional Institute of Gastroenterology and Hepatology, 400158 Cluj-Napoca, Romania
| |
Collapse
|
33
|
Surcel M, Constantin C, Munteanu AN, Costea DA, Isvoranu G, Codrici E, Popescu ID, Tănase C, Ibram A, Neagu M. Immune Portrayal of a New Therapy Targeting Microbiota in an Animal Model of Psoriasis. J Pers Med 2023; 13:1556. [PMID: 38003872 PMCID: PMC10672519 DOI: 10.3390/jpm13111556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 10/27/2023] [Accepted: 10/27/2023] [Indexed: 11/26/2023] Open
Abstract
BACKGROUND Despite all the available treatments, psoriasis remains incurable; therefore, finding personalized therapies is a continuous challenge. Psoriasis is linked to a gut microbiota imbalance, highlighting the importance of the gut-skin axis and its inflammatory mediators. Restoring this imbalance can open new perspectives in psoriasis therapy. We investigated the effect of purified IgY raised against pathological human bacteria antibiotic-resistant in induced murine psoriatic dermatitis (PSO). METHODS To evaluate the immune portrayal in an imiquimod experimental model, before and after IgY treatment, xMAP array and flow cytometry were used. RESULTS There were significant changes in IL-1α,β, IL-5, IL-6, IL-9, IL-10, IL-12 (p70), IL-13, IL-15, IL-17a, IFN-γ, TNF-α, IP-10/CXCL10, MCP-1/CCL2, MIP-1α/CCL3, MIP-1β/CCL4, MIG/CXCL9, and KC/CXCL1 serum levels. T (CD3ε+), B (CD19+) and NK (NK1.1+) cells were also quantified. In our model, TNF-α, IL-6, and IL-1β cytokines and CXCL1 chemokine have extremely high circulatory levels in the PSO group. Upon experimental therapy, the cytokine serum values were not different between IgY-treated groups and spontaneously remitted PSO. CONCLUSIONS Using the murine model of psoriatic dermatitis, we show that the orally purified IgY treatment can lead to an improvement in skin lesion healing along with the normalization of cellular and humoral immune parameters.
Collapse
Affiliation(s)
- Mihaela Surcel
- Immunology Department, Victor Babes National Institute of Pathology, Splaiul Independentei 99-101, 050096 Bucharest, Romania; (M.S.); (A.N.M.); (D.A.C.); (M.N.)
| | - Carolina Constantin
- Immunology Department, Victor Babes National Institute of Pathology, Splaiul Independentei 99-101, 050096 Bucharest, Romania; (M.S.); (A.N.M.); (D.A.C.); (M.N.)
- Department of Pathology, Colentina University Hospital, Șos. Ștefan cel Mare 19-21, 020125 Bucharest, Romania
| | - Adriana Narcisa Munteanu
- Immunology Department, Victor Babes National Institute of Pathology, Splaiul Independentei 99-101, 050096 Bucharest, Romania; (M.S.); (A.N.M.); (D.A.C.); (M.N.)
- Doctoral School of Biology, Faculty of Biology, University of Bucharest, Splaiul Independentei 91-95, 050095 Bucharest, Romania
| | - Diana Antonia Costea
- Immunology Department, Victor Babes National Institute of Pathology, Splaiul Independentei 99-101, 050096 Bucharest, Romania; (M.S.); (A.N.M.); (D.A.C.); (M.N.)
- Doctoral School of Biology, Faculty of Biology, University of Bucharest, Splaiul Independentei 91-95, 050095 Bucharest, Romania
| | - Gheorghița Isvoranu
- Animal Husbandry, Victor Babes National Institute of Pathology, Splaiul Independentei 99-101, 050096 Bucharest, Romania;
| | - Elena Codrici
- Biochemistry-Proteomics Department, Victor Babes National Institute of Pathology, Splaiul Independentei 99-101, 050096 Bucharest, Romania; (E.C.); (I.D.P.)
| | - Ionela Daniela Popescu
- Biochemistry-Proteomics Department, Victor Babes National Institute of Pathology, Splaiul Independentei 99-101, 050096 Bucharest, Romania; (E.C.); (I.D.P.)
| | - Cristiana Tănase
- Faculty of Medicine, Titu Maiorescu University, Calea Văcăreşti 189, 031593 Bucharest, Romania;
| | - Alef Ibram
- Research Laboratory, Romvac Company SA, Şos. Centurii 7, 077190 Voluntari, Romania;
| | - Monica Neagu
- Immunology Department, Victor Babes National Institute of Pathology, Splaiul Independentei 99-101, 050096 Bucharest, Romania; (M.S.); (A.N.M.); (D.A.C.); (M.N.)
- Department of Pathology, Colentina University Hospital, Șos. Ștefan cel Mare 19-21, 020125 Bucharest, Romania
- Doctoral School of Biology, Faculty of Biology, University of Bucharest, Splaiul Independentei 91-95, 050095 Bucharest, Romania
| |
Collapse
|
34
|
Mihuta MS, Paul C, Borlea A, Roi CM, Pescari D, Velea-Barta OA, Mozos I, Stoian D. Connections between serum Trimethylamine N-Oxide (TMAO), a gut-derived metabolite, and vascular biomarkers evaluating arterial stiffness and subclinical atherosclerosis in children with obesity. Front Endocrinol (Lausanne) 2023; 14:1253584. [PMID: 37850094 PMCID: PMC10577381 DOI: 10.3389/fendo.2023.1253584] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 09/12/2023] [Indexed: 10/19/2023] Open
Abstract
Introduction Childhood obesity leads to early subclinical atherosclerosis and arterial stiffness. Studying biomarkers like trimethylamine N-oxide (TMAO), linked to cardio-metabolic disorders in adults, is crucial to prevent long-term cardiovascular issues. Methods The study involved 70 children aged 4 to 18 (50 obese, 20 normal-weight). Clinical examination included BMI, waist measurements, puberty stage, the presence of acanthosis nigricans, and irregular menstrual cycles. Subclinical atherosclerosis was assessed by measuring the carotid intima-media thickness (CIMT), and the arterial stiffness was evaluated through surrogate markers like the pulse wave velocity (PWV), augmentation index (AIx), and peripheral and central blood pressures. The blood biomarkers included determining the values of TMAO, HOMA-IR, and other usual biomarkers investigating metabolism. Results The study detected significantly elevated levels of TMAO in obese children compared to controls. TMAO presented positive correlations to BMI, waist circumference and waist-to-height ratio and was also observed as an independent predictor of all three parameters. Significant correlations were observed between TMAO and vascular markers such as CIMT, PWV, and peripheral BP levels. TMAO independently predicts CIMT, PWV, peripheral BP, and central SBP levels, even after adding BMI, waist circumference, waist-to-height ratio, puberty development and age in the regression model. Obese children with high HOMA-IR presented a greater weight excess and significantly higher vascular markers, but TMAO levels did not differ significantly from the obese with HOMA-IR Conclusion Our study provides compelling evidence supporting the link between serum TMAO, obesity, and vascular damage in children. These findings highlight the importance of further research to unravel the underlying mechanisms of this connection.
