1
|
Mahboub N, Cherfi I, Laouini SE, Bouafia A, Benaissa A, Alia K, Alharthi F, Al-Essa K, Menaa F. GC/MS and LC Composition Analysis of Essential Oil and Extracts From Wild Rosemary: Evaluation of Their Antioxidant, Antimicrobial, and Anti-Inflammatory Activities. Biomed Chromatogr 2025; 39:e70084. [PMID: 40207578 DOI: 10.1002/bmc.70084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2025] [Revised: 03/27/2025] [Accepted: 04/02/2025] [Indexed: 04/11/2025]
Abstract
Rosmarinus officinalis L. (rosemary) is a widely used medicinal plant known for its antioxidant, antimicrobial, and anti-inflammatory properties. This study evaluates the bioactive potential of its essential oil (EO), methanolic (ME), and aqueous (AE) extracts. GC-MS analysis identified α-pinene (21.37%), bornanone (12.73%), and eucalyptol (8.28%) as major EO components, while HPLC revealed ME's richness in salicylic acid (5.11 μg/mg) and rutin (0.43 μg/mg). Antioxidant activity, assessed via DPPH and FRAP assays, showed ME with the strongest radical scavenging capacity (IC50 = 27.30 ± 2.4%) and reducing power (IC50 = 90.88 ± 6.7%). Antimicrobial testing revealed EO as the most effective, particularly against Staphylococcus aureus (33 mm inhibition zone) and Bacillus subtilis (32 mm), while AE and ME exhibited moderate activity. Pseudomonas aeruginosa was resistant to all extracts. Additionally, AE demonstrated notable anti-inflammatory activity (IC50 = 55.88 ± 1.02%). These findings highlight rosemary as a rich source of bioactive compounds with strong pharmacological potential, positioning ME as the best antioxidant, EO as the most potent antimicrobial, and AE as an effective anti-inflammatory agent.
Collapse
Affiliation(s)
- Nasma Mahboub
- Faculty of Natural Science and Life, Department of Molecular and Cellular Biology, El Oued University, El-Oued, Algeria
- Laboratory Biology, Environment, and Health, Faculty of Natural Sciences and Life, El-Oued University, El-Oued, Algeria
| | - Inasse Cherfi
- Faculty of Natural Science and Life, Department of Molecular and Cellular Biology, El Oued University, El-Oued, Algeria
- Laboratory Biology, Environment, and Health, Faculty of Natural Sciences and Life, El-Oued University, El-Oued, Algeria
| | - Salah Eddine Laouini
- Department of Process Engineering and Petrochemical, Faculty of Technology, University of El Oued, El Oued, Algeria
- BBCM Laboratory, Faculty of Technology, University of El Oued, El Oued, Algeria
| | - Abderrhmane Bouafia
- Department of Process Engineering and Petrochemical, Faculty of Technology, University of El Oued, El Oued, Algeria
- BBCM Laboratory, Faculty of Technology, University of El Oued, El Oued, Algeria
| | - Abir Benaissa
- BBCM Laboratory, Faculty of Technology, University of El Oued, El Oued, Algeria
| | - Khaoula Alia
- BBCM Laboratory, Faculty of Technology, University of El Oued, El Oued, Algeria
| | - Fahad Alharthi
- Department of Chemistry, College of Science, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | | | - Farid Menaa
- Department of Biomedical and Environmental Engineering (BEE), California Innovations Corporation, San Diego, California, USA
| |
Collapse
|
2
|
Khashei S, Fazeli H, Rahimi F, Karbasizadeh V. Antibiotic-potentiating efficacy of Rosmarinus officinalis L. to combat planktonic cells, biofilms, and efflux pump activities of extensively drug-resistant Acinetobacter baumannii clinical strains. Front Pharmacol 2025; 16:1558611. [PMID: 40264672 PMCID: PMC12012619 DOI: 10.3389/fphar.2025.1558611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Accepted: 03/24/2025] [Indexed: 04/24/2025] Open
Abstract
Introduction This research aimed to examine the action of commercial antibiotics against extensively drug-resistant (XDR) A. baumannii clinical strains when combined with Rosmarinus officinalis extracts. Methods Agar well diffusion and broth microdilution were used to screen the antibacterial activity of crude ethanol extract and its fractions (hexane, intermediate, ethyl acetate, and water). The interactions between the extracts and antibiotics (gentamicin, tetracycline, cefepime, and ciprofloxacin) were evaluated by checkerboard assay. The anti-biofilm and efflux pump inhibition activities were determined by the microtiter plate method and dye accumulation assay using flow cytometry, respectively. The potential phytochemicals that contribute to the antibacterial effects of R. officinalis were identified using the liquid chromatography-mass spectrometry (LC-MS). Results R. officinalis crude extract (CE) demonstrated the best antibacterial activity with MIC values ranging from 300 to 600 μg/mL. The combination of CE and tetracycline exhibited the highest overall synergistic effect. This combination hindered biofilm formation ranging from 21.4% to 57.31% and caused a significant increase (up to 14%) in the fluorescence intensity in 75% of the studied strains. The LC-MS analysis of CE exhibited eleven compounds in which rosmarinic acid (55.53%) was the most abundant phenolic compound followed by cirsimaritin (11.46%), and p-coumaroyl hexoside acid (10.5%). Discussion Overall, this is the first direct report that demonstrated the efficacy of R. officinalis when applied with conventional antibiotics on biofilm formation and efflux pump activity in XDR A. baumannii clinical strains.
Collapse
Affiliation(s)
- Sanaz Khashei
- Department of Microbiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Hossein Fazeli
- Department of Microbiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Fateh Rahimi
- Department of Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - Vajihe Karbasizadeh
- Department of Microbiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
3
|
Tao W, Jiang C, Velu P, Lv C, Niu Y. Rosmanol Suppresses Nasopharyngeal Carcinoma Cell Proliferation and Enhances Apoptosis, the Regulation of MAPK/NF-κB Signaling Pathway. Biotechnol Appl Biochem 2025:e2750. [PMID: 40170441 DOI: 10.1002/bab.2750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Accepted: 03/08/2025] [Indexed: 04/03/2025]
Abstract
Nasopharyngeal Carcinoma (NPC) is a major public health problem in endemic zones. NPC is correlated with substantial illness and death; thus, superior treatment is desired. Rosmanol (RM) is a phenolic diterpene antioxidant extracted from the medicinal herb Rosemary (Rosmarinus officinalis). RM has been investigated for its anti-inflammatory and anti-tumor properties by numerous signaling cascades. However, the fundamental anticancer latent mechanism of RM persists as unidentified. Hence, this present research proposes to search for the anti-cancer efficacy of RM on human NPC cells CNE2 using an in vitro approach. To assess the possible molecular mechanisms of proliferation, apoptosis, cell-cycle regulatory proteins, and MAPKs/NF-κB signaling of NPC cells were administered RM (20 and 30 µM) and assayed through MTT, DCFH-DA, Rh-123 staining, AO/EB, PI, Rh-123/DAPI merge form staining, RT-PCR, and Western blot. The result was recognized that RM could reduce NPC cell viability by elevated intracellular ROS, MMP damage, and generate apoptosis. RM inhibits the Cyclin-D1, Bax, TNF-α, and NF-κB, and induces BCl-2 analyzed via RT PCR. RM attenuates the cell cycle mechanism by repressing NPC cell cycle-related proteins: CDK4/CDK6, pRB, cyclin-D1, and MAPKs/NF-κB signaling. These data established that the MAPKs/NF-κB pathway is a potential target for the remedial action of RM. In summary, RM may be an effective conventional chemotherapy drug in preventing the progression of NPC.
Collapse
Affiliation(s)
- Weiping Tao
- Department of Otorhinolaryngology-Head and Neck Surgery, The Fourth Hospital of Changsha, Changsha, China
| | - Chaowu Jiang
- Department I of Otolaryngology, The First Affiliated Hospital of Kunming Medical University, Kunming City, China
| | - Periyannan Velu
- Galileovasan Offshore and Research and Development Pvt Ltd, Nagapattinam, Tamil Nadu, India
| | - Cao Lv
- Department of Otolaryngology, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Yan Niu
- Department of Otolaryngology, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| |
Collapse
|
4
|
Alaboudi KA, Aziz IM, Almosa AA, Farrag MA, Abalkhail T, Alshalan RM, Almuqrin AM. In vitro and in silico pharmacological effects of Rosmarinus officinalis leaf methanolic extracts and essential oils. Sci Rep 2025; 15:10699. [PMID: 40155621 PMCID: PMC11953444 DOI: 10.1038/s41598-025-93504-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Accepted: 03/07/2025] [Indexed: 04/01/2025] Open
Abstract
Rosmarinus officinalis L. has been widely used as a spice to enhance the shelf-life of food for centuries. While existing research in the literature suggests that the primary antibacterial component of this plant is its essential oil (EO), there is a lack of comparative studies employing both in vitro and in silico approaches to evaluate the antimicrobial, antioxidant, anticancer, and antidiabetic properties of R. officinalis leaf EO (ROLEO) and R. officinalis leaf methanolic extract (ROLME). The present study investigates the bioactive components and biological activities of ROLEO and ROLME using gas chromatography-mass spectrometry analysis. Additionally, the total phenolic content (TPC) and total flavonoid content (TFC) were quantified, and their antioxidant, antidiabetic, anticancer, and antibacterial activities were evaluated in vitro and in silico studies. GC-MS analysis revealed 20 bioactive compounds of ROLME, compared to 73 bioactive compounds in ROLEO. The TPC of ROLEO was higher, measuring 49.34 ± 2.84 mg GAE per gram of dry weight of the extract, compared to ROLME, which had a TPC of 38.13 ± 3.31 mg GAE per gram of dry weight of the extract. The TFC of ROLEO was measured at 24 ± 1.47 mg QE/g of dry weight, which is higher than that of ROLME, measured at 19 ± 1.47 mg QE/g of dry weight. Additionally, ROLEO demonstrated superior antioxidant activity at low concentrations compared to ROLME and greater antidiabetic properties by suppressing the actions of α-amylase and α-glucosidase enzymes. Moreover, ROLEO showed promising anticancer effects at lower doses, and antibacterial capabilities, particularly against Gram-positive bacteria. Molecular docking studies have identified key components of ROLEO that exhibit significant bioactivity. Among these compounds, 1H-Cycloprop[e]azulen-4-ol, decahydro-1,1,4,7-tetramethyl-, [1ar-(1α,4β,4aβ,7α,7aβ,7bα)]-demonstrated the highest activity against α-amylase, while thymol exhibited the strongest activity against caspase-3 and E. coli gyrase B. Overall, molecular docking and pharmacokinetic analysis identified promising inhibitory effects of key ROLEO compounds on α-amylase, caspase-3, and E. coli gyrase B, with favorable drug-like properties. These findings suggest that the EO of R. officinalis may serve as the basis for the development of innovative synthetic medications, offering valuable insights for the pharmaceutical industry to design novel treatments for various diseases.
Collapse
Affiliation(s)
- Khalid Abdullah Alaboudi
- Advanced Agricultural and Food Technologies Institute, King Abdulaziz City for Science and Technology (KACST), 11451, Riyadh, Saudi Arabia
| | - Ibrahim M Aziz
- Department of Botany and Microbiology, College of Science, King Saud University, 11451, Riyadh, Saudi Arabia.
| | - Abdulaziz Abdullah Almosa
- Wellness Prevention Medicine, King Abdulaziz City for Science and Technology (KACST), 11451, Riyadh, Saudi Arabia
| | - Mohamed A Farrag
- Department of Botany and Microbiology, College of Science, King Saud University, 11451, Riyadh, Saudi Arabia
| | - Tarad Abalkhail
- Department of Botany and Microbiology, College of Science, King Saud University, 11451, Riyadh, Saudi Arabia
| | - Rawan M Alshalan
- Department of Botany and Microbiology, College of Science, King Saud University, 11451, Riyadh, Saudi Arabia
| | - Abdulaziz M Almuqrin
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, 12372, Riyadh, Saudi Arabia
| |
Collapse
|
5
|
Sciacca C, Cardullo N, Savitteri M, Pittalà MGG, Pulvirenti L, Napoli EM, Muccilli V. Recovery of Natural Hypoglycemic Compounds from Industrial Distillation Wastewater of Lamiaceae. Molecules 2025; 30:1391. [PMID: 40142166 PMCID: PMC11944828 DOI: 10.3390/molecules30061391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2025] [Revised: 03/14/2025] [Accepted: 03/17/2025] [Indexed: 03/28/2025] Open
Abstract
The food industry generates the largest number of valuable by-products. The recovery of compounds such as fatty acids and polyphenols with notorious biological properties from biowaste is a new challenge in the circular economy scenario, as they represent value-added starting materials for the preparation of functional foods, food supplements, cosmetics and over-the-counter drugs. Less commonly explored are industrial wastewaters, which return to the nearby water streams without adequate treatment. Distillation wastewater (DWW) from the essential oils or agro-food industries may represent a valuable source of bioactive compounds to be valorized. In this work, DWW from rosemary was treated with different resins through dynamic and static adsorption/desorption approaches, for the recovery of phenolic compounds including rosmarinic acid. The most effective methodology, selected according to total phenolic and rosmarinic acid contents, as well as antioxidant activity evaluation, was applied to sage, thyme and oregano DWWs. The procedure provides several advantages compared with conventional separation processes, as it involves the lower consumption of reagents/solvents, low operational costs, ease of handling, and simplicity of scale-up. The results of this work highlight a fast and sustainable procedure for the recovery of rosmarinic acid and other phenolics (caffeic acid derivatives and flavonoid glycosides) from DWWS, thus affording a fraction with antioxidant and hypoglycemic activities.
Collapse
Affiliation(s)
- Claudia Sciacca
- Department of Chemical Sciences, University of Catania, Viale A. Doria 6, 95125 Catania, Italy; (C.S.); (M.S.); (M.G.G.P.); (V.M.)
| | - Nunzio Cardullo
- Department of Chemical Sciences, University of Catania, Viale A. Doria 6, 95125 Catania, Italy; (C.S.); (M.S.); (M.G.G.P.); (V.M.)
| | - Martina Savitteri
- Department of Chemical Sciences, University of Catania, Viale A. Doria 6, 95125 Catania, Italy; (C.S.); (M.S.); (M.G.G.P.); (V.M.)
| | - Maria Gaetana Giovanna Pittalà
- Department of Chemical Sciences, University of Catania, Viale A. Doria 6, 95125 Catania, Italy; (C.S.); (M.S.); (M.G.G.P.); (V.M.)
| | - Luana Pulvirenti
- Institute of Biomolecular Chemistry, National Research Council ICB-CNR, 95126 Catania, Italy;
| | - Edoardo Marco Napoli
- Institute of Biomolecular Chemistry, National Research Council ICB-CNR, 95126 Catania, Italy;
| | - Vera Muccilli
- Department of Chemical Sciences, University of Catania, Viale A. Doria 6, 95125 Catania, Italy; (C.S.); (M.S.); (M.G.G.P.); (V.M.)
| |
Collapse
|
6
|
Guetat A, Selmi S, Abdelwahab AT, Abdelfattah MA, Elhaj AEM, Mogharbel RT, Abualreish MJA, Alanazi AF, Hosni K, Mejri N, Boulila A. Salvia deserti Decne., an endemic and rare subshrub from Arabian desert: antidiabetic and antihyperlipidemic effects of leaf hydroethanolic extracts. Front Pharmacol 2025; 16:1537071. [PMID: 39995414 PMCID: PMC11847675 DOI: 10.3389/fphar.2025.1537071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Accepted: 01/13/2025] [Indexed: 02/26/2025] Open
Abstract
Introduction Diabetes is a major health issue that has reached alarming levels worldwide. Although their effectiveness, the antidiabetic drugs have many side effects such as cardiovascular diseases, kidney failure, and hepatic complications. Many plant species of the genus Salvia L. such as "Arabian desert sage" (Salvia deserti) should began to be the focus of phytochemical and bioactivity studies. Methods The study aims to investigate, first-ever, the antidiabetic and antihyperlipidemic effects of the leaf hydroethanolic extract of S. deserti, an endemic and rare subshrub from Arabian desert. A single intraperitoneal injection of alloxan monohydrate (160 mg/kg) was used to induce type-2 diabetes. Development of diabetes was confirmed by measuring the blood glucose collected from the tail vein after 72 h of alloxan injection. Oral administration of hydroethanolic extracts of S. deserti at 200 and 400 mg/kg for 14 days were tested on the alloxan-induced diabetic mice and animals were divided into 6 groups of 6 mice each. The identity of phenolic compounds of the hydroethanolic extract of S. deserti was conducted through HPLC-Electrospray Ionization-Mass Spectrometry (LC-ESI-MS) analyses. Results Oral administration of hydroethanolic extract of S. deserti at 200 and 400 mg/kg for 14 days significantly decreased blood glucose and restored the hepatic and renal function by reducing the levels of ALT, AST, ALP, GGT, LDH, urea and creatinine. An improved lipid profile as revealed by the reduced levels of TC, TG and LDL coupled with increased level of HDL was also observed. Moreover, treatment with S. deserti hydroethanolic extract relieved oxidative stress (reduction of MDA and H2O2) and the activity of antioxidant enzymes SOD, CAT and GPx. The presence of several phenolic compounds (derivatives of ferulic, coumaric, and caffeic acids, among other derivatives) could at least in part explain the obtained data and empower the use of S. deserti as a source of bioactive ingredients with antioxidant, antidiabetic and antihyperlipidemic properties. Discussion Our research has unveiled S. deserti as a source of potential to effectively manage diabetes and its associated dyslipidemia by improving antioxidant status, recovery of the liver and kidney functions and presumably by increasing insulin secretion and sensitivity of peripheral tissues to insulin.