Collapse
Affiliation(s)
- Monica Simina Mihuta
- Department of Doctoral Studies, Victor Babes University of Medicine and Pharmacy, Timisoara, Romania
- Center of Molecular Research in Nephrology and Vascular Disease, Faculty of Medicine, Victor Babes University of Medicine and Pharmacy, Timisoara, Romania
| | - Corina Paul
- Department of Pediatrics, Victor Babes University of Medicine and Pharmacy, Timisoara, Romania
| | - Andreea Borlea
- Center of Molecular Research in Nephrology and Vascular Disease, Faculty of Medicine, Victor Babes University of Medicine and Pharmacy, Timisoara, Romania
- 2nd Department of Internal Medicine, Victor Babes University of Medicine and Pharmacy, Timisoara, Romania
| | - Cristina Mihaela Roi
- Department of Doctoral Studies, Victor Babes University of Medicine and Pharmacy, Timisoara, Romania
- Center of Molecular Research in Nephrology and Vascular Disease, Faculty of Medicine, Victor Babes University of Medicine and Pharmacy, Timisoara, Romania
| | - Denisa Pescari
- Department of Doctoral Studies, Victor Babes University of Medicine and Pharmacy, Timisoara, Romania
| | - Oana-Alexandra Velea-Barta
- 3rd Department of Odontotherapy and Endodontics, Faculty of Dental Medicine, Victor Babes University of Medicine and Pharmacy, Timisoara, Romania
| | - Ioana Mozos
- Department of Functional Sciences—Pathophysiology, Center for Translational Research and Systems Medicine, Victor Babes University of Medicine and Pharmacy, Timisoara, Romania
| | - Dana Stoian
- Center of Molecular Research in Nephrology and Vascular Disease, Faculty of Medicine, Victor Babes University of Medicine and Pharmacy, Timisoara, Romania
- 2nd Department of Internal Medicine, Victor Babes University of Medicine and Pharmacy, Timisoara, Romania
| |
Collapse
|
35
|
Zhang Y, Peng Y, Xia X. Autoimmune diseases and gut microbiota: a bibliometric and visual analysis from 2004 to 2022. Clin Exp Med 2023; 23:2813-2827. [PMID: 36859447 PMCID: PMC10543628 DOI: 10.1007/s10238-023-01028-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 02/11/2023] [Indexed: 03/03/2023]
Abstract
Many studies have shown that gut microbiota is closely related to autoimmune diseases (ADs). Studies on gut microbiota and ADs have also increased significantly, but no bibliometric analysis has summarized the association between gut microbiota and ADs. This study aimed to conduct a bibliometric and visual analysis of published studies on gut microbiota and ADs. Based on the Web of Science Core Collection SCI-expanded database, we utilize Excel 2019 and visualization analysis tools VOSviewer and co-occurrence13.2 (COOC13.2) for analysis. A total of 2516 related kinds of literature were included, and the number of papers presented an overall increasing trend. The country/region with the most publications is the USA, the institution is the Harvard Medical School, and the author is Mikael Knip from the USA. Hot research areas include intestinal regulation (such as dysbiosis, short chain fatty acids, and probiotics), multisystem ADs (such as multiple sclerosis, rheumatoid arthritis, and inflammatory bowel disease), and immune-related cells (such as T cells, and dendritic cells). Psoriasis, dysbiosis, autoimmune liver disease, and fecal microbiota transplantation may be the future research direction. Our research results can help researchers grasp the current status of ADs and gut microbiota research and find new research directions in the future.
Collapse
Affiliation(s)
- Youao Zhang
- The First School of Clinical Medicine , Southern Medical University, Guangzhou, 501515 China
| | - Yongzheng Peng
- Department of Transfusion Medicine and Department of Laboratory Medicine, Zhujiang Hospital of Southern Medical University, Guangzhou, 510282 China
| | - Xu Xia
- Southern Medical University Library, No.1023, South Shatai Road, Baiyun District, Guangzhou, 510515 Guangdong China
| |
Collapse
|
36
|
Jun YK, Yoon HT, Kwon SH, Jo UH, Kim JE, Han YM, Kim MS, Im JP, Lee DH, Kim JS, Koh SJ, Park H. Regulation of psoriasis, colitis, and the intestinal microbiota by clusterin. Sci Rep 2023; 13:15405. [PMID: 37717073 PMCID: PMC10505212 DOI: 10.1038/s41598-023-42019-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 09/04/2023] [Indexed: 09/18/2023] Open
Abstract
Psoriasis, a chronic and systemic inflammatory disorder characterized by activation of the interleukin (IL)-23/IL-17 axis, may be associated with the intestinal microbiota through the so-called "gut-skin axis." Clusterin is a glycoprotein ubiquitously distributed in mammalian tissues; however, its role in psoriasis is unclear. Therefore, we evaluated the role of clusterin in psoriatic skin inflammation, systemic inflammation, and colitis using a murine model of IMQ-induced psoriasis. In IMQ-treated clusterin-knockout (clusterin-/-) mice, the expressions of inflammatory cytokines in clusterin-silenced human keratinocytes and intestinal microbial composition were analyzed. We also examined clusterin expression in the skin tissues of patients with psoriasis. IMQ-induced psoriatic skin inflammation is suppressed in clusterin-/- mice. Long-term administration of IMQ induced systemic inflammation and colitis; however, both were alleviated by the genetic deletion of clusterin. Genetic silencing of clusterin in human keratinocytes inhibited the production of inflammatory cytokines involved in the initiation and progression of psoriasis. The composition of the intestinal microbiota in IMQ-treated clusterin-/- and wild-type mice was different. Genetic deletion of clusterin suppressed the increase in the Firmicutes/Bacteroidetes (F/B) ratio. Skin tissues of patients with psoriasis showed high clusterin expression. In conclusion, inhibition of clusterin decreased psoriatic skin inflammation, systemic inflammation, colitis, and altered the F/B ratio in an IMQ-induced murine psoriasis model.