Collapse
Affiliation(s)
- Arbi Guetat
- Department of Biological Sciences, College of Sciences, Northern Border University, Arar, Saudi Arabia
| | - Slimen Selmi
- Laboratory of Functional Physiology and Valorization of Bioresources, Higher Institute of Biotechnology of Béja, Jendouba University, Béja, Tunisia
| | - Abdelrhman T. Abdelwahab
- Department of Biological Sciences, College of Sciences, Northern Border University, Arar, Saudi Arabia
| | - Marwa A. Abdelfattah
- Department of Biological Sciences, College of Sciences, Northern Border University, Arar, Saudi Arabia
| | | | - Roaa T. Mogharbel
- Department of Chemistry, College of Sciences, Northern Border University, Arar, Saudi Arabia
| | - M. J. A. Abualreish
- Department of Chemistry, College of Sciences, Northern Border University, Arar, Saudi Arabia
| | - Abdullah F. Alanazi
- Department of Chemistry, College of Sciences, Northern Border University, Arar, Saudi Arabia
| | - Karim Hosni
- Laboratoire des Substances Naturelles, Institut National de Recherche et d’Analyse Physicochimique, Biotechpole de Sidi Thabet, Ariana, Tunisia
| | - Naceur Mejri
- Laboratory of Biotechnology and Nuclear Technology, National Center for Nuclear Science and Technology of Sidi Thabet, Ariana, Tunisia
| | - Abdennacer Boulila
- Laboratoire des Substances Naturelles, Institut National de Recherche et d’Analyse Physicochimique, Biotechpole de Sidi Thabet, Ariana, Tunisia
| |
Collapse
|
7
|
Rahimi-Rizi M, Azizi A, Sarikhani H, Kheiri H. Interaction of Rosmarinus officinalis L. with UV-A radiation by preserving its morphological traits and modifying its phenolic composition. Nat Prod Res 2025; 39:514-525. [PMID: 37876221 DOI: 10.1080/14786419.2023.2273921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 09/27/2023] [Accepted: 10/15/2023] [Indexed: 10/26/2023]
Abstract
This study investigated the effects of supplemental ultraviolet-A (UV-A) radiation on phenolic compounds, antioxidant properties, and agro-morphological characteristics of Rosmarinus officinalis L. Greenhouse plants were exposed to UV-A for 1, 2, and 4 h daily, 40 days. Based on the results, UV-A radiation had no significant effect on agro-morphological traits, while it remarkably altered chlorophyll content, total phenolic and flavonoid contents, as well as radical scavenging activity. Plants exposed to UV-A (4h) had the highest total phenolic and flavonoid contents, antioxidant activity, as well as the content of rosmarinic, carnosic, vanillic, and caffeic acids, and naringin. Conversely, carnosol, cirsimaritin, and hispulin levels decreased in treated plants. Overall, UV-A radiation had a positive effect on the medicinal aspects of R. officinalis L., which is important in the pharmaceutical industry. Therefore, it is suggested application of UV-A emitting LEDs for commercial purposes, with a lower risk level than UV-B and UV-C.
Collapse
Affiliation(s)
- Marziye Rahimi-Rizi
- Department of Horticultural Science, Faculty of Agriculture, Bu Ali Sina University, Hamedan, Iran
| | - Ali Azizi
- Department of Horticultural Science, Faculty of Agriculture, Bu Ali Sina University, Hamedan, Iran
| | - Hassan Sarikhani
- Department of Horticultural Science, Faculty of Agriculture, Bu Ali Sina University, Hamedan, Iran
| | - Homayon Kheiri
- Agricultural and Natural Resources Research Center, Hamedan, Iran
| |
Collapse
|
8
|
Ivanova D, Semkova S, Grigorov B, Tzanova M, Georgieva A, Danchev D, Nikolova B, Yaneva Z. The General Principle of the Warburg Effect as a Possible Approach for Cancer Immunotherapy: The Regulatory Effect of Plant Extracts Could Change the Game. Molecules 2025; 30:393. [PMID: 39860262 PMCID: PMC11767411 DOI: 10.3390/molecules30020393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 12/19/2024] [Accepted: 12/20/2024] [Indexed: 01/27/2025] Open
Abstract
The interpretation of the biochemistry of immune metabolism could be considered an attractive scientific field of biomedicine research. In this review, the role of glycolysis in macrophage polarization is discussed together with mitochondrial metabolism in cancer cells. In the first part, the focus is on the Warburg effect and redox metabolism during macrophage polarization, cancer development, and management of the immune response by the cancer cells. The second part addresses the possibility of impacts on the Warburg effect through targeting peroxisome proliferator-activated receptors (PPARs). This could be an activator of native immune responses. Because of the reported serious adverse effects of using synthetic ligands for PPARs in combination with chemotherapeutics, searches for less toxic and more active PPAR inhibitors, as well as blocking undesirable cellular PPAR-dependent processes, are in progress. On the other hand, recent research in modern immunotherapy has focused on the search for gentle immune-modulating natural compounds with harmless synergistic chemotherapeutic efficacy that can be used as an adjuvant. It is a well-known fact that the plant kingdom is a source of important therapeutic agents with multifaceted effectiveness. One of these is the known association with PPAR activities. In this regard, the secondary metabolites extracted from plants could change the game.
Collapse
Affiliation(s)
- Donika Ivanova
- Department of Pharmacology, Animal Physiology Biochemistry and Chemistry, Faculty of Veterinary Medicine, Trakia University, 6000 Stara Zagora, Bulgaria;
- Department of Chemistry and Biochemistry, Faculty of Medicine, Trakia University, 6000 Stara Zagora, Bulgaria
| | - Severina Semkova
- Department of Electroinduced and Adhesive Properties, Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria;
| | - Boncho Grigorov
- Department of Molecular Biology, Immunology and Medical Genetics, Faculty of Medicine, Trakia University, 6000 Stara Zagora, Bulgaria;
| | - Milena Tzanova
- Department of Biological Sciences, Faculty of Agriculture, Trakia University, 6000 Stara Zagora, Bulgaria;
| | | | | | - Biliana Nikolova
- Department of Electroinduced and Adhesive Properties, Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria;
| | - Zvezdelina Yaneva
- Department of Pharmacology, Animal Physiology Biochemistry and Chemistry, Faculty of Veterinary Medicine, Trakia University, 6000 Stara Zagora, Bulgaria;
| |
Collapse
|
9
|
Razgonova MP, Nawaz MA, Rusakova EA, Golokhvast KS. Application of Supercritical CO 2 Extraction and Identification of Polyphenolic Compounds in Three Species of Wild Rose from Kamchatka: Rosa acicularis, Rosa amblyotis, and Rosa rugosa. PLANTS (BASEL, SWITZERLAND) 2024; 14:59. [PMID: 39795319 PMCID: PMC11723076 DOI: 10.3390/plants14010059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Revised: 12/10/2024] [Accepted: 12/24/2024] [Indexed: 01/13/2025]
Abstract
A comparative metabolomic study of three varieties of wild Rosa (Rosa acicularis, Rosa amblyotis, and Rosa rugosa) from a Kamchatka expedition (2024) was conducted via extraction with supercritical carbon dioxide modified with ethanol (EtOH), and detection of bioactive compounds was realized via tandem mass spectrometry. Several experimental conditions were investigated in the pressure range 50-350 bar, with the used volume of co-solvent ethanol in the amount of 2% in the liquid phase at a temperature in the range of 31-70 °C. The most effective extraction conditions are the following: pressure 200 Bar and temperature 55 °C for Rosa acicularis; pressure 250 Bar and temperature 60 °C for Rosa amblyotis; pressure 200 Bar and temperature 60 °C for Rosa rugosa. Three varieties of wild Rosa contain various phenolic compounds and compounds of other chemical groups with valuable biological activity. Tandem mass spectrometry (HPLC-ESI-ion trap) was applied to detect the target analytes. A total of 283 bioactive compounds (two hundred seventeen compounds from the polyphenol group and sixty-six compounds from other chemical groups) were tentatively identified in extracts from berries of wild Rosa. For the first time, forty-eight chemical constituents from the polyphenol group (15 flavones, 14 flavonols, 4 flavan-3-ols, 3 flavanones, 1 phenylpropanoid, 2 gallotannins, 1 ellagitannin, 4 phenolic acids, 1 dihydrochalcone, and 3 coumarins) were identified in supercritical extracts of R. acicularis, R. amblyotis, and R. rugosa.
Collapse
Affiliation(s)
- Mayya P. Razgonova
- N.I. Vavilov All-Russian Institute of Plant Genetic Resources, B. Morskaya 42-44, 190000 Saint-Petersburg, Russia;
- Far Eastern Federal University, Sukhanova 8, 690950 Vladivostok, Russia
| | - Muhammad A. Nawaz
- Advanced Engineering School “Agrobiotek”, National Research Tomsk State University, Lenin Ave, 36, 634050 Tomsk, Russia
| | - Elena A. Rusakova
- FSBSI Kamchatsky Scientific Research Institute of Agriculture, Centralnaya, 4, 684033 Sosnovka, Russia;
| | - Kirill S. Golokhvast
- N.I. Vavilov All-Russian Institute of Plant Genetic Resources, B. Morskaya 42-44, 190000 Saint-Petersburg, Russia;
- Advanced Engineering School “Agrobiotek”, National Research Tomsk State University, Lenin Ave, 36, 634050 Tomsk, Russia
- Siberian Federal Scientific Centre of Agrobiotechnology RAS, Centralnaya 2b, Presidium, 633501 Krasnoobsk, Russia
| |
Collapse
|
10
|
Kola A, Vigni G, Lamponi S, Valensin D. Protective Contribution of Rosmarinic Acid in Rosemary Extract Against Copper-Induced Oxidative Stress. Antioxidants (Basel) 2024; 13:1419. [PMID: 39594560 PMCID: PMC11590892 DOI: 10.3390/antiox13111419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 11/12/2024] [Accepted: 11/14/2024] [Indexed: 11/28/2024] Open
Abstract
Rosemary extract (Rosmarinus officinalis) is a natural source of bioactive compounds with significant antioxidant properties. Among these, rosmarinic acid is celebrated for its potent antioxidant, anti-inflammatory, antimicrobial, and neuroprotective properties, making it a valuable component in both traditional medicine and modern therapeutic research. Neurodegenerative diseases like Alzheimer's and Parkinson's are closely linked to oxidative damage, and research indicates that rosmarinic acid may help protect neurons by mitigating this harmful process. Rosmarinic acid is able to bind cupric ions (Cu2+) and interfere with the production of reactive oxygen species (ROS) produced by copper through Fenton-like reactions. This study aims to further evaluate the contribution of rosmarinic acid within rosemary extract by comparing its activity to that of isolated rosmarinic acid. By using a detailed approach that includes chemical characterization, antioxidant capacity assessment, and neuroprotective activity testing, we have determined whether the combined components in rosemary extract enhance or differ from the effects of rosmarinic acid alone. This comparison is crucial for understanding whether the full extract offers added benefits beyond those of isolated rosmarinic acid in combating oxidative stress and Aβ-induced toxicity.
Collapse
Affiliation(s)
| | | | | | - Daniela Valensin
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy; (A.K.); (G.V.); (S.L.)
| |
Collapse
|
11
|
Pérez-Magariño S, Bueno-Herrera M, Asensio-S.-Manzanera MC. Characterization of Bioactive Phenolic Compounds Extracted from Hydro-Distillation By-Products of Spanish Lamiaceae Plants. Molecules 2024; 29:5285. [PMID: 39598674 PMCID: PMC11596117 DOI: 10.3390/molecules29225285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/04/2024] [Accepted: 11/06/2024] [Indexed: 11/29/2024] Open
Abstract
Plants of the Lamiaceae family are widely used for the extraction of essential oils, and this industry generates a large number of solid residues as by-products, which contain non-volatile valuable compounds. The aim of this work was to identify and quantify the phenolic compounds present in these solid residues from different important Spanish species of Lamiaceae to characterize and valorize them. Forty-seven phenolic compounds were identified by HPLC-DAD-MS and quantified by HPLC-DAD. Different concentrations and types of phenolic compounds were found between the solid residues. The Rosmarinus officinalis extracts showed the highest total phenolic content due to their high phenolic terpene concentrations. The Thymus mastichina extracts were characterized by kaempferol and flavanones, and some flavones were derived from luteolin and apigenin. Finally, the sample Lavandula and Salvia lavandulifolia extracts presented the lowest content of most phenolic compounds, with the exception of some phenolic acids, such as danshensu, salvianolic acid A, and glucosides of hydroxycinnamic acids. Therefore, this work provides information on the quantification of a large number of phenolic compounds using a simple, sensitive, reproducible, and accurate methodology. In addition, the results indicate that these solid residues still contain important amounts of different polyphenols, which are antioxidants and can be used in different industries.
Collapse
Affiliation(s)
- Silvia Pérez-Magariño
- Agrarian Technological Institute of Castilla and León, Consejería de Agricultura y Ganadería, Ctra Burgos Km 119, Finca Zamadueñas, 47071 Valladolid, Spain; (M.B.-H.); (M.C.A.-S.-M.)
| | | | | |
Collapse
|
12
|
Verma K, Chandane-Tak M, Gaikwad SY, Mukherjee A, Kumar S. Optimizing rosemary oil nanoemulsion loaded with nelfinavir and epigallocatechin gallate: A Design Expert® endorsed approach for enhanced neuroAIDS management. Int J Biol Macromol 2024; 280:135885. [PMID: 39307507 DOI: 10.1016/j.ijbiomac.2024.135885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 07/21/2024] [Accepted: 09/19/2024] [Indexed: 10/03/2024]
Abstract
This study focuses on optimizing the delivery of Nelfinavir (NFV), a vital protease inhibitor in antiretroviral therapy, and Epigallocatechin gallate (EGCG), a potent adjunctive anti- human immunodeficiency virus (anti-HIV) agent found in green tea. The challenge lies in NFV's low intrinsic dissolution rate, significant p-gp efflux, and high hepatic metabolism, necessitating frequent and high-dose administration. Our objective was to develop a nanoemulsion loaded with NFV and EGCG to enhance oral delivery, expediting antiretroviral effects for NeuroAIDS treatment. After meticulous excipient screening, we selected Tween 40 as the surfactant and polyethylene glycol 400 (PEG 400) as the co-surfactant. Employing a Quality by Design (QbD) approach with statistical multivariate methods, we optimized the nanoemulsion that exhibited a droplet size of 83.21 nm, polydispersity index (PDI) of 2.289, transmittance of 95.20 %, zeta potential of 1.495 mV, pH of 6.95, refractive index of 1.40, viscosity of 24.00 ± 0.42 mPas, and conductivity of 0.162 μS/cm. Pharmacokinetic studies demonstrated superior in vivo absorption of the optimized nanoemulsion compared to NFV and EGCG suspension. The optimized nanoemulsion showcased higher Cmax of NFV (9.75 ± 1.23 μg/mL) and EGCG (27.7 ± 1.22 μg/mL) in the brain, along with NFV (26.44 ± 1.44 μg/mL) and EGCG (313.20 ± 5.53 μg/mL) in the plasma. This study advocates for the potential of NFV and EGCG-loaded nanoemulsion in combination antiretroviral therapy (cART) for effective NeuroAIDS management.