Collapse
Affiliation(s)
- Yu Kyung Jun
- Division of Gastroenterology, Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
- Laboratory of Intestinal Mucosa and Skin Immunology, Liver Research Institute and Seoul National University College of Medicine, Seoul, Korea
| | - Hee Tae Yoon
- Laboratory of Intestinal Mucosa and Skin Immunology, Liver Research Institute and Seoul National University College of Medicine, Seoul, Korea
| | - So Hyun Kwon
- Laboratory of Intestinal Mucosa and Skin Immunology, Liver Research Institute and Seoul National University College of Medicine, Seoul, Korea
| | - Ui Hyeon Jo
- Department of Dermatology, SMG-SNU Boramae Medical Center, Seoul, Korea
| | - Ji Eun Kim
- Department of Pathology, SMG-SNU Boramae Medical Center, Seoul, Korea
| | - Yoo Min Han
- Laboratory of Intestinal Mucosa and Skin Immunology, Liver Research Institute and Seoul National University College of Medicine, Seoul, Korea
- Department of Internal Medicine and Healthcare Research Institute, Seoul National University Hospital Healthcare System Gangnam Center, Seoul, Korea
| | - Min-Seon Kim
- Division of Endocrinology and Metabolism, Department of Internal Medicine, University of Ulsan College of Medicine, Seoul, Korea
| | - Jong Pil Im
- Laboratory of Intestinal Mucosa and Skin Immunology, Liver Research Institute and Seoul National University College of Medicine, Seoul, Korea
| | - Dong Ho Lee
- Division of Gastroenterology, Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Joo Sung Kim
- Laboratory of Intestinal Mucosa and Skin Immunology, Liver Research Institute and Seoul National University College of Medicine, Seoul, Korea
| | - Seong-Joon Koh
- Laboratory of Intestinal Mucosa and Skin Immunology, Liver Research Institute and Seoul National University College of Medicine, Seoul, Korea.
| | - Hyunsun Park
- Laboratory of Intestinal Mucosa and Skin Immunology, Liver Research Institute and Seoul National University College of Medicine, Seoul, Korea.
- Department of Dermatology, SMG-SNU Boramae Medical Center, Seoul, Korea.
- Department of Dermatology, Seoul National University College of Medicine, Seoul, Korea.
| |
Collapse
|
37
|
Cintoni M, Palombaro M, Maramao FS, Raoul P, Egidi G, Leonardi E, Bianchi L, Campione E, Rinninella E, Gasbarrini A, Mele MC. Metabolic Disorders and Psoriasis: Exploring the Role of Nutritional Interventions. Nutrients 2023; 15:3876. [PMID: 37764660 PMCID: PMC10535393 DOI: 10.3390/nu15183876] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/29/2023] [Accepted: 09/01/2023] [Indexed: 09/29/2023] Open
Abstract
(1) Background: Psoriasis is a chronic autoimmune disease with a close relationship with metabolic diseases such as obesity, diabetes, and dyslipidemia. The aim of this review was to identify the relationship between psoriasis, metabolic diseases, and dietetic therapies. According to recent findings, there is a strong association between psoriasis and obesity as well as vitamin D and micronutrient deficiencies. (2) Methods: This review was conducted via PubMed, aiming to search for studies involving psoriasis linked with metabolic disorders or with nutritional treatments. (3) Results: Our review shows that a healthy lifestyle can positively influence the course of the disease. The maintaining of a proper body weight together with physical activity and good nutritional choices are associated with an improvement in psoriasis severity. A Mediterranean diet rich in fiber, vitamins, and polyphenols may indeed be a strategy for controlling psoriasis symptoms. The effectiveness of this diet lies not only in its anti-inflammatory power, but also in its ability to favorably influence the intestinal microbiota and counteract dysbiosis, which is a risk factor for many autoimmune diseases. (4) Conclusions: In synergy with standard therapy, the adoption of an appropriate diet can be recommended to improve the clinical expression of psoriasis and reduce the incidence of comorbidities.
Collapse
Affiliation(s)
- Marco Cintoni
- UOC di Nutrizione Clinica, Dipartimento di Scienze Mediche e Chirurgiche Endocrino-Metaboliche, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Largo A. Gemelli 8, 00168 Rome, Italy; (M.C.); (M.P.); (G.E.); (E.L.); (E.R.); (M.C.M.)
- Centro di Ricerca e Formazione in Nutrizione Umana, Università Cattolica Del Sacro Cuore, Largo F. Vito 1, 00168 Rome, Italy
| | - Marta Palombaro
- UOC di Nutrizione Clinica, Dipartimento di Scienze Mediche e Chirurgiche Endocrino-Metaboliche, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Largo A. Gemelli 8, 00168 Rome, Italy; (M.C.); (M.P.); (G.E.); (E.L.); (E.R.); (M.C.M.)
| | - Fabio Stefano Maramao
- UOSD di Dermatologia, Fondazione Policlinico Tor Vergata, Università degli Studi di Roma Tor Vergata, 00133 Rome, Italy; (F.S.M.); (L.B.); (E.C.)
| | - Pauline Raoul
- UOC di Nutrizione Clinica, Dipartimento di Scienze Mediche e Chirurgiche Endocrino-Metaboliche, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Largo A. Gemelli 8, 00168 Rome, Italy; (M.C.); (M.P.); (G.E.); (E.L.); (E.R.); (M.C.M.)
| | - Gabriele Egidi
- UOC di Nutrizione Clinica, Dipartimento di Scienze Mediche e Chirurgiche Endocrino-Metaboliche, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Largo A. Gemelli 8, 00168 Rome, Italy; (M.C.); (M.P.); (G.E.); (E.L.); (E.R.); (M.C.M.)
| | - Elena Leonardi
- UOC di Nutrizione Clinica, Dipartimento di Scienze Mediche e Chirurgiche Endocrino-Metaboliche, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Largo A. Gemelli 8, 00168 Rome, Italy; (M.C.); (M.P.); (G.E.); (E.L.); (E.R.); (M.C.M.)
| | - Luca Bianchi
- UOSD di Dermatologia, Fondazione Policlinico Tor Vergata, Università degli Studi di Roma Tor Vergata, 00133 Rome, Italy; (F.S.M.); (L.B.); (E.C.)
| | - Elena Campione
- UOSD di Dermatologia, Fondazione Policlinico Tor Vergata, Università degli Studi di Roma Tor Vergata, 00133 Rome, Italy; (F.S.M.); (L.B.); (E.C.)
| | - Emanuele Rinninella
- UOC di Nutrizione Clinica, Dipartimento di Scienze Mediche e Chirurgiche Endocrino-Metaboliche, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Largo A. Gemelli 8, 00168 Rome, Italy; (M.C.); (M.P.); (G.E.); (E.L.); (E.R.); (M.C.M.)