Collapse
Affiliation(s)
- Kunal Verma
- Department of Pharmaceutical Technology, Meerut Institute of Engineering and Technology (MIET) NH-58, Delhi-Roorkee Highway, Meerut 250005, Uttar Pradesh, India
| | - Madhuri Chandane-Tak
- Division of Virology, ICMR-National AIDS Research Institute, Pune 411026, Maharashtra, India
| | - Shraddha Y Gaikwad
- Division of Virology, ICMR-National AIDS Research Institute, Pune 411026, Maharashtra, India
| | - Anupam Mukherjee
- Division of Virology, ICMR-National AIDS Research Institute, Pune 411026, Maharashtra, India.
| | - Shobhit Kumar
- Department of Pharmaceutical Technology, Meerut Institute of Engineering and Technology (MIET) NH-58, Delhi-Roorkee Highway, Meerut 250005, Uttar Pradesh, India.
| |
Collapse
|
13
|
Razgonova MP, Nawaz MA, Sabitov AS, Golokhvast KS. Genus Ribes: Ribes aureum, Ribes pauciflorum, Ribes triste, and Ribes dikuscha-Comparative Mass Spectrometric Study of Polyphenolic Composition and Other Bioactive Constituents. Int J Mol Sci 2024; 25:10085. [PMID: 39337572 PMCID: PMC11432568 DOI: 10.3390/ijms251810085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 09/15/2024] [Accepted: 09/16/2024] [Indexed: 09/30/2024] Open
Abstract
This study presents the metabolomic profiles of the four Ribes species (Ribes pauciflorum Turcz., Ribes triste Pall., Ribes dicuscha Fisch., and Ribes aureum Purch.). The plant material was collected during two expeditions in the Russian Far East. Tandem mass spectrometry was used to detect target analytes. A total of 205 bioactive compounds (155 compounds from polyphenol group and 50 compounds from other chemical groups) were tentatively identified from the berries and extracts of the four Ribes species. For the first time, 29 chemical constituents from the polyphenol group were tentatively identified in the genus Ribes. The newly identified polyphenols include flavones, flavonols, flavan-3-ols, lignans, coumarins, stilbenes, and others. The other newly detected compounds in Ribes species are the naphthoquinone group (1,8-dihydroxy-anthraquinone, 1,3,6,8-tetrahydroxy-9(10H)-anthracenone, 8,8'-dihydroxy-2,2'-binaphthalene-1,1',4,4'-tetrone, etc.), polyhydroxycarboxylic acids, omega-3 fatty acids (stearidonic acid, linolenic acid), and others. Our results imply that Ribes species are rich in polyphenols, especially flavanols, anthocyanins, flavones, and flavan-3-ols. These results indicate the utility of Ribes species for the health and pharmaceutical industry.
Collapse
Affiliation(s)
- Mayya P. Razgonova
- N.I. Vavilov All-Russian Institute of Plant Genetic Resources, B. Morskaya 42-44, Saint-Petersburg 190000, Russia; (A.S.S.); (K.S.G.)
- Advanced Engineering School, Far Eastern Federal University, Sukhanova 8, Vladivostok 690950, Russia
| | - Muhammad Amjad Nawaz
- Advanced Engineering School (Agrobiotek), National Research Tomsk State University, Lenin Ave, 36, Tomsk 634050, Russia
- Center for Research in the Field of Materials and Technologies, Tomsk State University, Lenin Ave, 36, Tomsk 634050, Russia
| | - Andrey S. Sabitov
- N.I. Vavilov All-Russian Institute of Plant Genetic Resources, B. Morskaya 42-44, Saint-Petersburg 190000, Russia; (A.S.S.); (K.S.G.)
| | - Kirill S. Golokhvast
- N.I. Vavilov All-Russian Institute of Plant Genetic Resources, B. Morskaya 42-44, Saint-Petersburg 190000, Russia; (A.S.S.); (K.S.G.)
- Advanced Engineering School (Agrobiotek), National Research Tomsk State University, Lenin Ave, 36, Tomsk 634050, Russia
- Siberian Federal Scientific Centre of Agrobiotechnology RAS, Centralnaya 2b, Presidium, Krasnoobsk 633501, Russia
| |
Collapse
|
14
|
Beghè D, Cirlini M, Beneventi E, Dall’Asta C, Marchioni I, Petruccelli R. Exploring Italian Autochthonous Punica granatum L. Accessions: Pomological, Physicochemical, and Aromatic Investigations. PLANTS (BASEL, SWITZERLAND) 2024; 13:2558. [PMID: 39339533 PMCID: PMC11434734 DOI: 10.3390/plants13182558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 08/31/2024] [Accepted: 09/02/2024] [Indexed: 09/30/2024]
Abstract
Autochthonous Italian pomegranate accessions are still underexplored, although they could be an important resource for fresh consumption, processing, and nutraceutical uses. Therefore, it is necessary to characterize the local germplasm to identify genotypes with desirable traits. In this study, six old Italian pomegranate landraces and a commercial cultivar (Dente di Cavallo) were investigated, evaluating their fruit pomological parameters, physicochemical (TSS, pH, TA, and color) characteristics, sugar content, and aromatic profiles (HeadSpace Solid-Phase MicroExtraction (HS-SPME)) coupled with Gas Chromatographyass Spectrometry (GC-MS) of pomegranate juices. Significant differences were observed in the size and weight of the seed and fruits (127.50-525.1 g), as well as the sugar content (100-133.6 gL-1), the sweetness (12.9-17.6 °Brix), and the aroma profiles. Over 56 volatile compounds, predominantly alcohols (56%), aldehydes (24%), and terpenes (9%), were simultaneously quantified. Large variability among the genotypes was also statistically confirmed. The results indicate a strong potential for commercial exploitation of this germplasm, both as fresh and processed fruit, and highlight its versatility for diverse applications. The genetic diversity of the autochthonous pomegranate accessions represents a precious heritage to be preserved and enhanced. This work represents a preliminary step toward a more comprehensive characterization and qualitative valorization of the Italian pomegranate germplasm.
Collapse
Affiliation(s)
- Deborah Beghè
- Economics and Management Department, University of Parma, Via J.F. Kennedy 6, 43125 Parma, Italy
| | - Martina Cirlini
- Food and Drug Department, University of Parma, Parco Area delle Scienze, 27/A, 43124 Parma, Italy; (E.B.); (C.D.); (I.M.)
| | - Elisa Beneventi
- Food and Drug Department, University of Parma, Parco Area delle Scienze, 27/A, 43124 Parma, Italy; (E.B.); (C.D.); (I.M.)
| | - Chiara Dall’Asta
- Food and Drug Department, University of Parma, Parco Area delle Scienze, 27/A, 43124 Parma, Italy; (E.B.); (C.D.); (I.M.)
| | - Ilaria Marchioni
- Food and Drug Department, University of Parma, Parco Area delle Scienze, 27/A, 43124 Parma, Italy; (E.B.); (C.D.); (I.M.)
| | - Raffaella Petruccelli
- Institute of BioEconomy, National Research Council (CNR-IBE), Via Madonna del Piano n. 10, Sesto Fiorentino, 50019 Florence, Italy;
| |
Collapse
|
15
|
Kumar S, Taumar D, Gaikwad S, More A, Nema V, Mukherjee A. Antiretroviral action of Rosemary oil-based atazanavir formulation and the role of self-nanoemulsifying drug delivery system in the management of HIV-1 infection. Drug Deliv Transl Res 2024; 14:1888-1908. [PMID: 38161197 DOI: 10.1007/s13346-023-01492-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/06/2023] [Indexed: 01/03/2024]
Abstract
Atazanavir or ATV is an FDA-approved, HIV-1 protease inhibitor that belongs to the azapeptide group. Over time, it has been observed that ATV can cause multiple adverse side effects in the form of liver diseases including elevations in serum aminotransferase, indirect hyper-bilirubinemia, and idiosyncratic acute liver injury aggravating the underlying chronic viral hepatitis. Hence, there is an incessant need to explore the safe and efficacious method of delivering ATV in a controlled manner that may reduce the proportion of its idiosyncratic reactions in patients who are on antiretroviral therapy for years. In this study, we assessed ATV formulation along with Rosemary oil to enhance the anti-HIV-1 activity and its controlled delivery through self-nanoemulsifying drug delivery system or SNEDDS to enhance its oral bioavailability. While the designing, development, and characterization of ATV-SNEDDS were addressed through various evaluation parameters and pharmacokinetic-based studies, in vitro cell-based experiments assured the safety and efficacy of the designed ATV formulation. The study discovered the potential of ATV-SNEDDS to inhibit HIV-1 infection at a lower concentration as compared to its pure counterpart. Simultaneously, we could also demonstrate the ATV and Rosemary oil providing leads for designing and developing such formulations for the management of HIV-1 infections with the alleviation in the risk of adverse reactions.
Collapse
Affiliation(s)
- Shobhit Kumar
- Department of Pharmaceutical Technology, Meerut Institute of Engineering and Technology (MIET), NH-58, Delhi-Roorkee Highway, Meerut, 250005, Uttar Pradesh, India
| | - Dhananjay Taumar
- Department of Pharmaceutical Technology, Meerut Institute of Engineering and Technology (MIET), NH-58, Delhi-Roorkee Highway, Meerut, 250005, Uttar Pradesh, India
| | - Shraddha Gaikwad
- Division of Virology, ICMR-National AIDS Research Institute, Ministry of Health & Family Welfare, Plot No. 73, 'G' Block, MIDC, Bhosari, Pune, 411026, Maharashtra, India
| | - Ashwini More
- Division of Virology, ICMR-National AIDS Research Institute, Ministry of Health & Family Welfare, Plot No. 73, 'G' Block, MIDC, Bhosari, Pune, 411026, Maharashtra, India
| | - Vijay Nema
- Division of Virology, ICMR-National AIDS Research Institute, Ministry of Health & Family Welfare, Plot No. 73, 'G' Block, MIDC, Bhosari, Pune, 411026, Maharashtra, India
| | - Anupam Mukherjee
- Division of Virology, ICMR-National AIDS Research Institute, Ministry of Health & Family Welfare, Plot No. 73, 'G' Block, MIDC, Bhosari, Pune, 411026, Maharashtra, India.
| |
Collapse
|
16
|
Lai Y, Ma J, Zhang X, Xuan X, Zhu F, Ding S, Shang F, Chen Y, Zhao B, Lan C, Unver T, Huo G, Li X, Wang Y, Liu Y, Lu M, Pan X, Yang D, Li M, Zhang B, Zhang D. High-quality chromosome-level genome assembly and multi-omics analysis of rosemary (Salvia rosmarinus) reveals new insights into the environmental and genome adaptation. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:1833-1847. [PMID: 38363812 PMCID: PMC11182591 DOI: 10.1111/pbi.14305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 12/27/2023] [Accepted: 01/18/2024] [Indexed: 02/18/2024]
Abstract
High-quality genome of rosemary (Salvia rosmarinus) represents a valuable resource and tool for understanding genome evolution and environmental adaptation as well as its genetic improvement. However, the existing rosemary genome did not provide insights into the relationship between antioxidant components and environmental adaptability. In this study, by employing Nanopore sequencing and Hi-C technologies, a total of 1.17 Gb (97.96%) genome sequences were mapped to 12 chromosomes with 46 121 protein-coding genes and 1265 non-coding RNA genes. Comparative genome analysis reveals that rosemary had a closely genetic relationship with Salvia splendens and Salvia miltiorrhiza, and it diverged from them approximately 33.7 million years ago (MYA), and one whole-genome duplication occurred around 28.3 MYA in rosemary genome. Among all identified rosemary genes, 1918 gene families were expanded, 35 of which are involved in the biosynthesis of antioxidant components. These expanded gene families enhance the ability of rosemary adaptation to adverse environments. Multi-omics (integrated transcriptome and metabolome) analysis showed the tissue-specific distribution of antioxidant components related to environmental adaptation. During the drought, heat and salt stress treatments, 36 genes in the biosynthesis pathways of carnosic acid, rosmarinic acid and flavonoids were up-regulated, illustrating the important role of these antioxidant components in responding to abiotic stresses by adjusting ROS homeostasis. Moreover, cooperating with the photosynthesis, substance and energy metabolism, protein and ion balance, the collaborative system maintained cell stability and improved the ability of rosemary against harsh environment. This study provides a genomic data platform for gene discovery and precision breeding in rosemary. Our results also provide new insights into the adaptive evolution of rosemary and the contribution of antioxidant components in resistance to harsh environments.
Collapse
Affiliation(s)
- Yong Lai
- College of ForestryHenan Agricultural UniversityZhengzhouHenanChina
| | - Jinghua Ma
- College of ForestryHenan Agricultural UniversityZhengzhouHenanChina
| | - Xuebin Zhang
- State Key Laboratory of Crop Stress Adaptation and Improvement, Henan Joint International Laboratory for Crop Multi‐Omics Research, School of Life SciencesHenan UniversityKaifengHenanChina
| | - Xiaobo Xuan
- Key Laboratory of Water Management and Water Security for Yellow River BasinMinistry of Water ResourcesZhengzhouHenanChina
| | - Fengyun Zhu
- School of Biological and Food Processing EngineeringHuanghuai UniversityZhumadianHenanChina
| | - Shen Ding
- College of ForestryHenan Agricultural UniversityZhengzhouHenanChina
| | - Fude Shang
- College of Life ScienceHenan Agricultural UniversityZhengzhouHenanChina
| | - Yuanyuan Chen
- College of ForestryHenan Agricultural UniversityZhengzhouHenanChina
| | - Bing Zhao
- State Key Laboratory of Crop Stress Adaptation and Improvement, Henan Joint International Laboratory for Crop Multi‐Omics Research, School of Life SciencesHenan UniversityKaifengHenanChina
| | - Chen Lan
- State Key Laboratory of Crop Stress Adaptation and Improvement, Henan Joint International Laboratory for Crop Multi‐Omics Research, School of Life SciencesHenan UniversityKaifengHenanChina
| | | | - George Huo
- Department of BiologyEast Carolina UniversityGreenvilleNorth CarolinaUSA
| | - Ximei Li
- College of ForestryHenan Agricultural UniversityZhengzhouHenanChina
| | - Yihan Wang
- College of Life ScienceHenan Agricultural UniversityZhengzhouHenanChina
| | - Yufang Liu
- College of ForestryHenan Agricultural UniversityZhengzhouHenanChina
| | - Mengfei Lu
- College of ForestryHenan Agricultural UniversityZhengzhouHenanChina
| | - Xiaoping Pan
- Department of BiologyEast Carolina UniversityGreenvilleNorth CarolinaUSA
| | - Deshuang Yang
- College of ForestryHenan Agricultural UniversityZhengzhouHenanChina
| | - Mingwan Li
- College of ForestryHenan Agricultural UniversityZhengzhouHenanChina
| | - Baohong Zhang
- Department of BiologyEast Carolina UniversityGreenvilleNorth CarolinaUSA
| | - Dangquan Zhang
- College of ForestryHenan Agricultural UniversityZhengzhouHenanChina
| |
Collapse
|
17
|
Keramat M, Golmakani MT. Effects of rosmarinic acid esters on the oxidation kinetic of organogel and emulsion gel. Food Chem X 2024; 22:101343. [PMID: 38586224 PMCID: PMC10997821 DOI: 10.1016/j.fochx.2024.101343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/27/2024] [Accepted: 03/29/2024] [Indexed: 04/09/2024] Open
Abstract
Rosmarinic acid was esterified with ethanol, butanol, and hexanol to produce ethyl rosmarinate, butyl rosmarinate, and hexyl rosmarinate, respectively. The antioxidant capacities of the rosmarinic acid esters were evaluated in linseed oil, organogel, and emulsion gel during the initiation and propagation phases of peroxidation. Organogel control sample showed higher induction period and propagation period than those of linseed oil and emulsion gel control samples. Among linseed oil and organogel samples containing antioxidants, samples containing rosmarinic acid exhibited the highest antioxidant activity during the initiation phase, while rosemary extract containing butyl rosmarinate showed the highest antioxidant activity in the propagation phase. In emulsion gel, rosemary extract containing butyl rosmarinate showed higher antioxidant activity than those of rosemary extract containing ethyl rosmarinate or hexyl rosmarinate in the initiation and propagation phases. In addition, the investigated antioxidants showed lower efficiency in organogel and emulsion gel samples than those in linseed oil samples.
Collapse
Affiliation(s)
- Malihe Keramat
- Department of Food Science and Technology, School of Agriculture, Shiraz University, Shiraz, Iran
| | - Mohammad-Taghi Golmakani
- Department of Food Science and Technology, School of Agriculture, Shiraz University, Shiraz, Iran
| |
Collapse
|
18
|
Singh D, Mittal N, Mittal P, Siddiqui MH. Transcriptome sequencing of medical herb Salvia Rosmarinus (Rosemary) revealed the phenylpropanoid biosynthesis pathway genes and their phylogenetic relationships. Mol Biol Rep 2024; 51:757. [PMID: 38874856 DOI: 10.1007/s11033-024-09685-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 05/30/2024] [Indexed: 06/15/2024]
Abstract
BACKGROUND The Salvia rosmarinus spenn. (rosemary) is considered an economically important ornamental and medicinal plant and is widely utilized in culinary and for treating several diseases. However, the procedure behind synthesizing secondary metabolites-based bioactive compounds at the molecular level in S. rosmarinus is not explored completely. METHODS AND RESULTS We performed transcriptomic sequencing of the pooled sample from leaf and stem tissues on the Illumina HiSeqTM X10 platform. The transcriptomics analysis led to the generation of 29,523,608 raw reads, followed by data pre-processing which generated 23,208,592 clean reads, and de novo assembly of S. rosmarinus obtained 166,849 unigenes. Among them, nearly 75.1% of unigenes i.e., 28,757 were interpreted against a non-redundant protein database. The gene ontology-based annotation classified them into 3 main categories and 55 sub-categories, and clusters of orthologous genes annotation categorized them into 23 functional categories. The Kyoto Encyclopedia of Genes and Genomes database-based pathway analysis confirmed the involvement of 13,402 unigenes in 183 biochemical pathways, among these unigenes, 1,186 are involved in the 17 secondary metabolite production pathways. Several key enzymes involved in producing aromatic amino acids and phenylpropanoids were identified from the transcriptome database. Among the identified 48 families of transcription factors from coding unigenes, bHLH, MYB, WRKYs, NAC, C2H2, C3H, and ERF are involved in flavonoids and other secondary metabolites biosynthesis. CONCLUSION The phylogenetic analysis revealed the evolutionary relationship between the phenylpropanoid pathway genes of rosemary with other members of Lamiaceae. Our work reveals a new molecular mechanism behind the biosynthesis of phenylpropanoids and their regulation in rosemary plants.
Collapse
Affiliation(s)
- Dhananjay Singh
- Department of Biosciences, Integral University, Kursi Road, Lucknow, Uttar Pradesh, 226026, India
| | - Nishu Mittal
- Faculty of Biosciences, Institute of Biosciences and Technology, Shri Ramswaroop Memorial University, Barabanki, Uttar Pradesh, 225003, India
| | - Pooja Mittal
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India
| | - Mohammed Haris Siddiqui
- Department of Bioengineering, Integral University, Kursi Road, Lucknow, Uttar Pradesh, 226026, India.
| |
Collapse
|
19
|
Ozturk T, Ávila-Gálvez MÁ, Mercier S, Vallejo F, Bred A, Fraisse D, Morand C, Pelvan E, Monfoulet LE, González-Sarrías A. Impact of Lactic Acid Bacteria Fermentation on (Poly)Phenolic Profile and In Vitro Antioxidant and Anti-Inflammatory Properties of Herbal Infusions. Antioxidants (Basel) 2024; 13:562. [PMID: 38790667 PMCID: PMC11117909 DOI: 10.3390/antiox13050562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 04/29/2024] [Accepted: 04/30/2024] [Indexed: 05/26/2024] Open
Abstract
Recently, the development of functional beverages has been enhanced to promote health and nutritional well-being. Thus, the fermentation of plant foods with lactic acid bacteria can enhance their antioxidant capacity and others like anti-inflammatory activity, which may depend on the variations in the total content and profile of (poly)phenols. The present study aimed to investigate the impact of fermentation with two strains of Lactiplantibacillus plantarum of several herbal infusions from thyme, rosemary, echinacea, and pomegranate peel on the (poly)phenolic composition and whether lacto-fermentation can contribute to enhance their in vitro antioxidant and anti-inflammatory effects on human colon myofibroblast CCD18-Co cells. HPLC-MS/MS analyses revealed that fermentation increased the content of the phenolics present in all herbal infusions. In vitro analyses indicated that pomegranate infusion showed higher antioxidant and anti-inflammatory effects, followed by thyme, echinacea, and rosemary, based on the total phenolic content. After fermentation, despite increasing the content of phenolics, the antioxidant and anti-inflammatory effects via reduction pro-inflammatory markers (IL-6, IL-8 and PGE2) were similar to those of their corresponding non-fermented infusions, with the exception of a greater reduction in lacto-fermented thyme. Overall, the findings suggest that the consumption of lacto-fermented herbal infusions could be beneficial in alleviating intestinal inflammatory disorders.
Collapse
Affiliation(s)
- Tarik Ozturk
- Life Sciences, TÜBİTAK Marmara Research Center, P.O. Box 21, 41470 Gebze-Kocaeli, Türkiye; (T.O.); (E.P.)
| | - María Ángeles Ávila-Gálvez
- Laboratory of Food and Health, Research Group on Quality, Safety and Bioactivity of Plant Foods, Department of Food Science and Technology, CEBAS-CSIC, Campus de Espinardo, P.O. Box 164, 30100 Murcia, Spain; (M.Á.Á.-G.); (F.V.)
| | - Sylvie Mercier
- Université Clermont Auvergne, INRAE, UNH, F-63000 Clermont-Ferrand, France; (S.M.); (A.B.); (D.F.); (C.M.)
| | - Fernando Vallejo
- Laboratory of Food and Health, Research Group on Quality, Safety and Bioactivity of Plant Foods, Department of Food Science and Technology, CEBAS-CSIC, Campus de Espinardo, P.O. Box 164, 30100 Murcia, Spain; (M.Á.Á.-G.); (F.V.)
| | - Alexis Bred
- Université Clermont Auvergne, INRAE, UNH, F-63000 Clermont-Ferrand, France; (S.M.); (A.B.); (D.F.); (C.M.)
| | - Didier Fraisse
- Université Clermont Auvergne, INRAE, UNH, F-63000 Clermont-Ferrand, France; (S.M.); (A.B.); (D.F.); (C.M.)
| | - Christine Morand
- Université Clermont Auvergne, INRAE, UNH, F-63000 Clermont-Ferrand, France; (S.M.); (A.B.); (D.F.); (C.M.)
| | - Ebru Pelvan
- Life Sciences, TÜBİTAK Marmara Research Center, P.O. Box 21, 41470 Gebze-Kocaeli, Türkiye; (T.O.); (E.P.)
| | - Laurent-Emmanuel Monfoulet
- Université Clermont Auvergne, INRAE, UNH, F-63000 Clermont-Ferrand, France; (S.M.); (A.B.); (D.F.); (C.M.)
| | - Antonio González-Sarrías
- Laboratory of Food and Health, Research Group on Quality, Safety and Bioactivity of Plant Foods, Department of Food Science and Technology, CEBAS-CSIC, Campus de Espinardo, P.O. Box 164, 30100 Murcia, Spain; (M.Á.Á.-G.); (F.V.)
| |
Collapse
|
20
|
Somaghian SA, Mirzaei SZ, Shakib MEK, Marzban A, Alsallameh S, Lashgarian HE. Biogenic zinc selenide nanoparticles fabricated using Rosmarinus officinalis leaf extract with potential biological activity. BMC Complement Med Ther 2024; 24:20. [PMID: 38178178 PMCID: PMC10768302 DOI: 10.1186/s12906-023-04329-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 12/25/2023] [Indexed: 01/06/2024] Open
Abstract
Zinc selenide nanoparticles (ZnSe) are semiconductor metals of zinc and selenium. ZnSe NPs are advantageous for biomedical and bio-imaging applications due to their low toxicity. ZnSe NPs can be used as a therapeutic agent by synthesizing those using biologically safe methods. As a novel facet of these NPs, plant-based ZnSe NPs were fabricated from an aqueous extract of Rosmarinus officinalis L. (RO extract). Physiochemical analyses such as UV-visible and FTIR spectroscopy, SEM-EDX and TEM Imaging, XRD and DLS-Zeta potential analyses confirmed the biological fabrication of RO-ZnSe NPs. Additionally, Ro-ZnSe NPs were investigated for their bioactivity. There was an apparent peak in the UV-visible spectrum at 398 nm to confirm the presence of ZnSe NPs. FTIR analysis confirmed RO-extract participation in ZnSe NPs synthesis by identifying putative functional groups associated with biomolecules. TEM and SEM analyses revealed that RO-ZnSe NPs have spherical shapes in the range of 90-100 nm. According to XRD and EDX analysis, RO-ZnSe NPs had a crystallite size of 42.13 nm and contain Se and Zn (1:2 ratio). These NPs demonstrated approximately 90.6% antioxidant and antibacterial activity against a range of bacterial strains at 100 µg/ml. Antibiofilm activity was greatest against Candida glabrata and Pseudomonas aeruginosa at 100 g/ml. Accordingly, the IC50 values for anticancer activity against HTB-9, SW742, and HF cell lines were 14.16, 8.03, and 35.35 g/ml, respectively. In light of the multiple applications for ZnSe NPs, our research indicates they may be an excellent option for biological and therapeutic purposes in treating cancers and infections. Therefore, additional research is required to determine their efficacy.
Collapse
Affiliation(s)
- Shahram Ahmadi Somaghian
- Razi Herbal Medicines Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Seyedeh Zahra Mirzaei
- Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | | | - Abdolrazagh Marzban
- Razi Herbal Medicines Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran.
| | - Sarah Alsallameh
- Department of Medical Laboratories Techniques, College of Health and Medical Techniques, Gilgamesh Ahliya University Gau, Baghdad, 10022, Iraq
| | - Hamed Esmaeil Lashgarian
- Department of Medical Biotechnology, Lorestan University of Medical Sciences, Khorramabad, Iran.
| |
Collapse
|
21
|
morsi RM, Mansour DS, Mousa AM. Ameliorative potential role of Rosmarinus officinalis extract on toxicity induced by etoposide in male albino rats. BRAZ J BIOL 2024; 84:e258234. [DOI: 10.1590/1519-6984.258234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 06/17/2022] [Indexed: 11/21/2022] Open
Abstract
Abstract The present work was showed to assess the effect of administration of rosemary extract on etoposide-induced toxicity, injury and proliferation in male rats were investigated. Forty male albino rats were arranged into four equal groups. 1st group, control; 2nd group, etoposide; 3rd group, co-treated rosemary & etoposide; 4th group, rosemary alone. In comparison to the control group, etoposide administration resulted in a significant increase in serum ALT, AST, ALP, total bilirubin, total protein, and gamma GT. In contrast; a significant decrease in albumin level in etoposide group as compared to G1. G3 revealed a significant decrease in AST, ALT, ALP, total protein and total bilirubin levels and a significant rise in albumin level when compared with G2. Serum levels of urea, creatinine, potassium ions, and chloride ions significantly increased; while sodium ions were significantly decreased in G2 when compared with G1. Also, there was an increase of MDA level for etoposide treated group with corresponding control rats. However, there was a remarkable significant decrease in SOD, GPX and CAT levels in G2 as compared to G1. There was a significant increase in serum hydrogen peroxide (H2O2) and Nitric oxide (NO) levels in group treated with etoposide when compared to control group. It was noticeable that administrated by rosemary alone either with etoposide had not any effect on the levels of H2O2 and Nitric oxide. Serum level of T3 and T4 was significantly increased in etoposide-administered rats in comparison with G1. The administration of rosemary, either alone or with etoposide, increased the serum levels of T3 and T4 significantly when compared to control rats. The gene expression analysis showed significant downregulation of hepatic SOD and GPx in (G2) when compared with (G1). The treatment with rosemary extract produced significant upregulation of the antioxidant enzymes mRNA SOD and GPx. MDA gene was increased in (G2) when contrasted with (G1). Treatment of the etoposide- induced rats with rosemary extract delivered significant decrease in MDA gene expression when compared with etoposide group. Rats treated with etoposide showed significant decline in hepatic Nrf2 protein expression, when compared with G1. While, supplementation of Etoposide- administered rats with the rosemary produced a significant elevation in hepatic Nrf2 protein levels. Additionally, the liver histological structure displayed noticeable degeneration and cellular infiltration in liver cells. It is possible to infer that rosemary has a potential role and that it should be researched as a natural component for etoposide-induced toxicity protection.
Collapse
|
22
|
Djebari S, Wrona M, Nerín C, Djaoudene O, Guemouni S, Boudria A, Madani K. Phenolic compounds profile of macerates of different edible parts of carob tree (Ceratonia siliqua L.) using UPLC-ESI-Q-TOF-MS E: Phytochemical screening and biological activities. Fitoterapia 2024; 172:105696. [PMID: 37797792 DOI: 10.1016/j.fitote.2023.105696] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 09/30/2023] [Accepted: 10/02/2023] [Indexed: 10/07/2023]
Abstract
Locust bean pulp and gum extracts were prepared, and phytochemical tests based on color reactions and chromatographic analyzes were performed. A profile of seventy-six phenolic compounds was obtained by the ultra-high performance liquid chromatography with electrospray ionization and quadrupole time-of-flight mass spectrometry. The main groups of phenolic compounds identified in the both extracts of Ceratonia siliqua L., were flavonoids, tannins and phenolic acids. Moreover, carob pulp and gum extracts were tested for their antimicrobial activity using disk diffusion tests which showed sensitivity of the different strains to the analyzed extracts at a concentration of 100 mg/mL. Additionally, the antioxidant activity of Ceratonia siliqua L. extracts was assessed by the 2,2-diphenyl-1-picrylhydrazyl acid test, which confirmed stronger antioxidant properties in the case of the pulp extract. To sum up, carob pulp and gum extracts present promising alternatives to synthetic additives within the medicinal industry, serving as potential antioxidant agents and preservatives that combat bacterial contamination, thereby offering a more natural approach to enhancing product safety and efficacy.
Collapse
Affiliation(s)
- Sabrina Djebari
- Laboratoire de Biomathématique, Biophysique, Biochimie et Scientométrie, Faculté des Sciences de la Nature et de la Vie, Université de Bejaia, 06000 Bejaia, Algeria.
| | - Magdalena Wrona
- Universidad de Zaragoza, Departamento de Química Analítica, Instituto de Investigación en Ingeniería de Aragon (I3A), María de Luna 3, 50018 Zaragoza, Spain.
| | - Cristina Nerín
- Universidad de Zaragoza, Departamento de Química Analítica, Instituto de Investigación en Ingeniería de Aragon (I3A), María de Luna 3, 50018 Zaragoza, Spain.
| | - Ouarda Djaoudene
- Centre de Recherche en Technologies Agroalimentaires, Route de Targa Ouzemmour, Campus Universitaire, Bejaia 06000, Algeria.
| | - Sara Guemouni
- Laboratoire de Biomathématique, Biophysique, Biochimie et Scientométrie, Faculté des Sciences de la Nature et de la Vie, Université de Bejaia, 06000 Bejaia, Algeria.
| | - Asma Boudria
- Laboratoire de Biomathématique, Biophysique, Biochimie et Scientométrie, Faculté des Sciences de la Nature et de la Vie, Université de Bejaia, 06000 Bejaia, Algeria.
| | - Khodir Madani
- Laboratoire de Biomathématique, Biophysique, Biochimie et Scientométrie, Faculté des Sciences de la Nature et de la Vie, Université de Bejaia, 06000 Bejaia, Algeria; Centre de Recherche en Technologies Agroalimentaires, Route de Targa Ouzemmour, Campus Universitaire, Bejaia 06000, Algeria.
| |
Collapse
|
23
|
Laelago Ersedo T, Teka TA, Fikreyesus Forsido S, Dessalegn E, Adebo JA, Tamiru M, Astatkie T. Food flavor enhancement, preservation, and bio-functionality of ginger ( Zingiber officinale): a review. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2023. [DOI: 10.1080/10942912.2023.2194576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
|
24
|
Chaves N, Nogales L, Montero-Fernández I, Blanco-Salas J, Alías JC. Mediterranean Shrub Species as a Source of Biomolecules against Neurodegenerative Diseases. Molecules 2023; 28:8133. [PMID: 38138621 PMCID: PMC10745362 DOI: 10.3390/molecules28248133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/12/2023] [Accepted: 12/14/2023] [Indexed: 12/24/2023] Open
Abstract
Neurodegenerative diseases are associated with oxidative stress, due to an imbalance in the oxidation-reduction reactions at the cellular level. Various treatments are available to treat these diseases, although they often do not cure them and have many adverse effects. Therefore, it is necessary to find complementary and/or alternative drugs that replace current treatments with fewer side effects. It has been demonstrated that natural products derived from plants, specifically phenolic compounds, have a great capacity to suppress oxidative stress and neutralize free radicals thus, they may be used as alternative alternative pharmacological treatments for pathological conditions associated with an increase in oxidative stress. The plant species that dominate the Mediterranean ecosystems are characterized by having a wide variety of phenolic compound content. Therefore, these species might be important sources of neuroprotective biomolecules. To evaluate this potential, 24 typical plant species of the Mediterranean ecosystems were selected, identifying the most important compounds present in them. This set of plant species provides a total of 403 different compounds. Of these compounds, 35.7% are phenolic acids and 55.6% are flavonoids. The most relevant of these compounds are gallic, vanillic, caffeic, chlorogenic, p-coumaric, and ferulic acids, apigenin, kaempferol, myricitrin, quercetin, isoquercetin, quercetrin, rutin, catechin and epicatechin, which are widely distributed among the analyzed plant species (in over 10 species) and which have been involved in the literature in the prevention of different neurodegenerative pathologies. It is also important to mention that three of these plant species, Pistacea lentiscus, Lavandula stoechas and Thymus vulgaris, have most of the described compounds with protective properties against neurodegenerative diseases. The present work shows that the plant species that dominate the studied geographic area can provide an important source of phenolic compounds for the pharmacological and biotechnological industry to prepare extracts or isolated compounds for therapy against neurodegenerative diseases.