- Centro di Ricerca e Formazione in Nutrizione Umana, Università Cattolica Del Sacro Cuore, Largo F. Vito 1, 00168 Rome, Italy
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica Del Sacro Cuore, Largo F. Vito 1, 00168 Rome, Italy;
| | - Antonio Gasbarrini
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica Del Sacro Cuore, Largo F. Vito 1, 00168 Rome, Italy;
- UOC di Medicina Interna e Gastroenterologia, Dipartimento di Scienze Mediche e Chirurgiche Endocrino-Metaboliche, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Largo A. Gemelli 8, 00168 Rome, Italy
| | - Maria Cristina Mele
- UOC di Nutrizione Clinica, Dipartimento di Scienze Mediche e Chirurgiche Endocrino-Metaboliche, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Largo A. Gemelli 8, 00168 Rome, Italy; (M.C.); (M.P.); (G.E.); (E.L.); (E.R.); (M.C.M.)
- Centro di Ricerca e Formazione in Nutrizione Umana, Università Cattolica Del Sacro Cuore, Largo F. Vito 1, 00168 Rome, Italy
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica Del Sacro Cuore, Largo F. Vito 1, 00168 Rome, Italy;
| |
Collapse
|
38
|
Polo TCF, Lai MRDR, Miot LDB, Bento GFC, Silva MGD, Marques SA, Miot HA. Intestinal microbiome characterization of adult Brazilian men with psoriasis compared to omnivore and vegetarian controls. An Bras Dermatol 2023; 98:635-643. [PMID: 37156688 PMCID: PMC10404490 DOI: 10.1016/j.abd.2022.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 07/24/2022] [Accepted: 08/09/2022] [Indexed: 05/10/2023] Open
Abstract
BACKGROUND Psoriasis is a chronic inflammatory disease associated with systemic inflammation and comorbidities. Changes in the composition of the intestinal microbiome are involved in the pathogenesis of inflammatory diseases and metabolic syndrome. Characterizing the intestinal microbiome of patients with psoriasis may be relevant for the understanding of its clinical course and comorbidity prevention. OBJECTIVE To characterize the intestinal microbiome of men with psoriasis compared to omnivore and vegetarian controls (without psoriasis). METHOD Cross-sectional study of 42 adult males: 21 omnivores with psoriasis; and controls: 14 omnivores and 7 vegetarian individuals. The characterization of the intestinal microbiome was performed by metagenomic analysis. Serum levels of lipopolysaccharide-binding protein (LPB) and C-reactive protein (CRP) were evaluated. RESULTS The groups differed from each other regarding nutritional aspects and microbiome; individuals with psoriasis had a higher consumption of protein and lower consumption of fibers. Levels of LPB, CRP, and the Firmicutes/Bacteroidetes ratio were higher in the group with psoriasis than in the vegetarian group (p<0.05). The genera Prevotella, Mogibacterium, Dorea, Bifidobacterium and Coprococcus, differed in the group with psoriasis compared to vegetarians; the genera Mogibacterium, Collinsella and Desulfovibrio differed from omnivores. A microbiome pattern linked to psoriasis (plsPSO) was identified, which was associated with higher LPB levels (rho=0.39; p=0.02), and lower dietary fiber intake (rho=-0.71; p<0.01). STUDY LIMITATIONS Only adult men were evaluated. CONCLUSION A difference was identified in the intestinal microbiome of adult men with psoriasis when compared to healthy omnivores and vegetarian controls. The identified microbiome pattern was correlated with dietary fiber intake and serum levels of LPB.
Collapse
Affiliation(s)
| | - Mariana Righetto de Ré Lai
- Department of Dermatology, Botucatu Faculty of Medicine, Universidade Estadual Paulista, Botucatu, SP, Brazil
| | - Luciane Donida Bartoli Miot
- Department of Dermatology, Botucatu Faculty of Medicine, Universidade Estadual Paulista, Botucatu, SP, Brazil
| | - Giovana Fernanda Cosi Bento
- Department of Dermatology, Botucatu Faculty of Medicine, Universidade Estadual Paulista, Botucatu, SP, Brazil
| | - Márcia Guimarães da Silva
- Department of Pathology, Botucatu Faculty of Medicine, Universidade Estadual Paulista, Botucatu, SP, Brazil
| | - Silvio Alencar Marques
- Department of Dermatology, Botucatu Faculty of Medicine, Universidade Estadual Paulista, Botucatu, SP, Brazil
| | - Hélio Amante Miot
- Department of Dermatology, Botucatu Faculty of Medicine, Universidade Estadual Paulista, Botucatu, SP, Brazil
| |
Collapse
|
39
|
Du X, Yan C, Kong S, Che D, Peng B, Zhu L, Geng S, Guo K. Successful secukinumab therapy in plaque psoriasis is associated with altered gut microbiota and related functional changes. Front Microbiol 2023; 14:1227309. [PMID: 37621397 PMCID: PMC10445136 DOI: 10.3389/fmicb.2023.1227309] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 06/30/2023] [Indexed: 08/26/2023] Open
Abstract
Introduction The role of gut microbiome dysbiosis in the pathogenesis of psoriasis has gained increasing attention in recent years. Secukinumab, targeting interleukin (IL)-17, has a promising efficacy in psoriasis treatment. However, it remains unclear the gut microbiota alteration and related functional changes caused by successful secukinumab therapy in psoriatic patients. Methods In our study, we compared the fecal microbiome profile between psoriatic patients after secukinumab successful treatment (AT) and the other two groups, psoriatic patients without therapy (BT) and healthy people (H), respectively, by using next-generation sequencing targeting 16S ribosomal RNA. Then, shotgun metagenomic sequencing was first used to characterize bacterial gut microbial communities and related functional changes in the AT group. Results We found that the diversity and structure of the microbial community in the AT group were significantly changed compared to those in the BT group and the H group. The AT group showed a microbiota profile characterized by increased proportions of the phylum Firmicute, families Ruminococcaceae, and a reduction in the phylum Bacteroidota (elevated F/B ratio). To detect functional alteration, we discovered that secukinumab treatment may construct a more stable homeostasis of the gut microbiome with functional alteration. There were different KEGG pathways, such as the downregulated cardiovascular diseases pathway and the upregulated infectious diseases in the AT group. By metagenomic analysis, the metabolic functional pathway was changed after secukinumab therapy. Discussion It seems that gut microbiota investigation during biologic drug treatment is useful for predicting the efficacy and risks of drug treatment in disease.