Collapse
Affiliation(s)
- Natividad Chaves
- Department of Plant Biology, Ecology and Earth Sciences, Faculty of Science, Universidad de Extremadura, 06080 Badajoz, Spain; (L.N.); (I.M.-F.); (J.B.-S.); (J.C.A.)
| | | | | | | | | |
Collapse
|
25
|
Yao Y, Choe U, Li Y, Liu Z, Zeng M, Wang TTY, Sun J, Wu X, Pehrsson P, He X, Zhang Y, Gao B, Moore JC, Chen P, Slavin M, Yu LL. Chemical Composition of Rosemary ( Rosmarinus officinalis L.) Extract and Its Inhibitory Effects on SARS-CoV-2 Spike Protein-ACE2 Interaction and ACE2 Activity and Free Radical Scavenging Capacities. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:18735-18745. [PMID: 37988686 DOI: 10.1021/acs.jafc.3c02301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2023]
Abstract
This study evaluated the chemical composition of rosemary water extract (RWE) and its influence on mechanisms by which the SARS-CoV-2 virus enters into cells as a potential route for reducing the risk of COVID-19 disease. Compounds in RWE were identified using UHPLC-MS/MS. The inhibitory effect of RWE was then evaluated on binding between the SARS-CoV-2 spike protein (S-protein) and ACE2 and separately on ACE2 activity/availability. Additionally, total phenolic content (TPC) and free radical scavenging capacities of RWE against HO•, ABTS•+, and DPPH• were assessed. Twenty-one compounds were tentatively identified in RWE, of which tuberonic acid hexoside was identified for the first time in rosemary. RWE dose of 33.3 mg of rosemary equivalents (RE)/mL suppressed the interaction between S-protein and ACE2 by 72.9%, while rosmarinic and caffeic acids at 3.3 μmol/mL suppressed the interaction by 36 and 55%, respectively. RWE at 5.0, 2.5, and 0.5 mg of RE/mL inhibited ACE2 activity by 99.5, 94.5, and 68.6%, respectively, while rosmarinic acid at 0.05 and 0.01 μmol/mL reduced ACE2 activity by 31 and 8%, respectively. RWE had a TPC value of 72.5 mg GAE/g. The results provide a mechanistic basis on which rosemary may reduce the risk of SARS-CoV-2 infection and the development of COVID-19.
Collapse
Affiliation(s)
- Yuanhang Yao
- Department of Nutrition and Food Science, University of Maryland, College Park, Maryland 20742, United States
| | - Uyory Choe
- Department of Nutrition and Food Science, University of Maryland, College Park, Maryland 20742, United States
| | - Yanfang Li
- Department of Nutrition and Food Science, University of Maryland, College Park, Maryland 20742, United States
| | - Zhihao Liu
- Department of Nutrition and Food Science, University of Maryland, College Park, Maryland 20742, United States
- Agricultural Research Service, United States Department of Agriculture, Methods and Application of Food Composition Laboratory, Beltsville Human Nutrition Research Center, Beltsville, Maryland 20705, United States
| | - Melody Zeng
- Department of Nutrition and Food Science, University of Maryland, College Park, Maryland 20742, United States
| | - Thomas T Y Wang
- Agricultural Research Service, United States Department of Agriculture, Diet, Genomics and Immunology Laboratory, Beltsville Human Nutrition Research Center, Beltsville, Maryland 20705, United States
| | - Jianghao Sun
- Agricultural Research Service, United States Department of Agriculture, Methods and Application of Food Composition Laboratory, Beltsville Human Nutrition Research Center, Beltsville, Maryland 20705, United States
| | - Xianli Wu
- Agricultural Research Service, United States Department of Agriculture, Methods and Application of Food Composition Laboratory, Beltsville Human Nutrition Research Center, Beltsville, Maryland 20705, United States
| | - Pamela Pehrsson
- Agricultural Research Service, United States Department of Agriculture, Methods and Application of Food Composition Laboratory, Beltsville Human Nutrition Research Center, Beltsville, Maryland 20705, United States
| | - Xiaohua He
- Agricultural Research Service, United States Department of Agriculture, Western Regional Research Center, Albany, California 94710, United States
| | - Yaqiong Zhang
- Institute of Food and Nutraceutical Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Boyan Gao
- Institute of Food and Nutraceutical Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jeffrey C Moore
- Moore FoodTech, LLC, Silver Spring, Maryland 20910, United States
| | - Pei Chen
- Agricultural Research Service, United States Department of Agriculture, Methods and Application of Food Composition Laboratory, Beltsville Human Nutrition Research Center, Beltsville, Maryland 20705, United States
| | - Margaret Slavin
- Department of Nutrition and Food Science, University of Maryland, College Park, Maryland 20742, United States
| | - Liangli Lucy Yu
- Department of Nutrition and Food Science, University of Maryland, College Park, Maryland 20742, United States
| |
Collapse
|
26
|
Iobbi V, Parisi V, Bernabè G, De Tommasi N, Bisio A, Brun P. Anti-Biofilm Activity of Carnosic Acid from Salvia rosmarinus against Methicillin-Resistant Staphylococcus aureus. PLANTS (BASEL, SWITZERLAND) 2023; 12:3679. [PMID: 37960038 PMCID: PMC10647425 DOI: 10.3390/plants12213679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/17/2023] [Accepted: 10/23/2023] [Indexed: 11/15/2023]
Abstract
The Salvia rosmarinus "Eretto Liguria" ecotype was studied as a source of valuable bioactive compounds. LC-MS analysis of the methanolic extract underlined the presence of diterpenoids, triterpenoids, polyphenolic acids, and flavonoids. The anti-virulence activity of carnosic acid along with the other most abundant compounds against methicillin-resistant Staphylococcus aureus (MRSA) was evaluated. Only carnosic acid induced a significant reduction in the expression of agrA and rnaIII genes, which encode the key components of quorum sensing (QS), an intracellular signaling mechanism controlling the virulence of MRSA. At a concentration of 0.05 mg/mL, carnosic acid inhibited biofilm formation by MRSA and the expression of genes involved in toxin production and made MRSA more susceptible to intracellular killing, with no toxic effects on eukaryotic cells. Carnosic acid did not affect biofilm formation by Pseudomonas aeruginosa, a human pathogen that often coexists with MRSA in complex infections. The selected ecotype showed a carnosic acid content of 94.3 ± 4.3 mg/g. In silico analysis highlighted that carnosic acid potentially interacts with the S. aureus AgrA response regulator. Our findings suggest that carnosic acid could be an anti-virulence agent against MRSA infections endowed with a species-specific activity useful in multi-microbial infections.
Collapse
Affiliation(s)
- Valeria Iobbi
- Department of Pharmacy, University of Genova, Viale Cembrano 4, 16148 Genova, Italy;
| | - Valentina Parisi
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084 Salerno, Italy; (V.P.); (N.D.T.)
| | - Giulia Bernabè
- Department of Molecular Medicine, University of Padova, Via Gabelli 63, 35121 Padova, Italy; (G.B.); (P.B.)
| | - Nunziatina De Tommasi
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084 Salerno, Italy; (V.P.); (N.D.T.)
| | - Angela Bisio
- Department of Pharmacy, University of Genova, Viale Cembrano 4, 16148 Genova, Italy;
| | - Paola Brun
- Department of Molecular Medicine, University of Padova, Via Gabelli 63, 35121 Padova, Italy; (G.B.); (P.B.)
| |
Collapse
|
27
|
Zhao J, Quinto M, Zakia F, Li D. Microextraction of essential oils: A review. J Chromatogr A 2023; 1708:464357. [PMID: 37696126 DOI: 10.1016/j.chroma.2023.464357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 08/29/2023] [Accepted: 08/31/2023] [Indexed: 09/13/2023]
Abstract
Liquid phase microextraction (LPME) and solid phase microextraction (SPME) are popular extraction techniques for sample preparation due to their green and highly efficient single-step extraction efficiency. With the increasing attention to essential oils, their evaluation and analysis are significant in analytical sciences. In this review, starting from a brief description of the recent advances in the last decade, the attention has been focused on the up-to-date research works and applications based on liquid and solid phase microextraction for essential oil analyses. Particular attention has been given to the approaches using ionic liquids, eutectic solvents, gas flow assisted, and novel composite materials. In the end, the technological convergence of novel microextraction of essential oils in the future has been prospected.
Collapse
Affiliation(s)
- Jinhua Zhao
- Department of Chemistry, Analysis and Inspection Center, Yanbian University, Park Road 977, Yanji, Jilin, China
| | - Maurizio Quinto
- Department of Chemistry, Analysis and Inspection Center, Yanbian University, Park Road 977, Yanji, Jilin, China; Department of Agriculture, Food, Natural Resources and Engineering (DAFNE), University of Foggia, Via Napoli 25, Foggia 71122, Italy
| | - Fatima Zakia
- Department of Chemistry, Analysis and Inspection Center, Yanbian University, Park Road 977, Yanji, Jilin, China
| | - Donghao Li
- Department of Chemistry, Analysis and Inspection Center, Yanbian University, Park Road 977, Yanji, Jilin, China; Interdisciplinary Program of Biological Functional Molecules, College of Integration Science, Yanbian University, Park Road 977, Yanji, Jilin, China.
| |
Collapse
|
28
|
Wen S, Sun L, Zhang S, Chen Z, Chen R, Li Z, Lai X, Zhang Z, Cao J, Li Q, Sun S, Lai Z, Li Q. The formation mechanism of aroma quality of green and yellow teas based on GC-MS/MS metabolomics. Food Res Int 2023; 172:113137. [PMID: 37689901 DOI: 10.1016/j.foodres.2023.113137] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 05/30/2023] [Accepted: 06/12/2023] [Indexed: 09/11/2023]
Abstract
Aroma is a crucial determinant of tea quality. While some studies have examined the aroma of yellow tea, there are no reports of the difference and formation mechanism of aroma quality between yellow and green teas from the same tea tree variety. This study employed gas chromatography-mass spectrometry to investigate the difference and formation mechanism of the aroma of yellow and green tea at the omics level, based on sensory evaluation. The sensory evaluation revealed that green tea has a distinct faint scent and bean aroma, while yellow tea, which was yellowed for 48 h, has a noticeable corn aroma and sweet fragrance. A total of 79 volatile metabolites were detected in the processing of yellow and green tea, covering 11 subclasses and 27 were differential volatile metabolites. Benzoic acid, 2-(methylamino-), methyl ester, terpinen-4-ol ethanone, 1-(1H-pyrrol-2-yl-), 3-penten-2-one, 4-methyl- and benzaldehyde were characteristic components of the difference in aroma quality between green and yellow teas. Eleven volatile metabolites significantly contributed to the aroma quality of green and yellow teas, especially acetic acid, 2-phenylethyl ester, with rose and fruity aromas. KEGG enrichment analysis showed that the arginine and proline metabolism might be the key mechanism of aroma formation during green and yellow teas' processing. These finding provide a theoretical basis way for the aroma formation of green and yellow teas.
Collapse
Affiliation(s)
- Shuai Wen
- Tea Research Institute, Guangdong Academy of Agricultural Sciences/Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation & Utilization, Guangzhou 510640, China.
| | - Lingli Sun
- Tea Research Institute, Guangdong Academy of Agricultural Sciences/Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation & Utilization, Guangzhou 510640, China.
| | - Suwan Zhang
- College of Food Science/Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, South China Agricultural University, 483 Wushan Street, Tianhe District, Guangzhou, Guangdong, China.
| | - Zhongzheng Chen
- College of Food Science/Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, South China Agricultural University, 483 Wushan Street, Tianhe District, Guangzhou, Guangdong, China.
| | - Ruohong Chen
- Tea Research Institute, Guangdong Academy of Agricultural Sciences/Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation & Utilization, Guangzhou 510640, China.
| | - Zhigang Li
- Tea Research Institute, Guangdong Academy of Agricultural Sciences/Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation & Utilization, Guangzhou 510640, China.
| | - Xingfei Lai
- Tea Research Institute, Guangdong Academy of Agricultural Sciences/Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation & Utilization, Guangzhou 510640, China.
| | - Zhenbiao Zhang
- Tea Research Institute, Guangdong Academy of Agricultural Sciences/Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation & Utilization, Guangzhou 510640, China.
| | - Junxi Cao
- Tea Research Institute, Guangdong Academy of Agricultural Sciences/Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation & Utilization, Guangzhou 510640, China
| | - Qian Li
- Guangdong Academy of Agricultural Sciences, Sericultural & Agri-Food Research Institute/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, China.
| | - Shili Sun
- Tea Research Institute, Guangdong Academy of Agricultural Sciences/Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation & Utilization, Guangzhou 510640, China.
| | - Zhaoxiang Lai
- Tea Research Institute, Guangdong Academy of Agricultural Sciences/Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation & Utilization, Guangzhou 510640, China.
| | - Qiuhua Li
- Tea Research Institute, Guangdong Academy of Agricultural Sciences/Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation & Utilization, Guangzhou 510640, China.
| |
Collapse
|
29
|
Musolino V, Macrì R, Cardamone A, Tucci L, Serra M, Lupia C, Maurotti S, Mare R, Nucera S, Guarnieri L, Marrelli M, Coppoletta AR, Carresi C, Gliozzi M, Mollace V. Salvia rosmarinus Spenn. (Lamiaceae) Hydroalcoholic Extract: Phytochemical Analysis, Antioxidant Activity and In Vitro Evaluation of Fatty Acid Accumulation. PLANTS (BASEL, SWITZERLAND) 2023; 12:3306. [PMID: 37765470 PMCID: PMC10536996 DOI: 10.3390/plants12183306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 09/15/2023] [Accepted: 09/17/2023] [Indexed: 09/29/2023]
Abstract
Salvia rosmarinus Spenn. is a native Mediterranean shrub belonging to the Lamiaceae family and is well-known as a flavoring and spicing agent. In addition to its classical use, it has drawn attention because its biological activities, due particularly to the presence of polyphenols, including carnosic acid and rosmarinic acid, and phenolic diterpenes as carnosol. In this study, the aerial part of rosemary was extracted with a hydroalcoholic solution through maceration, followed by ultrasound sonication, to obtain a terpenoids-rich Salvia rosmarinus extract (TRSrE) and a polyphenols-rich Salvia rosmarinus extract (PRSrE). After phytochemical characterization, both extracts were investigated for their antioxidant activity through a classical assay and with electron paramagnetic resonance (EPR) for their DPPH and hydroxyl radicals scavenging. Finally, their potential beneficial effects to reduce lipid accumulation in an in vitro model of NAFLD were evaluated.
Collapse
Affiliation(s)
- Vincenzo Musolino
- Laboratory of Pharmaceutical Biology, Department of Health Sciences, Institute of Research for Food Safety and Health IRC-FSH, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy
- Department of Health Sciences, Institute of Research for Food Safety and Health IRC-FSH, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy; (R.M.); (C.L.); (S.N.); (A.R.C.); (M.G.); (V.M.)
| | - Roberta Macrì
- Department of Health Sciences, Institute of Research for Food Safety and Health IRC-FSH, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy; (R.M.); (C.L.); (S.N.); (A.R.C.); (M.G.); (V.M.)
| | - Antonio Cardamone
- Department of Health Sciences, Institute of Research for Food Safety and Health IRC-FSH, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy; (R.M.); (C.L.); (S.N.); (A.R.C.); (M.G.); (V.M.)
| | | | - Maria Serra
- Department of Health Sciences, Institute of Research for Food Safety and Health IRC-FSH, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy; (R.M.); (C.L.); (S.N.); (A.R.C.); (M.G.); (V.M.)
| | - Carmine Lupia
- Department of Health Sciences, Institute of Research for Food Safety and Health IRC-FSH, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy; (R.M.); (C.L.); (S.N.); (A.R.C.); (M.G.); (V.M.)
| | - Samantha Maurotti
- Department of Clinical and Experimental Medicine, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy; (S.M.); (R.M.)
| | - Rosario Mare
- Department of Clinical and Experimental Medicine, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy; (S.M.); (R.M.)
| | - Saverio Nucera
- Department of Health Sciences, Institute of Research for Food Safety and Health IRC-FSH, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy; (R.M.); (C.L.); (S.N.); (A.R.C.); (M.G.); (V.M.)
| | - Lorenza Guarnieri
- Department of Health Sciences, Institute of Research for Food Safety and Health IRC-FSH, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy; (R.M.); (C.L.); (S.N.); (A.R.C.); (M.G.); (V.M.)
| | - Mariangela Marrelli
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy;
| | - Anna Rita Coppoletta
- Department of Health Sciences, Institute of Research for Food Safety and Health IRC-FSH, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy; (R.M.); (C.L.); (S.N.); (A.R.C.); (M.G.); (V.M.)
| | - Cristina Carresi
- Veterinary Pharmacology Laboratory, Department of Health Sciences, Institute of Research for Food Safety and Health IRC-FSH, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy;
| | - Micaela Gliozzi
- Department of Health Sciences, Institute of Research for Food Safety and Health IRC-FSH, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy; (R.M.); (C.L.); (S.N.); (A.R.C.); (M.G.); (V.M.)
| | - Vincenzo Mollace
- Department of Health Sciences, Institute of Research for Food Safety and Health IRC-FSH, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy; (R.M.); (C.L.); (S.N.); (A.R.C.); (M.G.); (V.M.)
| |
Collapse
|
30
|
Duque-Soto C, Ruiz-Vargas A, Rueda-Robles A, Quirantes-Piné R, Borrás-Linares I, Lozano-Sánchez J. Bioactive Potential of Aqueous Phenolic Extracts of Spices for Their Use in the Food Industry-A Systematic Review. Foods 2023; 12:3031. [PMID: 37628030 PMCID: PMC10453399 DOI: 10.3390/foods12163031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/08/2023] [Accepted: 08/10/2023] [Indexed: 08/27/2023] Open
Abstract
The interest on the use of natural sources in the food industry has promoted the study of plants' phenolic compounds as potential additives. However, the literature has been focusing on essential oils, with very few studies published regarding aqueous extracts, their phenolic composition, and bioactivity. A systematic review was conducted on different databases following PRISMA guidelines to evaluate the relevance of the phenolic content of different aromatic spices (oregano, rosemary, thyme, ginger, clove, and pepper), as related to their bioactivity and potential application as food additives. Although different extraction methods have been applied in the literature, the use of green approaches using ethanol and deep eutectic solvents has increased, leading to the development of products more apt for human consumption. The studied plants present an interesting phenolic profile, ranging from phenolic acids to flavonoids, establishing a correlation between their phenolic content and bioactivity. In this sense, results have proven to be very promising, presenting those extracts as having similar if not higher bioactivity than synthetic additives already in use, with associated health concerns. Nevertheless, the study of spices' phenolic extracts is somehow limited to in vitro studies. Therefore, research in food matrices is needed for more understanding of factors interfering with their preservation activity.