Collapse
Affiliation(s)
- Xueshan Du
- Department of Dermatology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Cong Yan
- Department of Dermatology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Shuzhen Kong
- Department of Dermatology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Delu Che
- Department of Dermatology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- Center for Dermatology Disease, Precision Medical Institute, Xi'an, China
| | - Bin Peng
- Department of Dermatology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Longfei Zhu
- Department of Dermatology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Songmei Geng
- Department of Dermatology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- Center for Dermatology Disease, Precision Medical Institute, Xi'an, China
| | - Kun Guo
- Department of Dermatology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
40
|
Bonzano L, Borgia F, Casella R, Miniello A, Nettis E, Gangemi S. Microbiota and IL-33/31 Axis Linkage: Implications and Therapeutic Perspectives in Atopic Dermatitis and Psoriasis. Biomolecules 2023; 13:1100. [PMID: 37509136 PMCID: PMC10377073 DOI: 10.3390/biom13071100] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 06/24/2023] [Accepted: 07/08/2023] [Indexed: 07/30/2023] Open
Abstract
Microbiome dysbiosis and cytokine alternations are key features of atopic dermatitis (AD) and psoriasis (PsO), two of the most prevalent and burdensome pruritic skin conditions worldwide. Interleukin (IL)-33 and IL-31 have been recognized to be major players who act synergistically in the pathogenesis and maintenance of different chronic inflammatory conditions and pruritic skin disorders, including AD and PsO, and their potential role as therapeutic targets is being thoroughly investigated. The bidirectional interplay between dysbiosis and immunological changes has been extensively studied, but there is still debate regarding which of these two factors is the actual causative culprit behind the aetiopathological process that ultimately leads to AD and PsO. We conducted a literature review on the Pubmed database assessing articles of immunology, dermatology, microbiology and allergology with the aim to strengthen the hypothesis that dysbiosis is at the origin of the IL-33/IL-31 dysregulation that contributes to the pathogenesis of AD and PsO. Finally, we discussed the therapeutic options currently in development for the treatment of these skin conditions targeting IL-31, IL-33 and/or the microbiome.
Collapse
Affiliation(s)
- Laura Bonzano
- Dermatology Unit, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, 42122 Reggio Emilia, Italy
| | - Francesco Borgia
- Department of Clinical and Experimental Medicine, Section of Dermatology, University of Messina, 98122 Messina, Italy
| | - Rossella Casella
- Department of Emergency and Organ Transplantation, School of Allergology and Clinical Immunology, University of Bari Aldo Moro, Policlinico di Bari, 70120 Bari, Italy
| | - Andrea Miniello
- Department of Emergency and Organ Transplantation, School of Allergology and Clinical Immunology, University of Bari Aldo Moro, Policlinico di Bari, 70120 Bari, Italy
| | - Eustachio Nettis
- Department of Emergency and Organ Transplantation, School of Allergology and Clinical Immunology, University of Bari Aldo Moro, Policlinico di Bari, 70120 Bari, Italy
| | - Sebastiano Gangemi
- School and Division of Allergy and Clinical Immunology, Department of Clinical and Experimental Medicine, University of Messina, 98122 Messina, Italy
| |
Collapse
|
41
|
Reynolds FH, Tusa MG, Banks SL. Toe Web Infections, the Microbiome, and Toe Web Psoriasis: A Review. Adv Skin Wound Care 2023; 36:377-384. [PMID: 37224470 PMCID: PMC10289232 DOI: 10.1097/01.asw.0000933728.56221.82] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 12/22/2022] [Indexed: 05/26/2023]
Abstract
OBJECTIVE To present the toe web space as an anatomically, physiologically, and pathologically unique part of the human body; characterize toe web infections and discuss why they occur; and highlight toe web psoriasis as an uncommon condition that providers should consider if toe web intertrigo does not respond to treatment. DATA SOURCE This review encompassed many years of clinical observation and photographs; medical textbooks; and a literature search of MEDLINE, PubMed, and Google Scholar. STUDY SELECTION Primary research keywords included intertrigo, toe web intertrigo, toe web infection, tinea pedis, microbiome, skin microbiome, toe web microbiome, ecology, psoriasis, psoriasis microbiome, intertriginous psoriasis, and Wood's lamp. More than 190 journal articles met the search criteria. DATA EXTRACTION The authors sought data relating to what makes for a healthy toe web space and what makes for disease. They extracted and collated relevant information to compare and contrast among sources. DATA SYNTHESIS After understanding the normal toe web space and the microorganisms that normally reside there, the authors investigated why infections occur, how they should be treated, what complications may result, and what other diseases occur in the toe web area. CONCLUSIONS This review of toe web infection illustrates the effect of the microbiome and reports a rare form of psoriasis that is usually misdiagnosed as athlete's foot. The toe web space is a unique part of the human body that can be affected by a variety of both common and unusual conditions.
Collapse
Affiliation(s)
- F Hall Reynolds
- F. Hall Reynolds II, MD, FAASD; Mark G. Tusa, MD, FAAD; and Samuel L. Banks, MD, FAAD, are Staff Dermatologists, Chattanooga Skin & Cancer Clinic, Tennessee, USA
| | | | | |
Collapse
|
42
|
Liang L, Saunders C, Sanossian N. Food, gut barrier dysfunction, and related diseases: A new target for future individualized disease prevention and management. Food Sci Nutr 2023; 11:1671-1704. [PMID: 37051344 PMCID: PMC10084985 DOI: 10.1002/fsn3.3229] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 12/20/2022] [Accepted: 12/28/2022] [Indexed: 03/09/2023] Open
Abstract
Dysfunction of gut barrier is known as "leaky gut" or increased intestinal permeability. Numerous recent scientific evidences showed the association between gut dysfunction and multiple gastrointestinal tract (GI) and non-GI diseases. Research also demonstrated that food plays a crucial role to cause or remedy gut dysfunction related to diseases. We reviewed recent articles from electronic databases, mainly PubMed. The data were based on animal models, cell models, and human research in vivo and in vitro models. In this comprehensive review, our aim focused on the relationship between dietary factors, intestinal permeability dysfunction, and related diseases. This review synthesizes currently available literature and is discussed in three parts: (a) the mechanism of gut barrier and function, (b) food and dietary supplements that may promote gut health, and food or medication that may alter gut function, and (c) a table that organizes the synthesized information by general mechanisms for diseases related to leaky gut/intestinal permeability and associated dietary influences. With future research, dietary intervention could be a new target for individualized disease prevention and management.