Collapse
Affiliation(s)
- Carmen Duque-Soto
- Department of Food Science and Nutrition, University of Granada, Campus Universitario s/n, 18071 Granada, Spain; (C.D.-S.); (A.R.-V.); (A.R.-R.); (J.L.-S.)
| | - Ana Ruiz-Vargas
- Department of Food Science and Nutrition, University of Granada, Campus Universitario s/n, 18071 Granada, Spain; (C.D.-S.); (A.R.-V.); (A.R.-R.); (J.L.-S.)
| | - Ascensión Rueda-Robles
- Department of Food Science and Nutrition, University of Granada, Campus Universitario s/n, 18071 Granada, Spain; (C.D.-S.); (A.R.-V.); (A.R.-R.); (J.L.-S.)
| | - Rosa Quirantes-Piné
- Research and Development Functional Food Centre (CIDAF), Health Science Technological Park, Avenida del Conocimiento 37, Edificio BioRegión, 18016 Granada, Spain;
| | - Isabel Borrás-Linares
- Department of Analytical Chemistry, Faculty of Sciences, University of Granada, 18071 Granada, Spain
| | - Jesús Lozano-Sánchez
- Department of Food Science and Nutrition, University of Granada, Campus Universitario s/n, 18071 Granada, Spain; (C.D.-S.); (A.R.-V.); (A.R.-R.); (J.L.-S.)
| |
Collapse
|
31
|
Serrano CA, Villena GK, Rodríguez EF, Calsino B, Ludeña MA, Ccana-Ccapatinta GV. Phytochemical analysis for ten Peruvian Mentheae (Lamiaceae) by liquid chromatography associated with high resolution mass spectrometry. Sci Rep 2023; 13:10714. [PMID: 37400603 DOI: 10.1038/s41598-023-37830-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 06/28/2023] [Indexed: 07/05/2023] Open
Abstract
The profile of secondary metabolites in ten members of tribe Mentheae (Nepetoideae, Lamiaceae) from Peru by liquid chromatography associated with high resolution mass spectrometry, is presented. Salvianolic acids and their precursors were found, particularly rosmarinic acid, caffeic acid ester derivatives, as well as a diversity of free and glycosylated flavonoids as main substances. At all, 111 structures were tentatively identified.
Collapse
Affiliation(s)
- Carlos A Serrano
- Laboratorio de Química Orgánica, Universidad Nacional de San Antonio Abad del Cusco, Cusco, Peru.
| | - Gretty K Villena
- Laboratorio de Micología y Biotecnología, Universidad Nacional Agraria La Molina, Lima, Peru
| | - Eric F Rodríguez
- Herbarium Truxillense (HUT), Universidad Nacional de Trujillo, Trujillo, Peru
| | | | - Michael A Ludeña
- Laboratorio de Química Orgánica, Universidad Nacional de San Antonio Abad del Cusco, Cusco, Peru
| | | |
Collapse
|
32
|
Okhlopkova ZM, Razgonova MP, Rozhina ZG, Egorova PS, Golokhvast KS. Dracocephalum jacutense Peschkova from Yakutia: Extraction and Mass Spectrometric Characterization of 128 Chemical Compounds. Molecules 2023; 28:molecules28114402. [PMID: 37298879 DOI: 10.3390/molecules28114402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 05/22/2023] [Accepted: 05/23/2023] [Indexed: 06/12/2023] Open
Abstract
Dracocephalum jacutense Peschkova is a rare and endangered species of the genus Dracocephalum of the Lamiaceae family. The species was first described in 1997 and listed in the Red Data Book of Yakutia. Significant differences in the multicomponent composition of extracts from D. jacutense collected in the natural environment and successfully introduced in the Botanical Garden of Yakutsk were identified by a team of authors earlier in a large study. In this work, we studied the chemical composition of the leaves, stem, and inflorescences of D. jacutense using the tandem mass spectrometry method. Only three cenopopulations of D. jacutense were found by us in the territory of the early habitat-in the vicinity of the village of Sangar, Kobyaysky district of Yakutia. The aboveground phytomass of the plant was collected, processed and dried as separate parts of the plant: inflorescences, stem and leaves. Firstly, a total of 128 compounds, 70% of which are polyphenols, were tentatively identified in extracts of D. jacutense. These polyphenol compounds were classified as 32 flavones, 12 flavonols, 6 flavan-3-ols, 7 flavanones, 17 phenolic acids, 2 lignans, 1 dihydrochalcone, 4 coumarins, and 8 anthocyanidins. Other chemical groups were presented as carotenoids, omega-3-fatty acids, omega-5-fatty acids, amino acids, purines, alkaloids, and sterols. The inflorescences are the richest in polyphenols (73 polyphenolic compounds were identified), while 33 and 22 polyphenols were found in the leaves and stems, respectively. A high level of identity for polyphenolic compounds in different parts of the plant is noted for flavanones (80%), followed by flavonols (25%), phenolic acids (15%), and flavones (13%). Furthermore, 78 compounds were identified for the first time in representatives of the genus Dracocephalum, including 50 polyphenolic compounds and 28 compounds of other chemical groups. The obtained results testify to the unique composition of polyphenolic compounds in different parts of D. jacutense.
Collapse
Affiliation(s)
- Zhanna M Okhlopkova
- Department of Biology, North-Eastern Federal University, Belinsky Str. 58, 677000 Yakutsk, Russia
| | - Mayya P Razgonova
- N.I. Vavilov All-Russian Institute of Plant Genetic Resources, B. Morskaya 42-44, 190000 Saint-Petersburg, Russia
- Institute of Biotechnology, Bioengineering and Food System, Far Eastern Federal University, Sukhanova 8, 690950 Vladivostok, Russia
| | - Zoya G Rozhina
- Department of Biology, North-Eastern Federal University, Belinsky Str. 58, 677000 Yakutsk, Russia
| | - Polina S Egorova
- Yakutsk Botanical Garden, Institute for Biological Problems of Cryolithozone Siberian Branch of Russian Academy Sciences, Lenina pr. 41, 677000 Yakutsk, Russia
| | - Kirill S Golokhvast
- N.I. Vavilov All-Russian Institute of Plant Genetic Resources, B. Morskaya 42-44, 190000 Saint-Petersburg, Russia
- Institute of Biotechnology, Bioengineering and Food System, Far Eastern Federal University, Sukhanova 8, 690950 Vladivostok, Russia
- Siberian Federal Scientific Centre of Agro-BioTechnologies of the Russian Academy of Sciences, Centralnaya 2b, 630501 Krasnoobsk, Russia
| |
Collapse
|
33
|
Den Hartogh DJ, Vlavcheski F, Tsiani E. Muscle Cell Insulin Resistance Is Attenuated by Rosmarinic Acid: Elucidating the Mechanisms Involved. Int J Mol Sci 2023; 24:ijms24065094. [PMID: 36982168 PMCID: PMC10049470 DOI: 10.3390/ijms24065094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 01/16/2023] [Accepted: 01/26/2023] [Indexed: 03/30/2023] Open
Abstract
Obesity and elevated blood free fatty acid (FFA) levels lead to impaired insulin action causing insulin resistance in skeletal muscle, and contributing to the development of type 2 diabetes mellitus (T2DM). Mechanistically, insulin resistance is associated with increased serine phosphorylation of the insulin receptor substrate (IRS) mediated by serine/threonine kinases including mTOR and p70S6K. Evidence demonstrated that activation of the energy sensor AMP-activated protein kinase (AMPK) may be an attractive target to counteract insulin resistance. We reported previously that rosemary extract (RE) and the RE polyphenol carnosic acid (CA) activated AMPK and counteracted the FFA-induced insulin resistance in muscle cells. The effect of rosmarinic acid (RA), another polyphenolic constituent of RE, on FFA-induced muscle insulin resistance has never been examined and is the focus of the current study. Muscle cell (L6) exposure to FFA palmitate resulted in increased serine phosphorylation of IRS-1 and reduced insulin-mediated (i) Akt activation, (ii) GLUT4 glucose transporter translocation, and (iii) glucose uptake. Notably, RA treatment abolished these effects, and restored the insulin-stimulated glucose uptake. Palmitate treatment increased the phosphorylation/activation of mTOR and p70S6K, kinases known to be involved in insulin resistance and RA significantly reduced these effects. RA increased the phosphorylation of AMPK, even in the presence of palmitate. Our data indicate that RA has the potential to counteract the palmitate-induced insulin resistance in muscle cells, and further studies are required to explore its antidiabetic properties.
Collapse
Affiliation(s)
- Danja J Den Hartogh
- Department of Health Sciences, Brock University, St. Catharines, ON L2S 3A1, Canada
- Centre for Bone and Muscle Health, Brock University, St. Catharines, ON L2S 3A1, Canada
| | - Filip Vlavcheski
- Department of Health Sciences, Brock University, St. Catharines, ON L2S 3A1, Canada
- Centre for Bone and Muscle Health, Brock University, St. Catharines, ON L2S 3A1, Canada
| | - Evangelia Tsiani
- Department of Health Sciences, Brock University, St. Catharines, ON L2S 3A1, Canada
- Centre for Bone and Muscle Health, Brock University, St. Catharines, ON L2S 3A1, Canada
| |
Collapse
|
34
|
Guimarães NSS, Ramos VS, Prado-Souza LFL, Lopes RM, Arini GS, Feitosa LGP, Silva RR, Nantes IL, Damasceno DC, Lopes NP, Rodrigues T. Rosemary (Rosmarinus officinalis L.) Glycolic Extract Protects Liver Mitochondria from Oxidative Damage and Prevents Acetaminophen-Induced Hepatotoxicity. Antioxidants (Basel) 2023; 12:antiox12030628. [PMID: 36978874 PMCID: PMC10045355 DOI: 10.3390/antiox12030628] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 02/26/2023] [Accepted: 02/28/2023] [Indexed: 03/06/2023] Open
Abstract
Rosmarinus officinalis L. (rosemary) is an aromatic culinary herb. Native to the Mediterranean region, it is currently cultivated worldwide. In addition to its use as a condiment in food preparation and in teas, rosemary has been widely employed in folk medicine and cosmetics. Several beneficial effects have been described for rosemary, including antimicrobial and antioxidant activities. Here, we investigated the mechanisms accounting for the antioxidant activity of the glycolic extract of R. officinalis (Ro) in isolated rat liver mitochondria (RLM) under oxidative stress conditions. We also investigated its protective effect against acetaminophen-induced hepatotoxicity in vivo. A crude extract was obtained by fractionated percolation, using propylene glycol as a solvent due to its polarity and cosmeceutical compatibility. The quantification of substances with recognized antioxidant action revealed the presence of phenols and flavonoids. Dereplication studies carried out through LC-MS/MS and GC-MS, supported by The Global Natural Product Social Molecular Networking (GNPS) platform, annotated several phenolic compounds, confirming the previous observation. In accordance, Ro decreased the production of reactive oxygen species (ROS) elicited by Fe2+ or t-BOOH and inhibited the lipid peroxidation of mitochondrial membranes in a concentration-dependent manner in RLM. Such an effect was also observed in liposomes as membrane models. Ro also prevented the oxidation of mitochondrial protein thiol groups and reduced glutathione (GSH). In model systems, Ro exhibited a potent scavenger activity toward 2,2′-diphenyl-1-picrylhydrazyl (DPPH) radicals and superoxide anions. It also demonstrated an Fe2+ chelating activity. Moreover, Ro did not exhibit cytotoxicity or dissipate the mitochondrial membrane potential (∆Ψ) in rat liver fibroblasts (BRL3A cells). To evaluate whether such antioxidant protective activity observed in vitro could also be achieved in vivo, a well-established model of hepatotoxicity induced by acute exposure to acetaminophen (AAP) was used. This model depletes GSH and promotes oxidative-stress-mediated tissue damage. The treatment of rats with 0.05% Ro, administered intraperitoneally for four days, resulted in inhibition of AAP-induced lipid peroxidation of the liver and the prevention of hepatotoxicity, maintaining alanine and aspartate aminotransferase (ALT/AST) levels equal to those of the normal, non-treated rats. Together, these findings highlight the potent antioxidant activity of rosemary, which is able to protect mitochondria from oxidative damage in vitro, and effects such as the antioxidant and hepatoprotective effects observed in vivo.
Collapse
Affiliation(s)
- Natalia S. S. Guimarães
- Interdisciplinary Center of Biochemistry Investigation, University of Mogi das Cruzes (UMC), Mogi das Cruzes CEP 08780-911, SP, Brazil
| | - Vyctória S. Ramos
- Interdisciplinary Center of Biochemistry Investigation, University of Mogi das Cruzes (UMC), Mogi das Cruzes CEP 08780-911, SP, Brazil
| | - Laura F. L. Prado-Souza
- Center for Natural and Human Sciences, Federal University of ABC, Santo André CEP 09210-580, SP, Brazil
| | - Rayssa M. Lopes
- Center for Natural and Human Sciences, Federal University of ABC, Santo André CEP 09210-580, SP, Brazil
| | - Gabriel S. Arini
- NPPNS, Department of Biomolecular Sciences, Faculty of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto CEP 14040-900, SP, Brazil
| | - Luís G. P. Feitosa
- NPPNS, Department of Biomolecular Sciences, Faculty of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto CEP 14040-900, SP, Brazil
| | - Ricardo R. Silva
- NPPNS, Department of Biomolecular Sciences, Faculty of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto CEP 14040-900, SP, Brazil
| | - Iseli L. Nantes
- Center for Natural and Human Sciences, Federal University of ABC, Santo André CEP 09210-580, SP, Brazil
| | - Debora C. Damasceno
- Laboratory of Experimental Research on Gynecology and Obstetrics, Sao Paulo State University (UNESP), Botucatu CEP 18618-687, SP, Brazil
| | - Norberto P. Lopes
- NPPNS, Department of Biomolecular Sciences, Faculty of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto CEP 14040-900, SP, Brazil
| | - Tiago Rodrigues
- Interdisciplinary Center of Biochemistry Investigation, University of Mogi das Cruzes (UMC), Mogi das Cruzes CEP 08780-911, SP, Brazil
- Correspondence: ; Tel.: +55-(11)-4996-8371
| |
Collapse
|
35
|
Liu Y, Chen X, Zhang C. Sustainable biosynthesis of valuable diterpenes in microbes. ENGINEERING MICROBIOLOGY 2023; 3:100058. [PMID: 39628524 PMCID: PMC11611012 DOI: 10.1016/j.engmic.2022.100058] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 11/03/2022] [Accepted: 11/08/2022] [Indexed: 12/06/2024]
Abstract
Diterpenes, or diterpenoids, are the most abundant and diverse subgroup of terpenoids, the largest family of secondary metabolites. Most diterpenes possess broad biological activities including anti-inflammatory, antiviral, anti-tumoral, antimicrobial, anticancer, antifungal, antidiabetic, cardiovascular protective, and phytohormone activities. As such, diterpenes have wide applications in medicine (e.g., the anticancer drug Taxol and the antibiotic pleuromutilin), agriculture (especially as phytohormones such as gibberellins), personal care (e.g., the fragrance sclareol) and food (e.g., steviol glucosides as low-calorie sweeteners) industries. Diterpenes are biosynthesized in a common route with various diterpene synthases and decoration enzymes like cytochrome P450 oxidases, glycosidases, and acyltransferases. Recent advances in DNA sequencing and synthesis, omics analysis, synthetic biology, and metabolic engineering have enabled efficient production of diterpenes in several chassis hosts like Escherichia coli, Saccharomyces cerevisiae, Yarrowia lipolytica, Rhodosporidium toruloides, and Fusarium fujikuroi. This review summarizes the recently discovered diterpenes, their related enzymes and biosynthetic pathways, particularly highlighting the microbial synthesis of high-value diterpenes directly from inexpensive carbon sources (e.g., sugars). The high titers (>4 g/L) achieved mean that some of these endeavors are reaching or close to commercialization. As such, we envisage a bright future in translating microbial synthesis of diterpenes into commercialization.
Collapse
Affiliation(s)
- Yanbin Liu
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science Technology and Research (A*STAR), 31 Biopolis Way, Level 6 Nanos building, Singapore 138669, Singapore
| | - Xixian Chen
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science Technology and Research (A*STAR), 31 Biopolis Way, Level 6 Nanos building, Singapore 138669, Singapore
| | - Congqiang Zhang
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science Technology and Research (A*STAR), 31 Biopolis Way, Level 6 Nanos building, Singapore 138669, Singapore
| |
Collapse
|
36
|
Razgonova MP, Cherevach EI, Tekutyeva LA, Fedoreyev SA, Mishchenko NP, Tarbeeva DV, Demidova EN, Kirilenko NS, Golokhvast K. Maackia amurensis Rupr. et Maxim.: Supercritical CO 2 Extraction and Mass Spectrometric Characterization of Chemical Constituents. Molecules 2023; 28:molecules28052026. [PMID: 36903272 PMCID: PMC10004358 DOI: 10.3390/molecules28052026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/19/2023] [Accepted: 02/20/2023] [Indexed: 02/24/2023] Open
Abstract
Three types of extraction were used to obtain biologically active substances from the heartwood of M. amurensis: supercritical CO2 extraction, maceration with EtOH, and maceration with MeOH. The supercritical extraction method proved to be the most effective type of extraction, giving the highest yield of biologically active substances. Several experimental conditions were investigated in the pressure range of 50-400 bar, with 2% of ethanol as co-solvent in the liquid phase at a temperature in the range of 31-70 °C. The most effective extraction conditions are: pressure of 100 bar and a temperature of 55 °C for M. amurensis heartwood. The heartwood of M. amurensis contains various polyphenolic compounds and compounds of other chemical groups with valuable biological activity. Tandem mass spectrometry (HPLC-ESI-ion trap) was applied to detect target analytes. High-accuracy mass spectrometric data were recorded on an ion trap equipped with an ESI source in the modes of negative and positive ions. The four-stage ion separation mode was implemented. Sixty-six different biologically active components have been identified in M. amurensis extracts. Twenty-two polyphenols were identified for the first time in the genus Maackia.
Collapse
Affiliation(s)
- Mayya P. Razgonova
- N.I. Vavilov All-Russian Institute of Plant Genetic Resources, B. Morskaya 42-44, 190000 Saint Petersburg, Russia
- Department of Pharmacy and Pharmacology, School of Biomedicine, Far Eastern Federal University, Sukhanova 8, 690950 Vladivostok, Russia
- Correspondence:
| | - Elena I. Cherevach
- Department of Pharmacy and Pharmacology, School of Biomedicine, Far Eastern Federal University, Sukhanova 8, 690950 Vladivostok, Russia
| | - Lyudmila A. Tekutyeva
- Department of Pharmacy and Pharmacology, School of Biomedicine, Far Eastern Federal University, Sukhanova 8, 690950 Vladivostok, Russia
| | - Sergey A. Fedoreyev
- Department of Pharmacy and Pharmacology, School of Biomedicine, Far Eastern Federal University, Sukhanova 8, 690950 Vladivostok, Russia
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of Russian Academy of Science, Prospect 100 let Vladivostoku 159, 690022 Vladivostok, Russia
| | - Natalia P. Mishchenko
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of Russian Academy of Science, Prospect 100 let Vladivostoku 159, 690022 Vladivostok, Russia
| | - Darya V. Tarbeeva
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of Russian Academy of Science, Prospect 100 let Vladivostoku 159, 690022 Vladivostok, Russia
| | - Ekaterina N. Demidova
- Department of Pharmacy and Pharmacology, School of Biomedicine, Far Eastern Federal University, Sukhanova 8, 690950 Vladivostok, Russia
| | - Nikita S. Kirilenko
- Department of Pharmacy and Pharmacology, School of Biomedicine, Far Eastern Federal University, Sukhanova 8, 690950 Vladivostok, Russia
| | - Kirill Golokhvast
- Department of Pharmacy and Pharmacology, School of Biomedicine, Far Eastern Federal University, Sukhanova 8, 690950 Vladivostok, Russia
- Laboratory of Supercritical Fluid Research and Application in Agrobiotechnology, The National Research Tomsk State University, Lenin Str. 36, 634050 Tomsk, Russia
- Siberian Federal Scientific Centre of Agrobiotechnology, Centralnaya, Presidium, 633501 Krasnoobsk, Russia
| |
Collapse
|
37
|
Impact of the Extraction Method on the Chemical Composition and Antioxidant Potency of Rosmarinus officinalis L. Extracts. Metabolites 2023; 13:metabo13020290. [PMID: 36837909 PMCID: PMC9962555 DOI: 10.3390/metabo13020290] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 02/08/2023] [Accepted: 02/14/2023] [Indexed: 02/18/2023] Open
Abstract
Rosmarinus officinalis L. is a dietary source that produces polyphenols as secondary metabolites. These natural compounds with potent antioxidant abilities are increasingly recommended as a supplement to inhibit oxidative stress. In the current work, we evaluated the impact of the extraction method on the chemical composition of R. officinalis extract, especially on the content of carnosic (CA) and rosmarinic (RA) acids using UPLC-MS-DAD as well as on their antioxidant potency. Four extracts of Tunisian rosemary were obtained from non-conventional extraction techniques:ultrasound-assisted extraction (UAE),supercritical extraction (SFE) and UAE and SFE combined ((UAE-SFE(I), UAE-SFE(II)). The UAE exhibited the best total phenolic compounds (i.e., 85.27 mg GAEg-1), the highest content of CAand RA and the strongest antioxidant abilities (i.e., IC50 = 0.13 mg/mL and EC50 = 0.93 mg/mL for DPPH scavenging test and iron reducing power ability assay). The evaluation of antioxidant activity of UAE inhuman skin fibroblast (HS-68) cell line was carried out after the induction of oxidative stress. The results determined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay showed a strong protective effect against H2O2oxidative stress induction in cells pretreated with UAE. The obtained results allow us to give new insight about the effect of the extraction method on the chemical composition and biological activities of the extract and the importance of the choice of the most appropriate processing technique to prepare rosemary extract with a high antioxidant potency and protective effect against oxidative stress.
Collapse
|
38
|
Combination of response surface methodology and UPLC-QTOF-MSE for phenolic compounds analysis from Cinnamomum cassia bark as a novel antifungal agent. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2023. [DOI: 10.1007/s11694-023-01820-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
39
|
Reguigui A, Ott PG, Darcsi A, Bakonyi J, Romdhane M, Móricz ÁM. Nine-dimensional bioprofiles of Tunisian sages (Salvia officinalis, S. aegyptiaca and S. verbenaca) by high-performance thin-layer chromatography - effect-directed analyses. J Chromatogr A 2023; 1688:463704. [PMID: 36528897 DOI: 10.1016/j.chroma.2022.463704] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 12/05/2022] [Accepted: 12/05/2022] [Indexed: 12/12/2022]
Abstract
Ethyl acetate extracts of Tunisian Salvia aegyptiaca and S. verbenaca aerial parts and S. officinalis leaves were examined via bioanalytical profiling using high-performance thin-layer chromatography (HPTLC) combined with nine bioactivity assays, namely antibacterial (Aliivibrio fischeri, Bacillus subtilis, and Rhodococcus fascians), antifungal (Bipolaris sorokiniana, and Fusarium avenaceum), radical scavenging (DPPH•), and enzyme inhibitory (α-glucosidase, acetylcholinesterase, and lipase) ones. The screening, using toluene - ethyl acetate - methanol 6:3:0.5 (V/V/V) as a mobile phase, revealed five bioactive zones (a-e) that were analyzed by HPTLC-electrospray ionization-mass spectrometry (ESI-MS). Zones b and c, observed exclusively in S. officinalis, were active in all assays except α-glucosidase, and only c inhibited F. avenaceum. Compounds in these zones were identified by HPLC-high resolution tandem MS (LC-HRMS/MS) as rosmanol/epi-rosmanol and methyl carnosate, respectively. In the bioactive zones a and e, corosolic/maslinic acid and ursolic/oleanolic acid isomer pairs were present, which could be identified in all three Salvia species after their HPTLC separation using pre-chromatographic derivatization with iodine and MS detection. The triterpenes inhibited B. subtilis and R. fascians bacteria and α-glucosidase enzyme. Linoleic and linolenic acids were detected in zone d, which showed strong lipase inhibition in all three sage species.
Collapse
Affiliation(s)
- Amira Reguigui
- Plant Protection Institute, Centre for Agricultural Research, Herman O. Str. 15, Budapest 1022, Hungary; Energy, Water, Environment and Process Laboratory, (LR18ES35), National Engineering School of Gabes, University of Gabes, Gabes 6072, Tunisia
| | - Péter G Ott
- Plant Protection Institute, Centre for Agricultural Research, Herman O. Str. 15, Budapest 1022, Hungary
| | - András Darcsi
- Pharmaceutical Chemistry and Technology Department, National Institute of Pharmacy and Nutrition, Szabolcs Str. 33, Budapest 1135, Hungary
| | - József Bakonyi
- Plant Protection Institute, Centre for Agricultural Research, Herman O. Str. 15, Budapest 1022, Hungary
| | - Mehrez Romdhane
- Energy, Water, Environment and Process Laboratory, (LR18ES35), National Engineering School of Gabes, University of Gabes, Gabes 6072, Tunisia
| | - Ágnes M Móricz
- Plant Protection Institute, Centre for Agricultural Research, Herman O. Str. 15, Budapest 1022, Hungary.
| |
Collapse
|
40
|
Crozier RWE, Yousef M, Coish JM, Fajardo VA, Tsiani E, MacNeil AJ. Carnosic acid inhibits secretion of allergic inflammatory mediators in IgE-activated mast cells via direct regulation of Syk activation. J Biol Chem 2023; 299:102867. [PMID: 36608933 PMCID: PMC10068559 DOI: 10.1016/j.jbc.2022.102867] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 12/22/2022] [Accepted: 12/29/2022] [Indexed: 01/09/2023] Open
Abstract
Mast cells are essential regulators of inflammation most recognized for their central role in allergic inflammatory disorders. Signaling via the high-affinity immunoglobulin E (IgE) receptor, FcεRI, leads to rapid degranulation of preformed granules and the sustained release of newly-synthesized pro-inflammatory mediators. Our group recently established rosemary extract (RE) as a potent regulator of mast cell functions, attenuating MAPK and NF-κB signaling. Carnosic acid (CA)-a major polyphenolic constituent of RE-has been shown to exhibit anti-inflammatory effects in other immune cell models, but its role as a potential modulator of mast cell activation is undefined. Therefore, we sought here to determine the modulatory effects of CA in a mast cell model of allergic inflammation. We sensitized bone marrow-derived mast cells (BMMCs) with anti-trinitrophenyl (TNP) IgE and activated with allergen (TNP-BSA) under stem cell factor (SCF) potentiation, in addition to treatment with CA. Our results indicate that CA significantly inhibits allergen-induced early phase responses including Ca2+ mobilization, ROS production, and subsequent degranulation. We also show CA treatment reduced late phase responses, including the release of all cytokines and chemokines examined following IgE stimulation, and corresponding gene expression excepting that of CCL2. Importantly, we determined that CA mediates its inhibitory effects through modulation of tyrosine kinase Syk and downstream effectors TAK1 (Ser412) and Akt (Ser473) as well as NF-κB signaling, while phosphorylation of FcεRI (γ chain) and MAPK proteins remained unaltered. These novel findings establish CA as a potent modulator of mast cell activation, warranting further investigation as a putative anti-allergy therapeutic.
Collapse
Affiliation(s)
- Robert W E Crozier
- Department of Health Sciences, Brock University, St Catharines, Ontario, L2S 3A1, Canada
| | - Michael Yousef
- Department of Health Sciences, Brock University, St Catharines, Ontario, L2S 3A1, Canada
| | - Jeremia M Coish
- Department of Health Sciences, Brock University, St Catharines, Ontario, L2S 3A1, Canada
| | - Val A Fajardo
- Department of Kinesiology, Brock University, St Catharines, Ontario, L2S 3A1, Canada
| | - Evangelia Tsiani
- Department of Health Sciences, Brock University, St Catharines, Ontario, L2S 3A1, Canada
| | - Adam J MacNeil
- Department of Health Sciences, Brock University, St Catharines, Ontario, L2S 3A1, Canada.
| |
Collapse
|
41
|
Physicochemical and Antioxidant Properties of Nanoliposomes Loaded with Rosemary Oleoresin and Their Oxidative Stability Application in Dried Oysters. BIOENGINEERING (BASEL, SWITZERLAND) 2022; 9:bioengineering9120818. [PMID: 36551024 PMCID: PMC9774588 DOI: 10.3390/bioengineering9120818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 12/03/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022]
Abstract
Lipid and protein oxidation is a main problem related to the preservation of dried aquatic products. Rosemary oleoresin is widely used as an antioxidant, but its application is limited due to its instability and easy degradation. Nanoliposome encapsulation is a promising and rapidly emerging technology in which antioxidants are incorporated into the liposomes to provide the food high quality, safety and long shelf life. The objectives of this study were to prepare nanoliposome coatings of rosemary oleoresin to enhance the antioxidant stability, and to evaluate their potential application in inhibiting protein and lipid oxidation in dried oysters during storage. The nanoliposomes encapsulating rosemary oleoresin were applied with a thin-film evaporation method, and the optimal amount of encapsulated rosemary oleoresin was chosen based on changes in the dynamic light scattering, Zeta potential, and encapsulation efficiency of the nanoliposomes. The Fourier transform-infrared spectroscopy of rosemary oleoresin nanoliposomes showed no new characteristic peaks formed after rosemary oleoresin encapsulation, and the particle size of rosemary oleoresin nanoliposomes was 100-200 nm in transmission electron microscopy. The differential scanning calorimetry indicated that the nanoliposomes coated with rosemary oleoresin had better thermal stability. Rosemary oleoresin nanoliposomes presented good antioxidant stability, and still maintained 48% DPPH radical-scavenging activity and 45% ABTS radical-scavenging activity after 28 d of storage, which was 3.7 times and 2.8 times higher than that of empty nanoliposomes, respectively. Compared with the control, the dried oysters coated with rosemary oleoresin nanoliposomes showed significantly lower values of carbonyl, sulfhydryl content, thiobarbituric acid reactive substances, Peroxide value, and 4-Hydroxynonenal contents during 28 d of storage. The results provide a theoretical basis for developing an efficient and long-term antioxidant approach.
Collapse
|
42
|
Exposure to (Poly)phenol Metabolites after a Fruit and Vegetable Supplement Intake: A Double-Blind, Cross-Over, Randomized Trial. Nutrients 2022; 14:nu14224913. [PMID: 36432599 PMCID: PMC9692523 DOI: 10.3390/nu14224913] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/14/2022] [Accepted: 11/16/2022] [Indexed: 11/22/2022] Open
Abstract
Dietary (poly)phenol intake derived from the daily consumption of five portions of fruits and vegetables could protect against the development of non-communicable diseases. However, the general population does not meet the recommended intake. Supplementation with (poly)phenol-rich ingredients, within a varied and balanced diet, could help in filling this nutritional gap. This study aimed to validate the proof-of-concept of a (poly)phenolic supplementation developed to enhance the daily consumption of potentially bioactive compounds. Oxxynea® is a (poly)phenol-rich ingredient developed to provide the quantity and the variety corresponding to five-a-day fruit and vegetable consumption. In this double-blind, randomized cross-over study, 10 participants were supplemented with 450 mg of a (poly)phenol-based supplement or a placebo. Pharmacokinetics and urinary excretion profiles were measured for 24 and 48 h, respectively, using UPHLC-MS/MS analysis. The pharmacokinetic profile displayed a triphasic absorption, indicating peaks of circulating metabolites at 1.75 ± 0.25 h, 4.50 ± 0.34 h, 9.50 ± 0.33 h and an average Tmax (time of maximal plasma concentration) of 6.90 ± 0.96 h. Similarly, the urinary profile showed maximum metabolite excretion at 3-6 h, 6-10 h and 14-24 h after supplement consumption. Compared to individual metabolites belonging to different (poly)phenolic subfamilies, the total circulating and excreted metabolites showed a reduced coefficient of variation (CV 38%). The overall bioavailability estimated was 27.4 ± 3.4%. Oxxynea® supplementation may provide a sustained exposure to several (poly)phenolic metabolites and catabolites and reduces the inter-individual variation that could arise from supplementing only one class of (poly)phenol.