Collapse
Affiliation(s)
- Linda Liang
- University of Southern CaliforniaLos AngelesCaliforniaUSA
| | | | - Nerses Sanossian
- Department of NeurologyMedical School of Southern CaliforniaLos AngelesCaliforniaUSA
| |
Collapse
|
43
|
Choy CT, Chan UK, Siu PLK, Zhou J, Wong CH, Lee YW, Chan HW, Tsui JCC, Loo SKF, Tsui SKW. A Novel E3 Probiotics Formula Restored Gut Dysbiosis and Remodelled Gut Microbial Network and Microbiome Dysbiosis Index (MDI) in Southern Chinese Adult Psoriasis Patients. Int J Mol Sci 2023; 24:ijms24076571. [PMID: 37047542 PMCID: PMC10094986 DOI: 10.3390/ijms24076571] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 03/29/2023] [Accepted: 03/30/2023] [Indexed: 04/05/2023] Open
Abstract
Psoriasis is a common chronic immune-mediated inflammatory skin disease with the association of various comorbidities. Despite the introduction of highly effective biologic therapies over the past few decades, the exact trigger for an immune reaction in psoriasis is unclear. With the majority of immune cells residing in the gut, the effect of gut microbiome dysbiosis goes beyond the gastrointestinal site and may exacerbate inflammation and regulate the immune system elsewhere, including but not limited to the skin via the gut-skin axis. In order to delineate the role of the gut microbiome in Southern Chinese psoriasis patients, we performed targeted 16S rRNA sequencing and comprehensive bioinformatic analysis to compare the gut microbiome profile of 58 psoriasis patients against 49 healthy local subjects presumably with similar lifestyles. Blautia wexlerae and Parabacteroides distasonis were found to be enriched in psoriasis patients and in some of the healthy subjects, respectively. Metabolic functional pathways were predicted to be differentially abundant, with a clear shift toward SCFA synthesis in healthy subjects. The alteration of the co-occurrence network was also evident in the psoriasis group. In addition, we also profiled the gut microbiome in 52 of the 58 recruited psoriasis patients after taking 8 weeks of an orally administrated novel E3 probiotics formula (with prebiotics, probiotics and postbiotics). The Dermatological Life Quality Index (p = 0.009) and Psoriasis Area and Severity Index (p < 0.001) were significantly improved after taking 8 weeks of probiotics with no adverse effect observed. We showed that probiotics could at least partly restore gut dysbiosis via the modulation of the gut microbiome. Here, we also report the potential application of a machine learning-derived gut dysbiosis index based on a quantitative PCR panel (AUC = 0.88) to monitor gut dysbiosis in psoriasis patients. To sum up, our study suggests the gut microbial landscape differed in psoriasis patients at the genera, species, functional and network levels. Additionally, the dysbiosis index could be a cost-effective and rapid tool to monitor probiotics use in psoriasis patients.
Collapse
Affiliation(s)
- Chi Tung Choy
- Microbiome Research Centre, BioMed Laboratory Company Limited, Hong Kong, China
| | - Un Kei Chan
- Microbiome Research Centre, BioMed Laboratory Company Limited, Hong Kong, China
| | - Pui Ling Kella Siu
- Microbiome Research Centre, BioMed Laboratory Company Limited, Hong Kong, China
| | - Junwei Zhou
- Microbiome Research Centre, BioMed Laboratory Company Limited, Hong Kong, China
| | - Chi Ho Wong
- Microbiome Research Centre, BioMed Laboratory Company Limited, Hong Kong, China
| | - Yuk Wai Lee
- Microbiome Research Centre, BioMed Laboratory Company Limited, Hong Kong, China
| | - Ho Wang Chan
- Microbiome Research Centre, BioMed Laboratory Company Limited, Hong Kong, China
| | | | - Steven King Fan Loo
- Microbiome Research Centre, BioMed Laboratory Company Limited, Hong Kong, China
- Hong Kong Institute of Integrative Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
- Dermatology Centre, CUHK Medical Centre, The Chinese University of Hong Kong, Hong Kong, China
| | - Stephen Kwok Wing Tsui
- Microbiome Research Centre, BioMed Laboratory Company Limited, Hong Kong, China
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
- Centre for Microbial Genomics and Proteomics, The Chinese University of Hong Kong, Hong Kong, China
- Hong Kong Bioinformatics Centre, The Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
44
|
Zhao Q, Yu J, Zhou H, Wang X, Zhang C, Hu J, Hu Y, Zheng H, Zeng F, Yue C, Gu L, Wang Z, Zhao F, Zhou P, Zhang H, Huang N, Wu W, Zhou Y, Li J. Intestinal dysbiosis exacerbates the pathogenesis of psoriasis-like phenotype through changes in fatty acid metabolism. Signal Transduct Target Ther 2023; 8:40. [PMID: 36710269 PMCID: PMC9884668 DOI: 10.1038/s41392-022-01219-0] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 09/12/2022] [Accepted: 09/29/2022] [Indexed: 01/31/2023] Open
Abstract
The intestinal microbiota has been associated with host immunity as well as psoriasis; however, the mechanism of intestinal microbiota regulating psoriasis needs to be demonstrated systematically. Here, we sought to examine its role and mechanism of action in the pathogenesis of psoriasis. We found that the severity of psoriasis-like skin phenotype was accompanied by changes in the composition of the intestinal microbiota. We performed co-housing and fecal microbial transplantation (FMT) experiments using the K14-VEGF transgenic mouse model of psoriasis and demonstrated that the transfer of intestinal microbiota from mice with severe psoriasis-like skin phenotype exacerbated psoriasiform skin inflammation in mice with mild symptoms, including increasing the infiltration and differentiation of Th17, and increased the abundance of Prevotella, while decreasing that of Parabacteroides distasonis, in the colon. These alterations affected fatty acid metabolism, increasing the abundance of oleic and stearic acids. Meanwhile, gentamicin treatment significantly reduced the abundance of Prevotella and alleviated the psoriasis-like symptoms in both K14-VEGF mice and imiquimod (IMQ)-induced psoriasis-like mice. Indeed, administration of oleic and stearic acids exacerbated psoriasis-like symptoms and increased Th17 and monocyte-derived dendritic cell infiltration in the skin lesion areas in vivo, as well as increased the secretion of IL-23 by stimulating DCs in vitro. At last, we found that, treatment of PDE-4 inhibitor alleviated psoriasis-like phenotype of K14-VEGF mice accompanied by the recovery of intestinal microbiota, including the decrease of Prevotella and increase of Parabacteroides distasonis. Overall, our findings reveal that the intestinal microbiota modulates host metabolism and psoriasis-like skin inflammation in mice, suggesting a new target for the clinical diagnosis and treatment of psoriasis.
Collapse
Affiliation(s)
- Qixiang Zhao
- grid.13291.380000 0001 0807 1581State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Jiadong Yu
- grid.13291.380000 0001 0807 1581State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Hong Zhou
- grid.13291.380000 0001 0807 1581State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Xiaoyan Wang
- grid.13291.380000 0001 0807 1581State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Chen Zhang
- grid.13291.380000 0001 0807 1581State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Jing Hu
- grid.13291.380000 0001 0807 1581State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Yawen Hu
- grid.13291.380000 0001 0807 1581State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Huaping Zheng
- grid.13291.380000 0001 0807 1581State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Fanlian Zeng
- grid.13291.380000 0001 0807 1581State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Chengcheng Yue
- grid.13291.380000 0001 0807 1581State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Linna Gu
- grid.13291.380000 0001 0807 1581State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Zhen Wang
- grid.13291.380000 0001 0807 1581State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Fulei Zhao
- grid.13291.380000 0001 0807 1581State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Pei Zhou
- grid.13291.380000 0001 0807 1581State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Haozhou Zhang
- grid.13291.380000 0001 0807 1581State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Nongyu Huang
- grid.13291.380000 0001 0807 1581State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Wenling Wu
- grid.13291.380000 0001 0807 1581State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Yifan Zhou
- grid.13291.380000 0001 0807 1581State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Jiong Li
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China.
| |
Collapse
|
45
|
Chen C, Xia X, Wang D. Identification of nutritional components in unripe and ripe Docynia delavayi (Franch.) Schneid fruit by widely targeted metabolomics. PeerJ 2022; 10:e14441. [PMID: 36530411 PMCID: PMC9753743 DOI: 10.7717/peerj.14441] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 11/01/2022] [Indexed: 12/14/2022] Open
Abstract
Docynia delavayi (Franch.) Schneid is an evergreen tree with multiple benefits and high development and utilization value. The fruit is consumed as fresh and dry fruit, juices, and other products. However, it is unknown the chemical changes that occur upon fruit maturation. The metabolite content of unripe and ripe fruit was examined using UPLC-MS/MS technology based on a broadly targeted metabolome. We identified 477 metabolites, of which 130 differed between ripe and unripe fruit. These compounds are primarily involved in the biosynthesis of secondary metabolites, such as pantothenic acid, flavonoids, and amino acids. Moreover, in ripe fruit, there are 94 metabolites that are upregulated, particularly flavonoids and terpenoids. In comparison, compounds associated with sour flavors (amino acids, phenolic acids, organic acids) are down-regulated. Remarkably, these metabolites have a strong relationship with the medicinal properties of D. delavayi. This study provides a global perspective of the D. delavayi fruit metabolome and a comprehensive analysis of metabolomic variations during fruit development, thereby increasing the knowledge of the metabolic basis of important fruit quality traits in D. delavayi fruit.
Collapse
Affiliation(s)
- Can Chen
- Southwest Forestry University, Key Laboratory for Forest Resource Conservation and Utilization in the Southwest Mountains of China, Kunming, China,Southwest Forestry University, Key Laboratory for Forest Genetic and Tree Improvement & Propagation in Universities of Yunnan Province, Kunming, China
| | - Xi Xia
- Southwest Forestry University, Key Laboratory for Forest Resource Conservation and Utilization in the Southwest Mountains of China, Kunming, China,Southwest Forestry University, Key Laboratory for Forest Genetic and Tree Improvement & Propagation in Universities of Yunnan Province, Kunming, China
| | - Dawei Wang
- Southwest Forestry University, Key Laboratory for Forest Resource Conservation and Utilization in the Southwest Mountains of China, Kunming, China,Southwest Forestry University, Key Laboratory for Forest Genetic and Tree Improvement & Propagation in Universities of Yunnan Province, Kunming, China
| |
Collapse
|
46
|
Sun Y, Li Y, Zhang J. The causal relationship between psoriasis, psoriatic arthritis, and inflammatory bowel diseases. Sci Rep 2022; 12:20526. [PMID: 36443384 PMCID: PMC9705442 DOI: 10.1038/s41598-022-24872-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 11/22/2022] [Indexed: 11/29/2022] Open
Abstract
Psoriasis is more common in patients with inflammatory bowel disease (IBD) than in the general population. Similarly, patients with psoriasis or psoriatic arthritis (PsA) have a higher incidence of IBD. However, whether this association is causal remains unknown. Therefore, we used a two-sample bidirectional Mendelian randomization (MR) analysis to identify this relationship. According to MR analysis, psoriasis and PsA causally increased the odds of developing Crohn's disease (OR = 1.350 (1.066-1.709) P = 0.013; OR = 1.319 (1.166-1.492) P < 0.001). In contrast, MR estimates gave little support to a possible causal effect of psoriasis, PsA, on ulcerative colitis (OR = 1.101 (0.905-1.340) P = 0.335; OR = 1.007 (0.941-1.078) P = 0.831). Similarly, the reverse analysis suggested the Crohn's disease causally increased the odds of psoriasis and PsA (OR = 1.425 (1.174-1.731) P < 0.001; OR = 1.448 (1.156-1.182) P = 0.001), whereas there are no causal association between ulcerative colitis and psoriasis, PsA (OR = 1.192 (0.921-1.542) P = 0.182; OR = 1.166 (0.818-1.664) P = 0.396). In summary, our MR analysis strengthens the evidence for the bidirectional dual causality between psoriasis (including PsA) and Crohn's disease.
Collapse
Affiliation(s)
- Yang Sun
- grid.430605.40000 0004 1758 4110Department of Orthopedics, The First Hospital of Jilin University, Changchun, Jilin China
| | - Yue Li
- grid.410737.60000 0000 8653 1072Department of Social Psychiatry, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, Guangdong China
| | - Jiting Zhang
- grid.430605.40000 0004 1758 4110Department of Orthopedics, The First Hospital of Jilin University, Changchun, Jilin China
| |
Collapse
|
47
|
Qiu Q, Deng J, Deng H, Yao D, Yan Y, Ye S, Shang X, Deng Y, Han L, Zheng G, Roy B, Chen Y, Han L, Huang R, Fang X, Lu C. Association of the characteristics of the blood metabolome and gut microbiome with the outcome of methotrexate therapy in psoriasis. Front Immunol 2022; 13:937539. [PMID: 36159864 PMCID: PMC9491226 DOI: 10.3389/fimmu.2022.937539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 08/11/2022] [Indexed: 11/13/2022] Open
Abstract
Metabolic status and gut microecology are implicated in psoriasis. Methotrexate (MTX) is usually the first-line treatment for this disease. However, the relationship between MTX and host metabolic status and the gut microbiota is unclear. This study aimed to characterize the features of blood metabolome and gut microbiome in patients with psoriasis after treatment with MTX. Serum and stool samples were collected from 15 patients with psoriasis. Untargeted liquid chromatography–mass spectrometry and metagenomics sequencing were applied to profile the blood metabolome and gut microbiome, respectively. We found that the response to MTX varied according to metabolomic and metagenomic features at baseline; for example, patients who had high levels of serum nutrient molecular and more enriched gut microbiota had a poor response. After 16 weeks of MTX, we observed a reduction in microbial activity pathways, and patients with a good response showed more microbial activity and less biosynthesis of serum fatty acid. We also found an association between the serum metabolome and the gut microbiome before intervention with MTX. Carbohydrate metabolism, transporter systems, and protein synthesis within microbes were associated with host metabolic clusters of lipids, benzenoids, and organic acids. These findings suggest that the metabolic status of the blood and the gut microbiome is involved in the effectiveness of MTX in psoriasis, and that inhibition of symbiotic intestinal microbiota may be one of the mechanisms of action of MTX. Prospective studies in larger sample sizes are needed to confirm these findings.