Collapse
|
43
|
Slimestad R, Johny A, Thomsen MG, Karlsen CR, Rosnes JT. Chemical Profiling and Biological Activity of Extracts from Nine Norwegian Medicinal and Aromatic Plants. Molecules 2022; 27:molecules27217335. [PMID: 36364156 PMCID: PMC9656764 DOI: 10.3390/molecules27217335] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/21/2022] [Accepted: 10/26/2022] [Indexed: 11/26/2022] Open
Abstract
There is an increased interest in identifying beneficial compounds of plant origin that can be added to animal diets to improve animal performance and have a health-promoting effect. In the present study, nine herb species of the Norwegian wild flora or which can be cultivated in Norway were selected for phytogenic evaluation (hops, maral root, mint, oregano, purslane, rosemary, roseroot, sweet wormwood, yarrow). Dried herbs were sequentially extracted with dichloromethane (DCM), ethanol (EtOH) and finally water (H2O) by ultrasound-assisted extraction (UAE). The UAE protocol was found to be more rational than conventional Soxhlet with respect to DCM extraction. Total extraction yield was found to be highest for oregano (Origanum vulgare) with 34.4 g 100−1 g dry matter (DM). H2O-extracts gave the highest yields of the three solvents, with up to 25 g 100−1 g DM for purslane (Portulaca oleracea ssp. sativa) and mint (Mentha piperita). EtOH- and H2O-extracts were the most efficient extracts with respect to free radical scavenging capacity (ABTS (=2,2-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid), and oregano, mint, hops (Humulus lupulus) and maral root-leaves (Leuzea carthamoides) were found to be the most efficient antioxidant sources. Hops (EtOH-extract) contained α- and β-acids, xanthohumols, chlorogenic acid and the hitherto unreported 3-O-glucosides of kaempferol and quercetin. Maral root-leaves contained among other compounds hexosides of the 6-hydroxy- and 6-methoxy-kaempferol and -quercetin, whereas roseroot (Rosea rhodiola) revealed contents of rosavin, rhodiosin and rhodionin. Sweet wormwood (Artemisia annua) contained chlorogenic acid and several derivatives thereof, scopoletin and poly-methylated flavones (eupatin, casticin, chrysoplenetin). Antimicrobial potential of different plant extracts was demonstrated against Gram-positive and Gram-negative bacteria using the indicator organisms Staphylococcus aureus, and Escherichia coli, and the Atlantic salmon bacterial pathogens Moritella viscosa, Tenacibaculum finnmarkense and Aliivibrio wodanis. DCM extracts possessed the highest activities. Data demonstrate the potential ability of herb extracts as natural antimicrobials. However, future safety studies should be performed to elucidate any compromising effect on fish health.
Collapse
Affiliation(s)
- Rune Slimestad
- PlantChem AS, Eikenveien 334, N-4596 Eiken, Norway
- Correspondence:
| | - Amritha Johny
- Department of Fish Health, Nofima AS, Osloveien 1, N-1430 Ås, Norway
| | - Mette Goul Thomsen
- Division of Food Production and Society, Nibio, Nylinna 226, N-2849 Kapp, Norway
| | | | - Jan Thomas Rosnes
- Department of Processing Technology, Nofima AS, Richard Johnsens gate 4, N-4021 Stavanger, Norway
| |
Collapse
|
44
|
Untargeted Metabolomics by Using UHPLC–ESI–MS/MS of an Extract Obtained with Ethyl Lactate Green Solvent from Salvia rosmarinus. SEPARATIONS 2022. [DOI: 10.3390/separations9110327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Salvia rosmarinus (Lamiaceae), previously known as Rosmarinus officinalis, is a plant cultivated worldwide, native to the Mediterranean region. Its leaves are traditionally used for cooking. This species possesses numerous biological activities, including antioxidant, antimicrobial, anticancer, anti-inflammatory, and hepatoprotective properties. These biological properties are due to the presence of phenolic compounds, including rosmarinic acid and phenolic diterpenoids, such as carnosic acid and carnosol. In this study, we investigated the chemical composition of a green extract obtained by maceration with ethyl lactate for the first time. Seventy-five compounds were tentatively identified by UHPLC–ESI–MS/MS, including six organic acids, six cinnamic acid derivatives, five fatty acids, eighteen flavonoids, and thirty-eight terpenoids. Thus, abietane-type diterpenoids from the ethyl lactate extract were the predominant diterpenoids in the Chilean S. rosmarinus species, in contrast to the Chinese species, in which labdane and isopimarane-type diterpenoids were found for the first time. Finally, our study confirms that the extraction of S. rosmarinus with green ethyl lactate as a solvent is efficient and sustainable for the identification of flavonoids, phenols, and terpenoids from leaves.
Collapse
|
45
|
Lahlou RA, Samba N, Soeiro P, Alves G, Gonçalves AC, Silva LR, Silvestre S, Rodilla J, Ismael MI. Thymus hirtus Willd. ssp. algeriensis Boiss. and Reut: A Comprehensive Review on Phytochemistry, Bioactivities, and Health-Enhancing Effects. Foods 2022; 11:3195. [PMID: 37430944 PMCID: PMC9601415 DOI: 10.3390/foods11203195] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/29/2022] [Accepted: 10/03/2022] [Indexed: 11/16/2022] Open
Abstract
Members of the Lamiaceae family are considered chief sources of bioactive therapeutic agents. They are important ornamental, medicinal, and aromatic plants, many of which are used in traditional and modern medicine and in the food, cosmetic, and pharmaceutical industries. In North Africa, on the Mediterranean side, there is the following particularly interesting Lamiaceous species: Thymus hirtus Willd. sp. Algeriensis Boiss. Et Reut. The populations of this endemic plant are distributed from the subhumid to the lower arid zone and are mainly employed as ethnomedicinal remedies in the following Maghreb countries: Algeria, Libya, Morocco, and Tunisia. In fact, they have been applied as antimicrobial agents, antispasmodics, astringents, expectorants, and preservatives for several food products. The species is commonly consumed as a tea or infusion and is used against hypercholesterolemia, diabetes, respiratory ailments, heart disease, and food poisoning. These medicinal uses are related to constituents with many biological characteristics, including antimicrobial, antioxidant, anticancer, anti-ulcer, anti-diabetic, insecticidal, and anti-inflammatory activities. This review aims to present an overview of the botanical characteristics and geographical distribution of Thymus algeriensis Boiss. Et Reut and its traditional uses. This manuscript also examines the phytochemical profile and its correlation with biological activities revealed by in vitro and in vivo studies.
Collapse
Affiliation(s)
- Radhia Aitfella Lahlou
- Chemistry Department, University of Beira Interior, 6201-001 Covilhã, Portugal
- Fiber Materials and Environmental Technologies (FibEnTech), University of Beira Interior, 6201-001 Covilhã, Portugal
- Biology Department, Faculty of Sciences, University of M’Hamed Bougara, Boumerdes 35000, Algeria
- CICS-UBI—Health Sciences Research Center, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal
| | - Nsevolo Samba
- Chemistry Department, University of Beira Interior, 6201-001 Covilhã, Portugal
- Fiber Materials and Environmental Technologies (FibEnTech), University of Beira Interior, 6201-001 Covilhã, Portugal
| | - Pedro Soeiro
- CICS-UBI—Health Sciences Research Center, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal
| | - Gilberto Alves
- CICS-UBI—Health Sciences Research Center, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal
| | - Ana Carolina Gonçalves
- CICS-UBI—Health Sciences Research Center, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal
| | - Luís R. Silva
- CICS-UBI—Health Sciences Research Center, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal
- CPIRN-UDI/IPG—Centro de Potencial e Inovação em Recursos Naturais, Unidade de Investigação Para o Desenvolvimento do Interior do Instituto Politécnico da Guarda, 6300-559 Guarda, Portugal
| | - Samuel Silvestre
- Chemistry Department, University of Beira Interior, 6201-001 Covilhã, Portugal
- CICS-UBI—Health Sciences Research Center, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal
- CNC—Center for Neuroscience and Cell Biology, University of Coimbra, Rua Larga, 3004-517 Coimbra, Portugal
| | - Jesus Rodilla
- Chemistry Department, University of Beira Interior, 6201-001 Covilhã, Portugal
- Fiber Materials and Environmental Technologies (FibEnTech), University of Beira Interior, 6201-001 Covilhã, Portugal
| | - Maria Isabel Ismael
- Chemistry Department, University of Beira Interior, 6201-001 Covilhã, Portugal
- Fiber Materials and Environmental Technologies (FibEnTech), University of Beira Interior, 6201-001 Covilhã, Portugal
| |
Collapse
|
46
|
Eco-Friendly Solution Based on Rosmarinus officinalis Hydro-Alcoholic Extract to Prevent Biodeterioration of Cultural Heritage Objects and Buildings. Int J Mol Sci 2022; 23:ijms231911463. [PMID: 36232763 PMCID: PMC9569761 DOI: 10.3390/ijms231911463] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 09/19/2022] [Accepted: 09/26/2022] [Indexed: 11/17/2022] Open
Abstract
Biodeterioration of cultural heritage is caused by different organisms capable of inducing complex alteration processes. The present study aimed to evaluate the efficiency of Rosmarinus officinalis hydro-alcoholic extract to inhibit the growth of deteriogenic microbial strains. For this, the physico-chemical characterization of the vegetal extract by UHPLC–MS/MS, its antimicrobial and antibiofilm activity on a representative number of biodeteriogenic microbial strains, as well as the antioxidant activity determined by DPPH, CUPRAC, FRAP, TEAC methods, were performed. The extract had a total phenol content of 15.62 ± 0.97 mg GAE/mL of which approximately 8.53% were flavonoids. The polyphenolic profile included carnosic acid, carnosol, rosmarinic acid and hesperidin as major components. The extract exhibited good and wide spectrum antimicrobial activity, with low MIC (minimal inhibitory concentration) values against fungal strains such as Aspergillus clavatus (MIC = 1.2 mg/mL) and bacterial strains such as Arthrobacter globiformis (MIC = 0.78 mg/mL) or Bacillus cereus (MIC = 1.56 mg/mL). The rosemary extract inhibited the adherence capacity to the inert substrate of Penicillium chrysogenum strains isolated from wooden objects or textiles and B. thuringiensis strains. A potential mechanism of R. officinalis antimicrobial activity could be represented by the release of nitric oxide (NO), a universal signalling molecule for stress management. Moreover, the treatment of microbial cultures with subinhibitory concentrations has modulated the production of microbial enzymes and organic acids involved in biodeterioration, with the effect depending on the studied microbial strain, isolation source and the tested soluble factor. This paper reports for the first time the potential of R. officinalis hydro-alcoholic extract for the development of eco-friendly solutions dedicated to the conservation/safeguarding of tangible cultural heritage.
Collapse
|
47
|
Beyond aroma: A review on advanced extraction processes from rosemary (Rosmarinus officinalis) and sage (Salvia officinalis) to produce phenolic acids and diterpenes. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
48
|
Mahmod AI, Haif SK, Kamal A, Al-Ataby IA, Talib WH. Chemoprevention effect of the Mediterranean diet on colorectal cancer: Current studies and future prospects. Front Nutr 2022; 9:924192. [PMID: 35990343 PMCID: PMC9386380 DOI: 10.3389/fnut.2022.924192] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 07/18/2022] [Indexed: 12/11/2022] Open
Abstract
Colorectal cancer (CRC) is the third most common cancer and the second most deadly cancer worldwide. Nevertheless, more than 70% of CRC cases are resulted from sporadic tumorigenesis and are not inherited. Since adenoma-carcinoma development is a slow process and may take up to 20 years, diet-based chemoprevention could be an effective approach in sporadic CRC. The Mediterranean diet is an example of a healthy diet pattern that consists of a combination of nutraceuticals that prevent several chronic diseases and cancer. Many epidemiological studies have shown the correlation between adherence to the Mediterranean diet and low incidence of CRC. The goal of this review is to shed the light on the anti-inflammatory and anti-colorectal cancer potentials of the natural bioactive compounds derived from the main foods in the Mediterranean diet.
Collapse
Affiliation(s)
- Asma Ismail Mahmod
- Department of Clinical Pharmacy and Therapeutic, Applied Science Private University, Amman, Jordan
| | - Shatha Khaled Haif
- Department of Pharmacy, Princess Sarvath Community College, Amman, Jordan
| | - Ayah Kamal
- Department of Clinical Pharmacy and Therapeutic, Applied Science Private University, Amman, Jordan
| | - Israa A Al-Ataby
- Department of Clinical Pharmacy and Therapeutic, Applied Science Private University, Amman, Jordan
| | - Wamidh H Talib
- Department of Clinical Pharmacy and Therapeutic, Applied Science Private University, Amman, Jordan
| |
Collapse
|
49
|
de Macedo LM, dos Santos ÉM, Ataide JA, Silva GTDSE, Guarnieri JPDO, Lancellotti M, Jozala AF, Rosa PCP, Mazzola PG. Development and Evaluation of an Antimicrobial Formulation Containing Rosmarinus officinalis. Molecules 2022; 27:molecules27165049. [PMID: 36014289 PMCID: PMC9416300 DOI: 10.3390/molecules27165049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/28/2022] [Accepted: 08/03/2022] [Indexed: 11/25/2022] Open
Abstract
Rosmarinus officinalis belongs to the Lamiaceae family, and its constituents show antioxidant, anti-inflammatory, antidepressant, antinociceptive, and antibacterial properties. The aim of this study was to develop a topical formulation with R. officinalis extract that had antimicrobial and antioxidant activity. Maceration, infusion, Soxhlet, and ultrasound were used to produce rosemary extracts, which were submitted to antioxidant, compound quantification, cell viability, and antimicrobial assays. Infusion and Soxhlet showed better results in the DPPH assay. During compound quantification, infusion showed promising metabolite extraction in phenolic compounds and tannins, although maceration was able to extract more flavonoids. The infusion and ultrasound extracts affected more strains of skin bacteria in the disk diffusion assays. In the minimum inhibitory concentration assay, the infusion extract showed results against S. aureus, S. oralis, and P. aeruginosa, while ultrasound showed effects against those three bacteria and E. coli. The infusion extract was chosen to be incorporated into a green emulsion. The infusion extract promoted lower spreadability and appropriated the texture, and the blank formulation showed high levels of acceptance among the volunteers. According to the results, the rosemary extract showed promising antioxidant and antimicrobial activity, and the developed formulations containing this extract were stable for over 90 days and had acceptable characteristics, suggesting its potential use as a phytocosmetic. This paper reports the first attempt to produce an oil-in-water emulsion using only natural excipients and rosemary extract, which is a promising novelty, as similar products cannot be found on the market or in the scientific literature.
Collapse
Affiliation(s)
| | - Érica Mendes dos Santos
- Faculty of Pharmaceutical Sciences, University of Campinas (UNICAMP), Campinas 13083-871, Brazil
- Correspondence: ; Tel.: +55-19-983235896
| | - Janaína Artem Ataide
- Faculty of Pharmaceutical Sciences, University of Campinas (UNICAMP), Campinas 13083-871, Brazil
| | | | | | - Marcelo Lancellotti
- Faculty of Pharmaceutical Sciences, University of Campinas (UNICAMP), Campinas 13083-871, Brazil
| | - Angela Faustino Jozala
- Laboratory of Industrial Microbiology and Fermentation Process (LAMINFE), University of Sorocaba, Sorocaba 18023-000, Brazil
| | - Paulo Cesar Pires Rosa
- Faculty of Pharmaceutical Sciences, University of Campinas (UNICAMP), Campinas 13083-871, Brazil
| | - Priscila Gava Mazzola
- Faculty of Pharmaceutical Sciences, University of Campinas (UNICAMP), Campinas 13083-871, Brazil
| |
Collapse
|
50
|
Kessler JC, Vieira V, Martins IM, Manrique YA, Ferreira P, Calhelha RC, Afonso A, Barros L, Rodrigues AE, Dias MM. Chemical and organoleptic properties of bread enriched with Rosmarinus officinalis L.: The potential of natural extracts obtained through green extraction methodologies as food ingredients. Food Chem 2022; 384:132514. [DOI: 10.1016/j.foodchem.2022.132514] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 02/15/2022] [Accepted: 02/17/2022] [Indexed: 11/29/2022]
|