Collapse
Affiliation(s)
- Qinwei Qiu
- The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, China
| | - Jingwen Deng
- The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, China
- Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Hao Deng
- The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, China
- Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Danni Yao
- The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, China
| | - Yuhong Yan
- The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, China
| | - Shuyan Ye
- The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, China
| | - Xiaoxiao Shang
- The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, China
| | - Yusheng Deng
- The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, China
| | - Lijuan Han
- Department of Scientific Research, Kangmeihuada GeneTech Co., Ltd (KMHD), Shenzhen, China
| | - Guangjuan Zheng
- The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, China
- Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | | | - Yang Chen
- The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, China
| | - Ling Han
- The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, China
| | - Runyue Huang
- The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, China
- Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- *Correspondence: Runyue Huang, ; Xiaodong Fang, ; Chuanjian Lu,
| | - Xiaodong Fang
- The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, China
- BGI Genomics, BGI-Shenzhen, Shenzhen, China
- *Correspondence: Runyue Huang, ; Xiaodong Fang, ; Chuanjian Lu,
| | - Chuanjian Lu
- The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, China
- Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- *Correspondence: Runyue Huang, ; Xiaodong Fang, ; Chuanjian Lu,
| |
Collapse
|
48
|
Torres MDT, de la Fuente-Nunez C. Molecular tools for probing the microbiome. Curr Opin Struct Biol 2022; 76:102415. [PMID: 35985169 DOI: 10.1016/j.sbi.2022.102415] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 05/15/2022] [Accepted: 05/18/2022] [Indexed: 11/19/2022]
Abstract
The microbiome plays essential roles in health and disease. Our understanding of the imbalances that can arise in the microbiome and their consequences is held back by a lack of technologies that selectively knock out members of these microbial communities. Antibiotics and fecal transplants, the existing methods for manipulating the microbiota of the gastrointestinal tract, are not sufficiently pinpointed to reveal how particular microbial genes, strains, or species affect human health. A toolset for the precise manipulation of the microbiome could significantly advance disease diagnosis and treatment. Here, we provide an overview of current and future strategies for the development of molecular tools that can be used to probe the microbiome without producing off-target effects.
Collapse
Affiliation(s)
- Marcelo Der Torossian Torres
- Machine Biology Group, Departments of Psychiatry and Microbiology, Institute for Biomedical Informatics, Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Departments of Bioengineering and Chemical and Biomolecular Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, USA; Penn Institute for Computational Science, University of Pennsylvania, Philadelphia, PA, USA. https://twitter.com/mdt_torres
| | - Cesar de la Fuente-Nunez
- Machine Biology Group, Departments of Psychiatry and Microbiology, Institute for Biomedical Informatics, Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Departments of Bioengineering and Chemical and Biomolecular Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, USA; Penn Institute for Computational Science, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
49
|
Piaserico S, Orlando G, Messina F. Psoriasis and Cardiometabolic Diseases: Shared Genetic and Molecular Pathways. Int J Mol Sci 2022; 23:9063. [PMID: 36012327 PMCID: PMC9409274 DOI: 10.3390/ijms23169063] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 08/09/2022] [Accepted: 08/10/2022] [Indexed: 11/26/2022] Open
Abstract
A convincing deal of evidence supports the fact that severe psoriasis is associated with cardiovascular diseases. However, the precise underlying mechanisms linking psoriasis and cardiovascular diseases are not well defined. Psoriasis shares common pathophysiologic mechanisms with atherosclerosis and cardiovascular (CV) risk factors. In particular, polymorphism in the IL-23R and IL-23 genes, as well as other genes involved in lipid and fatty-acid metabolism, renin-angiotensin system and endothelial function, have been described in patients with psoriasis and with cardiovascular risk factors. Moreover, systemic inflammation in patients with psoriasis, including elevated serum proinflammatory cytokines (e.g., TNF-α, IL-17, and IL-23) may contribute to an increased risk of atherosclerosis, hypertension, alteration of serum lipid composition, and insulin resistance. The nonlinear and intricate interplay among various factors, impacting the molecular pathways in different cell types, probably contributes to the development of psoriasis and cardiovascular disease (CVD). Future research should, therefore, aim to fully unravel shared and differential molecular pathways underpinning the association between psoriasis and CVD.
Collapse
Affiliation(s)
- Stefano Piaserico
- Unit of Dermatology, Department of Medicine, University of Padua, Via V. Gallucci 4, 35128 Padua, Italy
| | | | | |
Collapse
|
50
|
Kapoor B, Gulati M, Rani P, Gupta R. Psoriasis: Interplay between dysbiosis and host immune system. Clin Exp Rheumatol 2022; 21:103169. [PMID: 35964945 DOI: 10.1016/j.autrev.2022.103169] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 08/07/2022] [Indexed: 11/30/2022]
Abstract
With advancement in human microbiome research, an increasing number of scientific evidences have endorsed the key role of both gut and skin microbiota in the pathogenesis of psoriasis. Microbiome dysbiosis, characterized by altered diversity and composition, as well as rise of pathobionts, have been identified as possible triggers for recurrent episodes of psoriasis. Mechanistically, gut dysbiosis leads to "leaky gut syndrome" via disruption of epithelial bilayer, thereby, resulting in translocation of bacteria and other endotoxins to systemic circulation, which in turn, results in inflammatory response. Similarly, skin dysbiosis disrupts the cutaneous homeostasis, leading to invasion of bacteria and other pathogens to deeper layers of skin or even systemic circulation further enhanced by injury caused by pruritus-induced scratching, and elicit innate and adaptive inflammation. The present review explores the correlation of both skin and gut microbiota dysbiosis with psoriasis. Also, the studies highlighting the potential of bacteriotherapeutic approaches including probiotics, prebiotics, metabiotics, and fecal microbiota transplantation for the management of psoriasis have been discussed.
Collapse
Affiliation(s)
- Bhupinder Kapoor
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India.
| | - Monica Gulati
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, NSW 2007, Australia.
| | - Pooja Rani
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Reena Gupta
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| |
Collapse
|